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Abstract

The absorption of a photon by a semiconductor quantum dot (QD) can be con-
sidered as a quantum quench, where a previously empty energy level in the QD
gets suddenly occupied. In this thesis the non-equilibrium dynamics are examined
that follow such a quantum quench. The studies consider mainly the absorption
lineshape and the time-evolution of spin and charge. Various quantities influencing
the lineshape are shortly discussed, too. The absorption spectrum can be divided
in three frequency regimes, corresponding to the three fixed points of the single-
impurity Anderson Hamiltonian. The three frequency regimes of the absorption
lineshape are described both numerically and analytically, where special emphasis
is put on the small detuning regime of the lineshape, which corresponds to an ex-
citonic Kondo state in the dot. For such small frequencies, the lineshape behaves
according to a power-law and diverges for very small detuning close to the threshold
frequency, below which absorption abruptly ceases, resulting in a highly asymmet-
ric lineshape. It is shown that the exponent of the power law divergence can be
tuned by magnetic field and can even take on opposite signs for different polariza-
tion of the incident photon, which changes the shape of the absorption lineshape
completely. The temperature-dependence of the lineshape is also studied. At tem-
peratures smaller than the Kondo temperature TK , the lineshape is smeared out for
frequencies with energy lower than kBT . If temperature lies above TK , the peak-
width of the absorption spectrum is given by the Korringa relaxation rate which is
significantly smaller than the frequency corresponding to kBT .
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Chapter 1

Introduction

Quantum dots (QD) are artificial objects with an extent somewhere between the
nano- or the lower micrometer-scale, which can contain one up to several thousand
electrons. They are often referred to as artificial atoms, since they possess a system of
discrete energy levels, like atoms, and their size and shape can be defined artificially
with means of nanofabrication technology. The interaction between the quantum dot
and its environment can be described as a system of discrete energy levels coupled
to a reservoir of electrons via tunneling-processes [1].

Due to the coupling between dot and reservoir, and the presence of interactions
on the dot, electron correlations can arise. In dots that contain only a few electrons
and at which the topmost discrete energy level below the Fermi-level of the reservoir
contains only a single electron, below a characteristic crossover temperature TK

(the Kondo Temperature) the Kondo Effect can occur [2], a many-body effect that
screens the local magnetic moment of the QD into a spin singlet by building up strong
spin correlations between the dot spin and the spins of the reservoir electrons. The
Kondo effect per se was discovered in the 1930’s as resistivity measurements of dilute
magnetic alloys showed unexpected results: as the metal is cooled down, resistivity
increases again below a certain temperature [3]. 30 years later J. Kondo explained
this increase of resistivity with the existence of magnetic impurities in the metal that
enable scattering of the electrons at their magnetic moments [2]. His calculation,
which was perturbative in the spin exchange coupling, yielded a diverging resistivity
for very low temperatures and could not be applied to the latter temperature regime.
This was done by K. G. Wilson [4] who developed a non-perturbative method in
1974 and 1975, the numerical renormalization group (NRG), and finally presented
a solution to this long-standing problem.

During the decades over which the theory of the Kondo effect was developed,
experimentalists turned their interest to other physical problems. Due to the rapid
development of nanofabrication technology over the last years, however, the Kondo
effect again has enjoyed much attention from the experimental side. With quantum
dots it became possible to examine the Kondo effect in an artificial environment [5],
[6], [7], to confirm theoretical predictions [8] and even to tune the parameters of
the Kondo effect [9] as desired. So far, most experiments studying the Kondo effect
were transport measurements. With optical methods the Kondo effect has not been
detected yet, though experiments pointing in this direction have been performed
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[10], [11]. Theoretical work [12], [13] concerned with optics and the Kondo effect,
mostly involved analytical methods.

Tying in with this work, the main goal of this thesis is to examine the optical
properties of a QD, which is coupled to a fermionic reservoir and exhibits Kondo
physics, by studying its absorption spectrum. Since the absorption of a photon
by a QD can be considered as a quantum quench, this study is complemented by
the examination of the non-equilibrium dynamics following such a quantum quench;
thereby giving insight into arguably the most extensively studied many-body prob-
lem, a quantum impurity described by the Anderson model, and, closely related to
it, the Kondo effect. We calculate these quantities using a method that had enough
power to give a consistent explanation of the Kondo effect for the first time: the
NRG-method.

In chapter 2 (model) several different models that are relevant for this thesis are
discussed. Apart from the Excitonic Anderson model on which the calculations of
this thesis are based, and the Anderson model which is the underlying basis model,
the Kondo model is also briefly introduced. Further, the Anderson model is used to
illustrate the Kondo effect.

Chapter 3 (experimental background) summarizes the experimental work fore-
going this thesis. The ultimative aim is to observe the Kondo effect with optical
methods. Although this has not been achieved so far, there have been experiments
that give hints that this aim is not far away and how it could be accomplished.

Chapter 4 (calculations) gives a detailed description of how the calculations for
this thesis were done. First, the NRG-method is introduced, in the improved form
in which it is used today, where complete basis sets can be obtained. Moreover, the
numerical calculations of the most interesting quantities will be explained.

The results of the calculations are presented in Chapter 5 (results). The most
important part is the discussion of the absorption spectrum. It is shown how the
time evolution of charge and spin after photon-absorption is related to the spectrum.
Furthermore, the dependence of the absorption lineshape on B-field and tempera-
ture is examined and it is pointed out how information about physical quantities
describing the system can be obtained from the lineshape.

In Chapter 6 the conclusions are presented and some special details concerning
the main part of the thesis are added as appendix.



Chapter 2

Model

2.1 Anderson Model

The Single Impurity Anderson Model (SIAM) describes an impurity in a metal
or a single QD by modelling it as an energy level with a local interaction and a
hybridization term that enables tunneling to a surrounding Fermi Reservoir (FR).

The Hamiltonian can be divided into three parts

H = HQD +Hc +Ht (2.1)

where the Hamiltonians on the r. h. s. consist of the following terms:

HQD =
∑
σ=↑,↓

εeσneσ + Une↑ne↓ (2.2)

Hc =
∑
~kσ

ε~kσc
†
~kσ
c~kσ (2.3)

Ht =
√

Γ/πρ
∑
~kσ

(e†σc~kσ + h.c.) =
√

Γ/πρ
∑

σ

(e†σcσ + h.c.) (2.4)

with neσ = e†σeσ, cσ =
∑

k ckσ

HQD is the Hamiltonian describing the QD. The first term describes the energy
of the electrons on the e-level εeσ with respect to the Fermi Energy, where σ denotes
the spin of the electron. The second term accounts for the local Coulomb repulsion
on the dot and is only non-zero if the dot is occupied by both electrons, which is
probed by the number-operators neσ

Hc describes the environment as a reservoir of many non-interacting electrons.
Their energies εkσ are assumed to depend only on the absolute value of k with
−D < εkσ < +D, where 2D is the bandwidth of the reservoir.

Ht connects the dot and the reservoir by allowing tunneling between e-level and
FR. Tunneling processes are determined by the density of states ρ and Γ, of which
the latter can be seen as a measure for the coupling strength between dot and
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εeσ

εF

2e−

V

Figure 2.1: Single Impurity Anderson Model. The dot is coupled to a Fermionic
reservoir (indicated blue). The local level εeσ is separated from the reservoir by
Coulomb barriers (indicated by thick black lines) through which electrons can tunnel.
Tunneling strength is determined by the transition matrix element V . If the local
level is occupied by two electrons their energy is increased by U due to Coulomb
repulsion

reservoir. The prefactor of the Hamiltonian
√

Γ/πρ is determined by the hybridiza-

tion matrix element between dot and reservoir
√

Γ/πρ = 〈ψQD|H|ψc〉 where 〈ψQD|
and |ψc〉 are electron wavefunctions on the dot and in the reservoir, respectively.
Coupling does not depend on k, i. e. it is assumed that all states of the reservoir
are coupled to the dot with equal strength. For this reason the tunneling Hamil-
tonian Ht depends only on the combination of operators cσ =

∑
k ckσ (see Eq. (2.4)).

The above model was proposed by P. W. Anderson [14] in the 1960s and is widely
used to model impurities in metals or Quantum Dots. It can easily be generalized to
several local levels and reservoirs, however the problems arising from these models
can be very difficult to solve. These general Anderson models are subject of current
research, but are not considered in this thesis.

2.2 The Kondo Effect

The Kondo Effect emerges when a localized spin degree of freedom, provided e.g.
by a single molecule, a magnetic impurity or an unpaired electron in a quantum
dot, is coupled to a continuous reservoir of electrons. The Kondo Effect is a many-
body effect where the spin of the localized single electron is totally screened to an
effective spin singlet by electrons from the surrounding reservoir. This screening sets
in once the temperature T crosses below a characteristic temperature, the Kondo
temperature TK . There are several ways to determine TK . In this thesis, it was
determined according to χ0 = 1/4TK [15], where χ0 is the magnetic susceptibility
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Figure 2.2: Virtual processes that result in a spin-flipped state. (a) An electron
tunnels from the reservoir onto the dot into a virtual excited state. The electron
that had previously occupied the dot tunnels back and the dot-electron is flipped.
(b) An electron from the dot tunnels into the reservoir and an electron with opposite
spin tunnels back.

at T = 0, which was calculated with NRG. This definition is very convenient for
accurate numerical evaluation. In situations in which its use was very unpractical,
the formula [16] (see also (2.4))

TK =
√

ΓU/2e−π|εe(εe+U)|/(2UΓ), (2.5)

was used instead, which gives essentially equivalent results.
The electron on the e-level couples to the FR via tunneling. Through tunneling

processes it is possible that a spin flip occurs on the dot; the two lowest-order virtual
processes at which the spin is flipped are shown in Fig. 2.2. In Fig. 2.2a an electron
tunnels from the reservoir to the dot and an electron from the dot tunnels back. This
process requires the energy (εeσ) + U . Since this energy is not freely available, the
process must occur at a time scale of ∆t ≈ ~(εeσ +U) at which energy conservation
can be violated. If the electron tunneling back to the e-level has different spin than
the one tunneling out, the spin of the QD-electron is flipped. In Fig. 2.2b the electron
tunnels from the e-level into the FR and one electron from the FR tunnels back, the
relevant time scale is given by ∆t ≈ ~|εeσ|.

At energies below TK (kB = ~ = µB = 1 throughout the thesis) the system
is in a state where electrons from the reservoir continuously tunnel from the FR
onto the local level and back. At these low energy states the spin-flips induced by
virtual processes happen so often, that the spin of the local electron gets screened
and forms a spin singlet. However this spin-screening is mainly caused by higher
order processes, like the one shown in Fig. 2.3 at which the spin-flipped state is an
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ε‚

spin-flipped
virtual state

1 2 3 4 5

Figure 2.3: Example of a fourth order virtual process that contributes to the spin-
screening at a Kondo state. Higher order virtual processes with a virtual spin-flipped
intermediate state produce the spin-screening that is typical for the Kondo-regime.

intermediate state of the virtual processes.

Because of this frequent tunneling, which involves a variety of virtual states, the
density of states drastically increases around the ground state energy, resulting in
the so called Kondo-peak in the local density of states (LDOS). This can be seen in
Fig. 2.4 where the local density of states A(ω) is shown within a schematic figure
of the Anderson model. The smaller peaks of the LDOS at the local levels are
determined by the hybridization between local level and reservoir and have width Γ.

2.3 Excitonic Anderson Model

To calculate the absorption spectrum, the Excitonic Anderson Model is used, an
extension of the Anderson Model (2.1). At an absorption process, an incident photon
is absorbed by a semiconductor quantum dot and creates a particle-hole pair. The
hole is thereby created in the valence level, which is far below the local level and not
connected to the reservoir. Whereas a static quantum dot with a single local level
can usually be described by the Anderson Model, this model must now be extended
for a proper description of the absorption process, where the extension must contain
the energy of the hole, the excitonic Coulomb attraction and the interaction between
photon and dot. The new Hamiltonian for the Excitonic Anderson Model (EAM) is
then given by:

HEAM = HQD +Hc +Ht +Hh +Heh +HL (2.6)

Hh =
∑

σ

εhσ + Uhnh↑nh↓ (2.7)

Heh = −
∑
σ,σ′

Uehneσ(1− nhσ′) (2.8)

HL =
∑

k

(γkâke
†
σh

†
σ̄e−iωkt + h.c.). (2.9)
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εeσ + U

εeσ

εF

A(ω)

Figure 2.4: Kondo-peak in the local density of states. For T < TK the variety of
possible tunneling processes drastically increases the local density of states A(ω)
(red line) around the Fermi energy. This becomes visible as a sharp resonance in
the local density of states. The LDOS also has smaller peaks at the local levels
(Hubbard-side-peaks) which have width Γ.

Hh is thereby the Hamiltonian for the valence level where the first term describes
the energy of the holes and the second term the Coulomb repulsion of two holes
in the valence level. Heh accounts for the Coulomb attraction between electrons in
the local level and holes in the valence level. HL describes the interaction between
photon and dot, it creates an electron at the local level and a hole at the valence
level, by e†σ and h†σ̄, respectively. âk annihilates a photon with wave vector k and
γk = γ is the coupling strength of the photon to the two-level system which will be
assumed to be independent of k. Since the quantization of the photon field will not
be relevant for the discussions below, HL can be written as:

HL = γ(e†σh
†
σ̄ + h.c.). (2.10)

In this thesis, only processes are examined where one hole is created in a previously
fully occupied valence level. For this special problem, it is simpler to think in terms
of two different Hamiltonians, H i and Hf , one for the initial state before absorption
and one for the final state with Coulomb attraction. Therefore all further discussions
will be presented in terms of H i and Hf .

The initial and the final Hamiltonian consist of three parts:

H i/f = H
i/f
QD +Hc +Ht (2.11)
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⇓

σ+

 (a)    (b)

εi
eσ

εf
eσ

εhσ̄εhσ̄

UehεF

Figure 2.5: Schematic figure the excitonic Anderson model and the corresponding
absorption process. Due to photon absorption a hole is created in the valence level
which pulls the e-level down by the electron-hole attraction Ueh. After absorption
the position of the e-level is below the Fermi-level so that the electron is stabilized
against flowing away into the FR, but can build out hybridization states.

Ha
QD =

∑
σ

εa
eσneσ + Une↑ne↓ + δafεhσ̄ (a = i, f) (2.12)

Hc =
∑
kσ

εkσc
†
kσckσ (2.13)

Ht =
√

Γ/πρ
∑

σ

(e†σcσ + h.c.). (2.14)

These Hamiltonians are equal to the SIAM-Hamiltonian, however, they differ in
(i) the position of their e-levels (εi

eσ and εf
eσ = εi

eσ − Ueh), where the e-level of the
final Hamiltonian is pulled down by the excitonic Coulomb attraction and (ii) in
an additional term of δafεhσ̄ that accounts for the energy of the hole. Due to the
Kronecker-delta, δaf , this term is only “activated” if the system is in its final state
(see Fig. 2.5).

If a magnetic field is applied parallel to the growth-direction of the QD, which
will be the case at some of the calculations presented later, the local level splits in
two separate levels, εeσ = εe + 1

2
σgeB, and the energy of the electrons in the FR

changes according to εkσ = εk + 1
2
σgcB where ge and gc are the g-factors of the

electrons on the dot or in the FR, respectively.

2.4 Kondo Model

Although the Kondo model is not used for the examinations described in this the-
sis, it will briefly be mentioned here. This is justified because as the Anderson
Model, this model is widely used to describe impurity problems and is related to
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the Anderson Model in many ways. The idea behind the Kondo model is that a
single magnetic moment ~S interacts with the accumulated spin of the FR electrons
~s = 1

2

∑
kk′σσ′ c

†
kσ~τσσ

′ckσ′ . This causes an effective spin-spin-coupling ~S · ~s and leads
to the following Hamiltonian:

HK = 2J ~S · ~s+
∑
kσ

εkc
†
kσckσ, (2.15)

where the coupling constant J determines the coupling strength. Since the local level
interacts with the Fermi-sea only via spin-spin-coupling, this model can describe only
spin-, but no charge-fluctuations.

Note that the Kondo model is more “elementary” than the Anderson model. The
Kondo effect can be explained in the same way as in (2.2): virtual spin-flipped states
screen the local moment. Here however, spin-flips are only possible without charge
fluctuations. The Kondo temperature can be determined by the so called poor
man’s scaling method [17]. Calculations to third order in J yield for the Kondo
temperature

TK ∼ DKM |2Jρ|2e−1/2Jρ, (2.16)

where DKM is the effective bandwidth of the Kondo model which is proportional to
the Coulomb energy of the Anderson model U .

The Schrieffer-Wolff transformation [18], maps the Single Impurity Anderson
model on the Kondo model and yields a relation between J and Γ:

J(Γ) = − Γ

πρ

U

(U + εeσ)εeσ

. (2.17)

The Kondo temperature for the Anderson model (Eq. (2.5)) can then be obtained
from Eq. (2.16) and Eq. (2.17).
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Chapter 3

Experimental background

3.1 Experimental setup

The model described above can be experimentally realized with self assembled InAs
quantum dots. On a GaAs-layer, InAs arranges itself in a monolayer, the so-called
wetting layer, with several dots on it. The dots emerge due to the different lattice
constants of GaAs and InAs, which makes dots energetically more favorable than
a second plain InAs-layer. In the InAs-plane, the dots are then surrounded by the
wetting-layer, which acts as electron reservoir, like islands in an ocean. Fig. 3.1a
shows the layer structure of the experimental setup. Above a GaAs-substrate is the
back contact which consists of highly doped GaAs to ensure the necessary conduc-
tivity of the contact. The InAs monolayer and the quantum dots are sandwiched
between two GaAs layers which leads to a dip in the conduction band (Fig. 3.1b)
and gives rise to the formation of local levels inside the InAs-dots. The AlAs/GaAs
layer acts as a tunnel barrier, so that an increase of gate voltage causes only a change
of the potential-form, but no current flow through the system. As the gate voltage is
varied, the position of the dot-levels changes relative to the Fermi energy. This way,
the number of electrons in the dot can be tuned by adjusting the applied voltage.
The number of electrons in the dot also determines the label of the excitons, which
are named after their total charge, indicated by a superscript. So one speaks e. g. of
the X+1-, X0-, X−1-exciton which consist of a single hole, a hole and an electron, a
hole and two electrons and so on.

It is important to mention, that in the valence level, where the hole is created,
the spin-orbit interaction leads to a splitting between the J = 1/2- and J = 3/2-
states. The states with Jz = ±3/2 along the growth direction have the lowest
zero-point energy because of their heavy mass for motion along the growth direction
and are therefore the relevant levels for the optical excitations with the lowest energy.
Hence, the holes hσ have a pseudo-spin of Jz = ±3/2 and their Zeeman-splitting in
a magnetic field is given by σ 3

2
ghB.

The hole is connected to the e-level electron not only by the excitonic Coulomb
attraction, but also via the exchange interaction, which, however, was neglected in
this thesis. The effect of the exchange interaction would be the following: Due to
the large splitting between the |Sz| = 3/2- and the |Sz| = 1/2-states, the spin-flip
dynamics of the hole spin will still be frozen even when exchange interaction is taken
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Figure 3.1: Layer structure and its band diagram. Picture from [19]. (a) Layer
structure of the experimental setup. (b) The band diagram of the layer structure is
shown for two different gate voltages V 1

g and V 2
g . Increasing the gate voltage changes

the number of electrons in the dot.

into account, so that the exchange interaction reduces to JehS
z
eS

z
h. This acts on the

e-level like a magnetic field of strength 3
2
σJeh. By applying a small magnetic field

in the opposite direction, the “static exchange field” can be fully compensated, so
that the predictions of this thesis remain unchanged when a constant term is added
to the magnetic field: B → B − 3

2
σJeh.

In case it is nevertheless necessary to experimentally avoid the exchange inter-
action for some reasons, it can be eliminated in two ways. One possibility is to use
the single-hole charged QD as the initial state; experiments on single QDs which
are embedded in n-type Schottky structures have already shown that such a charged
state can have lifetimes well above 100 µsec. An additional photon-absorption cre-
ates the X+1 trion, which consists of two holes and an electron in a local level. The
holes form a singlet and due to their spins cancelling each other, their exchange
interaction with the local electron vanishes. The other way to avoid the exchange
interaction, is to use coupled quantum dots with indirect excitons where electron
and hole have wave-functions with vanishing spatial overlap.
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3.2 Recent experimental work

An optical experiment that already addressed the Kondo effect was conducted by
Smith et al. [10] in 2005. They observed a spin-flip process in a quantum dot where
the spin was flipped by a tunneling process between local level and reservoir, like the
one shown in Fig. 2.2. Although the dot is not in a Kondo state, spin-flip tunneling
between dot and reservoir is a Kondo-like interaction, which brings the experiment
close to the actual optical detection of the Kondo effect.

The most recent experiment, by Dalgarno et al [11], showed very impressive
results. By adjusting the gate voltage, the position of the local level relative to the
Fermi energy can be changed and so it is possible to switch between the X0- and
X−1-state, i. e., to change the occupation of the dot. At the experiment a sweep of
the gate voltage was performed and the energy of the photon, which was emitted at
the X0- or X−1-recombination, respectively, was measured. The spectra for two dots
can be seen in Fig. 3.2. After recombination of the X−1-exciton the dot contains
one electron. Depending on gate voltage, however, the ground state of the dot
has zero, single or double occupation. So, if the ground state contains zero or two
electrons after the X−1-recombination, the local electron is unstable with respect to
tunneling from the dot into the reservoir, or from the reservoir into the dot. The
hybridization between dot and reservoir due to this tunneling processes can be seen
at the left and right end of the X−1-lines in Fig. 3.2. These hybridizations show that
tunneling connects a variety of reservoir states to the dot. A higher energy difference
between the state after recombination and the ground state causes a decrease of the
admixture of states. This is because if the electron tunnels from the dot to the
continuum, it changes its energy by ∆E and the tunnel process therefore happens
on a time scale of ∼ ~/∆E. Only if the tunneling time is comparable to this time
scale or larger, this state is part of the final state.

This setup already had all features for the dot to be in a Kondo state after ab-
sorption, however the tunnel interaction between dot and reservoir was not strong
enough, yet. According to the authors this strong coupling could be achieved by nar-
rowing the tunnel barrier, lower temperature and a higher mobility of the electrons
in the reservoir.
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Figure 3.2: Measured photoluminescence intensity vs. gate voltage Vg from two
InAs/GaAs quantum dots at nominally 4 K. The colors indicate the detector counts,
the white solid lines mark the X0 to X−1-transition. Picture: courtesy of P. Dal-
garno.



Chapter 4

Numerical calculations

In the 1970’s K. G. Wilson developed the NRG method to solve the Kondo Hamil-
tonian and explain the Kondo Problem [4]. Developing an alternative method to
perturbation theory was necessary to make energy scales below TK accessible. In
the following years, the NRG was adapted to several other impurity models. One
of these models is the widely used Anderson model as described in [14]. This model
has been solved with the NRG-method by Krishna-Murthy et al. in 1980 [20].

4.1 NRG-method

The NRG method is an iterative procedure, that numerically diagonalizes the Hamil-
tonians of quantum impurity models like the Anderson- or the Kondo-Hamiltonian.

For calculations concerning the excitonic Anderson model that include both the
initial and final Hamiltonian, the NRG-method is applied twice, once with the e-level
at position εi

eσ and once at εf
eσ = εi

eσ − Ueh.

Thus, for our purposes it is sufficient to take the Single Impurity Anderson Model
to describe the NRG method.

The SIAM-Hamiltonian is given by the following expression:

H = HQD +Hc +Ht (4.1)

HQD =
∑

σ

εeσneσ + Une↑ne↓ (4.2)

Hc =
∑
~kσ

ε~kσc
†
~kσ
c~kσ (4.3)

Ht =
√

Γ/πρ
∑

σ

(e†σcσ + h.c.). (4.4)
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It can be written in a form with dimensionless parameters:

H = D

(∫ 1

−1

k
∑

σ

a†kσakσdk

+
1

D

(
εeσ +

1

2
U

)∑
σ

e†σeσ +
1

2

U

D

(∑
σ

e†σeσ − 1

)2

+

(
Γ

πD

)1/2 ∫ 1

−1

dk
∑

σ

(
a†kσeσ + e†σakσ

))
,

(4.5)

where k ≡ ε/D is a dimensionless parameter (not the wave-vector ~k), which describes
the energy normalized by bandwidth and akσ ≡

√
Daεσ. akσ (a†kσ) and aεσ (a†εσ) are

annihilation (creation) operators that annihilate (create) an electron in the FR which
has energy k (or ε, respectively) and spin σ.

To calculate properties of the combined system QD-reservoir it is necessary to
discretize the energy spectrum in an efficient way to reduce computation costs.
Therefore, one uses a logarithmic discretization scheme. This is due to the facts
that: (i) all energy scales have to be taken into account for the calculation of physical
properties and (ii) low energies play a major role in impurity systems and logarithmic
discretization has a finer resolution for low energies.

To discretize the energy spectrum as described above, a parameter Λ > 1 is
introduced and the energy spectrum is divided into intervals determined by Λ, as
shown in Fig. 4.1, where the nth interval extends from Λ−(n+1) to Λ−n. Within
these intervals one can set up a Fourier series which constitutes a complete set of
orthonormal functions and which therefore spans the whole k space:

ψ±np(k) ≡

{
Λn/2

(1−Λ−1)1/2 e
±iωnpk if Λ−(n+1) < ±k < Λ−n

0 if ±k is outside the above interval
(4.6)

n = 0, 1, 2, ... is the interval index, p is the Fourier harmonic index and takes integer
values from −∞ to +∞. Each interval occurs twice, once for positive and once for
negative k-values. The superscript ± indicates whether one refers to the interval
in the positive or in the negative k-part. ωn is the Fourier frequency for the nth
interval and is given by:

ωn ≡
2π

Λ−n − Λ−(n+1)
=

2πΛn

1− Λ−1
. (4.7)

The operators akσ can now be expressed in this basis.

akσ =
∑
np

[anpσψ
+
np(k) + bnpσψ

−
np(k)], (4.8)

anpσ =

∫ +1

−1

dk[ψ+
np(k)]

∗akσ, bnpσ =

∫ +1

−1

dk[ψ−np(k)]
∗akσ. (4.9)

The anpσ- and bnpσ-operators constitute a complete set of independent and discrete

electron operators which fulfill standard anti-commutation rules: [anpσ, a
†
n′p′σ′ ]+ =

δn,n′δp,p′δσ,σ′ .
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Figure 4.1: Logarithmic discretization of the energy spectrum of the reservoir. Pic-
ture from [21]. (a) The impurity (red dot) couples to the whole reservoir where
coupling strength does not depend on energy. The reservoir is logarithmically di-
vided into ever smaller intervals indicated by dashed lines. (b) Each energy interval
is represented by a single energy value which is taken to be the mean value of the
interval. The coupling strength to a discrete energy value is then proportional to
the interval size and therefore decreases for smaller energy values.

With these operators, the Hamiltonian (4.5) can be expressed as a discrete sum.
To do this, one uses the following relations, which can easily be verified:

∫ +1

−1

k
∑

σ

a†kσakσdk =
1

2

(
1 + Λ−1

)∑
n,p,σ

Λ−n
(
a†npσanpσ − b†npσbnpσ

)
+

1− Λ−1

2πi

∑
n,p6=p′,σ

(
a†npσanp′σ − b†npσbnp′σexp

(
2πi(p′ − p)

1− Λ−1

))
,

∫ +1

−1

∑
σ

akσdk = (1− Λ)1/2
∑
n,σ

Λ−n/2(an0σ + bn0σ).

(4.10)

Inserting Eq. (4.10) in Eq. (4.5) reveals that the impurity couples only to the op-
erators an0σ and bn0σ directly. The operators anpσ and bnpσ with p 6= 0 are only
connected indirectly to the impurity by the second term in Eq. (4.10) which cou-
ples them to an0σ and bn0σ. Since this term has a prefactor of (1− Λ−1) /2π, this
indirect coupling will be very small if Λ is close to 1. Because of that the terms in
Eq. (4.10) with anpσ and bnpσ can be dropped for p 6= 0. This turns out to be a good
approximation for sufficiently small Λ, e. g. Λ ≤ 3.

By using this approximation, dropping the subscript “0” of the operators an0σ
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and bn0σ and introducing the operators

f0σ =

[
1

2

(
1− Λ−1

)]1/2 ∞∑
n=0

Λ−n/2
∑

σ

(anσ + bnσ) ≡ 1√
2

∫ +1

−1

dkakσ, (4.11)

with [f0σ, f
†
0σ′ ] = δσ,σ′ the Hamiltonian can be now written as:

H

D
=

1

2

(
1 + Λ−1

) ∞∑
n=0

Λ−n
(
a†nσanσ − b†nσbnσ

)
+

1

D

(
εeσ +

1

2
U

)
e†σeσ +

1

2

U

D

(
e†σeσ − 1

)2
+

(
2Γ

πD

)1/2 (
f †0σeσ + e†σf0σ

)
.

(4.12)

Now one performs a unitary transformation from the operators (anσ, bnσ) to a
new orthonormal set of operators fnσ at which f0σ remain unchanged. Because the
term in Eq. (4.12) that describes the kinetic energy of the electrons is diagonal in
(anσ, bnσ), a transformation will create non-diagonal matrix elements, i. e. a trans-
formation will couple the operators (fnσ) to one another. The trick is to choose a
transformation which couples fnσ only to its nearest neighbors f(n±1)σ. After this
transformation [20] one gets the following expression, the so-called Hopping Hamil-
tonian:

H

D
=

1

2

(
1 + Λ−1

) ∞∑
n=0

Λ−n/2ξn
∑

σ

[
f †nσf(n+1)σ + f †(n+1)σfnσ

]
+

1

D

(
εeσ +

1

2
U

)∑
σ

e†σeσ +
1

2

U

D

(∑
σ

e†σeσ − 1

)2

+

(
2Γ

πD

)1/2∑
σ

(
f †0σeσ + e†σf0σ

)
,

(4.13)

with

ξn = (1− Λ−n−1)(1− Λ−2n−1)−1/2(1− Λ−2n−3)−1/2, (4.14)

which converge to one in the limit of large n.

This Hamiltonian can be represented by a semi-infinite chain, the so-called Wil-
son chain (Fig. 4.1). The chain starts with the impurity which is then coupled to the
site that corresponds to the eigenstate of the operators f †0σ and f0σ. This site is then
coupled to the site that corresponds to the eigenstate of f1σ, this one is coupled to
the f2-site and so on. As n increases, the coupling becomes proportional to Λ−n/2,
it decays exponentially.



4.1 NRG-method 23

......

site

V ∝ Λ−1 2 ∝ Λ−1 ∝ Λ−(n+1) 2/ /

0 1 2 n n+1
im-
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Figure 4.2: Wilson chain. The original Hamiltonian can be mapped on a semi-infinite
chain Hamiltonian that starts with the impurity and where each site is connected
only to its nearest neighbors by exponentially decreasing coupling strength. Due to
the decreasing coupling strength, the contribution of new sites goes to zero for large
n.

With help of the Hamiltonians HN ,

HN ≡ Λ(N−1)/2

[
N−1∑
n=0

Λ−n/2ξn
∑

σ

(
f †nσf(n+1)σ + f †(n+1)σfnσ

)
+ Γ̃1/2

∑
σ

(
f †0σeσ + e†σf0σ

)

+δ̃e
∑

σ

e†σeσ + Ũ

(∑
σ

e†σeσ − 1

)2
 ,

(4.15)

that have a finite number of elements determined by N , the Hopping Hamiltonian
can be expressed as:

H = lim
N→∞

1

2

(
1 + Λ−1

)
DΛ−(N−1)/2HN , (4.16)

where the following constants were defined for simplification of Eq. (4.15):

δ̃e ≡
(

2

1 + Λ−1

)
1

D

(
εeσ +

1

2
U

)
≡ ε̃e + Ũ (4.17)

Ũ ≡
(

2

1 + Λ−1

)
U

2D
(4.18)

Γ̃ ≡
(

2

1 + Λ−1

)2
2Γ

πD
. (4.19)

From Eq. (4.15) it follows that the Hamiltonians HN fulfill the recursion relation:

HN+1 = Λ1/2HN + ξN(f †NσfN+1σ + f †N+1σfNσ). (4.20)

Due to this recursion relation it is possible to create a recursive procedure from
which one can calculate the Eigenstates and the corresponding energies of HN+1, if
the ones from HN are known.
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To apply this procedure on the Hamiltonian one needs a set of eigenstates and
energy levels as a starting point. These can be obtained from

H0 = Λ−1/2
[
δ̃ee

†
σeσ + Γ̃1/2(f †0σeσ + e†σf0σ) + Ũ(e†σeσ − 1)2

]
. (4.21)

At the recursive procedure |l, N〉 is the eigenstate of HN with energy-index l. If the
states |l, N〉 are known, one also knows the matrix elements 〈l, N |f †nσ|l′, N〉

With the states |l, N〉 it is possible to create the following new states:

|1, l, N〉 ≡ |l, N〉
|2, l, N〉 ≡ f †N+1↑|l, N〉
|3, l, N〉 ≡ f †N+1↓|l, N〉
|4, l, N〉 ≡ f †N+1↑f

†
N+1↓|l, N〉.

(4.22)

|i, l, N〉 (i = 1, 2, 3, 4) are an orthonormal basis for HN+1 and thus it is possible to
calculate its matrix elements 〈i′, l′, N |HN+1|i, l, N〉.

At each Hamiltonian HN+1 the term ξN
∑

σ(f †NσfN+1σ + f †N+1σfNσ) adds a new
site to the Wilson chain that corresponds to an energy scale of Λ−N/2. Once the
energy scale of interest is reached, one stops applying the recursion relation and the
obtained eigenstates and -energies can be used for further calculations.

As can be seen from Eq. (4.22) every time a new site is added to the Wilson
chain, the Hilbert space of the system is multiplied by 4, the dimension of the state
space of a site. To prevent the Hilbert space from growing exponentially with the
number of sites, only the MK states that are lowest in energy are kept at each it-
eration, where MK is typically chosen between 256 and 1024. Calculation time is
further reduced by using some symmetries of the system, namely the fact, that the
z-component of the total spin and the particle number are conserved, so that the
state space can be divided into subspaces that correspond to the quantum numbers
of the problem.

There have been developments in the past years how the NRG-determined eigen-
states are used best to calculate physical quantities. The first approach by Wilson
was to use only the states of iteration n which corresponds to the energy scale Λ−n/2

to describe the physics at that scale. This step involves several approximations which
are necessary to handle the problem that the states obtained at one NRG-iteration
do not constitute a complete basis.

A newer concept, which was developed by [22], [23] and [24] was used in this
thesis. There, the idea is not only to make use of the states at a certain NRG-
iteration, but to use an approximate but complete basis set of states. The trick
to obtain such a basis, is to keep the states that are discarded after each iteration
(see Fig. 4.1ab). When the iterations are completed, there are only discarded states
left, which form a complete set of basis states (Fig. 4.1b, right part). Eigenstates
at iteration n < N are then considered as dN−n-fold degenerate eigenstates of the
full chain. The first clean application of the complete state space to the calculation
of spectral correlation functions was given in [24]. Specifically, it includes an ex-
pansion of the density matrix in the complete state space, which is crucial for finite
temperature calculations.
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Figure 4.3: Obtaining a complete basis set of states. Picture from [25]. The figures
show the energy spectra for each iteration. (a) As soon as the dimension of the
Hilbert Space exceeds a certain number MK , only the lowest MK states are kept at
an iteration, the rest of the states is discarded. (b) The discarded states at iteration
n are taken to be (N-n)-fold degenerate, indicated by |σ〉 that represents the Hilbert
space of one site. After the total number of iterations N a set of complete basis
states remains (shown after the last iteration).

4.2 Energy flow diagram

To get insight which energy scales determine the physics of the system, it is in-
structive to examine how the energy spectrum of the kept-states, which are used
for the iterative diagonalization, varies with increasing iteration. Since the Wilson
chain has exponentially decaying coupling strength, the level spacing between the
lowest-energy states also becomes exponentially smaller for each new site that is
added to the chain (see Fig. 4.2a). If these energies are rescaled by multiplication
with Λ−(n−1)/2 (Fig. 4.2b), one obtains a so-called energy flow diagram 4.2b. These
diagrams illustrate, that the rescaled energy spectrum has certain fixed points, i. e.,
regimes where the rescaled energies do not change any more at successive iterations.
These fixed points are separated by crossovers of several iterations which happen at
characteristic energy scales (indicated by thick yellow lines in Fig. 4.2b). A change
of the rescaled energy spectrum corresponds to a change in the physical processes
that are relevant at that energy scale. In [20] it is shown that the Anderson model
exhibits three different fixed points, the Free Orbital- (FO), the Local Moment-
(LM) and the Strong Coupling fixed point (SC), see Fig. 4.2b. In 5.3 it is shown
that these fixed points govern the details of the absorption lineshape.

4.3 Calculations using NRG-results

The complete set of approximate many-body eigenstates of the full Hamiltonian can
be used to evaluate spectral functions given in Lehmann representation which are
perfectly suited for numerical calculations involving eigenengergies and -states from
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Figure 4.4: Spectrum of 100 lowest eigenenergies at each iteration. (a) Energies are
not rescaled. Adding a site with exponentially decaying coupling strength to the
Wilson chain causes the exponential descent of the lowest eigenenergies. (b) If the
energies are rescaled one obtains an energy flow diagram that shows the fixed points
of the system (labelled with FO, LM, SC and separated by yellow lines). Different
fixed points correspond to different physical properties of the system.

an iterative NRG-calculation (= NRG-run).
General spectral functions written in Lehmann representation have the following

form:

ABC(ω) =
∑
mn

e−βEm

Z
〈m|B|n〉〈n|C|m〉δ(ω − (En − Em)), (4.23)

where B and C are local operators acting on the dot. Eq. (4.23) can be directly
evaluated in the complete many body basis. This approach which makes use of the
full density matrix (FDM) instead of the density matrix of a single shell, is known
as FDM-NRG [24].

4.3.1 Absorption spectrum

The absorption spectrum is calculated making use of Fermi’s Golden Rule (FGR).
This well-known formula can be obtained by perturbation theory and yields the
transition probability per unit time to make a transition from initial state |m〉 into
one of the possible final states |n〉:

pmn =
2π

~
∑

n

|〈n|Hpert|m〉|2, (4.24)

where Hpert is the perturbation Hamiltonian. In the case of photon absorption at a

two-level system, it is given by HL = γ(e†σh
†
σ̄ + h.c.) (see Eq. (2.10)).
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The absorption lineshape is therefore proportional to

A(ωL) =
2π

|γ|2
∑

n

|f〈n|Hpert|G〉i|2δ(ωL − Ef
n + Ei

G)

= 2π
∑

n

|f〈n|e†σ|G〉i|2δ(ωL − Ef
n + Ei

G),
(4.25)

where |G〉i is the ground state of the initial Hamiltonian, |n〉f are the eigenstates
of the final Hamiltonian, Ei

G and Ef
n are the corresponding energies, and ωL is the

laser frequency (~ is set to 1).
To obtain the absorption for T 6= 0, the transition probabilities according to

Fermi’s Golden Rule have to be summed up for different initial states, which are
weighted with their Boltzmann factors ρi

m = e−βEi
m/Zi

:

Aσ(ν) = 2π
∑
mn

ρi
m|f〈n|e†σ|m〉i|2δ(ωL − Ef

n + Ei
m), (4.26)

with detuning ν = ωL − ωth, where ωth is the threshold frequency below which at
T = 0 no photons can be absorbed, as is shown in 5.3.

Since Eq. (4.26) expresses the absorption rate in Lehmann representation, NRG
can be used to evaluate it [24]. Because of the two different HamiltoniansH i andHf ,
two NRG runs are needed to determine all energy values and eigenstates necessary
to calculate the absorption spectrum, one run for each Hamiltonian. The threshold
frequency ωth, above which absorption starts is given by the difference of the ground
state energies of the initial and final Hamiltonian: ωth ≡ Ef

G − Ei
G.

To reduce computing time, the discrete data of A(ν) (which is a sum of δ-
functions) is binned to reduce the number of data points without relevant loss of
accuracy. To accommodate the logarithmic discretization, the binning is chosen to
be logarithmic also, with typically 256 bins per decade. After that, the discrete data
is smoothed with a log-Gaussian broadening function [24]. Its width is determined
by a broadening parameter α whose value is usually between α = 0.4 − 0.6. To
connect positive and negative frequencies, a regular Gaussian with width ω0 is used
for broadening for frequencies ν < ω0, where ω0 is roughly a factor 2 smaller than the
smallest energy scale in the problem. At ω0 the broadening function does not change
from log-Gaussian to Gaussian abruptly, but it is smoothly interpolated between the
two broadening functions.

4.3.2 Occupations

The mean occupations with spin σ of the local level neσ can be calculated with NRG,

na
eσ =

∑
m

ρa
m a〈m|e†σeσ|m〉a, (4.27)

where a = i, f ; depending on whether the mean occupation is calculated for the
initial or the final state. This term of the form of Eq. (4.23) and can be easily
evaluated with NRG.
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The probability for the local level to be occupied only with a σ-electron, but
with no σ̄-electron, ne,σ0, can be obtained by first calculating the probability that
the local level is doubly occupied:

ne,σσ̄ =
∑
m

ρa
m a〈m|e†σ̄eσ̄e

†
σeσ|m〉a

=
∑
mn

ρa
m a〈m|e†σ̄e†σ|n〉a a〈n|eσ̄eσ|m〉a

=
∑
mn

ρa
m|a〈n|eσ̄eσ|m〉a|2.

(4.28)

It is then possible to calculate ne,σ0 from existing quantities by constructing the
difference between neσ and ne,σσ̄:

ne,σ0 = neσ − ne,σσ̄ (4.29)

4.3.3 Time-dependent NRG

At an absorption process, an exciton is created at t = 0. This is modelled by
changing the position of the local level from εi

eσ to εf
eσ and by the sudden creation

of a σ-electron at the e-level. Therefore, absorption can only take place if there is
no σ-electron in the initial state.

The fact that absorption can take place only for some initial states, can be seen
at the transformation of the density matrix to the projected density matrix ρ̂P .

ρ̂i ≡
∑
m

|m〉i(ρi
m) i〈m| → ρ̂p ≡

∑
m

(e†σ|m〉i)(ρi
m) (i〈m|eσ) = e†σρ̂

ieσ . (4.30)

whose norm is no longer 1, but is reduced by the initial occupation of the σ-electron

Trρ̂p = Tr
(
ρ̂ieσe

†
σ

)
= 1− n̄i

eσ . (4.31)

Immediately after the absorption process, the e-level occupations for spin σ′ are:

Tr(ρ̂pn̂eσ′) =

{
n̄i

e,00 + n̄i
e,0σ̄ = 1− n̄i

eσ for σ′ = σ ,
n̄i

e,0σ̄ for σ′ = σ̄ ,
(4.32)

where n̄i
e,00 and n̄i

e,0σ̄ are the initial probabilities for the e-level to have been com-
pletely empty (00), or to have been occupied with no σ-electron but only with a
σ̄-electron (0σ̄).

When examining the time evolution, it is assumed that an absorption process has
just taken place at t = 0. Therefore the starting density matrix is the normalized
projected density matrix ρ̂f

p = ρ̂p/[1− n̄i
eσ].

After an absorption process the system is described by the final Hamiltonian Hf :
ρ̂f

p(t) ≡ e−iHf tρ̂f
pe

iHf t and the expectation value of an observable B̂ at time t is given

by B̃(t) = Tr
(
ρ̂f

p(t)B̂
)
.
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To calculate B̃(t), the Fourier-transformed B̃(ω) =
∫
dt eiωtB̃(t) is calculated,

since it can be written in Lehmann representation and can therefore be easily cal-
culated with NRG (see Eq. (4.23)).

B̃(ω) =
∑
m,n

f〈m|ρ̂f
p|n〉f f〈n|B̂|m〉f · 2πδ

(
ω − Ef

m + Ef
n

)
. (4.33)

The final B̃(ω)-function is obtained by binning and smoothing the discrete B̃(ω)-data

as described in 4.3.1. B̃(t) is then calculated by Fourier-transforming the smooth

B̃(ω)-function to the time domain.

4.3.4 Bulk magnetic field

The effect of a magnetic field on the dot is simple: it splits the e-level according
to εeσ = εe + 1

2
σgeB. For the electrons in the reservoir (= the bulk), the case is

a little more complicated. This is because the energy spectrum of the reservoir is
continuous and the discrete energy levels needed for an NRG-run cannot be just
shifted (as for the e-level), since NRG requires high resolution close to zero energy.

So to take a magnetic field at the reservoir into account, the DOS is first shifted
with respect to the Fermi-level and discretized afterwards (see Fig. 4.5). The DOS is
shifted by +1/2geB for spin up and by −1/2geB for spin down. Then the following
energy intervals are logarithmically discretized: [0;D + 1/2geB], [−D + 1/2geB; 0]
for spin up and [0;D− 1/2geB], [−D− 1/2geB; 0] for spin down respectively, where
the resolution now again is highest for values close to zero (see Fig. 4.5). This way
one can maintain a logarithmic discretization scheme at which the Wilson chain has
still exponentially decaying coupling strength, which is essential for the application
of the NRG-method, while taking into account the fact that the spin-up and -down
bands have been shifted relative to each other.
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Figure 4.5: NRG-discretization for bulk magnetic field. (a) Logarithmic discretiza-
tion when no magnetic field is applied. (b) To account for a magnetic field in the
reservoir, the DOS is shifted with respect to the Fermi-Level and afterwards the
intervals indicated by curly brackets are logarithmically discretized. The result-
ing Wilson chain has exponentially decaying coupling strength which makes NRG
applicable.



Chapter 5

Results

5.1 Occupation of Quantum Dot

To get a basic understanding of the physics at an absorption process, it is instructive
to look at the occupation of the quantum dot. The occupation of the e-level is
determined by the parameters εa

eσ, Γ and U , where the position of the e-level εa
eσ

depends on further parameters like excitonic Coulomb attraction Ueh and magnetic
field B. Fig. 5.1 shows how the initial and final occupation of the dot changes while
performing a sweep of the e-level (since Ueh is kept constant, this means sweeping
both εi

eσ and εf
eσ simultaneously).

As εf
eσ is increased, the occupation changes from 2 (for εf

eσ . −U) to 1 for
(for −U . εf

eσ . 0) and finally goes to zero (for εf
eσ & 0). The regime where the

occupation changes between two integer values, the so-called “mixed valence regime”
has a width of several Γ. The smaller the mixed valence regime the more concise are
the plateaus of ni

e and nf
e . The change of occupation ∆ne = nf

e −ni
e is the difference

between nf
e and ni

e. By looking at nf
e and ni

e at Fig. 5.1, it becomes clear, that there
are always two regions where the value of ∆ne increases above zero (and approaches
1 in the limit of small Γ). Between these two regions ∆ne can either increase or
decrease, depending on whether Ueh < U (Fig. 5.1a) or Ueh > U (Fig. 5.1b).

For most of the following calculations, the Coulomb attraction is chosen to be
Ueh = 5/4U as in Fig. 5.1b, since first, for most experimental realizations, Ueh is
slightly larger than U , and second, it shows that the results are valid not only for
Ueh = U , but for more general parameter values, too. Further, for εf

eσ a value is
chosen where the curve of ∆ne has its right plateau at ∆ne ≈ 1. This regime is
examined for two reasons: (i) the dot is nearly unoccupied in the initial state, so
that photon absorption can take place and (ii) it is singly occupied after absorption
which is necessary for the dot to be in a Kondo state.

For zero magnetic field, the σ =↑- and σ =↓ -occupations are equal. Although
for B 6= 0 they differ as can be seen in Fig. 5.2a, the total occupations ni

e = ni
e↑+n

i
e↓

and nf
e = nf

e↑+n
f
e↓ stay the same. This changes when B exceeds Γ; then the splitting

between the two e-levels becomes too large and tunneling is suppressed. Therefore
spin-fluctuations of the dot are no longer possible and the electron occupying the
e-level has a well-defined spin (Fig. 5.2b). The spin-asymmetry in occupation for
nonzero B-field has dramatic consequences on the absorption spectrum, as shown
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Figure 5.1: Initial and final occupations of the QD, ni
e and nf

e , and their difference
∆ne = nf

e − ni
e as function of εf

eσ, for (a) Ueh < U and (b) Ueh > U . As the position
of the e-level εf

eσ is increased, the initial and final occupations decrease from 2 to 1
and then to zero.

in 5.3.3.

5.2 Time evolution of charge and spin after ab-

sorption

As shown in section 4.3.1, the absorption spectrum can be calculated according to
Fermi’s Golden Rule: Aσ(ν) = 2π

∑
mn ρ

i
m|f〈n|e†σ|m〉i|2δ(ωL − Ef

n + Ei
m). Since ab-

sorption involves the creation operator e†σ acting on the initial state, all contributions
of the initial state where the local level is occupied are annihilated by the e†σ-operator,
and the initial density matrix ρi is projected onto a new one ρ̂f

p = e†σρ̂
ieσ(1 − ñi

eσ).
The factor (1− ñi

eσ) is chosen to normalize the occupation at t = 0 to ñeσ(0) = 1 so
that the initial σ-occupation is 1, which is the case after an absorption process has
taken place.

Charge ñe(t) = (ñe+ + ñe−) and magnetization m̃e(t) = 1
2
(ñe+ − ñe−) are the

two most important quantities characterizing the state of the quantum dot. Fig. 5.3
shows the non-equilibrium time evolution of these quantities, calculated with time-
dependent NRG for T = 0. One can make out two distinct time scales. First,
fluctuations of charge start at approximately t ' 1/|εf

eσ|. Second, the graph shows
that charge fluctuations die out rather soon, but spin needs much longer to equi-
librate, namely t ' 1/TK . After this time, the so called Kondo cloud has built
up, which screens the local spin into a singlet by electrons hopping to and away
from the dot. The spin-equilibration is mediated by electrons tunneling between the
local level and the FR. Thereby spin-flips are possible, as described in section 2.2.
Since information between two e-level spin-flips is maintained, the dynamics of the
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Figure 5.2: Occupation of the QD in the presence of an applied magnetic field.(a)
The σ =↑- and σ =↓-population is shown by the blue and purple lines for three
different magnetic fields (see figure legend). In the regions where the QD is in the
LM-regime (initial or final state), the occupations of the spin-up and down-electrons
become unequal as the B-field increases. However, the total occupation stays the
same. (b) When B becomes & Γ the Zeeman-splitting of the two levels becomes
larger than Γ and tunneling between the upper of the split levels and the FR is
suppressed. Thus, the local moment regime, characterized by equal occupations of
1/2 for both spin directions of the local level, ceases to exist.

quantum dot are non-Markovian.
The values of ñeσ(t) and m̃e(t) in the long time limit deviate from their known

values by around 3%. This is an artifact of time-dependent NRG, which presumably
occurs due to the fact that the resolution of the NRG-discretization scheme has
rather coarse resolution at higher energies [22].

For larger temperatures, T > TK , spin decays faster. For T 6= 0, m̃e(t) equili-
brates at min{τKor, 1/TK}, with the Korringa relaxation time τKor = ln2(T/TK)/T
[7] (see Fig. 5.4).

5.3 Absorption lineshape

The analysis of the absorption lineshape is the central goal of this thesis. Absorption
sets in as soon as a threshold frequency ωth = Ef

G−Ei
G is exceeded, which is on the

order of εf
eσ + εhσ̄ (minus corrections from tunneling and correlations).

The absorption is calculated numerically according to Fermi’s Golden Rule (see
4.26). For analytical purposes, Eq. (4.26) can be written as Aσ(ν) = −2ImGσ

ee(ν).
For T = 0, Gσ

ee is then given by

Gσ
ee(ν) = i〈G|eσ

1

ν+ − H̄f
e†σ|G〉i, (5.1)
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Figure 5.3: Non-equilibrium time evolution of charge and spin of the photo-excited
electron for T = 0. The curves show the non-equilibrium time-evolution of spin and
charge of the photo-excited electron after the creation of an e†+h

†
− exciton at t = 0.

After the e-level’s total charge ñe has equilibrated rather fast on a time scale of
1/|εf

σ|, the equilibration of the spin-σ populations ñeσ(t) and magnetic moment of
the local electron m̃e(t) needs more time and happens on the time scale of 1/TK . The
long-time limits ñeσ(∞), ñeσ̄(∞) and m̃e(∞) deviate from their expected equilibrium
values of 1, 1/2 and 0, respectively, by about 3 %. These artifacts emerge probably
due to the discretization procedure needed for NRG, which is rather coarse for high
energies.
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Figure 5.4: Non-equilibrium time evolution of spin and charge of the photo-excited
electron for three different temperatures. Plotted is the time-evolution of spin and
charge for the same parameters as in Fig. 5.3, but for three different temperatures
T � TK , T = TK and T � TK , indicated by solid, dashed and dash-dotted lines,
respectively. Charge-equilibration is independent of temperature and happens on a
scale of 1/|εf

eσ|. Equilibration of m̃e depends on temperature only for T > TK . In
this case the spin gets already screened at the Korringa relaxation time τKor.
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Figure 5.5: NRG vs. analytic results for the B = 0 absorption lineshape. The blue
line shows the absorption spectrum calculated by NRG on a log-log plot, the inset on
a linear plot. On a double-logarithmic scale, three distinct functional forms become
visible, which can be described by analytic expressions (red dashed lines) for large,
intermediate and small detuning. According to the fixed point perturbation theory
these regions are identified and labelled with the common abbreviations, FO, LM,
SC. Arrows and light yellow lines indicate the crossover scales T , TK and |εf

eσ|.

where ν+ = ν + i0 and H̄f = Hf − Ei
G − ωth. Its Fourier representation Gσ

ee(ν) =∫
dteit(ν++ωth)Gσ

ee(t) with Gσ
ee(t) = −iθ(t)i〈G|eiHiteσe

−iHf te†σ|G〉i shows that this cor-
relator probes the dynamics of an electron coupled to a FR after photon-absorption.

Eq. (4.26) can be evaluated with NRG. Fig. 5.5 shows an absorption spectrum
for T < TK that exhibits all relevant features.

The inset shows the absorption spectrum on a linear scale. It reveals the thresh-
old behavior of the absorption and and gives indication to a divergence near this
threshold, which can be clearly seen on the main plot. The main panel shows the
absorption lineshape on a log-log plot, where it is clearly visible that the spectrum
can be divided in three different regimes that correspond to the fixed points of the
Single Impurity Anderson Model (see 4.2): the Free Orbital regime (FO), the Lo-
cal Moment regime (LM) and the Strong Coupling regime (SC). At the FO-regime,
i. e. at high excitation energies, the electron has enough energy to give rise to tunnel
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processes between the local level and the FR, so in this regime charge fluctuations
can occur. In the LM-regime the electron does not have enough energy to make
a real transition out of the dot, but virtual transitions into the reservoir and back
are still possible. Thus, the quantum dot has a local moment and spin fluctuations
can take place, a set-up which has the potential to show Kondo-physics. In the
SC-regime the spin of the electron is totally screened and the combined system of
electron and FR is in a Kondo-state.

These regimes can be approximated by the following analytical expressions which
are derived in sections 5.3.1 to 5.3.3:

(FO) |εf
eσ| . ν . D : A ∝ ν−2θ(ν − |εf

eσ|) ; (5.2a)

(LM) TK . ν . |εf
eσ| : A ∝ ν−1 ln−2(ν/TK); (5.2b)

(SC) T . ν . TK : A ∝ ν−ησ . (5.2c)

5.3.1 Large Detuning

For large detuning, i. e., probing times t . 1/|εf
eσ|, the incident photon has enough

energy for an electron to leave the e-level into the Fermi Sea or for an additional
electron to occupy the e-level, coming from the FR. So for large detuning, the e-level
appears as a free orbital, perturbed by charge fluctuations, which is a characteristic
feature of the Free-Orbital regime.

The free orbital fixed point Hamiltonian H∗
FO = Hc + Hf

QD can be used to
describe this regime analytically. It consists of the Hamiltonian of the FR, Hc, and
the Hamiltonian of the QD in the final state Hf

QD. The perturbation caused by
charge fluctuations is given by the tunneling Hamiltonian Ht.

Fixed point perturbation theory for large detuning yields the following analytical
expression for the absorption lineshape:

AFO
σ (ν) =

4Γ

ν2
θ(ν − |εf

eσ|), (5.3)

The factor 4Γ
ν2 has its origin in the charge fluctuations between e-level and FR. Both

transitions from the valence-level into unfilled states of the FR and from the valence-
level to a double occupied e-level contribute a factor of 2Γ. For such transitions the
e-level is occupied in an intermediate state and the Lorentzian-broadening of the
e-level due to charge fluctuations yields the functional dependence of ν−2. The
calculations that determine 4Γ as prefactor in Eq. (5.3) assume that the e-level is
empty in the initial state. This assumption involves a certain approximation, since
the initial occupation is in fact not zero but finite, due to finite tunneling. This
causes the numerically calculated Aσ(ν) to be slightly lower than the analytically
expected 4Γ. This can be seen in Fig. 5.5 where the lineshape in the FO-regime is
slightly below the analytical expression. If absorption is calculated with Γi = 0 (see
Fig. 5.6), Eq. (5.3) agrees with the numerical result completely.

The crossover to the LM-regime yields a small side peak in the absorption spec-
trum (see Fig. 5.7). (This is not surprising, since ALM

σ (|εf
eσ|) 6= AFO

σ (|εf
eσ|) (see

Eqs. (5.3), (5.4)). It is more pronounced for small Γ and smears out as hybridiza-
tion increases.
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Figure 5.6: Absorption curves for vanishing and non-vanishing tunnel coupling of
the initial Hamiltonian. The thick and thin lines show the absorption spectrum
from Fig. 5.5, calculated for finite and zero Γi, respectively. The thick and thin lines
mostly coincide, showing a small difference only in the FO-regime. Γi = 0 results
in a totally unoccupied dot in the beginning, which makes both tunneling processes
of the FO-regime (tunneling out of the local electron or tunneling onto the dot of
an additional electron) equally possible and results in the analytical prefactor of
2 · 2Γ = 4Γ. Apart from the different prefactor in the FO-regime, the lineshapes for
Γi = Γ and Γi = 0 show no difference.
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Figure 5.7: Emergence of the side peak at the LM-FO crossover as Γ is gradually
reduced. We chose to decrease Γ and U in a way that keeps the absolute value of TK

constant, which makes the lineshapes easy to compare. The side peak that marks
the crossover between large and intermediate detuning becomes more pronounced as
Γ is decreased with respect to U . For frequencies above |εf

eσ| the photon has enough
energy for an electron to tunnel out or onto the dot. At this crossover suddenly new
absorption processes become possible, which result in different Aσ(ν) and give rise
to a small peak.
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5.3.2 Intermediate Detuning

For intermediate detuning, TK < ν < 1/|εf
eσ|, that probes times 1/|εf

eσ| . t . 1/TK ,
the photon does not have enough energy to cause real charge fluctuations. However,
virtual charge fluctuations are still possible, which give rise to spin fluctuations of
the local moment (see 2.2) [20],[18]. This regime can be described analytically by
perturbation theory using the fixed point Hamiltonian of the Local Moment regime
H∗

LM = Hc + const.. The perturbation is given by a Kondo term, that causes spin
fluctuations: H

′
LM = J

ρ
~se · ~sc, where ~sj = 1

2

∑
σσ

′ j†σ~τσσ′ jσ′ (j = e, c) are the spin-
operators for the local level and the Fermi Reservoir, ~τ are the Pauli matrices and
J = 2UΓ/|πεf

e (ε
f
e + U)| is an effective coupling constant [16].

Carrying out fixed point perturbation theory yields the following analytical ex-
pression for Aσ(ν) in the LM-regime:

ALM
σ (ν) =

3π

4

J2(ν)

ν
, (5.4)

where J(ν) = ln−1(ν/TK) is the renormalized, scale-dependent exchange constant,
that arises from scaling arguments [16]. The agreement between analytical and
numerical results can be seen in Fig. 5.5.

For intermediate detuning, the absorption lineshape depends on εf
eσ and U only

indirectly via TK , which makes it a universal function of ν and TK , as can be seen in
Fig. 5.8. The lower left inset shows the lineshapes for five different values of εf

eσ which
lie symmetrically around −U/2, and accordingly for three different values of TK (see
upper inset). Plotting the rescaled lineshapes Aσ(ν)/Aσ(TK) vs. ν/TK shows that
they collapse onto a universal scaling curve within the LM regime TK . ν . |εf

eσ|
(main plot).

5.3.3 Small Detuning

For low frequencies, which are below TK , the frequency dependent coupling constant
J(ν) exceeds 1 and leads to the strong coupling regime. Here, the system can no
longer be regarded as a Fermi-sea with a small perturbation, but one has to look
at the system as a whole due to the strong interactions between dot-electron and
reservoir. In this regime, which corresponds to long times t > 1/TK , a screening
cloud of electrons builds up, that screens the local moment, so that the dot exhibits
a spin singlet.

The other electrons of the FR can now scatter off this singlet, which acts as a
strong, static scattering site and which shifts the phase of an incident mode kσ by
δσ(εkσ) with regard to its initial value. According to Nozières, the physics in this
regime can be described by the strong coupling fixed-point Hamiltonian H∗

SC +H
′
SC

(given explicitly in Appendix A.1). However, this Hamiltonian is defined solely by
the phase-shifted electrons of the conduction band; the operators of the e-level, e
and e†, do not show up in this Hamiltonian, since the c-electrons screen the local
moment completely.

The fact that the Hamiltonian does not explicitly depend on the electrons of
the e-level presents us with a problem: how is absorption to be described, which
requires, a priori, reference to the operators e and e†? This problem can be solved
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Figure 5.8: Universality in the LM-regime. The lower left inset shows the lineshapes
for five different values of εf

eσ, indicated by colored arrows (main figure) or dashed
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a universal curve in the LM-regime TK . ν . |εf
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by using two tricks (described in detail in Appendix A.1): First, one works in the
time-domain and performs a Fourier-Transformation at the end, and second, one
uses equations of motion to relate the correlator for the local level, Gσ

ee(t) to the
correlator Gσ

cc(t) (see A.1), which depends on FR electrons and is known from the
X-ray edge problem. For the latter, an X-ray photon transfers an electron from an
atomic core level to the conduction band instantaneously and creates a core hole,
which acts as a local scattering potential, similar to the spin-singlet at a Kondo-state
[26], [27], [28].

With the relation between Gσ
ee(t) and Gσ

cc(t), analytical calculations yield a
power-law behavior for this regime:

ASC
σ (ν) ∝ T−1

K (ν/TK)−ησ . (5.5)

The exponent ησ depends on the change in average occupation of the e-level ∆neσ =
n̄f

eσ − n̄i
eσ and can be expressed in three different ways, which will now be discussed:

ησ = 2∆neσ −
∑
σ
′

(∆neσ
′ )2, (5.6)

ησ = 1−
∑
σ′

(∆n
′

eσ′
)2, (5.7)

ησ =
1

2
+ 2mf

eσ − 2(mf
e )

2, for n̄i
e = 0, n̄f

e = 1. (5.8)

Eq. (5.6) is a generalization of “Hopfield’s rule of thumb” (η = ∆n − (∆n)2

2
) [27],

[29], [30] which is valid for vanishing magnetic field, where occupations are not spin
dependent, i. e., ∆neσ = ∆ne/2, so that the exponent is not spin dependent either.

In Eq. (5.7) ∆n
′

eσ′
= ∆neσ−δσσ

′ is the charge difference of the local level between
the ground state of the final Hamiltonian |∞〉 (for t→∞) and the state which the
system has right after absorption |0+〉. In this form the second term of Eq. 5.7 can be
identified with the contribution coming from Anderson orthogonality [31] between
|∞〉 and |0+〉, which is part of the physics at this absorption process.

In Eq. (5.8) mf
e = 1

2
(n̄f

e+ − n̄f
e−) is the final magnetization, which is a universal

function of geB/TK . For n̄i
e = 0 and n̄f

e = 1, the exponents ησ(B) are therefore
universal functions of geB/TK , too (see Fig. 5.9b).

With finite magnetic field, absorption becomes spin-dependent. This can be
easily seen for high magnetic fields, |B| � TK , where ∆ne,lower → 1 and ∆ne,upper →
0, so that the exponents ησ reach the following limits (Fig. 5.9a):

ηlower/upper →

{
1
2

(|B| � TK) ,

±1 (|B| � TK) .
(5.9)

In Eq. (5.9) the subscript “lower” or “upper” indicates whether the electron is excited
to the lower or upper Zeeman-split e-level, which is determined by polarization of
the incident photon. For |B| � TK , ηlower and ηupper show different signs because the
change in local charge becomes asymmetric (∆ne,lower → 1 whereas ∆ne,upper → 0
(see Fig. 5.2)). As a consequence for σ = lower, there is no Anderson orthogonality
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Figure 5.9: Magnetic-field dependence of lineshape. (a) The magnetic field causes
a split of the local level. Depending on whether the electron is excited to the
lower or upper of these levels (indicated by solid or dashed lines, respectively) the
divergence at the threshold-frequency is either amplified or suppressed. (b) Universal
dependence of the magnetization mf

e and the infrared exponents ηlower (solid line)
and ηupper (dashed line) on geB/TK . ησ is extracted from the absorption lineshape
Aσ(ν) for several different magnetic fields and three values of Γ

(∆n′eσ′ = 0) while for σ = upper it becomes maximal (∆n′eσ′ = 1). The conclusion
is that a magnetic field can tune the strength of the Anderson orthogonality, thus
causing a spin-dependence of the lineshape A(ν) ∝ ν−ησ , which becomes more pro-
nounced with increasing |B|, finally leading to the limits of Eq. (5.9). This means
that while for Alower(ν) the near-threshold singularity is strengthened towards ν−1,
for Aupper(ν) it changes towards ν+1. The latter is a power-law decay with decreas-
ing ν (instead of a singularity) and has its absorption maximum near ν = |geB| (see
Fig. 5.9) which can be associated with the transition into the upper Zeeman-split
e-level.

Hopfield’s rule of thumb is valid for a wide range of |εf
e | and B. How well

Hopfield’s rule agrees with the absorption spectrum can be seen in Fig. 5.10. The
solid lines were calculated with Eq. (5.6), where ∆neσ was calculated with NRG.
The triangles show exponents ησ that were directly extracted from power-law fits to
the low-frequency regime of the absorption spectrum.



44 5. Results

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

εe
f  / U

geB / Γ

U = 0.1 D
Γ = 0.1 U
T = 0

ηlower
ηupper 10

1
0.1
0.01
0

Figure 5.10: Checking Eq. (5.6) Hopfield’s rule of thumb for the singularity exponent
ησ for various combinations of |εf

e | and B. The values forming the solid and dashed
lines were calculated with the r. h. s. of Eq. (5.6) where ∆neσ was calculated with
NRG. The triangular symbols show the values of ησ extracted from power-law fits
to the low-frequency regime of Aσ(ν). The two calculation methods yield the same
values for ησ within 1%

5.3.4 Temperature dependence

The NRG results presented in the previous sections were all calculated for a finite,
albeit very small, temperature T . This is a generalization to [32] where T = 0 was
assumed. The behavior of the absorption spectrum as temperature is increased is
shown in Fig. 5.11.

There, temperature is successively reduced, which leads to a strong asymmetry
of the lineshape and to an extreme increase in peak height. This behavior of the
lineshape can be understood by looking at the loglog-plot. One has to distinguish
whether temperature is above or below TK .

T < TK : Fig. 5.5 shows a loglog-plot of the absorption spectrum for T < TK .
Here, temperature simply cuts off the divergence for ν < T , leading to very high
absorption near the threshold for T → 0. For ν > T the absorption spectrum does
not depend on temperature and can be divided into the three regimes discussed
above.

T > TK : For the calculation of Aσ(ν) one has to set Hf → H∗
r +H ′

r in Eq. (5.1)
and expand in powers of H ′

r for r = FO or LM. The generalization of Eq. (5.1)
for finite T is Gσ

ee(ν) = Fν{−iθ(t)〈eσ(t)e†σ〉i}. Here, we give only the lineshape for
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Figure 5.11: Absorption lineshape calculated for several different temperatures
shown on a semi-log plot. For T < TK the near-threshold divergence is cut off
at ν = T and the lineshape changes only slightly. For T > TK there is still a pro-
nounced peak in the absorption line for small detuning, whose width is on the scale
of the Korringa relaxation rate γKor, which is significantly lower than temperature.
The inset shows a blow-up of the absorption peaks and shows how the lineshapes
differ for T . TK .
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Figure 5.12: Absorption lineshape at large temperature T � TK . The plot shows
the red-detuned (ν < νmax) and the blue-detuned (ν > νmax) part of the absorption
lineshape. νmax is the frequency where Aσ(ν) has its maximal value. For ν−νmax > T
the lineshape does not depend on temperature. For ν − νmax < T absorption still
increases for frequencies below T , as long as (ν − νmax) . γKor. For red-detuning
(ν < νmax), absorption is possible from thermally excited initial states which results
in an exponential behavior of the lineshape.

|ν| < |εfeσ|:

Aσ(ν) =
3π/4

1− e−ν/T

γKor(ν, T )/π

ν2 + γ2
Kor(ν, T )

, (5.10)

where γKor(ν, T ) is the scale-dependent Korringa relaxation rate:

γKor(ν, T ) =

{
πT/ln2|T/TK | for |ν| < T,
πν/ln2|ν/TK | for |ν| > T.

(5.11)

For ν � T , Aσ(ν) becomes equal to the expression for T = 0, given in Eq. (5.4).

5.3.5 Threshold frequency

The threshold behavior of the absorption spectrum can be clearly seen on a linear
scale, as shown in the inset of Fig. 5.5. The threshold frequency is given by the
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difference of the ground state energies of the final and initial Hamiltonian: ωth =
Ef

G−Ei
G. Magnetic field influences the dot both via the energy level of the hole and

via the ground-state energy of the system consisting of e-level and Fermi Reservoir.
The change of threshold frequency with magnetic field is therefore given by ωth(B)−
ωth(0) = 3

2
σ̄ghB + δωe

th(B), where the first term describes the Zeeman energy of the
photo-excited hole with a pseudo-spin 3/2 (see 3 for further information) and the
second term the B-dependence of the ground-state energy of the electron system.
Due to the thermodynamic relation gem

a
e = ∂Ea

G/∂B one can measure the difference
between the initial and final local moment in the ground states by combining all three
equations to:

∂(δωe
th)/∂B = ge[m

f
e (B)−mi

e(B)]. (5.12)

For n̄i
e ' 0 and n̄f

e ' 1, Eq. (5.8) is valid and one gets a direct relation between the
shift of threshold frequency and infrared singularity exponent.

From the asymptotic behavior of mf
e for small and large fields, mf

e = −geBχ0 =
−geB/4TK and |mf

e | = 1
2
, respectively, one obtains the asymptotic behavior for the

change of threshold frequency:

δωe
th =

{
−(geB)2/8TK (|B| � TK) ,
−geB/2 (TK � B � |εf

e|) .
(5.13)

The formula δωe
th = TK − 1

2

√
(geB)2 + (2T 2

K) gives an interpolation between these
two asymptotical expressions, and, up to numerical prefactors, has the same form
as the formula derived for the ground state energy of the s-d model in [33].

For small fields, one can use the fact that δωe
th depends on the Kondo temperature

quadratically to determine it in the experiment. This is especially useful since ground
state energy and magnetization of the local level are quantities that can only be
determined with optical measurements, not with transport experiments.
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Chapter 6

Conclusions

The main aim of this thesis was to calculate the absorption spectrum of a quantum
dot. This was done using an extension of the Anderson Model with two different
Hamiltonians describing the dot before and after absorption, where the final Hamil-
tonian has a lower e-level due to the excitonic Coulomb attraction. This model was
then used to calculate the absorption spectrum with the NRG-method, yielding the
main result that the absorption lineshape can be divided in three different frequency
regimes that correspond to the fixed points of the Single Impurity Anderson Model.
Further, the influence of magnetic field on the spectrum was examined and it was
shown that the exponent describing the power-law behavior of the lineshape at small
detuning is related to the change of occupation at an absorption process and can
be calculated by a generalization of Hopfield’s rule. It turned out that the shape of
the absorption line depends strongly on polarization for high magnetic fields. The
absorption spectrum with its different frequency regimes was related to the time
evolution of charge and spin where the time scales of equilibration correspond to the
inverse frequency of the different frequency regimes.

For future work, it would be interesting to include further effects in the cal-
culations that brings the theoretical work even closer to the experiment. This is
especially interesting since optical signatures of Kondo Excitons are object of cur-
rent research and more detailed calculations would make it easier to compare theory
with experiment. Such additional effects could be for example Fano-effects, where
the electron can directly reach the reservoir at absorption without occupying the
local level in an intermediate state. Another aspect that would be interesting, is to
further examine the time evolution of charge and spin and e. g. to determine not only
time scales of equilibration but also the functional behavior. Although time-resolved
measurements of how the Kondo-cloud builds up are not possible with current tech-
nology, they might be in the future, and apart from that, such calculations would
give deeper understanding of the Kondo effect, from a point of view that was not
taken before.
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Appendix A

Appendix

A.1 Evaluation of the absorption lineshape in the

strong-coupling-regime

For detunings far below the Kondo scale, ν � TK , the physics is governed by the
strong coupling fixed point. It describes a fully screened singlet which is source of
strong potential scattering for other FR electrons and causes the phase of each mode
kσ to shift by δσ(εkσ) relative to its value for H i. According to Nozières [34] (see also
[7]), the fixed point Hamiltonian at B = 0 is H∗

SC =
∑

kσ εkc̃
†
kσ c̃kσ, where tildes mark

operators representing phase-shifted modes. The leading relevant perturbation for
0 < B . TK has the form [34], [7] H ′

SC =
∑

σ σgeB [
∑

k
1
2
c̃†kσ c̃kσ + ρ̃σ/(πρTK) ].

This fixed point Hamiltonian cannot be directly used since the method of per-
turbing around the fixed point does not work for calculating Gσ

ee(ν) of Eq. (5.1). The
reason is that Gσ

ee(ν) is formulated in terms of eeσ and e†eσ operators, whose dynam-
ics is determined by higher-energy excitations of the FR which are not described
by H∗

SC +H ′
SC. This problem can be avoided by an equation of motion approach to

first derive an asymptotic relation between the impurity Green’s function and the
Green’s function of the reservoir-electrons.

First, it is important to note that the correlator occurring in Eq. (5.1) can be
expressed as the Fourier transform, Gσ

ee(ν) = Fν {Gσ
ee(t)}, of the correlator

Gσ
ee(t) = −iθ(t) 〈eσ(t)e†σ〉i , (A.1)

which involves operators defined to have an anomalous time dependence with both
H i and H f : Ô(t) = eiHitÔe−iHf t. This dependence arises from suddenly lowering the
e-level.

To relate Gσ
ee(ν) to a similarly-defined correlator Gσ

cc(ν), it is important to note
that the anomalous time-dependence of ckσ(t) leads to the equation of motion

i∂tckσ(t) = [ckσ(t), H i] + ckσ(t)(εhσ̄ − Uehne) , (A.2)

= ckσ(t)[εkσ + εhσ̄ − Uehne] + veσ(t) , (A.3)

where v =
√

Γ/πρ. Inserting this into the definition of Gσ
kk′(t) one finds

i∂tG
σ
kk′(t) ∼ [εkσ + εhσ̄]Gσ

kk′(t) + vGσ
ek′(t) , (A.4)
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where terms that become subleading for t→∞ have been dropped (a term contain-
ing δ(t); and one containing 〈ckσ(t)nec

†
k′σ〉i which contains more operators and hence

decays more quickly with time than the correlators that were retained). Similarly
one finds

i∂tG
σ
ek′(t) ∼ [εk′σ + εhσ̄]Gσ

ek′(t) + vGσ
ee(t) , (A.5)

where the cyclic property of the trace was used to write

〈[ceσ(t), H i]c†k′σ〉i = 〈ceσ(t)[H i, c†k′σ]〉i . (A.6)

Fourier-transforming Eqs.( A.5) and (A.4) using the convention stated just before
Eq. (A.1) and eliminating Gσ

ek′(ν), one finds the asymptotic relation:

Gσ
kk′(ν) ∼

v2Gσ
ee(ν)

(ν+ + ∆− εkσ)(ν+ + ∆− εk′σ)
, (A.7)

with ∆ = ωth − εhσ̄. This leads to

Gσ
cc(ν) =

∑
kk′

Gσ
kk′(ν) ∼ −πρΓGσ

ee(ν) , (A.8)

where the double sum
∑

kk′ = ρ2
∫

dεkdεk′ is exhausted by two δ-functions, since |∆|
is of order |εf

eσ|, which is assumed to be smaller than the bandwidth D. Eq. (A.8)
implies

ASC
σ (ν) ∼ 2

πρΓ
ImGσ

cc(ν) . (A.9)

To calculate Gσ
cc(t) for t� 1/TK, the replacements H i → Hc and H f → H∗

SC +H ′
SC

can be made in Eq. (A.9):

Gσ
cc(t) ∼ i〈G|eiHctcσe−iH∗

SCtc†σ|G〉i . (A.10)

This response function is similar to the one at the X-ray edge problem [26],[27],[28]:
there absorption of an X-ray photon excites an atomic core electron into the con-
duction band (described by c†σ), leaving behind a core hole that acts as a scattering
potential with respect to Hc (described by H∗

SC). The calculation of Eq. (A.10) (e.g.
[28]) yields in leading power law

Gσ
cc(t) ∼ t−[(δσ−π)2+δ2

σ̄ ]/π2

. (A.11)

where δσ = δσ(0) denotes the phase shifts at the Fermi energy. There is an instruc-
tive interpretation for this power-law due to Hopfield [29]: according to Anderson’s
orthogonality catastrophe [31], two Fermi seas with different local scattering poten-
tials that cause their modes to differ in phase by δσ(εkσ), have a ground state overlap

f〈G|G〉i ∼ L−
P

σ δ2
σ(0)/π2

which vanishes in the limit of large system size L→∞. In
analogy, Eq. (A.11) can be seen as the overlap f〈G|c†σ|G〉i for systems of size L ∝ t:
the effect of c†σ, which puts an extra spin-σ electron at the scattering site at t = 0, is
similar to having an additional infinitely strong scatterer of σ-electrons in the initial,



A.2 Bulk magnetic field 53

but not in the final state, implying an extra shift −π for the phase difference of the
δσ modes.

The phase shifts at the Fermi energy, needed in Eq. (A.11), are given by δσ =
π∆neσ, according to the Friedel sum rule [35], [36], valid for T = 0 and for arbitrary
values of B, n̄f

e and n̄i
e. Collecting results, one finds from Eqs. (A.9) and (A.11) that

ASC
σ (ν) ∼ TK

−1(ν/TK)−ησ , (A.12)

where the infrared singularity exponent ησ is given by Eq. (5.6),

ησ = 2∆neσ −
∑
σ′

(∆neσ′)
2 . (A.13)

The dimensionful prefactor in Eq. (A.12) was adjusted to make sure that Eqs. (A.12)
and (5.2b) match, up to numerical prefactors, at the crossover scale ν = TK, implying
a prefactor (ρΓ)T ησ−1

K in Eq. (A.11).

A.2 Bulk magnetic field

If a magnetic field is applied to the QD-setup, the electrons in the FR are affected by
an energy shift of 1

2
gcB

∑
kσ c

†
kσckσ. However, this influence was neglected through-

out the calculations presented in the main text. The reason for this will be explained
briefly. First, a bulk magnetic field polarizes the FR so that it exhibits a nonzero
spin 〈sz

c〉 ≈ −ρgcB/2. Thus the spin of the polarized FR can interact with the spin of
the local level via the coupling term J

ρ
~sc~se. This adds a contribution of −(Jgc/2)Bsz

e

to the spin Hamiltonian of the local level and together with ge it can be expressed
as an effective local g-factor:

geff
e = ge − gcJ/2 (A.14)

Because J is the bare, not the renormalized exchange constant, its effect is rather
small. This was checked with NRG as can be seen in Fig. A.2. There the dependence
of the magnetization mf

e on magnetic field is shown for several values for gc and two
different values for ge. Although gc has an effect on mf

e for vanishing ge, it is
clearly visibly that this effect is negligible for non-vanishing ge which was assumed
throughout the thesis.

A.3 NRG parameters

Table A.1 lists the parameters that were used for the calculations of the figures in this
thesis. For the calculation of the absorption spectra of Fig. 5.9 and Fig. 5.10, MK

was increased to avoid numerical artifacts. For the calculation of the QD-occupation
and related quantities, the discrete data is summed up and no broadening is needed.
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Figure A.1: Dependence of the magnetization on the g-factor of the leads gc. The
final magnetization mf

e is plotted vs. B/TK , for five different values of gc, both with
zero and nonzero ge. If ge = 0 (dashed lines), the magnetization depends on the
value of gc. Saturation ofmf

e occurs for B-fields much larger than TK . If ge = 2 (solid
lines) the magnetization saturates at field-strengths around TK , its dependence on
gc can be neglected and becomes visible only at high magnification (see inset).
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Fig. Λ MK α

5.1 2.0 512 -

5.2 2.0 512 -

5.3 1.8 1024 0.4

5.4 1.8 1024 0.4

5.5 1.8 1024 0.5

5.6 1.8 1024 0.5

5.7 1.8 1024 0.4

5.8 1.8 1024 0.5

5.9 2.3 1200 0.6

5.10 2.3 1700 0.6

5.11 1.8 1024 0.4

5.12 1.8 1024 0.5

5.13 2.3 1024 -

A.1 2.3 1024 -

Table A.1: NRG-parameters for figures in the main part and the appendix. α is not
required for the calculation of the QD-occupation and related quantities.
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2.1 Single Impurity Anderson Model. The dot is coupled to a Fermionic
reservoir (indicated blue). The local level εeσ is separated from the
reservoir by Coulomb barriers (indicated by thick black lines) through
which electrons can tunnel. Tunneling strength is determined by the
transition matrix element V . If the local level is occupied by two
electrons their energy is increased by U due to Coulomb repulsion . . 8

2.2 Virtual processes that result in a spin-flipped state. (a) An electron
tunnels from the reservoir onto the dot into a virtual excited state.
The electron that had previously occupied the dot tunnels back and
the dot-electron is flipped. (b) An electron from the dot tunnels into
the reservoir and an electron with opposite spin tunnels back. . . . . 9

2.3 Example of a fourth order virtual process that contributes to the
spin-screening at a Kondo state. Higher order virtual processes with
a virtual spin-flipped intermediate state produce the spin-screening
that is typical for the Kondo-regime. . . . . . . . . . . . . . . . . . . 10

2.4 Kondo-peak in the local density of states. For T < TK the variety of
possible tunneling processes drastically increases the local density of
states A(ω) (red line) around the Fermi energy. This becomes visible
as a sharp resonance in the local density of states. The LDOS also
has smaller peaks at the local levels (Hubbard-side-peaks) which have
width Γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Schematic figure the excitonic Anderson model and the corresponding
absorption process. Due to photon absorption a hole is created in
the valence level which pulls the e-level down by the electron-hole
attraction Ueh. After absorption the position of the e-level is below
the Fermi-level so that the electron is stabilized against flowing away
into the FR, but can build out hybridization states. . . . . . . . . . . 12

3.1 Layer structure and its band diagram. Picture from [19]. (a) Layer
structure of the experimental setup. (b) The band diagram of the
layer structure is shown for two different gate voltages V 1

g and V 2
g .

Increasing the gate voltage changes the number of electrons in the dot. 16

3.2 Measured photoluminescence intensity vs. gate voltage Vg from two
InAs/GaAs quantum dots at nominally 4 K. The colors indicate the
detector counts, the white solid lines mark the X0 to X−1-transition.
Picture: courtesy of P. Dalgarno. . . . . . . . . . . . . . . . . . . . . 18
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4.1 Logarithmic discretization of the energy spectrum of the reservoir.
Picture from [21]. (a) The impurity (red dot) couples to the whole
reservoir where coupling strength does not depend on energy. The
reservoir is logarithmically divided into ever smaller intervals indi-
cated by dashed lines. (b) Each energy interval is represented by a
single energy value which is taken to be the mean value of the interval.
The coupling strength to a discrete energy value is then proportional
to the interval size and therefore decreases for smaller energy values. . 21

4.2 Wilson chain. The original Hamiltonian can be mapped on a semi-
infinite chain Hamiltonian that starts with the impurity and where
each site is connected only to its nearest neighbors by exponentially
decreasing coupling strength. Due to the decreasing coupling strength,
the contribution of new sites goes to zero for large n. . . . . . . . . . 23

4.3 Obtaining a complete basis set of states. Picture from [25]. The
figures show the energy spectra for each iteration. (a) As soon as the
dimension of the Hilbert Space exceeds a certain number MK , only
the lowest MK states are kept at an iteration, the rest of the states is
discarded. (b) The discarded states at iteration n are taken to be (N-
n)-fold degenerate, indicated by |σ〉 that represents the Hilbert space
of one site. After the total number of iterations N a set of complete
basis states remains (shown after the last iteration). . . . . . . . . . . 25

4.4 Spectrum of 100 lowest eigenenergies at each iteration. (a) Energies
are not rescaled. Adding a site with exponentially decaying coupling
strength to the Wilson chain causes the exponential descent of the
lowest eigenenergies. (b) If the energies are rescaled one obtains an
energy flow diagram that shows the fixed points of the system (la-
belled with FO, LM, SC and separated by yellow lines). Different
fixed points correspond to different physical properties of the system. 26

4.5 NRG-discretization for bulk magnetic field. (a) Logarithmic dis-
cretization when no magnetic field is applied. (b) To account for a
magnetic field in the reservoir, the DOS is shifted with respect to the
Fermi-Level and afterwards the intervals indicated by curly brack-
ets are logarithmically discretized. The resulting Wilson chain has
exponentially decaying coupling strength which makes NRG applicable. 30

5.1 Initial and final occupations of the QD, ni
e and nf

e , and their difference
∆ne = nf

e − ni
e as function of εf

eσ, for (a) Ueh < U and (b) Ueh > U .
As the position of the e-level εf

eσ is increased, the initial and final
occupations decrease from 2 to 1 and then to zero. . . . . . . . . . . . 32
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5.2 Occupation of the QD in the presence of an applied magnetic field.(a)
The σ =↑- and σ =↓-population is shown by the blue and purple
lines for three different magnetic fields (see figure legend). In the
regions where the QD is in the LM-regime (initial or final state), the
occupations of the spin-up and down-electrons become unequal as the
B-field increases. However, the total occupation stays the same. (b)
When B becomes & Γ the Zeeman-splitting of the two levels becomes
larger than Γ and tunneling between the upper of the split levels and
the FR is suppressed. Thus, the local moment regime, characterized
by equal occupations of 1/2 for both spin directions of the local level,
ceases to exist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Non-equilibrium time evolution of charge and spin of the photo-excited
electron for T = 0. The curves show the non-equilibrium time-
evolution of spin and charge of the photo-excited electron after the
creation of an e†+h

†
− exciton at t = 0. After the e-level’s total charge

ñe has equilibrated rather fast on a time scale of 1/|εf
σ|, the equili-

bration of the spin-σ populations ñeσ(t) and magnetic moment of the
local electron m̃e(t) needs more time and happens on the time scale
of 1/TK . The long-time limits ñeσ(∞), ñeσ̄(∞) and m̃e(∞) deviate
from their expected equilibrium values of 1, 1/2 and 0, respectively, by
about 3 %. These artifacts emerge probably due to the discretization
procedure needed for NRG, which is rather coarse for high energies. . 34

5.4 Non-equilibrium time evolution of spin and charge of the photo-excited
electron for three different temperatures. Plotted is the time-evolution
of spin and charge for the same parameters as in Fig. 5.3, but for
three different temperatures T � TK , T = TK and T � TK , indi-
cated by solid, dashed and dash-dotted lines, respectively. Charge-
equilibration is independent of temperature and happens on a scale of
1/|εf

eσ|. Equilibration of m̃e depends on temperature only for T > TK .
In this case the spin gets already screened at the Korringa relaxation
time τKor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 NRG vs. analytic results for the B = 0 absorption lineshape. The
blue line shows the absorption spectrum calculated by NRG on a
log-log plot, the inset on a linear plot. On a double-logarithmic scale,
three distinct functional forms become visible, which can be described
by analytic expressions (red dashed lines) for large, intermediate and
small detuning. According to the fixed point perturbation theory
these regions are identified and labelled with the common abbrevia-
tions, FO, LM, SC. Arrows and light yellow lines indicate the crossover
scales T , TK and |εf

eσ|. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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5.6 Absorption curves for vanishing and non-vanishing tunnel coupling of
the initial Hamiltonian. The thick and thin lines show the absorption
spectrum from Fig. 5.5, calculated for finite and zero Γi, respectively.
The thick and thin lines mostly coincide, showing a small difference
only in the FO-regime. Γi = 0 results in a totally unoccupied dot
in the beginning, which makes both tunneling processes of the FO-
regime (tunneling out of the local electron or tunneling onto the dot of
an additional electron) equally possible and results in the analytical
prefactor of 2 · 2Γ = 4Γ. Apart from the different prefactor in the
FO-regime, the lineshapes for Γi = Γ and Γi = 0 show no difference. . 38

5.7 Emergence of the side peak at the LM-FO crossover as Γ is gradually
reduced. We chose to decrease Γ and U in a way that keeps the
absolute value of TK constant, which makes the lineshapes easy to
compare. The side peak that marks the crossover between large and
intermediate detuning becomes more pronounced as Γ is decreased
with respect to U . For frequencies above |εf

eσ| the photon has enough
energy for an electron to tunnel out or onto the dot. At this crossover
suddenly new absorption processes become possible, which result in
different Aσ(ν) and give rise to a small peak. . . . . . . . . . . . . . . 39

5.8 Universality in the LM-regime. The lower left inset shows the line-
shapes for five different values of εf

eσ, indicated by colored arrows
(main figure) or dashed lines (upper right inset). The main figure
shows that the lineshapes collapse onto a universal curve in the LM-
regime TK . ν . |εf

eσ| when they are appropriately rescaled as
indicated at the axis labels of the main figure. In the SC-regime,
T . ν . TK , the exponent ησ depends on εf

eσ via ∆ne and thus the
curves do not collapse here. The upper inset shows the occupations
and Kondo temperatures depending on the position of the local level. 41

5.9 Magnetic-field dependence of lineshape. (a) The magnetic field causes
a split of the local level. Depending on whether the electron is excited
to the lower or upper of these levels (indicated by solid or dashed lines,
respectively) the divergence at the threshold-frequency is either am-
plified or suppressed. (b) Universal dependence of the magnetization
mf

e and the infrared exponents ηlower (solid line) and ηupper (dashed
line) on geB/TK . ησ is extracted from the absorption lineshape Aσ(ν)
for several different magnetic fields and three values of Γ . . . . . . . 43

5.10 Checking Eq. (5.6) Hopfield’s rule of thumb for the singularity expo-
nent ησ for various combinations of |εf

e | and B. The values forming
the solid and dashed lines were calculated with the r. h. s. of Eq. (5.6)
where ∆neσ was calculated with NRG. The triangular symbols show
the values of ησ extracted from power-law fits to the low-frequency
regime of Aσ(ν). The two calculation methods yield the same values
for ησ within 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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5.11 Absorption lineshape calculated for several different temperatures
shown on a semi-log plot. For T < TK the near-threshold diver-
gence is cut off at ν = T and the lineshape changes only slightly. For
T > TK there is still a pronounced peak in the absorption line for
small detuning, whose width is on the scale of the Korringa relax-
ation rate γKor, which is significantly lower than temperature. The
inset shows a blow-up of the absorption peaks and shows how the
lineshapes differ for T . TK . . . . . . . . . . . . . . . . . . . . . . . . 45

5.12 Absorption lineshape at large temperature T � TK . The plot shows
the red-detuned (ν < νmax) and the blue-detuned (ν > νmax) part
of the absorption lineshape. νmax is the frequency where Aσ(ν) has
its maximal value. For ν − νmax > T the lineshape does not de-
pend on temperature. For ν − νmax < T absorption still increases for
frequencies below T , as long as (ν − νmax) . γKor. For red-detuning
(ν < νmax), absorption is possible from thermally excited initial states
which results in an exponential behavior of the lineshape. . . . . . . . 46

5.13 Dependence of the ground state energy on magnetic field. The blue
line shows the ground state energy of the final Hamiltonian, Ef

G, plot-
ted vs. B/TK . The red line shows the analytic expression for Ef

G

which is given by Eq. (5.13). Because of the hybridization of the e-
level with the FR, the behavior of the ground state energy for high
fields differs from −1

2
geB. The inset shows that the behavior of the

ground state energy is quadratic for small magnetic fields below TK . . 48

A.1 Dependence of the magnetization on the g-factor of the leads gc. The
final magnetization mf

e is plotted vs. B/TK , for five different values
of gc, both with zero and nonzero ge. If ge = 0 (dashed lines), the
magnetization depends on the value of gc. Saturation of mf

e occurs for
B-fields much larger than TK . If ge = 2 (solid lines) the magnetization
saturates at field-strengths around TK , its dependence on gc can be
neglected and becomes visible only at high magnification (see inset). . 54
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