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1. Introduction

One of the central findings of condensed matter physics is Landau’s Fermi liquid theory.
The theory formulates how an interacting fermionic system can be described as a non-
interacting system with renormalized parameters [21]. A fundamental result of this theory
is Luttinger’s theorem [6]. It states that the volume enclosed by a Fermi surface is directly
proportional to the particle density.
Recently, Luttinger’s theorem has becomes of great interest again. Studies of materials
such as cuprate high Tc superconductors [10] and heavy fermion compounds [11] show that
the theorem can be broken. They have in common that a transition between a conventional
metal with large Fermi surface obeying Fermi Liquid theory to a metal with small Fermi
surface which violates Luttinger’s theorem can be observed. Hence, this so called pseudo-
gap state has been of great significance in experimental as well as theoretical physics.
One new approach to this problem was given by Ya-Hui Zhang and Subir Sachdev. In
their paper [1] they proposed a Hubbard model with two hidden ancilla qubit-spins per
lattice site. Analyzing their Hamiltonian with a static mean-field approach they were able
to reproduce the Fermi arcs found in ARPES experiments [12].
Still, the static mean field theory has its limits. Thats why this thesis will examine Zhang
and Sachdevs Hamiltonian via the dynamical mean field theory (DMFT). Since its devel-
opment [3] it has become one of the most successful theoretical tools to handle strongly
correlated systems in a non-perturbative way. In the DMFT the complex quantum lattice
is mapped self-consisted onto an effective impurity model, which is easier to solve. More-
over, it captures local quantum fluctuations, in contrast to the static case, which gives it
its dynamical nature.
However, due to the local approach of the DMFT, it isn’t possible to describe non-local
correlations. As they are undoubtedly import for the analysis of correlated materials it is
inevitable to expand the DMFT ideas to incorporate non-local effects. In this thesis, the
dynamical cluster approximation (DCA) will be used to extend to DMFT [8]. By dividing
up the Brillouin zone into smaller patches the DCA achieves to generate a k-dependence
of the self-energy in contrast to the purely local one in the DMFT. This leads to a new
self-consistency equation, which will take short-ranged correlations into account.
As both DMFT as well as DCA calculations need an impurity solver to perform their self-
consistency procedure, the numerical renormalization group (NRG) will be used for this
task. Since its invention by Ken Wilson [14], the NRG provides an iterative way to diago-
nalize effective impurity Hamiltonians. The resulting spectral function can be analyzed in
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order to obtain information about the lattice.
All in all, this thesis will start with a brief summary of the DMFT in chapter 2. The main
ideas will be taken and expanded in the DCA formalism in chapter 3. Afterwards in chap-
ter 4, the NRG will be introduced as an impurity solver. Problems arising from combining
both DMFT and NRG will be addressed in chapter 5. Then at last the Zhang-Sachdev
Hamiltonian is introduced in chapter 6. Before going over to the results chapter 7 will deal
with Luttinger’s theorem. Presenting the results of the single site DMFT calculations the
Hubbard model with no (chapter 8), one (chapter 9) and two (chapter 10) ancilla qubits
per site will be considered in its respective chapters. The same approach will be used for
the DCA calculations in chapter 11, 12 and 13. For all calculations the parameters will
be varied in order to find possible phase transitions. Moreover, from chapter 10 onwards
the theoretical filling after Luttinger’s theorem will be calculated for the different results
and compared to filling which was obtain from the numerical calculations. If a violation is
found the Fermi surfaces will be reconstructed and a phase transition will be searched for.
Chapter 14 will give a summary of the findings and an outlook for possible inquires into
the model.



2. Dynamical Mean-Field Theory

The Dynamical Mean-Field Theory (DMFT) was first implemented in 1989 by D. Vollhart
and W. Metzner during their work on the Hubbard model in infinite dimensions [3]. Later
the basic DMFT framework was established by A. Georges and G. Kotliar in 1992 [4].
DMFT is an non-perturbative method to treat quantum lattice problems. Its dynamical
nature is a result of freezing out the spatial fluctuations but still taking into account
temporal quantum fluctuations. Reviews of the DMFT can be found in [5], [9] and [13].
For a better understanding of the basic ideas of the DMFT it is instructive to briefly take
a look at classical mean-field theories.

2.1 Classical and Dynamical Mean field theory

An instructive example of the basic idea of the classical mean field theory can be found using
the Ising model. It describes spins on a lattice experiencing nearest neighbour interactions
and an external magnetic field. The Hamiltonian is defined in the following way:

H = −1
2
∑
〈i,j〉

JijSiSj − h
∑
i

Si (2.1)

where ∑〈i,j〉 is the sum over all nearest neighbours with coupling constant Jij. Si is the
Spin of the atom at site i. ∑i is a sum over all lattice sites while h is an external field. By
implementing the classical mean field theory one tries to reduce the complex lattice model
into a single site problem with effective parameters, that exhibit less degrees of freedom.
In the case of the Ising model this can be achieved by the approximation ∆Si∆Sj = 0 and
∆Si ≡ Si − 〈Si〉:

H = −1
2
∑
〈i,j〉

Jij(∆Si + 〈Si〉)(∆Sj + 〈Sj〉)− h
∑
i

Si

≈ −1
2
∑
〈i,j〉

Jij(〈Si〉〈Sj〉+ ∆Si〈Sj〉+ ∆Sj〈Si〉)− h
∑
i

Si =

= −1
2
∑
〈i,j〉

Jij(−〈Si〉〈Sj〉+ Si〈Sj〉+ Sj〈Si〉)− h
∑
i

Si = H̃

(2.2)



4 2. Dynamical Mean-Field Theory

Additionally under the assumption of a translational invariant system 〈Si〉 = 〈Sj〉 ≡ 〈S〉
and Jij = J the Hamiltonian simplifies to:

H̃ = −1
2
∑
〈i,j〉

J
(
−〈S〉2 + Si〈S〉+ Si〈S〉

)
− h

∑
i

Si

=
∑
i

[
−
∑
nn

1
2J

(
−〈S〉2 + 2 · Si〈S〉

)
− hSi

]
=

=
∑
i

[∑
nn

(1
2J〈S〉

2 − JSi〈S〉
)
− hSi

]
=

= 1
2zNJ〈S〉

2 −
[
zJ〈S〉+ h

]∑
i

Si =

= E0 − heff
∑
i

Si

(2.3)

E0 = 1
2zNJ〈S〉

2 is an energy offset, with N being he total number of sites and z the
cooradiantion number, so is thus physically irrelevant. heff

∑
i Si is the Hamiltonian of N

noninteracting spins in an external field heff = zJ〈S〉 + h. With this result one arrives at
the well known mean-field equation for the magnetization at finite temperature T:

〈S〉 = tanh(βh+ βzJ〈S〉) (2.4)

with β being β = 1
kBT

. This equation has the form of a self consistency equation for the
magnetization 〈S〉.
For an infinite coordination number z the approximation of neglecting correlated spin
fluctuations becomes exact. However, to get meaningful results where physical quantities
like the magnetization remain finite, the coupling J has to be rescaled:

J = J ′

z
, J ′ = const. (2.5)

Many of the basic ideas of the classical mean field theory can be adapted for the DMFT.
In this case a complex quantum lattice model is mapped onto a quantum impurity model,
which as to fulfill, similarly to the classical case, a self consistently equation. The whole
lattice dynamics is captured by the local single-particle retarded Green’s function:

Gαβ(t) = −iΘ(t)〈[cα(t), c†β]+〉T (2.6)

with creation/annihilation operator cα/c†β for electrons with quantum labels α, β for e.g.
spins or orbitals and thermal average in the grand canonical ensemble 〈...〉T . For further
information on the notation I refer to appendix A. When calculating the Green’s function
one will encounter a term for the self-energy Σ(ω). The approximation for DMFT lies in
freezing out spatial fluctuations by assuming a local self-energy:

Σi,j(ω) z→∞−−−→ Σ(ω)δi,j
Σk(ω) z→∞−−−→ Σ(ω)

(2.7)
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Again, this approximation becomes exact for an infinite coordination number [3]. To get
finite results, the hopping altitude needs to be rescaled. In the following sections the
Hamiltonians and Green’s functions for the lattice model and impurity will be presented
in detail.

2.2 Lattice model Hamiltonian and Green’s function

The quantum lattice model has in general the form of

Hlatt =
∑
iσ

(εd,σ − µ)niσ +
∑
i

H int
i +

∑
〈i,j〉σ

tijc
†
iσcjσ (2.8)

with creation/annihilation operator ciσ/c†iσ of an electron on site i with spin σ. Further-
more, niσ is the number-operater niσ = c†iσciσ.∑
〈i,j〉 is a sum over all nearest neighbours with hopping altitude tij. µ is the chemical

potential and εd being the flavour dependent energy.
H int
i is an arbitrary interaction acting on site i. This term will be specified in Chapter 6.

To calculate the Green’s function it is helpful to Fourier transform the Hamiltonian into
momentum space, as in there the non-interacting part of the Hamiltonian is diagonal:

Hlatt,k =
∑

k∈1.BZ
(εk − µ)c†kck︸ ︷︷ ︸
H0

+
∑
i

H int
i (2.9)

where H0 is the non-interacting part of the Hamiltonian and εk is the dispersion relation.
First, the non-interacting Green’s function G0

latt,k will be calculated with an equation of
motion Ansatz:

ω G0
latt,k(ω) = 〈[ck, c†k]+〉T +G0

[ck,H0]−,c†k
(2.10)

After solving this equation for the non interacting Green’s function G0
latt,k(ω) and inserting

into the Dyson equation

Glatt,k(ω)−1 = G0
latt,k(ω)−1 − Σk(ω) (2.11)

one arrives at the fully interacting Green’s function for the lattice model

Glatt,k(ω) = 1
ω − εk + µ− Σk(ω) (2.12)

with Σk(ω) being the self energy. A full derivation with all steps in between can be found
in Appendix B.
Using the the main DMFT approximation, of assuming the self energy is purely local, we
arrive at:

Glatt,k(ω) = 1
ω + µ− εk − Σ(ω) (2.13)
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This result will be now Fourier transformed to end up with an expression for the local on
site Green’s function.

Glatt(ω) = 1
N

∑
k∈1.BZ

eik(Ri−Ri)Glatt(ω)

= 1
N

∑
k∈1.BZ

1
ω + µ− εk − Σ(ω)

=
∫ ∞
−∞

dε
ρ0(ε)

ω + µ− εk − Σ(ω)

(2.14)

Here N denotes the number of k-points in the 1. Brillouin zone and ρ0(ε) is the non-
interacting density of states, which will be specified in Sec. 2.5.

2.3 Impurity model Hamiltonian and Green’s func-
tion

The Hamiltonian of the quantum impurity modelHim, on which the lattice model is mapped
on, as the general form of

Him = Himp +Hbath +Hhyb , (2.15)

Himp =
∑
σ

(εd − µ)d†σdσ +Hint , (2.16)

Hbath =
∑
kσ

εkc
†
kσckσ , (2.17)

Hhyb =
∑
kσ

Vk(d†σckσ + h.c.) , (2.18)

with Himp being the impurity Hamiltonian, Hbath the bath Hamiltonian and Hhyb the
hybridisation Hamiltonian.
Himp (Eq.16) describes a single site impurity with the same local interaction Hint as the
lattice model. dσ/d†σ denote the annihilation/creation operators of an impurity electron
with spin σ, εd is the local energy level of the impurity site and µ the chemical potential.
Hbath (Eq. 17) describes a non-interacting bath of electrons with dispersion relation εk and
annihilation/creation operators ckσ/c†kσ for bath electrons with momentum k.
Hhyb couples bath and impurity Hamiltonian with hybridization Vk, which characterizes
the hopping amplitude of electrons hopping between impurity and bath.
To calculate the impurity Green’s function one can use an equation of motion Ansatz,
which yields:

Gim(ω) = 1
ω − εd + µ−∆(ω)− Σim(ω) (2.19)
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with Σim(ω) being the self-energy and ∆(ω) being the hybridization function, that is defined
as

∆(ω) =
∑
k

V 2
k

ω − εk
(2.20)

with imaginary part

Γ(ω) = −Im(∆(ω)) = π
∑
k

V 2
k δ(ω − εk) (2.21)

A full derivation can be found in Appendix C.

2.4 DMFT self-consistency procedure
To map the original quantum lattice onto the effective impurity model in a self consistent
way, the requirements

Glatt(ω) != Gim(ω) (2.22)

Σim(ω) != Σlatt(ω) = Σ(ω) (2.23)

are set. Now a self-consistency equation can be formulated using (Eq. 2.19):

∆(ω) = ω − εd + µ− Σimp −Gim(ω) Eq. 2.22=
Eq. 2.23

= ω − εd + µ− Σ(ω)−Glatt(ω)
(2.24)

With the help of this equation an iterative process can be started wich lead to the self-
consistent DMFT equation:

1. Calculate the on site lattice Green’s function (Eq. 2.14)

2. Insert the solution of Glatt into (Eq. 2.24) to derive the hybridization function for
the impurity model

3. Solve the impurity model, which results into a new local self-energy

4. Using the new local self-energy to continue with step 1

A few remarks regarding the iterative procedure. As the local self-energy Σ(ω) isn’t defined
at the start of the calculation, an arbitrary value is used like Σ(ω) = 0. To solve the
impurity model an impurity solver is needed. There are many different methods to do so,
but in this thesis the Numerical Renormalization Group will be used. The whole iterative
procedure will be continued until the value of the local self-energy doesn’t change by a
given precision ε, which is in this thesis ε = 10−3
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Figure 2.1: DMFT iterative self-consistency procedure. Starting with an arbitrary self-
energy, the lattice Green’s function is calculated. This expression will be inserted into the
self-consistency equation yielding the hybridization ∆(ω). Using the NRG as an impurity
solver, the effective quantum impurity problem is solved, resulting in a new expression for
the local self energy.

2.5 DMFT lattice model

As seen in section 2.2 the specific lattice geometry only enters via the non-interacting
density of states (DOS) ρ(ε) in (Eq. 2.14). In this thesis the Bethe lattice in the limit of
infinite dimensions will be used for those equations. In z dimension the Bethe lattice is a
graph where each site as z neighbours without containing any cycles. For the Bethe lattice
in infinite dimensions, the DOS has a semi-elliptic form [13]:

ρ0(ε) = 2
πD

√
1−

(
ε

D

)2
(2.25)

with D being the half the bandwidth and ε ∈ [−D,D].
Therefore, if (Eq. 2.25) is inserted back in (Eq. 2.14) and the integral is being evaluated
for the DOS, one will arrive at

Glatt(ω) = 2
D2 (ξ −

√
ξ2 −D2) (2.26)

with ξ = ω − Σ(ω) + µ. Rearranging the equation results in

ξ = D2

4 Glatt(ω) +G−1
latt(ω) (2.27)
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Figure 2.2: An example of a Bethe lattice with coordination number z = 3. Every node
has exactly z neighbours, while the lattice doesn’t contain any cycles

This equation can inserted back into the DMFT self-consitency equation (Eq. 2.24) in
order to get an expression for ∆(ω)

∆(ω) = D2

4 Glatt(ω)− εd (2.28)

Taking the imaginary part now, will result in an equation for Γ

Γ(ω) = π
D2

4 Aii(ω) (2.29)

with Aii(ω) being the local spectral function.
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3. Dynamical cluster approximation

As the examination of short-range non-local correlations is of great interest the general
DMFT ideas need to be expanded. In this thesis the dynamical cluster approximation
(DCA) will be used to achieve the necessary corrections to the self-energy. This chapter
will give an intuitive explanation for the origin of the DCA equations. For a mathematical
derivation I refer to [8] and [9].

3.1 Derivation of self-consistency equation
In the DCA approach the Brillouin zone will be divided up into Nc equal sized patches.
Each of those patches a have different self-energies, which is constant in its respective
patch. Therefore, the new self-energies ΣDCA(k, ω) are ~k-dependent.

Figure 3.1: Two possible ways to divide up the Brillouin zone in Nc = 2 equal sized patches
in the dynamical cluster approximation
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Due to this new dependence, it isn’t any more possible to assume the self-energy
as purely local as it was done in the DMFT-approximation. In order to derive a self-
consistency equation one has to calculate the average Green’s function of the corresponding
patch:

Ḡ(Ki, ω) =
∫
P (Ki)

dk
Vp
G(k, ω) (3.1)

with P (Ki) denoting the patch represented by Ki and Vp being the volume of the patch. For
G(k, ω) the Dyson equation (Eq. 2.11) can now be inserted resulting in the self-consistency
equation:

Ḡ(Ki, ω) =
∫
P (Ki)

dk
Vp

(G−1
0 (k, ω)− ΣDCA(Ki, ω))−1 (3.2)

For the DCA calculations in this thesis the Brillouin zone will be divided into Nc = 2
patches. The inner patch in the Brillouin will be called plus patch and the outer one minus
patch.
For the choice of the interaction and single particle parameters I refer to [8]

3.2 Interpolation methods
As there is now one distinctive self-energy per patch, one has to find a way to combine both
self-energies in order to calculate continous quantities for the full lattice. In this section
two different interpolation methods will be presented as stated in [7].
The first method is the Σ-interpolation, where the self-energy is directly interpolated:

Σ(Σ)
latt(k, ω) = Σ+(ω)α+(k) + Σ−(ω)α−(k) (3.3)

with α± = 1
2

(
1± 1

2 [cos(kx)+cos(ky)]
)
and Σ± being the self-energies of the plus and minus

patch.
Another interpolation method is the M -interpolation, where first the cumulant M ≡ (ω+
µ− Σ)−1 is interpolated:

Mlatt(k, ω) = α+(k) 1
ω + µ− Σ+(ω) + α−(k) 1

ω + µ− Σ−(ω) (3.4)

with α± being the above defined function. Now the self-energy can be derived from
Mlatt(k, ω):

Σ(M)
latt (k, ω) = ω + µ−Mlatt(k, ω)−1 (3.5)

3.3 DCA lattice model
For the DCA calculations a two dimensional square lattice will be used. The dispersion
relation of such a lattice is defined as:

εk = −2t(cos(kx) + cos(ky))− 4t′ cos(kx) cos(ky) (3.6)
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with t being the nearest and t′ being the next nearest neighbour hopping. For the patching
of the Brillouin zone this thesis follows the scheme by [7]:

Figure 3.2: Left panel: Patching of the Brillouin zone into Nc = 2 patches. Th inner blue
patch is called plus patch P+, while the outer red one is the minus patch P−. The dashed
line denotes the Fermi surface at U = 0 with an electron doping at δ = 0.1
Right panel: Density of states of the system. The red line corresponds to the DOS of the
P− and the blue line to the DOS of P+. The dash line indicates the total DOS of a square
lattice. Figures adapted from [7]
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4. Numerical Renormalization Group

The Numerical Renormalization Group was developed by K.G. Wilson in the early 1970’s
[14] as non perturbative way to solve the Kondo model. Since then, it has developed into a
reliable method to solve quantum impurity models in a non perturbative way. A detailed
review of the NRG can be found in [15]

4.1 Summary of NRG process
Starting with a bath, with which the impurity interacts, a logarithmic discretization is
applied. This leads to a set of states where low energy excitations are enhanced, which
then can be mapped onto a semi-inifinte tight binding chain with exponentially decaying
couplings called the Wilson chain. An iterative diagonalization is then used to solve the
Wilson chain numerically. In the following sections this procedure will be presented in
detail. For further insight I refer to [16],[13] and [18].

4.2 Hamiltonian
The impurity Hamiltonian has to general form of:

H = Himp +
∑
kσ

Vk(d†σckσ + h.c.)︸ ︷︷ ︸
Hhyb

+
∑
kσ

εkc
†
kσckσ︸ ︷︷ ︸

Hbath

(4.1)

with ckσ/c
†
kσ being the annihilation/creation operators of a bath electron, while dσ/d†σ

are the annihilation/creation operators at the impurity. The coupling between bath and
impurity systems are described by the hopping amplitudes Vk. As the conduction band has
a finite band width of [−D,D], εk is also confined in the same interval. Additionally, the
chemical potential which is also defined in the interval [−D,D] and will be set to µ = 0.
σ describes the spin index of the given bath/impurity electron.
For the NRG calculations the single impurity Anderson model (SIAM) can be used with
Hamiltonian:

HSIAM = Himp +Hhyb +Hbath (4.2)

Himp =
∑
σ

εdd
†
σdσ + Ud†↑d↑d

†
↓d↓ (4.3)
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Hbath =
∑
kσ

εkc
†
kσckσ (4.4)

Hhyb =
∑
kσ

Vk(d†σckσ + h.c.) (4.5)

4.3 Logarithmic discretization
To discretize the conduction band a discretization parameter Λ > 1 will be introduced.
With this parameter discretization points can be set in the conduction band at:

ε±n = ±Λ−nD,n ∈ N (4.6)

These points partition the band into intervals

I±n =

[−ε|n|,−ε|n+1|] for − n
[ε|n+1|, ε|n|] for + n

(4.7)

with decreasing width ln = εn − εn+1 = DΛ−(n+1)(Λ− 1) resulting in an enhanced resolu-
tion around the chemical potential. Each of this intervals I±n will be represented with an
energy ξ±n that couples to the impurity with a strength of γ±n.

Figure 4.1: Logarithmic discretization of the conduction band of width [−D,D]. Here the
discretization parameter is set to Λ = 2 which leads to intervals with energy ξ±n.

Additionally, the discretization points can be shifted. To do so a shift parameter z ∈
[0, 1) will introduced into (Eq. 3.6) resulting in:

ε±n = ±Λ−n−zD (4.8)

This so called z-shifting enhances the precision of the NRG results by averaging over the
different shifts.
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After the logarithmic discretization the Hamiltonian of the SIAM takes a new form:

Hdisc = Himp +H ′bath +H ′hyb

H ′bath =
∞∑
n

∑
σ

ξ+nc
†
+nσc+nσ︸ ︷︷ ︸

particle-like excitations

+ ξ−nc
†
−nσc−nσ︸ ︷︷ ︸

hole-like excitations

H ′hyb =
∑
σ

(d†σ(
∑
±n
γ±na±nσ) + (

∑
±n
γ±na

†
±nσ)dσ)

(4.9)

This form is also called star geometry due to the way the impurity couples to the different
energy levels.

4.4 Mapping onto the Wilson chain
As the the bath and hybridization Hamiltonian (Eq.3.9) are quadratic they can be diago-
nalized exactly. First both terms will be written as a matrix:

d a+1 · · · a+N
2

a−1 · · · a−N2

Hstar = Hhyb +Hbath =

d†

a†+1
...

a†+N
2

a†−1
...

a†−N2



0 γ+1 · · · γ+N
2

γ−1 · · · γ−N2
γ+1 ξ+1
... . . .

γ+N
2

ξ+N
2

γ−1 ξ−1
... . . .

γ−N2
ξ−N2



(4.10)

As this matrix is hermitian one can use Lanczos algorithm [17] to tridiagonalize it. Using
this scheme the resulting matrix reads:

d f0 f1 f2 · · · fN

Hchain =

d

f †0
f †1
f †2
...
f †N



εd timp
timp ε0 t0

t0 ε1 t1

t1 ε2
. . .

. . . . . .
εN


=

∑
σ

timp(dσf †0σ + h.c.) +
∑
σ

[N−1∑
l=0

tl(f †lσf(l+1)σ + h.c.) +
N∑
l=0

εlf
†
lσflσ

]

(4.11)
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If the impurity Hamiltonian is added to the chain Hamiltonian one arrives at the famous
Wilson chain:

HWilson = Himp +Hchain (4.12)
In this semi-infinte tight-binding chain the first site represents the impurity which is coupled
to the first bath site with strength timp. All following sites belong to the bath and couple
to their nearest neighbours with hopping amplitude tN . This hopping amplitude falls of
exponentially for large n [13]:

tN
n�1→ Λ−N2 (4.13)

Figure 4.2: Graphical illustration of a Wilson chain. The impurity couples with the bath
with strength timp. Each site after that belongs to the bath and has an exponentially
decreasing coupling strength of tN

4.5 Iterative Diagonalization
The Wilson chain has a reasonable form for an approximate diagonalization. To do so an
iterative renomalization group (RG) procedure will be used which was invented by K.G.
Wilson [14]. This procedure introduces a series of Hamiltonians ĤN that approach H in
the limit N →∞:

H = lim
N→∞

Λ−N2 ĤN (4.14)

with

ĤN = ΛN
2
(
Himp +

∑
σ

timp(dσf †0σ +h.c.) +
∑
σ

[N−1∑
l=0

tl(f †lσf(l+1)σ +h.c.) +
N∑
l=0

εlf
†
lσflσ

])
(4.15)

For simplicity reason the factor ΛN
2 is applied to cancel the N-dependence of tN−1. (Eq.

3.15) can now be used to formulate a recursion relation for ĤN+1:

ĤN+1 =
√

ΛĤN + ΛN
2
∑
σ

[
tN(f †Nσf(N+1)σ + h.c.) + εN+1f

†
N+1σfN+1σ

]
(4.16)

As the starting point of this recursive procedure the following equation

Ĥ0 = Λ 1
2
[
Himp +

∑
σ

(
ε0f

†
0σf0σ + timp(dσf †0σ + h.c.)

)]
(4.17)
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will be used. With (Eq.3.16) and (Eq.3.17) it can be seen that they act as a renormalization
group transformation R [19]:

ĤN+1 = R(ĤN) (4.18)

In general, to diagonalize the Wilson chain HWilson, Ĥ0 is diagonalized exactly and a set of
eigenstates and eigenenergies are obtained. Then one continues with Ĥ1.
For a general RG step from ĤN to ĤN+1, one will applies following scheme (Fig. 3.):

Figure 4.3: Iterative diagonalization procedure for ĤN → ĤN+1: Starting with the eigen-
states and eigenenergies of the previous iteration step (1.) one rescales them by a factor
of
√

Λ (2.). Then a new site is added which lifts the degeneracy of EN
s through diagonal-

ization of the new system (3.). The new eigenenergies EN+1
s are then shifted so that the

ground state has energy 0 (4.). In the last step (5.) the enlarged Hilbert space is truncated
by discarding all states above a certain Nkeep.

1. In the proceeding step ĤN has been diagonalized. |s〉N are the eigenstates and EN
s

are the eigenenergies.

2. The eigenenergies are rescaled by a factor
√

Λ. This is done by the first term in
(Eq.3.15).

3. Through the second and third term of (Eq.3.15) a new site of the Wilson chain is
added. With this process the degeneracy of the eigenenergies are lifted. This result
is diagonalized resulting in new eigenstates|s〉N+1 and eigenenergies EN+1

s .
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4. For convenience the ground state energy is set to 0. This step is not mandatory.

5. As for each new site |σ〉N+1 with dimension d added to the previous Hamiltonian
ĤN the dimension of the Hilbert space grows by a factor d. After a certain amount
of iteration steps the whole procedure would become numerically infeasible as the
dimension of the Hilbert space grows exponentially. Therefore a truncation scheme
is applied where the eigenstates are kept to a specific number Nkeep. This is possible
as the high energy states have a small impact on the low-energy spectrum due to the
weak perturbation compared to the energy of the high lying levels.

6. As a new ĤN+1 has been obtained, one goes back to step number 1.

This iterative process is continued until a specific energy resolution δE is reached.
As we truncate our Hilbert space for computational speed we are not able to construct a
complete basis out of the pure result of the iterative diagonalization procedure. Remark-
ably, it is possible to construct such a complete basis from the discarded states. For a full
review of this method I refer to [16] and [13].



5. Using NRG for the DMFT
calculations

After we discussed the principles of the DMFT and NRG calculations, we will now try to
combine both methods.

5.1 Calculation of the self-energy
As mentioned in section 2.4 the main use of the NRG is to calculate the self-energy the
DMFT self-consistency procedure. one way to define the self-energy, which was also used
in the derivations in Appendix C, is over the Dyson equation:

Σ(ω) = G0
imp(ω)−1 −Gimp(ω)−1 (5.1)

Using this approach can lead to problems. While the non-interacting Green’s function
G0
imp(ω) = 1

ω−εd+µ−∆(ω) can be calculated exactly, the interacting Green’s function needs
to be derived with the NRG. As we have a complete basis set we can calculate the spectral
function via the Lehmann representation:

AB,C =
∑
n,m

〈n|C |m〉 e
−βEm

Z
〈m|B |n〉 δ(ω − (En − Em)) (5.2)

with Z being the norm of the density matrix Z = ∑
m e
−βEm . As the spectral function is

nothing else than the imaginary part of the Green’s function AA,B = − 1
π
Im(GA,B(ω)) one

can arrive at the real part by using the Kramers-Kronig relations. Adding both imaginary
and real part together one arrives at Gimp(ω). However, as this calculation of Gimp(ω)
displays numerical errors, taking the difference of an exact and an error-prone quantities
can be detrimental to the accuracy of the result. This error can even increase over the
course of the iterative procedure.
To circumvent this problem a different approach is used. The self energy can also be
expressed as a ratio of two correlation functions [20]:

Σ(ω) = F (ω)
G(ω) (5.3)
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with G(ω) being the on-site correlation function (Gimp(ω)) and F (ω) being the two-particle
retarded Green’s function

F (ω) = G[d,Hint]−,d† (5.4)

In this case both quantities are calculated numerically, but as they are divided by each
other only the relative remains which results into a numerically more stable procedure.



6. Zhang-Sachdev-Hamiltonian

In this thesis I will use the model which was introduced by Zhang and Sachdev. In their
work [1] they used a standard Hubbard model with two extra ancilla qubits per square
lattice site to describe the structure of the pseudogap metal state. These qubits are no
physical degrees of freedom rather than theoretical tools which are used to reproduce the
wished behaviour. The Hamiltonian goes as

Figure 6.1: A Hubbard model of electrons ciσ coupled to two hidden square-lattice layers
of ancilla qubits Si;1 and Si;2

H = HU +Ha (6.1)

with HU being the Hubbard model of electrons ciσ on site i with spin σ

HU = −
∑
i,j

ti,jc
†
iσcjσ − µ

∑
i

c†iσciσ + U
∑
i

ni↑ni↓ (6.2)

and Ha being the two hidden layers of ancilla spin S = 1
2 qubits Si;1,Si;2

Ha = J1

2
∑
i

c†iσσσσ′ciσ′ · Si;1 + J2
∑
i

Si;1 · Si;2 (6.3)

with σ being the Pauli matrices.
This model will be treated using both the DMFT as well as the DCA. For the single-site
DMFT calculations an adapted version of the single-impurity Anderson model, which was
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introduced in section 4.2, will be used. In addition to the SIAM-Hamiltonian, terms will
be added which represent the two ancilla spins:

HDMFT
im = HSIAM + J1

2 c
†
σσσσ′cσ′ · S1 + J2S1 · S2 (6.4)

withcσ/c†σ being the annihilation/creation operators of the impurity.
For the DCA calculations on the other hand, a two-impurity Anderson model (2IAM) is
needed due to the two different patches. Again, a term representing the ancilla spins will
be added to the 2IAM:

HDCA
im = Himp +Hhyb +Hbath +Hs

Himp =
∑
l=1,2

(εdnl + Unl↑nl↓)− t
∑
σ

(
d†1σd2σ + h.c.

)
Hhyb =

∑
lkσ

Vk
[
d†lkσclσ + h.c

]
Hbath =

∑
lkσ

εkd
†
lkσdlkσ

Hs = J1

2
∑
l

c†lσσσσ′clσ′ · Sl;1 + J2
∑
l

Sl;1 · Sl;2

(6.5)



7. Luttinger’s theorem

A consequence of the findings of Fermi liquid is Luttinger’s theorem, which was derived
in 1960 by J. M. Luttinger [6]. The theorem states that the volume enclosed by a Fermi
surface is directly probational to the particle density:

nLT = 2 VFS

(2π)d (7.1)

with VFS being the volume of a d-dimensional Fermi surface. The particle number nLT only
takes into account partially filled bands and is therefore defined in nLT ∈ [0, 2]. As shown
in [2], it is necessary to incorporate spins into the Fermi surface to get an accurate result
for the volume of the Fermi surface:

VFS = (2π)d
2 [ν + 2NSS] (7.2)

with NS being the number of spins S and ν being the total particle density.
As phases where Luttinger’s theorem is violated are of great interest one must calculate
the volume of the Fermi surface in order to compare with calculated fillings.

7.1 Calculating the volume of the Fermi surface

Starting with the interacting Green’s function G(k, ω)−1 = ω−εk +µ−Σ(k, ω) it is known
[6] that

G−1(k, ω = 0) > 0, occupied,
G−1(k, ω = 0) < 0, unoccupied

(7.3)

Therefore, the volume of the Fermi surface of a d-dimensional lattice can be defined as:

VFS =
∫

1.BZ
ddk Θ(G−1(k, ω = 0)) =

∫
1.BZ

ddk Θ(−εk + µ− Σ(k, 0)) (7.4)

This equation can be dividing through the volume of the first Brillouin zone V1.BZ to result
into the occupation predicted by Luttinger’s theorem:

nLT = 2 VFS

V1.BZ
=
∫

1.BZ

ddk

V1.BZ
Θ(−εk + µ− Σ(k, 0)) (7.5)
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For the DCA calculations this is the final result. For the single-site DMFT calculations on
the Bethe-lattice on the other hand Eq.(7.5) can be simplified due to the local nature of
the self-energy:

nLT = 2 VFS

V1.BZ
=
∫

1.BZ

ddk

V1.BZ
Θ(−εk + µ− Σ(k, 0)) =∫ ∞

−∞
dε
∫

1.BZ

ddk

V1.BZ
δ(ε− εk)︸ ︷︷ ︸

ρ(ε)

Θ(−ε+ µ− Σ(ω = 0)) =
∫ µ−Σ(ω=0)

−∞
dε ρ(ε) (7.6)



8. Single site DMFT with J1 = 0

Starting the study of the Zhang-Sachdev Hamiltonian at first the coupling of first ancilla
qubit J1 will be set to zero. This is done to find out how the physical behaviour of system
changes when the ancilla qubits are bing added.
As J1 describes the coupling between the lattice model and the qubits one can neglect the
effects of the qubits on the lattice model when setting J1 = 0. J2 only influences the first
ancilla qubit not the lattice model itself. Effectively, one works only with a Hubbard model
in this calculations. As input parameters for the DMFT calculations the following values
have been chosen:

Nkeep Λ T U n µ t nz
2000 2 10−6 [0,4] 1 U

2 0.5 2

Table 8.1: Values for single site DMFT calculations. Nkeep describes the number of kept
states before truncation, while Λ is the discretization parameter. T is the temperature
and U is the strength of the Coulomb interaction. The filling per site is defined by n
with corresponding chemical potential µ. t is the hopping amplitude and nz describes the
number of z-shifts.

The Hubbard model has at half-filling a so-called Mott-Hubbard metal-insulator tran-
sition (MIT). As in the Hubbard model

H = −µ
∑
iσ

niσ +
∑
〈ij〉σ

tc†iσciσ + U
∑
i

ni↑ni↓ (8.1)

a competition between the kinetic and interaction part of the Hamiltonian arises this
transition can be characterized as the ratio U/t of the Coulomb interaction strength and
the hopping amplitude. If t is large compared to U the electrons can hopp freely between
the different lattice sites, which corresponds to a metallic state of the system. For large U
however, the electrons get localized due to the high energy cost of a doubly occupied state
thus an insulator develops. This can be reproduced with the single site DMFT calculations:
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Figure 8.1: Spectral function of a Metal-insulator transition for the half-filled Hubbard-
model for different values of U .

As it can be seen (Fig. 8.1) for small U the spectral function features a quasiparticle
peak at ω = 0, which is equivalent to the metallic phase. Dialing up the interaction results
into a three peak structure with again a quasiparticle peak at ω = 0 and two smaller peaks
at ±U/2. These peaks are describing atomic like excitations. A further increase of U leads
to a reduction of the quasiparticle peak width, which ultimately vanishes above a certain
Uc. For the performed calculations Uc ≈ 2.95. The height of this peak is up to Uc a fixed
value. After surpassing the critical Uc < U only the two smaller peaks at ±U/2 remain
with a gap between them. The system is now in the insulating phase.



9. Single site DMFT with J2 = 0

In this chapter the effect of one ancilla qubits per lattice site will be explored. To do so
the coupling of the second qubit J2 will be neglected. This corresponds to a Kondo lattice
model. At first, the filling will be fixed at half-filling and, for different values of J1, U will
be varied in order to find a possible metal-insulator transition. Later, the filling will be
changed while the interaction J1 remains fixed.

9.1 J1 and U variation at half-filling
For the result of the DMFT calculations following values will be chosen:

Nkeep Λ T U J1 J2 n µ t nz
2000 2 1e-6 [1,10] 1 0 1 U

2 0,5 2

Table 9.1: Values for single site DMFT calculations of the lattice model at half-filling with
a singled coupled ancilla qubit. J1 is the coupling between the first ancilla qubit and the
lattice electrons, while J2 describes the coupling between the two ancilla qubits. The other
parameters are defined as in Table 8.1.

As the lattice model will be set to half-filling, every site has on average one electron.
The ancilla qubit which is now coupled to each site interacts with the electron through
the coupling J1. Together they form a singlet state. As all lattice electrons are bound, the
lattice is in an insulating phase. Dialing up the Coulomb interaction U will only result
into an increase of the charge gap (Fig. 9.1). Therefore, the lattice will always remain in
an insulating phase for all values of U and J1
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Figure 9.1: Variation of the Coulomb interaction U at J1 = 1.

9.2 Variation of the filling
As there is no phase transition at half-filling as seen above, the filling of the lattice will be
now varied while the coupling J1 remaining fixed at J1 = 1. The parameters are chosen as
followed:

Nkeep Λ T U J1 J2 µ t nz
2000 2 1e-6 0 1 0 [0, 10] 0,5 2

Table 9.2: Values for single site DMFT calculations for the variation of the filling. The
parameters are defined as in Table 8.1 and 9.1.

By changing the chemical potential we ensure the necessary shifts of the lattice filling.
For small values of µ relative to J1 the lattice is at half-filling and the lattice is in an
insulating phase as in the previous section (Fig. 9.2 and 9.3). If now µ gets dialed up even
further the spectral function develops a peak develops at ω = 0 and the lattice becomes
metallic. This is all due to the typical band structure of the Kondo lattice [21]. As there
are two bands with a gap at µ = 0 setting the chemical potential inside this gap will result
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into the insulating state. For large enough µ one goes past this gap into the band so the
lattice becomes metallic. For the parameters of this calculation (table 8.1) this happens
at µ = 0.5. .

Figure 9.2: Variation of the filling with J1 = 1 and U = 0. It can be seen that the lattice
goes from an insulting to a metallic phase at µ = 0.5.
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Figure 9.3: Variation of the filling with J1 = 1 and U = 0. The upper panel shows the
spectral function at different values of µ on a logarithmic ω axis in the interval ω ∈ [10−4, 2].
It can be seen that the lattice goes from an insulting to a metallic phase at µ = 0.5.
The lower panel shows the spectral function again on a logarithmic ω axis scale in the
interval ω ∈ [−3,−10−4]. Here the legends show the filling n corresponding to the chemical
potential shown in the legend of the upper panel.



10. Single site DMFT with J1 6= 0 and
J2 6= 0

As the Hubbard model with no and one ancilla qubit per site have been explored, it is now
time to include on the final qubit. Using the results of the previous chapter a chemical
potential µ = 0.7 is chosen at which the spectral function of the Kondo lattice is metallic.
The other parameters are chosen as followed:

Nkeep Λ T U J1 J2 µ t nz
2000 2 1e-6 0 1 [0.1,10] 0.7 0.5 2

Table 10.1: Parameters for the single site DMFT calculations of the Zhang-Sachdev Hamil-
tonian. The parameters are defined as in Table 8.1 and 9.1.

As it can be seen the second ancilla spin has an immediate effect on the lattice (Fig.
10.1). The spectral function has a now peak at around ω = 0, which shifts to ω ≈ −0.7
for J2 = 2. For values greater than J2 = 3 the changes to the peak are marginal and only
the outskirts of the function are different. This is due to the fact that both ancilla spins
go into a singlet state. The lattice electrons remain free and can hopp between different
sites as there is no interaction U , thus the lattice is metallic.
Looking closer at the formation of the ancilla quibt singlet in the J2 interval [0.1, 1] (Fig.
10.1 lower panel and 10.2), one sees that for a small interaction J2 a peak occurs at ω = 0.
Dialing up J2 results in broadening of this peak while the other two peaks decrease and
even vanish for a large enough J2.
Now going over to the verification of Luttinger’s theorem, the methods introduced in
chapter 7 will be used to compare the filling after the theorem to the filling calculated by
the DMFT.
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J2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DMFT 1.4473 1.5253 1.5788 1.6159 1.6424 1.6623 1.6779 1.6904 1.7005

Luttinger 1.4458 1.5242 1.5785 1.6156 1.6422 1.6623 1.6778 1.6904 1.7004

J2 1 2 3 4 5 6 7 8 9 10
DMFT 1.7091 1.7534 1.7703 1.7798 1.7863 1.7894 1.7925 1.7949 1.7967 1.7981

Luttinger 1.7090 1.7533 1.7708 1.7803 1.7861 1.7902 1.7931 1.7954 1.7971 1.7986

Table 10.2: Comparison between the occupation of the lattice after the DMFT calculations
and the theoretical filling after Luttinger’s theorem.

As it can be seen Luttinger’s theorem is fulfilled for all values of J2 (Fig. 10.3). It
should be noted that the filling extracted from to DMFT calculations doesn’t take the two
ancilla qubits into account and therefore, they must be added separately to the filling as
above done. However, because the filling is defined in modulo 2 (chapter 7) this won’t
change the bare values of n.
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Figure 10.1: Spectral functions of the lattice model for J2 variation. The upper panel shows
them in an broader interval of J2 ∈ [0, 3], while the lower panel zooms in on J2 ∈ [0, 1]
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Figure 10.2: Spectral functions of the lattice model for J2 variation on a logarithmic ω
axis. The upper panel shows them in the interval ω ∈ [10−4, 2], while the lower panel is in
the interval ω ∈ [−3,−10−4]
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Figure 10.3: Verification of Luttinger’s theorem versus the occupation n derived by the
DMFT calculations. The upper panel shows the broader interval J2 ∈ [1, 10], while the
lower panel zooms in on J2 ∈ [0.1, 1]. As it can be seen there is no violation in either
interval.
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11. DCA with J1 = 0

As the investigation of the Zhang-Sachdev-Hamiltonian with DMFT methods in the pre-
vious chapters have shown no interesting phase transitions or violations of Luttinger’s
theorem, one hopes to find more compelling results by examining short range non-local
correlations via DCA calculations (chapter 3).
Starting with the analysis of the model, the interaction J1 will be set again to 0. Like in
chapter 8 this results again in a simple Hubbard model as J1 couples the ancilla qubits
with the lattice. Starting from half-filling the lattice will be hole doped. The remaining
parameters are chosen as:

Nkeep Λ T U J1 J2 n µ t t′ nz
5000 4 1e-5 2.5 0 50 [1.6,2] 1 1/4 -0.3/4 2

Table 11.1: Values for DCA calculations of the lattice model with J1 = 0. Here t′ is the
next nearest neighbour hopping amplitude. The other parameters are defined as in Table
8.1 and 9.1.

As we are considering just a Hubbard model the resulting spectral functions should be
comparable with the continuous-time quantum Monte Carlo (CTQMC) calculations of [7].
Starting from half-filling both patches are in an insulating phase with a gap at ω = 0.
Looking at the plus patch (Fig. 11.1 upper panel), hole doping results in a metallic phase.
Further increasing the doping leads to spectral weight centered around ω = 0.
The minus patch (Fig. 11.1 lower panel) however stays insulating at first, when the doping
is increased. It develops a sharp peak at around ω = 0+, which grows and moves closer
towards ω = 0 for increased doping. At a doping level of n < 1.7 the minus patch becomes
metallic as well. Overall, the results of the DCA calculations produce similar results as
the CTQMC of [7].
As it has been seen, that for a doping n ∈ [1.7, 2] the minus patch remains insulating while
the plus patch becomes metallic, this area becomes of great interest as it is an indication
for fermi arcs. Calculating the occupation after Luttinger’s theorem and comparing them
to results of the DCA calculations however, leads to:
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n 1.9 1.8 1.7 1.6
DCA 0.9499 0.8997 0.8504 0.7999

Luttinger 0.9470 0.8942 0.8429 0.7964

Table 11.2: Comparison between the occupation of the lattice after the DCA calculations
and the theoretical filling after Luttinger’s theorem. The filling after Luttinger’s theorem
has been calculated without any interpolation methods.

As it can be seen both occupations are overall similar and there is no violation of
Luttinger’s theorem. It should be noted that n = 2 has been omitted from the comparison
as both patches are insulating at this filling and therefore, won’t show any Fermi surface
whose volume could be calculated.

Figure 11.1: Spectral functions of the hole doped plus patch (upper panel) and minus patch
(lower panel) at different fillings.



12. DCA with J2 = 0

As we have discussed the Hubbard model with the DCA approach, now one ancilla spin
will be added to the lattice resulting again into a Kondo lattice. This lattice will be first
analyzed by changing the doping and afterwards by varying the interaction J2. In both
cases Luttinger’s theorem will be calculated as well as the Fermi surfaces and the band
structures in order to find a phase transition between regimes where Luttinger’s theorem
is violated and regimes where it is fulfilled.

12.1 Variation of the doping
Starting with the variation of the doping, the chemical potential will be varied in order to
perform the necessary shifts of the doping. The parameters of the DCA calculations are
chosen as followed:

Nkeep Λ T U J1 J2 µ t t′ nz
5000 4 1e-10 0 0.1 0 [-0.5,0.5] 1/4 -0.3/4 2

Table 12.1: Parameter for the variation of the Kondo lattice’s doping. The parameters are
defined as in Table 8.1, 9.1 and 11.1.

Looking at the spectral function of both patches it can be seen that a change in the
chemical potential only leads to a shift of them. Additionally, a peak forms at ω = 0 for a
µ > −0.3 (Fig. 12.1).
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Figure 12.1: Spectral functions for the doped Kondo lattice. Both the plus patch (left
panel) as well as the minus patch (right panel) feature a peak at ω = 0 for µ < −0.3.

Going over to Luttinger’s theorem a clear violation can be seen:

µ -0.5 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
DCA +1 1.3227 1.7208 1.9411 2.0877 2.2049 2.3039 2.3911 2.4689 2.5398 2.6047
Luttinger 0.8235 0.7190 0.9400 1.0867 1.2039 1.3034 1.3906 1.4687 1.5396 1.6049

Table 12.2: Comparison between the occupation of the Kondo lattice after the DCA calcu-
lations and the theoretical filling after Luttinger’s theorem for a variation of the chemical
potential µ. The filling after Luttinger’s theorem has been calculated without any inter-
polation methods.

The value of µ = −0.4 has been omitted as the DCA calculations failed for this chemi-
cal potential. Furthermore, the ancilla spin has to be added separately to the DCA filling,
in order to capture the whole lattice occupation. Therefore, some values of n are chosen
larger than 2, in order to get a smooth plot of the values.
For values of µ > −0.3 the theorem predicts one less particle than the lattice actually
possesses. However, for µ = −0.5 the differences between Luttinger’s theorem and the
lattice occupation goes down to half a particle (Fig. 12.2). This may be a result of the
Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction. This interaction stems from the
long distance correlation between two local moments, here the ancilla qubits. They inter-
act through the conduction electrons which get correlated/anticorrelated by the coupling
between the bath and the ancilla qubits [9]. Wether this interaction is antiferromagnetic
or ferromagnetic depends on the filling and the distance between the two local moments.
In this case a transition from an antiferromagnetic to ferromagnetic RKKY interaction
possibly has occurred when the chemical potential has been set to µ = −0.5. This can be
seen when looking at the renormalization group flows, which are not included in this thesis.
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Figure 12.2: Verification of Luttinger’s theorem at different values of µ versus the occu-
pation derived by the DCA calculations. As it can be seen there is a clear violation for
Luttinger’s theorem as a particle is missing in the theorem’s prediction in µ ∈ [−0.3, 0.5].
At µ = −0.5 the difference goes down to half a particle possibly because the RKKY
interaction becomes ferromagnetic.

This transition can also be observed in the Femi surfaces and band structures. Starting
from µ = 0.5 the Fermi surface is relative small (Fig 12.3 lower panel) and starts growing for
smaller values of µ reaching its maximum at µ = −0.3 (Fig 12.3 middle panel). However,
setting the chemical potential to µ = −0.5 the Fermi surface decreases suddenly (Fig 12.3
upper panel).
The band structures will remain mostly the same for a variation of the chemical potential
12.4. Going from µ = 0.5 downwards they shift upwards as a result of the decreasing
chemical potential. Additionally, a horizontal peak develops at ω = 0 when setting a
negative potential.
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Figure 12.3: Fermi surfaces for µ = −0.5 (upper panel), µ = −0.3 (middle panel) and
µ = 0.5 (lower panel). M-interpolation has been used to extract the figures.
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Figure 12.4: Band structures for µ = −0.5 (upper panel), µ = −0.3 (middle panel) and
µ = 0.5 (lower panel). M-interpolation has been used to extract the figures. The band
structure follows the path from the (0,0) point in the Brillouin zone to the (π, π) point.
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12.2 J1 variation

As a clear violation of Luttinger’s theorem has been found, a possible phase transition
to an area where the theorem is fulfilled will be explored. To achieve this the chemical
potential will be fixed while the interaction J1 will be varied. The parameters are chosen
as followed:

Nkeep Λ T U J1 J2 µ t t′ nz
5000 4 1e-10 0 [0.1,1] 0 -0.3 1/4 -0.3/4 2

Table 12.3: Parameters for the variation of J1 in the Kondo lattice model. The parameters
are defined as in Table 8.1, 9.1 and 11.1.

First, the spectral functions are analyzed (Fig. 12.5). Both patches start with a slight
indentation at ω = 0, but are still both metallic. The plus patch however, develops a
gap at this position and becomes immediately insulating when setting J1 > 0.3. The gap
increases for bigger values of J1. The minus patch on the other hand stays metallic even
for different J1. The indentation enlarges here while slightly moving away from ω = 0.

Figure 12.5: Spectral function of the J1 varied Kondo lattice with the plus patch (right
panel) and minus patch (left panel)

Moving on to Luttinger’s theorem following values have been extracted:
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J1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DCA+1 1.7208 1.7373 1.7456 1.7716 1.8085 1.8508 1.8960 1.9421 1.9902 1.9976

Luttinger 0.7191 0.7440 1.7455 1.7710 1.8076 1.8473 1.8936 1.9427 1.9929 2.0

Table 12.4: Comparison between the occupation of the Kondo lattice after the DCA calcula-
tions and the theoretical filling after Luttinger’s theorem for a variation of the interaction
J1. The filling after Luttinger’s theorem has been calculated without any interpolation
methods.

It can be seen (Fig. 12.6) that for the positive J1 values up to J1 = 0.2 the difference
between the theoretical occupation calculated by Luttinger’s theorem and the occupation
derived from the DCA is exactly one particle. The theorem is violated in this area. How-
ever, for J1 > 0.2 Luttinger’s theorem is suddenly satisfied and this differences vanishes.
It should be noted that again the ancilla spin has to be added separately to the lattice
filling.

Figure 12.6: Verification of Luttinger’s theorem at different values of J1 versus the occu-
pation derived by the DCA calculations.

This transition has also an immediate effect onto the Fermi surfaces. For the area where
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Luttinger’s theorem is broken the resulting Fermi surface is large and reaches deep into the
Brillouin zone (Fig. 12.7 upper panel). Setting now J1 > 0.2 the Fermi surface reduces,
only covering the edges of the Brillouin zone (Fig. 12.7 lower panel). Increasing J1 further
decreases the Fermi volume even more.
The band structures experience also a change when going from J1 = 0.2 to J1 = 0.3. In
the area of a broken Luttinger’s theorem the band is continuous with a small, vertical peak
at ω = 0 ( Fig. 12.8 upper panel). Increasing J1 towards the critical point leads to a
narrowing of the band at ω = 0. Going over to the regime where the theorem is fulfilled, a
gap develops in the band structure just slightly above ω = 0 ( Fig. 12.8 lower panel). For
larger values of J1 the gap becomes wider while still starting at ω > 0.
Interestingly enough, if the filling is moved closer to half-filling, the critical point of the
transition stays between J1 = 0.2 and J1 = 0.3, but the structure of the Fermi surfaces
changes drastically (Fig. 12.9). Instead of a closed Fermi surface, Fermi arc like structure
for µ = −0.2 appear similar to the findings in [7].
The band structures for µ = −0.2 and J1 = 0.2 have even before the transition to an area
where Luttinger’s theorem is fulfilled a gap at ω > 0 (Fig. 12.10 upper panel). This gap
gets only larger for J1 = 0.3 (Fig. 12.10 lower panel).
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Figure 12.7: Fermi surfaces for J1 = 0.2 (upper panel) and J1 = 0.3 (lower panel) at
µ = −0.3. M-interpolation has been used to extract the figures.
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Figure 12.8: Band structures for J1 = 0.2 (upper panel) and J1 = 0.3 (lower panel) at
µ = −0.3. M-interpolation has been used to extract the figures. The band structure
follows the path from the (0,0) point in the Brillouin zone to the (π, π) point.
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Figure 12.9: Fermi arc like structures for J1 = 0.2 (upper panel) and J1 = 0.3 (lower panel)
at µ = −0.2. M-interpolation has been used to extract the figures.
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Figure 12.10: Band structures of the Fermi arc like structures for J1 = 0.2 (upper panel)
and J1 = 0.3 (lower panel) at µ = −0.2. M-interpolation has been used to extract the
figures. The band structure follows the path from the (0,0) point in the Brillouin zone to
the (π, π) point.
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In this last chapter the effects of two ancilla spins onto the lattice will be looked upon in
the DCA calculations. J2 will be varied while the other parameters remain fixed:

Nkeep Λ T U J1 J2 µ t t′ nz
5000 4 1e-10 0 1 [0,1] -0.5 1/4 -0.3/4 2

Table 13.1: Parameters for the DCA calculations of the Zhang-Sachdev Hamiltonian. The
parameters are defined as in Table 8.1, 9.1 and 11.1.

Looking first at the spectral functions again (Fig. 13.1), it can be seen that for J2 = 0
the plus patch is insulating. For small values like J2 = 0.1 a small peak develops at ω = 0
and the patch becomes metallic. Increasing the interaction to J2 = 0.2 leads to an immense
growth of the peak at ω = 0. Dialing up J2 further results into a broadening of the peak.
The minus patch in the other hand starts in a metallic state. Switching on J2 to J2 = 0.1
again a peak develops at ω = 0 which grows drastically when the interaction is set to
J2 = 0.2. For bigger values of J2 the peak moves away from ω = 0 and decreases. At
J2 = 1 the patch is insulating due to the shift of the peak.

Figure 13.1: Spectral function of the J2 varied Zhang-Sachdev lattice.
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Looking at Luttinger’s theorem following values of been extracted:

J2 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1
DCA 0.8174 0.7621 0.6582 0.6197 0.5826 0.5484 0.5211 0.5002 0.4843

Luttinger 1.3190 0.7567 0.6666 0.6060 0.5695 0.5413 0.5176 0.4980 0.4821

Table 13.2: Comparison between the occupation of the lattice model after the DCA calcula-
tions and the theoretical filling after Luttinger’s theorem for a variation of the interaction
J2. The filling after Luttinger’s theorem has been calculated without any interpolation
methods.

To the occupation calculated by the DCA both ancilla qubits have to be added sepa-
rately to capture the whole lattice filling. But, as the filling is defined in modulo 2 (chapter
7), this won’t change the extracted values.
For J2 = 0.1 a violation of Luttinger’s theorem occurs as there is a difference of half a
particle between the derived fillings (Fig. 13.2). This is probably again due to the switch
into a ferromagnetic RKKY interaction. Going over to J2 = 0.2 both calculated fillings
match and therefore the theorem is satisfied.

Figure 13.2: Verification of Luttinger’s theorem at different values of J2 versus the occu-
pation derived by the DCA calculations.
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This phase transition can also be observed in the Fermi surfaces of the lattice model.
At J2 = 0.1 the Fermi surface reaches far into the Brillouin zone, but has additionally a
circle in the middle of the patch (Fig. 13.3 upper panel). Going over into the area where
Luttinger’s theorem is fulfilled at J2 = 0.2 the Fermi surface grows larger and the circle
disappears (Fig. 13.3 lower panel). For larger values of J2 the Fermi surface will grow
slightly larger.
The band structures experience also a change. At J2 = 0.1 there are three distinctive
bands. The first ancilla qubit has split the original band at ω > 0 into a lower and upper
band, while the second qubit splits the lower band at ω < 0 (Fig. 13.4 upper panel).
Because of this second split there is an additional circle in the Fermi surface. Setting
J2 = 0.2 will result into a slight increase of the gap between the middle band and the lower
band (Fig. 13.4 lower panel).
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Figure 13.3: Fermi surfaces for J2 = 0.1 (upper panel) and J2 = 0.2 (lower panel). M-
interpolation has been used to extract the figures.
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Figure 13.4: Band structures for J2 = 0.1 (upper panel) and J2 = 0.2 (lower panel). M-
interpolation has been used to extract the figures. The band structure follows the path
from the (0,0) point in the Brillouin zone to the (π, π) point.
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14. Conclusion and Outlook

In this thesis, the effects of ancilla qubits onto the Hubbard model have been explored with
great detail. Do to so dynamical mean field methods had been used with the numerical
renormalization group acting as an impurity solver. Starting with the DMFT treatment of
the Hubbard model the spectral functions at different Coulomb interactions U have been
analyzed resulting into the well known metal-insulator transition at half filling.
Afterwards, an ancilla qubit per site has been added to the Hubbard model leading to
the Kondo lattice. First, the interaction strength has been varied at half filling, but no
phase transition could be found. Therefore, the filling has been varied at fixed values of J1
resulting into a change of the insulating state into a metallic state.
Adding another ancilla qubit resulted into the Zhang-Sachdev lattice model [1]. As the
starting point for the tuning of the interaction J2 the chemical potential has been chosen so
that the previous Kondo lattice was in a metallic phase. However, J2 variation had shown
that no phase transition exists in this calculations. Luttinger’s theorem is also fulfilled for
all values of J2.
As the DMFT calculations produced no compelling results as well as no violations of Lut-
tinger’s theorem, the basic DMFT ideas have been expanded with the dynamical cluster
approximation in order to incorporate short-ranged correlations. First, the Hubbard model
was analyzed with the DCA. Comparing Luttinger’s theorem with the calculated fillings
showed no breaking of the theorem.
For the Kondo lattice however, a clear violation of Luttinger’s theorem could be found.
For both hole-doped as wells as particle-doped systems Luttinger’s theorem predicted one
less particle than the actual system possessed. Even more interesting, if the doping is
further increased a presumable switch of the RKKY interaction to ferromagnetic probably
occurred resulting in Luttinger’s theorem predicting only half a particle less than expected.
To find out possible phase transition between an area where Luttinger’s theorem is vio-
lated to an area where it is satisfied, a hole-doped filing was choosen while J1 was varied.
Going from J1 = 0.2 to J1 = 0.3 this transition occurred and the Fermi surface decreased.
Interestingly, if the chemical potential was set nearer towards half-filling, Fermi arc like
structures appeared in the reconstruction of the Fermi surfaces.
Looking at the Zhang-Sachdev Hamiltonian within an DCA framework violations of Lut-
tinger’s theorem have been also found. Searching again for phase transitions J2 had been
varied with a hole-doped system. For J2 = 0.1 the theorem was broken while a ferro-
magnetic RKKY interaction was supposedly present. Setting J2 = 0.2 a phase transition
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occurred and Luttinger’s theorem was fulfilled. This was also visible in the Fermi surfaces
were a transition took place between a Fermi surface with small volume to a Fermi surface
with a large one.
Although, many calculations have ben done using both single site DMFT and DCA, there
is still room for further inquires into the findings. While many violations of Luttinger’s the-
orem could be found in the DCA calculations of the Kondo lattice and the Zhang-Sachdev
Hamiltonian, the reason for them remains still unknown. Looking at the excitations could
possibly lead to greater insight of this mechanism. Moreover, the reason for the switch of
the RKKY interaction from antiferromagnetic to ferromagnetic needs to be investigated.
Furthermore, greater tuning of the variables need to be done to get phase diagrams of the
corresponding phase transitions.



A. Definitions and Notations

The definition of the retarded Green’s function for fermionic operators A and B is

GR
AB(t) = −iΘ(t)〈[A(t), B(0)]+〉T (A.1)

with Θ(t) being the step-function, [...]+ being the anticommutater and 〈...〉T being the
thermal average in the grand canonical ensemble. As this thesis only uses retarded Green’s
function the index R will be dropped from GAB.
The fermionic operator A and B are defined in the Heisenberg picture so the time evolution
operator for A(t) is :

A(t) = e
i
~HtAe−

i
~Ht (A.2)

For the rest of this thesis all ~ will be set to 1. The equation of motion for an operator in
the Heisenberg picture can be expressed as

dA(t)
dt

= i[H,A(t)]− (A.3)

with [...]− being the commutation relations. With Eq.(A.3) used onto the Green’s function,
it reads:

d

dt
GAB(t) = −iδ(t)〈[A(0), B(0)]+〉T −Θ(t)〈[[A(t), H]−, B(0)]+〉T (A.4)

To solve this equation it is easier to evaluate it in frequency space., where the equation
of motion becomes algebraic. Therefore we need to define the Fouriertransforms of the
Green’s function:

GAB(ω) =
∫ ∞
−∞

dt GAB(t) eiwt

GAB(t) =
∫ ∞
−∞

dw

2π GAB(ω) e−iwt
(A.5)

Therefore, in frequency space the equation of motion becomes:

ωGAB(ω) = 〈[A(0), B(0)]+〉T +G[A,H]−,B(ω) (A.6)
Furthermore, we need to express the spectral representation of the Green’s function which
is commonly defined as:

AAB(ω) = − 1
π

Im(GAB(ω)) (A.7)
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As this thesis only describes fermions in the lattice model it is instructive to recapitulate
the basic anticommutation relations for fermions:

[ci, c†j]+ = δi,j [ci, cj]+ = 0 [c†i , c
†
j]+ = 0 (A.8)

For further discussion I refer to [21], [24], [22] and [23].



B. Derivation of the lattice Green’s
function

Here the lattice Greens’s function will be completely derived. Starting with the lattice
Hamiltonian in k-space (Eq. 2.9)

Hlatt,k =
∑

k∈1.BZ
(εk − µ)c†kck︸ ︷︷ ︸
H0

+
∑
i

H int
i (B.1)

an equation of motion ansatz in frequency space (Eq. A.6) will be used to calculate the
non-interacting Green’s function:

ω G0
latt,k(ω) = 〈[ck, c†k]+〉T +G0

[ck,H0]−,c†k
(B.2)

The term 〈[ck, c†k]+〉T = 〈1〉T = 1 can be easily seen by following the anticommutation
relations of fermions (Eq. A.8). Now only the term for G0

[ck,H0]−,c†k
needs to be solved

starting with the commutator [ck, H0]−:

[ck, H0]− =
∑
k̃

(εk̃ − µ)[ck, c†k̃ck̃] (B.3)

By inserting

[ck, c†k̃ck̃]− = ckc
†
k̃
ck̃ − c

†
k̃
ck̃ck

= ckc
†
k̃
ck̃ − c

†
k̃
ck̃ck + c†

k̃
ckck̃ − c

†
k̃
ckck̃

= [c†
k̃
, ck]+ck̃ + c†

k̃
[ck̃, ck]+ = δk,k̃ck

(B.4)

into Eq. B.3 we get

[ck, H0]− = (εk̃ − µ)δk,k̃ck = (εk − µ)ck (B.5)

This result will be used to solve Eq. B.2:

ω G0
latt,k(ω) = 〈[ck, c†k]+〉T +G0

[ck,H0]−,c†k
= 1 + (εk − µ)G0

latt,k(ω)

⇔ (ω − εk + µ) = G0
latt,k(ω)−1

(B.6)
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Now that the non-interacting Green’s function has been calculated, it can be inserted
into the Dyson equation

Glatt,k(ω)−1 = G0
latt,k(ω)−1 − Σk(ω) (B.7)

to get the interacting lattice Green’s functions:

Glatt,k(ω)−1 = ω − εk + µ− Σk(ω)

⇔ Glatt,k(ω) = 1
ω − εk + µ− Σk(ω)

(B.8)



C. Derivation of the impurity
Green’s function

In this Appendix the impurity Green’s function will be derived. Starting with the Eq.
2.15-2.18

Him = Himp +Hbath +Hhyb, (C.1)

Himp = (εd − µ)d†d+Hint, (C.2)

Hbath =
∑
kσ

εkc
†
kσckσ, (C.3)

Hhyb =
∑
kσ

Vk(d†ckσ + h.c.) (C.4)

an equation of motion ansatz in frequency space is used to derive the non-interacting
Green’s function Gim(ω):

ωG0
im(ω) = 〈[d, d†]+〉T −G0

[dk,H0
im]−,d†k

(C.5)

The term 〈[d, d†]+〉T = 1 can be easily seen from the basic fermionic anticommutation
relations (Eq. A8). Inserting Eq. B1 into the remaining term yields

G0
[dk,H0

im]−,d†k
= G0

[dk,H0
imp]−,d†k

+G0
[dk,Hbath]−,d†k

+G0
[dk,Hhyb]−,d†k

(C.6)

To solve the individual part of Eq C.6 the following commutation relations will be needed:

[d, d†d]− = [d, d†]+d− d†[d, d]+ = d (C.7)

[d, c†kσckσ]− = [d, c†kσ]+c− c†kσ[d, ckσ]+ = 0 (C.8)

[d, c†kσd]− = [d, c†kσ]+d− d†[d, d]+ = 0 (C.9)

[d, d†ckσ]− = [d, d†]+ckσ − d†[d, ckσ]+ = ckσ (C.10)
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with this expressions the terms of Eq. C6 can be calculated separately:

G0
[dk,H0

imp]−,d†k
= (εd − µ)〈〈[d, d†d]−, d†〉〉w

Eq.C.7=

= (εd − µ)〈〈d, d†〉〉w = (εd − µ)G0
im

(C.11)

G0
[dk,Hbath]−,d†k

= εk〈〈[d, c†kσckσ]−〉〉w
Eq.C.8= 0 (C.12)

G0
[dk,Hhyb]−,d†k

=
∑
kσ

(
〈〈[d, d†ckσ]−, d†〉〉w + 〈〈[d, c†kσd]−, d†〉〉w

)
Eq.C.9=
Eq.C.10

=
∑
kσ

Vk G
0
ckσd†

(C.13)

To solve the Green’s function G0
ckσd†

in Eq. C.13 another equation of motion ansatz is
used:

ωG0
ckσd†

= 〈[ckσ, d†]+〉T +G0
[ckσ ,Him]−,d† = G0

[ck,Him]−,d† (C.14)

First the commutator [ckσ, Him]− will be expressed as

[ckσ, Him]− = [ckσ, H0
imp]− + [ckσ, Hbath]− + [ckσ, Hhyb]− (C.15)

Each term will be considered separately:

[ckσ, H0
imp]− = (εd − µ)[ckσ, d†d] Eq.C.4= 0 (C.16)

[ckσ, Hbath]− =
∑
kσ

εk[ckσ, c
†ck̃σ
k̃σ

]−
Eq.B.4= εk ckσ (C.17)

[ckσ, Hhyb]− =
∑
kσ

(
[d, c†kσckσ]− + [d, c†kσd]−

)
Eq.C.9=
Eq.C.10

Vk d (C.18)

Inserting the found expressions back into Eq. C.14
ωG0

ckσd†
(ω) = εkG

0
ckσd†

+ VkG
0
im

G0
ckσd†

= Vk
ω − εk

G0
im

(C.19)

Now this term can be inserted back into Eq. C.13

G0
[dk,Hhyb]−,d†k

=
∑
k

V 2
k

ω − εk
G0

im (C.20)

so the non-interacting Green’s function can be fully calculated with Eq. C.2, Eq. C.11,
Eq. C.12 and Eq. C.20

ωG0
im(ω) = 1 + (εd − µ)G0

im + 0 +
∑
k

V 2
k

ω − εk
G0

im

G0
im(ω)−1 = ω − εd + µ−

∑
k

V 2
k

ω − εk

(C.21)
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With the Dyson equation

Gim(ω)−1 = G0
im(ω)−1 − Σim(ω) (C.22)

the interacting impurity Green’s function can be derived

Gim(ω) = 1
ω − εd + µ−∑k

V 2
k

ω−εk
−∑im(ω)

Gim(ω) = 1
ω − εd + µ−∆(ω)−∑im(ω)

(C.23)

with ∆(ω) being the hybridization function defined as

∆(ω) =
∑
k

V 2
k

ω − εk
(C.24)
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