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Anderson orthogonality (AO) refers to the fact that the ground states of two Fermi seas that experience different
local scattering potentials, say |GI〉 and |GF〉, become orthogonal in the thermodynamic limit of large particle
number N , in that |〈GI|GF〉| ∼ N− 1

2 �2
AO for N → ∞. We show that the numerical renormalization group offers

a simple and precise way to calculate the exponent �AO: the overlap, calculated as a function of Wilson chain
length k, decays exponentially ∼e−kα , and �AO can be extracted directly from the exponent α. The results for
�AO so obtained are consistent (with relative errors typically smaller than 1%) with two other related quantities
that compare how ground-state properties change upon switching from |GI〉 to |GF〉: the difference in scattering
phase shifts at the Fermi energy, and the displaced charge flowing in from infinity. We illustrate this for several
nontrivial interacting models, including systems that exhibit population switching.
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I. INTRODUCTION

In 1967, Anderson considered the response of a Fermi
sea to a change in local scattering potential and made the
following observation1: The ground states |GI〉 and |GF〉 of
the Hamiltonians ĤI and ĤF describing the system before
and after the change, respectively, become orthogonal in the
thermodynamic limit, decaying with total particle number N

as

|〈GI|GF〉| ∼ N− 1
2 �2

AO , (1)

because the single-particle states comprising the two Fermi
seas are characterized by different phase shifts.

Whenever the Anderson orthogonality (AO) exponent �AO

is finite, the overlap of the two ground-state wave functions
goes to zero as the system size becomes macroscopic. As a
consequence, matrix elements of the form |〈GI|Ô|GF〉|, where
Ô is a local operator acting at the site of the localized potential,
necessarily also vanish in the thermodynamic limit. This
fact has far-reaching consequences, underlying several fun-
damental phenomena in condensed matter physics involving
quantum impurity models, i.e., models describing a Fermi sea
coupled to localized quantum degrees of freedom. Examples
are the Mahan exciton (ME) and the Fermi-edge singularity2–5

(FES) in absorption spectra, and the Kondo effect6 arising
in magnetic alloys7 or in transport through quantum dots.8

For all of these, the low-temperature dynamics is governed
by the response of the Fermi sea to a sudden switch of a
local scattering potential. More recently, there has also been
growing interest in inducing such a sudden switch, or quantum
quench, by optical excitations of a quantum dot tunnel-coupled
to a Fermi sea, in which case the post-quench dynamics leaves
fingerprints, characteristic of AO, in the optical absorption or
emission line shape.9–11

The intrinsic connection of local quantum quenches to the
scaling of the Anderson orthogonality with system size can be
intuitively understood as follows. Consider an instantaneous
event at the location of the impurity at time t = 0 in a system
initially in equilibrium. This local perturbation will spread
out spatially, such that for t > 0, the initial wave function is
affected only within a radius L � vf t of the impurity, with

vf the Fermi velocity. The AO finite-size scaling in Eq. (1)
therefore directly resembles the actual experimental situation
and, in particular, allows the exponent �AO to be directly
related to the exponents seen in experimental observables
at long-time scales, or at the threshold frequency in Fourier
space.12

A powerful numerical tool for studying quantum impurity
models is the numerical renormalization group (NRG),13,14

which allows numerous static and dynamical quantities to
be calculated explicitly, also in the thermodynamic limit of
infinite bath size. The purpose of this paper is to point out
that NRG also offers a completely straightforward way to
calculate the overlap |〈GI|GF〉| and hence to extract �AO. The
advantage of using NRG for this purpose is that NRG is able to
deal with quantum impurity models that in general also involve
local interactions, which are usually not tractable analytically.
Although Anderson himself did not include local interactions
in his considerations,1 his prediction (1) still applies, provided
the ground states |GI,F〉 describe Fermi liquids. This is the
case for most impurity models (but not all; the two-channel
Kondo model is a notable exception). Another useful feature
of NRG is that it allows consistency checks on its results for
overlap decays since �AO is known to be related to a change of
scattering phase shifts at the Fermi surface. These phase shifts
can be calculated independently, either from NRG energy flow
diagrams, or via Friedel’s sum rule from the displaced charge,
as will be elaborated below.

A further concrete motivation for the present study is
to develop a convenient tool for calculating AO exponents
for quantum dot models that display the phenomenon of
population switching.15–19 In such models, a quantum dot
tunnel-coupled to leads contains levels of different widths, and
is capacitively coupled to a gate voltage that shifts the levels
energy relative to the Fermi level of the leads. Under suitable
conditions, an (adiabatic) sweep of the gate voltage induces
an inversion in the population of these levels (a so-called
population switch), implying a change in the local potential
seen by the Fermi seas in the leads. In this paper, we verify
that the method of extracting �AO from 〈GI|GF〉 works reliably
also for such models. In a separate publication,12 we will use
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this method to analyze whether AO can lead to a quantum
phase transition in such models, as suggested in Ref. 19.

The remainder of this paper is structured as follows: In
Sec. II, we define the AO exponent �AO in general terms,
and explain in Sec. III how NRG can be used to calculate it.
Section IV presents numerical results for several interacting
quantum dot models of increasing complexity: first the spinless
interacting resonant level model (IRLM), then the single-
impurity Anderson model (SIAM), followed by two models
exhibiting population switching, one for spinless and the other
for spinful electrons. In all cases, our results for �AO satisfy
all consistency checks to within less than 1%.

II. DEFINITION OF ANDERSON ORTHOGONALITY

A. AO for a single channel

To set the stage, let us review AO in the context of
a free Fermi sea involving a single species or channel
of noninteracting electrons experiencing two different local
scattering potentials. The initial and final systems are described
in full by the Hamiltonians ĤI and ĤF, respectively. Let ĉ†ε,X|0〉
be the single-particle eigenstates of ĤX characterized by the
scattering phase shifts δX(ε), where X ∈ {I,F} and ĉ

†
ε,X are

fermion creation operators, and let εf be the same Fermi
energy for both Fermi seas |GX〉. Anderson showed that in
the thermodynamic limit of large particle number N → ∞,
the overlap

〈GI|GF〉 = 〈0|
∏

ε < εf

ĉε,I

∏
ε < εf

ĉ
†
ε,F|0〉 (2)

decays as in Eq. (1),1,4 where �AO is equal to the difference in
single-particle phase shifts at the Fermi level

�AO = �ph ≡ [δF(εf ) − δI(ε
f )]/π . (3)

The relative sign between �AO and �ph (+, not −) does not
affect the orthogonality exponent �2

AO, but follows standard
convention [Ref. 20, Eq. (7), or Ref. 21, Eq. (21)].

In this paper, we will compare three independent ways of
calculating �AO. (i) The first approach calculates the overlap
|〈GI|GF〉| of Eq. (1) explicitly as a function of (effective)
system size. The main novelty of this paper is to point out that
this can easily be done in the framework of NRG, as will be
explained in detail in Sec. III.

(ii) The second approach is to directly calculate �ph via
Eq. (3), since the extraction of phase shifts δX(εf ) from NRG
finite-size spectra is well known13: Provided that ĤX describes
a Fermi liquid, the (suitably normalized) fixed point spectrum
of NRG can be reconstructed in terms of equidistant free-
particle levels shifted by an amount determined by δX(εf ).
The many-body excitation energy of an additional particle, a
hole and a particle-hole pair, thus allow the phase shift δX(εf )
to be determined unambiguously.

(iii) The third approach exploits Friedel’s sum rule,20 which
relates the difference in phase shifts to the so-called displaced
charge �ch via �ch = �ph. Here the displaced charge �ch is
defined as the charge in units of e (i.e., the number of electrons)
flowing inward from infinity into a region of large but finite

volume, say Vlarge, surrounding the scattering location, upon
switching from ĤI to ĤF:

�ch ≡ 〈GF|n̂tot|GF〉 − 〈GI|n̂tot|GI〉
≡ �sea + �dot . (4)

Here, n̂tot ≡ n̂sea + n̂dot, where n̂sea is the total number of
Fermi-sea electrons within Vlarge, whereas n̂dot is the local
charge of the scattering site, henceforth called “dot.”

To summarize, we have the equalities

�2
AO = �2

ph = �2
ch , (5)

where all three quantities can be calculated independently and
straightforwardly within the NRG. Thus, Eq. (5) constitutes
a strong consistency check. We will demonstrate below that
NRG results satisfy this check with good accuracy (deviations
are typically below 1%).

B. AO for multiple channels

We will also consider models involving several independent
and conserved channels (e.g., spin in spin-conserving models).
In the absence of interactions, the overall ground-state wave
function is the product of those of the individual channels.
With respect to AO, this trivially implies that each channel
adds independently to the AO exponent in Eq. (1),

�2
AO =

Nc∑
μ=1

�2
AO,μ

, (6)

where μ = 1, . . . ,Nc labels the Nc different channels. We
will demonstrate below that the additive character in Eq. (6)
generalizes to systems with local interactions, provided that
the particle number in each channel remains conserved. This is
remarkable since interactions may cause the ground-state wave
function to involve entanglement between local and Fermi-sea
degrees of freedom from different channels. However, our
results imply that the asymptotic tails of the ground-state wave
function far from the dot still factorize into a product of factors
from individual channels. In particular, we will calculate the
displaced charge for each individual channel [cf. Eq. (4)]

�ch,μ ≡ 〈GF|n̂tot,μ|GF〉 − 〈GI|n̂tot,μ|GI〉
≡ �sea,μ + �dot,μ , (7)

where n̂tot,μ = n̂sea,μ + n̂dot,μ. Assuming no interactions in the
respective Fermi seas, it follows from Friedel’s sum rule that
�2

AO,μ
= �2

ch,μ
, and therefore

�2
AO =

Nc∑
μ=1

�2
ch,μ ≡ �2

ch , (8)

where �2
ch is the total sum of the squares of the displaced

charges of the separate channels. Equation (8) holds with great
numerical accuracy, too, as will be shown below.
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III. TREATING ANDERSON ORTHOGONALITY
USING NRG

A. General impurity models

The problem of a noninteracting Fermi sea in the presence
of a local scatterer belongs to the general class of quantum
impurity models treatable by Wilson’s NRG.13 Our proposed
approach for calculating �AO applies to any impurity model
treatable by NRG. To be specific, however, we will focus here
on generalized Anderson impurity type models. They describe
Nc different (and conserved) species or channels of fermions
that hybridize with local degrees of freedom at the dot, while
all interaction terms are local.

We take both the initial and final (X ∈ {I,F}) Hamiltonians
to have the generic form ĤX = Ĥb + Ĥd,X + Ĥint. The first
term

Ĥb =
Nc∑

μ=1

∑
ε

ε ĉ†εμĉεμ (9)

describes a noninteracting Fermi sea involving Nc channels.
(Nc includes the spin index, if present.) For simplicity, we
assume a constant density of states ρμ(ε) = ρ0,μθ (D − |ε|)
for each channel with half-bandwidth D. Moreover, when
representing numerical results, energies will be measured in
units of half-bandwidth, hence D := 1. The Fermi sea is
assumed to couple to the dot only via the local operators
f̂0μ = 1√

Nb

∑
ε ĉεμ and f̂

†
0μ, that, respectively, annihilate or

create a Fermi-sea electron of channel μ at the position of the
dot �r = 0, with a proper normalization constant Nb to ensure
[f0μ,f

†
0μ′ ] = δμμ′ .

The second term Ĥd,X contains the noninteracting local part
of the Hamiltonian, including the dot-lead hybridization

Ĥd,X =
Nc∑

μ=1

εdμ,Xn̂dμ +
Nc∑

μ=1

√
2
μ

π
[d̂†

μf̂0μ + H.c.]. (10)

Here, εdμ,X is the energy of dot level μ in the initial or
final configuration, and n̂dμ = d̂†

μd̂μ is its electron number.

μ ≡ πρμV 2

μ is the effective width of level μ induced by its
hybridization with channel μ of the Fermi sea, with Vμ the
μ-conserving matrix element connecting the d-level with the
bath states ĉεμ, taken independent of energy, for simplicity.

Finally, the interacting third term is given in the case of
the single-impurity Anderson model (SIAM) by the uniform
Coulomb interaction U at the impurity

Ĥ SIAM
int = 1

2Un̂d(n̂d − 1), (11)

with n̂d = ∑
μ n̂dμ, while in the case of the interacting

resonant-level model (IRLM), the interacting part is given by

Ĥ IRLM
int = U ′n̂dn̂0, (12)

with n̂0 = ∑
μ f

†
0,μf0,μ ≡ ∑

μ n̂0,μ. In particular, most of our
results are for the one- or two-lead versions of the SIAM for
spinful or spinless electrons

Ĥ SIAM
X = Ĥb + Ĥd,X + Ĥ SIAM

int . (13)

We consider either a single dot level coupled to a single
lead (spinful, Nc = 2 : μ ∈ {↑ , ↓}), or a dot with two levels

coupled separately to two leads (spinless, Nc = 2 : μ ∈ {1,2};
spinful, Nc = 4 : μ ∈ {1↑ ,1↓ ,2↑ ,2↓}). A splitting of the
energies εdμ,X in the spin label (if any) will be referred to as
magnetic field B. We also present some results for the IRLM,
for a single channel of spinless electrons (Nc = 1):

Ĥ IRLM
X = Ĥb + Ĥd,X + Ĥ IRLM

int . (14)

In this paper, we focus on the case that ĤI and ĤF

differ only in the local level positions (εdμ,I �= εdμ,F). It is
emphasized, however, that our methods are equally applicable
for differences between initial and final values of any other
parameters, including the case that the interactions are channel
specific, e.g.,

∑
μμ′ Uμμ′ n̂dμn̂dμ′ or

∑
μμ′ U

′
μμ′ n̂dμn̂0μ′ .

B. AO on Wilson chains

Wilson discretized the spectrum of Ĥb on a logarithmic
grid of energies ±D�−k (with � > 1, k = 0,1,2, . . .), thereby
obtaining exponentially high resolution of low-energy excita-
tions. He then mapped the impurity model onto a semi-infinite
“Wilson tight-binding chain” of sites k = 0 to ∞, with the
impurity degrees of freedom coupled only to site 0. To this end,
he made a basis transformation from the set of sea operators
{ĉεμ} to a new set {f̂kμ}, chosen such that they bring Ĥb into
the tridiagonal form

Ĥb �
Nc∑

μ=1

∞∑
k=1

tk(f̂ †
kμf̂k−1,μ + H.c.) . (15)

The hopping matrix elements tk ∝ D�−k/2 decrease expo-
nentially with site index k along the chain. Because of this
separation of energy scales for sufficiently large �, typically
� � 1.7, the Hamiltonian can be diagonalized iteratively by
solving a Wilson chain of length k [restricting the sum in
Eq. (15) to the first k terms] and increasing k one site at
a time: Starting with a short Wilson chain, a new shell of
many-body eigenstates for a Wilson chain of length k, say |s〉k ,
is constructed from the states of site k and the MK lowest-lying
eigenstates of shell k − 1. The latter are the so-called kept
states |s〉Kk−1 of shell k − 1, while the remaining higher-lying
states |s〉Dk−1 from that shell are discarded.

The typical spacing between the few lowest-lying states of
shell k, i.e., the energy scale dEk , is set by the hopping matrix
element tk to the previous site, hence,

dEk � tk ∝ D�−k/2. (16)

Now, for a noninteracting Fermi sea with N particles, the
mean single-particle level spacing at the Fermi energy scales
as dE ∝ D/N . This also sets the energy scale for the mean
level spacing of the few lowest-lying many-body excitations
of the Fermi sea. Equating this to Eq. (16), we conclude that
a Wilson chain of length k represents a Fermi sea with an
actual size L ∝ N , i.e., an effective number of electrons N ,
that grows exponentially with k,

N ∝ �k/2 . (17)

Now consider two impurity models that differ only in
their local terms Ĥd,X, and let |GX〉k be the ground states
of their respective Wilson chains of length k, obtained via
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two separate NRG runs.9 Combining Anderson’s prediction
(1) and Eq. (17), the ground-state overlap is expected to decay
exponentially with k as

|k〈GI|GF〉k| ∝ �−k�2
AO/4 ≡ e−αk (18)

with

�2
AO = 4α

log �
. (19)

Thus, the AO exponent can be determined by using NRG to
directly calculate the left-hand side of Eq. (18) as a function
of chain length k, and extracting �AO from the exponent α

characterizing its exponential decay with k.
For noninteracting impurity models (U = U ′ = 0), a finite

Wilson chain represents a single-particle Hamiltonian for
a finite number of degrees of freedom that can readily be
diagonalized numerically, without the need for implementing
NRG truncation. The ground state is a Slater determinant
of those single-particle eigenstates that are occupied in the
Fermi sea. The overlap 〈GI|GF〉 is then given simply by
the determinant of a matrix whose elements are overlaps
between the I and F versions of the occupied single-particle
states. It is easy to confirm numerically in this manner that
〈GI|GF〉 ∼ e−αk , leading to the expected AO in the limit
k → ∞. We will thus focus on interacting models henceforth,
which require the use of NRG.

In the following three sections, we discuss several technical
aspects needed for calculating AO with NRG on Wilson chains.

C. Ground-state overlaps

The calculation of state space overlaps within the NRG
is straightforward, in principle,9,22 especially considering
its underlying matrix product state structure.23–25 Now, the
overlap in Eq. (18), which needs to be calculated in this
paper, is with respect to ground states as a function of Wilson
chain length k. As such, two complications can arise. (i) For a
given k, the system can have several degenerate ground states
{|s〉Xk : s ∈ G}, with the degeneracy dX,k typically different for
even and odd k. (ii) The symmetry of the ground-state space
may actually differ with alternating k between certain initial
and final configurations X ∈ {I,F}, leading to strictly zero
overlap there. A natural way to deal with (i) is to essentially
average over the degenerate ground-state spaces, while (ii) can
be ameliorated by partially extending the ground-state space
to the full kept space {|s〉Xk : s ∈ K}, as will be outlined in the
following.

The dX,k-fold degenerate ground-state subspace is de-
scribed by its projector, written in terms of the fully mixed
density matrix

ρ̂X
G,k ≡ 1

dX,k

dX,k∑
s∈G

|s〉Xk X
k 〈s|. (20)

It is then convenient to calculate the overlap of the ground-state
space as

z2
GK (k) ≡ trF

K,k

(
ρ̂I

G,k

)

= 1

dI,k

∑
s∈G

∑
s ′∈K

∣∣I
k〈s|s ′〉F

k

∣∣2
, (21)

where trF
K,k(·) refers to the trace over the kept space at iteration

k of the final system. The final expression can be interpreted,
up to the prefactor, as the square of the Frobenius norm of
the overlap matrix I

k〈s|s ′〉F
k between the NRG states s ∈ G and

s ′ ∈ K at iteration k for the initial and final Hamiltonians,
respectively.

Note that the specific overlap in Eq. (21), as used throughout
later in this paper, not only includes the ground space of the
final system at iteration k, but rather includes the full kept
space of that system. Yet, each such overlap scales as e−αk ,
with the same exponent α for all combinations of s and s ′,
because (i) the states |s〉I

k with s ∈ G are taken from the initial
ground-state space, and (ii) the states |s ′〉F

k with s ′ ∈ K from
the final kept shell differ from a final ground state only by a
small number of excitations. Therefore, Eq. (21) is essentially
equivalent, up to an irrelevant prefactor, to strictly taking the
overlap of ground-state spaces as in z2

GG(k) ≡ trF
G,k(ρ̂I

G,k). This
will be shown in more detail in the following. In particular, the
overlap in Eq. (21) can be easily generalized to

z2
PP ′(k) ≡ trF

P ′,k
(
ρ̂I

P,k

)
, 0 � z2

PP ′(k) � 1 (22)

where P (′) ∈ {G,K,∞} represents the ground-state space, the
full kept space, or the ground state taken at k → ∞ with
respect to either the initial or final system, respectively. The
overlap z2

PP ′(k) in Eq. (22) then represents the fully mixed
density matrix in space P of the initial system traced over
space P ′ of the final system, all evaluated at iteration k.

A detailed comparison for several different choices of
z2
PP ′(k), including z2

GG(k), is provided in Fig. 1 for the standard
SIAM with μ ∈ {↑ , ↓}). The topmost line (identified with
legend by heavy round dot) shows the overlap Eq. (2) used as
default for calculating the overlap in the rest of the paper.
This measure is most convenient, as it reliably provides
data with a smooth k-dependence for large k, insensitive to
alternating k-dependent changes of the symmetry sector and
degeneracy of the ground-state sector of ĤX,k (note that the
exact ground-state symmetry is somewhat relative within the
NRG framework, given an essentially gapless continuum of
states of the full system). The overlap zGG (data marked by
triangle) gives the overlap of the initial and final ground-state
spaces, but is sensitive to changes in symmetry sector; in
particular, for k � 28, it is nonzero for odd iterations only.
The reason as to why it can be vanishingly small for certain
iterations is, in the present case, that the initial and final
occupancies of the local level differ significantly, as seen from
the values for 〈nI

dot〉 and 〈nF
dot〉 specified in the panel. Therefore,

initial and final ground states can be essentially orthogonal, in
the worst case throughout the entire NRG run. Nonetheless,
the AO exponent is expected to be well defined and finite, as
reflected in zGK .

The AO measure zKK (data marked by star) is smooth
throughout, and although it is not strictly constrained to the
ground-state space at a given iteration, in either the initial or
final system, it gives the correct AO exponent, the reason being
the underlying energy scale separation of the NRG. Finally,
z∞,K = TrKF,k{ρ̂G

I,∞} (data marked by squares) refers to an AO
measure that calculates the overlap of the ground-state space
of an essentially infinite initial system (i.e., k → ∞, or in
practice, the last site of the Wilson chain), with the kept space
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FIG. 1. (Color online) Anderson orthogonality for the spin-
degenerate standard SIAM for a single lead [Eq. (10), μ ∈ {↑ , ↓}],
with μ-independent parameters εd and 
 for ĤI and ĤF as specified
in the panel (the full εF

d dependence of �AO for fixed εI
d is analyzed

in more detail in Fig. 5). Several alternative measures for calculating
the AO overlap are shown, using zPP ′ (k) in Eq. (22) with P (′) ∈
{G,K,∞}, as defined in the text. All overlaps are plotted for even and
odd iterations separately to account for possible even-odd behavior
within the Wilson chain (thin solid lines with dots, and dashed lines,
respectively, while heavy symbols identify lines with corresponding
legends). If even and odd data from the same zPP ′ (k) do not lie
on the same smooth line, the combined data are also plotted (light
zigzag lines) as guides to the eye. For large k, all AO overlaps exhibit
exponential decay of equal strength. Separate fits of eλ−αk to even
and odd sectors are shown as thick solid lines, the lengths of which
indicate the fitting range used. The values for �2

AO extracted from
these fits using Eq. (19) are in excellent agreement with the displaced
charge �2

ch, as expected from Eq. (8). The relative error is less than
1% throughout, with the detailed values specified in the legend, and
〈4α/ ln �〉 representing the averaged value with regard to the four
measures considered.

at iteration k of the final system. Since the latter experiences
k-dependent even-odd differences, whereas the initial density
matrix ρ̂G

I,∞ is independent of k, z∞,K exhibits rather strong k-
dependent oscillations. Nevertheless, their envelopes for even
and odd iterations separately decay with the same exponent α

as the other AO measures.
In summary, Fig. 1 demonstrates that all AO measures

decay asymptotically as eλ−αk , as expected from Eq. (18),
with the same exponent α, independent of the details of the
construction. These details only affect the constant prefactor λ,
which is irrelevant for the determination of �AO.

D. Channel-specific exponents from chains of different lengths

Equation (6) expresses the exponent �AO of the full system
in terms of the AO exponents �AO,μ of the individual channels.
This equation is based on the assumption (the validity of
which, for the models studied here, is borne out by the
results presented below) that for distances sufficiently far
from the dot, the asymptotic tail of the ground-state wave
function factorizes, in effect, into independent products, one
for each channel μ. This can be exploited to calculate, in a
straightforward fashion, the individual exponent �AO,μ for a

given channel μ: one simply constructs a modified Wilson
chain, which, in effect, is much longer for channel μ than for
all others. The overlap decay for large k is then dominated by
that channel.

To be explicit, the strategy is as follows. First we need
to determine when a Wilson chain is “sufficiently long” to
capture the aforementioned factorization of ground-state tails.
This will be the case beyond that chain length, say k0, for
which the NRG energy flow diagrams for the kept space
excitation spectra of the original Hamiltonians ĤI and ĤF are
well converged to their T = 0 fixed point values. To calculate
�AO,μ, the AO exponent of channel μ, we then add an artificial
term to the Hamiltonian that in effect depletes the Wilson chain
beyond site k0 for all other channels ν �= μ by drastically
raising the energy cost for occupying these sites. This term
has the form

H
μ
art = C

∑
ν �=μ

∑
k>k0

tkf̂
†
kν f̂kν, (23)

with C � 1. It ensures that occupied sites in the channels
ν �= μ have much larger energy than the original energy scale
tk , so that they do not contribute to the low-energy states of
the Hamiltonian. We then calculate a suitable AO measure
(such as zGK ) using only k values in the range k > k0. From
the exponential decay found in this range, say ∼ e−αμk , the
channel-specific AO exponent can be extracted [cf. Eq. (19)]:

�2
AO,μ = 4αμ

log �
. (24)

This procedure works remarkably well, as illustrated in Fig. 2,
for the spin-asymmetric single-lead SIAM of Eq. (13) (with
Nc = 2, μ ∈ {↑ , ↓}). Indeed, the values for �AO,μ and �AO

displayed in Fig. 2 fulfill the addition rule for squared
exponents [Eq. (6)] with a relative error of less than 1%.

−0.55 −0.525 −0.5 −0.475 −0.45
0

0.1

0.2

0.3

0.4

0.5

εd,F/U

Δ2
AO

Δ2
AO,↑ Δ2

AO,↓
Δ2

AO,↑+ Δ2
AO,↓

U = 0.2 εd, I /U = − 0. 5
Γ↑/U = 0. 02 Γ↓/U = 0. 1

FIG. 2. (Color online) AO exponents for the standard spin-
degenerate SIAM with spin-asymmetric hybridization [Eq. (13),
with μ ∈ {↑ , ↓}] as functions of εd,F (all other parameters are
fixed as specified in the panel). The vertical dashed line indicates
εd,I/U = −0.5; at this line, the initial and final Hamiltonians are
identical, hence all exponents vanish. The squared AO exponents
for the individual channels �2

AO,↑ (squares) and �2
AO,↓ (dots) were

calculated from Eq. (24). Their sum agrees (with a relative error of
less than 1%) with �2

AO calculated from Eq. (19) (downward- and
upward-pointing triangles coincide), confirming the validity of the
addition rule for squared exponents in Eq. (6).
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E. Displaced charge

The displaced charge �ch,μ defined in Eq. (7) can be
calculated directly within NRG. However, to properly account
for the contribution from the Fermi sea �sea,μ, a technical
difficulty has to be overcome: the Hamiltonians considered
usually obey particle conservation and thus every eigenstate
of Ĥ is an eigenstate of the total number operator, with an
integer eigenvalue. Consequently, evaluating Eq. (4) over the
full Wilson chain always yields an integer value for the total
�ch,μ. This integer, however, does not correspond to the charge
within the large but finite volume Vlarge that is evoked in the
definition of the displaced charge.

To obtain the latter, we must consider subchains of shorter
length. Let

n̂(k)
sea,μ =

k∑
k′=0

f̂
†
k′μf̂k′μ (25)

count the charge from channel μ sitting on sites 0 to k. These
sites represent, loosely speaking, a volume V

(k)
large centered on

the dot, the size of which grows exponentially with increasing
k. The contribution from channel μ of the Fermi sea to the
displaced charge within V

(k)
large is

�(k)
sea,μ ≡ 〈GF|n̂(k)

sea,μ|GF〉 − 〈GI|n̂(k)
sea,μ|GI〉, (26)

where |GI〉 and |GF〉 are the initial and final ground states of
the full-length Wilson chain of length N (� k).

Figure 3 shows �(k)
sea for the spinless IRLM of Eq. (14),

where we dropped the index μ, since Nc = 1. �(k)
sea exhibits

even-odd oscillations between two values, say �even
sea and �odd

sea ,
but these quickly assume essentially constant values over a
large intermediate range of k values. Near the very end of
the chain, they change again rather rapidly, in such a way
that the total displaced charge associated with the full Wilson
chain of length N , �

(N)
ch = �(N)

sea + �dot, is an integer (see
Fig. 3) because the overall ground state has well-defined
particle number. Averaging the even-odd oscillations in the
intermediate regime yields the desired contribution of the
Fermi sea to the displaced charge �sea = 1

2 (�even
sea + �odd

sea ).
The corresponding result for �ch = �sea + �dot is illustrated
by the black dashed line in Fig. 3.
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Γ/U = 0. 5
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εd, F /U = −1. 75
N = 100

FIG. 3. (Color online) Determination of �ch, for the interacting
resonant-level model of Eq. (14), for a single specific set of parameters
for ĤI and ĤF, specified in the figure legend (the εd,F dependence of
�AO for fixed εd,I is analyzed in more detail in Fig. 4). We obtain �ch

(dashed line) by calculating �(k)
sea + �dot and averaging the results for

even and odd k. To reduce the influence of chain’s boundary regions,
we take the average over the region between the vertical dashed lines.

IV. RESULTS

In this section, we present results for the single-channel
interacting resonant-level model [Eq. (14)], and for single-lead
and two-lead Anderson impurity models [Eq. (13)]. These
examples were chosen to illustrate that the various ways of
calculating AO exponents by NRG, via �AO, �ph, or �ch,
are mutually consistent with high accuracy, even for rather
complex (multilevel, multilead) models with local interactions.
In all cases, the initial and final Hamiltonians ĤI and ĤF differ
only in the level position: εd,I is kept fixed, while εd,F is swept
over a range of values. This implies different initial and final
dot occupations ndμ,X = 〈GX|n̂dμ|GX〉, and hence different
local scattering potentials, causing AO.

AO exponents are obtained as described in the previous
sections: We calculate the AO measure zGK (k) using Eq. (2),
obtaining exponentially decaying behavior (as in Fig. 1). We
then extract α by fitting to e−αk and determine �AO via
Eq. (19). In the figures below, the resulting �2

AO is shown
as function of εdμ,F, together with �2

ch, and also �2
ph in Fig. 4.

The initial dot level position εdμ,I is indicated by a vertical
dashed line. When εdμ,F crosses this line, the initial and final
Hamiltonians are identical, so that all AO exponents vanish.
To illustrate how the changes in εdμ,F affect the dot, we also
plot the occupancies ndμ,F of the dot levels.

A. Interacting resonant-level model

We begin with a model for which the contribution of
the Fermi sea to the displaced charge is rather important,
namely, the spinless fermionic interacting resonant-level
model [Eq. (14), Nc = 1]. The initial and final Hamiltonians
Ĥ IRLM

I and Ĥ IRLM
F differ only in the level position: the

initial one is kept fixed at εd,I = 0, while the final one is
swept over a range of values, εd,F ∈ [−1,1]. The results

−5 −2.5 0 2.5 5
−0.5

0

0.5

1

εd,F /U

nd,F

ΔAO

Δph

Δch

Δdot

Δ sea

U = 0. 2
Γ/U = 0. 5
εd, I /U = 0

FIG. 4. (Color online) Verification that �AO = �ph = �ch

[Eq. (5)] for the spinless fermionic interacting resonant-level model
[Eq. (14)]. All quantities are plotted as functions of εd,F, with all other
parameters fixed (as specified in the panel). The vertical dashed line
indicates εd,I/U ′ = 0. Heavy dots indicate the final occupation of the
dot nd. The exponent �AO (light solid line) agrees well with �ph

and �ch (triangles), with relative errors of less than 1%. The local
and Fermi-sea contributions to the displaced charge �ch are plotted
separately, namely, �dot (dashed line) and �sea (dashed-dotted line).
The latter is determined according to the procedure illustrated, for
εd,F/U ′ = −1.75, in Fig. 3.
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are shown in Fig. 4. The final dot occupancy nd,F (heavy
dots) varies from � 1 to 0, and �dot = nd,F − nd,I (dashed
line) decreases accordingly, too. The total displaced charge
�ch = �dot + �sea (downward-pointing triangles) decreases
by a smaller amount since the depletion of the dot implies a
reduction in the strength of the local Coulomb repulsion felt
by the Fermi sea, and hence an increase in �sea (dashed-dotted
line). Throughout these changes, �AO, �ph, and �ch mutually
agree with errors of less than 1%, confirming that NRG results
comply with Eq. (5) to high accuracy.

B. Single-impurity Anderson model

Next we consider the standard spin-degenerate SIAM for a
single lead [Eq. (13), μ ∈ {↑ , ↓}] with εd,μ = εd and 
μ = 
.
This model exhibits well-known Kondo physics, with a
strongly correlated many-body ground state.

In this model, the dot and Fermi sea affect each other only by
hopping, and there is no direct Coulomb interaction between
them (U ′ = 0). Hence, the contribution of the Fermi sea to
the displaced charge is nearly zero, �sea � 0. Apart from
very small even-odd variations for the first ∼35 bath sites
corresponding to the Kondo scale, the sites of the Wilson
chain are half-filled on average to a good approximation.
Therefore, �sea � �dot (explicit numbers are specified in the
figure panels; see also Fig. 1), so that �ch,μ in Eq. (7) is
dominated by the change of dot occupation only,21

�2
ch � �2

dot ≡
∑

μ

(ndμ,F − ndμ,I)
2. (27)

As a consequence, despite the neglect of �sea in some previous
works involving Anderson impurity models, the Friedel sum
rule (�ph = �ch) was nevertheless satisfied with rather good
accuracy (typically with errors of a few percent). However,
despite being small, �sea in practice is on the order of |�sea| �

/D and thus finite. Therefore, the contribution of �sea to
�ch will be included throughout, while also indicating the
overall smallness of �sea. In general, this clearly improves
the accuracy of the consistency checks in Eq. (5), reducing
the relative errors to well below 1%.

The Anderson orthogonality is analyzed for the SIAM
in detail in Fig. 5. The initial system is kept fixed at
the particle-hole symmetric point εd,I = −U/2 [indicated
also by vertical dashed line in Fig. 5(a)], where the initial
ground state is a Kondo singlet. The final system is swept
from double to zero occupancy by varying εd,F/U from −2
to 1. The final ground state is a Kondo singlet in the regime
ndμ,F � 1/2, corresponding to the intermediate shoulder in
Fig. 5(a). Figure 5(b) shows the AO measure zGK (k) as
function of k, for a range of different values of εd,F. Each
curve exhibits clear exponential decay for large k (as in Fig. 1)
of the form eλ−αk . The prefactor, parametrized by λ, carries
little physical significance, as it also depends on the specific
choice of zPP ′ ; its dependence on εd,F is shown as a thick
gray dashed line in Fig. 5(a), but it will not be discussed any
further. In contrast, the decay exponent α directly yields the
quantity of physical interest, namely, the AO exponent �2

AO
via Eq. (19). Figure 5(a) compares the dependence on εd,F of
�2

AO (dashed line) with that of the displaced charge �2
ch (light

thick line), that was calculated independently from Eqs. (7)

FIG. 5. (Color online) Anderson orthogonality for the single-
lead, spin-symmetric SIAM [Eq. (13), with parameters as specified in
the legend]. The energy of the d-level of the final system εd,F is swept
past the Fermi energy of the bath, while that of the initial reference
system is kept fixed in the Kondo regime at εd,I = −U/2, indicated
by vertical dashed line in panel (a) and in the inset to panel (b). Panel
(a) shows, as function of εd,F, the dot occupation per spin ndμ (dotted
solid line), the contribution to the displaced charge by the Fermi sea
�seaμ (thin black line), the displaced charge �2

ch (light solid line), and
the parameters of the large-k exponential decay eλ−αk of zGK (k) as
extracted from panel (b), namely, λ (thick dashed line) and �AO (dark
dashed line), derived from α via Eq. (19). Panel (b) shows the AO
measure zGK (k) in Eq. (2) (light lines) for the range of εd,F values used
in panel (a). The heavy lines shown on top for k � 64 are exponential
fits, the results of which are summarized in panel (a). The inset shows
the relative error in the AO exponents δ�2 ≡ (�2

AO − �2
ch)/�2

ch, i.e.,
the deviation between the light solid and dark dashed curves in panel
(a); this error is clearly less than 1% over the full range of εd analyzed.

and (8). As expected from Eq. (5), they agree very well: the
relative difference between the two exponents �2

AO and �2
ch is

clearly below 1% throughout the entire parameter sweep, as
shown in the inset of Fig. 5(b).

The contribution of the Fermi sea to the displaced charge
is close to negligible, yet finite throughout [black line in
Fig. 5(a)]. Overall, �sea � 0.0037, as indicated in Eq. (27).
Nevertheless, by including it when calculating �ch, the relative
error δ�2 is systematically reduced from a few percent to well
below 1% throughout, thus underlining its importance.

C. Multiple channels and population switching

Figure 6 analyzes AO for lead-asymmetric two-level,
two-lead SIAM models, with Hamiltonians of the form
Eq. (13) (explicit model parameters are specified in the
panels). Figure 6(a) considers a spinless case (Nc = 2, μ =
j ∈ {1,2}), the dot levels of which have mean energy εd at fixed
splitting δ,

εd1 = εd − δ/2, εd2 = εd + δ/2. (28a)

Figure 6(b) considers a spinful case [Nc = 4, μ = (jσ ) with
j ∈ {1,2}, σ ∈ {↑ , ↓}], where both the lower and upper levels
have an additional (small) spin splitting B � δ,

εdj↑ = εdj + B/2, εdj↓ = εdj − B/2 . (28b)

Charge is conserved in each of the Nc channels since these
only interact through the interaction on the dot. In both models,
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FIG. 6. (Color online) Anderson orthogonality for a spinless
(a) and spinful (b) two-lead SIAM, with dot levels of unequal width
and a split level structure as defined in Eq. (28) (all relevant model
parameters are specified in the legends). In both cases, the higher level
2 is broader than the lower level 1 (
2 > 
1), leading to population
switching as function of the average final level energy εd,F. The fixed
value of εd,I is indicated by the vertical dashed line. The inset to panel
(a) shows a zoom into the switching region, clearly demonstrating
that population switching occurs smoothly. For panel (b), a finite
magnetic field B causes a splitting between spin-up and spin-down
levels, resulting in a more complex switching pattern. In both panels,
�2

AO and �ch agree very well throughout the sweep, with a relative
error δ�2 well below 1%.

the upper level 2 is taken to be broader than the lower level
1, 
2 > 
1 (for detailed parameters, see figure legends). As a
consequence,15–19 these models exhibit population switching:
When εd,F is lowered (while all other parameters are kept
fixed), the final state occupancies of upper and lower levels
cross, as seen in both panels of Fig. 6.

Consider first the spinless case in Figure 6(a). The broader
level 2 shows larger occupancy for large positive εd,F.
However, once the narrower level 1 drops sufficiently far
below the Fermi energy of the bath as εd,F is lowered, it
becomes energetically favorable to fill level 1, while the

Coulomb interaction will cause the level 2 to be emptied. At
the switching point, occupations can change extremely fast,
yet they do so smoothly, as shown in the zoom in the inset to
Fig. 6(a).

Similar behavior is seen for the spinful case in Fig. 6(b),
although the filling pattern is more complex, due to the nonzero
applied finite magnetic field B (parameters are listed in the
legend). The occupations nd1σ of the narrower level 1 show a
strong spin asymmetry since the magnetic field is comparable,
in order of magnitude, to the level width (B = 
1/2). This
asymmetry affects the broader level 2, which fills more slowly
as εd is lowered. Due to the larger width of level 2, the
asymmetry in its spin-dependent occupancies is significantly
weaker. As in Fig. 6(a), population switching between the
two levels occurs: as the narrower level 1 becomes filled, the
broader level 2 gets depleted.

The details of population switching, complicated as they
are [extremely rapid in Fig. 6(a) and involving four channels
in Fig. 6(b)] are not the main point of Fig. 6. Instead, its
central message is that despite the complexity of the switching
pattern, the relation �2

AO = �2
ch is satisfied with great accuracy

throughout the sweep (compare light thick and dark dashed
lines). Moreover, since �ch was calculated by adding the
contributions from separate channels according to Eq. (8),
this also confirms the additive character of AO exponents for
separate channels.

As was the case for the single-channel SIAM discussed in
Sec. IV B above, a direct interaction between dot and Fermi sea
is not present in either of the models considered here (U ′ = 0).
Consequently, the displaced charge �ch is again dominated by
�dot, with �sea � �dot [cf. Eq. (27)]. Specifically, for the
spinless or spinful models, we find �sea < 0.019 or 0.011,
respectively, for the entire sweep.

V. SUMMARY AND OUTLOOK

In summary, we have shown that NRG offers a straightfor-
ward, systematic, and self-contained way for studying Ander-
son orthogonality, and illustrated this for several interacting
quantum impurity models. The central idea of our work is to
exploit the fact that NRG allows the size dependence of an
impurity model to be studied, in the thermodynamic limit of
N → ∞, by simply studying the dependence on Wilson chain
length k. Three different ways of calculating AO exponents
have been explored, using wave-function overlaps (�AO),
changes in phase shift at the Fermi surface (�ph), and changes
in displaced charge (�ch). The main novelty in this paper
lies in the first of these, involving a direct calculation of the
overlap of the initial and final ground states themselves. This
offers a straightforward and convenient way for extracting
the overall exponent �AO. Moreover, if desired, it can also
be used to calculate the exponents �AO,μ associated with
individual channels, by constructing a Wilson chain that is
longer for channel μ than for the others. We have also refined
the calculation of �ch by showing how the contribution �sea of
the Fermi sea to the displaced charge can be taken into account
in a systematic fashion.

The resulting exponents �AO, �ph, and �ch agree extraordi-
narily well, with relative errors of less than 1% for a wide range
of �. In particular, we have checked in the context of Fig. 1
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that the resulting relative errors remain this small for a range
of � values between 1.7 and 8.0. Moreover, this accuracy can
be achieved using a remarkably small number of kept states
MK . For example, for the spinful SIAM analyzed above, for
� = 2, a better than 5% agreement can be obtained already for
MK � 32. (For comparison, typically MK = 250 is required
to obtain an accurate description of the Kondo resonance of
the d-level spectral function in the local moment regime of
this model.)

Our analysis has been performed on models exhibiting
Fermi liquid statistics at low temperatures. As an outlook,
it would be interesting to explore to what extent the non-Fermi
liquid nature of a model would change AO scaling properties,
an example being the symmetric spinful two-channel Kondo
model.

Finally, we note that nonequilibrium simulations of quan-
tum impurity models in the time domain in response to
quantum quenches are a highly interesting topic for studying
AO physics in the time domain. The tools to do so using
NRG have become accessible only rather recently.10,22,23,26

One considers a sudden change in some local term in

the Hamiltonian and studies the subsequent time evolution,
characterized, for example, by the quantity 〈GI|e−iĤFt |GI〉.
Its numerical evaluation requires the calculation of overlaps
of eigenstates of ĤI and ĤF. The quantity of present interest
|〈GI|GF〉| is simply a particular example of such an overlap. As
a consequence, the long-time decay of 〈GI|e−iĤFt |GI〉 is often
governed by �AO, too,3,5 showing power-law decay in time
with an exponent depending on �AO. This will be elaborated
in a separate publication.12
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