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We investigate the equilibrium behavior of a superconducting circuit QED system containing a large

number of artificial atoms. It is shown that the currently accepted standard description of circuit QED via an

effectivemodel fails in an important aspect: it predicts the possibility of a superradiant phase transition, even

though a full microscopic treatment reveals that a no-go theorem for such phase transitions known from

cavityQEDapplies to circuitQED systems aswell.Wegeneralize the no-go theorem to the case of (artificial)

atoms with many energy levels and thus make it more applicable for realistic cavity or circuit QED systems.
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Recent years have seen rapid progress in fabrication and
experimental control of superconducting circuit QED sys-
tems, in which a steadily increasing number of artificial
atoms interact with microwaves [1–4]. These develop-
ments set the stage to study collective phenomena in circuit
QED. An interesting question in that context is whether a
system with many artificial atoms undergoes an equilib-
rium phase transition as the coupling of artificial atoms and
electromagnetic field is increased (at zero temperature).
Phase transitions of this type have been intensely discussed
for cavity QED systems [5–10] and are known as super-
radiant phase transitions (SPTs) [6]. However, in cavity
QED systems with electric dipole coupling their existence
is doubted due to a no-go theorem [8]. Recently, it has been
claimed that SPTs are possible in the closely related circuit
QED systems with capacitive coupling [10–12]. This
would imply that the no-go theorem of cavity QED does
not apply and challenges the well-established analogy of
circuit and cavity QED.

Here, we show in a full microscopic analysis that circuit
QED systems are also subject to the no-go theorem. We
argue that such an analysis is necessary since the standard
description of circuit QED systems by an effective model
(EM) is deficient in the regime considered here. A toy
model is used to illustrate this failure of an EM. Finally,
we close a possible loophole of the no-go theorem by
generalizing it from two-level to multilevel (artificial)
atoms. Thus, our work restores the analogy of circuit
and cavity QED and rules out SPTs in these systems under
realistic conditions that have not been covered before.

Dicke Hamiltonian in cavity and circuit QED.—Both
circuit QED systems and cavity QED systems with N
(artificial) atoms (Fig. 1) are often described by the
Dicke Hamiltonian [13] (@ ¼ 1)

H D ¼ !ayaþ�

2

XN
k¼1

�k
z þ �ffiffiffiffi

N
p XN

k¼1

�k
xðay þ aÞ

þ �ðay þ aÞ2: (1)

The (artificial) atoms are treated as two-level systems with
energy splitting � between ground state jgik ¼ ð01Þk and

excited state jeik ¼ ð10Þk (�k
x; �

k
z are Pauli matrices). In the

case of circuit QED, we assume Cooper-pair boxes as
artificial atoms, which justifies the two-level approxima-
tion. Our main results, though, hold for any charge-based
artificial atoms (capacitive coupling) [14]. Further, ay
generates a photon of energy !. Matter and field couple
with a strength �. The � term, often neglected in other
contexts, will become crucial below. In cavity QED, H D

derives from minimal coupling of atoms and electromag-
netic field. For an atom (n electrons) at a fixed position,

H 0
cav ¼

Xn
i¼1

½pi � eAðriÞ�2
2m

þ Vintðr1; . . . ; rnÞ: (2)

The pA and A2 terms in the analog N-atom Hamiltonian
yield the � and � term in H D, respectively. In circuit
QED, H D arises from a widely used EM for a charge-
based artificial atom in a transmission line resonator [15],

H 0
cir ¼ 4EC

X
�

ð�� ��Þ2j�ih�j �EJ

2

X
�

ðj�þ 1ih�j þH:c:Þ:

Here, � counts the excess Cooper pairs on the island, EJ

and EC ¼ e2=½2ðCG þ CJÞ� are the Josephson energy and

FIG. 1 (color online). Cavity QED system with N atoms (a)
and circuit QED system with N Cooper-pair boxes as artificial
atoms (b).
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the charging energy of the Cooper-pair box, and CG and CJ

are the coupling capacitance and the capacitance of the
Josephson junction. Moreover, �� ¼ CGðVG þV Þ=2e, VG

is an external gate voltage andV the quantum voltage due
to the electromagnetic field in the resonator. The Cooper-
pair box is assumed to be at its degeneracy point [15]. As it
is described by macroscopic quantities (like EC) and only
1 degree of freedom (�), H cir

0 is an EM for a Cooper-pair
box in a transmission line. Starting either from H 0

cav or
H 0

cir, one obtains H D using the following approxima-

tions: The N (artificial) atoms are identical, noninteracting
two-level systems with ground and excited states jgi
and jei which are strongly localized compared to the
wavelength of the single considered field mode
[i.e., Aðrki Þ � A � A0�ðay þ aÞ, where j�j ¼ 1, and
V ðrkÞ � V � V0ðay þ aÞ].

Superradiant phase transitions and no-go theorem.—In
the limit N ! 1, H D undergoes a second order phase
transition at a critical coupling strength [6–8]

�2
c ¼ !�

4

�
1þ 4�

!

�
: (3)

This phase transition was discovered for H D with � ¼ 0
and termed SPT [6]; see [9] for recent studies. At �c, the
atoms polarize spontaneously, hPk�

k
zi=N � �1, and a

macroscopic photon occupation arises, hayai=N � 0. A
gapless excitation signals the critical point [Fig. 2(a)].

In cavity QED systems, however, �c cannot be reached
if the � term is not neglected [8]. That is because � and �
are not independent of each other. Let us define a parame-
ter � via � ¼ ��2=�. Then Eq. (3) becomes �2

cð1� �Þ ¼
!�=4, and criticality requires �< 1. With A0 ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0!V

p
(V is the volume of the cavity) one finds

�cav ¼ �j� � djffiffiffiffiffiffiffiffiffiffiffiffi
2�0!

p
ffiffiffiffi
N

V

s
; �cav ¼ n

2�0!

e2

2m

N

V
; (4)

where d ¼ hgjePn
i¼1 rijei and �cav�j� � dj2 ¼ ne2=2m.

But the Thomas-Reiche-Kuhn sum rule (TRK) ([16],
Sec. A)

X
l

ðEl � EgÞj� � hgjeXn
i¼1

rijlij2 ¼ n
e2

2m
(5)

for the Hamiltonian H0 ¼ P
n
i¼1 p

2
i =2mþ Vintðr1; . . . ; rnÞ

of an uncoupled atom with spectrum fEl; jlig implies�j� �
dj2 � ne2=2m, consequently �cav � 1. This is known
as the no-go theorem for SPTs [8,10]. Notice that �cav

determines how strongly �j� � dj2 exhausts the TRK.
We remark that a direct dipole-dipole coupling between
atoms (omitted here) can lead to a ferroelectric phase
transition, which, however, occurs only at very high atomic
densities [17].
Surprisingly, the no-go theorem was recently argued not

to apply in circuit QED [10]. Indeed, the standard EM of
circuit QED yields

�cir ¼ eCG

CG þ CJ

ffiffiffiffiffiffiffiffi
!N

Lc

s
; �cir ¼ C2

G

2ðCG þ CJÞ
!N

Lc
; (6)

where L denotes the length of the transmission line reso-
nator, c its capacitance per unit length, and we have used

V0 ¼ ð!=LcÞ1=2 [15]. Here �cir ¼ EJ=4EC < 1 is easily
possible [1]. According to this argument, a SPT should be
observable in a circuit QED system.
Effective models and superradiant phase transitions.—

The EM has proved to be a very successful description of
circuit QED whose predictions have been confirmed in
numerous experiments. However, the circuit QED setups
operated so far contained only few artificial atoms. It is not
obvious that an EM also provides a good description of
circuit QED systems withN � 1 atoms and, thus, a proper
starting point to study SPTs in circuit QED. We now
present a toy model illustrating how an EM similar to the
one in circuit QED can erroneously predict a SPT.
The toy model consists of N harmonic oscillator poten-

tials with frequency �, each trapping n noninteracting
fermions of mass m and charge e, which all couple to a
bosonic mode with frequency ! [Fig. 2(b)].
This toy model can be viewed as a very simplified

description of (artificial) atoms with n microscopic con-
stituents inside a resonator. It is governed by the
Hamiltonian

H tm ¼ !ayaþ XN
k¼1

Xn
i¼1

ðpk
i � eAÞ2
2m

þm�2ðxki Þ2
2

; (7)

where we assume again Aðxki Þ � A ¼ A0ðay þ aÞ. Since A
couples only to the center of mass coordinate of the kth
oscillator, H tm can be diagonalized ([16], Sec. B):
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FIG. 2 (color online). (a) Excitation energies �þ and �� of the
Dicke Hamiltonian H D versus coupling � (in units of ! ¼ �),
for � ¼ ��=�2 ¼ 0; 0:8; 1; 1:2. For � ¼ 0, �� vanishes at
�¼0:5, thus signaling a SPT. Only � � 1 is compatible with

the TRK sum rule. For these �, �� ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=�

p
and remains

finite for all �. The excitations �	ð�Þ of H tm correspond to
� ¼ 1. (b) Toy model of an (artificial) atom. The oval line
indicates the degree of freedom in the simplified effective model.
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H tm ¼ �	
�
ay	a	 þ 1

2

�
þ XnN�1

i¼1

�

�
byi bi þ

1

2

�
;

2�2	ð�Þ ¼ !2 þ 4�!þ�2

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2 þ 4�!��2Þ2 þ 16�2!�

q
: (8)

Here, ay	 generate excitations that mix photon field with

collective center of mass motion, the byi excite the remain-

ing degrees of freedom, � ¼ A0�d
ffiffiffiffi
N

p
and � ¼ �2=�. As

d ¼ hnjexjn� 1i ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=2m�

p
, the TRK is exhausted.

Note that �	ð�Þ are also the relevant excitation energies
of H D for N ! 1, as can be shown using methods of
Ref. [9] ([16], Sec. B), and demanding �� ¼ 0 yields
Eq. (3). One sees that �	ð�Þ is real and nonzero for all �
and that the ground state energy is an analytic function of �
[Fig. 2(a)]. Hence, no phase transition is possible.

Let us now consider an EM for the toy model. Similar to
the standard EM of circuit QED, we focus on the fermion
with the highest energy in the kth harmonic oscillator and
treat it as a two-level system with jgki ¼ jn� 1ik
and jeki ¼ jnik [Fig. 2(b)]. Accounting only for one
fermion per ‘‘atom,’’ that is, expanding H EM

tm ¼
!ayaþP

N
k¼1ðpk � eAÞ2=2mþm�2ðxkÞ2=2 in the basis

fjn�1ik;jnikg, yields a Dicke Hamiltonian with �EM ¼ �
and �EM ¼ �=n ¼ Ne2A2

0=2m. Crucially, only �EM de-

pends on n. This allows �EM to be increased at constant
�EM; therefore, �EM ¼ 1=n can be <1 and a SPT is
possible. This failure of the EM can be interpreted as
follows. The relation � ¼ �EM / d / ffiffiffi

n
p

reveals that the
coupling of an ‘‘atom’’ to the bosonic mode is fully cap-
tured by the EM and grows with atom size n. However, in a
proper description of the system, increasing the coupling
by increasing n unavoidably also increases � in proportion
to n: all fermions of all atoms couple to the bosonic mode
and each causes an A2 term. This is lost in the EM with
only 1 degree of freedom per atom. Interestingly, �EM < 1
only if n > 1, i.e., as long as the effective description
actually neglects degrees of freedom.

Microscopic description of circuit QED.—This example
suggests not to rely on the standard description for inves-
tigating SPTs in circuit QED. Although the dipole coupling
of field and qubit states might be fully represented by �cir,
�cir could still underestimate the A2 terms of all charged
particles in the Cooper-pair boxes. Instead, let us describe a
circuit QED system with N artificial atoms by a minimal-
coupling Hamiltonian that accounts for all microscopic
degrees of freedom:

H mic ¼ !ayaþ XN
k¼1

Xnk
i¼1

ðpk
i � qkiAÞ2
2mk

i

þ Vintðrk1; . . . ; rknkÞ:

As we allow arbitrary charges qki and masses mk
i and an

arbitrary interaction potential Vint of the nk constituents of
the kth artificial atom, H mic most generally captures the
coupling of N arbitrary (but mutually noninteracting)

objects to the electromagnetic field. We subject it to the
same approximations that led fromH 0

cir, the EM of circuit

QED, to H D. For identical artificial atoms fnk; qki ; mk
i g !fn; qi; mig. The Hamiltonian of an uncoupled artificial

atom then reads H0
mic ¼

P
n
i¼1 p

2
i =2mi þ Vintðr1; . . . ; rnÞ.

Its qubit states jgi and jei, which in the standard EM
are superpositions of the charge states j�i, are among the
eigenstates fjlig ofH0

mic. ExpandingH mic in the fjgik; jeikg
basis and taking Aðrki Þ � A gives the Dicke Hamiltonian
H D with parameters generalizing those of cavity QED
[Eq. (4)],

�mic
cir ¼ �j� � djffiffiffiffiffiffiffiffiffiffiffiffi

2�0!
p

ffiffiffiffi
N

V

s
; �mic

cir ¼ 1

2�0!

�Xn
i¼1

q2i
2mi

�
N

V
; (9)

where d ¼ hgjPn
i¼1 qirijei. This microscopic description

of circuit QED facilitates the same line of argument which
in Ref. [8] allowed the conclusion that there is no SPT
in cavity QED: Criticality [Eq. (3)] requires �j� � dj2 >P

n
i¼1 q

2
i =2mi, which is ruled out by TRK for H0

mic,

X
l

ðEl � EgÞj� � hgjXn
i¼1

qirijlij2 ¼
Xn
i¼1

q2i
2mi

: (10)

Hence, the no-go theorem of cavity QED applies to circuit
QED as well. This result confirms the analogy of cavity
and circuit QED also with respect to SPTs. It has been
obtained under the same approximations that led from the
standard description of circuit QED,H 0

cir, toH D with �cir

and �cir. The discrepancy of the predictions of the micro-
scopic and the standard description of circuit QED thus
shows the limitations of the validity of the latter. This
might be important for future circuit QED architectures
with many artificial atoms in general, even for applications
not related to SPTs. We emphasize, though, that our con-
clusion neither forbids SPTs in circuit QED systems with
inductively coupling flux qubits [18] nor is it at odds with
the great success of the standard description for few-atom
systems: there, the deficiency of �cir does not manifest
itself qualitatively as the � term in H D mimics slightly

renormalized system parameters ~! and ~�.
Possible loophole in the no-go theorem.—Although the

two-level approximation for the anharmonic spectrum of
(artificial) atoms is well justified in many cases, one might
argue that higher levels should be taken into account in this
context. Indeed, a SPT does not require � � !, and
thereby does not single out a particular atomic transition.
For a more profound reason for dropping the two-level

assumption, consider the elementary question of how the
presence of N mutually noninteracting atoms shifts a res-
onator’s frequency!. This situation is described byH mic.
It can be rewritten as H mic ¼ !ayaþP

N
k¼1ðHk

mic þ
H k

pA þH k
A2Þ, where H k

pA and H k
A2 are the pA and A2

terms due to the kth atom ([16], Sec. C). Let us perturba-
tively calculate the frequency shift �! ¼ �!pA þ �!A2

caused by
P

H k
pA and

P
H k

A2 ([16], Sec. C). To this end,
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take ! 
 �k
m for all m; k, where �k

m is the mth excitation
energy of Hk

mic. Remarkably, it turns out ([16], Sec. C) that

�!pA (< 0) and �!A2 (> 0) cancel almost exactly due

to the TRK. The total frequency shift is small, �!�
ð!=�k

mÞ2. As a SPT equates to �! ¼ �!, the significance
of both pA and A2 terms for its existence becomes clear.
The pA terms cause a strong negative shift and favor a
SPT, the A2 terms do the opposite. This means, most
crucially, that one must not unequally truncate pA and
A2 terms for assessing the possibility of a SPT by an
approximate Hamiltonian. Dropping the A2 terms in H D

(� ¼ 0) leads to the prediction of a SPT. In contrast, H D

with � � 0 fully incorporates the A2 terms of H mic. But,
due to the two-level approximation, it has only one matrix
element of the pA terms per atom, thereby possibly under-
estimating the tendency towards a SPT. To exclude SPTs in
cavity and circuit QED, a generalization of the no-go
theorem to (artificial) atoms with more than two energy
levels is necessary.

Generalized no-go theorem.—Let us consider N ! 1
identical atoms coupled to a field mode with frequency !.
The atomic Hamiltonians Hk

mic may have an arbitrary

spectrum f�l; jlki ¼ jlikg, with �0 ¼ 0 and � excited
states (Fig. 3).

With dl;l0 ¼ � � hljPn
i¼1 qirijl0i, the full Hamiltonian of

the system reads

H mic ¼ !ayaþ �ðay þ aÞ2 þ XN
k¼1

X�
l;l0¼0

ð�l�l;l0 jlkihlkj

þ iA0ð�l0 ��lÞdl;l0 ðay þ aÞjlkihl0kjÞ: (11)

We now follow a strategy similar to that of Refs. [9]: We
derive a generalized Dicke Hamiltonian H GD having the
same low-energy spectrum as H mic for a small density of

atoms, N=V ’ 0, using A0 / V�1=2 as small parameter. We
then check whether H GD has a gapless excitation if the
density is increased, which would signal a SPT and mark
the breakdown of the analogy of H GD and H mic.

Expanding the eigenstates and eigenenergies ofH mic as

jEi / P1
s¼0 A

s
0jEsi and E / P

ss0A
sþs0
0 hEsjH micjEs0 i, we

note that contributions from all dl�0;l0�0 terms may be

neglected: they are smaller than those retained by a factor
of at least one power of A0 (for sþ s0 > 1) or 	=N 
 1
(for sþ s0 � 1), where 	 ¼ P

k

P
l>0 jhlkjE0ij2 is the

number of atomic excitations in jE0i, which is 
 N for

low-lying eigenstates ([16], Sec. D). We thus define H GD

by setting dl�0;l0�0 ! 0 inH mic. Up to a constant, we find

([16], Sec. D)

H GD ¼ ~!ayaþX�
l¼1

�lb
y
l bl þ

X�
l¼1

~�lðbyl þ blÞðay þ aÞ;

(12)

by introducing byl ¼ 1ffiffiffi
N

p PN
k¼1 jlkih0kj as collective excita-

tion, omitting the energy of the ‘‘dark’’ collective
excitations ([16], Sec. D), and removing the � term

by a Bogolyubov transformation yielding ! ! ~! ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ 4�!

p
and �l ! ~�l ¼

ffiffiffi
!
~!

p
�l, with �l ¼

A0�ljd0;lj
ffiffiffiffi
N

p
. For dilute excitations, the bl are bosonic,

½bl; byl0 � ¼ �l;l0 [19]. The system undergoes a SPT if an

eigenfrequency �i of H GD can be pushed to zero by
increasing the couplings �l. We cannot calculate the �i’s
explicitly, but we will show that the assumption �i ¼ 0
contradicts the TRK. An �i solves the characteristic equa-
tion ([16], Sec. D)

�Y�
l0¼1

ð�2
l0 ��2Þ

��
ð ~!2��2Þ�4 ~!

X�
l¼1

�l
~�2
l

�2
l ��2

�
¼0: (13)

If �i were zero, this would imply

!

4NA2
0
¼ X�

l¼1

�ljd0lj2 �
Xn
i¼1

q2i
2mi

(14)

and contradict the TRK for H0
mic [Eq. (10)], which ensures

that the right-hand side is negative even if the entire atomic
spectrum is incorporated. This result is irrespective of the
details of the atomic spectra. Note that for � ¼ 0, the
negative term on the right-hand side of Eq. (14) vanishes,
and one recovers the SPT for critical couplings �lc withP�

l¼1 �
2
lc=�l ¼ !=4. This resembles Eq. (3) with � ¼ 0.

Experimental evidence for our conclusions could be
gained by probing the shifted resonator frequency of a
suitable circuit QED system. Consider a sample containing

N artificial atoms with �=
ffiffiffiffi
N

p ¼ 2
� 120 MHz and
�=2
 ¼ !=2
 ¼ 3 GHz. If �cir ¼ EJ=4EC ¼ 0:1, as
predicted by the standard theory, there should be signatures
of criticality for N ¼ 174 [according to Eq. (3)], and the
resonator frequency should be close to zero. But even if we
assume � ¼ 1, the minimal value compatible with the
TRK (that corresponds to ideal two-level atoms), we find
the lowest excitation �� to be still at �� � 2
� 2 GHz.
We have verified that these phenomena are insensitive to
small fluctuations of the atomic parameters ([16], Sec. E;
see also [18]) and hence experimentally observable.
We thank S.M. Girvin, A. Wallraff, J. Fink, A. Blais,

J. Siewert, D. Esteve, J. Keeling, P. Nataf, and C. Ciuti
for discussions. Support by NIM, the Emmy-Noether
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FIG. 3 (color online). Situation of the generalized no-go theo-
rem. Many multilevel (artificial) atoms couple to the photon
field. Transitions between excited atomic states are irrelevant for
the low-energy spectrum of the system.
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