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Introduction

Imagine the pressure the sun exerts on your skin if you stand outside on a sunny day. Certainly
you have never noticed it. The power of the sunlight at earth’s distance, about 1.4 kW per square
meter, translates into a radiation pressure of 10−5 N/m2. This pressure is very small compared to
the atmospheric pressure of 105 N/m2.

On the other hand, the sun’s radiation pressure might be strong enough to replace the con-
ventional propulsion of spacecrafts on interplanetary missions some day in the future. The idea
of using large, reflective structures to sail through space is in fact nearly 400 years old. At that
time, Johannes Kepler had observed tails of comets to be deflected by what he believed was a
kind of “solar breeze”. This was the first reported observation of radiation pressure acting on a
mechanical object. Subsequently, Kepler suggested to build “ships and sails proper for heavenly
air” in his “Dissertatio com Nuncio Sidereo” (Venice, 1610). The current development of solar
sails (see figure 1b), as carried out by NASA and other research institutes, focuses on unmanned,
lightweight spaceships. Indeed, a very light solar sail should be able to cover immense distances
in a very fast and efficient manner. The radiation pressure of the sun when exerted on a sail,
presumably with a total area of 1 km2, is equivalent to a force of 9 N. The acceleration on a solar
spacecraft would then be comparable to the acceleration due to the gravitational force close to
the earth’s surface, i.e around 9ms−2 for a spacecraft with a mass of 1 kg. As long as the solar
sail stays close enough to the sun, its velocity is steadily increased and can reach values about
five times higher than those of conventional rockets. It has even been proposed to push the sail
with a very strong laser beam, that would then allow for interstellar missions.

Down on earth, one finds a prominent application of radiation pressure that followed the
advent of laser technology: Using the force of laser light to slow down and cool ions or neutral
atoms. The theoretical groundwork of this field was laid out in the mid 1970s [1, 2]. Major
experimental progress was achieved in the 1980s reaching temperatures in the µK range and
even observing the ground state of mechanical motion. These achievements allowed to measure
atomic spectra more precisely and to improve atomic clocks and eventually led to the 1997 Nobel
prize for Philips, Chu and Cohen-Tannoudji. As laser cooling techniques advanced, even lower
temperatures were reached in the 1990s and thereby provided one of the key steps in the 1995
realization of Bose-Einstein condensation [3, 4].

Let us now come closer to the actual subject of this thesis, which is the coupling of a small,
but still macroscopic mechanical device to an optical cavity field. The effects of radiation pressure
on a relatively large mechanical element were already observed in the group of H. Walther at the
MPQ [5] in the 1980s. Their setup used an optical cavity to enhance the light intensity resonantly.
One of the cavity’s end mirrors was suspended to swing as a pendulum. Hence the motion of the
movable mirror was coupled to the cavity field via radiation pressure. At an even earlier stage, the
Russian scientist V. Braginsky had considered and performed similar experiments [6, 7].

More recently, the advances in microfabrication led to a miniaturization of such optomechanical
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2 INTRODUCTION

setups: Instead of a macroscopic end mirror, state-of-the-art optomechanical experiments use
cantilevers, as otherwise used for atomic force microscopy (see figure 1e), doubly clamped beams,
microtoroids or other micromechanical elements that can be affected by light. The fact that their
dimensions are in the range of micrometers diminishes the surface area on which the radiation
pressure can act. Nevertheless, the small masses (∼ 10−9 kg) and high quality factors of the
mechanical devices, the use of focused laser beams and the enhancement by high-finesse cavities
allow for the observation of strong radiation-pressure induced effects. If we assume a laser power
of 1 W focused on a micro-gram mirror with a surface area of (10µm)2, the radiation pressure
exerts a force of roughly 7 · 10−9 N. The acceleration due to this force would then be of the order
of 10 m s−2 - comparable to the acceleration we assumed for the solar sail above.

Regardless of the specific implementation and geometry, all the just mentioned optomechan-
ical setups share the same basic principle: They consist of a cavity whose resonance frequency
depends on the position of some mechanical oscillator. If the radiation pressure of the cavity
field deflects the mechanical element, the cavity will in turn be detuned. The cavity can not react
instantaneously on the position of the mechanical oscillator. This can be understood by observing,
that photons, once they impinged the cavity, stay there for an average time given by the inverse of
the cavity decay rate. The time-delayed cavity-induced forces acting on the mechanical oscillator
can lead to an additional damping. This effect can be used to cool down the thermal motion of
the mechanical element. Note that the small dimension and high mechanical sensitivity of the
commonly used micromechanical resonators makes them very susceptible to the fluctuations of
the environment. Optomechanical cooling of the thermal motion of a mechanical oscillator has
already been demonstrated in a number of experiments [8, 9, 10, 11, 12, 13, 14]. The fundamental
mode of the mechanical motion has been cooled down to temperatures up to a few mK starting
from room temperature (see for example [14]). Optomechanical cooling may eventually be used
to reach the ground state of mechanical motion [15, 16] and several groups aim at reaching this
goal. This is indeed a luring aspect of this field: The optomechanical coupling should one day
allow to observe the zero-point uncertainty of a macroscopic object consisting of roughly 10−20

atoms and observe fundamental aspects of quantum mechanics on scales where they could not be
measured so far. The quantum effects that might become observable in optomechanical systems
are a main issue of this thesis.

On the other hand, the light-induced forces can also amplify the response of the mechanical
oscillator to the noise of its environment and heat up its thermal motion. Moreover, when the
power of the laser pumping is increased above a certain threshold, an instability occurs. The
mechanical oscillator starts to oscillate at approximately its eigenfrequency with an amplitude
that at first grows exponentially and finally settles to a constant value. The instability and the
corresponding self-sustained oscillations have been observed in a number of experiments [17, 18,
19, 20]. A theoretical analysis of the coupled system of cavity and mechanical oscillator allows
to predict the system’s dynamics in form of an intricate attractor diagram [21]. This attractor
diagram predicts multistable attractors, i.e. the possibility of multiple solutions of the mechanical
oscillation amplitude for a single set of system parameters. A recent comparison of this theory to
experimental data which was attained in the group of K. Karrai at LMU, led to a good agreement
and revealed the unexpected feature of the simultaneous excitation of several mechanical modes
[20]. Note that both the instability as well as the multistable behaviour are common features of
coupled nonlinear systems.

The multistable behaviour of optomechanical systems might one day be exploited for a highly-
sensitive force measurement. Already today, optomechanical systems similar to the ones discussed
here but with much larger dimensions, are employed in the observation of gravitational waves,
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for example in the LIGO (Large Interferometer Gravitational Wave Observatory). In such detec-
tors, heavy mechanical elements (∼ 10 kg) are exposed to radiation pressure in the 4 km long
interferometer arms.

In the past few years it also became apparent that the basic features of optomechanical setups
can also be observed in system which contain no optical elements at all. These nanoelectrome-
chanical systems include driven LC circuits coupled to cantilevers [22] or single electron transistors

Figure 1: (a) Title page of “Dissertatio cum nuncio sidereo nuper ad mortales misso a Galilaeo
Galilaeo” by Johannes Kepler (1571-1630). This work was a reply to Galileo’s book “Sidereus
Nuncius”, issued in Venice in 1610, that had been enthusiastically received by Kepler. (b) A solar
sail (20× 20m), developed at the NASA Glenn Research Center. (Source: NASA) (c) View on a
sample of cold sodium atoms (bright spot at the center). The atoms are in a magneto-optical trap
at a temperature of less than 1 mK. (Picture taken by H. M. Helfer/NIST) (c) The emergence of
Bose-Einstein condensation in a cloud of ultra-cold Rubidium atoms as observed by Cornell and
Wieman in 1995 [3]. (Source: Mike Matthews, JILA) (d) A cantilever with a micro-meter mirror
attached close to its tip as implemented in the setup of the Bouwmeester group. (Picture taken
from the publication [11])
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and microwave cavities coupled to nanobeams [23, 24, 25, 26, 27, 28, 29, 30].
Another modification of the basic optomechanical setup directs us towards another main issue

of this thesis: The idea is to replace the solid mechanical object of conventional setups by a cloud
of cold atoms coupled to a single optical cavity mode. The collective motion of the atoms couples
to the light intensity in a similar way as the mechanical element. Hence the basic principles of
optomechanical systems can be applied directly to these setups. “Optomechanics with cold atoms”
might enhance the capabilities in the field of optomechanics and lead towards new regimes. It
is an issue of ongoing research and first results were presented quite recently [31, 32, 33, 34].
The number of atoms involved in these setups is of the order of 105. Accordingly the total mass
of the atomic cloud (∼ 10−20 kg) lies somewhere between the mass of conventional nanobeams
(∼ 10−9 kg) and the limiting case of a single atom (∼ 10−25 kg) where the quantum regime of
ground state cooling has already been extensively studied in ion and atom traps.

It is in a way fascinating to see the wide range of length scales and weights that can be assessed
via radiation pressure. In this introduction we discussed a variety of objects that can be affected
by the photon pressure of some light source: macroscopic devices, such as (virtual) spacecrafts or
test masses in gravitational wave detectors, as well as mesoscopic mechanical oscillators, a cloud
of cold atoms or even a single ion or atom. The dimensions of these systems cover mulitple length
scales: The detectors at LIGO, even though stretching over a length of 4 km, have to resolve
changes in the length of one interferometer arm of about 10−18 m in order to detect gravitational
waves. A conventional cantilever has dimensions on the scale of a few tens of micrometers. While
it is already challenging to fabricate such a small mechanical device and incorporate it into a cavity
setup, the goal of ground-state cooling is even more ambitious: The zero-point amplitude of the
cantilever motion is about 10−15 m, which is roughly the size of the nucleus of a hydrogen atom.

In this thesis we will focus on the lower end of this scale and characterize features of op-
tomechanical systems in the quantum regime. We will consider a generic optomechanical system
consisting of a cavity and a movable mirror attached to a cantilever. A fully quantum mechanical
treatment based on the numerical simulation of a master equation will be employed to analyze
the dynamics of the system. We will discuss the occurrence of the instability in this picture
and compare it to the predictions of the attractor diagram which relies on a purely classical ap-
proach. This comparison allows to discuss the influence of quantum fluctuations on the coupled
cavity-cantilever system and to identify a “quantum-parameter” that keeps track of this quantum-
to-classical transition. The dimensionless quantum parameter is given by the ratio between the
mechanical zero-point fluctuation amplitude (a quantum parameter ∝

√
~) and the width of the

optical resonance (a classical lengthscale). For a large value of the quantum parameter, i.e. in the
“quantum regime”, the photon shot noise of the cavity and the mechanical zero-point fluctuations
affect the system substantially. To reach this regime in experiment one would first of all have to
reduce the influence of the (thermal) environment, which could for example be achieved by cooling
the cantilever in a preliminary step using the light field. As we will see, the system moreover has
to feature both a strong cavity-cantilever coupling and a high cavity finesse, in order to reach
a high value of the quantum parameter. Generic optomechanical systems have not reached this
regime yet.

Optomechanics with cold atoms however, as realized in the group of D. Stamper-Kurn at
Berkeley [32] and in the group of T. Esslinger in Zürich [33], show a substantial quantum parameter
ζ ∼ 1 already today. In the second part of the thesis we therefore turn towards systems of this
kind. In our model setup we combine the concept of the Berkeley setup, i.e. an atomic cloud
coupled to a single cavity mode, with a generic optomechanical system consisting of a cavity
and a cantilever. Hence we aim at coupling a single cavity mode, a mechanical cantilever and a
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cloud of cold atoms. For the interaction between the cantilever and the center-of-mass motion
of the atoms, we can identify two basic coupling mechanisms: The cantilever position determines
the spatial structure of the cavity field, and therefore can shift the position of the atomic cloud.
Apart from this direct coupling, virtual transitions via the cavity mode can induce a second-order
coupling between the cantilever and the atomic motion that turns out to be much stronger. Once
such relatively strong coupling is eventually realized, it will open up interesting possibilities: One
may for example observe the coupled dynamics of the cantilever and the atomic collective mode as
the oscillation energy is swapped between the two elements. Even though this beating behaviour
is a general feature of coupled oscillators, it should certainly be of main interest to observe this
phenomenon on such small devices.

This thesis has the following structure: The first chapter introduces the model of a generic
optomechanical setup and discusses its Hamiltonian and the system parameters. In the second
chapter, we will analyse the dynamics of the coupled cavity-cantilever system, in particular the
occurrence of the instability, by employing a fully quantum mechanical treatment. In the second
part of this thesis we will focus on optomechanical systems that involve the collective motion of
a cloud of cold atoms. The third chapter introduces basic concepts of the description of trapped
Bose-condensed gases. These concepts will be used in the fourth chapter where we consider a
model setup consisting of a cavity, a cantilever and a cloud of ultracold atoms and analyse the
coupling mechanisms of this model. At the end we will summarize the content of the thesis and
discuss further extensions and perspectives. Some details on the numerical methods used in this
work are given in the appendix.
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Chapter 1

The basic optomechanical setup

This chapter presents the basic model of an optomechanical system consisting of an optical cavity
with a movable end mirror. We will discuss both the Hamiltonian and the main features of this
setup and identify a set of six parameters that determine the system completely. In particular,
we introduce a quantum parameter, which does not show up in the classical description of the
system. In the chapter subsequent to this one, we will see that this parameter determines the
crossover from classical to quantum behavior of the system’s dynamics.

1.1 The model
To begin with, we attempt to illustrate the basic mechanism of a generic optomechanical system:
The basic setup consists of a driven, one-sided cavity and a movable end mirror. We imagine this
end mirror to be made of a cantilever that is suspended to swing like a pendulum and that reflects
the light due to an attached mirror or a coated surface. When a laser pumps light resonantly into
the cavity, a standing wave of relatively high intensity builds up. The light field exerts a radiation
pressure force on the cantilever and deflects it. Hence the cavity is detuned from resonance by
the cantilever motion and the light field diminishes. Correspondingly, the radiation pressure force
decreases, allows the cantilever to swing back and the whole cycle can start again.

We consider the following Hamiltonian to describe the system:

Ĥ = ~ (−∆ + gM (b̂+ b̂†)) ĉ†ĉ + ~ωM b̂†b̂ + ~αL( ĉ+ ĉ† ) + Ĥκ + ĤΓM , (1.1)

which is written in the rotating frame of the driving laser field whose frequency is denoted by
ωL and whose amplitude is set by αL. The laser is detuned by ∆ = ωL − ωcav with respect
to the optical cavity mode which is described by photon annihilation and creation operators ĉ
and ĉ†, and a photon number n̂cav = ĉ†ĉ. The cantilever (or, in general, mechanical element)
has frequency ωM and mass mM , and its displacement is given as x̂M = xZPF(b̂ + b̂†), with
the mechanical zero-point amplitude of xZPF =

√
~/(2mMωM ). The optomechanical coupling,

between the optical field and the mechanical displacement, is characterized by the parameter gM .
In the simplest case, with a movable, fully reflecting mirror at one end of an optical cavity of length
L, we have gM = −ωcavxZPF/L, and thus gM (b̂ + b̂†) = −ωcavx̂M/L. The radiation pressure
force corresponding to this coupling term is given by F̂rad = −~gM ĉ†ĉ/xZPF = ~ωcavĉ†ĉ/L. The
decay of a photon and the mechanical damping of the cantilever are captured by Ĥκ and ĤΓM ,
respectively. They describe coupling to a bath leading to a cavity damping rate κ and mechanical
damping ΓM . Note that each of the parameters ∆, gM , ωM , αL has the dimension of a frequency.

7



8 CHAPTER 1. THE BASIC OPTOMECHANICAL SETUP

input laser

cantilever!xed mirror
mechanical
frequency 

detuning

light !eldlllliiiigggghttt !!!elllldddd

cavity !eld

Figure 1.1: The basic optomechanical setup: A cavity consisting of two mirrors one of whom is
free to oscillate. Common implementations involve a cantilever with an attached mirror or gold
coated beams. The cavity is driven by an incoming laser.

Even though the basic back-action scheme illustrated above is relatively simple, the features
of the coupled cavity-cantilever system are quite intricate. Depending on the detuning ∆ of the
laser with respect to the cavity, the motion of the cantilever is either amplified or cooled down
by the light field. In the resolved sideband regime, where the cavity decay is small compared
to the mechanical eigenfrequency (κ � ωM ), the cooling (heating) is especially effective at the
sidebands, i.e. for ∆ = nωM , n εZ. This can be understood by analogy to the Raman-scattering
process: When a photon enters the cavity with a frequency that is red-detuned with respect to the
cavity resonance at exactly ∆ = −ωM , it will likely absorb a phonon of the cantilever’s motion
of energy ωM and hence meet the resonance frequency of the cavity again. On the other hand,
a blue-detuned laser will rather emit phonons to the cantilever and thereby heat it up. Note that
the resolved sideband regime has been reached in experiment recently [35].

If the system is in the regime of amplification, an increase of the laser input power above a
certain threshold can lead to an instability: The mechanical oscillation amplitude starts to increase
at first exponentially and the cantilever settles eventually into a regime of self-induced oscillations
where the cantilever swings with a constant amplitude at its eigenfrequency. The occurrence
of an instability is a basic feature of nonlinear dynamical system. In view of the Hamiltonian
(1.1) the nonlinearity arises from the coupling of the cantilever position to the squared amplitude
of the cavity field given by the term ∝ x̂M ĉ

†ĉ. When we discuss the dynamics of the coupled
cavity-cantilever system in chapter 2, we will focus on the regime of self-induced oscillations. On
the one hand it allows to compare the quantum mechanical approach that we will employ to the
solution of the classical system [21]. On the other hand we expect the quantum effects to be most
pronounced beyond the threshold of the instability.
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1.2 Reduction to a set of dimensionless and independent parame-
ters

We now identify the dimensionless parameters the system dynamics depends on. Expressed in
terms of the mechanical oscillator frequency ωM , the parameters describing the classical system
are

mechanical damping : ΓM/ωM
cavity decay : κ/ωM

detuning : ∆/ωM
driving strength : P = 8|αL|2g2

M/ω
4
M = ωcavκ

2Ecav
max/(ω5

MmML
2). (1.2)

Here Ecav
max is the light energy circulating inside the cavity when the laser is in resonance with the

optical mode.
The quantum mechanical nature of the system is described by the “quantum parameter” ζ,

comparing the magnitude of the cantilever’s zero-point fluctuations, xZPF, with the full width at
half maximum (FWHM) of the cavity (translated into a cantilever displacement xFWHM)

quantum parameter : ζ = xZPF
xFWHM

= gM
κ
. (1.3)

The resonance width of the cavity can be expressed as xFWHM = κL/ωcav, where L is the
cavity’s length. The quantum parameter ζ vanishes in the classical limit ~→ 0, as the zero-point
fluctuations xZPF of the cantilever go to zero. The magnitude of ζ determines the effect of
quantum fluctuations on the dynamics of the coupled cavity-cantilever system.

We note that there is an alternative way to introduce the quantum parameter (1.3). Here we
made use of the two characteristic length scales of the system. Alternatively, we could compare
the zero-point momentum fluctuations of the cantilever to the impulse a single intracavity photon
transfers to the cantilever. When the photon is reflected at the cantilever, it transfers an impulse
of 2~k. This process is repeated after one cavity round-trip time 2L

c for as long as the photon stays
inside the cavity, i.e. for a span of time given by κ−1. The total transfer of momentum is therefore
given by pphot = ~k cLκ

−1 = ~ωcav
κL . The strength of the zero-point momentum fluctuations is

given by pZPF =
√

~mMωM
2 = ~

2xZPF . Taking the ratio of these to quantities leads directly to the
quantum parameter:

pphot
pZPF

= 2xZPF
κL/ωcav

= 2ζ. (1.4)

We see that for a large quantum parameter a single phonon of the cantilever causes a detectable
shift of the cavity resonance as well as a single photon causes the cantilever to change its mo-
mentum noticeably. Finally we note, that in a recent article Murch et al., introduced a so called
granularity parameter to describe the impact of a single photon on the collective motion of ultra-
cold atoms [32]. It directly corresponds to the quantum parameter (1.3), as we will see in section
(4.3) of this thesis.

In the following section we will discuss the dynamics of the cantilever due to the driving of
the cavity both in a quantum mechanical and a classical treatment. The quantum parameter will
turn out to be very suitable for this analysis which will focus on the system’s most characteristic
quantities, in particular the number of photons in the cavity and the energy of the cantilever’s
oscillation. There are a few words to be said about the mechanical oscillation energy.
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In the classical picture we can obtain a solution of the oscillation amplitude A as a function
of the system parameters. This solution has been given in [21] and will be briefly reviewed at
the beginning of the subsequent chapter. The expression for the mechanical oscillation energy
follows directly from this solution as EM,cl = 1

2mω
2
MA

2. The quantum mechanical treatment
on the other hand allows to get EM from the expectation value of the cantilever’s occupation
number: EM,qm = ~ωM 〈n̂M 〉, where we exclude the zero-point energy. We note that there is one
peculiarity in our definition of the phonon occupation number 〈n̂M 〉. If we would define n̂M = ĉ†ĉ,
a static displacement of the cantilever, i.e. 〈x̂M 〉 6= 0, would already yield a non-zero occupation
number, even in the absence of any oscillations. In order to exclude these contributions, we shift
the position operator by its expectation value and introduce x̂′M = x̂M−〈x̂M 〉. Correspondingly we
obtain shifted annihilation and creation operators b̂′ = 1

2xZPF (x̂
′
M+ i

mωM
p̂M ) and b̂′† = 1

2xZPF (x̂
′
M−

i
mMωM

p̂M ), where p̂M = i
√

~mMωM
2 (b̂† − b̂) is the momentum operator of the cantilever. The

phonon number operator can now be defined as

n̂M = b̂′†b̂′

= 1
4x2

ZPF

(
x̂2
M + p̂2

M

m2
Mω

2
M

)
+ 1

4x2
ZPF

(
〈x̂M 〉2 − 2x̂M 〈x̂M 〉

)
= b̂†b̂+ 1

4x2
ZPF

(
〈x̂M 〉2 − 2x̂M 〈x̂M 〉

)
(1.5)

Its expectation value is given by 〈n̂M 〉 = 〈b̂′†b̂′〉 = 〈b̂†b̂〉− 1
4x2

ZPF
〈x̂M 〉2 and directly corresponds to

the oscillation energy EM,qm.
In order to obtain a dimensionless quantity for our comparison, we divide the cantilever energy

EM by a characteristic classical energy scale of the system. To set this characteristic energy
scale, we take the energy E0 = 1

2mω
2
Mx

2
FWHM associated with an oscillation amplitude xFWHM

of the mechanical cantilever which moves the cavity just out of its resonance. It follows that
EM/E0 = (A/xFWHM)2 in the classical case, and EM/E0 = 4ζ2 〈n̂M 〉 in the quantum version.



Chapter 2

The optomechanical instability in the
quantum regime

In this chapter we focus on the question of how the optomechanical instability changes due to
quantum effects. To answer this question at least partially, we will employ a fully quantum me-
chanical treatment of the system, based on the numerical solution of a quantum master equation.
We will concentrate on the case of blue-detuned pumping of the cavity, where the cantilever
can settle into self-induced oscillations once the input power is increased beyond some threshold
value. The results of the quantum mechanical treatment can then readily be compared to the
classical solution [21]. Below the threshold of the instability, we can check the results of a simple
rate equation approach against the results of the master equation. This rate equation approach
captures the amplification behaviour of the coupled system and catches the effects of photon
shot noise on the cantilever motion [15]. The full quantum mechanical treatment can describe
the crossover from the regime below the threshold of instability to the regime of self-induced
oscillation. Moreover, the comparison to the classical solution allows to observe the effects of the
quantum fluctuations. In this analysis, the quantum parameter ζ = xZPF/xFWHM will be the most
important quantity as it governs the quantum-to-classical transition.

We note, that the main results of this chapter have already been discussed in:

• Max Ludwig, Björn Kubala, Florian Marquardt: “The optomechanical instability in the
quantum regime”, New Journal of Physics, volume 10, 095013.

2.1 Classical solution
In the following we will briefly review the classical treatment of the system as given in ( [21]). It
allows to find an analytic solutions for the coupled cavity and cantilever dynamics. In particular
one can find the amplitude of the self-induced oscillations as a function of the system parameters.

The Hamiltonian (2.16) introduced in the previous chapter allows to readily derive the Heisen-
berg equations of motion for the cavity operator â and the cantilever position operator x̂.. To
investigate the purely classical dynamics of the coupled cavity-cantilever system, we replace the
operator â(t) by the complex light amplitude α(t) and the position operator of the cantilever x̂
by its classical counterpart. We thus arrive at:

α̇ = [i(∆ + g
xM
xZPF

)− κ

2
]α− iαL (2.1)

11
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ẍ = −ω2
Mx+ ~g

mxZPF
|α|2 − ΓM ẋM . (2.2)

Here fluctuations (both the photon shot noise as well as intrinsic mechanical thermal fluctuations)
have been neglected, to obtain the purely deterministic classical solution. The variables t, x and
α can be rescaled [21] as t̃ = ωM t; α̃ = iαωM/(2αL); x̃ = gx/(ωMxZPF) , so that the coupled
equations of motion contain only the dimensionless parameters P, ∆/ωM , κ/ωM , and ΓM/ωM :

dα̃

dt̃
= [i( ∆

ωM
+ x̃)− 1

2
κ

ωM
]α̃+ 1

2
d2x̃

dt̃2
= −x̃+ P |α̃|2 − ΓM

ωM

dx̃

dt̃
. (2.3)

Crucially, the quantum parameter ζ cannot and does not feature in these equations.
Apart from a static solution x(t) ≡ const, this system of coupled differential equations can

show self-induced oscillations. In such solutions, the cantilever conducts an approximately sinu-
soidal oscillation at its eigenfrequency, x(t) ≈ x̄+A cos(ωM t). The light amplitude then shows the
dynamics of a damped, driven oscillator, which is swept through its resonance, see equation (2.1);
an exact solution for the light amplitude α(t) can be given as a Fourier series containing harmonics
of the cantilever frequency ωM [21]:

∣∣α̃(t̃)
∣∣ = ∣∣∣∣∣∑

n

α̃ne
int̃

∣∣∣∣∣ , (2.4)

with

α̃n = 1
2

Jn(−Ã)
in+ κ/(2ωM )− i(¯̃x+ ∆/ωM )

. (2.5)

The dependence of oscillation amplitude, A, and average cantilever position, x̄, on the dimen-
sionless system parameters can be found by two balance conditions: Firstly, the total force on the
cantilever has to vanish on average, and, secondly, the power input into the mechanical oscillator
by the radiation pressure on average has to equal the friction loss.

The force balance condition determines the average position of the oscillator, yielding an
implicit equation for x̄,

〈ẍ〉 ≡ 0 ⇔ mω2
M x̄ = 〈Frad〉 = ~g

mxZPF
〈|α(t)|2〉 , (2.6)

where the average radiation force, 〈Frad〉 is a function of the parameters x̄ and A.
The balance between the mechanical power gain due to the light-induced force, Prad = 〈Fradẋ〉,

and the frictional loss Pfric = ΓM
〈
ẋ2〉 follows from

〈ẋẍ〉 ≡ 0 ⇔ 〈Fradẋ〉 = ΓM 〈ẋ2〉. (2.7)

For each value of the oscillation amplitude A we can now plot the ratio between radiation power
input and friction loss, Prad/Pfric = 〈Fradẋ〉/(ΓM 〈ẋ2〉), after eliminating x̄ using equation 2.6.
This is shown in figure 2.1. Power balance is fulfilled if this ratio is one, corresponding to the
contour line Prad/Pfric = 1. If the power input into the cantilever by radiation pressure is larger
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Figure 2.1: Classical self-induced oscillations of the coupled cavity-cantilever system. The radiation
pressure acting on the cantilever provides an average mechanical power input of Prad. The ratio
Prad/Pfric of this power Prad vs. the loss due to mechanical friction, Pfric, is shown as a function
of the detuning ∆ and the cantilever’s oscillation energy EM , at fixed laser input power P. The
oscillation energy EM = mω2

MA
2/2 is shown in units of E0, where EM/E0 = (A/xFWHM)2.

Self-induced oscillations require Prad = Pfric. This condition is fulfilled along the horizontal cut at
Prad/Pfric = 1 (see black line and the inset depicting the same plot, viewed from above). These
solutions are stable if the ratio Prad/Pfric decreases with increasing oscillation amplitude A. The
blue regions at the floor of the plot indicate that Prad is negative, resulting in cooling. The cavity
decay rate is κ = 0.5ωM , the mechanical damping is chosen as ΓM/ωM = 1.47 · 10−3, and the
input power as P = 6.05 · 10−3 ; these parameters are also used in figures 2.2, 2.3, 2.4, and 2.6,
and will be referred to as Γ∗M and P∗.
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than frictional losses (i.e., for a ratio larger than one), the amplitude of oscillations will increase,
otherwise it will decrease. Stable solutions (dynamical attractors) are therefore given by that part
of the contour line where the ratio decreases with increasing oscillation amplitude (energy), as
shown in figure 2.1.

Changing the (dimensionless) mechanical damping rate ΓM/ωM will scale the plot in figure 2.1
along the vertical axis, so that the horizontal cut at one yields a different contour line of stable
solutions [a changed input power P gives a similar scaling, but leads to further changes in the
solution, as P also enters the force balance condition, equation (2.6)]. Decreasing mechanical
damping or increasing the power input will increase the plot height in figure 2.1, so that the
amplitude/energy of oscillation of the stable solution increases.

While the surface or contour plots in figure 2.1 allow a discussion of general features of
the self-induced oscillations, such as the multistabilities discussed in Ref. [21], a slightly different
representation of the classical solution is more amenable to an easier understanding of the particular
dynamics of the system for a certain set of fixed system parameters. Figure 2.2 shows the cantilever
energy EM,cl = 1

2mω
2
MA

2 in terms of the classical energy scale E0 = 1
2mω

2
Mx

2
FWHM as function

of driving P and detuning ∆/ωM . These are the parameters that can typically be varied in a
given experimental setup.

For sufficiently strong driving, self-induced oscillations appear around integer multiples of the
cantilever frequency, ∆ ≈ nωM . For a cavity decay rate κ = 0.5ωM assumed in figure 2.2,
the different bands are distinguishable at lower driving; for larger κ (or for stronger driving), the
various ‘sidebands’ merge. For the lower-order sidebands, the nonzero amplitude solution connects
continuously to the zero amplitude solution, which becomes unstable. This is an example of a
(super-critical) Hopf bifurcation into a limit cycle.

The vertical faces, shown gray in figure 2.2, for ∆ ≈ 2ωM and ∆ ≈ 3ωM are connected
to the sudden appearance of attractors with a finite amplitude. For example, while approaching
the detuning of ∆ = 2ωM at fixed P (the solid line in figure 2.2 refers to P = 1.47 · 10−3), a
finite amplitude solution appears, although A = 0 remains stable. In Ref. [21] the existence of
higher-amplitude stable attractors and, correspondingly, dynamic multistability were discussed.
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Figure 2.2: Cantilever oscillation energy EM ∝ A2 versus detuning ∆ and laser input power P.
This plot (in contrast to figure 2.1) shows only the stable oscillation amplitude, but as a function
of variable input power. The particular value P∗ corresponding to figure 2.1, and the resulting
profile of oscillation amplitudes are indicated by a black line. The green floor of the plot indicates
regions without self-induced oscillations. The other system parameters are as in figure 2.1. The
continuous onset of the self-oscillations in the sidebands at ∆/ωM = 0, 1 (which merge for the
present parameter values) represents a super-critical Hopf bifurcation, from A = 0 to A 6= 0. At
higher sidebands, an attractor with a finite A 6= 0 appears discontinuously, while A = 0 remains
a stable solution.
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2.2 Rate equation approach
Before embarking on a full quantum-mechanical treatment of the coupled cavity-cantilever system,
it is instructive to discuss a more simple method to capture some non-classical effects, in particular
the response of the cantilever to the photon shot noise. For that purpose, we consider the shot
noise spectrum of the driven cavity, decoupled from the cantilever,

SFF (ω) =
( ~g
xZPF

)2
Snn(ω) =

( ~g
xZPF

)2
n̄

κ

(ω + ∆)2 + (κ/2)2
, (2.8)

where
n̄ = P

8ζ2
(ωM/κ)2

(∆/ωM )2 + (κ/2ωM )2
(2.9)

is the mean number of photons in the cavity. The maximum occupation nmax = Pω4
M/(2κ4ζ2) =

4α2
L/κ

2 occurs at zero detuning.

SFF (ω) =
( ~g
xZPF

)2
Snn(ω) =

( ~g
xZPF

)2
n̄

κ

(ω + ∆)2 + (κ/2)2
, (2.10)

We note that in using the unperturbed, intrinsic shot noise spectrum for an optical cavity in
the absence of optomechanical effects, we neglect the modification of that spectrum due to the
back-action of the cantilever motion.

The asymmetry of the shot noise spectrum is important for the dynamics of the cantilever.
The spectral density of the radiation-pressure force at positive frequency ωM (negative frequency
−ωM ) yields the probability of the cavity absorbing a phonon from (emitting a phonon into) the
cantilever [15].

For a red-detuned laser impinging on the cavity (∆ < 0), the cavity’s noise spectrum peaks
at positive frequencies and the cavity tends to rather absorb energy from the cantilever. As a
consequence, the mechanical damping rate for the cantilever is increased, leading to cooling if one
starts with a sufficiently hot cantilever. In the opposite Raman-like process taking place at ∆ > 0,
a blue-detuned laser beam will preferentially lose energy to the cantilever, so that it matches the
cavity’s resonance frequency. The effective optomechanical damping rate,

Γopt = ζ2κ2[Snn(+ωM )− Snn(−ωM )] , (2.11)

is then negative. The corresponding heating of the mechanical cantilever is counteracted by the
mechanical damping ΓM . Simple rate equations for the occupancy of the cantilever yield a
thermal distribution for the cantilever phonon occupation number nM , with [15]

〈b̂†b̂〉 = 〈n̂M 〉 =
ζ2κ2Snn(−ωM ) + n̄thΓM

Γopt + ΓM
. (2.12)

The effective temperature, Teff, is related by 〈n̂M + 1〉/〈n̂M 〉 = exp[~ωM/(kBTeff)] to the mean
occupation number. The equilibrium mechanical mode occupation number, n̄th, is determined
by the mechanical bath temperature, which is taken as zero in the following. In contrast to first
appearance, the mean occupation number of the cantilever given in equation (2.12) does not
depend on the quantum parameter ζ, as ζ2Snn is independent of ζ. This is because Snn ∼ n̄ ∼
1/ζ2, see equation (2.9). The cantilever energy, therefore, only trivially depends on the quantum
parameter as EM/E0 = 4ζ2 〈n̂M 〉, so that it vanishes in the classical limit, where ζ2 ∝ ~→ 0.
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In general, the phonon number in equation (2.12) can increase due to two distinct physical
effects: On the one hand, the numerator can become larger, due to the influence of photon shot
noise impinging on the cantilever, represented by Snn. On the other hand, the denominator can
become smaller due to Γopt becoming negative. In the latter case, the fluctuations acting on the
cantilever (both thermal and shot noise) are amplified. This effect is particularly pronounced just
below the threshold of instability, where ΓM + Γopt = 0 (see below).

In the resolved sideband limit κ � ωM (at weak driving) the cantilever occupation 〈n̂M 〉
will peak around zero detuning, where the number of photons in the cavity is large, and around
a detuning of ∆ = ωM . At the latter value of detuning the aforementioned Raman process is
maximally efficient as a photon entering the cavity will exactly match the resonance frequency
after exciting a phonon in the cantilever. This dependence of cantilever occupation (or the
corresponding energy) on the detuning is shown in figure 2.3.

The approach sketched above can be modified slightly to take account of the modification of
the cavity length due to a static shift of the cantilever mirror by radiation pressure. Approaching
the resonance of the cavity from below, the increasing number of photons inside the cavity will
increase the cavity length due to their radiation pressure on the mirror, bringing the system even
closer to the resonance. This effect can be included by considering the equations of motion ((2.2)
and (2.1)) in the static case, i.e. for d

dtα = d
dtx = 0. We arrive at the coupled equations for the

x̄M and n̄ = |ᾱ|2,

n̄ = |αL|2

(∆− gx̄M )2 + κ2/4
,

x̄M = Pn̄/ω2
M , (2.13)

A self-consistent solution n̄ can be readily found numerically and plugged into equation (2.12).
The resulting curve of the cantilever occupation shows due to this correction is illustrated in figure
2.3 (a) by the pink, dash-dotted line and shows a tilt of the peak around the resonance. The same
figure also includes results of the full quantum mechanical approach, which will be discussed in
the next section.

For larger κ, the two peaks in the cantilever excitation merge. Higher-order sidebands are not
resolved within this approach, since they would require taking care of the modification of SFF
due to the cantilever’s motion.

Classical self-induced oscillations occur in a regime of larger driving, where the optomechanical
damping rate Γopt of equation (2.11) becomes negative. They appear once amplification exceeds
intrinsic damping, i.e. when Γopt+ΓM < 0. The simple rate equation approach lacks any feedback
mechanism to stop the divergence of the phonon number. The classical solution demonstrates
how this feedback (i.e. the resulting change in the dynamics of the radiation field) makes the
mechanical oscillation amplitude saturate at a finite level. In addition, it shows the onset of
self-induced oscillations to occur at a smaller detuning, due to the effective shift of the cantilever
position explained above.

In figure 2.3(b) we show results for the detuning dependence of the mean energy of the
cantilever above the threshold of classical self-induced oscillations. The coupled cavity-cantilever
system acts as an amplifier of fluctuations, increasing the occupation of higher number states
of the cantilever well before classical oscillations set in. At the onset of classical self-induced
oscillations the rate equation result diverges. A full quantum-mechanical treatment describes the
crossover of the cantilever dynamics from quantum-fluctuation induced heating to self-induced
oscillations as will be discussed now.
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Figure 2.3: Cantilever energy versus detuning for a cavity driven below [(a),(c)] and above [(b),
(d)] the onset of self-induced oscillations. Note EM/E0 = 4ζ2 〈n̂M 〉. (a) Below the onset, the
cantilever amplitude would vanish according to the classical analysis that does not incorporate
fluctuations. However, the cantilever is susceptible to the photon shot noise (the parameters are
κ/ωM = 0.1, P = 8.4 ·10−3 , ΓM/ωM = 5 ·10−3, and ζ = 1.0), leading to finite phonon numbers
in the cantilever, particularly around the resonance ∆ = 0 and at the first sideband ∆ = ωM (see
main text). This is captured by the full quantum master equation, as well as (approximately) by
the rate equation, whose results improve when taking into account the corrections due to the shift
of the cantilever position x̄. (b) For stronger driving, the classical solution yields self-oscillations
(the parameters are P∗, Γ∗M as in figure 2.2, but κ/ωM = 0.3). The rate equation correctly
predicts the onset of the linear instability, but not the nonlinear regime. [The shift in x̄ was not
taken into account, hence the slight discrepancy vs. the classical solution] The master equation
results are shifted to lower detuning and describe sub-threshold amplification and heating as well as
self-induced oscillations above threshold, modified and smeared due to quantum effects (as shown
for a quantum parameter of ζ = xZPF/xFWHM = 1). (c) Including the zero-point fluctuations in a
semi-classical approach via Langevin equations gives results that agree well with both the results
from the rate equation and the full master equation, shown here for parameters as in (a). (d)
Above the onset of self-induced oscillations the semi-classical approach mimics results from the
quantum master equation partially. The parameters for this plot are κ/ωM = 0.3, ΓM = 50Γ∗M ,
P = 20P∗, ζ = 1.
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2.3 Quantum master equation method
The evolution of the coupled quantum system consisting of the cantilever and the optical cavity
is described by the Hamiltonian of equation (2.16). Dissipation arises from the coupling of the
mechanical mode to a bath and due to the opening of the cavity to the outside. While the former
results in mechanical damping with a rate ΓM , the latter is associated with the ring-down rate
of the cavity κ. In this part of the thesis, dealing with the optomechanical instability in the
quantum regime, we will assume the mechanical bath to be at zero temperature, where quantum
effects are most pronounced in steady state. A future, more realistic treatment should relax this
assumption and treat the non-equilibrium dynamics that results when a mechanical system is first
cooled optomechanically and then switched to the unstable side.

The system can be described by a reduced density matrix ρ̂ for the mechanical cantilever mode
and the optical mode of the cavity. In a frame rotating at the laser frequency, the time evolution
of the density matrix ρ̂ is given by

d

dt
ρ̂ = [Ĥ0, ρ̂]

i~
+ ΓM D[b̂] + κD[ĉ] , (T ≡ 0) (2.14)

where D[Â] = Âρ̂Â† − 1
2Â
†Âρ̂ − 1

2 ρ̂Â
†Â denotes the standard Lindblad operator. The Hamilton

operator Ĥ0 describes the coherent part of the evolution of the coupled cavity-cantilever system,

Ĥ = Ĥ0 + Ĥκ + ĤΓ . (2.15)

By means of the quantum parameter and the set of parameters given in (1.2), we can transform
Ĥ0 from its original shape (1.1) to

Ĥ0 = ~ (−∆− κζ (b̂+ b̂†)) ĉ†ĉ + ~ωM b̂†b̂ + ~
√

2Pω2
M

4κζ
( ĉ+ ĉ† ). (2.16)

For the numerical evaluation, we rewrite equation 2.14 as dρ̂/dt = Lρ̂, with a Liouvillian super-
operator L. We then interpret the density matrix as a vector, whose time evolution is governed
by the matrix L. The density matrix at long times (in steady state) is given by the eigenvector
of L with eigenvalue 0. The numerical calculation of this eigenvector is much more efficient than
a simulation of the full time evolution. Since we are dealing with large sparse matrices, it is
convenient to employ an Arnoldi method that finds a few eigenvalues and eigenvectors of L by
iterative projection. For Hermitean matrices, the Arnoldi method is also known as the Lanczos
algorithm.

In practice, the numerical approach used here sets strong limits on the dimension of the
Hilbert space. We need to take into account the Ncav lowest Fock states of the cavity and the
NM lowest Fock states of the mechanical cantilever, resulting in a Liouvillian super-operator with
(NM ·Ncav)4 elements. This puts more severe restrictions on our treatment of the coupled cavity-
cantilever system than encountered in similar treatments of comparable systems. For example,
nanoelectromechanical systems, where an oscillator is coupled to a normal-state or superconduct-
ing single-electron transistor (SET), will have to account for only a very limited number of charge
states of the SET (namely those few involved in the relevant transport cycle). As a consequence,
a larger number of Fock states can be included, e.g., 70 number states of the oscillator were kept
in Ref. [28]. In some cases it was furthermore considered sufficient to treat only the incoherent
dynamics of the mechanical oscillator, i.e., only the elements of the density matrix diagonal in
the oscillator’s Fock space, thereby reaching 200 number states of a mechanical mode coupled
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to a normal-state SET [36]. The restricted number of Fock states that can be considered here
makes it more difficult to fully bridge the gulf to the classical regime of motion of the mechanical
cantilever. [(NM , Ncav) = (8,16) for figure 2.3(a),(c),(d), (4,22) for figures 2.3(b), 2.4 and for
the first two panels of 2.6, (3,35) for the last panel of figure 2.6]. More details of the numerical
methods and possible improvements are discussed in the appendix (A).

A first comparison of results of the quantum master equation to the classical solution and
the results of the rate equation was already shown in figure 2.3. We find that the full quantum
results do not qualitatively differ from the rate equation results provided the parameters are chosen
sufficiently far from the onset of self-induced oscillations. The parameters of figure 2.3(a) are close
to the regime of the instability, though, and the maxima of the cantilever energy are suppressed
by nonlinear effects, when compared to the results of the rate equation approach.

In figure 2.4 we demonstrate the influence of the quantum parameter ζ = xZPF/xFWHM
governing the crossover from the quantum regime towards classical behaviour. This crossover
occurs actually due to two separate features: First, the usual semi-classical limit (in which ~ tends
to zero and the level spacing becomes small) and, second, the fact that our driven dissipative
quantum system does indeed suffer decoherence that tends to restore the classical behaviour.

Figure 2.4(a) shows the cavity photon number, normalized to its value at resonance, nmax.
For our choice of driving parameter P, the maximal occupation nmax is low, so that a small
number of Fock states suffices for describing the cavity in the quantum master equation. This
allows to account for enough number states of the cantilever to reach the regime of self-induced
oscillations. The classical solution (solid black line) consists of the broad Lorentzian of the isolated
cavity, on top of which additional peaks appear. These are due to the classical self-induced
oscillations occurring at the sidebands ∆ = ωM , 2ωM , . . . in the coupled cavity-cantilever system.
Figure 2.4(c) displays the cantilever energy EM/E0 as a function of the detuning, ∆/ωM , with
features that are in accordance with those found for the photon number. The classical curve in
(b), shown in black, corresponds to the cut indicated by the solid line in figure 2.2. For the chosen
driving power, the second sideband at ∆ = ωM just starts to appear, while the first sideband is
merged with the resonance at ∆ = 0, which shows up as a slight shoulder. The sharpness and
strength of these features also depend on the values of mechanical damping and cavity decay rate.
Results of our solution of the quantum master equation are shown for three different values of the
quantum parameter ζ = xZPF/xFWHM. Due to restrictions of the numerical resources, it was not
feasible to map out a wider range of values of the parameter ζ, although the range analysed here
already suffices to describe the quantum-classical crossover.

The quantum master equation shows results that are qualitatively similar to the classical so-
lution in the regime of self-induced oscillations, with the peaks being progressively broadened,
reduced in height, and shifted to lower detuning for increasing values of the quantum parame-
ter ζ. Numerical evidence indicates that quantum correlations between the cantilever position
operator x̂M and the photon operators b̂†, b̂ may cause the observed shift. As expected, the
discrepancy between the quantum mechanical and the classical result reduces with diminishing
quantum parameter ζ. In figure 2.4(b), we show the dependence of the cantilever energy on
the quantum parameter, for two different values of the detuning. In the sub-threshold regime
of amplification/heating the cantilever energy scales as ζ2, as discussed above. In any case, the
classical limit is clearly reached as ζ → 0.

At the second sideband a classical solution of finite amplitude coexists with a stable zero-
amplitude solution (compare figure 2.1 and last panel of figure 2.6). The black curve in fig-
ure 2.4(b), showing the finite amplitude solution, may therefore deviate substantially from the
~→ 0 limit of the quantum mechanical result. In general, the average value of EM , shown here,
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Figure 2.4: Comparison of classical and quantum results. (a) Number of photons inside the
cavity as a function of detuning, and (c) energy of the cantilever versus detuning for Γ∗M , P∗ and
κ/ωM = 0.5. The dotted curves show results from the quantum master equation for different
values of the quantum parameter ζ = 1.3 (pink) , ζ = 1.0 (green) and ζ = 0.7 (blue), which
are compared with the solution of the classical equations of motion (black solid curve). As
ζ → 0, the quantum result approaches the classical curve. See main text for a detailed discussion.
(b) The energy of the cantilever as a function of the quantum parameter ζ for fixed detunings
∆b/ωM = −0.2 and ∆c/ωM = 0.4 (the detuning value ∆a indicated in (b) is used in figure 2.6).
(d) Fano factor (〈n̂2

M 〉 − 〈n̂M 〉2)/〈n̂M 〉 vs. detuning, for ζ = 1. For a coherent state whose
occupation number follows a Poisson distribution, the Fano factor is 1 (dashed black line). Close
to the resonance (and far away from it, where 〈n̂M 〉 = 0), the results of the quantum master
equation approach this value. The Fano factor becomes particularly large near the second sideband,
where we observe coexistence of different oscillation amplitudes (see figure 2.6).
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will be determined by the relative weight of the two solutions (which are connected by tunneling
due to fluctuations), as well as fluctuations of EM for each of those two attractors.

In figure 2.5(b) we show the results of the master equation in a different parameter regime,
for κ/ωM = 0.3, P = 20P∗, ΓM = 50Γ∗M . Due to the small value of the cavity decay rate, the
sidebands of the corresponding attractor diagram (figure 2.4(a) ) are even more pronounced than
for the parameters of figure 2.1. The increased driving strength P leads to a strong distortion
of the diagram according to the force balance equation (2.6). Subsequently, the classical curve
(white contour in figure 2.4(a) and black line in figure 2.4(b)) has discontinuities at the slope to
the resonances and at the slope to the first sideband. We note that the jumps do not implicate
bistable behaviour in this case.

Both the low value of κ and the high value of P favour the occurrence of high occupation
numbers for cavity and cantilever, we have to chose a rather high mechanical damping rate. In this
regime, the scope of our numerics allows us to vary the quantum parameter between ζ = 0.9 and
ζ = 1.6 over the whole range of detuning. The oscillation energy of the cantilever as a function of
the detuning again shows the characteristics of enhanced quantum fluctuations for large ζ : The
resonances are broadened and shifted towards lower values of the detuning parameter. Smooth
curves supersede the discontinuities of the classical curve and the slopes at the corresponding
flanks scale inversely with the quantum parameter. In view of the attractor diagram, the curves
from the master equation for large ζ seem to show features of contour lines for a lower mechanical
damping rate (or higher driving strength). The resonance at the second sideband emerges when
increasing ζ and the gap between the first and the second sideband disappears.

2.4 Langevin equation
To get an estimate of the influence of quantum fluctuations, we compare the results of the quantum
master equation to numerical simulations of classical Langevin equations that try to mimick the
quantum noise. The resulting description of the quantum-to-semi-classical crossover is illustrated
in figures 2.3(c) and (d). To imitate both the zero-point fluctuations of the mechanical oscillator
and the shot-noise inside the cavity, we add white noise terms to equations (2.1) and (2.2):

α̇ = [i(∆ + g
x

xZPF
)− κ

2
]α− iαL +

√
κ/2αin (2.17)

ẍ = −ω2
Mx+ ~g

mxZPF
|α|2 − ΓM ẋ+

√
~ωMΓ/mξ, (2.18)

where 〈αin〉 = 〈ξ〉 = 0 and 〈αin(t)α∗in(t′)〉 = 〈ξ(t)ξ(t′)〉 = δ(t− t′). The coefficients in front of
the noise terms are chosen such that in the absence of optomechanical coupling we obtain the
zero-point fluctuations, i.e.

〈
|α|2

〉
= 0.5 away from resonance and mω2

M
2 〈x

2〉 = ~ωM
4 . The mean

zero-point energy of the cantilever is subtracted from the curves displayed in figures 2.3 and 2.5.
For parameters below the onset of self-sustained oscillations, this semi-classical approach leads

to good qualitative agreement with the quantum mechanical description, as can be seen in figure
2.3(c) for parameters that are the same as those of 2.3(a).

Also in the region of instability the Langevin equation yields results that resemble those of
the quantum master equation. The curve in figure 2.3(d), for the parameters κ/ωM = 0.3,
ΓM = 50Γ∗M , P = 20P∗, ζ = 1, is similar to the corresponding result of the fully quantum
mechanical picture, especially in terms of the slopes and heights of the peaks.
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Figure 2.5: Cantilever energy vs. detuning resulting from the Langevin equation in comparison to
the classical curve and the results from the quantum master equation. The choice of parameters
is the same as for figure 2.4(b), κ/ωM = 0.3, ΓM = 50Γ∗M , P = 20P∗. (a) The classical solution
for the oscillation energy is given by the white contour line in the attractor diagram, while the blue
and black contours depict the solutions for lower damping rates, ΓM = 48Γ∗M and ΓM = 13Γ∗M
respectively. We see, that a bistability at the second sideband occurs already for slightly modified
parameters (see the blue. (b) In the solutions of the full master equation, we observe a shift of the
resonances towards lower detunings and a smooth behaviour, in contrast to the sharp structures
of the classical curve. For high values of the quantum parameter ζ, the curves show features that
occur in the classical solution for lower damping rates only: The peak at the second sideband
appears and the peaks of the first and second sideband merge. (c) The results of the Langevin
equation recover the classical curves for the case of very weak quantum fluctuations, i.e. for
ζ = 0.1. They also resume the main features of the curves that come from the master equation.
However, this approach fails to match the results of the master equation for large values of ζ and
outside the region of instability. (d) Replacing the radiation pressure term of equation (2.18) by

~g
mxZPF

(|α|2 − 1
2) shifts the semi-classical curve towards lower detunings, but does not lead to a

better agreement with the curve from the quantum master equation.
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Still, the Langevin approach can mimick the results from the master equation only partially.
The approximation gets worse when dealing with low photon numbers and very large values of the
quantum parameter ζ. In particular, the oscillation energy of the cantilever is overestimated by the
semi-classical approach in the regions away from or in between the resonances. This is because the
Langevin equation introduces artificial fluctuations of the radiation pressure force in the vacuum
state. Indeed, |α|2 has a finite variance even in the ground state of the photon field, in contrast to
ĉ†ĉ. To give a few numbers on the occupation numbers of the cavity for the parameters of figures
2.5(c) and (d) and ζ = 1.3, we record that the photon numbers at ∆/ωM = −1.0, ∆/ωM = 1.5
and ∆/ωM = 2.0 has dropped to values below 0.1 from a maximal value of nmax = 4.4 at the
resonance. The effect, that the semi-classical approach overestimates the quantum fluctuations,
becomes more and more apparent for large values of the quantum parameters. We observe, that
for ζ = 1.6 the semi-classical curve of 2.5(c) deviates strongly from its fully quantum mechanical
counterpart of figure 2.5(b) over the whole range of the detuning parameter.

Another inconsistency of the Langevin approach is the fact that the zero-point occupation of
the cavity field does not lead to radiation pressure on the cantilever. To take account of this, we
might therefore try and replace the radiation pressure term of equation (2.18) by ~g

mxZPF
(|α|2− 1

2).
The resulting curve in figure 2.5(d) is shifted towards higher detunings, but does not improve the
comparison to the result from the quantum master equation. As a true artefact of the manipulation
of the radiation pressure term, it even shows an increase in the cantilever energy on the cooling
side (∆/ωM . −1), where the real cavity occupation should drop down to zero.

2.5 Wigner density and phonon number distribution

In figure 2.6, we go beyond the average cantilever phonon number and present results for the
phonon number probability distribution as well as for the full Wigner density of the cantilever,
defined as

W (x, p) = 1
π~

ˆ +∞

−∞
〈x− y |ρ̂|x+ y〉 e2ipy/~ dy. (2.19)

This figure demonstrates the different nature of the cantilever dynamics in the sub-threshold
regime and above threshold, where self-induced oscillations occur. Below the threshold (for a
detuning ∆a = −0.45ωM as indicated in figure 2.4, quantum parameter ζ = 1, and other param-
eters as in figure 2.4) the occupation of the cantilever is thermal, with an effective temperature
determined by the effective optomechanical and mechanical damping rates, cf. equation (2.12).
Consequently, the Wigner density shows a broad peak around the origin of the x−p plane of can-
tilever position and momentum (the static shift of the cantilever due to the radiation pressure is
very small). For a detuning of ∆b = −0.2ωM , self-induced oscillations occur. The probability dis-
tribution for the phonon number shows some thermal broadening, but an additional peak appears
at a finite phonon number. In the Wigner density plot this results in a crater-like feature, which
corresponds to a mixture of coherent states with essentially fixed amplitude but arbitrary phases.
This captures the fact that the phase of the self-induced oscillations is completely arbitrary also in
the classical solution. The energy corresponding to the phonon number at which the distribution
peaks, compares fairly well to the oscillation energy obtained from the classical solution. Only
the shift towards lower values of detuning as shown in figure 2.4(b) puts restrictions on a detailed
quantitative comparison.
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For a value of the detuning located in the second sideband, ∆d = 1.72ωM , we find a probability
distribution with a peak for the occupation of the cantilever ground state, and a broader peak at
a finite occupation number (mechanical damping is slightly decreased to display more pronounced
features). Likewise, the Wigner density consists of a sharp peak at the origin, surrounded by
a broader ring representing finite amplitude oscillations. This corresponds to the existence of
two stable attractors in the classical analysis, with vanishing and finite oscillation amplitude,
respectively. Similar results for the Wigner densities were found in Ref. [28] for a cantilever driven
by a superconducting single-electron transistor.

2.6 Summary and Outlook

We presented a fully quantum mechanical treatment of the coupled cavity-cantilever system and
investigated the effects of quantum fluctuations on the instability. To this end we compared the
results of the numerical simulation of a quantum master equation to three other approaches: The
classical solution, the rate-equation approach and a semiclassical Langevin equation.

Below the threshold of the instability, the influence of the quantum fluctuations and the
amplification of the cantilever motion could well be described within the rate equation approach.

0.08

-5

5

0

-5
0

0.03

10

-10

0
10

-10
0

-5

0.15

0

5

-5

5
0

5

Wigner
density

pr
ob

ab
ili

ty

phonon number

pr
ob

ab
ili

ty

phonon number

pr
ob

ab
ili

ty

phonon number

Figure 2.6: Distribution functions P (nM ) of the cantilever occupation and Wigner functions
W (x, p) [rescaled by xZPFpZPF] of the cantilever for ∆a = −0.45ωM , ∆b = −0.2ωM , ∆d =
1.72ωM [corresponding to the detuning values also indicated in figure 2.4(b); further parameters as
in figure 2.4 with ζ = 1.0; for ∆d the mechanical damping rate is reduced to ΓM/ωM = 1.2·10−3].
Below the threshold of self-induced oscillations, a broadened distribution is found corresponding to
an increased effective temperature, cf. equation (2.12) (left panels, ∆a); self-induced oscillations
are visible as a finite amplitude ring in the middle and the right panel. Dynamical multistability
(i.e. co-existence of several attractors) in the classical solution becomes apparent both in the
distribution and the Wigner density, where a double-peaked structure develops.
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In comparison the classical solution, we could find distinct signatures of the quantum fluctuations,
including both photon shot noise and mechanical zero-point fluctuations, in the results from the
quantum master equation. The quantum parameter determines the strength of these fluctuations
and governs the quantum-to-classical transition of the system. In the semiclassical approach the
quantum fluctuations were mimicked by classical noise terms. In a certain parameter regime, this
semiclassical approach captured the results of the full quantum mechanical treatment fairly well.
Finally, we investigated the bistable behaviour that appears in the curves of the oscillation energy
at the second sideband. To this end we plotted and discussed the probability distribution of the
cantilever occupation number and the Wigner density of the cantilever.

Having done all this, the obvious question arises of whether current optomechanical setups
would allow to reach this quantum regime. When considering generic optomechanical setups
consisting of a mechanical oscillator and an optical cavity, we have to deny this question. The
values for the quantum parameter reach only up to ζ ∼ 10−3 (in the Bouwmeester setup [11]),
while in our analysis considerable quantum effects only appeared for ζ ∼ 1. Nevertheless, in view
of the numerous variants of optomechanical systems the answer has to be revised: There are
optomechanical systems in the quantum regime already today. In particular, two recent setups
that became generally known as “optomechanics with cold atoms”, exhibit quantum parameters of
ζ ∼ 1 [32, 33]. In these systems, the mechanical oscillator is replaced by a cloud of ultracold atoms
whose collective motion is coupled to the mode of an optical cavity. It is obviously worthwhile to
have a closer look at these systems which we will do in the subsequent part of this thesis.



Chapter 3

Bose-Einstein condensation of trapped
atomic gases

This chapter will give a short introduction to the general theory of Bose-Einstein condensates. It
will discuss the basic methods to describe the collective motion of Bose-condensed atomic gas.
We will employ these methods in Chapter 4, where we focus on optomechanical systems, in which
the collective mode of a cloud of ultracold atoms is coupled to the field of an optical cavity. In
that sense this chapter is only a preparatory part for the following considerations. For detailed
and comprehensive reviews we refer to [37, 38, 39] which this overview is partly based on.

3.1 The Gross-Pitaevskii equation

In the theoretical description of condensates the Gross-Pitaevskii equation plays an exceptional role
and is the starting point for various theoretical investigations of problems involving nonuniform
dilute Bose gases. The Gross-Pitaevskii equation is a nonlinear Schrödinger equation for the
condensate wave function that includes atom-atom interactions in a mean-field approach. It also
allows to include stationary or time-dependent external potentials.
A common derivation of the Gross-Pitaevskii equation starts with a many-body Hamiltonian of
the form

Ĥ =
ˆ

Ψ̂†(x, t)[− ~2

2ma
∇2 + Vext(x, t)]Ψ̂(x, t)d3x

+1
2

ˆ
Ψ̂†(x, t)Ψ̂†(x′, t)Vint(x− x′)Ψ̂(x′, t)Ψ̂(x, t)d3xd3x′, (3.1)

where Vext(x, t) denotes an external potential and Vint(x − x′) the two-body interaction that
depends on the distance between the atoms only. The mass of a single atom is given by ma.
Ψ̂†(x) and Ψ̂(x) are the field operators that create and annihilate a single atom at the position
x. They obey the canonical commutation relations for bosons: [Ψ̂(x), Ψ̂†(x′)] = δ(x − x′) and
[Ψ̂(x), Ψ̂(x′)] = 0.

27
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The time evolution of the field operator Ψ̂(x, t) according to the Hamiltonian 3.1 is given by

i~
∂

∂t
Ψ̂(x, t) = [Ψ̂(x, t), Ĥ]

=
(
− ~2

2ma
∇2 + Vext(x, t) +

ˆ
Ψ̂†(x′, t)Vint(x′ − x)Ψ̂(x′, t)d3x′

)
Ψ̂(x, t). (3.2)

The principles of a mean-field description for the atom gas go back to Bogoliubov [40] and
are based on the concept of separating the condensate wave function from the field operator and
treat it as a classical function. To this end, the field operator Ψ̂(x) is decomposed by using the
eigenbasis of the one-particle density matrix {ψα(x)} :

Ψ̂(x) =
∑
α

ψα(x)âα. (3.3)

ψα(x) are normalized single particle wave functions and âα the corresponding annihilation op-
erators such that 〈âαâ†α′〉 = δαα′nα, where nα is the eigenvalue of the density matrix. The
Bogoliubov approximation consists of replacing the ground state operators â0 and â†0 by the scalar√
N0. This approximation is well-suited to describe the macroscopic phenomenon of Bose-Einstein

condensation, i.e. the case of a large ground-state occupation N0 = 〈â0â
†
0〉 � 1. It follows that

Ψ̂(x) =
√
N0ψ0(x) +

∑
α 6=0

ψαâα =: Ψ0(x) + δΨ̂(x). (3.4)

Ψ0(x) is a complex function that plays the role of an order parameter and is often called the
wavefunction of the condensate. As a consequence of the Bogoliubov ansatz, we have Ψ0(x) =
〈Ψ̂(x)〉. This expression implies that the expectation value 〈Ψ̂(x)〉 is not evaluated with respect to
a state of fixed particle number but by averaging over physically equivalent states. In that sense
a state containing N atoms and the states |N + 1〉 ∝ â†0|N〉 and |N − 1〉 ∝ â0|N〉 are considered
equivalent.

In turn we can already make a general statement on the time evolution of 〈Ψ̂(x)〉. If the
expectation value is taken with respect to stationary states that evolve according to e−iEt/~,
equation (3.2) yields:

Ψ0(x, t) = e−iµt/~Ψ0(x). (3.5)

This means that the time evolution of the order parameter is given by the difference in energy of
physically equivalent states. The chemical potential µ is defined as µ = ∂E

∂N ≈ E(N)−E(N − 1)
and is called the chemical potential.
In a dilute gas at low temperatures the interactions between the atoms can to a good approximation
be considered as low-energy collisions of point-like particles. In that case, the interaction strength
is determined by a single parameter, the s-wave scattering length as and the interaction potential
is modelled by

Vint(x′ − x) = gδ(x′ − x). (3.6)

The coupling constant g is related to the scattering length by

g = 4π~2as
ma

. (3.7)

Starting from (3.2), we can now derive an equation that governs the time evolution of the or-
der parameter. Replacing Ψ̂(x, t) by Ψ0(x, t), and thereby ignoring both quantum and thermal
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depletion of the condensate, leads to the well-known Gross-Pitaevskii equation:

i~
∂

∂t
Ψ0(x, t) = (− ~2

2ma
∇2 + Vext(x, t) + g|Ψ0(x, t)|2)Ψ0(x, t). (3.8)

It is a Schrödinger equation with a mean-field interaction term that introduces a nonlinearity. The
time-independent Gross-Pitaevskii equation reads

µΨ0(x) = (− ~2

2ma
∇2 + Vext(x, t) + g|Ψ0(x, t)|2)Ψ0(x, t). (3.9)

The condensate wave function has to be normalized to the total number of particles:
´
|Ψ0(x)|d3x =

N, which also fixes the value of the chemical potential µ in equation (3.9). Recapitulating all the
approximations performed so far, we see that the Gross-Pitaevskii equation is valid for a dilute
gas with a large particle number and at a very low temperature.

3.2 The Thomas-Fermi limit
A prerequisite for Bose-Einstein condensation is, that the mean interparticle separation becomes
comparable to the de Broglie-wavelength of thermal motion. This fact makes a dilute atomic
gas an ideal system to study condensation in experiment. Diluteness was also assumed in the
derivation of the Gross-Pitaevskii equation (3.8). An atomic gas is considered to be dilute if the
average interatomic distance is much larger than the s-wave scattering length: n̄� |as|−3, where
n̄ denotes the average density. Nevertheless, the interaction between the atoms can dominate the
dynamical and stationary properties of the condensate.

In the following we will discuss the role of the interactions for the case of a harmonic trapping
potential

Vext(x) = ma

2
(ωxx2 + ωyy

2 + ωzz
2). (3.10)

A first estimate can be made by comparing the interaction energy Eint to the ground state energy of
a harmonic oscillator with frequency ω̄ = (ωxωyωz)1/3: The average density can be approximated
by the number of particles N and the ground-state width of the oscillator aho =

√
~/(2maω̄) as

n̄ ≈ N/a3
ho. It follows that the interaction energy is roughly Eint ≈ gn̄N. On the other hand the

kinetic energy in the harmonic potential will be of the order Ekin ≈ ~ω̄N. The interaction term
in the Gross-Pitaevskii equation (3.8) will therefore be dominant for

Eint
Ekin

≈ gn̄N

~ω̄N
≈ Nas

aho
� 1. (3.11)

The role of the parameter Nas
aho

can also be seen by rescaling the Gross-Pitaevskii equation (3.9).
Introducing aho, a−3

ho , ~ω̄ as the new units of length, density and energy and denoting the rescaled
parameters by a tilde leads to:

[−∇̃2 + λ2
xx̃

2 + λ2
yỹ

2 + λ2
z z̃

2 + 8πNas
aho
|Ψ̃0|2]Ψ̃(x̃) = µ̃Ψ̃0(x̃), (3.12)

where λi = (ωi/2ω̄)2. For a large value of Nas/aho the interaction term dominates the left hand
side of (3.12) such that - in the so called Thomas-Fermi approximation - the contribution of the
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kinetic energy can be neglected. In this limit the time-independent Gross-Pitaevskii equation yields

|Ψ0(x)|2 = 1
g
(µ− Vext(x)) (3.13)

This result is valid for µ > Vext, i.e. inside an ellipsoid given by x2/R2
x + y2/R2

y + z2/R2
z = 1,

where Ri =
√

2µ/maω2
i are the Thomas-Fermi radii. Outside this region the condensate wave

function is set to zero.
Up to now, we assumed the Thomas-Fermi approximation to be valid for Nas/aho � 1.

This condition is based on rough approximations, and it turns out that it is not appropriate to
describe the crossover to the non-Thomas-Fermi regime. In particular it will fail, if the trap
shows a high anisotropy, e.g. for ωx � ωy, ωz. To get a more accurate defining condition for the
Thomas-Fermi regime we therefore turn towards a hydrodynamic description of the condensate.
A simple transformation of the Gross-Pitaevskii equation (3.8) leads to an intuitive picture for the
superfluid dynamics of the condensate. In addition, this description allows to narrow down the
Thomas-Fermi condition.

For that purpose we rewrite the wavefunction Ψ0(x, t) in terms of a phase S(x, t) and a
modulus √ρ, i.e.

Ψ0(x, t) =
√
ρ(x, t)eiS(x,t)/~. (3.14)

Accordingly, the Gross-Pitaevskii equation transforms into two hydrodynamic-like equations, an
equation of continuity and an equation for the phase:

∂ρ

∂t
+∇ · (ρv) = 0 (3.15)

∂

∂t
S +

(1
2
mav2 + Vext + gρ− ~2

2ma
√
ρ
∇2√ρ

)
= 0 (3.16)

Here we introduced the velocity of the condensate flow

v = 1
ma
∇S = − i~

2maρ

(
Ψ∗0∇Ψ0 −Ψ0∇Ψ∗0

)
. (3.17)

Equations (3.15) and (3.16) have the typical structure of equations for the dynamics of a superfluid
at zero temperature [38]. The term proportional to the ∇2√ρ in equation (3.16) is commonly
referred to as the “quantum pressure”. If the density profile ρ is smooth this term can be neglected.
To capture that effect quantitatively, we introduce a length scale R characterizing the distance
over which density variations in the system typically extend. In our case, as we are considering
the ground state wavefunction, R is given by the extent of the condensate. When considering
excitations of the condensate, the typical length scale would be the wavelength of the oscillations.
To proceed, we note that the kinetic pressure term scales as 1√

ρ∇
2√ρ ∼ R−2. Its contribution in

equation (3.16) can therefore be neglected if gn̄� ~2

2maR
−2 or

R� ξ := ~√
2gman̄

= (8πn̄as)−
1
2 . (3.18)

i.e. when the typical length scale R of the density fluctuations is much larger than the so called
healing length ξ. To find the ground state density within this approximation we set v = 0, or
equivalently S = µt, and recover the Thomas-Fermi result (3.13):

ρ0(x) = 1
g
(µ− Vext(x)). (3.19)
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Most notably, we are now able to find a more reliable condition that determines the validity of the
Thomas-Fermi approximation. The system under consideration is in the Thomas-Fermi regime if
the Thomas-Fermi radii Ri exceed the healing length:

Ri � ξ. (3.20)

In particular, for highly anisotropic traps, this condition has to be checked for the Thomas-Fermi
radius along each of the coordinate axes. For ωx � ωy, ωz the condensate will assume the shape
of a cigar, for ωx � ωy, ωz the shape of a disk. It might even be the case, that the Thomas-Fermi
approximation only describes the dynamics along the direction(s) of high elongation correctly, and
can not be applied along the direction(s) of strong confinement.

Plugging the definitions Ri =
√

2µ/mω2
i , ξ = (8πn̄as)−

1
2 into the Thomas-Fermi condition

(3.20) and using µ ≈ n̄g shows that we could equally demand that the chemical potential has to
be much larger than the energy of the harmonic oscillator ground-state:

µ

~ωi
� 1. (3.21)

Note that within the Thomas-Fermi approximation the chemical potential is determined by the
normalization of |Ψ0|2 and is given by

µTF = ~ω̄
2

(Nas
aho

)
2
5 . (3.22)

As a final remark, we note that the Thomas-Fermi regime is encountered in a large number
of experiments: In the MIT setup from 1995 [4] for example, condensation of N ∼ 106 sodium
atoms with as ∼ 5 · nm and aho ∼ 1µm was observed.

3.3 The Bogoliubov-de Gennes equations
In the previous section the Gross-Pitaevskii equation for the order parameter was derived by
replacing Ψ̂(x) with Ψ0(x). If instead we substitute Ψ̂(x) = Ψ0(x) + δΨ̂(x) in (3.1) and neglect
terms of the order O(δΨ̂3) we arrive at a grand canonical Hamiltonian of the form

Ĥ −µN̂ =
ˆ

Ψ∗0(x)
(
− ~2

2ma
∇2 + Vext(x)− µ+ g

2
|Ψ0(x)|2

)
Ψ0(x)d3x

+
ˆ
δΨ̂†(x)

(
− ~2

2ma
∇2 + Vext(x)− µ+ 2g|Ψ0(x)|2

)
δΨ̂(x)d3x

+ g

2

ˆ
Ψ2

0(x)δΨ̂†2(x)d3x + h.c., (3.23)

where we have introduced the number operator N̂ =
´
d3xΨ̂†(x)Ψ̂(x).

The grand canonical Hamiltonian Ĥ − µN can be diagonalized by using a Bogoliubov trans-
formation of the form:

δΨ̂(x) =
∑
α

(uα(x)âα − v∗α(x)â†α). (3.24)

such that

Ĥ − µN̂ = H0 +
∑
α

~ωαâ†αâα,

H0 =
ˆ
d3xΨ∗0(x)(− ~2

2ma
∇2 + Vext(x) + g

2
|Ψ0(x)|2)Ψ0(x).
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Here âα and â†α are annihilation and creation operators for the Bogoliubov excitations which obey
the canonical commutation relations of bosonic operators. The amplitudes uα(x) and vα(x) are
normalized as ˆ

d3x(uαu∗α′ − vαv∗α′) = δαα′ (3.25)

and have to satisfy the Bogoliubov-de Gennes equations

(− ~2

2ma
∇2 + Vext(x)− µ)uα(x) + g|Ψ0|2(2uα − vα) = ~ωαuα

(− ~2

2ma
∇2 + Vext(x)− µ)vα(x) + g|Ψ0|2(2vα − uα) = −~ωαvα. (3.26)

The solutions of (3.26) for Vext = 0 are readily found and give a first impression of the condensate
dynamics for the general case. For u(x) = ueik·x and v(x) = ve−ik·x the Bogoliubov equations
reduce to

~ωu = ~2k2

2ma
u+ gn̄(u+ v)

−~ωv = ~2k2

2ma
v + gn̄(u+ v) (3.27)

and yield the well-known Bogoliubov spectrum

~ω =
√
εk(gn̄+ εk)

= ~2

2ma

√( 2π
λexc

)2(( 2π
λexc

)2
+ 1
ξ2

)
, (3.28)

where εk = ~2k2/2ma is the free-particle energy and λexc = 2π
k denotes the wavelength of the

excitations. The low-energy part of this spectrum shows a linear dispersion, ω ≈ ck, with a sound
velocity of c =

√
gn̄/ma =

√
µ/ma. The high-energy behaviour, on the other hand, is governed

by a quadratic dispersion relation ~ω ≈ εk as in the case of free particles.

3.4 Collective excitations
When Bose-Einstein condensation of trapped atomic gases became experimentally realizable some
ten years ago, the study of its collective excitations immediately came into the focus of several
experimental and theoretical groups [41, 42, 43, 44]. For the uniform case the collective excitations
had already been studied in the context of superfluid Helium. Even though the case of a trapped
gas is in some points analogous, there is an important difference: The spectrum can no longer be
expressed by the momentum of the excitation. Instead, new quantum numbers that reflect the
symmetries of the problem have to be introduced. The discussion of this section will focus on
a spherical symmetric potential, i.e. Vext(x) = ma

2 ω
2
0x2. In this case, the elementary excitations

can be described in terms of the radial quantum number nr, the angular momentum l and its
component in z−direction, denoted bym. In his pioneering work [43] Stringari presented an elegant
solution for the spectrum and the eigenfunctions within the Thomas-Fermi approximation. It led
to a very good agreement with the results of the experiments at JILA [41] and MIT [42]. Here, we
give a recapitulation of the results of [43] and discuss general features of the excitation spectrum,
as they will become important in later parts of this thesis.
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To begin with, we reconsider the hydrodynamic equations (3.15) and (3.16) and concentrate
on the low-energy excitations of the condensate. If the wavelength λexc of these oscillations is
much larger than the healing length ξ, the “quantum pressure” term of equation (3.16) can be
neglected. Plugging in the ansatz ρ(x, t) = ρ0(x, t)+δρ(x, t), the hydrodynamic equations (3.15)
and (3.16) result in

∂2

∂t2
δρ+∇[( ∂

∂t
v)ρ(x, t) + v ∂

∂t
ρ(x, t)] = 0

∂

∂t
v +∇[ g

m
δρ+ v2

2
] = 0 (3.29)

Using the Thomas-Fermi result for the ground state density ρ0(x) (3.19) and neglecting all terms
of the order O(v2), O(δρ2), O(vδρ) in (3.29), leads to

∂2

∂t2
δρ = ∇ · [(µ− Vtrap)/m∇δρ]. (3.30)

or equivalently,
− ω2δρ = ∇ · [c2(x)∇δρ], (3.31)

where c(x) =
√

(µ− Vext(x))/ma can be interpreted as a local sound velocity. We note that
equation (3.31) allows for solution in the form of conventional sound waves, provided their wave-
length is much smaller than the extent of the atomic gas, i.e. λexc � R, such that the sound
velocity can be treated as locally constant. Experimentally such sound waves can be excited
by pointing a laser on the trapped condensate. Experiments of this kind have been studied for
example in [45]. Their data agreed well with the predictions of the Bogoliubov theory.

For excitations on length scales comparable to the size of the system, λexc ≈ R, the spectrum
turns out to be discretized. To see this, equation (3.31) can be solved by separation of variables
in spherical coordinates. The solution, which is defined for |x| < R =

√
2µ/maω2

a, is given by

δρ(r, θ, φ) = P 2nr
l (r/R)rlYlm(θ, φ). (3.32)

The spherical coordinates are introduced in the conventional notation such that x = r sin θ cosφ, y =
r sin θ sinφ and z = r cos θ. P (2nr)

l (x) are polynomials of the form P
(2nr)
l = 1 + α2x

2 + . . . +
α2nrx

2nr , with coefficients satisfying α2k+2 = −α2k(nr− k) 2l+2k+3+2nr
(k+1)(2l+2k+3) , and Ylm(θ, φ) are the

spherical harmonic functions.
The corresponding spectrum depends on the radial quantum number nr and the angular

momentum l :
ω(nr, l) = ω0(2n2

r + 2nrl + 3nr + l)
1
2 . (3.33)

Most strikingly, the eigenfrequencies are independent of both the strength of the interactions g
and the density of the atomic gas n̄. This can be understood by noting that both the Bogoliubov
velocity of sound, c =

√
µ/m at the center of the trap, and the size of the condensate, R =

√
2µ
mω2

0
,

scale with
√
n̄g.

Still the result reveals distinct signatures of the interactions as can be seen by comparing to
the predictions of the non-interacting case. The Gross-Pitaevskii equation (3.8) for g = 0 and
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Vext = m
2 ω

2
0r

2 reduces to a Schrödinger equation of a simple harmonic oscillator, whose spectrum
is given by

ω(nr, l) = ω0(2nr + l). (3.34)

For nr = 0, the frequencies of the condensate modes, ω(nr = 0, l) =
√
lω0, are diminished

in value when compared to (3.34). Only the l = 1 mode, commonly referred to as the dipole
mode, is not influenced by the interactions. We can identify this mode as the center-of-mass
oscillation. The excitations closest in energy to the center-of-mass mode is the quadropole mode
with ω(nr = 0, l = 2) =

√
2ω0. Note that all excitations with nr = 1 have smaller excitation

energies when compared to the result for the non-interacting case. On the other hand, the lowest
mode with nr 6= 0 is the monopole mode with ω(nr = 1, l = 0) =

√
5ωho- which is larger than

the non-interacting result. This can be understood by noting the the evolution of the monopole
mode involves the compression of the condensate.

While for a spherically symmetric trap these results can be derived in a rather straight-forward
manner, the case of an anisotropic harmonic trap, Vext = ma

2 ω
2
x,y(x2 + y2) + ma

2 ω
2
zz

2 , is much
more involved. An analytic solution based on a separation ansatz in cylindrical elliptical coordinates
for the hydrodynamic equations was given in [46]. Equivalent results were found by Öhberg et al.
[47] solving the Bogoliubov equations with a polynomial ansatz.



Chapter 4

Cold atoms and optomechanics

In this chapter we will develop and discuss a model setup consisting of a basic optomechanical
cavity and a cloud of ultra-cold atoms inside the cavity. It aims at coupling the dynamics of the
cantilever motion and the center-of-mass motion of the atoms. In a sense this model is a hybrid
combining a setup of the generic optomechanical type (see figure 1.1) and a setup similar to the
experiment of Murch et al. [32] where the mechanical motion of a cloud of cold atoms is coupled
to a cavity field. As we will see, the model considered here allows for a direct coupling between
the cantilever and the atoms, as the spatial structure of the cavity field depends on the position
of the cantilever. Moreover, we will discuss a second-order coupling between the cantilever and
the atomic cloud that arises due to the fact that both elements interact with the cavity field. This
cavity-assisted coupling will turn out to exceed the direct coupling for realistic parameters. We
start the analysis by employing a simplified model that treats the atomic cloud in the simplest
possible manner. In a later part of this chapter we will confirm the results of the simple model by
a calculation that is based on the standard treatment for the dynamics of a Bose-condensed gas.

In view of chapter 2, where we discussed quantum effects in a generic optomechanical setup,
we will also investigate the question, if any features of uniquely quantum-mechanical nature can
be observed in this model setup. We therefore consider the possibility of generating squeezed
states of the cantilever and the atomic cloud. Finally, we address the issue of measuring the Fock
state of the atomic collective motion.

4.1 Electromagnetic field mode inside the cavity

Before discussing the interaction between a cloud of atoms and the cavity field, we should preface
this part with an investigation of the spatial structure that a standing wave inside an empty
cavity exhibits. We consider an optical cavity of length L that is driven by an incoming laser
field of wavelength k and amplitude E0. The transmission and reflection amplitudes of the first
and second mirror are denoted by t1,2 and r1,2. The expression for the electromagnetic field at
a specific position along the cavity axis can be derived by summing up all possible paths of the

35
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photons impinging the cavity:

E(x) = E0t1(eikx + r2e
ik(2L−x) + r1r2e

ik(2L+x) + r1r
2
2e
ik(4L−x) + ...)

= E0t1

∞∑
m=0

(r1r2)mei2kmL(eikx + r2e
ik(2L−x))

= E0t1
eikx + r2e

ik(2L−x)

1− r1r2ei2kL
(4.1)

Note that equivalently we could solve the ansatz depicted in figure (4.1) for consistent solutions
of the right- and the left-moving wave amplitudes E1 and E2. The boundary conditions yield

E1 = E0t1 + E2r1

E2e
−ikL = r2E1e

ikL, (4.2)

and the solution E(x) = E1e
ikx + E2e

−ikx coincides with (4.1).
The intensity inside the cavity is accordingly given by

|E(x)|2 = |E0t1|2
1 + r22 + r2 cos(2k(L− x) + φ2)

1 + (r1r2)2 − 2r2r2 cos(2kL+ φ1 + φ2)
(4.3)

where the complex reflectivity amplitudes r1,2 are rewritten as r1,2eiφ1,2 with real-valued r1,2. The
phase shift φ1,2 for a reflection on the boundary to a dense medium is π, a result that can be
found from Fresnel’s formulas for the special case of normal incidence. If we furthermore assume
a one-sided cavity, i.e. |r2| = 1 the light intensity reduces to

|E(x)|2 = |E0t1|2
4 sin2(kx− kL))

(1− r1)2 + 4r1 sin2(kL)
. (4.4)

In particular, (4.4) shows how the axial intensity profile depends on the wave number k and the
cavity length L. We illustrate this dependence in the density plots of figure (4.2).

Regarding the transverse profile of the cavity, we assume an idealized Gaussian beam with
constant waist w0 so that the cavity intensity |E(x, y, z)|2 is given by

|E(x, y, z)|2 = |E(x)|2 exp(−y
2 + z2

w2
0

). (4.5)

Figure 4.1: The intracavity field is given by the superposition of right- and left-moving waves,
whose amplitudes E1 and E2 are connected to each other and to the incoming field by appropriate
boundary conditions (see equations (4.2)).
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Figure 4.2: Intensity of the electromagnetic field (equation 4.4) as a function of the position x
inside the cavity and the wave number k of the incoming laser beam. For this panel we chose the
reflectivities of the mirrors to be r2 = 1, r1 = 0.7. The colour scheme is scaled linearly between the
maximal value of the intensity, |E0t1|2 4r2

(1−r1r2)2 , (white) and zero intensity (black). (a) Intensity
profile for fixed cavity length L: When the wave number is increased along the vertical axis, the
cavity resonances appear at integer multiples of k = π/L. (b) Intensity profile for fixed wave
number k. When increasing the cavity length L, the number of intensity nodes rises by one at
L = nπ/k, n εN.

4.2 Atom-cavity coupling
This section introduces the basic coupling mechanism between a single atom and a single cavity
model and follows the corresponding discussion in [48]. We will focus on the case, where the cavity
resonance is far detuned from the atomic transition resonance. Note that this model is only valid
if the cavity is driven near resonance. This means that the detuning between the laser frequency
and the cavity resonance frequency has to be much smaller than the cavity-atom detuning.

The interaction between a single atom and a radiation field can be modelled by the Jaynes-
Cummings Hamiltonian

Ĥ = ~ωa,res
2

σ̂z + ~ωcavĉ†ĉ+ ~g0(x)(σ̂+ĉ+ σ̂−ĉ†) + Ĥκ + ĤΓres . (4.6)

Here σ̂z, σ̂+, σ̂− are Pauli matrices for the effective atomic two level system consisting of ground
state and first excited state with energy difference ~ωa,res. ĉ and ĉ†, on the other hand, are
the operators of the cavity field with resonance frequency ωcav. Cavity losses and the finite
linewidth of the atomic transition are taken into account by Ĥκ and ĤΓres respectively. The
coupling constant g0(x) along the cavity axis depends on the dipole matrix element of the atom in
transverse direction, the atomic transition frequency ωa,res, the cavity mode volume and the shape
of the electromagnetic field inside the cavity. Experimentally, the maximum coupling strength
g0 is determined by a measurement of the Rabi frequency at the atomic resonance (∆ca =
ωcav − ωa,res = 0). For large detuning (|∆ca| � g0,Γres), the atomic transitions are suppressed
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and the effect of the atom-cavity coupling can be reduced to a shift of the resonance frequencies
by ωcav → ωcav + g2

0
∆ca

and ωa,res → ωa,res −
g2

0
∆ca

. In the following we neglect the internal degrees
of freedom of the atom and focus on its motion that is determined by the dipole force exerted by
the cavity field. In doing so, we write down an effective Hamiltonian for the atom-cavity system

Ĥ = ~
(
ωcav + g2

0(x̂a)
∆ca

)
ĉ†ĉ+ p̂2

a

2ma
+ Ĥκ, (4.7)

where we introduced the quantized position operator of the atom x̂a and the canonical momentum
operator p̂a, fulfilling the commutation relation [x̂a, p̂a] = i~. This kind of coupling between the
dynamics of an atom and the cavity field already resembles the optomechanical coupling that
was discussed in the first chapters of this thesis. As we will see in the following section, the
Hamiltonian (4.7) can be mapped exactly on the optomechanical Hamiltonian (4.14).

If we now assume the atom to be sitting inside a cavity, we can use the results of the preceding
section to deduce the local dependence of the coupling parameter as g2

0(x)
∆ca
∝ |E(x)|2. In view of

equation (4.5), we see that

g2
0(x)
∆ca

= g2
0

∆ca
sin2(kx− kL) exp(−y

2 + z2

w2
0

). (4.8)

By using the result for the field of a cavity in the absence of an atom, we neglect the back-action
of the atom on the field. However, for a large number of atoms strongly coupled to the cavity
field, the shape of the cavity field will be modified due to the presence of the atoms. This can
be most easily understood by modelling the cloud of atoms as a homogeneous medium with a
refractive index n′ = 1 + δn. We note that this back-action can lead to interesting dynamics,
as for example shown in [34]. Still in the following considerations we will assume parameters for
which δn will turn out to be small. We therefore keep the shape of the cavity intensity (4.5), that
was derived in the absence of any atoms. Only the number of photons circulating inside the given
cavity mode will vary in response to the atomic motion.

4.3 Recent experiments
Within the last year, two groups presented works that can be filed under the label “optomechanics
with ultracold atoms”. The basic idea behind the set-ups investigated in Berkeley [49, 32] and
Zürich [33, 50] is to replace the cantilever of the conventional optomechanical systems by a gas
of ultracold atoms inside a cavity. In both cases, a single mode of the atoms’ collective dynamics
couples to the cavity in a way that is analogous to the typical optomechanical coupling. As
already mentioned at the end of chapter 2, these experiments are supposed to be far in the
quantum regime.

In the Zürich setup, a Bose-condensed gas of around 105 atoms (87Rb) is caught inside a
high-finesse cavity by a crossed-beam dipole trap. The condensate stretches over a relatively wide
volume given by the Thomas-Fermi radii (Rx, Ry, Rz) = (3.3, 20.0, 3.5)µm, where the cavity
axis is denoted by x. Once a weak, near-resonant pump laser is introduced into the cavity, the
condensate couples to the standing wave of the cavity mode whose shape is given by sin2(kx) =
(1− cos(2kx))/2. For the parameters of this setup, the condensate is only slightly perturbed by
the cavity field and remains connected and continuous in shape. Excitations of the condensate
occur primarily into the superposition of the ±2~k momentum modes. In view of the Bogoliubov
spectrum (3.28), this corresponds to an excitation in the high-energy part of the dispersion relation
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(k = 2π/λexc > 1/ξ for the given parameters). Defining the annihilation and creation operators
of this mode as â and â†, the coupling term between the excitation mode and the cavity field
can be shown to be of the form ~ga,c(â† + â)ĉ†ĉ. Thereby the basic optomechanical Hamiltonian
is recovered. The quantum parameter ζ (1.3), that was introduced and discussed for a generic
optomechanical setup in the first chapters of this thesis, can now readily be computed as ζ =
xZPF/xFWHM = ga,c/κ. For the given cavity decay rate κ = 8.2 MHz it has a maximal value of
ζ = 0.6. This value is already in the regime where quantum effects should affect the system’s
dynamics substantially. We note that very recently the observation of bistable behaviour in this
setup has been reported [50].

A considerably different regime is encountered in the experiments that are performed in the
group of D. Stamper-Kurn at Berkeley. Again, a number of about 105 Rubidium atoms is confined
inside a cavity. In this setup, though, they are trapped by a deep optical lattice. The optical
lattice is produced by a strong laser that is off-resonant with the cavity mode. The atoms are
spread over more than 300 lattice sites and are confined closely to the center of each trap. As
the overlap between neighbouring fractions of the atomic cloud is small, they can be considered
as independent. This case is referred to as the Lamb-Dicke regime or deep-lattice limit. We
note that in contrast to [33], the Berkeley group has no evidence that the atoms remain in the
condensed state, once loaded into the cavity. Nevertheless, the atoms are at ultra-low temperatures
T ≈ 0.8µK and the atoms are in the ground state of motion in x-direction, as ~ωtrap � kBT,
where ωtrap is the frequency of the optical trap expanded around a single lattice site. It should
also be possible to realize this experiment with a BEC in the near future. So far, the main results
of this experiment are a quantification of the measurement back-action [32], i.e. the heating of
the atoms due to the photon shot noise of the cavity, and the observation of bistable behaviour
of the cavity line shape [49].

To explore the dynamics of the atoms in the Berkeley setup, a second, relatively weak laser
beam of wave vector kp along the cavity axis is introduced. According to (4.7) the coupling of
this probe beam to the atoms is given by a term

~
∑
i

g2
0(xi)
∆ca

ĉ†ĉ = ~
∑
i

g2
0

∆ca
sin2(kpx̄i + kpδxi)ĉ†ĉ

' ~
∑
i

g2
0

∆ca

(
sin2(kpx̄i) + kpδxi sin(2kpx̄i)

)
, (4.9)

where the sum goes over allN atoms and transverse motion of the atoms is neglected. Accordingly,
the position of a single atom is given by the coordinate xi along the cavity axis. In the last step
the dipole potential ∝ sin2(kxi) was expanded for small deviations δxi around the equilibrium
position x̄i of the the atom in the optical trap. This approximation is justified in the Lamb-Dicke
regime, where kδxi � 1. To grasp the analogy to the optomechanical Hamiltonian, a collective
position variable is defined as

X = 1
Neff

∑
i

δxi sin(2kpx̄i), (4.10)

where Neff =
∑
i

sin2(2kpx̄i). To arrive at a quantum version of the Hamiltonian the collective

position variable X can be replaced by the operator X̂ = Xa,0(â†+â) =
√

~/2Neffmaωtrap(â†+â)
(see [48]). The corresponding momentum operator is given by P̂ = (1/Neff)

∑
i pi sin(2kpx̄i),and

[X̂, P̂ ] = i~. Eventually the coupling term (4.9) can be rewritten as

~
(
∆N + ga,c(â† + â)

)
ĉ†ĉ. (4.11)
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Here ∆N =
∑
i

g2
0

∆ca
sin2(kpx̄i) generates a shift of the cavity resonance, while the actual coupling

between the collective mode and the cavity field is described by ga,c = kpNeffXa,0g
2
0/∆ca.

To characterize the coupling of the quantum fluctuations of the collective atomic mode and
the optical field, Murch et al. introduced the so called granularity parameter. It compares the
momentum that a single cavity photon transfers to the collective motion of the atoms to the
zero-point uncertainty in the momentum of the atomic cloud. The granularity parameter is found
to have the form

ε = 2Neffg
2
0kpXa,0

∆caκ
. (4.12)

Up to a factor of 2 it is identical to the quantum parameter ζ, which is given by

ζ = ga,c
κ

= ε

2
. (4.13)

For the parameters of this setup (g0 ≈ 9·107 Hz,∆ca ≈ 6·1011 Hz, Xa,0 ≈ 10−10 m, kp ≈ 107 m−1,
Neff ≈ 105 Hz and κ ≈ 4 · 106 Hz) the quantum parameter reaches a value of ζ ≈ 0.3.

Looking back at the discussion of chapter (2) where we analysed the dynamics of an optome-
chanical system in the quantum regime (ζ ∼ 1), we now have encountered analogous systems
that have already reached such high values of the quantum parameter ζ. Therefore these exper-
iments make up an ideal field for studying the effects of measurement back-action and quantum
fluctuations or investigating basic features of optomechanical systems like cooling, bistability and
self-induced oscillations in the quantum regime.

4.4 A cloud of atoms inside an optomechanical cavity
In this section we introduce a model setup in which both a cloud of cold atoms and a mechanical
cantilever are coupled to a cavity field. It consists of a generic optomechanical setup, i.e. a
cavity with a movable end mirror, and is extended by placing a Bose-condensed atomic gas inside
the cavity. In a way our model is similar to the setups that we discussed in the previous section
[32, 33], but comprises the additional feature of the cantilever. To describe the setup we will at
first introduce a simplified model that allows us to get a first estimate of the coupling strengths
between the the atomic motion, the cavity field and the cantilever. In section (4.7) we will compare
these estimates to the results of a more realistic model that treats the dynamics of a cloud of cold
atoms by means of the mean-field picture that was introduced in the previous chapter.

In this context we also want to mention recent studies that aim at coupling a mechanical
oscillator to one or many atoms: These proposal involve the coupling of a mechanical element
to ions [51] or dipolar molecules [52]. By employing an optomechanical cavity additionally, it
has been proposed to observe atom-light-mirror entanglement [53, 54, 55, 56] or even perform a
Bell measurement [54]. The magnetic coupling of a BEC to a nanomechanical resonator on an
atom chip has been studied in [57]. In [31, 58, 59] the dynamics of a movable end mirror of an
optomechanical cavity in the presence of a BEC were investigated. This study focused on the
adiabatic limit where the motion of the mirror is very slow and the atoms and the cavity field
adjust instantaneously to the position of the mirror.

4.4.1 The model

Our model consist of an optical cavity with a movable end mirror, the cantilever. A cloud of N
ultracold atoms of mass ma is placed inside the cavity in such a way that the atoms are confined
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Figure 4.3: The basic model: A cloud of cold atoms is trapped in a single well of an optical lattice
that is formed by the standing wave of a cavity. One of the cavity’s end mirrors is allowed to
oscillate. The dipole force acting on the atoms is proportional to the intensity inside the cavity.
Subsequently, the atomic CM position is coupled to both the number of intracavity photons and
the position of the cantilever that determines the length of the cavity.

closely to the center of a single lattice well (see figure 4.3). To treat the problem in the simplest
possible manner, we neglect transverse motion and describe the dynamics of the atoms by using
only their center-of-mass (CM) coordinate along the cavity axis, x̂a. Thereby we essentially replace
the cloud of atoms by a ’super-atom’ of mass Nma sitting at position x̂a.

In the rotating frame with respect to the laser frequency ωL = ∆ + ωcav, the Hamiltonian of
this model is given by

Ĥ = ~
(
−∆ + gM (b̂+ b̂†) +N

g2
0

∆ca
sin2 (kx̂a − kx̂M − kL))ĉ†ĉ

+ ~ωM b̂†b̂+ ~αL(ĉ+ ĉ†) + 1
2Nma

p̂2
a + V̂trap + Ĥκ + ĤΓM . (4.14)

Here, the position and momentum operators of the ’super-atom’ are denoted by x̂a and p̂a. We
introduced annihilation and creation operators of the cavity field (ĉ and ĉ†) and the cantilever (b̂
and b̂†). The position operator of the cantilever is given by

x̂M = xZPF(b̂† + b̂) =
√

~/2mMωM (b̂† + b̂), (4.15)

where mM is the mass of the cantilever and ωM the eigenfrequency. gM = −ωcav
L xZPF takes

account of the standard optomechanical coupling and αL of the laser driving. The term V̂trap
denotes an additional external trapping potential. It might be used to shift the equilibrium position
of the atoms and will be discussed in more detail below.

We assume the cavity field to be far off-resonant from the atomic resonance frequencies so that
we can neglect internal transitions of the atoms. Typical values of this detuning ∆ca = ωcav−ωa,res
are a some hundred GHz or more. The detuning of the pump laser with respect to the cavity
resonance (∆ = ωL − ωcav), however, is supposed to be relatively small and in the range of some
MHz. We can therefore resume the discussion of the atom-cavity coupling of section 4.2, thereby
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neglecting the exact value of ∆ when compared to ∆ca. Note that this would not be possible for
a far off resonant optical trap (FORT), that we will encounter in a later part.

The coupling of the atomic cloud to the optomechanical system is proportional to the intensity
of the intracavity field (4.4). The spatial structure of the intracavity field evokes a coupling of the
atomic coordinate to both the photon number and to the cantilever position as in

V̂dip = ~N
g2
0

∆ca
sin2 (kx̂a − kx̂M − kL)ĉ†ĉ = U0N sin2 (kx̂a − kx̂M − kL)ĉ†ĉ. (4.16)

We will assume a negative value of ∆ca, i.e. a red-detuned laser frequency with respect to the
atomic transition frequency. In that case the atoms are attracted by regions of high intensity.

The coupling between the atomic CM coordinate x̂a and the cantilever position x̂M , that is
induced by the dipole potential V̂dip, can be understood by the following observation: A change
of the cavity length (L→ L+ 〈x̂M 〉) shifts the positions of the antinodes of the intracavity field
that in turn determine the position of the atomic cloud. We will refer to this coupling term as
the direct coupling between the cantilever and the atomic cloud and denote the corresponding
coupling constant by ga,M .

4.4.2 Estimate of the system parameters

We find it instructive to give an estimate of the values of the parameters that were introduced so
far. The numbers of this estimate will be used in the subsequent sections where we continue the
investigation of our model setup.

The trapping frequency ωa can reach values of a few hundreds of kHz. For example in the
experiments at Berkeley [32], a far off-resonant optical dipole trap with a frequency of 2π ·50 kHz
is used. For our estimates we use ωtrap = 105 Hz. and discuss possible implementations later. In
state-of-the-art experiments with Rb atoms a number of up to N ≈ 105 atoms can be trapped.
We assume all N atoms to be confined to a single lattice site. This certainly is an experimental
challenge: In the Berkeley setup the atoms were distributed over about 300 lattice sites, for
example. However, using additional trapping potentials or integrating micro-fabricated atom-
chips [60] should make strong confinement of the atoms possible . We note, that if either the
trapping frequency or the number of atoms is increased, the losses due to atomic collisions will
get substantially larger. Therefore these quantities are practically limited to the assumed values.

The coupling of the atoms to the cavity field is given by the parameter U0/~ = g2
0/∆ca.

The numbers found in the Berkeley setup [32] are g0 ≈ 2π · 15 MHz and ∆ca ≈ 2π · 100 GHz, or
U0 ≈ ~·104Hz. For reasons that will become apparent later, we assume a value of U0 = ~·102 Hz.
On the other hand, we assume an average number of cavity photons of |c̄|2 = 100, considerably
higher than low photon number of the Berkeley setup, where |c̄|2 ≈ 1. The dipole forces on the
atomic cloud are proportional to U0|c̄|2 and their value in our assumptions is hence comparable to
the one in [32]. For the cavity decay rate we assume a value κ ≈ 106s−1 which is about the value
encountered in [32]. Note that generic optomechanical systems that involve a movable end-mirror
typically have cavity decay rates that are of the order of 107 Hz. We will comment on this point
below.

State-of-the-art micromechanical resonators can reach eigenfrequencies of hundreds of kHz or
even a few MHz [10, 11, 12] and Q-factors (Q = ωM/ΓM ) between 104 and 105. We assume a
value of ωM ≈ 105Hz that is of the same order as the atomic CM oscillation frequency ωa, and
a damping rate of ΓM ≈ 1Hz. The masses of the mechanical resonators realized in the relevant
experiments vary strongly in their value: The doubly clamped beam in the setup at the LKB
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[10] has an eigenfrequency of a few MHz, but its mass is rather large (mM ≈ 10−7kg). In the
Bouwmeester group, on the other hand, a cantilever with an attached mirrors is used [11]. The
total mass of the resonator (ωM ≈ 10 kHz) is mM ≈ 10−11kg. The values for the doubly clamped
beam in the Vienna setup [12] are somewhat in between: ωM ≈ 2 MHz and mM ≈ 4 ·10−10 kg. In
view of all these numbers from recent experiments, we assume a mass of mM ≈ 10−10 kg for the
cantilever in our model. The coupling between cantilever and cavity due to the radiation pressure
is determined by the parameter gM = −ωcavxZPF/L, where ωcav denotes the cavity frequency,
L the cavity length and xZPF the zero-point amplitude of the cantilever. The cavities used in
[10, 11, 12] are a few millimeters long. For L ≈ 10−3 m, xZPF =

√
~/2mMωM ≈ 3 · 10−15m and

ωcav ≈ 1015Hz, the optomechanical coupling is gM ≈ 103Hz.
The parameters of our model setup and the corresponding estimates are summarized in Table

(4.1). We will refer to this table throughout the subsequent parts of this thesis.

4.5 Coupling constants of the linearized model

In this section we will linearize the basic Hamiltonian of our model setup and discuss the various
forms of coupling between the atomic CM mode, the cantilever and the cavity field. At first we
will consider the system without an additional trapping potential. In that case the equilibrium
position of the atomic cloud is simply given by an antinode of the cavity field. As a consequence
the interaction between the atomic motion and the cavity field contains no linear contributions
and does not show up in this consideration. Non-vanishing coupling between the atomic cloud and
the cavity in this picture can be achieved by a proper external potential that shifts the equilibrium
position of the atoms away from a single antinode. We will present the expressions for the coupling
constants and frequency shifts of the linearized system and give an estimate of their values.

4.5.1 In the absence of an external trapping potential

In the absence of an external trapping potential, the dipole potential (4.16) is the only source
for a trapping of the atoms. The atomic cloud will then have an equilibrium position that is
given by the minimum of the dipole potential. We assume the atoms to be “high-field seekers”
(ωL − ωa,res < 0), i.e. they are attracted to regions of high intensity. As a consequence, the
equilibrium position 〈x̂a〉 = x̄a lies at a local maximum of the electromagnetic field intensity, i.e.
k(x̄a − x̄M − L) = (2n+ 1) · π/2, n εZ. Here we already introduced the equilibrium positions of
the cantilever (x̄M ) and of the atomic CM position (x̄a). The equilibrium position of the cavity
field (ĉ) is denoted by c̄. We can now shift the operators x̂a, x̂M and ĉ by their respective steady
state solutions:

ĉ = c̄+ δĉ

x̂M = x̄M + δx̂M =
√

~/2mωM (b̄+ δb̂) + h.c. = x̄M + xZPF(δb̂† + δb̂)

x̂a = x̄a + δx̂a (4.17)

Accordingly, the dipole interaction term the dipole interaction term reduces to

V̂dip = U0N sin2(π
2

+ kδx̂a − kδx̂M )(c̄+ δĉ)(c̄∗ + δĉ†). (4.18)
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ωa CM oscillation frequency
of atomic cloud

105 Hz

|c̄|2 average photon number
in the cavity

100

g2
0

∆ca
= U0

~ atom-cavity coupling −103 Hz

ωdip =
√

2U0k2|c̄|2/ma strength of the dipole
potential

3 · 104 Hz

N number of atoms 105

ma mass of a single atom 10−25 kg

x
(N)
a,0 =

√
~/2Nmaωa zero-point width of the

CM oscillation
10−10 m

ωM frequency of the
cantilever

105 Hz

mM mass of the cantilever 10−10 kg

xZPF =
√

~/2mMωM zero-point width of the
cantilever

2 · 10−15 m

ΓM damping rate of the
cantilever motion

1 Hz = 10−5 ωM

ωcav cavity resonance
frequency

1015 Hz

L cavity length 103λL ≈ 10−3 m

gM = −ωcav
L xZPF cantilever-cavity coupling 103 Hz

κ cavity decay rate 106 Hz

Table 4.1: Assumed parameters for the model of figure (4.3): The estimates on the mechanical
properties of the atomic cloud are based on the experiments in Berkeley [32] and Zürich [33]. The
assumed properties of the cantilever are in the range of those reached in basic optomechanical
setups [10, 11, 12]. The discussion of these parameters can be found in section 4.4, only the
definition of ωdip, the strength of the dipole potential, is given in section 4.5. Note that the
estimate of the center of mass oscillation frequency ωa refers to the case, when an additional
trapping potential V̂trap is present.
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In the linearized model, the motional excursions of both the cantilever and the atomic cloud are
assumed to be small, i.e. k

√
〈δx̂2

M 〉 � 1 and k
√
〈δx̂2

a〉 � 1. Under these two assumptions, we
can approximate the dipole potential (4.18) around a minimum and arrive at

V̂dip ' U0N(1− (kδx̂a − kδx̂M )2)(c̄+ δĉ)(c̄∗ + δĉ†). (4.19)

Let us now discuss the contributions of this expression step by step:
The term quadratic in δx̂2

a takes account of the harmonic confinement of the atoms in the
dipole potential of the cavity field:

V̂dip = Nma

2
ω2
dipδx̂

2
a, (4.20)

where the trapping frequency of the dipole potential is given by

ω2
dip = 2|U0|k2|c̄|2/ma. (4.21)

The validity of the harmonic approximation of the dipole potential is based on the tight confinement
of the atomic cloud around its equilibrium position, i.e. k

√
〈δx̂2

a〉 � 1. This regime is referred
to as the Lamb-Dicke regime in atomic physics. As the cloud of atoms is only subject to the
harmonic potential of equation (4.20), its CM oscillation frequency ωa is given by the frequency
of the dipole potential, ωdip. We can attribute a zero-point amplitude to the CM motion of the
atomic cloud. x(N)

a,0 =
√

~/2Nmaωa. The position operator of the “super-atom” can be expressed
in terms of the annihilation and creation operators, â and â†, as x̂a = x

(N)
a,0 (â† + â).

For the parameters of the estimate given above (see table 4.1), the frequency of the dipole
potential has a value of ωdip ≈ 3 · 104 Hz. Note that the dipole frequency is a useful quantity,
even in the presence of an additional external potential. In that case it does no longer determine
the CM oscillation frequency ωa of the atomic cloud. Still the coupling constants will depend on
the ratio ωa/ωdip, as we will see below.

Next we examine the the term quadratic in δx̂2
M ,

− U0Nk
2|c̄|2δx̂2

M =: ~δωM,c

x2
ZPF

δx̂2
M , (4.22)

It yields a shift of the cantilever frequency due to the presence of the atoms and additionally
produces terms of the form δb̂2 + h.c., i.e. terms that involve the annihilation (creation) of two
cantilever phonons at the same time.

The coupling between the atomic cloud and the cantilever is taken account of by the term

U0Nk
2|c̄|2δx̂aδx̂M =: ~ga,M (δâ† + δâ)(δb̂† + δb̂), (4.23)

where we introduced ga,M = Nk2|c̄|2x(N)
a,0 xZPFU0/~. We will refer to this term as the direct

coupling between the cantilever and the atomic motion. Note that the coupling constant is
proportional to the square root of the number of atoms, as x(N)

a,0 ∝ 1/
√
N. This is exactly the

direct coupling between the cantilever and the atomic motion that we already discussed above.
Finally, the term U0Nδĉδĉ

† corresponds to a shift of the cavity resonance due to the presence
of the atoms at the antinodes. Note that it would be absent for if the atoms were “low-field
seekers” .
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All terms of higher than quadratic order in δx̂a, δx̂M , δĉ and δĉ†, are neglected in this
approach. Therefore no coupling between the atomic cloud and the cavity field appears in this
linearized system.

We can complete the linearization procedure by inserting the operators in the form of equations
(4.17) into all parts of the Hamiltonian (4.14) and arrive at

Ĥ = −~∆δĉ†δĉ
+ ~ωMδb̂†δb̂+ ~ωaδâ†δâ
+ ~δωM,c(2δb̂†δb̂+ δb̂2 + δb̂†2)
+ ~ga,M (δâ+ δâ†)δb̂+ h.c.

+ ~gM c̄∗(δb̂+ δb̂†)δĉ+ h.c.. (4.24)

The first two lines of this expression comprise the basic contributions of the harmonic oscil-
lators, i.e. the driven cavity, the cantilever and the atomic CM motion. The frequency shift of
the cantilever and the two-phonon processes are contained in the third line. The last two lines
finally present the direct coupling between the atomic motion and the cantilever, and the basic
optomechanical coupling of the cantilever and the coupling via radiation pressure.

Note that we rescaled the detuning parameter ∆ → ∆ − g2
0

∆ca
N − gM x̄M/xZPF in order to

include the static shift of the cavity resonance due to the presence of the atoms and the equilibrium
position of the cantilever.

The definitions of the parameters are given in table (4.2) and the scheme of figure (4.4)
illustrates the coupling mechanisms of this Hamiltonian.

To assess the strength of the relevant constants in this model, we turn towards the as-
sumed values of table (4.1) again. The direct coupling between atoms and cantilever, ga,M ,
can be rewritten as ga,M = (ωa/2)

√
Nmaωa/mMωM . Its strength is therefore limited by the

ratio between the mass of the atomic cloud, Nma, and the mass of the cantilever mM . We see
that the ratio of the direct coupling term and the atomic CM oscillation frequency is given by
ga,M/ωa ≈

√
Nmaωa/mMωM ≈ 10−5 for realistic parameters. This shows that the huge differ-

ence in mass impedes a strong direct coupling between the between the atomic cloud (∼ 10−20 kg)

ωa =
√

2|U0|k2|c̄|2/ma 3 · 104 Hz

gM = −ωcav
L xZPF 103 Hz

ga,M = ωa
2

√
Nmaωa
mMωM

10−1 Hz

∆N = N
g2

0
∆ca

107 Hz

δωM,c = −Nk2x2
ZPF|c̄|2U0/~ 10−7 Hz

Table 4.2: Definition of the coupling constants and frequency shifts that appear in the Hamiltonian
(4.24): The CM oscillation frequency ωa, the coupling between the cantilever and the cavity via
radiation pressure gM , the direct coupling between the cantilever and the atomic motion ga,M , and
finally the frequency shifts of the both the cavity resonance (∆N ) and of the cantilever (δωM,c)
due to the presence of the atoms. The estimates on the right-hand side are based on the values
of table (4.1).
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a b

atoms atomscavity cavity

cantilever cantilever

Figure 4.4: Scheme of the coupling mechanisms in a linearized version of the proposed setup (4.3).
(a) If the atoms are located around the local minimum of the dipole potential V̂dip, no coupling
between the atoms’ collective mode (â) and the cavity field (ĉ) appears in the Hamiltonian (4.24).
Nevertheless, the atomic CM position is linearly coupled to the position of the cantilever (b̂) with
a coupling strength given by ga,M . The cantilever itself is subject to both the harmonic force due
to its suspension (Vh.o.) and the radiation pressure ∝ ĉ†ĉ. The latter results in a cavity-cantilever
coupling constant gM = −ωcav

L xZPF. (b) In the presence of an additional trapping potential (Vtrap),
the atoms’ equilibrium position is shifted. Subsequently, a coupling term between the atoms and
the cavity field appears in the Hamiltonian (4.28). The cavity-cantilever coupling gets an additional
contribution gM,c due to the presence of the atoms.

and the cantilever (∼ 10−10 kg). The coupling constant ga,M has a value that is about a tenth
of the cantilever damping ΓM rate that we assumed in table 4.1.

The shift of the cavity frequency due to the atoms, ∆N ≈ N g2

∆ca
, can be estimated to be

∆N ≈ 107 Hz. ∆N can be converted into a shift of the refractive index, δn by noting that

∆N

ωcav
=
´
δn(x)|E(x)|2d3x´
|E(x)|2d3x

. (4.25)

To get a rough estimate we assume that the atoms form a homogeneous medium and spread
over a volume of V ≈ w2

0xa,0, where w0 is the waist of the Gaussian beam and xa,0 denotes
the zero-point width of a single atom, xa,0 =

√
~/2maωa. If the cavity mode volume is given

by Vcav ≈ w2
0L, equation (4.25) yields ∆N

ωcav
≈ δn V

Vcav
or δn ≈ L

xa,0
∆N
ωcav
≈ 10−4. Accordingly, the

influence of the atoms on the shape of the cavity field is small. This proves the assumption of
section (4.2) right where we used the intensity profile of the empty cavity to determine the spatial
structure of the cavity-atom coupling g2

0(x)
∆ca

.
The shift of the cantilever frequency due to its coupling to the atoms is vanishingly small: δωM,c ≈
10−7Hz for the chosen parameters. However, there appears another, stronger frequency shift,
δωM = g2

M |c̄|2( 1
ωM+∆ −

1
ωM−∆), that stems from the coupling between the cantilever and the

cavity. This contribution is commonly referred to as the optical spring and we will derive the
expression for δωM via second order perturbation theory in section (4.6).

We have seen that in the linearized system without an additional trapping, the atomic motion
couples only to the cantilever. This coupling, denoted by ga,M , is rather weak, though. The
coupling between the atomic motion and the cavity is of higher order and does not appear in this
approach. However, this type of coupling might be exploited to measure the Fock states of the
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atomic CM mode, which we will discuss in section (4.9).

4.5.2 With an external trapping potential

To achieve non-vanishing coupling between the atoms and the cavity field in the linearized Hamil-
tonian we have to consider an additional trapping potential V̂trap. It is introduced in order to
shift the atomic cloud to a new equilibrium position, a distance x̃a away from a minimum of V̂dip.
We leave the question of possible implementations to a subsequent discussion and assume for the
moment that the atoms gather around x̄a as they are trapped in an effective potential given by
V̂eff = V̂dip + V̂trap. We approximate the effective potential locally as

V̂eff ≈
Nma

2
ωaδx̂

2
a, (4.26)

where we shifted the atomic CM position operator by the new equilibrium position (x̂a = x̄a+δx̂a).
The dipole interaction term takes the form of

V̂dip = NU0 sin2(π
2

+ x̃a + kδx̂a − kδx̂M )(c̄+ δĉ)(c̄∗ + δĉ†)

≈ NU0
(
cos2(kx̃a)− sin(2kx̃a)(kδx̂a − kδx̂M )

− cos(2kx̄a)(kδx̂a − kδx̂M )2
)
(c̄+ δĉ)(c̄∗ + δĉ†). (4.27)

This expression explicitly depends on the shift x̃a of the atomic CM equilibrium position away
from an antinode of the cavity field.

The linearized Hamiltonian - again we consider terms up to second order in the expansion
(4.17) - is given by

Ĥ = −~∆δĉ†δĉ
+ ~ωMδb̂†δb̂+ ~ωaδâ†δâ
+ ~δωM,c(2δb̂†δb̂+ δb̂2 + δb̂†2)
+ ~ga,cc̄∗(δâ+ δâ†)δĉ+ h.c.

+ ~(gM,c + gM )c̄∗(δb̂+ δb̂†)δĉ+ h.c.

+ ~ga,M (δâ+ δâ†)δb̂+ h.c. . (4.28)

Note that again we shifted the detuning parameter : ∆→ ∆−NU0 cos2(2kx̃a)− gM x̄M/xZPF.
In contrast to the previous form of the linearized Hamiltonian, (4.19), we observe a coupling

of both the cantilever position δx̂M and the atomic CM coordinate δx̂a to the cavity field. The
interaction terms depend on the strength of the shift x̃a and appear in the Hamiltonian as

gM,c(δb̂† + δb̂)(c̄δĉ† + c̄∗δĉ) (4.29)

and
ga,c(δâ† + δâ)(c̄δĉ† + c̄∗δĉ). (4.30)

A scheme of the couplings involved in the Hamiltonian (4.28) is given in figure (4.4).
Before we can give estimates on these coupling constants, we have to take a closer look at

the effective potential V̂eff for the atomic motion, that is the superposition of the dipole potential
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and an additional trapping potential V̂trap. The latter could for example be realized by a far off-
resonant optical trap, as it was implemented in the Berkeley setup [32]. Such traps can yield
trapping frequencies around a single lattice site of more than 105 Hz. Accordingly, the frequency
of the effective potential would then reach a value of the same order. Hence we can assume the
atomic CM motion in the effective potential to have an oscillation frequency of ωa = 105 Hz.

If the trapping potential is realized by using an optical lattice, there is also the following caveat:
If the trapping laser is injected along the cavity axis, it will also couple to the cantilever. To avoid
possible complications and compensation effects, the trapping laser beam should therefore be
inclined with respect to the cavity axis.

Of course one could also think of other trapping mechanisms, like strong magnetic fields. For
the purpose of the following considerations we do not have to specify the particular implementation
of the trapping potential. It does not take part in the dynamics of the system and we only employ
it to yield a large frequency for the atomic CM oscillation and to shift the atomic cloud away from
an antinode of the cavity field.

Using the estimates of table (4.1) once again, we find that the coupling between the atomic
CM mode and the cavity can reach a value of sin(2kx̃a)104Hz. The interaction between the
cantilever and the cavity is dominated by the radiation pressure term since gM ≈ 103Hz is larger
than gM,c ≈ sin(2kx̃a)10−1Hz. We note that the effect of the atoms on the overall cavity-
cantilever coupling constant gM + gM,c will be to either increase (for x̃a > 0) or decrease (for
x̃a < 0) its absolute value. The atomic cloud and the cantilever interact rather weakly at a rate of
ga,M = 2N(U0/~) cos(2kx̃a)k2xZPFx

(N)
a,0 |c̄|2 of about 10−1Hz. In table (4.3) we give an overview

of the coefficients involved in the Hamiltonian (4.28) and add estimates for sin(2kx̃a) ≈ 10−1.

As we have seen in this section, the simple model of figure (4.3) allows for a coupling between
the cantilever and the atoms’ CM position. The corresponding coupling constant ga,M has a
relatively low value of 10−1Hz, as it is limited by the ratio of the masses of the atomic cloud and
the cantilever. An additional trapping potential enriches the capabilities of the setup. The atomic
motion is coupled to the cavity with a relatively large coupling constant ga,c ≈ 103 Hz.

ga,M = ωa
2 cos(2kx̄a)

ω2
dip
ω2
a

√
Nmaωa
mMωM

10−1 Hz

ga,c = −N(U0/~) sin(2kx̃a)kx(N)
a,0 103Hz

gM,c = N(U0/~) sin(2kx̃a)kxZPF 10−2 Hz

gM = −ωcav
L xZPF 103Hz

δωM,c = −U0Nk
2x2

ZPF|c̄|2/~ 10−7 Hz

Table 4.3: Parameters of the Hamiltonian (4.28) for the case of an additional trapping potential
V̂trap : The superposition of V̂trap and V̂dip forms an effective potential Veff = Nma

2 ω̃a(x̂a − x̃a)2.
For the estimates in the right column we assumed sin(2kx̃a) ≈ 10−1 and refer to the parameters
of table (4.1). We note that the value of x̃a can be varied over a wide range, depending on the
particular implementation of V̂trap.
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Figure 4.5: The superposition of the dipole potential V̂dip (green dotted line) and an external
trapping potential V̂trap = Utrap sin2(ktrapx̂a − ktrapL). (red dotted line) in form of an optical
lattice. The effective potential V̂eff (blue solid line) can be approximated locally as a harmonic
potential that shifts the equilibrium position of the atomic cloud away from an antinode of the
cavity field. This enhances the coupling of the atomic CM coordinate to the cavity. The parameters
of this plot are ktrap/k = 0.75, Utrap/(U0|c̄|2) = 2 and kL = 10π.

4.6 Cavity-assisted coupling of atoms and cantilever

In the preceding section we encountered the direct coupling of the atom’s center-of-mass motion
and the cantilever. This coupling originates from the term NU0 sin2(kx̂a − kx̂M − Φ(∆)) ĉ†ĉ of
the basic Hamiltonian (4.14) and leads to the coupling term ~ga,M (δâ + δâ†)(δb̂ + δb̂†) in the
linearized Hamiltonian (4.24). Here we will focus on a different type of coupling between atoms
and cantilever that is mediated by the cavity field. An exchange of phonons of the atoms’ CM
mode and the cantilever can be realized with the assistance of intermediate transitions that involve
the creation or annihilation of a cavity photon. These processes can be included by a term of the
form ~geffδâδb̂†+h.c. in an effective Hamiltonian that comprises the cantilever and the CM mode
only. Even though this coupling is second order in the original coupling parameters, we will see
that geff can be orders of magnitude larger than the direct coupling ga,M .

At the end of this section we will discuss the relevance of the second-order coupling to our
model setup. We will state, that the cavity-assisted coupling will exceed the direct coupling
between the cantilever and the atomic motion highly.

4.6.1 Linearized Equations of Motion and Susceptibility

In the first approach we will consider a system in which both the cantilever and the atomic cloud
are coupled to the cavity mode, but do not interact directly. We will calculate the response of
the system to a test force, i.e. we will evaluate the linear susceptibilities. This result will then
be compared to the susceptibility of a reduced system that contains only the cantilever and the
atomic CM which are directly coupled to each other. By this comparison we can identify the
effective, cavity-assisted coupling constant geff between the cantilever and the atomic motion.

To start with, we will solve the linearized classical equations of motion of the following system:
We consider the center-of-mass mode of an atomic cloud (â, ωa, Γa) and a mechanical oscillator
(b̂, ωM , ΓM ), which are both coupled to a cavity light mode (ĉ, ωcav, κ). The Hamiltonian in a
frame rotating at the laser frequency ωL = ωcav + ∆ is given by:
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Ĥ = ~
(
−∆ + ga(â+ â†) + gM (b̂+ b̂†)

)
ĉ†ĉ+ ~ωaâ†â+ ~ωM b̂†b̂

+~αL(ĉ+ ĉ†) + Ĥκ + ĤΓM + ĤΓa . (4.31)

The corresponding classical equations of motions are

ċ = (i(∆− κ

2
)c− iαL

ẍa = −ω2
axa − Γaẋa + Pa|c|2

ẍM = −ω2
MxM − ΓẋM + PM |c|2, (4.32)

where g̃a = ga
xa,0

, g̃M = gM
xZPF

, PM = ~g̃M/mM = 2ωMxZPFgM , Pa = ~g̃a/ma = 2ωaxa,0ga. Note
that we also rescaled the detuning parameter ∆→ ∆− g̃ax̄a − g̃M x̄M .

An expansion around the equilibrium values with

c = c̄+ δc, xa = x̄a + δxa, xM = x̄M + δxM (4.33)

and
c̄ = αL/(∆ + iκ/2), x̄a,M = Pa,M |c̄|2/ω2

a,M (4.34)

yields

δċ = (i∆− κ

2
)δc− ic̄

(
g̃a
g̃M

)
· ξ (4.35)

ξ̈ =
(
−ω2

a 0
0 −ω2

M

)
ξ −

(
Γa 0
0 ΓM

)
ξ̇ +

(
Pa
PM

)
(c̄∗δc+ c.c.) + f, (4.36)

where ξ =
(

δxa
δxM

)
and f denotes a test force, whose influence on xa and xM we want to

observe. Decomposing (4.35) into positive and negative frequency parts (δc = δc+e
iωt+δc−e−iωt,

f = f+eiωt + f−e−iωt etc.) leads to

± ωδc± = (∆ + iκ/2)δc± − ic̄
(

g̃a
g̃M

)
· ξ±. (4.37)

By introducing the susceptibilities

χca(ω) = g̃ac̄/(ω −∆− iκ/2), (4.38)
χcM (ω) = g̃M c̄/(ω −∆− iκ/2), (4.39)

the equations of motion (4.37) can be rewritten as

δc± =
(

χca(±ω)
χcm(±ω)

)
· ξ±. (4.40)

We now insert this result into the Fourier-decomposed version of equation (4.36) and arrive at

ξ± = M(±ω)−1f±. (4.41)
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The matrix M(ω) determines the response of the cantilever and the atoms’ CM mode to the test
force and is given by

M(ω) :=
(
−ω2 + iωΓa + ω2

a − Paχ̃ca(ω) Paχ̃cM (ω)
PM χ̃ca(ω) −ω2 + iωΓM + ω2

M − PM χ̃cM (ω)

)
, (4.42)

where we introduced the shortcuts χ̃ca(ω) := c̄∗χca(ω) + c̄χ∗ca(−ω) and χ̃cM = c̄∗χcM (ω) +
c̄χ∗cM (−ω).

In particular the reaction of the mechanical cantilever to a test force f± =
(

0
fM±

)
is given by

the susceptibility χM (ω) with δxM± = χM (±ω)fM±:

χM (ω) = (ω2
M − ω2 + iωΓM + Σc(ω) + Σac(ω))−1 (4.43)

The novel features are contained in the “self-energies”

Σc(ω) = −PM (c̄∗χcM (ω) + c̄χ∗cM (−ω)), (4.44)
Σa(ω) = −Pa(c̄∗χca(ω) + c̄χ∗ca(−ω)), (4.45)

Σac(ω) = Σa(ω)Σc(ω) / (ω2
a − ω2 + iωΓa + Σa(ω)) (4.46)

The contribution of Σc to the susceptibility χM (ωM ), evaluated at the resonators eigenfrequency,
can be interpreted as a shift of the frequency by

δωM = Re[Σc(ωM )]/(2ωM )

= g2
M |c̄|2

( ωM + ∆
(ωM + ∆)2 + κ2/4

− ωM −∆
(ωM −∆)2 + κ2/4

)
, (4.47)

plus an optomechanical damping rate

ΓM,opt =
Im[Σc(ωM)]

ωM

= g2
M |c̄|2

( κ/2
(ωM −∆)2 + κ2/4

− κ/2
(ωM + ∆)2 + κ2/4

)
. (4.48)

Apparently, both terms are not influenced by the presence of the atoms.
Σac, on the other hand, accounts for a coupling of the mechanical oscillator and the condensate

motion. This can be seen most easily by a simple comparison. For this purpose we consider a
system consisting of the cantilever and the atoms only. We assume that there is a direct coupling
between the cantilever and the atomic mode and start from a Hamiltonian of the form

Ĥ = ~ωaâ†â + ~ωM b̂†b̂ + ~geff(â† + â)(b̂† + b̂) + ĤΓM + ĤΓa . (4.49)

In a similar procedure as shown above, we can extract the cantilever’s susceptibility from the
equations of motion:

χM (ω) = (ω2
M − ω2 + iωΓM + 2ωM (xZPF/xa,0)geffχaM (ω))−1. (4.50)

Here the susceptibility χaM (ω) = 2ωa(xa,0/xZPF)geff/(ω2
a−ω2 + iωΓa) accounts for the response

of the atomic CM mode to the cantilever motion.
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A comparison of (4.43) and (4.50) shows the following correspondence

4ωMωag2
ag

2
M |c̄|4( 1

ω+∆−iκ/2 −
1

ω−∆−iκ/2)2

ω2
a − ω2 + iωΓa + Σa(ω)

↔ 4ωMωag2
eff

ω2
a − ω2 + iωΓa

(4.51)

It follows that the effective, cavity assisted coupling between the cantilever and the collective
atomic mode is given by

geff = gagM |c̄|2(
1

ω + ∆− iκ2
− 1
ω −∆− iκ2

). (4.52)

Note that the coupling rate depends on the frequency ω of the test force. Obviously when the
driving by the external force is very fast when compared to the mechanical oscillation frequencies
of the cantilever (ωM ) and the atomic motion (ωa), it will not lead to any response of the
system. Moreover, if the driving frequency is larger than the cavity detuning ω � ∆, the effective
coupling constant geff will vanish completely. We therefore state that ω should be comparable
to the mechanical oscillation frequencies ωa and ωM and smaller than the cavity detuning ∆ to
reach strong cavity-assisted coupling between the cantilever and the atomic motion.

Furthermore we see that geff can be strong if both the atomic cloud and the cantilever couple
strongly to the cavity field. We will assess its value for the assumed values of table (4.1) below.

4.6.2 Confirmation via Perturbation Theory

The result of the cavity-assisted coupling constant of the previous section already resembles the
typical structure of a transition amplitude that was calculated via second-order perturbation theory.
The first order couplings of the atomic cloud (ga) and of the cantilever (gM ) to the cavity appear
in the enumerator. The energy needed to create a cavity photon, in this case given by the detuning
∆, shows up in the denominator. Following this observation, we will now derive an expression for
the cavity-assisted coupling constant geff using second order perturbation theory.

Again, we start with linearizing the basic Hamiltonian. Insertion of â = ā+δâ, b̂ = b̄+δb̂, ĉ =
c̄+ δĉ into (4.31) generates a Hamiltonian of the form

Ĥ = ~ωaδâ†δâ+ ~ωMδb̂†δb̂− ~∆̃δĉ†δĉ
−~ga(δâ† + δâ)(c̄δĉ† + h.c.)− ~gM (δb̂† + δb̂)(c̄δĉ† + h.c.). (4.53)

In the following we consider the transfer of a single phonon from the cantilever to the atomic
cloud. This means that we focus on transitions from a state with one excitation on the mechanical
resonator |i〉 := |na = 0, nM = 1, ncav = 0〉 to a state where the condensate has one excitation
quantum |n〉 := |na = 1, nM = 0, ncav = 0〉. Note that the notation of the Fock states refers to
the shifted operators of the Hamiltonian (4.53), i.e. δâ|na〉 = √na|na − 1〉, etc..

Given the above Hamiltonian there is no first order transition between these states. According
to Fermi’s Golden Rule the transition rate thus has the form:

Γi→n = 2π
~

∣∣∣ ∑
|mj〉

〈n|Ĥ|mj〉〈mj |Ĥ|i〉
Ei − Emj

∣∣∣2ρ(En)|En'EI (4.54)

The idea is to arrive at an effective Hamiltonian consisting of terms for the atomic cloud, the
cantilever and their interaction only. Similar to (4.49), the cavity field does not appear in this



54 CHAPTER 4. COLD ATOMS AND OPTOMECHANICS

effective Hamiltonian. We will extract the coupling constants from the transition rates. The
eigenfrequencies will contain frequency shifts stemming from second order energy corrections. To
give an example example, the transition i→ n will appear with a term ~geffδâ†δb̂ in the effective
Hamiltonian.
We can identify two virtual states contribute to this transition: |na = 1, nM = 1, ncav = 1〉
and |na = 0, nM = 0, ncav = 1〉. The corresponding operators are δb̂δĉδĉ†δâ† and δâ†δĉδĉ†δb̂
respectively. The energy level scheme of figure (4.6) illustrates the considered transitions. They
contribute to the transition rate with

~gMga|c̄|2〈ncav|
( 1
−ωa + ∆

δĉδĉ† + 1
ωM + ∆

δĉδĉ†
)
|ncav〉 = ~gMga|c̄|2

( 1
∆ + ωM

+ 1
∆− ωa

)
(4.55)

We can readily find the coupling constant geff as

geff,1 = gMga|c̄|2
( 1
ωM + ∆

− 1
ωa −∆

)
. (4.56)

Analogously, if we consider transitions from |n〉 → |i〉, we get an effective coupling geff,2δâδb̂† :

geff,2 = gMga|c̄|2
( 1
∆ + ωa

+ 1
∆− ωM

)
(4.57)

We see that for ωa = ωM = ω we recover the result of the previous section:

geff = gMga|c̄|2
( 1
ω + ∆

− 1
ω −∆

)
, (4.58)

where gM (ga) denotes the coupling constant of the cantilever (atomic cloud) to the cavity and ∆
is the detuning of the cavity. Moreover, the results (4.56) and (4.57) show an asymmetry for the
forward and backward transitions in the case of ωM 6= ωa. This provides additional information
that we were not able to obtain from the derivation of (4.52) of the previous section, where we
only considered the response of the system due to a test force of frequency ω.

Next we turn towards the diagonal parts of the effective atom-cantilever Hamiltonian. Second
order transitions affect the eigenfrequencies of the cantilever and the atoms’ collective motion by
inducing the shifts δωM,c and δωa,c. They can be evaluated by noting that

δω = 1
~
∑
kj

|〈kj |Ĥeff |i〉|2

Ei − Ekj
. (4.59)

Applying an analogous procedure as above we arrive at the following expressions for the shift of
the atomic CM frequency and the cantilever frequency respectively:

δωa = g2
a|c̄|2(

1
ωa + ∆

− 1
ωa −∆

). (4.60)

and
δωM = g2

M |c̄|2(
1

ωM + ∆
− 1
ωM −∆

). (4.61)

These results are in agreement with the frequency shifts extracted from the susceptibility (see
equation 4.43) for ∆ � κ. The modification of the frequency of the mechanical resonator in an
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Figure 4.6: Energy level scheme for the cavity-assisted transitions between the states |i〉 = |na =
0, nM = 1, ncav = 0〉 and |n〉 = |na = 1, nM = 0, ncav = 0〉: A phonon is transferred from
the cantilever to the atomic cloud. The transitions involve the creation (annihilation) of a cavity
photon. The virtual states are suppressed by an energy of the order of the cavity detuning ∆.
The cantilever frequency (ωM ) and the CM oscillation frequency of the atomic cloud (ωa), are
assumed to be much smaller than ∆.

optomechanical setup is commonly referred to as the optical spring effect and has for example
been observed in gravitational wave detectors [61]. When assessing the effect of the cavity-assisted
coupling geff in the following section, we have to compare it to both δωa and δωM , as a large
frequency shift due to the coupling with the cavity might conceal the coupled dynamics between
the cantilever and the atomic motion.

4.6.3 Realization in the proposed setup

In the discussion of section (4.5) we found that the direct coupling between the cantilever and the
atomic cloud, ga,M , has a value of 10−1Hz = 10−6ωa for realistic parameters. It is limited by the
term

√
Nmaωa
mMωM

, i.e. by the ratio of the mass of the atomic cloud to the cantilever mass. On the
other hand, the couplings between cantilever and cavity (gM + gM,c ≈ gM ) and between cavity
and atomic cloud (ga,c) can become considerably large if we introduce an additional trapping
potential. This implies that the cavity-assisted coupling geff can become considerably large. To
get the explicit dependence of geff on the system’s parameters, we insert the expressions of (4.28):

geff = ga,c(gM,c + gM )|c̄|2
( 1
ω −∆

− 1
ω + ∆

)
=
(NU0

4~
sin(2kx̄a) + ωcavλL

8πL

)
ωa sin(2kx̃a)

ω2
dip
ω2
a

√
Nmaωa
mMωM

( 1
ω + ∆

− 1
ω −∆

)
. (4.62)

Again, the ratio of the atoms’ mass to the cantilever mass is included by the term
√

Nmaωa
mMωM

.

Furthermore, as the virtual states are energetically suppressed, a factor of 1
∆ enters. Still, the fact
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that both the atomic cloud and the cantilever couple strongly to the cavity allows for a large geff.
When assessing the strength of the cantilever-cavity coupling, we note that the standard optome-
chanical coupling, gM = −ωcav

L xZPF, turns out to be the dominant contribution. In conclusion
this means, that the occurrence of a strong effective coupling geff is intimately connected to the
feature of two independent coupling mechanisms of the system. The atoms couple to the cavity
via the dipole interaction, while the cantilever mainly reacts to the radiation pressure via gM . The
contribution of gM,c in equation (4.62) is relatively small and does not lead to a large geff. For the
parameters of table (4.1) and sin(2kx̃a) ≈ 10−1 we get geff ≈ 108 1

∆ s−2.

We can compare this value to the frequency shifts of the atomic cloud and the cantilever
respectively. The coupling to the cavity modifies the oscillation frequency of the atomic cloud by
δωa (see equation (4.60)) and

geff
δωa

= −gM,c + gM
ga,c

=
√
Nmaωa
mMωM

(
1 + ωcavλL

2πL sin(2kx̄a)NU0/~

)
≈ 1. (4.63)

Similarly, the correction of the cantilever frequency due to the cantilever-cavity coupling is given
by δωM (4.61) and

geff
δωM

= − ga,c
gM,c + gM

=
√
mMωM
Nmaωa

(
1 + ωcavλL

2πL sin(2kx̄a)NU0/~

)−1
≈ 1. (4.64)

In order to observe effects of the coupling between cantilever and atomic cloud in both system,
(4.63) and (4.64) should simultaneously be of the order of 1. This can be achieved if ga,c ≈ gM
and is one reason why we chose |U0| ≈ 102Hz in table (4.1), even though it is below the
experimentally realizable value of 105Hz. We note that there is an additional shift δωM,c (see
table 4.2) which we extracted from the dipole interaction term Vdip (4.19). That contribution is
negligibly small though.

Finally, we compare the optomechanical damping rates Γa,opt and ΓM,opt to the effective
coupling rate geff. In this context, the optomechanical damping rate should be kept low in order
to avoid heating (or cooling) effects. In addition ΓM,opt (Γa,opt) gives a measure for the coherence
time of the cantilever (or the atomic CM) oscillation when subject to the cavity field. The explicit
expression for ΓM,opt is given by equation (4.48). For ∆� κ this rate is much smaller than δωM
and geff

ΓM,opt
≈ ga,c

gM,c+gM
∆
κ ≈

∆
κ . Analogously, we can find an optomechanical damping rate for the

atoms’ collective motion that is denoted by Γa,opt. Its expression is given by equation (4.48) when
replacing ωM by ωa and gM and ga. For ∆� κ it yields that geff

Γa,opt
≈ gM,c+gM

ga
∆
κ ≈

∆
κ . Hence for

sufficiently large detuning, the effect of the optomechanical damping rates ΓM,opt and Γa,opt will
be small.

In table (4.4) we summarize the results of this section and give estimates on the strength of
the effective coupling and the frequency shifts. In doing so, we assume values for the detuning
parameter of ∆ ≈ 107Hz and κ ≈ 106Hz. With this choice of parameters one can reach a
second order coupling between the atoms and the cantilever, geff ≈ 10Hz. The frequency shifts
of the atomic motion and the cantilever are of the same order, while the optomechanical damping
rates are one order below. In this case the detuning is larger than both the cavity decay κ and the
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geff = ga,cgM |c̄|2( 1
ω+∆̃ −

1
ω−∆̃) 10 Hz

δωa = g2
a,c|c̄|2( 1

ω+∆̃ −
1

ω−∆̃)

δωM = (gM,c + gM )2|c̄|2( 1
ω+∆̃ −

1
ω−∆̃)

geff
δωa

= −gM,c+gM
ga,c

1
geff
δωM

= − ga,c
gM,c+gM 1

geff
Γa,opt '

gM,c+gM
ga,c

∆
κ 10

geff
ΓM,opt '

ga,c
gM,c+gM

∆
κ 10

Table 4.4: Expression for the effective, cavity-assisted coupling constant geff between cantilever
and atomic cloud. It is compared to the frequency shifts due to the optical spring effect (δωa and
δωM ). Furthermore for the estimates on the right-hand side we assumed the parameters of table
(4.1) and additionally sin(2kx̃a) ≈ 10−1, ∆ ≈ 107Hz and κ ≈ 106Hz.

frequencies ωM and ωa. However, it is not immediately clear if this detuning is sufficiently large.
This question certainly has to be checked in a future work.

We also note, that we assumed a relatively low cavity decay rate of κ ≈ 106 Hz, which we
extracted from the parameters of the Berkeley setup [32]. Certainly, it is much harder to reach a
high finesse in an optomechanical setup with a movable end mirror than in a setup that has two
fixed mirrors, and one might question, if the assumed cavity finesse is realizable. However there
is a possible workaround: Resuming the concept of the “membrane-in-the-middle”-setup of [14],
we will discuss a setup that features the coupled dynamics of an atomic cloud and a membrane
inside in a high-finesse cavity (see section 4.10).

4.7 A BEC coupled to an optomechanical system

To confirm the features of the simple model that we discussed in section (4.4) we consider a more
realistic treatment here. If the atomic cloud forms a Bose-Einstein condensate, its dynamics can
be described by the Gross-Pitaevskii equation (3.8). The predictions of this equation are reliable
for dilute atomic gases (NV |as|

3 � 1) and they have successfully explained the observations on the
collective motion of BECs in the celebrated experiments at the MIT and the JILA ([42, 41, 43, 44]).

Using this approach we now include both the interaction between the atoms in a mean-field
description and the full dimensionality of the problem. Furthermore we can get first corrections
of the coupling constants and frequency shifts due to the finite extent of the condensate.

4.7.1 Hamiltonian

We recall the setup proposed in section (4.4) and start with a Hamiltonian similar to (4.14), but
replace the “super-atom” by a condensate. We also consider the full three dimensional structure
of the dipole potential and include the Gaussian decay of the intensity in transverse directions.
Furthermore we allow for an additional trapping potential Vtrap(x). The Hamiltonian takes the
form of
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Ĥ = ~(−∆ + gM (b̂+ b̂†))ĉ†ĉ+ ~ωM b̂†b̂+ ~αL(ĉ+ ĉ†)

+
ˆ

Ψ̂†(x)[− ~2

2m
∇2 + U0 sin2(kx− kx̂M − Φ(∆))e

− y
2+z2

w2
0 ĉ†ĉ+ Vtrap(x) + g

2
Ψ̂†Ψ̂ ]Ψ(x)d3x

+Ĥκ + ĤΓM . (4.65)

Here b̂, ĉ are the annihilation operators that represent the mechanical oscillator and the cavity
field respectively and that obey the canonical commutation relations for bosonic operators. We
can expand the operators b̂, ĉ for the mechanical oscillator and the cavity respectively around their
equilibrium values

ĉ = c̄+ δĉ, x̂M = x̄M + δx̂M =
√

~/2mωM (b̄+ δb̂) + h.c. = x̄M + xZPF(δb̂† + δb̂). (4.66)

Subsequently we can approximate the sinusoidal part of the dipole potential around the steady
state value x̄M as

sin2(kx− kx̂M − kL) ≈ sin2(kx− kx̄M − kL)− kδx̂M sin(2kx− 2kx̄M − 2kL)
+k2δx̂2

M cos(2kx− 2kx̄M − 2kL). (4.67)

The field operator of the atoms, Ψ̂(x), is expanded around its ground-state with the help of the
Bogoliubov spectrum, as discussed in section3.3:

Ψ̂(x) = Ψ0(x) + δΨ̂(x) = Ψ0(x) +
∑
α

(uα(x)âα − v∗α(x)â†α). (4.68)

This brings the Hamiltonian (4.65) into the following form:

Ĥ − µN̂ = H0 +
∑
α

~ωαâ†αâα

+
∑
α

~(gα,M âα(δb̂+ δb̂†) + h.c.) +
∑
α

~(gα,câα(c̄∗δĉ+ c̄δĉ†) + h.c.)

+ ~(−∆−∆N )δĉ†δĉ
+ ~(−∆−∆N + (gM,c + gM )(δb̂† + δb̂))(c̄δĉ† + c̄∗δĉ) + ~αL(δĉ† + δĉ)
+ ~(ωM + δωM,c)δb̂†δb̂+ δωM,cδb̂

2 + h.c.

+ Ĥκ + ĤΓM , (4.69)

where
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gα,M = −kxZPF
U0
~
|c̄|2
ˆ

Ψ0(x) sin(2kx− 2kx̄M − 2kL)e
− y

2+z2

w2
0 (uα(x)− vα(x))d3x

gα,c = (U0/~)
ˆ

Ψ0(x) sin2(kx− kx̄M − kL) exp(−y
2 + z2

w2
0

)(uα(x)− vα(x))d3x

gM,c = −kxZPF(U0/~)
ˆ
|Ψ0(x)|2 sin(2kx− 2kx̄M − 2kL) exp(−y

2 + z2

w2
0

)d3x

gM = −ωcav
xZPF
L

∆N =
ˆ
|Ψ0(x)|2(U0/~) sin2(kx− kx̄M − kL) exp(−y

2 + z2

w2
0

)d3x

δωM = U0
~
k2x2

ZPF|c̄|2
ˆ
|Ψ0(x)|2 cos(2kx− 2kx̄M − 2kL) exp(−y

2 + z2

w2
0

)d3x, (4.70)

and where we considered terms up to second order only. ΓM and κ denote the damping rate for
the mechanical motion and the cavity decay respectively. ωa is the eigenvalue of the Bogoliubov
spectrum and has to be determined from equations (3.26).

4.7.2 Different scenarios

It is now our goal to find explicit expressions for the Bogoliubov spectrum (equation 4.68) and to
compute the coupling constants (equations 4.70). But before we do so, it is helpful to discuss a
few scenarios regarding the confinement of the atoms and the strength of their interactions. This
discussion will the lead to approximations so that the later calculations will be straightforward.

The effective potential that confines the atoms in axial direction is given by Veff(x) = Vtrap(x)+
Vdip(x) with Vdip(x) = U0 sin2(kx − kx̄M − kL)|c̄|2. As an external potential Vtrap we employ
an optical lattice potential of the form Vtrap(x) = Utrap sin2(ktx − ktL). We will simplify the
discussion by setting Veff = Vtrap, i.e. by focusing on the case Utrap � U0|c̄|2. The superposition
of Vtrap and Vdip would not change much of the physics but complicate the treatment of the
system.

The first classification is given by the strength of the dipole potential. For a very weak lattice
potential, ~Utrap � µ the dynamics of the condensate is hardly influenced by the lattice. This is
the regime encountered in the Zürich setup [33] that we discussed in section 4.3. On the other
hand, in the case of a very deep optical lattice with ~Utrap � µ, the atomic cloud is bound to a
single lattice site. The condensate fractions at each site show vanishing overlap and can therefore
be considered as independent fractions. The Berkeley setup ([32]) features this limiting case. In
the intermediate regime, where the chemical potential µ is comparable to the band width and
the lattice strength, the condensate will show features that resemble those of electrons in a solid
state. In this case, the condensate would be excited into various mechanical modes and our simple
optomechanical picture would become noticeably complicated. Nevertheless we mention that this
regime allowed for the observation and study of a number of phenomena that have an analogue
in condensed matter physics, most notably the transition from a superfluid to a Mott insulator
[62, 63].

If we now focus on the case of a very deep optical lattice along the x−axis, the optical potential
can be approximated by an expansion around a local minimum. Assuming Utrap < 0 this expansion
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yields
Vdip ' Utrap(1− k2x2) = Utrap + ma

2
ω2
ax

2, (4.71)

where ωa =
√

2k2|Utrap|/ma. This approximation is valid in the Lamb-Dicke regime, i.e. if the
condensate is confined to a region close to the center of a lattice site and the Thomas-Fermi
radius is much smaller than the laser wavelength: kRx � 1. By rewriting Rx in terms of k,
Rx = 1

k

√
µ
|Utrap| , we see that this condition is already fulfilled if we demand a deep lattice, when

|Utrap| � µ.

The next step is to determine the role of the atom-atom interactions for a condensed atomic gas
trapped in a generic one dimensional optical lattice. As discussed in section (3.2), the interactions
dominate the condensate dynamics if µ � ~ωi or equivalently if Ri � ξ. A salient feature of
optical lattices is the large trapping frequency in axial direction (ωa ∼ 103...105Hz) with moderate
frequencies in the transverse directions (ωy,z ∼ 10...103 Hz). For a particular set of parameters
the axial trapping frequency can become even larger than µ/~, and Ry,z > ξ > Rx. In this
case the dynamics along the x-axis are determined by the harmonic oscillator terms in the Gross-
Pitaevskii equation. Accordingly the condensate shows a Gaussian profile along the x−direction.
This crossover from the 3D-Thomas-Fermi regime to an effective 2D-regime has been studied for
example in [64, 65].

When demanding for a deep lattice and for the Thomas-Fermi regime simultaneously, we
impose tight bounds on the chemical potential:

|Utrap| � µ� ~ωa. (4.72)

To get an estimate we compute the ratio of these two bounds:( |Utrap|
~ωx

)2
= |Utrap|

2~2k2/ma
. (4.73)

At first sight, it seems as if this ratio could be made arbitrarily large by increasing |Utrap|. However,
the axial trapping frequency has to be held below some critical value of around 105s−1 to avoid
strong depletion of the condensate. Therefore the value of |Utrap| is limited as well. This is due
to the fact that the other parameters in the expression ωa =

√
2|Utrap|k2/ma, namely k and ma,

are practically fixed. For estimated parameters of table (4.1), the ratio (4.73) takes a value of
around 1, and the relation (4.72) can not be fulfilled.

A rough guess on the crossover from the non-interacting to the Thomas-Fermi regime can be
made by comparing ~ωx to the Thomas-Fermi result of the chemical potential, µTF (3.21). It
follows, that µTF > ~ωa for particle numbers larger than

N2D = 4
15

√
2~
maa2

s

√
ω3
x

ω2
yω

2
z

. (4.74)

This result shows that a strong asymmetry in the trapping potential favors the 2D-regime and that
the crossover from the 3D-Thomas-Fermi regime to the 2D-regime can be reached by reducing the
number of atoms in the trap ([64]). For a trap with ωa ∼ 105 s−1, ωy ∼ ωz ∼ 103 s−1 and a gas
of 87Rb atoms (ma ∼ 10−25 kg, as ∼ 6 · 10−9 m) the critical atom number is N2D = 5 · 104. The
fact that the transition between the non-interacting and the Thomas-Fermi regime is governed by
both the atom number and the ratio of the trapping frequencies can also be seen by rewriting Rx
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in terms of the particle density: Rx =
√
n̄g/maω2

x. Decreasing the density - by diminishing either
N or the transverse trapping frequencies - reduces Rx but increases ξ = 1/

√
8πn̄as.

In the subsequent section we will restrict our considerations to the case of a deep optical
lattice or equivalently the Lamb-Dicke regime. Regarding the role of the interactions, a realistic
scenario will be situated in between the Thomas-Fermi limit and the non-interaction regime. We
will therefore give results for both of these cases.

4.7.3 Center-of-mass mode

After this preliminary discussion we are now able to evaluate the coupling constants and frequency
shifts of equations (4.70). We will compare them to the corresponding expressions that we derived
for the simplified model of the “super-atom” and that are here denoted by an upper index A, like
for example gAa,M .

Our calculation is based on the following assumptions: We consider a Bose-condensed atomic
cloud sitting close to the center of a single lattice site, i.e. kRx � 1 and Ry,z/w0 � 1. At first
we assume that the condensate is in the Thomas-Fermi regime and that there is no additional
trapping potential, i.e. Vtrap = 0. Later we will also consider an additional trapping potential
Vtrap 6= 0 and finally the case of a non-interacting atomic gas.

The dipole potential Vdip can now be approximated around a local minimum

Vdip(x) ' U0|c̄|2(1− k2x2)(1− y2 + z2

w2
0

)

' U0|c̄|2 + ma

2
ω2
ax

2 + ma

2
ω2
yy

2 + ma

2
ω2
zz

2, (4.75)

where ωa =
√

2|U0|k2|c̄|2/ma and ωy = ωz =
√

2|U0||c̄|2/(maw2
0) and x, y and z are measured

from the center of the trapping site. Note that the zero-point width along the x-axis for a single
atom is given by xa,0 =

√
~/2maωa.

From symmetry considerations we expect the center-of-mass oscillation in axial direction to
be the dominant mode of the atomic collective motion. Focusing on this mode, we set

Ψ̂(x) = Ψ0(x) + ua(x)â − v∗a(x)â†. (4.76)

In the Thomas-Fermi approximation the solution of the Bogoliubov equations 3.26 for the center-
of-mass excitation in a harmonic potential (see for example [47]) leads to:

ua(x)− va(x) =
√

15~ωa/µ
8πRxRyRz

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)− 1
2 x

Rx
=
√

5~ωa
2V µ

(1− r′2)−
1
2x′, (4.77)

where we rescaled the coordinates (x, y, z) with respect to the corresponding Thomas-Fermi radii
Ri =

√
2µ
mω2
i
and introduced the radius r′ =

√
x′2 + y′2 + z′2 and the volume of the ellipsoid

V = 4π
3 RxRyRz to shorten the notation. Note that even though the term (4.77) shows a

divergence for r′ → 0 the correct normalization of ua(x) and va(x) can be achieved by employing
equation (3.25).
The Thomas-Fermi result for the condensate wave function has the form

Ψ0(x) =
√
µ

g

√
1− r′2 =

√
5N
2V

√
1− r′2. (4.78)
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In the last step we used that the chemical potential is fixed by the normalization of Ψ0 : N =´
V |Ψ0|2d3x.
The direct coupling constant ga,M between the atomic CM mode and the mechanical cantilever
can now be computed. In doing so we expand the sinusoidal terms in the equations (4.70) up to
second order in kx, y

w0
and z

w0
. This expansion is therefore consistent with the approximations in

the previous steps (see for example equations (4.75), (4.77) and (4.78)).

ga,M = −kxZPF
U0
~
|c̄|2
ˆ

Ψ0(x)(uα(x)− vα(x)) sin(π + 2kx) exp(−y
2 + z2

w2
0

) d3x

= kxZPF(U0/~)|c̄|2
ˆ

Ψ0(x)(uα(x)− vα(x))2kx d3x

= ωa
2

√
Nmaωa
mMωM

= gAa,M . (4.79)

The coupling constant between the condensate CM mode and the cantilever agrees with the
expression gAa,M that was found for the “super-atom”. Note that the other coupling constants, ga,c
and gM,c are zero. As before, the CM mode does not couple to the cavity field in the linearized
Hamiltonian.
The only remaining terms are the frequency shift of the cantilever and the cavity respectively:

δωM,c = (U0/~)k2x2
ZPF|c̄|2

ˆ
|Ψ0(x)|2(−1 + 2k2x2)(1− y2 + z2

w2
0

)d3x

≈ −ωa
ma

2~
~

2mMωM

(
N −

ˆ
|Ψ0(x)|2(2k2x2 + y2 + z2

w2
0

)d3x
)

= δωAM,c

(
1− 2

7
k2R2

x −
1
7
R2
y +R2

z

w2
0

)
. (4.80)

∆N =
ˆ
|Ψ0(x)|2(U0/~)(1− k2x2)(1− y2 + z2

w2
0

)d3x

≈ (U0/~)
ˆ
|Ψ0(x)|2(1− k2x2 − y2 + z2

w2
0

)d3x

= ∆A
N (1− 1

7
k2R2

x −
1
7
R2
y +R2

z

w2
0

) (4.81)

These terms show corrections due to the extent of the condensate when compared to the corre-
sponding terms for the super-atom (δωAM,c and ∆A

N ).
As discussed in section (4.4) non-vanishing coupling between the center-of-mass mode and

the cavity field can be obtained with the help of an additional trapping potential Vtrap(x) that
shifts the condensate to a new equilibrium position x̃a.
The condensate wave function Ψ0(x) and the center-of-mass mode ua(x) − va(x) for the total
potential Veff(x) = ma

2 ω
2
a(x − x̃a)2 + ma

2 ω
2
yy

2 + ma
2 ω

2
zz

2 are then readily found from equations
(4.78) and (4.77) by replacing x by x− x̃a.
The coupling constants and frequency shifts are given by:
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ga,M = −kxZPF
U0
~
|c̄|2
ˆ

Ψ0(x)(ua(x)− va(x)) sin(π + 2kx̃a + 2kx) exp(−y
2 + z2

w2
0

)d3x

≈ 2 cos(2kx̃a)k2xZPF(U0/~)|c̄|2
ˆ

Ψ0(x)(ua(x)− va(x))x d3x

= gAa,M (4.82)

ga,c = (U0/~)
ˆ

Ψ0(x) sin2(π
2

+ kx+ kx̃a) exp(−y
2 + z2

w2
0

)(ua(x)− va(x))d3x

≈ −k sin(2kx̃a)(U0/~)
ˆ

Ψ0(x)(ua(x)− va(x))x d3x

= gAa,c (4.83)

gM,c = −kxZPF(U0/~)
ˆ
|Ψ0(x)|2 sin(π + 2kx̃a + 2kx)) exp(−y

2 + z2

w2
0

)d3x

≈ kxZPF(U0/~)
ˆ
|Ψ0(x)|2 sin(2kx̃a)(1− 2k2x2)(1− y2 + z2

w2
0

) d3x

= gAM,c(1−
2
7
k2R2

x −
1
7
R2
y +R2

z

w2
0

) (4.84)

∆N = (U0/~)
ˆ
|Ψ0(x)|2 sin2(π

2
+ kx̃a + kx) exp(−y

2 + z2

w2
0

)d3x

≈ (U0/~)
ˆ
|Ψ0(x)|2(cos2(kx̃a)(1−

y2 + z2

w2
0

)− cos(2kx̃a)k2x2)d3x

= ∆A
N

(
1− 1

7
R2
y +R2

z

w2
0

)
− 1

7
g2
0

∆ca
Nk2R2

x cos(2kx̃a) (4.85)

δωM = U0
~
k2x2

ZPF|c̄|2
ˆ
|Ψ0(x)|2 cos(π + 2kx+ 2kx̃a) exp(−y

2 + z2

w2
0

)d3x,

≈ −U0
~
k2x2

ZPF|c̄|2
ˆ
|Ψ0(x)|2 cos(2kx̃a)(1− 2k2x2 − y2 + z2

w2
0

)d3x

= δωAM,c(1−
2
7
k2R2

x −
1
7
R2
y +R2

z

w2
0

) (4.86)

Again we are able to compare (4.82) - (4.86) to the corresponding results for the “super-atom”
of section (see table (4.3)). Up to first order in kRx the results coincide. This can be understood
by the fact, that the dynamics of the center-of-mass mode is not influenced by atom-atom-
interactions. Corrections due to the finite extent of the atomic cloud appear for gc,M , ∆N and
δωM . Only if we included higher order terms in the expansions of equations (4.67) and (4.75) and
hence in the expression for the CM mode (4.77), we would also get corrections to ga,M and ga,c.
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So far, the calculations of this section were made for an atomic gas whose dynamics is dominated
by the atom-atom-interactions, i.e. in the Thomas-Fermi limit. If we go to the opposite limit of
very weak interactions (g → 0), the Gross-Pitaevskii equation (3.8) turns into a linear Schrödinger
equation for a harmonic oscillator:

i~
∂

∂t
Ψ(x, t) = (− ~2

2ma
∇2 + ma

2
ω2
ax

2 + ma

2
ω2
yz(y2 + z2))Ψ(x, t). (4.87)

Solutions to this equation are found by separation of variables either in Cartesian coordinates or
in spherical coordinates with quantum number (nx, ny, nz) and (nr, l,m) respectively. We refer
to standard textbooks on quantum mechanics for more details.
The energy eigenstates of the problem (4.87), denoted by Ψα with α = (nx, ny, nz) and α =
(nr, l,m) respectively, are also solutions of the Bogoliubov equations (3.26) for g = 0. In partic-
ular, the ground state is found to be

Ψ0(x, y, z) =
√
N(2π)−

3
4 (xa,0ya,0za,0)−

1
2 exp(− x2

4x2
a,0
− y2

4y2
a,0
− z2

4z2
a,0

),

where xa,0 =
√

~
2mωa , ya,0 =

√
~

2mωy and za,0 =
√

~
2mωz . The center-of-mass mode along the

axis is given by the eigenstate corresponding to α = (nr = 0, l = 1,m = 0) ↔ (nx = 1, ny =
0, nz = 0) and

ua(x, y, z) = (2π)−
3
4 (xa,0ya,0za,0)−

1
2
x

xa,0
exp(− x2

4x2
a,0
− y2

4y2
a,0
− z2

4z2
a,0

),

while va = 0. The coefficients are chosen such that
´
|Ψ0(x)|d3x = N and

´
|ua|2d3x = 1.

The coupling constants for the non-interacting case in the presence of an additional trapping
potential as discussed above are

ga,M = −2 cos(2kx̃a)k2xZPF(U0/~)|c̄|2
ˆ

Ψ0(x)ua(x)x d3x

= gAa,M (4.88)

ga,c = k sin(2kx̃a)(U0/~)
ˆ

Ψ0(x)ua(x)x d3x

= gAa,c, (4.89)

gM,c = −kxZPF(U0/~)
ˆ
|Ψ0(x)|2 sin(2kx̃a)(1− 2k2x2 − y2 + z2

w2
0

) d3x

= gAM,c(1− 2k2x2
a,0), (4.90)

∆N = (U0/~)
ˆ
|Ψ0(x)|2(cos2(kx̃a)(1−

y2 + z2

w2
0

)− cos(2kx̃a)k2x2)d3x

= ∆A
N (1−

y2
a,0 + z2

a,0
w2

0
)−N g2

0
∆ca

k2x2
a,0 cos(2kx̃a), (4.91)
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δωM,c = U0
~
k2x2

ZPF|c̄|2
ˆ
|Ψ0|2

(
cos(2kx̃a)(1−

y2 + z2

w2
0

)− 2k2x2 cos(2kx̃a)
)
d3x

= δωAM,c(1− 2k2x2
a,0 −

y2
a,0 + z2

a,0
w2

0
), (4.92)

where we used that
´

Ψ0(x)ua(x)xd3x =
√
Nxa,0 and

´
|Ψ0(x)|2x2d3x = Nx2

a,0. The results
(4.88) - (4.92) resemble those of the Thomas-Fermi regime and those of the “super-atom”. The
width of the condensate in axial direction is given by xa,0 and correspondingly the corrections of
gM,c, ∆N and δωM scale with kxa,0 instead of kRx.

To summarize the result of this section very briefly: The expressions for the coupling constants
of the model setup that we had found in a simplified picture could be confirmed by employing
a more accurate treatment in terms of the Gross-Pitaevskii equation. We considered both the
Thomas-Fermi regime as well as the non-interacting case. As already mentioned, we are planning
to complement the calculations of the coupling constants (see section 4.7.3) by including the
anharmonic term in the expansion of the dipole potential. This would give higher order corrections
to the coupling constants due to the finite extent of the condensate.

Speaking of possible continuations of this work, we also have to mention that we have not
included any calculations on the influence of other modes yet. We focused exclusively on the
center-of-mass mode of the collective atomic motion. Certainly, this mode will be excited first
of all, when for example the nodes of the light field are shifted along the cavity axis or when
the intensity of the light field changes. However slight asymmetries in such processes can lead to
excitations of other collective modes of the condensate. The anharmonic terms in the expansion
of the dipole (or trapping) potential might also give rise to excitations into other modes. The
dynamics of these excitations are strongly damped and their lifetime is much smaller than that of
the center-of-mass oscillations, which - in the ideal case - is only limited by depletion. Still they
might couple to the CM mode due to anharmonic terms and might induce a damping of the CM
dynamics.

4.8 Coupled dynamics of the cantilever and the atomic CM motion

In this section we briefly sketch, how one could in principle observe the coupled dynamics of the
atomic CM motion and the cantilever due to the relatively strong cavity-assisted coupling: One
might observe oscillations of the two objects that alternate in time as the energy is swapped in
between the two oscillators. The phenomenon is of course nothing else than the well-known beat
case for the motion of two linearly coupled pendula. The other observation is a distinct quantum
mechanical feature. Once strong coupling has been achieved, one might generate squeezed states
of the atomic CM motion and the cantilever.

4.8.1 Swapping excitations between cantilever and atomic cloud

We consider an effective Hamiltonian of the linearly coupled system of cantilever (b̂,ωM ) and the
atomic CM motion (â, ωa):

Ĥ = ~ωaâ†â + ~ωM b̂†b̂ + ~geff(â† + â)(b̂† + b̂). (4.93)
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Oscillation energy

Time

Figure 4.7: Swapping excitations between two oscillators: The energy transfers at a rate 2geff,
where geff is the coupling between the two oscillators. The curves correspond to the squared
amplitudes |α|2 (blue) and |β|2 (green), as given in equation (4.95). The maximal oscillation
energy is denoted by |α0|2. The decay of the energy at rate Γ is sketched by the black line. The
parameters chosen here are Γ/geff = 1/10.

In order to illustrate the basic idea of the energy swapping in the simplest way, we will consider
only the classical amplitudes α and β that correspond to â and b̂. Furthermore we assume the
frequencies of the atomic motion and the cantilever to be equal, ω = ωa = ωM , and neglect the
damping of their motion. In the rotating wave approximation with respect to ω, the equations of
motion of the classical amplitudes α and β are given by

α̇ = −iωα− igeffβ
β̇ = −iωβ − igeffα (4.94)

The solutions of these equations are harmonic oscillations at the frequencies Ω± = ω ± geff.
For example, initial conditions like α(t = 0) = α0, β(t = 0) = 0 yield

α(t) = 1
2
α0
(
e−iΩ+t + e−iΩ−t

)
β(t) = 1

2
α0
(
e−iΩ+t − e−iΩ−t

)
(4.95)

Figure (4.7) shows these solutions by plotting the square of their absolute value. As |α|2(t)
and |β|2(t) directly correspond to the energy of the two oscillators, we see that the oscillation
energy is swapped from one the other periodically. The rate of this energy transfer is given by
Ω+ − Ω− = 2geff. If the oscillators were subject to damping at a rate Γ, the oscillations would
cease out on a time scale set by Γ−1. We therefore see, that the discussed swapping excitations
will only be observable, if the coupling geff is larger than the damping rate Γ. Note that for the
assumed values of the proposed model, the cavity-assisted coupling between the cantilever and
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the atomic motion was estimated to be 102 Hz, larger than the mechanical damping rate of the
cantilever. It might therefore be worthwhile to investigate this issue in an accurate treatment
and analyse, if the swapping of excitations between the cantilever and the atomic cloud can be
observered in such a system.

4.8.2 Squeezing

Let us now discuss a purely quantum mechanical effect that might occur in the case of strong
coupling between the cantilever and the atomic motion. We again consider the Hamiltonian

Ĥ = ~ωaâ†â + ~ωM b̂†b̂ + ~geff(â† + â)(b̂† + b̂). (4.96)

Our goal is to briefly illustrate the very basic idea and treat the system in the simplest possible
manner. We therefore neglect damping and any driving terms.

Note that the coupling geff depends on the intensity of the cavity field |c̄|2. The basic idea is
now to modulate the intensity of the light field in the form |c̄|2(t) = |c̄|2 cos2(ωt), with a frequency
ω that is close to the sum of ωa and ωM . The rotating wave approximation with respect to ω
allows us to introduce the effective Hamiltonian:

Ĥ = ~∆aâ
†â + ~∆M b̂

†b̂ + ~geff(â†b̂† + âb̂) + ĤΓM + ĤΓa , (4.97)

where ∆a = ω − ωa and ∆M = ω − ωM .
The corresponding Heisenberg equations of motion for the operators â† and b̂ are given by

d

dt
â† = [â†, Ĥ]

i~
= −i∆aâ

† + igeffb̂ (4.98)

d

dt
b̂ = [b̂, Ĥ]

i~
= i∆M b̂− igeffâ†. (4.99)

Focusing on the special case of equal frequencies of the cantilever and the atomic motion and
ω = ωa = ωM , i.e. ∆a = ∆M = 0, these equations have the solution

â†(t) = cosh(gefft)â†0 − i sinh(gefft)b̂0,
b̂(t) = cosh(gefft)b̂0 + i sinh(gefft)â†0, (4.100)

where â0 = â(t = 0), b̂0 = b̂(t = 0).
In order to observe a squeezed state in an experiment, one has to look for signatures of

squeezing in the correlations of the two oscillators. We therefore turn to a correlator that should
in principle be measurable by reading out the spectrum of the cavity field. More precisely we
consider the correlator

Ca,b(t) = 〈(eiϕâ†(t) + e−iϕâ(t))(eiϕb̂†(t) + e−iϕb̂(t))〉. (4.101)
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As a first estimate, we try to figure out if any squeezing effects can be observed in a fully
thermalized system. In doing so we assume that 〈â†â〉t=0 = n̄a, 〈b̂†b̂〉t=0 = n̄b, 〈ââ〉t=0 = 0,
〈b̂†â〉t=0 = 0, etc., and that the coupling g is switched on at t = 0. In the simplest case, for
Γa = ΓM = 0, the correlator is given by

Ca,b(t) = sin(2ϕ)(n̄a + n̄b + 1) sinh(2gefft). (4.102)

Hence, we see that correlations build up and can even grow exponentially.
Certainly, this discussion only gave a very rough sketch. It can not answer the question, if the

generation of squeezed states between the cantilever and the atomic motion is possible. However
we illustrated, that a relatively simple mechanism, namely the modulation of the intensity of the
cavity field, might allow to study the phenomenon of squeezing in this system.

4.9 Fock state detection
So far we have focused our discussion on the linear coupling between the cavity and the CM
position operator of the atoms, x̂a . As we have seen, it leads to an interaction term ∝ x̂aĉ†ĉ and
therefore resembles the generic optomechanical coupling between the cavity and the cantilever.
However, the proposed setup also allows for a dispersive coupling of the form ∝ x̂2

aĉ
†ĉ, if the atomic

cloud sits at a minimum of the dipole potential (4.16). An analogous situation can be found in
the “membrane-in-the-middle”-setup when the membrane is placed at an extremum of ωcav(xM )
(4.116). It has already been shown for this setup, that a detection of the membrane’s phonon
number should be realizable [14]. In the following we will discuss the possibility of performing
a dispersive, quantum-non-demolition measurement of the motional Fock state of the atoms’
collective motion.

To begin with, we refresh the basic setup of figure (4.3) by some minor modifications. Again
we assume an atomic cloud interacting with the standing wave of a cavity field, but disregard
the cantilever for this consideration. In the context of a Fock state detection the cantilever
motion would only induce an additional phase shift proportional to its displacement. Regarding
the trapping of the atoms we again employ an additional potential such that the atomic cloud
is confined by a trapping potential Veff ≈ Nma

2 ωaδx̂
2
a. However this time we assume that the

minimum of Veff coincides with a antinode of the cavity field, i.e. there is no additional shift
due to the trapping potential. In the notation of the preceding sections this implies that x̃a = 0.
Accordingly, for small displacements of the atomic cloud the interaction between the atoms and
the cavity field is given by a term

~N
g2
0

∆ca
(1− k2δx̂2

a)ĉ†ĉ =
(
NU0 −

1
2

~δω(â† + â)2
)
ĉ†ĉ, (4.103)

where we defined the coupling constant

δω = 2NU0k
2(x(N)

a,0 )2/~. (4.104)

This term will later turn out to be the optical frequency shift due to a single phonon of the atoms’
oscillation. In this context we recall the explicit expression for the zero-point width of the atomic
CM motion: x(N)

a,0 =
√

~
2Nmaωa . Plugging it into (4.104) reveals that the frequency shift δω is

independent of the number of atoms N contained in the atomic cloud: δω = U0k
2/(maωa).

To summarize this preliminary discussion we specify the Hamiltonian as
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Ĥ = ~
(
−∆ + ∆N −

1
2
δω(â† + â)2

)
ĉ†ĉ+ ~ω̃aâ†â

+ ~αL(ĉ+ ĉ†) + Ĥκ. (4.105)

We see that the frequency of the cavity depends on x̂2
a. Hence this setup, in principle, allows to

extract information about x̂2
a from the measurement beam. If the cavity ring-down time κ−1 is

much larger than the period of the atomic CM oscillation, i.e. κ� ωa, the cavity field effectively
measures the time averaged x̂2

a which becomes the phonon number:

1
2
δω〈

(
â†eiωat + âe−iωat

)2〉t = δω
(
â†â+ 1

2
)
. (4.106)

In the following we illustrate how the phase shift of a single phonon can be extracted from
the signal beam, and what requirements have to be fulfilled regarding the measurement time and
the phonon lifetime. We start with a description of the cavity field in the standard input-output
formalism (see for example [66, 67]):

d

dt
ĉ = i

(
∆− δω

2
(â† + â)2

)
ĉ− κ

2
ĉ−
√
κα̂in

d

dt
ĉ = i

(
∆− δω

2
(â† + â)2

)
ĉ+ κ

2
ĉ−
√
κα̂out (4.107)

α̂in and α̂out denote the operators for the input (output) fields of the cavity. It follows that

α̂out(t) + α̂in(t) =
√
κĉ(t) (4.108)

and, by solving (4.107) in Fourier space (ĉ(t) = 1√
2π

´
e−iωtĉ(ω)dω etc.),

α̂out(ω) =
1 + 2i

κ

(
∆− δω

2 (â† + â)2(ω) + ω
)

1− 2i
κ

(
∆− δω

2 (â† + â)2(ω) + ω
) α̂in(ω). (4.109)

We introduce a reflection coefficient by defining r := |ᾱout|
|ᾱin| , using the classical, time-averaged

amplitudes |ᾱin| and |ᾱout|. As we consider the cavity to be lossless, the absolute value of r is 1
and we can write

r := eiθtotal =
1 + 2i

κ

(
∆− δω(〈â†â〉+ 1

2)
)

1− 2i
κ

(
∆− δω(〈â†â〉+ 1

2)
) . (4.110)

If the measurement beam is resonant with the cavity, i.e. ∆ = 0, the phase shift of a single
phonon is given by θ = 4δω

κ , as can be found by expanding the expression for the reflectivity in
the limit κ� δω :

r =
κ
2 − iδω(〈â†â〉+ 1

2)
κ
2 + iδω(〈â†â〉+ 1

2)

=
(
κ− 2iδω(〈â†â〉+ 1

2
)
)(1
κ
− 2i

δω(〈â†â〉+ 1
2)

κ2 + ...
)

≈ 1− i
4δω(〈â†â〉+ 1

2)
κ

. (4.111)
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The phase of the cavity output beam can be measured by letting it interfere with a reference
beam, a concept which is for example realized in homodyne detection.

Shot noise of the signal beam imposes an uncertainty δθ in the detection of the phase, though.
The more photons (Nphot) are contained in the output beam, the smaller this uncertainty becomes.
This can be seen by employing the common number-phase-uncertainty relation, δN2

photδθ ∼ 1,
for a coherent beam with δN2

phot ∼ Nphot. It follows that

δθ ∼ 1√
Nphot

. (4.112)

If we demand a signal-to-noise ratio of δθ
θ ∼ 1, a number of Nphot ∼ 1

θ2 photons from the
measurement beam is needed. For a photon flux of Ṅphot this turns into a required measurement
time of

τ =
Nphot

Ṅphot
= 1
θ2Ṅphot

= κ2

16δω2Ṅphot
. (4.113)

An important restriction on this measurement time is given by the preliminary requirement
that the atoms’ CM motion is not perturbed by the measurement. This yields that we have to
demand

ωaτ � 1. (4.114)

To see whether all these requirements can be met in a realistic setup, we now plug in the
numbers. Consulting the table (4.1) once again, we see that U0 ≈ 103 Hz, k2 ≈ 107 m−1,
ωa ≈ 105 Hz and ma ≈ 10−25 kg lead to δω = U0k

2/(maω̃a) ≈ 103 Hz. We note, that a higher
atom-cavity interaction U0 ≈ ~ 105 Hz is realizable. However, this would make the frequency shift
of a single phonon larger than the cavity decay rate, which we assume to be κ ≈ 104 Hz in this
estimate. Yet we have to demand that κ > δω to stay in the linear regime of equation (4.111),
and in order to be able to resolve a single quantum jump between to adjacent Fock states. The
relatively low value of κ is probably the most challenging requirement for the implementation. It
is necessary to keep ωa > κ.

The condition imposed on the measurement time (ωaτ � 1) can be fulfilled by tuning the
intensity of the signal beam Ṅphot :

ωaτ = ωa

θ2Ṅphot
= ωaκ

2

16δω2Ṅphot
. (4.115)

Inserting the numbers, we see that ωaτ = 107 1
16Ṅphot

s−1 and ωaτ � 1 can be reached by
employing an incoming photon flux Ṅphot ≈ 104 s−1 or smaller. This would correspond to an
incoming laser power of Pin = ~ωcavṄphot ≈ 10−15W and an average number of intracavity
photons of n̄cav ≈ 1.

Certainly there is another restriction that we have not considered yet: The measurement time
has to be smaller than the lifetime of a phonon in order to resolve quantum jumps between the
Fock states. This lifetime is determined by the coupling of the atomic cloud to its environment.
However, in this setup it is not immediately which will be the foremost source of decoherence for
the atomic motion. For example, it could well be the case that in the presence of the mechanical
resonator the atomic motion is heated up due to the thermal motion of the mechanical element.

Even though this investigation has to be continued, we can already state, that very basic
requirements for a Fock-state detection can be met in the proposed model. If implemented in
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Figure 4.8: “Membrane-in-the-middle”-setup: A membrane and a cloud of cold atoms are coupled
to the standing wave of a cavity field. In analogy to the previously considered model (figure 4.3),

an experiment, this would for example allow to observe the quantum jumps in the evolution of
the atomic motion as it heats up. Moreover, if the CM mode of the atoms couples to another
mechanical oscillator, e.g. a cantilever, one might be able to characterize the effects of the
atom-cantilever interaction by reading out the Fock state of the atomic motion.

4.10 Variations of the model

A major technical challenge for general optomechanical setups (figure (1.1)) is imposed by the
integration of a highly sensitive mechanical resonator into a high-finesse cavity. It is possible to
resolve this difficulty by placing a small micro-mechanical resonator in between two fixed high-
finesse mirrors. This concept was implemented by the Harris group in their “membrane-in-the-
middle”-setup, that allowed them to cool down the mechanical element, the “membrane”, to a
temperature of 7mK [14]. Of course a high cavity finesse is very desirable in our proposed setup
(figure (4.3)) as well. Quite generally, it would allow for a better manipulation of the mechanical
resonator by the cavity field, especially in terms of ground-state cooling [15, 16]. Moreover, a
small cavity decay rate κ allows for strong cavity-assisted coupling between the atoms and the
mechanical oscillator as we have seen in section (4.6.3).

Figure (4.8) illustrates our model setup: Both a mechanical resonator and a cloud of cold
atoms are inserted in a cavity. We assume the atoms to be trapped by an additional trapping
potential which is not depicted here. Accordingly, the atoms’ equilibrium (CM) position is shifted
away from an antinode of the cavity field. This is a prerequisite for the cavity-assisted coupling
between the cantilever and the atomic cloud.

The most striking difference in comparison to the model of figure (4.3) is that the cavity length
no longer is determined by the position of the mechanical resonator. Hence the spatial structure
of the intracavity light field does no longer depend on the position of the mechanical resonator in
the way of equations (4.5) and (4.16). If the membrane is sufficiently thin, we can even neglect
the modification of the intensity profile due to its presence. This is analogous to the argument we
gave when disregarding the back-action of the atoms on the cavity field. As a consequence there
is no direct membrane-atom coupling comparable to ga,M .

Nevertheless we can resume the discussion of section (4.6) and consider the effective coupling
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geff = ga,cgM |c̄|2
(

1
ω−∆ −

1
ω+∆

)
. The coupling of the atomic cloud to the cavity (ga,c ) will be

of the same kind as considered above (see for example table (4.3)) and requires an additional
trapping potential. To understand the cavity-membrane coupling of this setup, we adopt the
reasoning given in ([14]). The dependence of the cavity resonance frequency on the position xM
of the membrane is given by

ωcav(xM ) = c

L
cos−1

(
|rc| cos(4πxM/λ)

)
, (4.116)

where rc denotes the reflectivity of the membrane and L the length of the cavity. The membrane
can be placed at practically any position inside the cavity by using a piezoelectric positioner. An
expansion of (4.116) around xM = λ/8 produces a term of the form

ωcav(xM ) ≈ ωcav,0 + gM
xZPF

(xM − x̄M ), (4.117)

where gM = xZPF
dωcav
dxM

(xM = λ
8 ) = xZPF

ωL
L/2 |rc|. This expression reveals that the “membrane-in-

the-middle”-setup allows for the standard optomechanical coupling in the form of a term ~gM (b̂†+
b̂)ĉ†ĉ. The coupling constant differs only by a factor of 2|rc| from the one of the standard setup. In
view of the previous estimates on the effective coupling strength geff we state that strong coupling
between the membrane and the atomic clouds seems achievable. We note that this particular
setup not only allows for an improved cavity finesse, but also for a smaller mass of the mechanical
resonator: The mass of the membrane in the Yale setup is for example mM ≈ 10−11 kg. As the
mass enters the expression of the effective coupling strength in the form

√
Nmaωa
mMωM

, a small value
of mM is in favour of strong coupling.

As a final remark we mention another possible extension of this setup that would involve two
atomic clouds at different lattice sites. Again one could make use of the cavity-assisted coupling
and observe the coupled dynamics of their center-of-mass motions. In this case the masses of
both mechanical objects would be nearly equal and a major obstacle for the achievement of strong
coupling would vanish.

4.11 Overview on the various coupling mechanisms
Before concluding this chapter we will give a summary of the coupling mechanisms that we
encountered in the investigating of the model setup. This setup comprises an optical cavity, a
cantilever and the CM mode of a cloud of cold atoms.

Already in its simplest form, without an additional trapping potential, the proposed setup leads
to a direct coupling between the atomic motion and the cantilever. It arises due to the shift of
the cavity field when the cantilever moves. The value of the corresponding coupling constant is
small compared to typical mechanical damping rates of the cantilever.

A much stronger contribution to the coupling between the cantilever and the CM motion of
the atoms is given by a second order term that involves the transitions to virtual cavity-states.
This coupling mechanism relies on the fact that both the atomic cloud, when shifted by an external
potential, and the cantilever (via the radiation pressure) couple strongly to the cavity.

We note however that the coupling between the atomic cloud and the cavity can not be made
arbitrarily large. We can understand this point by reconsidering the discussion of a possible Fock
state measurement: If the coupling between the atomic motion and the cavity is very strong,
it might induce a phonon measurement even if it is not intended. In this context we can for
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example reconsider the swap experiment which we discussed in section (4.8.1). Even though the
mechanism of this experiment relies on the linear coupling terms of the system, the quadratic
coupling terms also have to be considered and inevitably will lead to a phonon measurement (even
if this information is not used). This measurement can destroy the coherent oscillations of the
atomic cloud, as the back-action of the measurement on the atomic motion leads to dephasing.
Certainly, this unwanted phonon measurement is only one of many points that still have to be
checked in terms of measurement back-action. In a sense all these effects are somehow the
“backside of the coin”: Once a system shows considerable quantum effects, it will be harder and
harder to observe them.
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Concluding remarks and future
perspectives

What we aimed at with this thesis, was to examine and elaborate the specific features of optome-
chanical systems in the quantum regime. We presented a fully quantum-mechanical treatment of
a driven optical cavity coupled to a mechanical oscillator by radiation pressure. It provided insights
into the influence of photon shot noise and quantum fluctuations on the coupled dynamics of the
cavity-cantilever system. The introduction of a quantum parameter allowed to keep track of the
way these results converge towards the classical solutions. Setups that realize a coupling between
the mechanical motion of a cloud of cold atoms and a single cavity mode, should allow to observe
strong quantum effects. We resumed the basic idea of these experiments and proposed a model
setup: It consists of a BEC in a standing light wave of a cavity where one of the cavity’s end
mirrors is built from an oscillating cantilever.

Let us recapitulate the work in more detail: In the first chapter of this thesis we introduced the
basics of optomechanical systems. Such a system consists of a cavity whose resonance frequency
depends on the position of a mechanical element, e.g. a cantilever. The interaction between the
cavity and the cantilever via radiation pressure leads to an effective contribution to the damping
rate of the mechanical resonator. This optical damping rate can reduce the thermal motion of
the cantilever and might ultimately cool it to the ground state. On the other hand, if it yields a
negative contribution to the damping rate, it can heat the cantilever motion or even induce an
instability above some laser power threshold. In the latter case, the full nonlinearity of the system
shows up and leads to self-sustained oscillations of the cantilever at fixed amplitude.

We focused on this instability in the second chapter and compared the classical predictions
for the amplitude of the cantilever motion to the results from a numerical simulation of a quan-
tum master equation. We studied the crossover between the quantum and the classical regime,
which is governed by the quantum parameter, ζ = xZPF/xFWHM , denoting the ratio between the
mechanical zero-point fluctuation amplitude and the width of the optical resonance. In regions of
dynamical multistability, the different attractors show up simultaneously in the steady state of the
cantilever, since the quantum noise can induce transitions between those attractors. By employ-
ing semiclassical Langevin equations we were able reproduce the main features of the results from
the quantum master equation, at least within a suitable parameter regime. Below the threshold
of instability, a simple rate-equation approach compares well to the full quantum results for the
cantilever occupation. Finally, we characterized the mechanical motion in the various regimes by
discussing the phonon number probability distribution as well as the Wigner density.

In the last two chapters of this thesis we directed our attention towards optomechanical setups
that involve the motion of a cloud of cold atoms. A general introduction to basic concepts of
the dynamics of a trapped, Bose-condensed gas was presented in chapter 3. We focused on
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a particular model setup in chapter 4: Starting with an optomechanical setup of the generic
type, i.e. a cavity and a cantilever interacting via radiation pressure, we added a cloud of cold
atoms confined to a single well of the cavity field. A linearized Hamiltonian revealed the basic
couplings between the cavity field, the cantilever and the center-of-mass mode of the atoms. The
corresponding coupling constants and frequency shifts where estimated in a simplified picture. A
more accurate calculation based on the mean-field description of a Bose-condensed gas gave only
minor corrections to these estimates. Furthermore we were able identify a cavity-assisted coupling
between the cantilever and the atomic motion. This coupling turned out to be much stronger
than the direct coupling term for realistic parameters.

Once a strong coupling of the cantilever and the atomic cloud is eventually realized in exper-
iment, it will open up several interesting opportunities: One might observe the two oscillators to
swing alternately as the oscillation energy swaps between them. Another possibility would be to
generate squeezed state of the two oscillators.

We also briefly discussed a possible QND read out for the atomic motion, i.e. a detection
of the Fock state of the atomic motion. This would further enhance the possibilities of this
setup and might allow to observe uniquely quantum-mechanical effects in this model setup. One
might for example watch the evolution of the atomic cloud as it heats up due to the coupling to
the cantilever. In the ideal case one should then be able to resolve the quantum jumps of this
evolution.

Further extensions of this setup could for example involve the coupling of an atomic cloud to
a mechanical membrane. In this case one could even think of a dispersive readout that would
detect the sum of phonon numbers of both elements. With such a scheme one could potentially
generate entanglement between the atomic motion and the cantilever. Such a scheme for the case
of two (or more) mechanical membranes has for example been proposed recently [68].

Before dealing with such future goals however, we certainly have to elaborate on some points
of the recent work. The cavity-assisted coupling mechanism has to be contrasted thoroughly with
all possible sources of decoherence and dissipation. Possible applications of this coupling (swap,
squeezing) were only discussed briefly and a more detailed analysis is certainly needed. Moreover
the ongoing experiments in this field will provide new input to our work. In particular, the very
recent results of the Esslinger group [50], should bring new insight. Their data, which was
published only a few days before this thesis was handed in, shows the observation of bistability in
the coupled cavity-BEC system and can now for example directly be compared to the results of
the quantum master equation.

The quantum-to-classical transition, that we discussed in the first chapters of this thesis, pro-
vides a number of links to new issues. An optomechanical setup can exhibit chaotic behaviour
when driven at high laser power (see for instance [18]). The emergence of chaos in a quantum
system reveals many interesting questions (see for example [69, 70, 71]) and the analysis of
the quantum-to-classical transition of a chaotic, nonlinear oscillator has already provided inter-
esting features [72]. It might therefore be worthwhile to perform a similar analysis for a chaotic
optomechanical system.



Appendix A

Numerical methods

In large part the results of chapter 2 are based on the numerical simulation of the master equation
for the density matrix. In this appendix we will go into the details of the numerical methods and
explain how we represent the density matrix, how we find its steady-state solution and how we
extract the quantities of interest from the resulting density matrix.

A.1 Representation of the density matrix

An appropriate representation of the density matrix under consideration is given in the com-
bined Fock space of the cavity-cantilever system. The density matrix elements are given by
〈n′M , n′cav|ρ̂|nM , ncav〉, where |nM 〉 = 1√

nM !(b̂
†)nM |0〉 and |ncav〉 = 1√

ncav!
(ĉ†)ncav |0〉 are number

states of the cantilever and the cavity field respectively. To arrive at a finite dimensional density
matrix we have to truncate the Fock space and consider only the lowest energy eigenstates of the
cantilever and the cavity field, i.e. nM < NM and ncav < Ncav.

In order be able to access the matrix elements in the common format of rows and columns,
we introduce a “super-index” J(nM,ncav) = nM + ncavNM . Even though this mapping and its
inverse are used in all the subsequent steps of the computation, we do not pinpoint that issue in
the following but stick to the notation 〈n′M , n′cav|ρ̂|nM , ncav〉. We emphasize though, that we are
dealing with a density matrix of size (N ×N), where N = NM ·Ncav.

A.2 Time-evolution of the density matrix

The coupled cavity-cantilever system is described by the Hamiltonian (1.1)

Ĥ = ~ (−∆ + gM (b̂+ b̂†)) ĉ†ĉ + ~ωM b̂†b̂ + ~αL( ĉ+ ĉ† ) + Ĥκ + ĤΓM
= Ĥ0 + Ĥκ + ĤΓM (A.1)

As already mentioned in section (2.3), the time evolution of the system’s density matrix at zero
temperature is governed by a master equation of Lindblad form

d

dt
ρ̂ = [Ĥ0, ρ̂]

i~
+ ΓM D[b̂] + κD[ĉ], (A.2)
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where
D[Â] = Âρ̂Â† − 1

2
Â†Âρ̂ − 1

2
ρ̂Â†Â (A.3)

denotes the standard Lindblad operator. The coherent part of the time evolution is given by [Ĥ0,ρ̂]
i~ ,

while the Lindblad terms take account of the cavity decay and the damping of the mechanical
oscillator. The time evolution of the matrix elements can be readily inferred form (A.2) by noting
that the right-hand side of (A.2) can be expressed in terms of the operators b̂, b̂†, ĉ and ĉ† and by
using that b̂|nM 〉 = √nM |nM − 1〉 and ĉ|ncav〉 = √ncav|ncav − 1〉. The result will be a coupled
set of N2 coupled, linear differential equations

d

dt
〈n′M , n′cav|ρ̂|nM , ncav〉 = 〈n′M , n′cav|

( [Ĥ0, ρ̂]
i~

+ ΓM D[b̂] + κD[ĉ]
)
|nM , ncav〉. (A.4)

In particular, the right-hand side of (A.4) will couple the matrix element 〈n′M , n′cav|ρ̂|nM , ncav〉 to
ten other matrix elements. The set of differential equations can now be written as

d

dt
~ρ = L~ρ, (A.5)

where ~ρ is a vector that consists of all the N2 elements of the density matrix. Consequently, the
Liouvillian L is a (N2 ×N2)-matrix. In our case, in the rotating frame with respect to the laser
frequency, the Liouvillian L is time-independent and the formal solution of (A.5) is given by

~ρ(t) = eLt~ρ. (A.6)

The procedure that brought the master equation (A.2) into the form of a matrix vector equation
(A.5) can be summarized in a more formal way. In doing so, we define an operation that transforms
a (N ×N) matrix Â into a N2 dimensional vector

−→̂
A :

Â = (Aij) −→
−→̂
A = (A11, A12, A13, . . . , A21, A22, . . . A31, . . .)T ,

where ()T denotes the transpose. It can be shown, that the transformation of a product of three
(N ×N) matrices, Âρ̂B̂, into the vector

−−→
Âρ̂B̂ can be rewritten as a matrix-vector multiplication

for the vector −→̂ρ :
−−→
Âρ̂B̂ = (B̂T ⊗ Â)−→̂ρ . (A.7)

The right-hand side of equation (A.2) can be represented in terms of the form Âρ̂B̂, where Â and
B̂ can be either b̂, b̂†, ĉ, ĉ† or 1. An application of formula (A.7) therefore directly leads to (A.5).

When looking for a solution of this equation, it is instructive to recall its physical meaning: We
can assume that the system relaxes to a unique equilibrium. Therefore the spectrum of eigenvalues
of L has to consist of a single eigenvalue 0, while all other eigenvalues have a negative real part.
Accordingly, in the long-time limit the density matrix is given by the eigenvector ~ρ0 corresponding
to the eigenvalue zero. All other contributions of the eigenvalue decomposition have decayed for
t→∞. To find the stationary solution of the Liouville equation (A.5), it then suffices to evaluate
the eigenvector ~ρ0. To this end we employ the Arnoldi method which solves for a few eigenvalues
and eigenvectors of L by iterative projection and thereby makes use of the sparse structure of L.
We will comment on the details of that method and on its implementation below in more detail.
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Quite generally, an evolution according to the Lindblad master equation preserves the defining
properties of the density matrix. For our method of finding the stationary solution this is not the
case: it does not preserve the correct normalization. We therefore divide the density matrix, that
was output by the eigenvalue solver, by its trace and finally arrive at a steady state density matrix
ρ̂, with Tr{ρ̂} = 1.

A.3 The Arnoldi method

By far the biggest obstacle we face when considering the eigenvalue problem of equation (A.5) is
the huge size of the Liouvillian matrix L. Even if we take into account only a few energy levels for
both the cantilever and the cavity field, i.e. nM < NM and ncav < Ncav, the problem turns out
to be very challenging, because the size of L scales as (N2 ×N2) = (N2

M ·N2
cav ×N2

M ·N2
cav).

However, there is a workaround: We can make use of the sparse structure of the Liouvillian
matrix. The differential equation for a single density matrix element 〈n′M , n′cav|ρ̂|nM , ncav〉 (A.4)
contains only ten contributions from other matrix elements. If one of the indices is at the edge of
the truncated energy spectrum, e.g. nM = NM − 1, the differential equation loses one of these
contributions from adjacent matrix elements, as 〈n′M , n′cav|ρ̂|NM , ncav〉 ≡ 0. According to this
analysis, the Liouvillian matrix has (less than) 10 ·N off-diagonal elements and in total (less than)
11 ·N elements. Therefore the number of floating point operations necessary for a matrix-vector
multiplication L~ρ is of the order O(N) instead of O(N2) for the case of a dense matrix.

Iterative eigenvalue solvers can make use of this improved scaling behaviour as they are merely
composed of a number of elementary matrix-vector multiplications. The basic idea behind this
class of solvers relies on the power iteration method: By evaluating Ak~v0 for a random starting
vector ~v0 one can find the largest eigenvalue and corresponding eigenvector of the matrix A which
is assumed to be diagonizable. To see this we decompose the starting vector ~vi in the eigenbasis
of A, that is given by the eigenvectors {~ei} with corresponding eigenvalues {λi}. If the largest
eigenvalue, λ1, is simple, i.e. a singular root of the characteristic polynomial, it is straightforward
to show that

lim
k→∞

Ak~v0
λk1

= c1~e1, (A.8)

where {ci} are the coefficients of the decomposition of the starting vector ~v0 =
∑
i
ci~i. This scheme

leads to the following algorithm for iteratively evaluating the largest eigenvalue and its correspond-
ing eigenvector (see for example [73]).

• Input: A, ~v0

• Put ~v0 → ~v0/|~v0|∞ and define ~v = ~v0

• For i = 1, 2, ... until convergence
~w = A~v
λ = ~vH ~w

|~v|2
i = i_max(~w)
~v → ~v/(~eHi ~w)

Here ~vH denotes the conjugated transpose of ~v, ||∞ is the maximum norm and i_max(~w) is
the index of the component of ~w with largest absolute value.
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A small modification of this scheme allows to find the eigenvalue that is closest to a complex
number µ in absolute value. If one replaces A by (A− µ1)−1, the above algorithm converges to
an eigenvalue λ, and the actual eigenvalue of A closest to µ is given by µ + 1

λ . In practice, the
inverse of (A − µ1) is never calculated explicitly. Instead one solves (A − µ1)~w = ~v using an
iterative method again.

If one is interested not only in a single eigenvalue but a few eigenvalues close to some number
µ, a Krylov subspace or projection method can be employed. To this end we store the vectors
~w = Ai~v at each step of the iteration and consider the so called Krylov subspace Kk that
is spanned by these vectors: Kk = {~v0, A~v0, A2~v0, . . . A

k~v0}. The basic idea is to construct
approximate eigenvectors, the so called Ritz vectors, in the Krylov subspace Kk. We refer to [73]
for a detailed discussion of such projection methods.

In our implementation of the eigenvalue solver we strongly rely on the ARPACK library, a
standard tool that employs elaborate variations of the above mentioned methods. The ARPACK
routines are designed to return the desired number of eigenvalues and eigenvectors of a given
sparse matrix A. As input data they require the dimension of the problem and the number of Ritz
vectors to be calculate at each iteration step. The user can chose between a number of options.
Among other things one can specify the starting vector or the convergence criterion. Furthermore
the ARPACK routines allow to calculate either the eigenvalues with largest (smallest) absolute
value, real part or imaginary part. The ARPACK eigensolver also distinguishes between real- and
complex valued matrices, between symmetric and non-symmetric matrices and between double
and single precision.

The actual form of A is not handed over to the ARPACK routines, though. The user has to
provide all necessary information on the specific eigenvalue problem in the so called reverse com-
munication interface. In practice that means, that one has to implement a sparse matrix-vector
multiplication routine that evaluates A~v, for a given input vector ~v. This routine is called by the
ARPACK routines repeatedly in the course of the iteration procedure. In our implementation the
matrix-vector multiplication is realized according to the following scheme:

For i = 0, 1, . . . N − 1
For j = 11 · i, . . . 11 · i+ 10
w[i]+ = A[j] · v[col[j]]

Here col is an array of length 11 · N such that col[j] specifies the column of the matrix element
A[j].

Before concluding we comment on the performance of the eigensolver for our specific problem
and on the choice of parameters and options that turned out to be convenient. Working with an
ordinary personal computer, a MacBook with a 2.2GHz Intel Dual Core chip, allowed to solve
eigenvalue problems with dimension N2 ≈ 104 in a reasonable amount of time, i.e. within a few
minutes. For most of the plots presented in section (2) the lowest NM = 16 and Ncav = 8 levels
of the cantilever and the cavity respectively were taken into account. The relatively small energy
spectrum puts strong restrictions on the variation of the parameters and demands to carefully
check the validity of the truncation. The simplest test is to monitor the occupation of the highest
levels, nM = NM −1 and ncav = Ncav−1 respectively. A feasible limit of this occupation number
turned out to be of the order 10−3. If the truncation was inaccurate one can also find clear signs
in the evaluated eigenspectrum and in the Wigner density. Regarding the various options for the
ARPACK routines, we rely on empirical values. The eigenvalue solver was most efficient when
it was prompted to evaluate only a few eigenvalues (∼ 5) but use a slightly higher subspace of
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∼ 50 vectors. The optimal values of these numbers depend on the exact form of the matrix A
and should be reconsidered each time the eigenproblem changes.

In order to allow for a wider applicability, an optimization of the numerical method is definitely
worth considering. Clearly, the largest effect will come together with an improved matrix-vector
multiplication routine. The performance of such a matrix-vector multiplication is not only re-
stricted by the clock rate of the processor, but also and even more importantly, by the speed
of the memory operations. In fact, sparse matrix-vector multiplications perform poorly on mod-
ern processors (reportedly reaching only 10% of the peak performance) as they are essentially
memory-bounded. The common data structures for sparse matrices require time-consuming data
access operations and allow for little data reuse in the cache. In the algorithm discussed above,
for example, the elements of the input vector ~v are accessed very irregularly.

Quite generally we can conclude that the sparse matrix-vector multiplication can be efficiently
optimized by exploiting information regarding the matrix structure and the processor’s architectural
characteristics. There are a few libraries that can undertake the task of optimizing the structure
of the sparse matrix like the OSKI (Optimized Sparse Kernel Interface) package developed by the
Berkeley Benchmarking and Optimization Group. It will be a future goal to address the issue of
optimization and possibly apply the simulations to a wider range of parameters and setups.

A.4 Computation of expectation values
Once the steady-state solution of the master equation is found, basically all information on the
optomechanical system is at hand. In particular the expectation value of an operator Â is given
by

〈Â〉 = Tr{ρ̂Â}. (A.9)

In our case, the operators of interest are the position, momentum and occupation number operators
of either the cantilever or the cavity. By expressing these operators in terms of the corresponding
annihilation and creation operators we can reduce the evaluation of their expectation values to a
summation over density matrix elements.

The only peculiarity in this context is that we shift the expectation value of the cantilever’s
occupation number operator in order to allow for a comparison with the oscillation energy. As
explained in more detail in section (1.2) we therefore define 〈n̂M 〉 := 〈b̂†b̂〉 − 1

4x2
ZPF
〈x̂M 〉2.

A.5 Evaluation of the probability distributions and Wigner densities
Quite generally, the statistical interpretation of the wave function allows to interpret the density
matrix as a complete description of a quantum mechanical ensemble. In that sense we can discuss
the statistical properties of the coupled cavity-cantilever system. The results of this analysis are
shown in section (2.5) and here we will briefly present a few details of the calculations.

The probability distribution of the cantilever occupation number follows directly from the
diagonal parts of the reduced density matrix ρ̂(M) of the cantilever, that is obtained from the
density matrix ρ̂ of the cantilever-cavity system by tracing over the photon states. The evaluation
of the Wigner probability distribution of the cantilever is a bit more costly. By definition the
Wigner function is the Weyl transform of the density matrix,

W (x, p) = 1
π~

ˆ +∞

−∞

〈
x− y

∣∣∣ρ̂(M)
∣∣∣x+ y

〉
e2ipy/~ dy. (A.10)
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As we have access to the elements of the density matrix in Fock space only, we rewrite this
expression as

W (x, p) = 1
π~

ˆ +∞

−∞

∑
n,m

〈x− y|n〉〈n|ρ̂(M)|m〉〈m|x+ y〉e2ipy/~dy

=
∑
n,m

x−1
ZPFπ

− 3
2 (2n+m−1n!m! )−

1
2 ρ(M)
n,m

×
ˆ +∞

−∞
Hn

(
x− y√
2xZPF

)
Hm

(
x+ y√
2xZPF

)
exp

(
− x2 + y2

2x2
ZPF

)
e2ipy/~dy (A.11)

where ρ(M)
n,m =

〈
n|ρ̂(M)|m

〉
is a single matrix element of the cantilever’s density matrix in Fock

space representation.

Ψn(x) = 〈x|n〉 = (2nn!)−
1
2
(π

2

)− 1
4 1
√
xZPF

Hn(
x√

2xZPF
) exp

(
− x2

2x2
ZPF

)
(A.12)

denotes the wave function of the nth Fock state and is expressed by means of the Hermite Poly-
nomial Hn(z). Among the various ways to generate the explicit form of the Hermite polynomials
Hn(x) we choose the recursion relation Hn+1(x) = 2xHn(x)−2nHn−1(x), starting with H0 = 1.

Finally we rescale the phase space with respect to the position and momentum zero-point
fluctuations, x̃ = x/xZPF and p̃ = p/pZPF, and obtain a Wigner distribution of the form

W̃ (x̃, p̃) =
∑
n,m

π−
3
2 (2n+m−1n!m! )−

1
2 ρ(M)
n,m

×
ˆ +∞

−∞
Hn

(
x̃− ỹ√

2

)
Hm

(
x̃+ ỹ√

2

)
e−

1
2 (x̃2+ỹ2)eip̃ỹdỹ. (A.13)

Even though analytical solutions of the integral of equation (A.13) should in principle be
possible, we evaluate this part numerically using the Romberg integration routine that is embedded
in YORICK. We briefly mention, that we can make use of the symmetries of the integrand of
equation and reduce the sum

∑
n,m

to
∑

n,m<n
.
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