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1. Introduction
1.1. Motivation

Scaling concepts provide an invaluable tool in modern Theoretical Physics and are fundamentally
important for understanding universal behavior and phase diagrams of quantum many-body systems.
To date, most of these applications have been to equilibrium problems, where the basic idea of scaling
to focus on the low-energy excitations of the system is most naturally applicable. Non-equilibrium
problems, like systems prepared in an initial non-equilibrium state, or systems in a steady state far
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from equilibrium (like transport processes between reservoirs), are already conceptually problematic
for a scaling analysis since the focus cannot be on the low-energy excitations from the equilibrium
ground state alone. A lot of theoretical work has recently been devoted to developing extension of
scaling ideas to non-equilibrium problems, namely the frequency-dependent renormalization group
[1,2], the real-time renormalization group [3,4], the Coulomb gas representation [5,6] and the flow
equation approach [7,8].

This paper provides a detailed account of the flow equation approach applied to a non-equilibrium
steady state of a quantum impurity model. Concretely, we study the Kondo model with a dc-voltage
bias that produces a stationary current. This non-equilibrium Kondo model is a natural candidate for
our analysis since it (i) can be realized experimentally in quantum dot experiments and (ii) its equi-
librium version is the paradigm model for strong-coupling impurity physics in condensed matter the-
ory. The current paper is a substantial extension of work previously presented in [7]. In particular, we
study in detail the spin dynamics and the behavior of the static spin susceptibility y, in non-equilib-
rium. We extend previous results in the literature, which, for example, allows us to compare the lead-
ing logarithmic corrections in non-equilibrium with the equilibrium result for y,(T).

The experimental motivation for our study is the observation of the Kondo effect in the Coulomb
blockade regime of quantum dots, first realized in 1998 [9-11]. If a quantum dot that is weakly cou-
pled to two leads is tuned into the Coulomb blockade regime such that it carries a net spin, resonant
tunneling through the dot leads to a Kondoesque increase of the conductance up to the unitarity limit
upon lowering temperature [12]. This was first predicted theoretically in [13,14]. The case of small
voltage bias between the two leads, V « T, where Tk is the equilibrium Kondo temperature, can
be analyzed using linear-response theory from the well-understood equilibrium ground state [13,14].

The case of intermediate voltage bias, V ~ T, that matches the linear-response to the large voltage
bias regime, has until recently been out of reach for any controlled theoretical investigation. Very re-
cently, new methods like the scattering state numerical renormalization group [15], the time-depen-
dent density renormalization group [16], and the scattering state Bethe ansatz [17] have been
developed that can access this crossover regime, though much more work needs to be done before
a complete picture will emerge.

In this paper, we study the situation of large voltage bias, V > Tx, where one expects to find
weak-coupling physics and therefore the possibility to do a controlled renormalized perturbation
expansion. Kaminski et al. first developed a scaling picture of the large voltage bias Kondo model
based on the invariance of the current under the RG-flow [18]. Subsequently, Rosch et al. developed
a more sophisticated approach based on frequency-dependent vertices and Keldysh diagrammatics
[1,2,19,20]. In both approaches, decoherence effects due to non-equilibrium spin relaxation pro-
cesses generated by the stationary current play a key role: the resulting decoherence rate
I o< V/In?(V/T) [21] is essential for cutting off inter-lead scattering processes that are not imme-
diately cut off by the voltage bias. The decoherence rate I'. is therefore responsible for actually
making the situation V >> T a weak-coupling problem. Such decoherence effects related to the noise
produced in stationary non-equilibrium states are expected to be generically important in non-equi-
librium problems.

The flow equation approach applied to the large voltage bias regime permits an analysis of this re-
gime that is complimentary to the other approaches mentioned above: Here, the important decoher-
ence effects emerge in a Hamiltonian scaling framework. We will improve the accuracy of some
quantities using this approach, for example regarding the non-equilibrium dynamical spin susceptibil-
ity and the behavior of the static spin susceptibility as a function of the voltage bias. In addition, the
Hamiltonian scaling picture developed here offers insights into non-equilibrium scaling in general.

The basic idea of the flow equation approach [22-24] is to make a Hamiltonian increasingly more
band-diagonal by a suitable sequence of infinitesimal unitary transformations. Band-diagonality is
here measured in terms of the energy transfer of scattering processes, therefore in the flow equation
framework the flowing Hamiltonian H(Agq) at the “scale” Agq only contains interaction matrix ele-
ments with energy transfer | AE | < Ageq. This should be compared with the conventional scaling ap-
proach where one integrates out Hilbert space states with an energy larger than some cutoff Agg, and
then successively lowers this cutoff. The essential idea behind both approaches is to organize a per-
turbative expansion in such a way as to first deal with large energy denominators and to avoid small
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energy-denominators; this sequence allows for stable expansions even when dealing with non-pertur-
bative energy scales like the Kondo temperature Ty.

However, one important conceptual difference between these two approaches is that the flow
equation approach retains all states in the Hilbert space but decouples them, while the conventional
scaling approach actually eliminates high-energy states. If one only focuses on the low-energy physics
in an equilibrium problem, this difference is unimportant and the flow equation approach is consistent
with the conventional RG-flow with the identification Agq x Agrc (explicit examples for this observa-
tion can be found in [25,26]). In a non-equilibrium situation like the Kondo model with voltage bias,
the difference is, however, more fundamental. Fig. 1 schematically depicts the two schemes once the
cutoff is reduced below the scale set by the voltage bias, A4 < V. In the flow equation framework, the
Hamiltonian H(Aq) still describes the stationary current flowing across the dot, while scaling around
the separate Fermi surfaces of the two leads does not allow for energy-diagonal transport processes
across the dot anymore. Therefore, a naive application of the conventional scaling approach purports
to eliminate scattering processes with small energy-denominators | AE| < Agg across the dot, which
violates the spirit of renormalized perturbation theory. We will later see that it is precisely this point
which allows us to understand qualitatively and quantitatively non-equilibrium decoherence in a
Hamiltonian framework.

1.2. Outline

This paper is organized as follows. In Section 2, we define the model and briefly review its conven-
tional scaling analysis. In Section 3.1, we first introduce the flow equation method, and then in part 3.2
apply it to a general Kondo model Hamiltonian with an arbitrary number of leads with or without
voltage bias. This is the core part of our calculation. The resulting equations are then analyzed in equi-
librium in part 3.3, where we reproduce the conventional two-loop p-function. In parts 3.4 and 3.5, we
then specialize to the case of interest in this paper; the Kondo model with two leads and voltage bias
V. Using these flow equations, we work out and analyze the scaling picture of the Kondo model with
voltage bias in Section 4. Section 5 discusses our results for the spin dynamics in non-equilibrium,
which are compared with the well-known equilibrium behavior at non-zero temperature. In particu-
lar, Sections 5.3 and 5.4 contain the key new results of this work regarding the spin dynamics and the
static spin susceptibility in non-equilibrium. A summary of results and conclusions is presented in
Section 6. Appendix A contains important commutators and normal-ordering results that are fre-
quently needed, and Appendix A.3 contains details of the numerical solution of the flow equations.

2. The Kondo model with voltage bias
2.1. Model

We are investigating a quantum dot that can be modelled by a spin-1/2 degree of freedom S cou-
pled to conduction electrons in a left (/) and a right (r) lead with no external magnetic field

H= Z(ep — Mq)Chpo Capr + Z]a/a Z§ S(ap)(ap)- (1)

apu aa P'p

;" V73

Fig. 1. Left: Conventional scaling picture where states are integrated out around the two Fermi surfaces with voltage bias V
(here depicted for cutoff Agc < V). Right: Flow equation approach. Here, all scattering processes with energy transfer
| AE | < Ageq are retained in H(Ageq).
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Here, as,a = I, r label the two leads, ps, p are momentum labels, and the chemical potentials are given
by u,,=+V/2. The conduction band electron spin operators are defined by Sup)@ =
%Zmbﬁl,p,aﬁa,;cap,;, where ¢ are the Pauli matrices. The couplings J,, describe the exchange interaction
with the localized spin degree of freedom, with J,, = J,; for hermiticity. If the quantum dot can be de-
scribed by an Anderson impurity model with tunneling rates I';, from the left/right lead, the coupling
cgergstants of our effective Kondo model are related by ]lzr :],.J,r and ],,/Jrr = F,/I“T [18].‘ We define
r'=TI,/T, as the asymmetry parameter of our model. We will derive the scaling equations without mak-
ing any of the above assumptions so that also more general complex quantum dot structures can be
investigated (e.g., in double dot systems the relation J2 = J,J,, is not necessarily fulfilled). We assume a
linear dispersion relation leading to a constant conduction band density of states p and introduce the
dimensionless coupling constants g, = pJ;, g, = pJ,, and g, = pJ,, (t for transport). The band cutoffis de-
noted by D and we are only interested in the universal behavior on energy scales much smaller than D.

2.2. Conventional scaling analysis

Below, we will sum up the results of the conventional scaling analysis for the non-equilibrium Kondo
model in the spirit of Fig. 1, that is reminiscent of Anderson’s “poor man’s scaling” in equilibrium [27].
The derivation of the one-loop results is straightforward, see [18,28]. Upon lowering the cutoff Arg
around the two Fermi surfaces, but while Agg = V still holds, one finds the equilibrium scaling equations

g, 5

dlnARG =8 - &> (2)
g, o

dlnARG - _gr _gtv (3)
dg, _

dln ARG - 7gt(gl +gr)7 (4)

plus third-order terms in the coupling constants. Once the cutoff is reduced below the voltage bias,
Agc <V, the strong-coupling scaling of the coupling g, stops since there is no sharp Fermi surface
for transport processes on this scale. Similarly, only the inter-lead scattering processes still contribute
to the scaling equations of g; and g,:

g,

din A~ 8 ©®)
dgr _ 2

dln ARG - _gr7 (6)
dg, _

din A~ @)

We now assume that the Kondo model can be derived from an underlying Anderson impurity model,
and one easily solves the equation for g, down to the infrared limit [18]

o, 1

8 =00 = 1T v/ T

8)
where Tx = Dexp(—1/g, + g,) is the Kondo temperature of the equilibrium model (i.e., for V = 0). The
IR-coupling (8) determines the current I across the dot and a conventional second-order Keldysh cal-
culation in the renormalized quantities yields [18] I = (37t/4)Vg?(Agc = 0). This leads to perturbative
result for the differential conductance G(V) valid in the limit V >> Tx:

312
CV)=Gi—F . 9)
16In°(V/Tx)
where
2 2
Guzzi ANy 2 4 (10)

h (ry+r,)> h A+nQd+rT)
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is the conductance in the unitarity limit.

Notice that there is no IR-cutoff mechanism for the inter-lead scattering processes in the scaling
equations (5) and (6) for g, g,, which therefore yield strong-coupling divergences even for large volt-
age bias [28]. However, Rosch et al. have pointed out the importance of spin relaxation processes due
to the stationary current [21]. Second-order perturbation theory in the renormalized quantities yields
the decoherence rate

%

Tt ¢ ——— 11
"IV (an

which cuts off the inter-lead strong-coupling flow and eliminates the possibility of two-channel Kon-
do physics in Kondo dots that can be derived from an underlying Anderson impurity model. The obser-
vation that the non-equilibrium Kondo model becomes a weak-coupling problem for I'ye > T has
then been exploited to derive a number of physically relevant quantities like the conduction electron
T-matrix, the non-equilibrium magnetization and the conductance both with and without an external
magnetic field [1,2,19,20].

3. Flow equation analysis
3.1. Flow equation method

The basic idea of the flow equation approach [22-24] is to make a many-particle Hamiltonian
increasingly more diagonal through a sequence of infinitesimal unitary transformations. Such a flow
can be generated by the differential equation

dH(B)
S5 = n(B).H®) (12)

with some suitable antihermitean generator #(B); Eq. (12) then generates a one-parameter family of
unitarily equivalent Hamiltonians H(B). We set H(B = 0) as the initial Hamiltonian and want H(B = o)
to be the final diagonal Hamiltonian. In order to generate a stable expansion, it is of fundamental
importance to properly deal with energy-scale separation during the flow, similar to conventional
scaling approaches. For small B (initial phase of the flow), we will decouple modes with large energy
differences, while later for large flow parameter B we will deal with increasingly more energy-diago-
nal processes. This sequence of transformations is generically generated by the “canonical” generator
suggested by Wegner [22]

1(B) ©[Ho(B), Hint(B)), (13)

where Hy(B) is the diagonal part of the Hamiltonian H(32 and Hin(B) its interaction part. The flow
parameter B then has the dimension (Energy) 2, and Agq 4 B-1/2 is the flow equation energy scale that
expresses how energy-diagonal the Hamiltonian H(B) has become. Interaction matrix elements with
energy transfer | AE | 2 Agq are eliminated in H(Aq), while processes with | AE | < Agq are still re-
tained. We will use the notation with B or Agq interchangeably.

The flow equation approach has been successfully applied to numerous equilibrium many-body
problems, like dissipative quantum systems [29,30], the two-dimensional Hubbard model [31], low-
dimensional spin systems [32], and strong-coupling models like the Sine-Gordon model [25] or the
Kondo model [26,33]. Due to its intrinsic energy scale separation, the flow equation method generates
the same IR-scaling flow as conventional renormalization group methods, with the identification
Afeq o< Agrc. Notice that in certain strong-coupling problems [25,26] the flow equation approach even
allows a controlled systematic expansion in the strong-coupling phase where conventional scaling
leads to a strong-coupling divergence.

The main conceptual difference between flow equations and the conventional scaling approach is
that in the flow equation approach the Hilbert space remains unchanged while modes become decou-
pled, whereas in the scaling approach high-energy modes are successively integrated out, compare
Fig. 2. This allows one to evaluate correlation functions on all energy scales within the flow equation
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A

initial

H{ A fcq)
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Fig. 2. (a) Schematic picture of the conventional scaling approach where states with energies [Arc — d4rc, Arc] are integrated
out. (b) Flow equation approach. Here, all scattering processes with energy transfer | AE | X Ay are eliminated in H(Agq). The
shaded areas in (a) and (b) schematically indicate non-vanishing interaction matrix elements.

framework [26,29], however, for non-equilibrium problems this conceptual difference will turn out to
be even more fundamental as we will see later (compare also Fig. 1). Applications of the flow equation
approach to non-equilibrium initial state problems have been discussed in [8,34,35]. In the sequel, we
will explain in detail the flow equation analysis of the stationary non-equilibrium problem provided
by the Kondo model with voltage bias.

3.2. Kondo model

For an interacting many-body problem like the Kondo Hamiltonian (1) the flow equation approach
generates higher and higher-order interaction terms in the commutators (12) and (13). Similar to a
conventional scaling analysis, the flow therefore needs to be approximated by an expansion in a suit-
able expansion parameter that remains sufficiently small during the entire flow. In our problem, we
will use the running coupling constants J(B) as our expansion parameters [36] and perform a consis-
tent systematic expansion in orders of J(B). No further input except this systematic expansion is re-
quired to find both coherent and decoherence effects in our non-equilibrium problem in a
systematic controlled expansion. Since we are performing unitary transformations (12) which do
not explicitly depend on the ground state of the system (though implicitly as we will see below), it
is actually advantageous to first derive the differential flow equations for a general Kondo Hamiltonian
with couplings to some arbitrary number of leads (with arbitrary chemical potentials). We introduce a
general index t labelling the conduction band electrons and write

H=> €+ JuS et (14)
t,o tt

with J,; =], for hermiticity. This will allow us to study both the equilibrium model without voltage
bias and the non-equilibrium model on the same footing. In the equilibrium model, there is only one
lead, therefore t = p with electron momentum p, whereas in the Kondo model with voltage bias the
label t is a multi-index labelling both lead left/right and electron momentum, t = (a,p) with a =1, r.

3.2.1. H(B) and generator 1(B)
During the flow equation procedure new interaction terms are generated that are not present in the
initial Hamiltonian (14). We will neglect the newly generated normal-ordered terms in O(J*) and high-
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er in H(B), which can only affect our scaling equations for the couplings J(B) in order J* and higher
(since the commutator (12) always increases the order by at least one). We will later see that this or-
der of the flow equation calculation is the minimum order necessary to obtain a controlled expansion
in the sense that the flowing coupling constants remain finite for V > Ty. Higher order calculations
beyond our present work can be understood as corrections to the results presented here.

Within our order of the calculation, the flowing Hamiltonian can be parametrized as

HB) =" €l + > JoeB)S - See +1 > Kerwu(B) : S+ (S x Suu) =, (15)
o tt

ttuu

where Kyyy(B) will turn out to be the only newly generated term in O(]z). It obeys
Kytwu(B) = =Ky wy (B) for hermiticity and initially Ky¢yy(B=0)=0. In (15), :...: denotes normal-
ordering with respect to the ground state of the system without Kondo impurity. We use the nor-
mal-ordering procedure as introduced in [22] (for more details see the appendix). Notice that we
do not need to explicitly normal-order the term proportional to J,, in (15) since it automatically ap-
pears in its normal-ordered form.

The generator of the infinitesimal unitary transformations is given by (13), where the diagonal part
of H(B) = Hp + Hin(B) is the conduction band kinetic energy Hy = Zt,aﬁtCIme- This leads to

n= Zni’]t)g Spe +1 Z 7’]5/23”/” : § . (gt’t X gu’u) : (16)
tt ttuu
where
775'1[) = (ev — €)]prs (17)
N2y = (€0 + €w — € — €)Kerun- (18)

Here and in the sequel, we will usually suppress the explicit B-dependence of all parameters and cou-
pling constants in our notation.

3.2.2. Terms in O(J) and O(J*)

In order to work out the unitary flow of the Hamiltonian (12) we now need to calculate the com-
mutator [#(B), H(B)]. This is the main calculational problem of the flow equation approach. For the cur-
rent problem we will now proceed order by order in the coupling constant J with this calculation.

Let us first evaluate [(B), Ho]. This is straightforward and leads to

1. Hol = (& — €S See+1 Y (€c+ €u— €0 — €y =S+ Goe X Swa) = - (19)

t't ttu'u

Next, we need to find [1(B), Hi:(B)]. We first identify its contributions in order J?, which can only come
from

Co= |DonWS See Y JuuS - Suu - (20)
t't u'u
The basic commutator [§ -S4, S - Swu] is worked out in the appendix and given in (116). Inserting it in
(20) yields
Co=i Y (€ = €letduu : S+ Goe xS : +Y_(€r + € = 2€) e (n(V) = 1/2)8 -5t

t' tuu t'tv

3 "
—+ 16 Z (€0 4 € — 2€))] ]y : CpyCior o

ttv,a

plus an uninteresting constant that does not contribute to the further flow. Here we have defined the
expectation value with respect to the non-interacting ground state

n(v) (¢t cu), (22)
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which is just the occupation number. No summation over « is implied in this definition.
Comparing coefficients in (15), (19) and (21), we find the following differential flow equations:

d][’t

ap - & - €)2Jec+ (€ + € = 26)] (V) = 1/2) + O(P), (23)
v
th’t,u/u _ ZK 0 3 24
S — (e + € — € — @) Keewa — (€6 — @l + 00?). (24)
From (21), one would conclude that a new term
3D Veu(B) €yt : (25)
et o
is generated in the Hamiltonian H(B) that has not been included so far
dvy
= Z €0 + € — 26 ndu + O0?). (26)

However, we will see below that this contribution vanishes identically due to symmetry reasons (in
fact, it only appears in O(J*)).

3.2.3. Terms in O(J°)

Our goal is to derive the g-function of the Kondo model up to two-loop order within the flow equa-
tion framework. This implies that we need to calculate the terms in order J> that contribute to the dif-
ferential equation (23) for J,,(B). Notice that our differential equation for K, (B) generates this term
(which is not present for B = 0) in order J*. Also notice that we do not need to calculate its O(J*)-con-
tribution because this can only feed back into the differential equation for J,,(B) in O(J*). We are there-
fore left with identifying the terms with structure S - 5, in the normal-ordered commutators

Cy = {Z NS Suwd Y Kuvww 1S+ Sy X S ;] (27)
v vw.w
and
Cy = { > 0w S G X Sww) Z JuuS suu} (28)
v yw.w
We can combine these two contributions into
G = Z(Ew — € — €y + € — €y + Ew)]u’ul<v’v,w’wi[§ “Su,: S- (§V'V x §W'W) . (29)
The commutator [§ - Swu, - S. (Syv % Sww) 1] is worked out in the appendix and given in (122). We only

need the contribution with structure S - 5., and inserting yields

Cs =%Z(2eu — 26y + € — )8 Sue)yu Kt — Keew) ) (1 = n(u)) +n(u) (1 —n(u))). (30)

We have now derived all the necessary terms to write down the flow equations to the desired order.

3.2.4. Flow equations
We include the term (30) in the differential equation (23) and find the following set of flow equa-
tions that completely determine the flow of the Hamiltonian H(B) up to the resp. order in J:

ngr —(€r —€) ]r’t +Z €+ € —26))]u ], (N(v)—1/2)

+§ Z(zeu = 26w + € — € u(Kuwee = Keewa) (@) (1 = n(w)) +n(w)(1 -n()) +0(*),  (31)

dKf’t u’u

~dB — (€ + €w — € — €0)* Kerwu — (€w — € pfuu + OP). (32)
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In order to complete our analysis, we finally need to show that the terms V. (B) from (25) indeed van-
ish to the required order. This is straightforward by solving (31) in linear order

Joe(B) = (Ju((B = 0) + O(2))e Bee—a” (33)
and inserting in (26)
dVy; 3 —B((€y —€v)*+(ev—€r)?) 3
= 1s D Jen(B=0)),(B=0)(er + € — 26,)e +00°). (4)
v

Since we assume a linear dispersion relation and initial coupling constants J,,(B = 0) that are constant
(at least in the low-energy limit), we only need to know

S (6 + € - 2e,)e B e g, (35)

v

which holds up to possible band edge effects that do not influence the universal low-energy physics
for Tx < D. Therefore

dvr/t 3
=00 (36)
and the V,.-terms do not influence the flow equations (31) and (32) in the orders that we are inter-
ested in. In fact, a more detailed analysis shows that even the O(J*)-terms on the rhs of (36) vanish;
the first non-vanishing contributions arise in order J*.

Eqgs. (31) and (32) constitute the main computational results of this paper and will now be analyzed
in various settings. Notice that they apply for a general spin-1/2 multi-lead Kondo model, where we
did not yet have to specify whether the system is equilibrium or not. The derivation of these equations
followed from a straightforward application of the canonical flow equation framework as an expan-
sion in powers of the flowing coupling constants. Also notice that the linear terms in (31) and (32)
generate the canonical exponential decay of the coupling constants (33) that make the Hamiltonian
H(B) increasingly diagonal in energy space (see Fig. 2) with the identification Arq = B™'/2.

3.3. Equilibrium model

As a consistency check and in order to gain some insight into the system of flow equations, we now
first analyze the equilibrium Kondo model at zero temperature T = 0. Here, the index t labelling the
conduction band electrons in (14) only consists of the electron momentum and we have one exchange
coupling J. We use the following approximate parametrization of the running couplings as a function
of B:

Plyp(B) = g(B)e P, (37)

where g(B) is determined from the flow in the IR-limit €, = €, = 0 (we choose € = 0). This parame-
trization is asymptotically correct in the IR-limit and we can identify g(B) with the dimensionless run-
ning coupling constant of the conventional scaling approach.

Inserting the parametrization (37) into the flow equation (31) for ¢y = €, =0,

00 0 ]
%: g / dee 7 (-20)(n(e) ~1/2) + / de /0 de2(e — €)ge P (Kue o0
- I<00.6’6)7 (38)

where we have inserted the zero temperature occupation numbers
n(e) = O(—e). (39)
Eq. (38) is integrated starting from B = D™, where D is the conduction band width (UV-cutoff). We

also need to the flow of the K-terms that are initially not present in the Hamiltonian but generated
during the flow: from (32) we deduce
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dKf/e,OO _
B =0 (40)
dli;’gy‘ = —(€ — €)*Kooe — g2 B (¢ —€) (41)

Eq. (41) can be solved easily
B
Kooee(B) = (€' — €)e-Pe / dB g2(B). (42)
0

From the scaling equation in second order for g(B), one obtains the well-known slow logarithmic in-
crease during the flow, therefore the integral in (42) is dominated by large values of B' and one can
write

Kooce(B) = —(€ — €)e -9 B(g?(B) + 0(g)). (43)
Putting everything together in (38) and performing the remaining integrations, we obtain

dg g g  0(g

dB 2B 4B B

In terms of the scaling parameter Agq = B~'? with dimension energy, one can alternatively write

dg — _peq)
dll‘l Afeq - 7ﬁ (g) (45)

(44)

with the correct equilibrium p-function to two-loop order [37]

1
pe(g) =g - 58 +0(gh), (46)

As expected for the equilibrium model, it therefore makes no difference whether one derives the
IR-behavior with respect to the conventional scaling parameter Azg or the flow equation scaling
parameter Agq (see Fig. 2). In the next section, we will explore how these results change in the
non-equilibrium situation.

3.4. Non-equilibrium model (general parameters)

For the non-equilibrium setting with voltage bias V between the left and right lead the label ¢t in
(14) is a multi-index t = (a,p) labelling both left/right lead (a = I,r) and electron momentum p. We
choose the Fermi energy of the left lead to be +V/2 and of the right lead to be —V/2, therefore we have
a current flowing from left to right. For now we will only look at zero temperature T = 0.

In our flow equations (31) and (32), we have to differentiate between the various scattering pro-
cesses between the leads:

] po
% = — (€ — &) Jwpyan + D D (€ + €= 26 wpbavayap) (M6(@) — 1/2)
b=lr q
1 /
3 > D (26— 2¢€q + € — ) iygyvg Koo, @pan — Kawa.oaon) (@)1 —n(a)
B b=lr €9
+1p(q)(1 -1y (q))) +0(*) (47)

for a’,a=1I,r and

dK oy '
(@p)(@p).(b'q')(bq) _ 2 3
dB = (& + € — & — €) Kipyap warve) — (€0 — €l amanvgrog +0U7)  (48)

for b',b,a’,a = I, 1. The effect of the voltage bias enters here only through the different ground state
expectation values in the left and right lead

n(€) = O(—€ +V/2), ni(€) = O(—€—V/2). (49)
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3.5. Non-equilibrium model (J2 = J,J.,)

Eqgs. (47) and (48) can be simplified considerably if the Kondo model can be derived from an under-
lying Anderson single impurity model. As explained in Section 2.1, the coupling constants then fulfill
the relations J2 = J,J,, and J,/J,, = I'}/T» = r. Notice that the impurity physics is invariant under the
exchange r < 1/r since this just amounts to an exchange of the two leads. One can verify easily that
the impurity spin only couples to the following linear combination of left and right lead fermion
operators

def
f po —

! Crpo + ! C (50)
Vitr VT

which obey the usual anticommuation relations {fy, fp*,ﬁ} = Oppdp. The flowing Hamiltonian then
takes the form

HB) =" uflfox + > JppB)S Spp +1 > Kppga(B) : S (Spp X Syq) - (51)
p.o p'.p P'.p.a.q

with the conduction band spin operators Sy, =13, ,f},G.fps defined for the f-operators. Egs. (47) and
(48) simplify to the following form where the external leads do not appear explicitly:

dl, 1
ﬁ = — (€ — EP)ij’p + Z(Ep’ +€p — 2€0)] el p(Np(q) — 1/2) + 3 Z(Zeq —2€q + € — €p)
q q.4q

% Jyo(Keapp = Kppaa) (M(a) (1 = p(@) + n(q) (1 = 1(q))) + OU"), (52)

A o
% =—(€py +€ — € — Eq)zKp’p,q’q —(€¢ — €)yplgq + o). (53)

Here we have the initial condition J,,(B = 0) =J; +J,, and the zero temperature Fermi distribution
function for the f-operators

ng(p) = UJJPQ

= m”r(P) + ﬁ”l(P) (54)
0 €>%.

=1 6l <3, (55)
1 €< —%.

In the sequel, we will restrict ourselves to the analysis of (52) and (53), that is we only investigate a
Kondo model that can be realized from an underlying single Anderson impurity model.

4. Scaling picture of the Kondo model with voltage bias
4.1. IR-parametrization

Egs. (52) and (53) contain the full information about the Hamiltonian flow to the resp. order in the
coupling constant. We will analyze these equations both numerically and analytically to understand
the scaling behavior of the non-equilibrium Kondo model. In order to get some first insights, we first
perform an analytical analysis that is based on some additional approximations. However, we will la-
ter see that these approximations are justified with very good accuracy by comparison with the exact
numerical solution.

The flow equation differential equations are connected with conventional scaling equations by
using an approximation of the following form:

Plyp(B) = U (Be Hr =), (56)



1116 P. Fritsch, S. Kehrein/Annals of Physics 324 (2009) 1105-1135

which parametrizes the couplings i 1r1 terms of the dimensionless running coupling constants Uz (B) on
an averaged energy scale € f(epf +¢€p)/2. (In fact one can choose any energy in
[min(ep, €y ), max(€p, €)] with excellent accuracy.) This ansatz solves the linear part of the flow equa-
tion (52) and allows us to perform the summations over q in closed form. One finds

% u_2 1 elea(fepfvm2 + 1 e—ZB(—€p+V/2)2 —Z/de de (€ — € )2u 672B(fq/—5q)2
dB  2B\1+ 1+r1 e a7

X/O dB' uy (B')ug (B)ns (q')(1 — 1¢(q)).- (57)

In the cubic term, a whole range of values qr,q contributes to the integral where the product of the
Fermi functions is non-zero. Again with very good accuracy, we can replace the couplings ug, uq under
the integral by an average over the window [—V/2,V/2] that is responsible for transport,

u(B)% = deguiy(B). (58)

The integrals over de, and de, can then be performed in closed form and one arrives at the following
differential equation:

dup o u127 (B) 1 —2B(—€p—V/2)? 1 —2B(—€p+V/2)? / / r+r!
%?*23673 SRS P L > @A/wWBmmeETﬁFﬁ

1 o2
+W(2e 28V +\/2nBVerf(\/27BV))>‘ (59)

We first use this to derive a closed equation for u,(B) from (58) by averaging over p:

du, 12(B) V& ut ) r+r!
@~ 28 rveffWV # J, < (e

202 4 \/2nBVerf(\/ﬁV))> (60)

e
Of particular importance are also the running coupling constants at the left and right Fermi surfaces
w(B) = te,v2(B), Uy (B)E ity v2(B), (61)

which will turn out to be relevant for the behavior of the quasiparticle resonances (Kondo peaks) and
which determine the phase diagram since they correspond to extremal values of u,(B = o) as a func-
tion of B (see Section 4.5). Their flow equations follow immediately from (59):

du, UZ(B) 1 1 _opy2 / r+rl
R ( esz>,4Bz / dB u(B')u:(B') x (W

B~ 2B \T+r 7 47
1 ~2BV?
TaTaarn 2 \/ZnBVerf(\/ﬁV))), (62)

du, u2(B) [ 1 1 I , r+r!
‘dB ~ 2B <1+r+1+r*1‘3 > 4Bz/d3u, Jur(B) ((l +r)(1+r1)

1 a2
+W(2e LS ¢2n3Verf(¢2TBV))>. (63)

The three differential equations (60), (62) and (63) are one of the key results of this work and allow us
to describe and understand the scaling behavior of the non-equilibrium Kondo model [39].

4.2. Scaling analysis

We will first analyze (60), (62) and (63) in the initial phase of the flow where Agq > V. As expected,
all three differential equations coincide and one finds for a = [, r, t:
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du,  u? u>  O(ud)

dAfeq T Afeq 2Afeq Afeq '

(64)

Here we have used the approximation f(f dB u2(B') = Bu2(B), which holds plus correction terms in
higher order due to the slow logarithmic flow of u,(B). The initial behavior of the running coupling
constants is therefore determined by the equilibrium g-function (46) as expected. With our initial con-
dition u(B =0) = g, + g, this also agrees exactly with the scaling equations (4) from the analysis of
Kaminski et al. [18] (with the identification Arg = Afeq)-

Once the flow parameter is smaller than the voltage bias, Arq < V, the scaling equations take a dif-
ferent structure. The effective transport coupling obeys

du, 3L T 1

= ———, 65

The AN 2T+ A+ ©
and the couplings at the left and right Fermi surfaces, resp.,

duy 1w , V \/E 1

=- —— Ul o, 66
Qg 1477 Agg M AR NZA DA+ (66)
du, 1 u? , V \/E 1

- Ul m——————. 67
Aheg . 117 M2 V2O rna D (67)

feq

One notices that the strong-coupling growth of the average transport coupling u; stops when Agq ~ V
due to the energy difference of the left and right Fermi surfaces. On the other hand, the couplings at
the left and right Fermi surfaces, u; and u,, still exhibit the typical Kondoesque strong-coupling behav-
ior in quadratic order on the rhs of (66) and (67). This reflects the inter-lead scattering processes from
the left lead back into the left lead, or likewise for the right lead: such processes still see a sharp Fermi
surface for all Agq < V. It is this observation that has led to the prediction of 2-channel Kondo physics
in the Kondo model with voltage bias based on a 1-loop calculation [28].

However, different from the experience in equilibrium models the third order terms in (66) and
(67) can become more important than the second-order terms even for small coupling constants: this
is due to the more strongly growing V/A?eq terms as compared to the conventional 1/4gq behavior in
quadratic order in the infrared limit Agq — 0. Since the third-order term has a positive sign, it coun-
teracts the second-order term and can avoid the strong-coupling divergence. Figs. 3 and 4 show the
numerical solution of (60), (62) and (63) for symmetric (r = 1) and asymmetric Kondo dots (r = 2).
One can see that indeed all couplings remain finite for sufficiently large voltage bias which shows that
there is no 2-channel strong-coupling divergence.

Before proceeding with analyzing the resulting phase diagram in more detail, we will first get some
more analytical insights into the solution of the scaling equations. The solution of (65) is
straightforward

U,

Ut (Afeq) = ——r—r—" (68)
‘ o kY4 1 + Frel//lfeq
Here,
def 2 1
T € V2mu2V (69)

where u, is the running coupling constant on the scale Agq = V (since we can safely neglect I'.;/V in
the weak-coupling regime). From the solution of (64), we then find
1
U, =U(Apq=V) = n(V/To (70)

with the Kondo temperature defined from the equilibrium model

Tx = DMe*]/(glﬁgr)_ (71)
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Fig. 3. Universal curves for the flow of u; (equal to u,) and u, for symmetric Kondo dots (r = 1). Results are shown for various
ratios V/Tx labelling the curves from top to bottom.
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Fig. 4. Universal curves for the flow of u; (full lines), u, (dashed lines) and u; for asymmetrically coupled Kondo dots with
r=TI/T’; = 2. Results are shown for various ratios V /T labelling the curves from top to bottom. Notice that u; and u, coincide
for V = 0, therefore only u; is shown.

In order to understand the implication of the flow of u; on u; and u; it is convenient to first rewrite (66)
and (67) in the following equivalent form:

du, u? dlnu;
dinAgq 14711 U Ageq” (72)
2
du, __u N dInu, (73)

dinAeg 147 dIn A
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Since
i 2 e "
this implies
#lﬁfeq - <_ 1 -11-111"] * % Afef'r:lrrel>’ )
ainn (T 2w o) "

These equations show a remarkable transmutation of the third-order terms in the running coupling
constant into linear terms once Agq < I're. This transmutation is possible due to the Af’efl—terms in
(66) and (67) (or, equivalently, due to the B~'/>-terms in (62) and (63) as opposed to the equilibrium

B’l—terms). For Agq > I'rel, these linear order terms are negligible and u;, u, exhibit typical Kondo-
esque strong-coupling scaling. In the later phase of the flow, the couplings become small again with

U(Areq), Ur(Areq) < Agly if they are not already too large on the scale I'.
Let us analyze the meaning of this scale I',;. We have already quoted the result from Kaminski et al.

[18] that for V > Ty the current I is to leading order given by (9)
_e’3m? 1

B R (=

(77)
From (69), we can see that ', o< I with a proportionality factor independent of V, T and r. It is there-
fore natural to associate I'; with the spin decoherence rate generated by the shot noise proportional
to the current. The third-order terms in the scaling equations therefore describe spin decoherence due
to the non-equilibrium current that cuts off the strong-coupling behavior of the inter-lead scattering
processes. This observation in our Hamiltonian scaling framework is in agreement with the work by
Rosch et al. [20] that such non-equilibrium decoherence processes eliminate the 2-channel strong-
coupling divergence in the non-equilibrium Kondo model with J2 = J,J,,.

We will next use the flow equation analysis to study quantitatively the interplay between
coherent (equilibrium) strong-coupling processes and decoherence generated by the non-equilib-
rium current in a systematic expansion in terms of renormalized parameters. Before proceeding
along these lines, it is worthwhile to point out that decoherence acts differently from temperature
in the Kondo scaling equations: decoherence and strong-coupling physics are in competition in
(75) and (76), whereas non-zero temperature T already eliminates the strong-coupling term itself,
eg.

e (78)
for the equilibrium Kondo model (37) in both the conventional scaling and the flow equation ap-
proach. We would also like to mention the important question of how one can understand within
the flow equation framework that the third-order terms in the scaling equations are really associated
with spin decoherence. We will postpone the answer to this question to the discussion of the dynamic
spin correlation function later in Section 5.3, where we will work out this correspondence in detail.

4.3. Weak- and strong-coupling regime

From the scaling equation for u;, u, and u;, we can now determine the scaling behavior of the non-
equilibrium Kondo model: that is we determine the regions in the parameter space where all coupling
constants remain small (weak-coupling regime) or where at least one the coupling constants becomes
large (strong-coupling regime). Since only u; and u, can continue to grow below Arq ~ V according to
(75) and (76) (as opposed to u;), these regions are determined by the behavior of u; forr =1/, > 1,
or by the behavior of u, for r < 1. Because of the trivial exchange symmetry r — r~', we can focus on
r > 1 below without loss of generality.
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From (75), we can deduce an (approximate) condition for u;(Afq) remaining small during the entire
flow

ul(rrel) 1

T4r1 572 (79)

In the notation of the original Kondo Hamiltonian (1), this is equivalent to the inter-lead scattering
processes being not too large on the scale I':
1
RS 5 (80)

We can approximately rewrite this condition in terms of renormalized quantities by explicitly inte-
grating up the quadratic part of (66). One finds

ul(rrel) _ 1 (81)
-1 r-1
Tty (%)H +In <%>
leading to
147!
(%) o ke 2)
Tk In*(V/Ty) A+ +171)

Comparison with the numerical solution below shows that (82) can be used as an approximate con-
dition for the weak-coupling regime for r > 2. Before proceeding with the numerical solution of the
full differential equation for u;, one can deduce some important analytical insights from (82): the “crit-
ical” value of the voltage bias V /Ty increases for increasing values of the asymmetry r. For larger val-
ues of r, this is due to the fact that decoherence is proportional to the current, which is suppressed for
asymmetric coupling to the leads: I/T is maximum for r = 1. The third term on the lhs of (82) thus
reflects the r-dependence of the unitarity limit of the conductance G, in (10).

The above (approximate) analytical results are confirmed by the exact numerical solution of the full
differential equations (62), (63) and (60) for the running couplings u;, u, and u,. The definition of
“strong-coupling regime” versus “weak-coupling regime” is necessarily not unique since we expect
a smooth crossover between these regimes. The definition used in our analysis is that in the weak-cou-
pling regime the couplings u; and u, remain smaller than 0.75 during the entire flow, whereas in the
strong-coupling regime at least one these coupling becomes larger than 0.75. Choosing a somehow
different value than 0.75 (e.g. using 0.5 or 1.0 instead) does actually hardly change the crossover line.
The actual value of 0.75 is motivated by the observation that then the T-matrix reaches the unitarity
limit at the resp. Fermi surface in renormalized second-order perturbation theory. This indicates the
breakdown of our perturbative expansion in the running coupling constant and therefore limits the
region where our method is reliable. The numerical results for this crossover line between strong-cou-
pling and weak-coupling regime are depicted in Fig. 5.

Fig. 5 shows that the strong-coupling regime extends to remarkably large values of the voltage bias
for asymmetric Kondo dots (as we have already qualitatively deduced from (82)). By comparison with
the flow diagrams in Figs. 3 and 4, we can see that while there is no 2-channel Kondo physics (in the
sense of a 2-channel strong-coupling divergence), the crossover to the strong-coupling regime is
essentially given by 1-channel Kondo physics for asymmetric Kondo dots: the couplings at the more
strongly coupled Fermi surface dominate the Kondo impurity physics.

It should be emphasized again that one expects a smooth crossover between weak-coupling and
strong-coupling regimes. While this issue cannot be definitely answered using the weak-coupling
tools here, there is no physical reason to expect anything else than a smooth crossover. Notice that
for the equilibrium Kondo model at finite temperature we do know that there is a smooth crossover
between weak- and strong-coupling regimes. In this context, the question arises what physical prop-
erties actually distinguish the strong-coupling regime from the weak-coupling regime. We will ad-
dress this question in detail later when we discuss the behavior of observables: suitable
observables behave quantitatively different in these regimes and make the weak-coupling vs.
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Fig. 5. Scaling picture of the non-equilibrium Kondo model as a function of asymmetry r = I';/I'; and voltage bias. The dashed
line separates the weak-coupling regime from the strong-coupling regime (deduced from the full numerical solution, see text).
The dotted line is the approximate analytical result (82).

strong-coupling distinction both useful and relevant for the interpretation of experiments. For exam-
ple in the strong-coupling regime, the local density of states remains nearly pinned to its Friedel value
at the more strongly coupled Fermi surface, and it only decays once the voltage bias is well into the
weak-coupling regime.

4.4. Expansion schemes and higher orders

We have already mentioned the remarkable transmutation of a third-order term in the running cou-
pling constant into a linear term, compare e.g. (66) and (75) for u;(Asq). Decoherence therefore essen-
tially makes the running coupling irrelevant with a canonical scaling dimension +1/2 for Afq < el
This teaches an important lesson regarding the well-established notion that higher-order terms in
the running coupling constant cannot change the results of lower order calculations qualitatively if
the running coupling constant remains sufficiently small during the flow (i.e., in the weak-coupling
regime). It was exactly this observation which eliminated the possibility of 2-channel Kondo physics
due to diverging inter-lead scattering processes.

The technical reason for the transmutation in our non-equilibrium model is the existence of the
dimensionful parameter voltage bias V, which allows terms like V/A?eq alongside the conventional
1/Agq-terms in the scaling equations (65)—(67). Therefore, the possibility of such a transmutation al-
ways arises whenever we have dimensionful parameter in a scaling problem, which should be of
importance also for analyzing other problems and interpreting the results of lower order calculations.
The unavoidable general conclusion is that the expansion order by order in the running coupling con-
stant is not a systematic expansion anymore, unless we can show that no such “transmutation” occurs
and changes the results. Notice that for example the equilibrium Kondo model at finite temperature
contains the dimensionful parameter temperature T, which in fact also leads to transmutation in its
third-order terms.[38] However, already the second-order term loses its strong-coupling behavior
at sufficiently large temperature according to (78), and therefore no qualitative changes occur due
to the third-order terms.

It is worthwhile to mention again the conceptual difference between the flow equation framework
and the conventional scaling analysis around the two Fermi surfaces, compare Fig. 1. For Azc < V the
scaled Hamiltonian has no “knowledge” of the energy scale voltage bias anymore and therefore cannot
generate the V/A3.-terms in third order (2-loop order). On the other hand, the flow equation Hamil-
tonian still contains all sufficiently energy-diagonal scattering processes for Agq < V (compare Fig. 2),
and therefore “knows” about the energy voltage bias because this is the energy window where scat-
tering processes contributing to the current are possible between the left and the right lead. It is ex-
actly this observation which leads to the V/A?eq-terms in the flow equation scaling equations.
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In this context, one should also address the effect of higher-order terms in the flow equation scaling
equations. One can verify that the most IR-singular behavior in fourth order is u4V/A?eq, which is
therefore smaller than the third-order terms in (65)-(67) in the weak-coupling regime. In fifth order,
it seems possible to have contributions that modify the v27-proportionality factor in our result for the
relaxation rate (69), however, they cannot change the structure of (75) or (76). More quantitative re-
sults would be a formidable task equivalent to a 4-loop calculation. These observations indicate that
the third-order calculation presented here should give reliable quantitative results in the entire non-
equilibrium weak-coupling regime.

4.5. Numerical solution

In the previous sections, we have obtained analytical insights into the competition of decoherence
and strong-coupling behavior in the non-equilibrium Kondo model. In order to do this, we have used
various approximations starting from the full set of flow equations (52) and (53). More accurate re-
sults, which also allow us to check the accuracy of the approximations leading to (65)-(67), can be
obtained by solving the full systems of differential equations. These solutions will also be important
for obtaining quantitative results for the behavior of dynamical quantities later in Section 5. The
numerical effort for solving (52) and (53) scales with N?, where N is the number of band states taken
into account for the numerical solution: details of the implementation of the numerics are contained
in Appendix A.3.

Figs. 6 and 7 depict the flow of the coupling constants uy(Aseq) = 0Jp,(Aseq) for a symmetric and an
asymmetric Kondo dot in the weak-coupling regime. One observes the buildup of strong-coupling
behavior at the left and right Fermi surface, followed by decoherence effects that lead to a decay of
the coupling constants. In Fig. 7, one can also notice the asymmetry in the buildup of the resonances
at the two Fermi surfaces due to the stronger effect of decoherence at the more weakly coupled lead.

Figs. 8 and 9 shows a comparison of the flow of the coupling constants u(Afeq), Ur(Afeq) and u¢(Ageq)
from the full numerical solution with the solution of (60), (62) and (63). One can see that our approx-
imations in going from N x N differential equations to just three differential equations were very accu-
rate: the resp. solutions agree very well. This agreement is somehow obvious in the initial phase of the
flow where the voltage bias plays no role. Therefore, one can safely start the full numerical solution at
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Fig. 6. Running coupling constants u,(Aq) at various points during the flow for a symmetric Kondo dot with V/Tx = 8.0. One
observes the initial buildup of strong-coupling behavior until Agq/Tx ~ 3, followed by decreasing coupling constants even at
the left and right Fermi surfaces due to decoherence: there is no 2-channel strong-coupling divergence.
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Fig. 7. Running coupling constants u,(Agq) at various points during the flow for an asymmetric Kondo dot with r = I';/I'; = 2
and V/Tx = 25.0. One observes a much stronger buildup of strong-coupling behavior at the more strongly coupled lead (Fermi
surface at €, = 12.5T).
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Fig. 8. Comparison of the flow of the coupling constants u; and u, from the full numerical solution of (52) and (53) with the
effective Eqs. (60) and (62). Depicted here is a symmetric Kondo dot (therefore u; = u,). The full lines refer to the full numerical
solution and the dashed lines to the effective equations. Results are shown for various ratios V/Tx labelling the pairs of curves
from top to bottom.

Afeq =4V and not waste computer time with larger values of the initial cutoff. The curves agree very
well until one reaches the decoherence scale (maximum of the coupling constants), which was impor-
tant for determining the phase diagram. The small absolute differences at the decoherence scale be-
tween the full numerical solution and the analytical approximation get somehow amplified if one
looks at the relative error in the later phase of the flow. This will, however, anyway turn out to be
unimportant for the evaluation of observables (which are essentially determined by the absolute val-
ues of the coupling constants at the decoherence scale). In general, one can notice from Figs. 8 and 9
that the accuracy of our analytical approximations (60), (62) and (63) becomes increasingly better if
the coupling constants remain small during the flow, that is for larger values of the voltage bias V/Tk.
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Fig. 9. Same as Fig. 8 for the flow of uj, u, and u, for an asymmetric Kondo dot with r = I';/I", = 2. The curves for V/Tx = 10
should only be considered until Tx/Agpq ~ 0.3 since the scaling flow leaves the weak-coupling regime for smaller flow
parameters Ageq.

These observations therefore justify a posteriori our previous analytical analysis based on (60), (62)
and (63).

5. Observables
5.1. Observables in the flow equation framework

The evaluation of dynamical quantities like correlation functions within the flow equation frame-
work is rather different from conventional many-body techniques. The key observation is that while
the time evolution becomes trivial in the diagonal basis for B — oo, the structure of observables can be
very complicated in this basis [24]. In order to use the time evolution with respect to the diagonal
Hamiltonian H(B = o), one first needs to transform an observable O with the same unitary transfor-
mations as the Hamiltonian itself (12)

905) _ 1®),08), (83)

where O(B = 0) = O is the operator in the original basis. Once has found O(B = c0), it becomes easy to
work out its equilibrium correlation functions: we are for example interested in

Ceq(£) = (GS|O(£)0(0)|GS) = (GS|eH0e M 0|GS), (84)

where | GS) is the interacting ground state of the system. We denote the unitary transformation that
connects the initial with the final basis with U(B = c0), therefore

H =H(B = c0) = U(B = c0)H(B = 0)U' (B = o0),
0 = 0(B = 0) = U(B = 00)0(B = 0)U' (B = ),

where we have introduced the notation ~ that designates an operator in the transformed basis. One
can (at least formally) construct U(B = oo) from (12) in the following way:

U(B)* Ty exp ( /0 ’ dB’n(B’)). (85)
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Here, Ty denotes B-ordering in the same way as the usual time-ordering: the generator #(B;) with the
largest B; is commuted all the way to the left, next comes the second largest, etc. Next one inserts iden-
tities U'(B = co)U(B = o0) = 1 everywhere in (84) and arrives at

Ceq(t) = (GS|U'(B = 50)eH Oe-H OU(B = o0)[GS). (86)

A key observation is that U(B = oo) | GS) is just the ground state of the diagonal Hamiltonian H, which
is therefore trivial to write down (depending on the system for example just the vacuum, the non-
interacting Fermi sea, etc.)

\GS;) = U(B = o0)|GS). (87)
The evaluation of equilibrium correlation functions therefore reduces to
Ceq(t) = (GS~|e™ 0e M1 0|GS-). (88)

Since it is usually straightforward to solve the Heisenberg equations of motion for an operator with
respect to the diagonal Hamiltonian H, this equation has been used as the starting point for the eval-
uation of correlation functions in various models like the spin-boson model [29,30], the Kondo model
[26], etc. Before proceeding along the same lines, we first need to reconsider the changes in this der-
ivation for a non-equilibrium model like the Kondo model with voltage bias.

The fundamental difference from the equilibrium situation is that now we are not interested in
evaluating observables in the ground state. Rather, the relevant question is the behavior of observ-
ables in the steady state that evolves after switching on the coupling between the left and right lead
and then waiting long enough. This is also the key idea of the Keldysh approach and in this manner
one circumvents the generally unanswered fundamental question on how to construct a non-equilib-
rium steady state. We follow the same idea here by replacing (84) with its non-equilibrium
generalization

Coeg(t) < lim C(t, L), (89)
where
C(t, t) E(PO(E + t,)O(ty)|'F;) = (W] eHE+w) e TH(E+tw) gititw O~ Htw ypry (90)

Here, we assume that the thermodynamic limit is always taken before sending the waiting time t,, for
the measurement to infinity in (89). Notice that in general Cpq(t) could depend on the initial state
| ¥;) and in the sequel we will use an initial state that is directly related to the experimental situation:
| ¥;) is the ground state of the system when the two leads are not coupled via the Kondo impurity, that
is the non-interacting Fermi sea in both the left and right lead separately.

We now use the same unitary transformations as going from (84) to (86)

C(t, ty) = (Wi|U' (B = co)elt+tw) 0e-Ht+t) (B = 00)U' (B = oo)eH™ Oe HwU(B = oo)|¥;).  (91)

The additional unitary transformation of the time-evolved operator in the diagonal basis just maps
back to the original basis, where the initial state is specified. This forward-backward scheme has also
been employed in other models [8] where one is interested in real-time evolution from some given
initial state. The backward transformation part of this scheme can be implemented by solving (83)
from B = co to B = 0: the initial condition at B = «c is just the time-evolved operator in the diagonal
basis. In order to evaluate (89) from this expression, we next need to say something about the explicit
transformation behavior of the spin operator in the following section.

5.2. Transformation of the spin operator
The transformation of the spin operator S under the flow equation transformation has already been

worked out in [24] and we only give the key steps here. One makes the following ansatz for the flow-
ing observable (83):
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S(B) =h(B)S+i_ 7,,(B)S x Syp + O(u?) (92)
p.p
and derives the flow equations for the coefficients from (83):

Z € = €p)ppYpp My (P) (1 = 15(P)),
4 (93)
% ( ]Pp 4 Z -]P UVUD ( Eu).]upyp’u)(l - znf(u))

Initially h(B = 0) = 1, ,,,(B = 0) = 0 and under the flow one always finds h(B = co) = 0 (see [24,29]).
One easily identifies this scale where h(B) rapidly drops to 0 by noticing that y,,(B) is initially only
generated in order u, therefore h(B) initially remains nearly constant since its differential equation
only generates terms in order u2. This picture breaks down on the scale Agpq ~ I'rey Where h(B) starts
to decay algebraically oc B~/

(i) Non-equilibrium (voltage bias V):

Vv
I (V) = \/__U Afeq—V)W- (94)

(ii) Equilibrium (non-zero temperature):
rel( ) V2T (Afeq = T)T (95)

Notice that these energy scales are identical with the flow scale (69) where the transmutation of the
third-order terms in the coupling constant into linear terms occurs. At this point, it is easy to under-
stand this observation: When h(B) becomes small, the spin operator (92) completely decays into its
entangled form S x Spp- In the flow of the Hamiltonian, this amounts to transforming the marginally
relevant interaction term ][,j-sm into the irrelevant K-term, tht,p/p? (8¢t % Syp). This implies that
the flow equations for u;, u;, u, (74)-(76) become weak-coupling for Aeq < I'rel as discussed before.
In the next section, we will identify the energy scale where the decoherence effects become important
in the Hamiltonian flow with the width of the zero frequency peak of the correlation function, that is
the physical relaxation rate.

5.3. Dynamical spin response and correlation functions

In the following, we will use the shorthand 7}y, for 7,,,(B = cc). From (88), one derives the following
expression for the symmetrized spin-spin correlation function in equilibrium at non-zero
temperature:

Cea() ™ 25200 S:(01) = 3 3 S T gl VX (ESI{(S x 5y 5 x S Y FS)

pp 44
=3 var Y= (e (p)(1 = np(p)) + e () (1 = np(p)))- (96)

Here, | FS) is the non-interacting Fermi sea and n;(p) the finite temperature Fermi-Dirac distribution.

For the symmetrized spin-spin correlation function in the non-equilibrium steady state (89), we
need to perform the backtransformation (91) of S,(t,) for large t,. Due to the phases
expli(eg — €)tw] that the matrix elements J44 acquire, one can easily see that integrating (93) back
from B = oo to B = 0 only leads to higher-order contributions in the flow equations. For large times,
we can therefore say

S:(tw) = S;(tw)(1 + 0(g)). (97)

This implies for the spin-spin correlation function in the steady state (89)
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Creq(t) =5 > 72, D~ (np(p)(1 — 1 (p')) + np(p')(1 — ny(p))) (98)
p.p

0| —

plus higher-order corrections in the running coupling constant. Here, we now have to insert the occu-
pation numbers (55) for the problem with voltage bias.

Both the non-zero temperature equilibrium result (96) and the steady state non-equilibrium result
(98) have the same structure and can therefore be analyzed together: Fourier transformation yields

/dte“‘”C =7 Z Toropr(P)(1 = ny(p + @) +1(p + @)(1 = 1:(p))), (99)

where the notation p + w stands for the state with energy €, + w. Due to the perturbative nature of the
transformation, the sum rule

/x dorC(e) =27(S%) = (100)

is not fulfilled exactly. For high voltage bias or high temperature, this violation is typically only of or-
der 1%, which becomes up to 10% for voltage bias or temperature of order Tk.
The same calculation for the spin susceptibility

7(6) & =i0(t)([S:(¢), 5:(0)) (101)
yields the imaginary part of its Fourier transform
) =5 S ()1~ 1y (p + )~ 1y(p + )1~ ry(p))) (102)
p

The real part follows via a Kramers-Kronig relation, in particular the static spin susceptibility ¥, is gi-
ven by

B ‘1 o0 X//(w)
XO*E/,xdwT' (103)
Notice that the fluctuation-dissipation theorem [40]
7'(©) = tanh (57) C(o) (104)

is fulfilled exactly in equilibrium. In non-equilibrium, the fluctuation-dissipation relation is fulfilled
approximately in the zero frequency limit if one inserts an effective temperature motivated by the
comparison of (94) and (95):

14

Typical curves for the spin-spin correlation function and the imaginary part of the dynamical spin sus-
ceptibility are shown in Fig. 10 for non-equilibrium (for varying voltage bias) and in Fig. 11 for equi-
librium (for varying temperature). The spin-spin correlation function is a symmetric function of w
with a zero frequency peak of width I'. The imaginary part of the dynamical spin susceptibility is
an antisymmetric function of @ and has its maximum at y/7(w =~ I't). An approximate analytical solu-
tion of (93) yields [24] (see also [20]):

Tesr = (105)

£+ for || < I'rel,

Cw)~{ & for I'i < |0 < Tetr, (106)
u?(

Afeq =)

o]
Areq=T .V
7/(@) {(r)w for |o] £ I,

for Terr < o],

rel (1 07)
2 (Areq=lo)
w

for It < |00
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Fig. 10. Universal curves for (a) the spin-spin correlation function C(w) and (b) the imaginary part of the dynamical spin
susceptibility y#(w) in non-equilibrium (symmetric coupling r = 1).

Fig. 11. Universal curves for (a) the spin-spin correlation function C(w) and (b) the imaginary part of the dynamical spin
susceptibility y/(w) in equilibrium for various temperatures.

Notice that the zero frequency peak of the correlation function is directly related to the flow scale
where h(B) in the transformation of the spin operator starts to deviate noticeably from 1 since essen-
tially all the spectral weight is contained in the energy interval O(I') according to (106). This pro-
vides the desired physical interpretation of I'i,; defined in (69): the energy scale where the Kondo
coupling becomes irrelevant can be identified with the spin relaxation rate.

In Fig. 12, we show the spin-spin correlation function and the imaginary part of the dynamical spin
susceptibility for asymmetric coupling to the leads with r = 2. In Fig. 13, we depict the dependence on
the asymmetry parameter r at fixed voltage bias. Increasing the asymmetry parameter r leads to a
smaller decoherence rate since the effective temperature (105) becomes smaller. In agreement with
(106) and (107), one therefore notices that mainly the low frequency properties are affected with
the maxima of the curves increasing for larger asymmetry.
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Fig. 12. Universal curves for (a) the spin-spin correlation function C(w) and (b) the imaginary part of the dynamical spin
susceptibility y7(w) in non-equilibrium for asymmetric coupling of the leads r = 2.

0.1 . : . : . : .

-

[Tl
e g

Fig. 13. Universal curves for (a) the spin-spin correlation function C(w) and (b) the imaginary part of the dynamical spin
susceptibility y/(w) in non-equilibrium for asymmetric coupling of the leads. The voltage bias is held fixed at V = 100Tk.

5.4. Static spin susceptibility
One of the most celebrated results of Kondo physics is the behavior of the static spin susceptibility
%o as a function of temperature. This behavior encompasses the screening of the impurity spin via the

formation of a Kondo bound state upon lowering temperature. While it is easy to deduce the reduction
of the magnetic moment with scaling techniques,

1 1
%M = g7 (1 - ln(T/TK))’
the correct result of a finite non-zero spin susceptibility at zero temperature, y,(T = 0), was first ob-

tained in the seminal application of the numerical renormalization group by Wilson [41]. Later the
Bethe ansatz [42,43] gave the complete analytical solution leading to the high temperature expansion

o1 1
7%o(T) =77 (1 “In(T/Ty)

(108)

B ln(ln(T/TK))
2(In(T/T))

+ @((ln<T/TK>)2>> : (109)
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Likewise, the behavior of the static spin susceptibility as a function of voltage bias is of fundamental impor-
tance for understanding non-equilibrium Kondo physics. In the sequel, we will focus on the case of zero
temperature, zero magnetic field and non-zero voltage bias. The case of non-zero magnetic field will
be discussed in a separate publication. The leading order result for y,(T, V) for large temperature or
large voltage bias was worked out by Parcollet and Hooley [44]:

o _(A+na+rh 1

JolT =0.) === = g (110)
This naturally raises the question about the logarithmic corrections to this behavior, similar to the key
result (108) of equilibrium Kondo physics. This question has to date only been answered for the lead-
ing In*(V/Tx)-corrections, which, however, vanish if the Kondo model can be derived from an under-
lying Anderson impurity model (see Section 2.1). The logarithmic terms proportional to In(V/Tx) have
not yet been calculated completely, which means that the current status of the non-equilibrium cal-
culation would miss the finite temperature logarithmic correction in equilibrium (108). More details
about these calculations and results can be found in [1,2,19] based on perturbative RG and Keldysh
techniques.

Within the flow equation framework it is straightforward to derive the leading term (110) analyt-
ically, but the corrections to it can only be worked out from the full numerical solution of the system of
differential equations derived in the previous chapters. Numerical results for the static spin suscepti-
bility obtained in this way via (103) are shown in Figs. 14 and 15.

The comparison (Fig. 14) of the Bethe ansatz result (109) with the flow equation data points in
equilibrium as a function of temperature shows very good agreement for large V/Ty. This demon-
strates that the flow equation calculation presented here contains the leading logarithmic corrections
and can address this issue also in non-equilibrium.

Flow equation results for this non-equilibrium spin susceptibility are plotted in Fig. 14 for symmet-
ric coupling to the leads (r = 1) as a function of the effective temperature T = V /4, Eq. (105). In this
way, a direct comparison between equilibrium non-zero temperature and non-equilibrium non-zero
voltage bias is possible: naively, one might expect that not only the zeroth-order result (110) can be
described by the effective temperature (105), but that this also holds for the logarithmic correction in
(108). This is clearly not the case and the logarithmic corrections to y,(V) contain some genuine non-
equilibrium physics [45]. Due to numerical limitations, it has unfortunately not been possible to go to
larger values of the voltage bias to study the full crossover to the analytically known asymptotic
behavior limy_..Vy,(V)/4 =1/4.

[‘_‘T)

"'X: -0 Voltage Bias
0.1 1! =8 Temperature T
! -- Bethe Ansatz |
0.05f 1

0 . 1 . I .
0 50 100 150
T/ Tk

Fig. 14. Flow equation results for the static spin susceptibility j, for non-zero temperature (equilibrium) and for non-zero
voltage bias (non-equilibrium, symmetric coupling r = 1). The data are plotted as a function of the effective temperature
Ter = V /4 in the case of voltage bias (while Teg %' for non-zero temperature). For comparison we show the leading order Bethe
ansatz result (109) for the equilibrium susceptibility, which agrees very well with the finite temperature flow equation data.
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04 . ; . ; . ;

Fig. 15. Flow equation results for the static spin susceptibility j, for non-zero voltage bias for various asymmetry parameters r.
The asymmetry parameter increases from bottom to top: r =1.0,1.4,1.8,2.2,2.6,3.0. The data are plotted as a function of
Ter = V/(1+1)(1 +7171), Eq. (105). The dashed line is an exact result for the behavior in the T — 0 limit independent of 1, see
text. Lines are guide to the eye only and the numerical error of the data points is at most 10%. The inset shows a blowup of the
small voltage bias region.

Fig. 15 contains the non-equilibrium static spin susceptibility plotted in the same way for various
values of the asymmetry parameter r. One can see that the logarithmic corrections get even larger for
increasing asymmetry. The values of Tesr )¢ (Tesr) clearly start to overshoot the asymptotic value 1/4 for
larger asymmetries. As opposed to the equilibrium case, the effective magnetic moment in non-equi-
librium first increases upon lowering the voltage bias. This is related to the strong energy-dependence
of the running coupling constant in non-equilibrium, see also Figs. 6 and 7. The behavior here is con-
sistent with what one would conjecture based on the analytically known In®-corrections for a Kondo
model that cannot be derived from an underlying Anderson impurity model. In that case, the energy-
dependence of the couplings becomes even larger than here, eventually reaching two-channel Kondo
physics behavior. Likewise, the leading logarithmic corrections to the static spin susceptibility are po-
sitive [1,2,19], which is reminiscent of our results depicted in Fig. 15.

The behavior of the curves for smaller values of the voltage bias in Fig. 15 has to be interpreted with
care, since the running coupling constants become larger and therefore the flow equation calculation
less reliable. Still, the fact that the curves for different asymmetries converge for smaller voltage bias
has a simple physical interpretation: we know that y,(V = 0,T = 0) = w/4Tx with the Wilson number
w = 0.413 known exactly from the Bethe ansatz. This result is trivially independent of r. This trans-
lates into a constant slope w/4 in Fig. 15 (dashed line), which all the other curves have to approach
in the limit V « Ty independent of r. Notice that our results for the non-equilibrium static spin sus-
ceptibility show clear indications of this behavior.

6. Conclusions

This paper has served a twofold purpose. First, we have worked out how the flow equation method
can be applied to steady state non-equilibrium impurity models. This was illustrated in detail for the
Kondo model with voltage bias. Thereby we have shown how Hamiltonian scaling ideas can be used in
non-equilibrium, and how they help to understand the physics qualitatively and also quantitatively. A
point of particular importance is the transmutation of marginal terms in the Hamiltonian into irrele-
vant terms on the energy scale set by the spin relaxation rate, which is generated by the steady state
current. This is precisely the effect of decoherence within our Hamiltonian scaling framework.

In addition to these methodological considerations, we have also derived a number of new results
for the non-equilibrium spin dynamics in the Kondo model with voltage bias. In this paper, we have
focused on the spin dynamics since it contains frequency resolved information about the non-equilib-
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rium steady state (as opposed to the steady-state current (9)). For the equilibrium model, the spin
dynamics is the key to understanding Kondo physics, and therefore the spin dynamics is a very suit-
able tool to illustrate the differences between equilibrium and non-equilibrium. In particular, we have
calculated the static spin susceptibility in non-equilibrium including its logarithmic corrections for a
wide range of voltage bias. Although we had to resort to a numerical solution of the flow equations for
this purpose, this is an important step since to date an analytical calculation of this leading correction
has not been possible (at least for the experimentally most relevant case of a Kondo model that is de-
rived from an underlying Anderson impurity model).

Scaling ideas are one of the key concepts for understanding equilibrium many-body systems. Like-
wise, we believe that Hamiltonian scaling ideas like the one presented here can play an equally impor-
tant role for steady state non-equilibrium problems.
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Appendix A. Commutators and normal-ordering

In this appendix, we work out in detail some key commutators that are used throughout our
calculations.

A.1. Commutator [§ . Eﬂt,§~§u,u]
We use the following fundamental property of the spin-1/2 algebra
i 1. i X
SISJ:ZOU+§2k:eiij (111)
and insert it into the commutator:

oL L 1 A
[S-Sut,S - Suu] = 7 Z(S’S]ct,daxﬁcwcu“ qu”‘ SScl',# chu1,c}a0;,,ct,;)
ij

) 1 . .
Z eljkaaﬁ v (Ct’ Cf/fcu/ Cuv + Cu ;tCU"CI/ach/f> _6 Z oc/}o-;w)[q’xcf/ﬁ CL/uCUV]

m‘“"

Z S €l Cux — SuClynCea )

(112)

Z e,}kawams (CowCu,,Cu\ +cl, cu\,c{,ic[,;>

Next we need to normal-order the fermion terms. We introduce the following expectation values with
respect to the non-interacting ground state

n (u) (el cu) = n(u), (113)
n (u) d§f<cuatCL1>7

which are related by n*(u) = 1 — n~(u) because of {c}, c,} = d,. No summation over « is implied in
(113), and the expectation values are obviously independent of o due to spin symmetry (no magnetic
field). Then

+ def def + < _
sl Cup 2 €l Cup — Suudup™ (W) = Cupcl, = CupCl, — Suudupn™ (1) (114)
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and : ¢l,,Cup := — : CupCly,, - For normal-ordering of higher-order fermion terms we follow the prescrip-
tion of Wegner [22] that not only subtracts the ground state expectation values, but also expectation
values with respect to lower-order excited states:

1 def 1 o _ 4
ClyCopChCuv S 5 ClyCop 1t ClyCun = 1 €l Cun < St Syt (E)+ 2 €l Cop
2 Opuley M (U) — Opudur Oondput™ (E)N* (1). (115)
Inserting everything into (112) yields after some straightforward algebra
[S-56,S Suu] =1: S+ (See X Su) : +S - Seubpuw (N7 (£) — 1/2) = S S dp (0 (1) — 1/2)

3 R 3
+16 zx: (St = ClyCun = —0pw = ClyyCea ) +§6m15[,u(n+(u) —nt(t)). (116)

Normal-ordering in the first term on the rhs of this equation acts on the fermions only

: S (S % Suu) = S ¢ (See X Su) + (117)

A.2. Commutator [ S - (51 x Sy5) ,S - Sp4]

For notational clarity, we use labels 1/,1,2/,2,4',4 instead of v/, v, ws, w,us, u in this section. For the
purposes of this paper, we also only need to identify terms with the structure S - 5, in the above nor-
mal-ordered commutator. This will simplify our calculation considerably.

Using (111), it is easy to show

2 o a2l 1SN, - - i< - o
[:S-(Sin ><52/2)575'54’4]=ZZ[1 (S1n ><52’2)a%52'4}+§ Z €aneS{: (511 X 522)" 1,54} (118)
a=1 ab.c=1

The first term does not contain the impurity spin and can therefore not contribute to the terms that we
need to extract from the commutator. We can focus on the anticommutator in the second term

3 3
3 L b . . . )
Za,b:lE”bC{: (S % Sy2)" 1,844} = E {: 81182 5 Sy} — E {: 571595 Syalb- (119)
iz1 iz1

In order to yield terms with the structure S . 3., we need to extract the terms with two contractions
(i.e., two n*-terms) in (119). Similar to (115), one shows

s chercl s 1 €lycq i=: (0 — contraction) : + : (1 — contraction) : +8;,3;4n" (1)n™(1)
1 ClCot +0y405yn " (2107 (2) 1 €hicy 1 —3y4009m* (1) (2) : chicy
L —=8y40 et (20 (1) 1 chicy 1 (120)
From this expression, it is straightforward to show

1

3
: 81185 : Sy, =: (0 — contraction) : + : (1 — contraction)
=1

N1y 3 P | P
D 401401407 (10 (1)555’2 + 32402417 (2)0 (2)js§,1 = dy40pyn* (10 (2)155’1
X N3
— 0z40141" (2)0 (1)252/2-

Combining all the like terms in (119) yields

3
> €ae{ s (511 % Sp2)" 184} =: (0 — contraction) : + : (1 — contraction)
a,b=1

:Spgda (T (1) (1) 4 (1) ()85, — Syg00 (1207 (2) + 0" @)1 (2)851.
(121)
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This gives our desired result by inserting into (118)

-

[ S (S11 % 82) ¢>§' Sy

—

Spadra (1)~ (1) +n* (1)n~ (1)) -3y, — %52'4524'(71*(2’)"’(2) +n(2)n~(2)s

i
2
-§y1 + normal — ordered terms with different structure. (122)

A.3. Numerical solution

This appendix contains some details of the numerical solution of the full set of flow equations (52)
and (53). The latter are solved using a standard Runge-Kutta algorithm [46].

One numerical issue arises from the fact that the K-couplings in (48) depend on four momenta
which leads to a large number of differential equations to keep track of. While this is no fundamental
problem, it would limit the possible resolution on a standard workstation considerably. However, one
can use the following approximation which reduces the complexity to quadratic in the number of mo-
menta and provides an excellent approximation to the full system.

The formal solution of (53) is given by

~B o~ - .
Kypaa = ~(eq — e 0w 500" [“dBelcy-orste=a? o, By (B). (123)
Using this result, the flow equations for the running coupling (52) in diagonal parametrization
—B(€y —€p)?
Jop = e P = (124)

are easily rewritten to the form

By S (6~ eaiZie ™ ny(q) ~ 1) S (() + ny(4) — 205y (@)

q q.q
x (€g — €q) e By — (125)
where
B o~ o~ o~
Ly = [ aBuy (Buy (B) (126)

In the remaining flow equations, for example the transformation of the spin operator, the running cou-
pling J,,,(B) is simply replaced by the rhs of (124). The equations above can be easily generalized to the
case of general parameters (47) and (48).

Using diagonal parametrization in the numerical solution effectively reduces the number of differ-
ential equations to quadratic in the number of momenta N. The runtime is proportional to N* instead
of N* in the full set. Additionally, the stiffness of the differential equations is reduced by removing the
exponential decay from the flow of the running coupling. On a standard workstation N can be chosen
of ¢(1000).
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