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Abstract

Superconducting Josephson junction devices are one of the most promising candidates for the
realization of a quantum computer. With these solid-state macroscopic quantum systems it
is possible to reach the strong coupling regime in circuit quantum electrodynamics, where
a superconducting qubit is coupled to the electromagnetic field of a microwave resonator.
While these systems allow for accurate quantum operations, a major challenge is the efficient
fault-tolerant quantum computation.

In this thesis, we present a method for measuring the quantum state of a superconducting
qubit inside a microwave cavity based on a Mesoscopic Shelving Readout. The proposed
protocol associates one qubit state with the generation of a mesoscopic coherent field, while the
other qubit state remains associated with a vacuum field. By measuring the outgoing cavity
field with conventional devices, an efficient detection of the qubit state can be achieved. The
method uses a cyclic transition in a three-level qubit configuration to build the large cavity
field which enables a high-fidelity measurement in the spirit of the successful electron shelving
readout for trapped ions. We expect that the proposed technique can be adapted to different
superconducting qubit designs and contribute to improve further the qubit readout fidelity.
For the development of this Mesoscopic Shelving Readout, we also review the properties
of superconducting qubits including their theoretical description in a self-contained manner
and examine the coupling of these “artificial atoms” to a one-dimensional transmission line
resonator in circuit quantum electrodynamics.
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Introduction

Since the pioneering works of Feynman [1] and Deutsch [2] in the 1980s, an interdisciplinary
community of scientists has been exploring the idea of quantum information processing. A
quantum computer employs quantum-mechanical phenomena, such as state superposition and
entanglement, that lead to a kind of parallel processing during computational operations. Due
to this novel type of information processing, quantum algorithms can run exponentially faster
than their classical counterparts.

Practical implementation of quantum computation requires the replacement of classical
bits, that carry the information in an ordinary computer, by quantum bits (qubits). These
qubits can be composed of any quantum system with two distinct quantum-mechanical states
(|0〉 and |1〉) that can be placed into quantum superpositions. A computation then proceeds
by combining manipulations of the superpositions in single qubits and controlled interactions
of multiple qubits.

Many different implementations of quantum computers are being pursued today. Most of
the proposals are based on qubits that are constructed from the microscopic degree of freedom,
such as the spin of electrons or nuclei or transitions of single atoms or ions. Due to their
naturally well isolation from the environment, these microscopic implementations decohere
very slowly but are also hard to couple and to control without introducing decoherence.

We discuss a different experimental approach based on superconducting (SC) electrical
circuits that behave as “artificial atoms”. Here, qubits are constructed from collective elec-
trodynamical modes of macroscopic SC electrical elements. These superconducting qubits
(SC qubits) [3; 4; 5; 6] are very promising candidates for the realization of quantum infor-
mation processors as they can be designed and fabricated using standard techniques from
conventional electronics thus allowing for large-scale integration. Another advantage of this
approach is that SC circuits have intrinsically large electromagnetic cross-sections, which im-
plies they may easily be coupled together in complex topologies via simple linear electrical
elements like capacitors, inductors, and transmission lines.

In the past decade, several different types (“flavours”) of SQubits have been engineered,
quantum-mechanical Rabi oscillations have been observed [7], and two qubits have been cou-
pled and entangled [8]. The current state-of-the-art allows for superposition states that live
several microseconds, long enough for hundreds of operations on a single qubit. With im-
provements in the design of SC qubits, as well as in the materials and methods used for
fabricating circuits, the lifetime of the stored quantum information may be further increased
and the precision of qubit control enhanced.

Another advantage of SC qubits is that they can be coupled to the electromagnetic field
of a microwave resonator in circuit quantum electrodynamics (QED). Circuit QED is a novel
subject of interest in the field of solid-state quantum computation. It appears from the asso-
ciation of quantum-optical cavity QED with macroscopic quantum mechanics. This approach

1



2 Introduction

offers the prospect of reaching an upper limit for the strong coupling of a quantum-mechanical
two-level system to a single mode of the electromagnetic field.

The main focus of this work is the readout of SC qubits and the search of high fidelity.
An open issue in SC qubits is the efficient determination of the qubit state. For quantum
computation and quantum error correction, an accurate state measurement with a fidelity
above 99% is essential [9]. Though several promising candidates for such a high-fidelity
readout have been proposed [10; 11; 12; 13; 14], until now it was not possible to achieve the
required fidelity.

In this work, a novel measurement technique for SC qubits that we term the Mesoscopic
Shelving Readout is theoretically modelled. This technique uses ideas from the electron
shelving readout of trapped ions and combines them with features from circuit QED. This
may result in an accurate measurement of the quantum-mechanical state of an SC qubit.

Outline

The thesis is organized as follows. In the first chapter, we introduce DiVincenzo’s criteria for a
scalable quantum computer. We give a general overview of the dynamics of a qubit including
decoherence mechanisms. Then, we show how the coupling of a qubit to a single mode of
the electromagnetic field can be described with the Jaynes–Cummings model; we discuss the
resonant and strongly detuned case with this model. Lastly, we present the implementation
of qubits in different experimental architectures, where we especially discuss trapped ions and
cavity QED.

In the second chapter, we focus on SC qubits. We show how to implement qubits using
the charge, flux, or phase degree of freedom of a Josephson junction (JJ). We discuss the
theoretical model for each of these qubits including certain attributes and features. Then, we
introduce the concept of circuit QED with SC qubits. Here, we obtain the coupling strength
of a charge, flux, or phase qubit coupled to a transmission line resonator.

In the third chapter, we present the state-of-the-art in the readout of SC qubits. We
consider four readout techniques, the charge qubit readout with a single electron transistor
(SET) [10], the dispersive readout using circuit QED [11], the Josephson bifurcation ampli-
fier readout [12; 13], and the tunnelling-readout of phase qubits [14]. We examine each of
these measurement schemes on its readout properties such as the readout fidelity and the
measurement time.

In the fourth chapter, we firstly discuss the electron shelving readout of trapped ions.
We then introduce our concept for the readout for SC qubits which is inspired from the
electron shelving: the Mesoscopic Shelving Readout (MSR). We present the full analytical
and numerical model of this readout technique including the dissipative dynamics. Lastly,
we discuss the signal-to-noise ratio, the fidelity, and the quantum non-demolition character
of the MSR. We show that it is possible to achieve a readout fidelity that approaches unity
(> 99%) in a fast qubit readout. To our knowledge, our proposal is the first that aims at
such a high fidelity for the measurement of the state of an SC qubit.



Chapter 1

Qubits and their Physical

Implementation

In theory, quantum computers have an amazing computing power that cannot be beaten by
any classical computer [9]. However, the question appears how to implement quantum compu-
tation in realistic architectures. For this implementation, criteria are needed to identify useful
ideas. For this purpose, in this chapter we firstly examine the “hows” of quantum computa-
tion, that is, we discuss the DiVincenzo requirements [15] for a scalable quantum computer.
Secondly, we study qubit dynamics which includes the dynamics of a pure two-level system,
the decoherence of a qubit, and the Jaynes–Cummings (JC) coupling to an electromagnetic
field. At last, we have a look at the realization of qubits in different experimentally achievable
architectures as in atomic, optical, electronic, and spin systems.

1.1 DiVincenzo’s Requirements for a Scalable Quantum Com-

puter

For the implementation of quantum computation, five criteria have to be fulfilled: the DiVin-
cenzo requirements [15]. These criteria deal with the conditions that are needed for qubits and

Initialization Preparation Readout

During 
Decoherence 

Time

Qubit

Figure 1.1: Diagram of the DiVincenzo requirements. For quantum computation, a scalable
qubit that can be coupled to other qubits, initialized, controlled, and read out is needed.

3



4 1 Qubits and their Physical Implementation

the experimental setup, as the measurement and the control of the qubit. The DiVincenzo
requirements are (see also Fig. 1.1)

1. Well-defined register of n scalable qubits with 2n states accessible—Scalability,

2. Preparation of the qubit in a pure state, such as |000 . . .〉, possible—Initialization,

3. Coherence times much longer than the gate operation time—Stability,

4. Universal set of gates for state manipulation—Control,

5. Single quantum measurement of the qubit—Measurement.

In the following sections, we take a closer look on these five criteria.

1.1.1 Scalability

To implement quantum computation, a physical system containing a collection of qubits is
needed. A qubit is a quantum-mechanical two-level system like the two spin states of a spin-
1/2-particle. A common way to describe the state of a qubit is to write it in terms of the
eigenvectors |0〉 and |1〉 of the Pauli matrix σz 1,

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
. (1.1)

Many quantum phenomena are accepted for the implementation of qubits such as the elec-
tron spin (up/down), the polarization of a photon (horizontal/vertical), the spin of the atomic
nucleus, the current in a superconducting (SC) loop (clockwise/anticlockwise), or the pres-
ence/absence of a particle, see also Sec. 1.4.

The general state of a single qubit (=one-qubit state) is a superposition of the two eigen-
states |0〉 and |1〉,

|Ψ(t)〉1 = α(t) |1〉 + β(t) |0〉 , (1.2)

where α(t) and β(t) are time-dependent complex numbers obeying the normalization con-
dition, |α(t)|2 + |β(t)|2 = 1; the probability to find the qubit in state |1〉 (|0〉) then is
p1(t) = |α(t)|2 (p0(t) = |β(t)2|). The state of a single qubit fills up a two-dimensional
complex vector space.

Writing α and β in terms of their argument and phases,

α = eiγeiϕ sin
η

2
, β = eiγ cos

η

2
, (1.3)

the state of the qubit can be described as a rotation of the state |0〉,

|Ψ〉 =

(
1 0
0 eiϕ

)(
cos η

2 − sin η
2

sin η
2 cos η

2

)(
1
0

)
= cos

η

2
|0〉 + eiϕ sin

η

2
|1〉 , (1.4)

where the factor eiγ in Eq. (1.3) was ignored due to no observable physical effects [9]. The
real values η and ϕ provide the phase information of the qubit state and define a point on
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y

x

z

Figure 1.2: Bloch sphere representation of a qubit. The vector |Ψ〉 represents the state of
the qubit in this three-dimensional sphere that represents the two-dimensional complex vector
space. The state of the qubit is defined by the angles η and ϕ.

a three-dimensional unit sphere, the so-called Bloch sphere, see Fig. 1.2. The Bloch sphere
provides a useful means of visualizing the state of a single qubit.

For quantum computation, coupling of at least two qubits is required. The state of
an n-qubit register can be written as a time-dependent superposition of 2n many-particle
configurations,

|Ψ(t)〉n = α1(t) |0 . . . 00〉 + α2(t) |0 . . . 01〉 + α3(t) |0 . . . 10〉 + . . . . + αn(t) |1 . . . 11〉 , (1.5)

where, again, the complex numbers αi(t) (i = 1, . . . ,n) obey the normalization condition,∑n
i=1 |αi(t)|2 = 1. In general, the state of n qubits is described by a 2n-dimensional complex

vector. Vice versa, if the state of n physical two-level systems has a dimension < 2n, it cannot
be used as an n-qubit state. The n-qubit state in general represents an entangled many-body
state and thus cannot be written as a product of one-qubit states.

1.1.2 Initialization

It is generally necessary to initialize registers to a known value before performing computation.
In addition, a continuous, fresh supply of qubits in a low-entropy state is required for quantum
error correction (for more information on quantum error correction see e.g. [9]).

There are two major ways to initialize the state of the qubit: the system can be cooled
down naturally to its ground state or it can be rotated into the desired state by a measurement
or a gate operation.

1.1.3 Stability

The dynamics of a qubit in contact with its environment is characterized by coherence times,
see also Sec. 1.2. For quantum computation, the “relevant” coherence times should be long

1The Pauli spin matrices are: σx =

(
0 1
1 0

)
= |0 〉〈 1| + |1 〉〈 0|, σy =

(
0 −i
i 0

)
= −i(|0 〉〈 1| − |1 〉〈 0|),

and σz =

(
1 0
0 −1

)
= |0 〉〈 0| − |1 〉〈 1|, as can be found in any standard textbook of quantum mechanics; see

e.g. [16].
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enough for carrying out quantum gates. A quantum particle can have many coherence times
corresponding to different degrees of freedom. Many of these coherence times can be irrelevant
for the use of the particle as a qubit. The choice of the qubits basis states |0〉 and |1〉 determines
the relevant coherence times.

The magnitude of the coherence time scale that is acceptable for fault-tolerant quantum
computation (to maintain coherence “forever”) is 104 − 105 times the “clock time”2 of the
quantum computer. In this case error correction can be successful [15].

1.1.4 Control

In quantum computation one has to allow the n-qubit state to evolve in a coherent way
through unitary transformations acting on the qubits. These quantum gates are described by
Hamiltonians Hg

3 which generate the transformations as Ug = e−iHgt/~. The only constraint

for Hg is that the generated transformation has to be unitary, U †
gUg = 1; any unitary matrix

specifies a valid quantum gate [9].
Single qubit gates are generated by two-dimensional matrices that rotate the qubit state in

the Bloch sphere. For multi-qubit gates a universal set of gates is required. A set of universal
quantum gates is any set of gates to which any operation possible on a quantum computer
can be reduced, that is, any other unitary operation can be expressed as a finite sequence
of gates from the set. Equivalently, a set of universal quantum gates is a set of generators
for the group of unitary matrices. Any unitary transformation acting on the state space of
n qubits can be composed from single-spin operations and the controlled-NOT gate that is
used to create entangled states. For more information on quantum gates see [9].

1.1.5 Measurement

One important requirement for quantum computation is the efficient readout of the qubit
states. Successful fault-tolerant operations require certain minimum thresholds for the fidelity
of state measurement. Moreover, qubit readout is important, not only for the determination of
the final output state, but also for error correction which is essential for quantum computation.
For efficient error correction in realistic implementations, errors below 10−3 = 0.1% and thus
a fidelity above 99.9% are required [9; 17].

The ultimate objective of a qubit readout device is to distinguish the eigenstates of the
qubit in a single-shot quantum non-demolition (QND) measurement [4]. A QND measure-
ment does not destroy the state of the qubit; after the measurement, the qubit remains in the
measured eigenstate. This means, the measurement Hamiltonian, i.e. the interaction Hamil-
tonian of the qubit and the measurement device, commutates with the qubit Hamiltonian.
The QND character of the measurement is not strictly required; nevertheless, it is a useful
tool for preparation of the qubit state (see Sec. 1.1.2).

The density matrix corresponding to the single-qubit state (1.2) is given by

ρ = |α|2 |1〉 〈1| + |β|2 |0〉 〈0| + αβ∗ |1〉 〈0| + α∗β |0〉 〈1| . (1.6)

An ideal measurement of the qubit state should give the output “1” with probability pideal =
|α|2 and “0” with probability 1− pideal = |β|2 independent of αβ∗ (α∗β) or other parameters
of the system.

2The “clock time” is the time needed for the execution of an individual quantum gate.
3For any operator Ô we only write Ô if the difference between O and Ô is not evident.
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At this point it has to be noted that one cannot read out the state of a qubit in a single
measurement since this is prohibited by quantum mechanics. One can only determine the
eigenstate of the qubit. This means, the measurement projects the quantum-mechanical
qubit state onto a classical state. It takes repeated measurements on a large number of
replicas of the quantum state to determine the exact qubit state. This is known as quantum
tomography [4; 18]. This means, the ideal measurement is conform to a spin projection of the
qubit state on its eigenstates; the phase of the qubit is lost.

The difficulty of the readout problem is to extract information from the qubit without
introducing noise at the same time. Furthermore, readout of a specific qubit must not destroy
the state of other qubits in the system. The measurement connects the qubit with the
open system of the detector, which collapses the combined system of qubit and measurement
device to one of its common eigenstates. The measurement is accompanied by an inevitable
perturbation of the qubit; this perturbation is given by the commutator of the interaction
Hamiltonian (that describes the interaction of the qubit and the measurement device) and the
qubit Hamiltonian. In the ideal QND case where this commutator is zero and the perturbation
is minimal, the magnitude of the perturbation is given by the Heisenberg uncertainty relation.
We will return to qubit measurement in chapter 3.

1.2 Qubit Dynamics

In quantum computation, one changes the qubit states, that was initialized in a first step, by
applying dc- or rf-pulses to the qubit via control gates. To study the dynamics of the qubit
under certain control operations, we firstly describe the dynamics of the general two-level
state in this section, including the time evolution of the qubit state and the transformation of
the spin in the energy eigenbasis. As a second step, we have a look on decoherence dynamics.

1.2.1 Two-level State

A qubit is described by two parameters: its level splitting εq and the coupling ∆q between
the levels4. Hence, the single-qubit Hamiltonian expressed in the {|0〉 , |1〉} eigenbasis of the
qubit (cp. Eq. (1.1)) has the general form

Hq =
εq
2
σ̄z +

∆q

2
σ̄x, (1.7)

with σ̄z = |0 〉〈 0|−|1 〉〈 1| and σ̄x = |0 〉〈 1|+ |1 〉〈 0| being the Pauli matrices in the spin basis5.

In this basis, we can write the state as |Ψ〉 = α

(
0
1

)
+β

(
1
0

)
(in this thesis, α and β in general

denote the complex constants which determine the probability to find the qubit in a specific
eigenstate, independent of the basis). The matrix representation of the Hamiltonian in the
spin basis thus is

Hq =
1

2

(
εq ∆q

∆q −εq

)
(1.8)

4It has to be noted that for most of the qubit implementations, only the level splitting εq is required in the
qubit Hamiltonian; however, we consider the most general form with a coupling ∆q that appears in SC qubits.

5In this thesis we denote the Pauli matrices in the spin basis {|0〉 , |1〉} of the qubit with σ̄i and that in the
energy eigenbasis {|g〉 , |e〉} with σi (i = x,y,z).
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Figure 1.3: Energy spectrum of a two-level system (=qubit) with transition frequency εq in
the case of (a) no coupling (∆q = 0) between the qubit states |0〉 and |1〉 and (b) a coupling
∆q 6= 0 between the two states. For εq = 0, the degeneracy of the levels is lifted by the coupling
∆q; this leads to an anti-crossing between the two qubit states. The qubit then is in its dressed
states |g〉 and |e〉 (see also text).

The eigenvalues of this matrix are

Ee,g = ±~

2
ωq = ±1

2

√
ε2q + ∆2

q , (1.9)

with corresponding eigenvectors

|e〉 = cosϑq |0〉 + sinϑq |1〉 (1.10a)

|g〉 =− sinϑq |0〉 + cosϑq |1〉 . (1.10b)

which are always dressed states except for ∆q = 0, see also Fig. 1.3. ϑq is given by tanϑq =
−1±

√
1+(εq/∆1)2

εq/∆q
. Using tan(2x) = 2 tan x

1−tan2 x
we obtain

tan 2ϑq =
∆q

εq
. (1.11)

which is defined for all values of ∆q and εq except for εq = 0, the so-called degeneracy point,
where ϑ = π/4.

The Hamiltonian of the qubit in its energy eigenbasis reads

Hq = ~
ωq

2
σz, (1.12)

with σz = |e 〉〈 e| − |g 〉〈 g|; the qubit state in this basis is

|Ψ〉 = α |g〉 + β |e〉 . (1.13)

Here, α and β are, again, complex numbers. If εq and ∆q, and therewith the Hamiltonian, are
time-independent, the evolved state6 of the qubit after a time t is (cp. App. A.2, Eqs. (A.20)
and (A.21))

|Ψ(t)〉 = α |e〉 e i
2
ωqt + β |g〉 e− i

2
ωqt. (1.14)

Thus, we can easily determine the time evolution of the qubit state in the energy eigenbasis.

6A detailed discussion of the time evolution in the different quantum-mechanical pictures, including unitary
transformations, is given in App. A.1.
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The transformation of the spin basis in the energy eigenbasis is given by

σ̄z = cos 2ϑqσ
z − sin 2ϑqσ

x, (1.15a)

σ̄x = sin 2ϑqσ
z + cos 2ϑqσ

x. (1.15b)

sin 2ϑq and cos 2ϑq have to be chosen such that the condition

H
0,1
q = H

g,e
q , ⇔ εq

2
σ̄z +

∆q

2
σ̄z =

~

2
ωqσ

z (1.16)

is fulfilled. This is given for

cos 2ϑq =
εq√

ε2q + ∆2
q

, and sin 2ϑq =
∆q√
ε2q + ∆2

q

. (1.17)

At the degeneracy point, εq = 0 and therefore sinϑq = cosϑq = 1√
2

(for ∆q > 0); the qubit

then is in its maximally dressed states, the σ̄x eigenstates.

1.2.2 Qubit Decoherence

In this section, we give a short definition of quantum decoherence, that is, we examine the
mechanism by which quantum systems interact with their environments; a detailed description
of decoherence can be found in e.g. [19]. Decoherence dynamics can influence the stability of
the qubit and thus the computational process strongly. Therefore, it is useful to know the
decoherence dynamics of the system as good as possible. Without decoherence, the system
is described by the density operator ρ = |Ψ(t) 〉〈Ψ(t)|, that follows the master equation7 (see
also App. A.3)

ρ̇(t) = − i

~
[H, ρ] . (1.18)

Here, H and Ψ are the Hamiltonian and the qubit state in either the Schrödinger or the
interaction picture (see App. A.1). Note that for a time-independent Hamiltonian, Hint = 0
and hence ρ̇ = 0.

We now take into account the effect of the environment. In the most simple picture, the
decoherence of a two-level system is described by two processes that are associated with two
characteristic times scales with their corresponding decoherence rates:

(i) The longitudinal or energy relaxation rate γ = T−1
1 (T1 being the decay time of the

system) which describes |e〉 ↔ |g〉 transitions that are induced by high-frequency fluc-
tuations of the environment. Mostly, the energy relaxation results in the spontaneous
emission of light; however, in solid-state systems other excitations such as phonons may
also be important.

(ii) The transversal or pure dephasing8 rate γφ = T−1
2 (T2 being the pure dephasing time)

which refers to the loss of phase coherence by low-frequency noise.

7The master equation corresponds to the Heisenberg equation (Eq. (A.7)) for the density operator. The
density operator is also called density matrix.

8Since the relaxation of the system also has a contribution to the dephasing rate, the dephasing process
itself is usually referred to as “pure”.
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The Hamiltonian of the qubit in the energy eigenbasis {|g〉 , |e〉} and in the Schrödinger
picture is H = ~

2ωqσ
z. The spontaneous emission of the qubit is described by the stochastic

master equation in the Schrödinger picture9 (see App. A.3)

ρ̇(t) = − i

~
[H, ρ] − γ

2
L[σ−]ρ(t), (1.19)

with the Liouvillian superoperator L[σ−]ρ(t) = σ+σ−ρ(t) − 2σ−ρ(t)σ+ + ρ(t)σ+σ− and the
decay rate γ. Therewith, the probability pe = 〈e| ρ |e〉 ≡ 〈σ+σ−〉 to find the qubit in the
excited state (corresponding to |β|2 in the previous section) satisfies the equation

ṗe(t) = −γpe(t) ⇒ pe(t) = pe(0)e−γt. (1.20)

This means, the excited state decays exponentially in time, which describes spontaneous
emission. The dipole polarization of the qubit is 〈e| ρ |g〉 ≡ 〈σ−〉 and obeys

d〈σ−〉
dt

= −
(
iωq +

γ

2

)
〈σ−〉, ⇒ 〈σ−(t)〉 = 〈σ−(0)〉e−(γ/2+iωq)t. (1.21)

The dipole oscillates at the transition frequency and decays, as it radiates.

Dephasing of the system can be described by coupling the σx component of the qubit
to a reservoir, see App. A.3. The corresponding master equation in the interaction picture
including spontaneous emission is [20]

ρ̇ = −γ
2
L[σ−]ρ− γφ

4
[σz,[σz,ρ]], (1.22)

with the dephasing rate γφ. The system is now described by the Bloch equations

d〈σx〉
dt

= −
(γ

2
+ γφ

)
〈σx〉, ⇒ 〈σx(t)〉 = 〈σx(0)〉e(−

γ
2
+γφ)t, (1.23a)

d〈σy〉
dt

= −
(γ

2
+ γφ

)
〈σy〉, ⇒ 〈σy(t)〉 = 〈σy(0)〉e(−

γ
2
+γφ)t, (1.23b)

d〈σz〉
dt

= − γ (〈σz〉 + 1) ⇒ 〈σz(t)〉 = (〈σz(0)〉 + 1) e−γt − 1. (1.23c)

The dephasing yields a decay in the x- and y-direction and thus of the qubit polarization;
however, it does not affect the decay in z-direction.

1.3 Coupling to an External Field

A particularly interesting case appears when the qubit is coupled to a single mode of the
electromagnetic field of a resonator. With this coupling, one can induce Rabi oscillations
between the qubit states in the nearly-resonant regime (Sec. 1.3.1). In addition, one can
very easily perform quantum gates with this coupling. In the strongly detuned regime, the
coupling between the resonator and the qubit yields a qubit-state dependent shift of the
resonator frequency (Sec. 1.3.2).

9Since the dynamics is more intuitive in the Schrödinger picture, we firstly use this picture.
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The coupling between the resonator and the qubit is described by the Jaynes–Cummings
model (JC) [21]. In this model, the interaction between the two systems is a dipole interaction.
In the rotating wave approximation (RWA), the JC Hamiltonian reads

H = ~ωra
†a+ ~

ωq

2
σz + ~g

(
σ+a+ σ−a†

)
, (1.24)

with ωr being the resonator frequency, ωq the transition frequency of the qubit, g the coupling
between the qubit and the resonator, a† (a) the bosonic creation (annihilation) operator of
the resonator field, σ+ = |e 〉〈 g| (σ− = |g 〉〈 e|) the qubit raising (lowering) operator, and σz =
|e 〉〈 e| − |g 〉〈 g|; the detuning between the qubit and the resonator is ∆ = ωq −ωr. A detailed
derivation of the JC Hamiltonian, including explanations on the RWA, is given in App A.4.
We speak of strong coupling if the coupling g between the qubit and the electromagnetic field
is much larger than the decay rates, |g| ≫ {γ,κ}, with κ = ωr/Q being the cavity decay rate
(Q is the quality factor, also called Q-factor) and γ the decay rate of the two-level system. In
the strong coupling limit, the splitting of the resonator states induced by the coupling to the
qubit exceeds the linewidth given by the decay processes and thus the states can be resolved
in a spectroscopy experiment [22].

1.3.1 Rabi Oscillations

In the nearly-resonant regime (∆ ≈ 0) one can induce Rabi oscillations between the qubit and
the resonator, see also [4]. For the solution of the JC interaction in the nearly-resonant case
the Hamiltonian has to be diagonalized only in the subspace {|e,n〉 , |g,n+ 1〉} of the Hilbert
space [23],

H
(n) =

(
〈e;n|HJC |e;n〉 〈e;n|HJC |g;n+ 1〉

〈g;n+ 1|HJC |e;n〉 〈g;n+ 1|HJC |g;n+ 1〉

)
, (1.25)

with |n〉 being the Fock state of the resonator (n is the number of photons). The Schrödinger
equation in this subspace then reads

~

(
ωrn+

ωq

2 − E/~ g
√
n+ 1

g
√
n+ 1 (ωr + 1) − ωq

2 − E/~

)(
|e,n〉

|g,n+ 1〉

)
= 0. (1.26)

The eigenvalues are given by

E± = ~ωr

(
n+

1

2

)
± ~

2

√
∆2 + 4g2(n+ 1) (1.27)

with corresponding eigenvectors

|+,n〉 = cosϑn |e,n〉 + sinϑn |g,n+ 1〉 , (1.28a)

|−,n〉 =− sinϑn |e,n〉 + cosϑn |g,n+ 1〉 , (1.28b)

and the ground state |g,0〉. ϑn is given by (cp. Sec. 1.2.1)

tan 2ϑn =
2g

√
n+ 1

∆
. (1.29)

Fig. 1.4(a) shows the energy spectrum of these dressed states for ∆ = 0. The degeneracy
of the states |g,n+ 1〉 and |e,n〉 is lifted by 2g

√
n+ 1 due to the coupling to the resonator.
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a) Δ=0 b) Δ>>g

Figure 1.4: (a) Energy spectrum of the uncoupled (black) and the dressed (blue) qubit–
resonator states in the case of zero detuning (∆ = 0). The degeneracy of the pair states with
n+ 1 quanta is lifted by 2g

√
n+ 1 due to the interaction between the qubit and the resonator.

(b) Energy spectrum in the dispersive regime (blue dashed lines). The second order coupling
between the qubit and the resonator yields a shift in the resonator frequency that depends on
the state of the qubit. See also [20; 22].

For a single excitation (n = 0), the dressed states of the qubit–resonator system are
maximally entangled,

|±〉 =
1√
2

(|g,0〉 ± |e,1〉) . (1.30)

In this case, the excitation is half qubit and half photon. If we assume the qubit to be initially
in its excited state, |Ψ0〉 = (|+〉 − |−〉) /

√
2, the evolved state in the case of zero detuning

after a time t is

|Ψint(t)〉 = cos gt |e,0〉 + sin gt |g,1〉 . (1.31)

The probability Px to find the qubit in state |x〉 (x = (g,1),(e,0)) after a time t therewith is

Pg = sin2 gt, Pe = cos2 gt. (1.32)

An initial state with an excited qubit (|e,0〉) therefore flops into a photon (|g,1〉) and back
again at the vacuum Rabi frequency g/2π. For the solution of the system with n photons see
e.g. [23].

Note that the derivation of the dynamics only works in the nearly-resonant regime since
the Hamiltonian in the interaction picture then is time-independent. In the intermediate or
dispersive regime, the Hamiltonian in the interaction picture is time-dependent. Therefore,
the time-evolution operator can no longer be obtained easily (cp. App. A.1).

1.3.2 AC Stark Shift

Now, we consider the non-resonant, dispersive regime, with |∆| ≈
√
n+ 1 g. In this regime,

no virtual excitations can be exchanged between the qubit and the resonator on the time
scale ∆t < h/∆E, but due to second order corrections, a shift in the transition frequencies of
the qubit and the resonator is observed, see Fig. 1.4(b). This is the so-called ac Stark shift.

To calculate the dynamics in the dispersive regime, we use the method of the effective
Hamiltonian, which is derived in App. A.5. We search for a transformation U = e−S that
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eliminates the interaction part of the Hamiltonian to first order. A convenient choice is [22; 24]

S =
g

∆

(
σ+a− σ−a†

)
. (1.33)

Performing the transformation (A.42) up to the order g2/∆, the effective Hamiltonian of the
dispersive qubit–resonator coupling thus reads

H
eff
qr ≈ ~

2

(
ωq +

g2

∆

)
σz + ~

(
ωr +

g2

∆
σz

)
a†a. (1.34)

One can see from this expression that the qubit transition frequency is ac Stark shifted
by (g2/∆)n; the ac Stark shift depends on the photon number. Vice versa, the resonator
frequency is shifted by δωr = ±g2/∆, whereas this shift depends on the state of the qubit.
The constant shift g2/∆ of the qubit transition frequency is the so-called Lamb shift.

The off-resonant coupling between the qubit and the cavity also yields a phase shift of the
cavity [25; 26; 27],

φ = arctan

(
2g2

κ|∆|

)
σz, (1.35)

with κ being the decay rate of the resonator (1/κ is the photon life time). The phase shift
also depends on the qubit state; it has different signs for the two states |g〉 and |e〉.

1.4 Types of Qubits

In this last section of the chapter we present the implementations of qubits in different archi-
tectures. Since we use several methods from trapped ions in this thesis, the main focus lies
on this qubit realization. SC qubits are introduced in detail in the next chapter. It has to be
noted that most of the introduced systems are many-level systems. Therefore, it has to be
possible to truncate the infinite-dimensional Hilbert space of such a system to two levels—the
qubit levels. This can be done if the system provides a certain anharmonicity in its levels.
A sufficiently large anharmonicity is needed to prevent qubit operations from exciting other
transitions in the system.

1.4.1 Trapped Ions and Cavity QED

The first implementation of quantum gates in a physical system was proposed by Ignacio
Cirac and Peter Zoller [28]. They suggested to use cold (alkaline earth) ions that are confined
in a linear Paul trap [29]—trapped ions. Qubits can be encoded either by using narrow-
optical (“forbidden”) transitions, radio-frequency transitions between Zeeman-splitted states
or the internal hyperfine states of the ion [30]. Several other atoms can be added to achieve
scalability. The other states of the qubit do not disturb the computation process; on the
contrary, they are needed for the implementation of quantum gates and qubit readout [28].
Initialization of the qubit is done with optical pumping. The decay times of the qubit states
in trapped ions, especially those for hyperfine qubits, are very long compared to the gate
operation times.

Each ion can be manipulated individually with a focused laser beam, i.e. single-qubit
operations are possible. The ion motion provides an additional degree of freedom which can
be used to carry and convey information; the ions tend to move as a single body [30]. Cirac
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and Zoller showed that linkage between the electronic states of the ion and the motion of
the ensemble is possible and therefore the controlled-NOT gate can be achieved. The final
readout of the ions is done with the very successful electron shelving technique (see Sec. 4.1).
With this readout technique, a spectacular high fidelity readout above 99.99% is possible [17].

In these systems, one is able to control the qubit with a single mode of the electromagnetic
field coupled to the qubit (which is theoretically described by the JC interaction, see Sec. 1.3);
this is called cavity quantum electrodynamics (cavity QED). Strong coupling of the laser to
the qubit can be achieved if the dipole momentum of the qubit is large. Therefore, Rydberg
atoms are especially suitable for cavity QED.

Quantum computation with trapped ions is a highly advanced field. The control of the
qubits is very good, the readout is the best possible, and the decoherence is small. Further-
more, a few years ago, the Innsbruck group was able to entangle eight qubits [31].

1.4.2 Other Architectures

There are several other proposals to implement quantum computation in different physical
systems. The most intuitive idea is to use the spin of an electron or a nucleus as a qubit [32].
Control and readout of these devices is done with electron spin or nuclear magnetic resonance
techniques. These qubits that are constructed from microscopic degrees of freedom are natu-
rally very well isolated from their environment, and hence decohere very slowly. Due to this
isolation from the environment, the main challenge of these implementations is enhancing
the inter-qubit coupling and the qubit control to the level required for fast gate operations
without introducing decoherence.

One can also use the polarization directions of a single photon as the two levels of a qubit.
This design is especially suitable for quantum cryptography and quantum communication as
the photons are moving with the speed of light [33].

Besides the atomic, spin, and optical devices there is also the field of electronic devices.
For example one can use the excitonic levels of a quantum dot as a qubit. In these systems,
strong coupling to an electromagnetic field was already achieved [34].

Finally, there is a variety of interesting proposals which use the quantized states of Joseph-
son junctions involving either the charge, flux or phase degree of freedom; we discuss these
SC qubits in detail in the following chapter.



Chapter 2

Superconducting Qubits and

Circuit Quantum Electrodynamics

An interesting subject in the field of solid state quantum computation is that of superconduct-
ing qubits (SC qubits) where one uses the quantized states of Josephson junctions (JJs) to
implement qubits in SC circuits. Due to their macroscopic size, SC qubits can be fabricated
with standard lithography methods [6]. Thus, in contrast to microscopic systems like ion
traps or nuclear spins, SC qubits are suitable for large–scale integration. It is also possible
to achieve strong coupling of an SC qubit to a single mode of the electromagnetic field in the
novel field of circuit QED with SC qubits. Moreover, the transition frequency of an SC qubit
and the coupling strength can be varied with external fields. Nevertheless, due to their larger
size, SC qubits are not well isolated from the environment resulting in short coherence times.
A comparison of SC qubits with other architectures is shown in Fig. 2.1.

All SC qubits use the dynamics of a single JJ or several JJs connected in a loop such
that they build a superconducting quantum interference device (SQUID). These junctions
act as nonlinear resonators thus providing a sufficiently large anharmonicity in the energy
dispersion. This gives the possibility to truncate the infinite-dimensional Hilbert space of the
whole many-level system to a two-dimensional Hilbert space and thus to use the system as a
qubit.

A JJ consists of two superconductors connected via a tunnelling barrier; it can be described
by its critical current Ic (that depends on the SC material and the size of the junction) and
the gauge invariant phase difference ϕ across the junction. The phase difference, ϕ, and the
charge of the Cooper pairs, Q, represented by the number of Cooper pairs N , are canonically
conjugated variables, yielding the commutator [N̂ ,ϕ] = −i. Thus, N̂ can be associated
with the momentum operator and ϕ with the position operator, which gives the operator
replacement N̂ = −i∂/∂ϕ. This choice results in the Hamiltonian of a nonlinear oscillator,

built by the Josephson capacitance CJ and the nonlinear Josephson inductance LJ =
LJ,0

cos ϕ ,
with LJ,0 = Φ0/2πIc. Here, Φ0 = h/2e is the SC flux quantum.

Therefore, JJs are characterized by two characteristic energies—the Cooper pair charging

energy1 Ec = (2e)2

2CJ
, which is the energy required for storing a Cooper pair with charge 2e on

the junction capacitance, and the Josephson energy EJ = Φ0

2π Ic, that is required for storing
the flux quantity Φ0 in the Josephson inductance and is a measure of the coupling strength

1Note that in several works the charging energy Ec denotes the single electron charging energy; in this case,
Ec would change to 4Ec in the entire calculations.

15
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across the junction. EJ represents a potential barrier that confines the particle representing
the phase of the JJ with the corresponding potential U = −EJ cosϕ; Ec is associated with
the quantum-mechanical kinetic energy T = EcN̂

2, yielding energy quantization. Rigorously
speaking, particle confinement is impossible due to macroscopic quantum tunnelling through
the potential barrier; however, the probability of tunnelling is small and the tunnelling may
be neglected if the particle energy E is small compared to the Josephson energy, E ≪ EJ [4].
The transition frequency of the qubit strongly depends on Ec and EJ; it lies in the microwave
regime.

SC qubits can be divided into three species where each of them uses a different degree of
freedom for qubit implementation—charge, flux, or phase—and operates in a different regime
of EJ/Ec, see Fig. 2.2. The size of EJ/Ec can be varied by fabricating larger or smaller
junctions, leading to larger or smaller CJ and therewith, respectively, to smaller or larger
Ec

2. Each of these possibilities to implement a qubit in SC circuits has its advantages and
disadvantages which we discuss in detail in the following sections.

In this chapter we firstly illustrate the different types of SC qubits including their theo-
retical description and specific features3. Secondly, we present the implementation of quan-
tum optics on a chip—circuit QED. Since a detailed discussion of superconductivity and the
physics of JJs, including the derivation of the Hamiltonians, is given in App. B, we focus on
the physics of SC qubits and do not go into detail on several aspects of superconductivity.

2.1 Charge Qubits

In this section we discuss SC qubits where the relevant degree of freedom in the dynamics
is the charge on a SC island that is called Cooper pair box (CPB). These charge qubits are
operated with an external gate voltage Vg; one- and two-qubit gates can be performed with
voltages and magnetic fields. Charge qubits can be coupled via capacitors, by shunting them
in parallel with an additional inductance [3], or by connecting them via a JJ [39]. The latter
proposal gives the possibility to turn the coupling between the qubits on and off.

The original proposal for the charge qubit—the CPB qubit—works in the charge regime,
where EJ/Ec ≪ 1 (Sec. 2.1.1). In this limit, the charge is well defined and the phase
fluctuates strongly. A small Josephson coupling implies a good isolation of the island of the
CPB, with a specific number of Cooper pairs trapped on the island [4]. The qubit then is
built by a superposition of the two lowest charging states. This qubit is highly sensitive to
fluctuations of Vg leading to short coherence times T1 and T2. A new design, the transmon
(Sec. 2.1.2), is operated at EJ/Ec ≫ 1, giving the possibility to improve the coherence times.
Even though both designs use a CPB, we only call the original proposal CPB qubit due to
historical reasons.

2.1.1 Cooper Pair Box in the Charge Regime

The simplest architecture that is used to implement a qubit in SC circuits is the CPB qubit,
which is the CPB operated in the charge regime. The CPB was first described by Büttiker [40]
and experimentally realized by the Saclay group [41; 42]. The first realization of a charge
qubit, including qubit dynamics in the time domain, was done by Nakamura et al. (NEC

2Ec can also be made small by shunting the device in parallel with a large capacitance.
3We do not go into detail on coupling of SC qubits; for more information on SC qubit coupling see e.g. [3; 4].
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Figure 2.3: (a) Circuit diagram of the CPB qubit. The CPB is coupled to a reservoir via
a dc SQUID (Josephon energy EJ, capacitance CJ) that consists of two identical JJs that
are shunted in parallel; an external flux Φc threads the dc SQUID. Additionally, the CPB is
operated with a gate voltage Vg. (b) Energy landscape of the CPB (blue) for EJ/Ec ≪ 1 as
a function of Ng. The Josephson coupling yields an anti-crossing of the charging parabolas
(dashed lines). At Ng = 1

2
(degeneracy point) the degeneracy of the charge states is lifted by

EJ due to the Josephson coupling. (c) Electrostatic energy of the CPB at Ng = 1
2
; the two

degenerated ground states are coupled via the Josephson coupling EJ (see also text).

group) [7; 43; 44; 45] by manipulating the CPB with external fields resulting in Rabi oscilla-
tions.

A circuit diagram of the CPB is shown in Fig. 2.3(a). A mesoscopic SC island—the CPB—
is connected to a large SC reservoir through a dc SQUID that is built by two identical JJs
shunted in parallel; additionally, the dc SQUID is threaded by an external flux Φc. The use
of two junctions gives the possibility to control the Josephson energy of the JJ with Φc [46].
If we assume the loop inductance of the dc SQUID to be negligible4, it acts as a single JJ

with tunable, flux-dependent Josephson energy (see App. B.4.1). EJ = 2ESJ
J cos

(
πΦc

Φ0

)
and

Josephson capacitance CJ = 2CSJ
J , with ESJ

J and CSJ
J being the properties of a single junction.

The CPB is operated with a gate voltage Vg, coupled to the CPB via the gate capacitance
Cg. This allows to control the charging energy of the island.

The Hamiltonian of the voltage-biased CPB is given by

HCPB = Ec

(
N̂ −Ng

)2
− EJ cosϕ, (2.1)

where ϕ = (ϕ1−ϕ2)/2 denotes the gauge-invariant phase difference over the SQUID loop (ϕ1,2

being the phases of the single JJs), N̂ the Cooper pair number operator, EJ the Josephson
energy, Ec = (2e)2/CΣ the Cooper pair charging energy (CΣ = CJ + Cg being the total box

capacitance), and Ng =
CgVg

2e the dimensionless gate charge. A detailed derivation of the
Hamiltonian (2.1) is given in App. B.3.3 and B.4.1.

4This assumption is fulfilled for charge qubits since the loop size is very small. For L = 0, we can also
neglect the induced flux and thus the magnetic energy of the loop. This is not fulfilled for the rf SQUID qubit
that is described in Sec. 2.2.1.
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We now assume that the CPB is in the charge regime, with EJ/Ec ≪ 1 (EJ/Ec ∼ 0.1−1).
Hence, the only relevant degree of freedom is the number of Cooper pairs N on the island; in
this case, N is a good quantum number. The charge regime is achieved when the SC energy
gap is larger than both the charging energy EJ and the temperature5. Under these conditions
only Cooper pairs tunnel and the system is described by the Hamiltonian:

H =
∑

N

(
Ec (N −Ng)

2 |N 〉〈N | − EJ

2
(|N + 1 〉〈N | + H.c.)

)
. (2.2)

The derivation of this Hamiltonian starting from Eq. (2.1) is given in App. C.1. Fig. 2.3(b)
shows the energy landscape of the CPB qubit for EJ/Ec ≪ 1; the Josephson coupling leads
to an anti-crossing of the charging parabolas (corresponding to the charging part of the
Hamiltonian, Ec(N − Ng)

2). At Ng = 1/2 mod 1, where the two lowest charging states are
degenerate, the splitting between the levels is only given by the Josephson energy EJ. Due to
the large anharmonicity of the CPB states in the charge regime, the two lowest states thus
can be used as a qubit.

To show that we can build a qubit between the two lowest states |0〉 and |1〉6 we firstly
assume that we work near the degeneracy point, where Ng = 1/2. Therefore, we only have to
take into account terms with N = 0 and N = 1 in the charging energy (since other terms have
much higher energy) and only terms with N = 0 in the Josephson energy. To demonstrate
the latter one, we utilize the Hamiltonian (2.2) in the interaction picture that is related to the

Schrödinger picture via the unitary transformation U = exp
[
− i

~

∑
N Ec (N −Ng)

2 |N 〉〈N | t
]
7:

Hint = −
∑

N

EJ

2

(
e

i
~

Ec[2(Ng−N)−1]t |N 〉〈N + 1| + e−
i
~

Ec[2(Ng−N)−1]t |N + 1 〉〈N |
)
. (2.3)

All the terms in Eq. (2.3) except of |0 〉〈 1| and |1 〉〈 0| are fast rotating terms when we work
near the degeneracy point, Ng = 1/2, and in the charge regime, EJ/Ec ≪ 1, and therefore
can be neglected in an RWA (see App. A.4.2 for more information on the RWA). Back in the
Schrödinger picture, and after an energy shift −N2

g − (1 − 2Ng)/2, the Hamiltonian of the
CPB qubit then reads

HCPB ≈ −Ec

2
(1 − 2Ng)σ̄

z − EJ

2
σ̄x, (2.4)

with σ̄z = |0 〉〈 0| − |1 〉〈 1| and σ̄x = |0 〉〈 1| + |1 〉〈 0|. This means, the CPB can be mapped
to a pseudospin–1/2–particle with magnetic fields Ec(1 − 2Ng) and EJ in z- and x-direction,
respectively.

Diagonalization of the qubit Hamiltonian yields the eigenstates (cp. Sec. 1.2.1)

|e〉 = cosϑcq |0〉+ sinϑcq |1〉 (2.5a)

|g〉 =− sinϑcq |0〉+ cosϑcq |1〉 . (2.5b)

with corresponding eigenvalues

E± = ±~

2
ωcq = ±1

2

√
E2

J + [Ec(1 − 2Ng)]
2, (2.6)

5In this case, quasi-particle tunnelling is suppressed, see App. B.
6In general, we can build a charge qubit between the states |Nq〉 and |Nq + 1〉 in the environment of the

degeneracy point Ngq = Nq + 1
2
. We concentrate on Nq = 0 without loss of generality.

7See App. A.1.3 and App. A.2 for more information on the interaction picture and unitary transformations.
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and tan 2ϑcq = EJ/ [Ec(1 − 2Ng)]. At the degeneracy point, sinϑcq = − cosϑcq = −1/
√

2.
Working in this eigenbasis, the Hamiltonian of the CPB takes the form

HCQ =
~

2
ωcqσ

z, (2.7)

with σz = |e 〉〈 e|−|g 〉〈 g| being the σz-operator in the energy eigenbasis {|g〉 , |e〉} of the qubit.
At the degeneracy point, Ng = 1/2, the diagonal part of the qubit Hamiltonian vanishes and
the levels are separated only by the Josephson energy EJ. At this point, the qubit states can
no longer be distinguished into |0〉 and |1〉. For the dressed states at the degeneracy point,
|g/e〉 = (|1〉 ∓ |0〉) /

√
2, the average charge on the island is zero, while it changes to ∓2e far

from the degeneracy point, where the qubit eigenstates approach pure charge states [4].

2.1.2 Transmon Qubit

The transmon is a charge qubit that is operated in an intermediate regime where EJ/Ec ∼ 102

(transmon regime); it was first proposed and experimentally realized by the Yale group [25;
47]. This design leads to improved coherence times (T1 and T2) and therewith to a larger
stability of the system. A precursor of the transmon qubit is the quantronium that is used
by the Saclay group [36; 48; 49; 50]; it is also operated in an intermediate regime, but with
smaller Josephson energy (EJ/Ec ∼ 1)8.

The crucial features of the CPB qubit are its anharmonicity and the charge dispersion of
the energy levels. The anharmonicity is needed to prevent excitations of the other transitions
in the system; the larger the anharmonicity, the better the many-level system is suitable as
a qubit. The charge dispersion describes the qubit sensitivity to charge noise; the smaller
the charge dispersion, the less the qubit frequency changes in response to gate fluctuations.
In general, the sensitivity of the qubit to first-order charge fluctuations is directly related
to the differential charge dispersion ∂Ekl/∂Nkl

9, with Ekl = El − Ek being the transition
energy between the levels |k〉 and |l〉. In the CPB qubit, the sensitivity to charge noise is
reduced by biasing the system to the charge degeneracy point (Ng = 1/2) since the charge
dispersion has no slope there. However, the fluctuations even affect operations at this first-
order insensitive sweet spot since they can drive the CPB away from this optimal working
point. The magnitudes of charge dispersion and anharmonicity are both determined by the
ratio EJ/Ec. Increasing this ratio decreases the charge dispersion and therefore the sensitivity
of the system to first-order charge fluctuations; however, it also decreases the energy level
anharmonicity of the qubit [25].

The transmon now exploits the fact that the charge dispersion decreases exponentially
in EJ/Ec while the anharmonicity only decreases algebraically with a slow power law [48].
As shown in Fig. 2.4(a), the design of the transmon is similar to that of the CPB qubit
(Sec. 2.1.1). Again, an SC island is coupled to a gate voltage Vg via the gate capacitance Cg

and to a reservoir via a dc SQUID with Josephson energy EJ and Josephson capacitance CJ.
However, the dc SQUID is now shunted by a large capacitance CB that reduces the sensitivity
to fluctuations of the gate voltage by reducing Ec

10. One could also use a large junction to

8Even though we are calling the quantronium “precursor”, it has different features as the transmon in
several details. However, the theoretical steps yielding the quantronium and the transmon are very much
alike.

9The sensitivity to second-order noise is consequently described by the curvature ∂2Ekl/∂N2
kl.

10It has to be noted that the quantronium is also shunted with an additional capacitance to reduce phase
fluctuations.
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Figure 2.4: (a) Circuit diagram of the transmon qubit. Again, the CPB is coupled to an
SC reservoir via a dc SQUID (see also Fig. 2.3(a)) and operated with a gate voltage Vg. But
now, an additional capacitance CB is shunted in parallel to the dc SQUID to suppress charge
fluctuations. (b) Energy landscape of the CPB in the transmon regime where EJ/Ec ≫ 1.
In this case, the anharmonicity of the states decreases. Again, the two lowest states build the
qubit.

reduce the charging energy; however, a large junction would lead to quasi-particle processes
disturbing the qubit operations.

The Hamiltonian of the transmon is the same as for the CPB qubit (2.1), but now with
C̃Σ = Cg + CJ + CB,

HCPB = Ec(N̂ −Ng)
2 − EJ cosϕ. (2.8)

Again, Ec = (2e)2/2C̃Σ is the charging energy, N̂ = −i∂/∂ϕ the Cooper pair number operator,
EJ the flux-dependent Josephson energy, and ϕ the phase difference of the SQUID.

Fig. 2.4(b) shows the energy landscape of the transmon; due to the large capacitance
CB, the charging energy Ec is now reduced. Therewith, the parabolas corresponding to the
charging part of the Hamiltonian are broadened which decreases the anharmonicity; the levels
split due to the Josephson coupling (see also Sec. 2.1.1). In this system, the qubit states |e〉
and |g〉 cannot be related to charge states; this was the same for the CPB qubit but only
at the degeneracy point. With increasing EJ/Ec, the transmon eigenstates spread over an
increasing number of charge states.

According to [25], Ng can be eliminated by a gauge transformation Ψ(ϕ) = eiNgϕ f(ϕ)
since the strong Josephson coupling restricts ϕ to small values around zero which motivates the
neglect of periodic boundary conditions. Ψ(ϕ) is the wavefunction that obeys the stationary
Schrödinger equation HCPBΨ(ϕ) = EΨ(ϕ).

By expanding cosϕ until ϕ4 and neglecting constant terms, we obtain the Hamiltonian of
a nonlinear oscillator,

H ≈ −Ec
∂2

∂θ2
+

1

2
EJθ

2 − EJ

24
θ4 = ~ωp

(
d†d+

1

2

)
− Ec

12

(
d+ d†

)4
, (2.9)

with ωp =
√

2EcEJ/~ ≡ 1/
√
LJ,0CJ being the Josephson plasma frequency and

d† =

√
Ec

~ωp

(
~ωp

2Ec
ϕ− ∂

∂ϕ

)
, d =

√
Ec

~ωp

(
~ωp

2Ec
ϕ+

∂

∂ϕ

)
, (2.10)

denoting the regular bosonic creation and annihilation operators for the harmonic oscillator
approximating the transmon, respectively.
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Figure 2.5: Reduced anharmonicity Ar of the CPB as a function of EJ/Ec. The anhar-
monicity decreases fast for small EJ/Ec; for values above EJ/Ec ∼ 4, the decrease is no longer
exponentially.

Since we work in the transmon regime (Ec ≪ EJ), we can apply a first-order perturbation
theory on the oscillator Hamiltonian (2.9), which is done in App. C.2. We obtain the energy
levels (k = 〈d†d〉 being the occupation number),

Ek = ~ωpk −
Ec

48

(
6k2 + 6k + 3

)
, (2.11)

where we have neglected the zero-point energy of the oscillator. Due to the nonlinearity of

the JJ that leads to the
(
d+ d†

)4
-term in Eq. (2.9) (corresponding to ϕ4), an anharmonic

correction to the harmonic energy level dispersion of the oscillator occurs.
According to [25], we define the absolute and relative anharmonicity by

A ≡ E12 − E01, Ar ≡ A/E01. (2.12)

The level spacing between the levels |k〉 and |k + 1〉 is

Ek , k+1 = Ek+1 − Ek = ~ωp − Ec
k + 1

4
→ ~ωp − Ec

k

4
, (2.13)

where, in the last step, we have neglected the constant term −Ec. Therewith, the absolute
and relative anharmonicity of the transmon in the nonlinear oscillator approximation are

A = −Ec

4
, Ar = −

√
Ec

2EJ
. (2.14)

Thus, for a non-vanishing charging energy Ec, the required anharmonicity is available. Fig. 2.5
shows the reduced anharmonicity of the CPB as a function of EJ/Ec. For EJ/Ec & 4, the
anharmonicity decreases slowly with a power law. Though, the anharmonicity of the transmon
is still smaller than for the CPB qubit. With the relations (2.14), the optimal EJ/Ec range
can be estimated [25].

The transmon Hamiltonian can also be solved exactly in the phase basis using Math-
ieu functions [6; 48]. With this functions it can be shown [25] that the differential charge
dispersion is

∂E01

∂Ng
= πε1 sin(2πNg), (2.15)

where ε1 ∝ exp
[
−
√

2EJ/Ec

]
is a fast decreasing function for EJ/Ec ≫ 1.
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It is important to note that due to the reduced anharmonicity of the transmon, virtual
transitions through excited transmon states must be taken into account. Only after this
we can restrict the transmon Hilbert space to the ground state and first excited state. The
effective Hamiltonian of the transmon thus can only be obtained when the transmon is coupled
to an electromagnetic field, which we discuss in Sec. 2.4.1.

The overlap of the transmon eigenstates with pure charge states is larger than that of the
CPB qubit. For increasing EJ/Ec the transmon eigenstates spread over an increasing number
of charge states. However, the transmon states can still be related to charge states since the
charge fluctuations only grow slowly as EJ/Ec increases. To demonstrate this, we calculate
the charge fluctuations in the oscillator approximation, where the transmon number operator
is N̂ = −i(EJ/2Ec)

1/4(d− d†)/
√

2 ,

√
〈N̂2〉 − 〈N̂〉2 =

(
EJ

2Ec

)1/4(
k +

1

2

)
. (2.16)

The fluctuations grow with (EJ/2Ec)
1/4. As an example, for EJ/Ec = 100, the number of

Cooper pairs only fluctuates by approximately 1 or 2 in the ground and first excited state;
thus, the charge fluctuations are only in the order of unity [25].

In conclusion, the transmon is an improved design of the CPB. It provides the anhar-
monicity required for quantum computation and is less sensitive to charge fluctuations of the
gate charge. Thus, the transmon, in contrast to the CPB qubit, can also be operated away
from the charge degeneracy point, yielding an improved controllability. It is also possible
to obtain higher couplings in circuit QED (see Sec. 2.4) with the transmon. Therefore, the
transmon is the best choice for quantum computation with SC qubits that use the charge
degree of freedom.

2.2 Flux Qubits

In the previous section we have described the dynamics of SC qubits that use the charge
degree of freedom. For this purpose, we were working in the charge regime (EJ/Ec ≪ 1)
where the charge is well defined and the phase fluctuates strongly. In this and the next
section we review the quantum properties of SC qubits in the opposite regime, that is, the
phase regime (EJ/Ec ≫ 1) where the phase is well defined and the charge fluctuates. These
systems were first proposed by Caldeira and Leggett [51] as test objects to study various
quantum-mechanical effects, including macroscopic quantum tunnelling of the phase (or flux)
as well as resonance tunnelling [3].

SC flux qubits use the flux degree of freedom of JJs, where circulating currents build the
qubit states, for qubit operations. They are operated in the flux regime, where EJ/Ec ∼ 102.
Flux qubits exploit quantum tunnelling in a double-well potential to achieve an interaction
between the two qubit states that are built by clockwise and anticlockwise currents circulating
in a SC loop. They are controlled with external fluxes and can be coupled via a direct inductive
coupling or, as the charge qubit, with an LC circuit. We firstly discuss the original design for
the flux qubit in Sec. 2.2.1. It is a single JJ in an SC loop that builds an rf SQUID. Due to
high sensitivity of this design to fluctuations of the magnetic environment, nowadays a three–
junction qubit, the persistent current qubit (PCQ), is used as a flux qubit (see Sec. 2.2.2).
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Figure 2.6: (a) Circuit diagram of the rf SQUID qubit. An rf SQUID, that consists of one
JJ (Josephson energy EJ and capacitance CJ) in an SC loop with inductance L, is coupled to
the inductance LT of a tank circuit via a mutual inductance M . With this tank circuit, the
rf SQUID is biased with an ac current IT (t) that leads to a flux Φx threading the loop. The
induced flux in the loop is an integer multiple of the flux quantum Φ0; the corresponding current
circulates clockwise (left, |l〉) or anticlockwise (right, |r〉). (b) Potential energy landscape of
the rf SQUID qubit for the cases f 6= 1

2
(dotted for f > 1

2
, dashed for f < 1

2
) and f = 1

2
(blue).

The degeneracy of the flux states |l〉 and |r〉 is lifted by ∆rf due to the Josephson coupling (see
also text).

2.2.1 RF SQUID Qubit

The primarily implementation of a flux qubit is the flux-biased rf SQUID. With this system
it was possible to observe resonant tunnelling of macroscopic quantum levels [52]. The first
superposition of states was shown by Friedman et al. [53].

Fig. 2.6(a) shows the circuit diagram of the rf SQUID qubit. A single JJ is placed inside a
large SC loop with a large inductance L. The system is coupled to a tank circuit via a mutual
inductance M ; an ac current in this tank circuit results in a flux Φx threading the loop. The
biasing induces a flux in the loop that is an integer multiple of the flux quantum Φ0 = h/2e.
The corresponding current circulates clockwise (left, |l〉) or anticlockwise (right, |r〉). As for
the CPB qubit, instead of one JJ one could also use two junctions shunted in parallel which
gives the possibility to control the Josephson coupling with an additional flux.

In Sec. 2.1 we have neglected the geometrical inductance L of the dc SQUID loop. Though,

for SC circuits this inductance is important if Λ = LJ,0/L < 1, where LJ,0 =
Φ2

0

4π2EJ
is the

Josephson inductance. If Λ ≪ 1, the quantum variables can be related to the flux in the
loops and their time derivatives. The rf SQUID qubit now is fabricated such that the loop
inductance is large and the magnetic energy can no longer be neglected. Taking into account
this magnetic energy, the Hamiltonian of the flux-biased rf SQUID reads

HRF = EcN̂
2 +

EL

2
(ϕ− ϕx)2 − EJ cosϕ

︸ ︷︷ ︸
=U(ϕ)

. (2.17)

Here, ϕ and ϕx are fluxes in units of Φ0/2π (ϕ = 2π
Φ0

Φ, ϕx = 2π
Φ0

Φx), N̂ = −i∂/∂ϕ, again, is

the Cooper pair number operator, Ec = (2e)2

2CJ
is the charging energy of one Cooper pair, EJ the

Josephson energy, and EL =
Φ2

0

4π2L
the magnetic energy of the persistent current circulating in
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the loop. A detailed derivation of the rf SQUID Hamiltonian is given in App. B.4.2. Usually,
the external flux is given in terms of the magnetic frustration f = Φx

Φ0
= ϕx

2π .
The potential of the rf SQUID qubit Hamiltonian (2.17) for different values of ϕx is shown

in Fig. 2.6(b). At f = 1
2—the flux degeneracy point11—we obtain a double-well potential

with two degenerate phase states |l〉 and |r〉 corresponding to a clockwise and anticlockwise
circulating current, respectively. For EJ/EL & 1, the potential U(ϕ) has three minima at
ϕ = π and π±ϕ0; ϕ0 can be obtained by numerically solving ϕ0 −ϕx = −EJ/Ec sinϕ0. The
two phase states are coupled via macroscopic quantum tunnelling resulting in the maximally
entangled states

|e〉 =
1√
2

(|l〉 + |r〉) , |g〉 =
1√
2

(|l〉 − |r〉) , (2.18)

with an energy splitting ∆rf corresponding to the tunnelling amplitude. If we move away
with the external flux from the value f = 1/2, the double-well potential is tilted to the left
or the right, lowering the |l〉 and |r〉 state, respectively (cp. Fig. 2.6(b)) [54].

By increasing the ratio EJ/EL, one can increase the distance of the minima12 and the
height of the barrier between the wells. We choose the magnetic and the Josephson energy
in the same order of magnitude, Λ = LJ,0/L . 1, (yielding a large self–inductance) since
firstly the tunnelling is suppressed strongly if the tunnel barrier is too high and secondly the
required anharmonicity would not be achievable.

For the derivation of the qubit Hamiltonian we mainly follow [5]. The potential in
Eq. (2.17) can be approximated in the case that the tunnelling barrier is much smaller than
the Josephson energy. We firstly introduce the new, shifted variables

ϕ̃ = ϕ− π, and ϕ̃x = ϕx − π. (2.19)

The cosine-part of the potential then changes as − cosϕ→ cos ϕ̃. Expanding the cosine and
neglecting constant terms we get

U(ϕ) ≈ EL

(
−λ

2
ϕ̃2 − ϕ̃x ϕ̃+

1 − λ

24
ϕ̃4

)
, (2.20)

with λ = EJ/EL − 1 ≡ βL,rf − 1 ≪ 1 determining the height of the tunnel barrier. In this
approximation, the positions of the minima at ϕ̃x = 0 are ±ϕ̃0 = ±

√
6λ/(1 + λ). Therewith,

the barrier height is approximated by

∆Urf = U(0) − U(±ϕ̃0) ≈ −3

2
EL

λ2

1 + λ
= −3

2

(
EJ − 2EL +

E2
L

EJ

)
; (2.21)

it directly depends on EJ with corrections in EL.
To derive the qubit Hamiltonian we have to project the whole Hilbert space onto a sub-

space of the two qubit levels. Therefore, we firstly approximate the double-well potential
with two harmonic potentials Ul/r = U(∓ϕ0) + 1

2U
′′(ϕ0) (ϕ± ϕ0)

2 (see Fig. 2.7(a)) with cor-
responding Hamiltonians Hl and Hr and ground states |l〉 and |r〉, respectively. The level
spacing between the different energy levels in the two wells is equal since the potentials are
that of a harmonic oscillator. The ground states of the two harmonic oscillators have the
same energy; if one considers the two oscillators as one system, the two states are degenerate.

11As for the CPB, the degeneracy point f = 1/2 has to be seen as f = 1/2 mod 1.
12The maximal distance, which is obtained for EJ/EL ≫ 1, is ∆ϕ0 = 2ϕ0 = 2π.



26 2 Superconducting Qubits and Circuit Quantum Electrodynamics

U
l

U
r

0
 
φ~

U(φ)~
a) b)

0.40−0.4−0.8 0.8
 
φ~

U(φ)~

Figure 2.7: (a) Truncation of the flux qubit Hamiltonian at f = 1
2
; dashed lines indicate

potentials of the left and right wells. Taken from [5]. (b) Energy levels of the flux qubit
Hamiltonian. The two lower states build the qubit. As can be seen, the distance to the upper
levels to the two qubit levels is large enough to use the rf SQUID as a qubit. Taken from [55].

This degeneracy is lifted due to state-dependent macroscopic quantum tunnelling between
the two wells.

We now assume the bias flux to be near the degeneracy point, ϕx ≈ π; accordingly, the
states are nearly degenerate, El ≈ Er. Due to the tunnelling between the potential wells, the
true ground state eigenfunction |Ψ〉 is a superposition of these two states

H |Ψ〉 = E |Ψ〉 , with |Ψ〉 = α |l〉 + β |r〉 . (2.22)

The qubit Hamiltonian is given by the matrix elements of the full Hamiltonian (2.17) taking
into account only the two levels |l〉 and |r〉.

Hll = El + 〈l|U − Ul |l〉 , (2.23a)

Hrr = Er + 〈r|U − Ur |r〉 , (2.23b)

Hrl = El〈r|l〉 + 〈r|U − Ul|l〉 = H
∗
lr. (2.23c)

The second terms in the diagonal matrix elements (2.23a) and (2.23b) are proportional to
ϕ4, corresponding to a nonlinear oscillator with a quartic nonlinearity (see App. C.2). The
level spacing is now no longer equal thus resulting in the required anharmonicity. Note that
this approximation is only valid for EJ/Ec ≫ 1 (see also the calculation for the transmon in
Sec. 2.1.2). For the ground states |l〉 and |r〉, the energy corrections can be neglected since
both states are equally shifted. Choosing the wavefunction real, Hrl = Hlr, and introducing
∆rf/2 = Hrl and εrf = Er − El we obtain the Hamiltonian of the rf SQUID qubit,

HRF ≈ εrf
2
σ̄z +

∆rf

2
σ̄x, (2.24)

with σ̄z = |r 〉〈 r| − |l 〉〈 l| and σ̄x = |l 〉〈 r| + |r 〉〈 l| being the Pauli matrices in the {|l〉 , |r〉}
basis, and εrf = 2IrfΦ0 (f − 1/2). The maximum circulating current Irf and the level splitting
∆rf depend on EL, EJ, and Ec; they have to be determined numerically. εrf can be tuned by
the applied flux ϕx and is zero for Φx = Φ0/2 mod 1 (f = 1/2). At the flux degeneracy point,
f = 1/2, only the tunnelling probability ∆rf determines the level spacing of the flux qubit
states. The wavefunctions then correspond to the maximally entangled flux states (2.18). Far
away from the degeneracy point, the qubit states are almost pure flux states, analogue to the
charge states of the CPB qubit.
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The Hamiltonian (2.24) can be diagonalized according to Sec. 1.2.1 which yields the qubit
transition frequency

~ωrf =
√
ǫ2rf + ∆2

rf . (2.25)

The states of the qubit are built by currents with equal amplitude and opposite sign circulating
clockwise (|l〉) or anticlockwise (|r〉) in the loop. In the energy eigenbasis {|g〉 , |e〉}, the two
eigenstates of the qubit have the expectation value [37]

〈Icirc〉e,g = 〈Ipcqσ
z〉e,g = 〈Irf (cos 2ϑrf σ̄

z − sin 2ϑrf σ̄
x)〉l,r = ± εrf√

ε2rf + ∆2
rf

Ipcq, (2.26)

for the excited and ground state, respectively, whereas ϑrf is given by tan 2ϑrf = ∆rf/εrf (see
also Sec. 1.2.1).

Fig. 2.7(b) shows a numerical calculation that has been done with the program Matlab
[55]. The two qubit states are well separated from the other states of the rf SQUID. Thus,
the approximations made above are valid for this system.

2.2.2 Persistent Current Qubit

The persistent current qubit (PCQ)13 is a flux qubit consisting of three JJs. It has been
proposed and experimentally realized by the Delft group [56; 57]. A full theoretical description
was done by Orlando et al. [58]. The design solves the problem of dephasing of the flux qubit
by the environment.

The rf SQUID qubit requires a large inductance of the SQUID loop (Λ = LJ,0/L ≪ 1)
since the magnetic energy of the loop has to be comparable to the Josephson energy to form
the required double-well potential. However, the main problem of the rf SQUID qubit is this
large inductance; it makes the qubit vulnerable to dephasing by magnetic fluctuations of the
environment [4]. To overcome these difficulties, it was suggested to replace the large loop
inductance by the Josephson inductance of an additional tunnel junction. Thus, one can use
circuits with Λ ≫ 1 that are no longer sensitive to magnetic fluctuations.

Fig. 2.8 shows the circuit diagram of the PCQ; the architecture in principle is the same as
for the rf SQUID qubit (see Fig. 2.6(a)), but now the SC loop contains three JJs connected
in series. The two side junctions are identical, with Josephson energy EJ, whereas the third
junction has a smaller area and therewith a Josephson energy αEJ, with α < 1. An external
flux Φx threads the loop. For the rf SQUID, this external flux produces a current, circulating
in the SQUID loop; due to the large size of the loop this results in a magnetic energy. For
the PCQ, the loop is small and thus we can neglect the magnetic energy of the circulating
current, that is, we neglect the loop inductance. Therefore, the potential energy of the PCQ
is the just the sum of the Josephson coupling energies of each junction,

U(ϕ1,ϕ2) = −EJ [cosϕ1 + cosϕ2 + α cosϕ3] , (2.27)

with ϕ1,2,3 being the gauge-invariant phase differences of the junctions.
For a negligible loop inductance, fluxoid quantization around the loop containing the

junctions requires
− 2π f = ϕ1 − ϕ2 + ϕ3, (2.28)

13The name persistent current qubit has its origin in the two persistent currents of opposite direction that
build the two qubit states.
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Figure 2.8: Circuit diagram of the PCQ. The loop now contains three JJs connected in series,
whereas the two side junctions are identical (Josephson energy EJ), while the central, third
junction has a smaller area (αEJ, α < 1). Again, an external flux Φx is applied via a tank
circuit. The arrows define the direction of the currents.

a) b)

-1 10.50-0.5
-1

1

0.5

0

-0.5

 φ
2 /2
π

 
φ
1
/2π

U(φ
1,
φ
2
)

 φ
1 /2π

 φ
2
/2
π

U(φ
1,
φ
2
)

-2

2
1

0
-1

-2

2
1

0
-1 φ

+
=0

φ
2
=φ

n

 
φ
- 
,φ

1
0

U α=0.8

U

0  
φ
- 
,φ

1

α=1

c)

d)

Figure 2.9: Potential energy landscape of the PCQ for f = 1
2

and α = 0.8. In (a) the
potential is plotted three-dimensional (taken from [59]). An egg–box–like structure is evident.
In (b) the potential is plotted in a contour line plot. The nested nearly circular shapes mark
the maxima in the potential, and the figure–eight–shaped contours enclose two minima. The
blue line marks the connection between the minima in one unit cell, where ϕ+ = 0. The green
line marks the connection between the minima in neighbouring unit cells, where ϕ2 ∝ ϕ1 (see
also text). (c) and (d) show the potential energy landscape along the blue and green line in
(b) at α = 0.8 and α = 1, respectively. As for the rf SQUID, a double-well potential is formed.

with f = Φx/Φ0 being the magnetic frustration. The potential then reads

U(ϕ1,ϕ2) = −EJ [cosϕ1 + cosϕ2 + α cos (2πf + ϕ1 − ϕ2)] (2.29)

Figs. 2.9(a) and (b) show this potential for f = 1/2. For 1/2 < α < 1, a double-well potential
is formed within each 2π × 2π cell in the phase plane. The optimal value α ≈ 0.7 − 0.8
results in a separation of these cells by high potential barriers while tunnelling between the
two minima within one cell is still possible [3]. The two minima thus contain the degenerated
states |l〉 and |r〉 that build the qubit. The qubit states |g〉 and |e〉 are superpositions of these
states and, again, correspond to clockwise and anticlockwise currents circulating in the loop.

We now set the external flux to half integer flux quantum, f = 1/2. Introducing the new
variables ϕ± = (ϕ1 ± ϕ2)/2, the potential then reads

U(ϕ+,ϕ−) = −EJ [2 cosϕ+ cosϕ− − α cos 2ϕ−] . (2.30)
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For α ≤ 1/2, U has one minimum at (ϕ+, ϕ−) = (0,0) (mod 2π) (corresponding to ϕ1,ϕ2) =
(0,0); the calculation of the critical points is given in App. C.3). For α > 1/2, this min-
imum splits into two minima at (ϕ+,ϕ−) = (0, ± ϕ∗) (corresponding to (ϕ1,ϕ2) = (ϕ∗, −
ϕ∗),(−ϕ∗,ϕ∗)) with ϕ∗ = arccos 1

2α . The minima form a two-dimensional pattern repeated in
a two-dimensional square lattice [58] enclosed by the maxima at (ϕ+,ϕ−) = (±π,0),(0, ± π)
(corresponding to (ϕ1,ϕ2) = (±π,± π)).

Figs. 2.9(c) and (d) show the potential energy along the directions between two minima
in the same (blue) and neighbouring (green) unit cells (e.g. (−ϕ∗,ϕ∗) and (ϕ∗,2π−ϕ∗)); this
corresponds to setting ϕ+ = 0 or ϕ2 = (π/ϕ∗ − 1)ϕ1+π ≡ ϕn. For both values, a double-well
potential is formed; the maxima correspond to the saddlepoints (ϕ1,ϕ2) = (0,0) and (0,π/2)
for ϕ+ = 0 and ϕ2 = ϕn, respectively (cp. App. C.3). For α = 0.8 the energy barrier between
the two minima in one unit cell (ϕ+ = 0) is much lower than the energy barrier between
the two minima in neighbouring unit cells (ϕ2 = ϕn). For α = 1 the two barriers are nearly
the same. Since we want to build a qubit between minima in one unit cell, α is optimal for
α ∼ 0.7 − 0.8. The potential landscape can be manipulated by changing α. Therefore, as
for the CPB (Sec. 2.1.1), one could replace the central junction (αEJ) by two JJs shunted in
parallel such that α can be controlled with external magnetic fields.

We choose α such that the energy barrier between to minima in one unit cell is lower
than that of two neighbouring cells (blue line in Fig. 2.9(c)) A double-well potential with the
minima (ϕ+,ϕ−) = (0, ± ϕ∗) is formed. Setting ϕ+ = 0 we can expand the potential (2.30)
in ϕ−,

U(ϕ+ = 0,ϕ−) ≈ EJ

[
(1 − 2α)ϕ2

− −
(

1

12
− 2

3
α

)
ϕ4
−

]
. (2.31)

This potential has the same form as the approximated potential for the rf SQUID qubit
(Eq. (2.20)). Correspondingly, the arguments that were given for the rf SQUID hold for the
PCQ.

Therefore, the PCQ, as the rf SQUID qubit, is formed by two qubit states that correspond
to a clockwise and anticlockwise current circulating in the loop. The Hamiltonian of the PCQ
can be written according to [13],

HPCQ ≈ εpcq

2
σ̄z +

∆pcq

2
σ̄x, (2.32)

with σ̄z = |l 〉〈 l| − |r 〉〈 r| and σ̄x = |l 〉〈 r| + |r 〉〈 l| again being the Pauli matrices in the
{|l〉 , |r〉} basis, and εpcq = 2IpcqΦ0 (f − 1/2). The minimum energy level splitting ∆pcq and
the maximum persistent current Ipcq have to be determined numerically and depend on EJ,
Ec, and α. The expectation value of the current circulating in the qubit loop can be calculated
according to Eq. (2.26). Since the PCQ is no longer sensitive to magnetic fluctuations of the
environment, it is the best choice for quantum computation using the flux degree of freedom.

2.3 Phase Qubits

An architecture that is operated in the pure “superconducting” limit, where EJ/Ec ≫ 1
(EJ/Ec ∼ 104−106), is the phase qubit. First works with this system were done in the 1980s;
macroscopic quantum tunnelling and resonance tunnelling have been observed in several ex-
periments, e.g. [60; 61; 62].
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Figure 2.10: (a) Circuit diagram of the phase qubit; a single JJ, with Josephson coupling
energy EJ and Josephson capacitance CJ, is driven with an external dc current Ix. (c) Potential
energy diagram of the phase qubit. The current bias creates a tilt of the cosine-potential of the
JJ (“tilted washboard potential”). The phase states |g〉 and |e〉 build the qubit.

The phase qubit uses the macroscopic phase of a JJ to implement a qubit, whereas a large
nonlinearity is obtained by biasing the junction with a dc current very close to the critical
current. The qubit states are built by the states of a nonlinear oscillator approximating
the phase qubit. Superposition of these states and Rabi oscillations have been measured by
the Martinis group [63]; recently, high-fidelity operations with a gate fidelity of 98% were
performed [64]. It was also possible to couple and entangle two phase qubits [8]. Phase qubits
can be coupled capacitively and controlled with microwave pulses.

A circuit diagram of the phase qubit is shown in Fig. 2.10(a); it is a JJ with Josephson
energy EJ and Josephson capacitance CJ that is biased with a dc current Ix. Instead of one
junction, as for the CPB (Sec. 2.1.1), one could, again, use two junctions shunted in parallel
which allows to control the Josephson coupling to the SC reservoir with an external flux.

The Hamiltonian of the current-biased junction is given by

HPQ = EcN̂
2 −EJ cosϕ− Φ0

2π
Ixϕ

︸ ︷︷ ︸
U(ϕ)

, (2.33)

with, again, N̂ = −i ∂
∂ϕ being the Cooper pair number operator, EJ the Josephson energy,

Ec = (2e)2

2CJ
the charging energy of one Cooper pair, and Ix the externally applied flux. A

detailed derivation of this Hamiltonian is given in App. B.3.2.

Fig. 2.10(b) shows the tilted cosine potential U(ϕ)—the so-called tilted washboard potential—
corresponding to the phase qubit Hamiltonian (2.33). For Ix . Ic the external current yields
a tilt of the cosine potential resulting in several wells where each well can be approximated
with a cubic potential. This tilt increases with increasing Ix. In the classical regime, the
particle representing the phase would either rest at the bottom of one of the wells or oscillate
within the well. Due to the periodic motion, the average voltage (ϕ̇) across the junction and
therewith the average number of Cooper pairs N is zero. In the quantum regime the particle
can no longer be confined due to macroscopic quantum tunnelling. However, for E ≪ EJ, with
E being the particle energy, the probability of tunnelling is small and thus can be neglected.
As we show later in this section, this is fulfilled in the phase regime, where EJ/Ec ≫ 1.

The minima and maxima of U(ϕ) are located at ϕ0 = arcsin
(

Φ0

2π
Ix
EJ

)
. Since arcsinx is
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defined only for values |x| ≤ 1, minima and maxima occur only for Ix ≤ 2π
Φ0
EJ ≡ Ic. Whereas

charge and flux qubits have to be biased near a suitable working point to allow good coherence
times, the only restriction for the phase qubit is that it has to biased at Ix . Ic to obtain
the tilted washboard potential, since for Ix ≪ Ic, we would just have a cosine shape and for
Ix > Ic no minima would occur. Thus, we obtain the energy barrier of the potential, that is,
the difference between the minimum and the maximum,

∆Upq = U(ϕmax
0 ) − U(ϕmin

0 ) =
Φ0

2π
[Ix (2ϕ0 − π) + 2Ic cosϕ0] . (2.34)

We now make a Taylor expansion of the potential U(ϕ) about the minimum ϕ0, where cosϕ0 =√
1 − (Ix/Ic)2. Therewith, one well of the tilted washboard potential can be approximated

by the cubic form

U(ϕ) ≈ Φ0

2π

(
1

2
Ic
√

1 − (Ix/Ic)2 (ϕ− ϕ0)
2 − 1

6
Ix (ϕ− ϕ0)

3

)
, (2.35)

where we have neglected the constant term U(ϕ0). In this approximation, the height of the
potential barrier (2.34) is given by [61; 62; 65]

∆Upq ≈ 2
√

2Φ0

3π
Ic (1 − Ic/Ix)(3/2) . (2.36)

The quadratic term in Eq. (2.35) forms the potential of an harmonic oscillator leading to
quantized energy levels with the oscillation frequency

ωp(Ix) =

√
2EcEJ

~

(
1 − (Ix/Ic)

2
)1/4

, (2.37)

which is the current-dependent plasma frequency. Thus, in first order, the level spacing is
homogeneous; the lowest energy levels Ek = ~ωp(Ix)(k+1/2) (k being the occupation number
of the oscillator) are determined by the plasma frequency. The levels are close to the bottom
of one potential well if EJ/Ec ≫ 1 and if the bias current is not too close to the critical value,
Ix < Ic; thus, no tunnelling out of the wells occurs. Note that, as Ix → Ic, ∆Upq decreases
rapidly to zero while ωp(Ix) decreases much slower. Consequently, the number of states in
the well decreases as Ix approaches Ic.

However, because of the cubic term in the potential, the energy levels are shifted, whereas
the shift depends on the energy of the level itself. Therefore, the spacing between adjacent
levels decreases with increasing energy in the well, see also App. C.2. Here, an increase of
the bias current Ix decreases the spacings of the energy levels. This results in the required
anharmonicity.

The two lowest transitions have the frequencies (ωmn = ωm − ωn) [65]

ω10 ≃ ωp(Ix)

(
1 − 5

36

~ωp(Ix)

∆Upq

)
, (2.38a)

ω21 ≃ ωp(Ix)

(
1 − 10

36

~ωp(Ix)

∆Upq

)
, (2.38b)

These two frequencies must be different to obtain a two-level system as a controllable qubit.
The ratio ∆Upq/~ωp(Ix) parameterizes the anharmonicity of the cubic potential with regard
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Figure 2.11: Potential energy diagram of the flux-biased phase qubit. Due to the flux bias at
f ≈ 1, the quartic potential of the rf SQUID (cp. Fig. 2.6(b)) is tilted to the right. The left
well of the resulting potential can be approximated by a cubic potential. Since EJ is very large,
the distance of the two minima is approximately ∆ϕ = 2π∆Φ/Φ0 ≈ 2π.

to the qubit states, and gives an estimate of the number of states in the well. The reduced
anharmonicity is Ar ≈ −0.1.

The state of the qubit can be controlled with the dc bias current Ix and a time-varying
bias current ∆I(t), where ∆I(t) are the variations of the difference Ic − Ix. Making the
transition Ix → Ix + ∆I(t), the qubit Hamiltonian then is given by [6]

HPQ =
~

2
ω10σ̄

z +
~

2ω10CJ
∆I(t) (σ̄x + χσ̄z) , (2.39)

with χ =
√

~ω10/3∆Upq ≃ 1/4 for typical parameters, σ̄z = |1 〉〈 1| − |0 〉〈 0|, and σ̄x =
|0 〉〈 1| + |1 〉〈 0|. In contrast to the flux and charge qubits, the phase qubit does not have a
sweet spot, that is, a bias point where the |0〉 ↔ |1〉 transition frequency has a local minimum.
The Hamiltonian (2.39) cannot be cast into the typical form (1.7) and thus a σ̄x rotation also
produces a σ̄z rotation. However, a sinusoidal current signal ∆I(t) ∼ sinω10t can still produce
σ̄x rotations, whereas a low-frequency (quasi-dc) signal produces σ̄z operations. Hence, the
phase qubit state can be fully manipulated with dc and microwave pulses that are applied
directly to the circuit.

The essential feature of the phase qubit is the cubic potential. This cubic potential can also
be achieved with a flux-biased phase qubit. The direct application of a current to the phase
qubit results in large noise disturbing the qubit coherence. Therefore, a current applied via a
tank circuit is more suitable for qubit operations. The design of the flux-biased phase qubit
is that of the rf SQUID qubit which was described in Sec. 2.2.1. In contrast to the rf SQUID
qubit, the Josephson energy for the flux-biased phase qubit is now much larger than the
magnetic energy. Moreover, the qubit is not biased near the degeneracy point, but far away
from it, f = Φx/Φ0 ≈ 1. Note that the applied flux corresponds to a current in the qubit
loop; thus, we will speak of applied currents in the following chapters. As shown in Fig. 2.11,
the resulting potential is strongly tilted to the right. The left well of this potential can again
be approximated by a cubic potential. Macroscopic quantum tunnelling to the right well
changes the flux through the loop by ∼Φ0. The flux-biased phase qubit is an improved phase
qubit design since the inductance L of the SC loop minimizes quasi-particle generation [66].
Therefore, nowadays, the flux-biased phase qubit is used instead of the current-biased phase
qubit because of improved coherence and additional features for qubit readout that we discuss
in Sec. 3.4.
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2.4 Circuit Quantum Electrodynamics with Superconducting

Qubits

In the previous sections we have shown that SC circuits act as artificial atoms whose many-
level Hilbert space can be truncated to two qubit levels. In this section we now focus on the
implementation of circuit quantum electrodynamics (circuit QED) with these systems. Circuit
QED is the analogue to cavity QED in solid-state quantum computation. The emergence of
circuit QED in the past few years has opened up new horizons for these solid-state based
devices and has lead to a confluence of the research in the fields of quantum optics, cavity
QED, and mesoscopic superconductivity. This “quantum optics on a chip” gives the pos-
sibility to e.g. study fundamental quantum mechanics with macroscopic devices, to control
solid state systems with quantized fields, and to use the coupled cavity for readout purposes.
In contrast to quantum-optical cavity QED, circuit QED offers the tunability of the qubit
transition frequency.

The idea of the implementation of circuit QED in SC circuits is to use a transmission line
resonator and to couple it to an SC qubit. The first proposals by Schwab and collaborators [67;
68] study the effect of a CPB capacitively coupled to the resonator. During the last years,
several circuit QED experiments have been accomplished with different types of SC qubits, as
for example the generation of Fock states with charge or phase qubits [69; 70] or the analysis
of the dynamics of a two-photon driven flux qubit [71]. In this section, we demonstrate the
implementation of circuit QED with the different SC qubit flavours and calculate the coupling
strengths of the qubits to a resonator.

2.4.1 Capacitive coupling to the CPB Qubit

We firstly consider the realization of circuit QED with SC charge qubits proposed by Blais et al.
[22]. As shown in Fig. 2.12, the CPB is fabricated at the centre of a transmission line res-
onator (TLR) that consists of a full-wave section (l = λ ≈ 1 cm) of an SC coplanar waveguide.
The CPB and the TLR are coupled via the capacity Cg. The quasi-one-dimensional coplanar
waveguide is built by a narrow- centre conductor (the TLR) and two nearby lateral ground
planes that allow measurements of the amplitude and phase of the resonator transmission,
and the introduction of dc and rf pulses to manipulate the qubit states. This on-chip “cav-
ity” can be fabricated with existing lithographic techniques, e.g. by patterning a thin SC film
deposited on a silicon chip [72].

The zero-point energy of this design is distributed over a very small effective volume which
is an important advantage for the choice of a one-dimensional TLR. As shown in App. C.4, this
leads to significant rms voltages between the centre conductor and the adjacent ground plane
at the antinodal positions and thus to a strong coupling between the qubit and the resonator.
In contrast to lumped LC circuits or current-biased large JJs, the qubit can be placed within
the cavity formed by the transmission line to strongly suppress the spontaneous emission [22].
Furthermore, quality factors with Q ∼ 106 can be achieved in TLRs and therewith the internal
losses are very low.

For a finite length l, the transmission line behaves as a harmonic oscillator with resonance
frequency ωr = 1/

√
LrCr (Lr and Cr being the capacitance and inductance of the TLR,

respectively). It is described by the Hamiltonian

HTLR = ~ωra
†a. (2.40)
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l

1

Figure 2.12: Schematic layout and equivalent lumped circuit representation of the proposed
implementation of cavity QED using SC circuits. The 1D TLR (inductance Lr, capacitance
Cr) consists of a full-wave section of a SC coplanar waveguide. A CPB is placed between the
SC lines and is capacitively coupled to the centre trace at a maximum of the voltage standing
wave via Cg, yielding a strong electric dipole interaction between the qubit and the cavity.
Input and output signals of the box are coupled to the resonator via capacitive gaps (C0 and
C1) in the centre line. Taken from [22].

Here, a and a† are the bosonic annihilation and creation operators of one resonator mode,
respectively. We have neglected the zero-point energy ~ωr/2 of the resonator.

For a CPB fabricated inside a resonator, the dimensionless gate charge has an additional
ac component Nac

g . As shown in App. C.4, if the qubit is placed at the centre of the TLR,
this quantum part is given by

Nac
g = N (2)

rms

(
a+ a†

)
, with N (2)

rms =
Cg

2e

√
~ωr

2Cr
. (2.41)

N
(2)
rms is the dimensionless rms charge between the centre conductor and the ground plane. The

full quantization of the TLR including the calculation of the rms values is given in App. C.4.
To calculate the interaction of the CPB with the resonator, we have to add the quantum

part Nac
g to the dc component Ng [22] which corresponds to making the transition Ng →

δNg = Ng +Nac
g in the CPB Hamiltonian (2.1). The total Hamiltonian of the whole qubit–

resonator system then reads

HCQR = ~ωra
†a+ Ec(N̂ −Ng)

2 − EJ cosϕ− 2EcN
(2)
rms(N̂ −Ng)(a+ a†). (2.42)

We did not include the (δNg)
2-term since it is an artefact from the derivation of the charge

Hamiltonian (see App. B.3.3).
We firstly consider the CPB qubit, that is, the CPB in the charge regime, cp. Sec. 2.1.1.

In this regime, N is a good quantum number and the Hamiltonian can be expressed in terms
of the number of Cooper pairs on the island, see Eq. (2.2). If the resonator frequency is much
smaller than the transition frequencies to higher CPB levels, we again only have to take into
account terms with N = 0 and N = 1 which yields

HCR = ~ωra
†a− Ec

2
(1 − 2Ng) σ̄

z − EJ

2
σ̄x − EcN

(2)
rms(a

† + a) [1 − 2Ng − σ̄z] . (2.43)

In the energy eigenbasis {|g〉 , |e〉} (see also Eqs. (2.5) and (2.7)) the system takes the
form

HCR = ~ωra
†a+

~

2
ωcqσ

z − EcN
(2)
rms(a+ a†)

[
1 − 2Ng − cos 2ϑcq σ

z + sin 2ϑcq σ
x
]
, (2.44)
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Figure 2.13: Scanning electron microscopy of the experimental realization of circuit QED
with a CPB. (a) The SC niobium coplanar waveguide resonator is fabricated on an oxidized
silicon chip using optical lithography. It is coupled by a capacitor at each end of the resonator
(see (b)). (b) The capacitive coupling to the input and output lines and hence the coupled
quality factor Q is controlled by adjusting the length and separation of the finger capacitors
formed in the centre conductor. (c) False colour electron micrograph of a Cooper pair box
(blue) fabricated onto the silicon substrate (green) into the gap between the centre conductor
(top) and the ground plane (bottom) of a resonator (beige) using electron beam lithography
and double angle evaporation of aluminium. The JJs are formed at the overlap between the
long thin island parallel to the centre conductor and the fingers extending from the much larger
reservoir coupled to the ground plane. Taken from [72].

with σz = |e 〉〈 e|− |g 〉〈 g| and σx = |e 〉〈 g|+ |g 〉〈 e|. At the degeneracy point, where Ng = 1/2
and therewith ϑcq = −π/4, Eq. (2.44) immediately reduces to the JC Hamiltonian. To show
that we obtain a JC interaction also for Ng 6= 1

2 , we utilize the Hamiltonian (2.44) in the
interaction picture via the transformation U = exp

[
−i
(
ωra

†a+
ωcq

2 σz
)
t
]
,

H
int
CR = − EcN

(2)
rms sin 2ϑcq

(
σ+a ei(ωcq−ωr)t + σ−a†e−i(ωcq−ωr)t

)

−EcN
(2)
rms

[
sin 2ϑcq

(
σ+a†ei(ωcq+ωr)t + σ−a e−i(ωcq−+ωr)t

)

+
(
ae−iωrt + a†eiωrt

)
(1 − 2Ng − cos 2ϑcq σ

z)
]





fast rotating
terms.

(2.45)

We can neglect the fast rotating terms in a RWA and therewith obtain the interaction Hamil-
tonian of the CPB qubit and the resonator,

HJC,C = ~ωra
†a+

~

2
ωcqσ

z − ~gcq(a
†σ− + aσ+), (2.46)

with ~gcq = EcN
(2)
rms sin 2ϑcq =

Cg

CΣ
e
√

~ωr
2Cr

sin 2ϑcq, ~ωcq =
√
E2

J + [Ec(1 − 2Ng)]
2, σ+ =

|e 〉〈 g|, and σ− = |g 〉〈 e|. At the charge degeneracy point, sin 2ϑcq = −1; the Hamilto-
nian (2.46) then takes the well-known form of the JC interaction with the coupling gcq. Since
sin 2ϑ can be tuned via Ng, the coupling between the qubit and the resonator can be varied
from zero to gcq. The coupling gcq is in the order of 100 MHz in this architecture. This means,
we can achieve a tunable JC interaction with strong coupling in circuit QED with the CPB
qubit; this gives the possibility to apply methods from quantum optics on this qubit. The
experimental realization of circuit QED with a CPB is shown in Fig. 2.13.
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2.4.2 Circuit QED with the Transmon in the Dispersive Regime

Hitherto, we have only considered the CPB in the charge regime. However, circuit QED is
also possible for the transmon qubit that has been described in Sec. 2.1.2. In fact, the name
“transmon qubit” has its origin in “transmission-line shunted plasma oscillation qubit”. After
eliminating Ng with a gauge transformation, we obtain the Hamiltonian (2.42) rewritten in
the basis of the uncoupled transmon states |k〉 [25]

HTR = ~ωra
†a+ ~

∑

k

ωk |k 〉〈 k| + ~

∑

k,l

gkl |l 〉〈 k| (a+ a†) (2.47)

with the coupling energies

~gkl = ~glk = 2EcN
(2)
rms

∣∣〈k|N̂ |l〉
∣∣, (2.48)

where we have only considered the absolute value of the matrix element since the phase of the
(complex valued) matrix element can be removed via a unitary transformation, see also App.
A.4.114; note that for the transmon Ec = (2e)2/2C̃Σ with C̃Σ = CJ+Cg+CB. For EJ/Ec ≫ 1,
the transmon is well approximated by a nonlinear oscillator with the oscillation frequency
ωp =

√
2EJEc and the creation and annihilation operator d† =

∑
k

√
k + 1 |k + 1 〉〈 k| and

d =
∑

k

√
k |k 〉〈 k + 1|, respectively (cp. Eq. 2.10), where |k〉 now denotes an oscillator

eigenstate (k being the occupation number). Since N̂ = −i(EJ/(2Ec))
(1/4)(d − d†)/

√
2 in

this approximation, the general expression (2.47) can be simplified, so that only the coupling
between neighbouring states |k〉 and |k + 1〉 has to be taken into account,

∣∣〈k + 1|N̂ |k〉
∣∣ =

√
k + 1

2

(
EJ

2Ec

)(1/4)

=
∣∣〈k|N̂ |k + 1〉

∣∣. (2.49)

The coupling |〈k+i|N̂ |k〉| between non-neighbouring states (|i| > 1) decreases with increasing
j and increasing EJ/Ec.

Finally, after employing the RWA, we arrive at the effective generalized JC Hamiltonian
of the transmon qubit

HJC,T = ~

∑

k

ωk |k 〉〈 k| + ~ωra
†a+ ~

∑

k

gk,k+1

[
|k 〉〈 k + 1| a† + |k + 1 〉〈 k| a

]
. (2.50)

This generalized version of the JC Hamiltonian does not allow for an exact analytical solution.
Due to nearest-neighbour coupling of many transmon levels, the solution of the general case
requires numerical methods. However, the dispersive limit of (2.50) allows for analytical
solutions.

In the dispersive limit, the detunings ∆k,k+1 = ωk+1 − ωk − ωr are large compared to the
couplings, |∆k,k+1| ≫

√
n+ 1gk,k+1. In this case, we can eliminate the interaction between

the resonator and the qubit to lowest order with a canonical transformation, see App. C.5
Eq. (C.49). Taking into account only states with k = 0,1 in Eq. (C.49) we get

H
eff
JC,T = ~ω0 |0 〉〈 0| + ~ω1 |1 〉〈 1| + ~ωra

†a

+ ~χ0,1 |1 〉〈 1| − ~χ0,1a
†a |0 〉〈 0| + ~(χ0,1 − χ1,2)a

†a |1 〉〈 1| ,
(2.51)

14This argument also can be applied to possible minus-signs.
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with χk,k+1 = g2
k,k+1/∆k,k+1. Henceforward, we denote the states |0〉 and |1〉 with |g〉 and

|e〉, respectively, for consistency in the notation. After neglecting constant terms and renor-
malizing the qubit and resonator frequency, we obtain the effective JC Hamiltonian of the
transmon in the dispersive limit

H
eff
JC,T =

~

2

(
ωt −

g2
t

∆t

)
σz +

(
~ω′

r + ~
g2
t

∆t
σz

)
a†a, (2.52)

with ωt = ωe − ωg ≈ ωp =
√

2EJEc, gt ≡ gg,e =
Cg

C̃Σ
e
√

~ωr
2Cr

·
(

2EJ

Ec

)1/4
, ∆t = ωt − ωr, and the

Lamb-shifted resonator frequency ω′
r = ωr − χe,2/2.

As already mentioned, the coupling gt increases with increasing EJ/Ec. Thus, the achiev-
able coupling is larger than for the CPB qubit. This result is quite remarkable. While the
sensitivity of the transmon spectrum to the dc component Ng decreases exponentially, the ac
response to the oscillating cavity field Nac

g increases in a power-law fashion [25].

2.4.3 Inductive Coupling to Flux Qubits

Circuit QED with flux qubits can be achieved with an inductive coupling of the qubit to a
TLR. After the first experimental implementation [73], several impressive experiments have
been performed with this design, e.g. [37; 71; 74]. An intuitive theoretical description of the
system is given in [75]; we mainly follow this work to derive the coupling strength.

Figs. 2.14(a) and (b) show a schematic layout of the implementation of circuit QED with
flux qubits. As the charge qubit, the flux qubit is placed at the centre of a TLR, but now it
couples to the resonator via a mutual inductance M .

For the calculation of the JC Hamiltonian, as for the charge qubit, an additional quantum
part has to be added to the bias of the qubit, but now this quantum part is the external ac
flux,

Φac
x = Φ(2)

rms

(
a+ a†

)
, with Φ(2)

rms = M
√

~ωr2Lr. (2.53)

A detailed calculation of the inductive coupling of the TLR, including an approximation for
the mutual inductance, is given in App. C.4.

Replacing f by f + Φac
x /Φ0 in the flux qubit Hamiltonian (Eq. (2.24) or (2.32)) we obtain

the Hamiltonian of the coupled system,

HFR = ~ωra
†a+

εfq
2
σ̄z +

∆fq

2
σ̄x + IfqΦ

(2)
rmsσ

z
(
a+ a†

)
(2.54)

with εfq = 2IfqΦ0 (f − 1/2) (fq represents the rf SQUID and the persistent current qubit,
with fq = rf or pcq; cp. Sec. 2.2), σ̄z = |r 〉〈 r| − |l 〉〈 l|, and σ̄x = |l 〉〈 r| + |r 〉〈 l|.

Again, we evaluate the Hamiltonian in the energy eigenbasis {|g〉 , |e〉} of the qubit; the
Hamiltonian then reads

HFR = ~ωfqσ
z + ~ωra

†a+ IfqΦ
(2)
rms

(
a+ a†

)
(cos 2ϑfq σ

z − sin 2ϑfq σ
x) (2.55)

with σz = |e 〉〈 e| − |g 〉〈 g|, σx = |e 〉〈 e| − |g 〉〈 g|,

ωfq =
√

[2Ifq (Φx − Φ0/2)]2 + ∆2
fq, and tan 2ϑfq =

∆fq

εfq
. (2.56)
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Figure 2.14: (a) Sketch of typical coplanar waveguide resonator of length l = λ ≈ 1 cm (cp.
Fig. 2.12). Also shown is how the qubit can be placed in between the centre conductor and the
ground plane of the waveguide. (b) Circuit diagram of a flux qubit (PCQ or rf SQUID) coupled
to a coplanar TLR via the mutual inductance M . The TLR (capacitance Cr, inductance Lr) is
weakly coupled to external transmission lines via coupling capacitors Cc. The qubit is biased
with the magnetic flux Φx. A persistent current Ifq circulates in the loop. Both taken from [75].

As for the charge qubit, we apply an RWA to eliminate fast rotating terms (cp. Eq. (2.45)).
Therewith, the final JC Hamiltonian of the interaction between the resonator and the flux
qubit is

HJC,F = ~ωfqσ
z + ~ωra

†a− ~gfq

(
a†σ− + aσ+

)
. (2.57)

The coupling ~gfq = M
√

~ωr
2Lr

sin 2ϑfq is now maximal at the flux degeneracy point, where

f = 1/2.

2.4.4 Circuit QED with Phase Qubits

Circuit QED with SC phase qubits is a very advanced field. It was possible to couple two
phase qubits to a TLR and to control the quantized field of the cavity [47; 76; 77]. Fig. 2.15
shows the experimental implementation of circuit QED with phase qubits used in [76]. Two
flux-biased phase qubits are coupled to the input ports, and therewith to the λ/2-mode, of a
TLR. The state of the qubits can be determined via dc SQUIDs coupled inductively to the
qubits (see Sec. 3.4).

In first order, the phase qubit can be described by a harmonic oscillator with the oscillation

frequency ωp(Ix) =
√

2EJEc

(
1 − (Ix/Ic)

2
)1/4

. The annihilation and creation operators are
the same as for the transmon (2.10), but now with the current-dependent plasma frequency
ωp(Ix) and EJ/Ec ∼ 104 − 106. Therefore, the coupling of the TLR to the phase qubit can be
calculated the same way as for the transmon, but now only the two qubit states |g〉 and |e〉
have to be taken into account since higher transitions would yield to quantum tunnelling out of
the potential well. The TLR couples to the phase qubit with charging energy Ec = (2e)2/2CJ

and Josephson energy EJ via a gate capacitance Cg. As for the transmon, we express this

coupling in terms of the dimensionless gate charge Nac
g = N

(1)
rmrs(a + a†) (N

(1)
rmrs = N

(2)
rms/

√
2

since the qubit now couples to the lowest eigenmode of the resonator, see also App. C.4); the
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Figure 2.15: (a) Illustration of a quantum memory element with two Josephson phase qubits
connected via coupling capacitors Cg to either end of a resonant cavity. The red line depicts
the voltage amplitude of the lowest λ/2-mode. (b) Equivalent circuit of the element near the
λ/2-resonance. The cavity, with an effective capacitance Cr and inductance Lr, is capacitively

coupled (Cg) to the qubits (C
A/B

J , E
A/B

J ). The qubits are flux-biased via flux coils; readout is
done with a dc SQUID inductively (LA/B) coupled to the qubits. Both taken from [76].

coupling strength of the TLR to the phase qubit then is [78]

~gpq = 2EcN
(1)
rmrs

〈
g|N̂ |e〉

∣∣ ≈ 1

2

√
~ωp(Ix)

Ec

Cg

CJ

√
~ωr

Cr
. (2.58)

Since EJ/Ec ≫ 1, this coupling is very large; therefore, strong coupling can also be achieved
with SC phase qubits capacitively coupled to a TLR.

Summary

In this chapter we have presented the implementation of qubits in SC circuits. We have shown
that the first four DiVincenzo requirements are fulfilled in these systems. SC qubits can be
built and coupled to each other by using different degrees of freedom (scalability). They can be
initialized by letting them decay to the ground state in the beginning. Stability of SC qubits is
achieved by biasing them at a suitable working point or choosing improved designs. Coupling
SC qubits to resonators in circuit QED furthermore suppresses the spontaneous emission.
Lastly, SC qubits can be controlled with external dc and rf fields and with a single mode of
an electromagnetic field in circuit QED. However, we have not considered the measurement of
SC qubits until now. We discuss the readout of SC qubits in detail in the following chapters.
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Chapter 3

State-of-the-Art in

Superconducting Qubit Readout

While SC qubits have the advantages of scalability of the physical parameters and easily
achievable strong coupling in circuit QED, they also suffer from serious deficits compared to
other proposals (especially in comparison with trapped ions, their quantum-optical counter-
parts). As already mentioned, the coherence times of SC qubits are very short due to their
mesoscopic size. Accessorily, the lack of highly efficient readout techniques is a major problem
in these systems. Focusing on the last point, though all the proposed readout schemes for
SC qubits have in principle no fundamental limit to fidelity, they mostly suffer from technical
problems such as noise and parameter constraints.

A measurement technique can be characterized by its readout fidelity, the QND character
of the measurement and its back-action son the qubit, and the measurement time1. The
readout fidelity of the measurement is defined as [6]

F = 1 − (Pg(e) + Pe(g)) = Pe(e) + Pg(g) − 1, (3.1)

where Py(x) is the probability of measuring the (classical) output y when the qubit was
projected on the eigenstate |x〉 by the measurement (x,y = g,e). According to the definition
of Py(x), Pg(g) + Pe(g) = 1 and Pg(e) + Pe(e) = 1. Ideally, Pg(g) = Pe(e) = 1 and thus
F = 100%. We again note at this point that the qubit is in a superposition of the ground and
excited state after the state preparation, |Ψ0〉 = α |g〉 + β |e〉. Due to the laws of quantum
mechanics, a single measurement can only yield the eigenstate of the qubit, i.e. the state
on which the qubit was projected by the measurement. To determine the complex-valued
numbers α and β, that correspond to the probability of a projection on state |g〉 and |e〉,
respectively, several measurements have to be accomplished.

For the measurement, the qubit has to be coupled to the measurement device via a Hamil-
tonian Hmeas. For an ideal QND measurement, the commutator of the measurement and the
qubit Hamiltonian is zero. The QND property is only needed if the qubit must be left in
the measured eigenstate after the qubit readout. However, a QND measurement can be used
for state preparation and additional measurements that improve the readout fidelity. If the
QND character is not ideal, the measurement has a back-action on the qubit. This means,
the detection might change the qubit eigenstate or have an influence on the coherence times.

1There are several other attributes that can be used to characterize a readout; however, we focus on the
most important ones.

41
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For fast quantum computation and error correction, the measurement must not take too
long. A short measurement is also required since otherwise the qubit would decay before it is
measured. Furthermore, the back-action of the measurement on the qubit is less for a short
measurement time.

In this chapter we review the state-of-the-art in SC qubit readout. We focus on the most
promising techniques which are the readout of charge qubits with a single electron transistor
(SET), the dispersive measurement of charge qubits with an oscillator, the flux qubit readout
with a Josephson bifurcation amplifier, and the tunnelling-readout of phase qubits. All these
proposals have their advantages and disadvantages which we also examine.

3.1 Readout of Charge Qubits with a Single Electron Transis-

tor

A readout method that uses the charge degree of freedom to measure the state of the CPB
qubit was proposed by Astafiev et al. [10]. The charge on the CPB island is measured via
quasi-particle tunnelling to a SET island. The use of a charge trap between the SET and the
CPB allows separation in time of the state control and the state readout and enables further
processing of the data in a classical way. This single-shot measurement is a simple and easily
applicable readout scheme that results in a calculated readout fidelity of 87% for the state |1〉
and 93% for |0〉 (where the states correspond to the charging states |N〉). Astafiev et al. do
not use a resonator coupled to the qubit to achieve a JC interaction, forgoing the advantages
of circuit QED. Furthermore, the CPB qubit is not biased at the charge degeneracy point;
therefore, the stability of the qubit is rather low compared to other proposals. This readout
method can only be used for the CPB qubit since it detects the charge on an SC island.

3.1.1 State Detection

Figs. 3.1(a) and (b) show the experimental setup for the state detection. The CPB qubit
is capacitively coupled to a charge trap via Cbt that is, in turn, capacitively coupled to a
single-electron transistor (SET) via Cst. The CPB, trap, and SET island are each biased
with a gate voltage Vg,k via a gate capacitance Cg,k, with k = b,t,s, respectively. The islands
are each connected to the ground via Ck (whereas Cb ≡ CΣ = CJ + Cg,b). Due to the trap,
the qubit becomes electrostatically decoupled from the SET and a separation in time of the
state manipulation and readout processes is possible.

Fig. 3.1(c) shows the pulse operation. Firstly, a control pulse is applied for a time tc to
prepare the qubit state. During this qubit manipulation, the trap is kept unbiased to prohibit
charge relaxation to the trap. After a delay time td, a readout pulse, that leasts a time tr, is
applied to the trap to measure the state of the qubit. If there exists an extra Cooper pair on
the SC island when the readout pulse starts, it can escape to the trap through quasi-particle
tunnelling, and one can detect if the trap has additional electrons. Thus, one can determine
if the qubit is in state |1〉 (trap charged) or state |0〉 (trap uncharged).

A detailed discussion of the CPB qubit Hamiltonian has been done in Sec. 2.1.1. We deal
with quasi-particle tunnelling in this section, thus, the change of the notation in the qubit
Hamiltonian from N , denoting the number of Cooper pairs, to N e

b , denoting the number of
excess electrons on the box, is self-evident. Therefore, the electrostatic energy of the island k
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Figure 3.1: Experimental setup for the charge readout where (a) shows the scanning electron
micrograph (taken from [10]) and (b) a sketch of the device. A CPB is coupled to a charge
trap via a capacitance Cb,t. The trap, in turn, is coupled to a measurement SET via Cs,t. The
potentials of the islands are controlled via capacitively (Cg,b, Cg,t, and Cg,s) coupled voltage
gates (Vg,b, Vg,t, and Vg,s, respectively). Readout is done with the readout gate (Cg,r, Vg,r).
(c) Schematical representation of the pulse operation. After the control pulse tc, a delay time
td is awaited. Lastly, a readout pulse tr is applied to measure the state of the qubit. See also
text and [10].

(k = b,t) is

Uk(N
e
k ,N

e
g,k) = Ek

c

(
N e

k −N e
g,k

)2
. (3.2)

Here, Ek
c = e2/2Ck (Cb ≡ CΣ) is the single-electron charging energy of the island k, N e

k

the number of additional electrons on the island, and N e
g,k = Cg,kVg,k/e the dimensionless

gate charge, but now for one electron (Vg,k being the gate/pulse voltage of island k). The
Hamiltonians of the CPB qubit and the trap then read

HCPB = ∆E σ̄z − EJ

2
σ̄x, (3.3)

HT = Ut(N
e
t ,N

e
g,t) |N e

t 〉 〈N e
t | . (3.4)

The energy difference ∆E = 1
2

[
Ub(0,N

e
g,b) − Ub(2,N

e
g,b)
]

= 2Eb
c

(
1 −N e

g,b

)
between the

states |0〉 and |1〉 is the same as in Eq. (2.4).
For the preparation of the state, one firstly lets the qubit relax to the ground state, which

is nearly the pure charge state |0〉. During this process, the gate charge of the qubit is fixed
to N e

g,b0 6= 1. For the duration of the control time tc, the qubit eigenbasis is now instantly
changed by applying a rectangular control pulse, which brings the system to N e

g,b1. We choose
the gate voltage at the charge degeneracy point N e

g,b1 = 1. Therefore, the qubit will be rotated
only by the σ̄x-term of the Hamiltonian (3.3). After the state preparation, the qubit is in the
dressed state

|ψ〉c = cos

(
ωJtc
2

)
|0〉 + sin

(
ωJtc
2

)
|1〉 , (3.5)

where ωJ = EJ/~. Hence, after the pulse, the probability of finding the qubit in state |1〉 is∣∣sin
(

ωJtc
2

)∣∣2. The gate charge now is switched back to the initial value N2g,b0.
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After the state preparation (and a delay time td), the trap gate voltage is changed from
N e

g,t0 to N e
g,t1. The SET current is adjusted to an operation point where either one or two

trapped quasi particles yield a negative switch of the SET current [10].

To achieve quasi-particle tunnelling from the CPB to the trap, the process (N e
b ,N

e
t ) →

(N e
b − 1,N e

t + 1) has to be energetically feasible ((N e
b ,N

e
t ) represents the box–trap quasi

particle configuration). Neglecting the Josephson coupling to the reservoir in (3.3), we obtain
the inequality

Ub(N
e
b ,N

e
g,b0) + Ut(N

e
t ,N

e
g,t1) > Ub(N

e
b − 1,N e

g,b0) + Ut(Nt + 1,N e
g,t1) + 2∆sc, (3.6a)

⇐⇒ ∆N e
g,t > Ñ e

g,t +N e
t + ηc (2 −N e

b) , (3.6b)

where ∆N e
g,t ≡ N e

g,t1 − N e
g,t0 is the amplitude of the readout pulse (cp. Fig. 3.1(c)), ηc =

Ct/Cb, Ñ
t
g = 1/2 − ηc

(
3/2 −N e

g,b0

)
+ 2∆scCt/e − N e

g,t0, and 2∆sc is the energy gap of the

SC material.

For three different quasi-particle tunnellings, three threshold amplitudes for the pulse
amplitude ∆N e

g,t can be defined:

Region (I): (2,0) → (1,1), ∆N e
g,t > N e

gA, N e
gA ≡ Ñ e

g,t. (3.7a)

Region (II): (2,0) → (1,1) → (0,2), ∆N e
g,t > N e

gB, N e
gB ≡ Ñg,t + (1 + ηc). (3.7b)

Region (III): (0,0) → (−1,1), ∆N e
g,t > N e

gC , N e
gC ≡ Ñg,t + (2 + ηc). (3.7c)

Within region (I) one quasi particle tunnels from the box to the trap. In region (III) tunnelling
becomes possible even for state |0〉. In region (II) where N e

gB < ∆N e
g,t < N e

gC , two quasi
particles may escape to the trap. Hence, the highest probability of measuring the trapped
quasi particle occurs in this region. Thus, the pulse amplitude should be adjusted within
region (II). N e

g,i (i = A,B,C) has to be developed from the experiment [10].
After the measurement, the trap relaxes to its ground state in a tunnelling process of the
extra charge to the reservoir via the box.

3.1.2 Fidelity of the Readout

To compare the readout design with other proposals, we want to know the efficiency of the
measurement, defined as the probability of measuring state |0〉 or |1〉 of the SC qubit correctly.
For the calculation of the readout fidelity, we assume that once the charge is trapped, it is
detected with 100% probability. We now examine the relaxation dynamics of the system.
Since the relaxation of the qubit is very small at the charge degeneracy point, we neglect
the decay of the qubit during the control time tc. Thus, we expect the qubit to be perfectly
in state |ψ〉c, introduced in Eq. (3.5). Three main relaxation processes, described by the
relaxation rates γt1, γt0, and γ remain. The relaxation rate γt1 describes relaxation of state
|1〉 to the trap during the measurement pulse tr. The corresponding quasi-particle tunnelling
process is (2,0) → (0,2). The relaxation dynamics of state |0〉 to the trap is describes by the
weak relaxation rate γt0, according to the “dark switches” (0,0) → (−2,2). γ (γ ≪ γt1) is the
relaxation rate of the qubit to the reservoir (the decay rate) during the delay time td between
the control and readout pulse ((2,0) → (0,0)).

The total number of shots is ntotal. We denote the number of events in which the qubit is
in the excited state |1〉 with n∗, the number of ground states |0〉 with n, and the number of
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events in which the trap is found to be charged with m. Expressed in terms of the box–trap
quasi particle configuration (N e

b ,N
e
t ), n∗ corresponds to the (2,0) configuration, n to (0,0),

and m to (0,2). Initially, that means, right after the control pulse, the number of excited
states is n∗(0) ≡ n∗0, and thus, the number of ground states n(0) = ntotal − n∗0. No charges
are trapped in the beginning and hence m(0) = 0.

We want to determine the change in time of m within the time interval [t,t+ dt]. n∗

can relax to the trap with the rate γt1 or to state |0〉 with γ. The number of ground states
n is changed by the relaxation of state |1〉 and by relaxation to the trap with the rate γt0.
Therefore, we obtain a set of differential equations2,

dn∗(t) = − (γt1 + γ)n∗(t) dt, n∗(0) = n∗0, (3.8a)

dn(t) = (−γt0 n(t) + γ n∗(t)) dt, n(0) = ntotal − n∗0, (3.8b)

dm(t) = (γt1 n
∗(t) + γt0 n(t)) dt, m(0) = 0. (3.8c)

These equations are solved by

m(t) =

(
ntotal − n∗0

γt1 − γt0

γt1 + γ − γt0

)[
1 − e−γt0 t

]
+n∗0

γt1(γt1 − γt0)

(γt1 + γ) (γt1 + γ − γt0)

[
1 − e−(γt1+γ) t

]
.

(3.9)
Since γ ≪ γt1 and thus γt1/(γt1 + γ) ≈ 1, m(t) is approximated by

m(t) ≈ ntotal

[
1 − e−γt0 t

]
+ n∗0

γt1 − γt0

γt1 + γ − γt0

[
e−γt0t − e−(γt1+γ) t

]
. (3.10)

If the readout pulse length t = tr satisfies the conditions γt0 ≪ t−1
r ≪ (γt1 + γ), Eq. (3.10) is

approximated by

m(tr) ≈ ntotal γt0 tr + n∗0
γt1

γt1 + γ
[1 − γt0 tr] . (3.11)

With this result we can estimate an efficiency of the single-shot readout. Py(x) is defined
as the probability to detect state |y〉 (y = 0,1, corresponding to a charged or uncharged trap)
when the qubit was projected on state |x〉 (x = 0,1). Writing the total number of detected
events after the readout time, m(tr), in Eq. (3.10) in terms of Py(x), we obtain

m(tr) = n∗0 P1(1) + (ntotal − n∗0)P1(0). (3.12)

Therewith, the efficiencies of the readout are

P1(1) =
γt1 + γ γt0 tr
γt1 + γ

, P1(0) = γt0 tr. (3.13)

Since Py(x), P0(0)+P1(0) = 1 and P0(1)+P1(1) = 1, we then can calculate the probabilities
of detecting the correct state.

The values γt1, γ, γt0, and tr have to be determined by the experiment; they are [10]

γt1 = (37 ns)−1, γt0 = (4.2 µs)−1, γ = (220 ns)−1, tr = 300 ns. (3.14)

2It has to be noted that the equation for m(t) in the original work [10] differs from our equation. However,
the solution of the set of differential equations presented in the work of Astafiev et al. is not in agreement
with the given equation. Moreover, the units in the equation for m(t) are wrong in [10]. Thus, we assume a
mistake at this part of the paper and present an alternative equation.
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The energy relaxation time T1 = 1/γ of the qubit is relatively low compared to other experi-
ments (see e.g. [11; 22; 72]). This is due to the fact that during the delay and readout time,
the qubit is not biased to charge degeneracy. Adequate decay rates can only be achieved at
charge degeneracy. A slight detuning to a point N e

g,b 6= 1 results in a huge decrease in the
decay time. Moreover, the readout time tr is rather long compared to other experiments (see
e.g. the experiments described in the rest of this chapter).

We obtain the probabilities of detecting state |1〉 or |0〉 correctly

P1(1) = 0.87, P0(0) = 0.93. (3.15)

These efficiencies might be improved a little by optimizing the relaxation rates and fabrication
procedure. Note that the fidelities were obtained with many assumptions, such as the perfect
detection of the electrons with the SET. Consequently, very likely, the real fidelities are less
than these values.

The charge qubit readout with an SET has a relatively high readout efficiency. However,
this efficiency cannot be improved a lot since many decay effects disturb the readout scheme.
Furthermore, the measurement destroys the state of the qubit and is very slow since the
readout time is tr = 300 ns, where the delay time has not been taken into account.

3.2 Dispersive Measurement Using Circuit QED

In this section, we examine the readout suggestion of the Yale group [11; 22; 72]. This
proposal uses a circuit QED setup to induce Rabi oscillations and to measure the qubit.
The measurement is done with a QND homodyne measurement. It measures the phase and
frequency shift of a resonator coupled to the qubit; this shift depends on the qubit state.

A visibility, defined as the maximum qubit population difference observed in a Rabi os-
cillation experiment, of more than 95% is obtained. This experiment is the first to obtain a
visibility that approaches unity. Therefore, a very accurate qubit control is achieved. The
readout proposal yields a very low single-shot readout fidelity of only 70 − 80% [79]. Never-
theless, this proposal is a QND measurement since the interaction between the resonator and
the ac measurement field does not affect the qubit state. Thus, the fidelity can be increased
by measuring several times. Since the qubit is coupled to a resonator and operated at the
degeneracy point, the coherence times can be enormously enhanced compared to the previous
proposal (T1 ≈ 7µs).

The measurement scheme uses two fields and a resonator to control and read out the qubit
state. Hence, several higher-order interactions, that are hard to control, between the fields,
the resonator and the qubit may occur.

A sketch of the driven cavity is shown in Fig. 3.2(a). In this experiment, an SC qubit,
with ground and excited state |g〉 and |e〉 and transition frequency ωq, is coupled to a single
mode of the electromagnetic field of a TLR with resonance frequency ωr. The proposals of the
Yale group use the CPB qubit and the transmon in the experiment. However, since all types
of SC qubits can be coupled to a resonator in circuit QED (Sec. 2.4), this readout scheme
can also be applied to flux and phase qubits.

The quantum state of the SC qubit is coherently controlled with a microwave pulse of
frequency ωs ≈ ωq. The microwave pulse and the qubit are strongly detuned from the
resonator with detunings ∆sr = ωs −ωr and ∆qr = ωq −ωr, respectively (later in this section
we will set ∆sr = ∆qr ≡ ∆). However, due to higher-order corrections, this microwave pulse
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Figure 3.2: (a) Sketch of the measurement scheme. The qubit (transition frequency ωq), is
placed inside a cavity (transition frequency ωr), that is far detuned from the cavity (detuning
|∆qr| = |ωq − ωr| > g, with g being the coupling between the qubit and a single photon of
the cavity; ∆qr will be set to ∆ later in this section). The cavity is driven axially with two
microwave fields with frequencies ωs ≈ ωq and ωrf ≈ ωr that populate the cavity with ns

and nrf ≪ ns drive photons, respectively, due to higher order corrections in the Hamiltonian.
(b) Measurement sequence of Rabi oscillations, with Rabi pulse length ∆t, pulse frequency ωs

(amplitude ∝ √
ns), and continuous measurement at frequency ωrf (amplitude ∝ √

nrf).

populates the cavity with ns drive photons that rotate the qubit and generate Rabi oscillations
(see below). Readout is done with a second, weak microwave pulse, ωrf ≈ ωr.

Fig. 3.2(b) shows the pulse sequence of the measurement. The weak measurement pulse
ωrf is applied during the whole time. The control pulse ωs is applied for a time ∆t to induce
Rabi oscillations in the qubit. Once the qubit is rotated, the phase and frequency shift of
the measurement pulse is detected in a homodyne measurement. The qubit state can be
determined from these shifts.

We now consider the case of the driven system. Two coherent microwave pulses, with
frequencies ωs and ωrf , are applied axially to the cavity that is coupled off-resonantly to the
qubit. The Hamiltonian of the complete systems thus reads

Hdriven =
~

2
ωqσ

z + ~ωra
†a+ ~g

(
σ+a+ σ−a†

)

+ ~Ωs

(
eiωsta+ e−iωsta†

)
+ ~Ωrf

(
eiωrf ta+ e−iωrf ta†

)
,

(3.16)

with g being the (quantum-mechanical) coupling of the qubit to the cavity and Ωi (i = s, rf)
the coupling strength between driving field ωi and the cavity (Ωi = |µi|gi, where |µi| denotes
the field amplitude and gi the quantum mechanical coupling).

Again, we want to calculate the effective Hamiltonian, wherefore we firstly go into a refer-
ence frame rotating with the driving field ωs via the transformation U = exp

[
−iωs(a

†a+ σz/2)t
]

(cp. App. A.1.3). The Hamiltonian then reads

Hd,rot =
~

2
(ωq − ωs) − ~∆sra

†a+ ~g
(
σ+a+ σ−a†

)
+ ~Ωs

(
a+ a†

)

+ ~Ωrf

(
ei(ωrf−ωs)ta+ e−i(ωrf−ωs)ta†

)
.

(3.17)



48 3 State-of-the-Art in Superconducting Qubit Readout

We firstly want to eliminate the off-resonant coupling between the driving field ωs and

the cavity. Therefor, we apply the unitary transformation U1 = exp
[
− Ωs

∆sr

(
a† − a

)]
with

|∆sr| ≫ Ωs. Following the steps in App. C.5, this yields

H
eff,1
d,rot =

~

2
(ωq − ωs) − ~∆sra

†a+ ~g
(
σ+a+ σ−a†

)
+ ~

gΩs

∆sr

(
σ+ + σ−

)

+~Ωrf

(
ei(ωrf−ωs)ta+ ei(ωrf−ωs)ta†

)
+ ~

gΩrf

∆sr

(
ei(ωrf−ωs)t + e−i(ωrf−ωs)t

)
,

(3.18)

where constant shifts have been neglected. The time-dependent, ”constant” terms with
e±i(ωrf−ωs)t can be neglected since they just generate a global phase (see App. C.6).

Still, the coupling between the qubit and the resonator has to be eliminated. For this

purpose, we apply the unitary transformation U2 = exp
[
− g

∆qr

(
σ+a− σ−a†

)]
. Therefore, we

obtain the final effective Hamiltonian in the rotating frame,

H
eff
d,rot =

~

2

(
ωq − ωs +

g2

∆qr
σz

)
− ~

(
∆sr −

g2

∆qr
σz

)
a†a

+ ~Ωrf

(
ei(ωrf−ωs)ta+ e−i(ωrf−ωs)ta†

)
+ ~

gΩs

∆sr

(
σ+ + σ−

)
.

(3.19)

The coupling Ωrf is very weak; thus, we did not take into account the second order couplings
between ωrf and the qubit. Since ωq ≈ ωs we set ∆qr = ∆sr ≡ ∆ henceforward. Back in the
non-rotating frame the Hamiltonian reads

H
eff
driven =

~

2

(
ωq +

g2

∆

)
σz + ~

(
ωr +

g2

∆

)
a†a+ ~g

(
σ+a+ σ−a†

)

+ ~Ωrf

(
eiωrf ta+ e−iωrf ta†

)
+ ~

gΩs

∆

(
e−iωstσ+ + eiωstσ−

)
.

(3.20)

The last term, ~
gΩs

∆

(
e−iωstσ+ + eiωstσ−

)
, of Eq. (3.19) rotates the qubit and hence induces

Rabi oscillations whereas different values of ωs generate different rotations. The transition

frequency of the qubit is ac Stark and Lamb shifted by g2

∆ (n+ 1/2). Therefore, the resonator
frequency depends on the state of the qubit. Fig. 3.3(a) shows this entanglement of the qubit
and the resonator. In the dispersive limit, two transmission curves are visible, corresponding
to the ground and excited state of the qubit.

The off-resonant coupling between the qubit and the resonator also yields a phase shift of
the field that leaks out the resonator [11; 22; 27]

∆φ = arctan

(
2g2

κ|∆|

)
σz, (3.21)

with κ being the decay rate of the resonator (1/κ is the photon life time). The phase shift also
depends on the qubit state; it has different signs for the two states |g〉 and |e〉. Fig. 3.3(b)
shows this state-dependent phase shift. The smaller the detuning, the clearer the phase
difference between the ground and excited state can be determined. Thus, the qubit state
can be distinguished from the phase shift of the resonator.

The coupling between the cavity and the measurement pulse, Hrf = ~Ωrf(e
iωrf ta+e−iωrf ta†),

populates the cavity with nrf measurement photons. This measurement field adopts the phase



3.2 Dispersive Measurement Using Circuit QED 49

Tr
an
sm
is
si
o
n

Δ
φ

 (d
e

g
re

e
)

Δ (x10-3)
ω

r

a) b)

|g |e

|g |e

Figure 3.3: (a) Transmission spectrum of the resonator in the dispersive limit. The trans-
mission spectrum (linewidth κ) is “pulled” by an amount ±g2/∆, depending on the state of
the qubit (red for |e〉, blue for |g〉). Additional peaks near ωq corresponding to qubit flips are
suppressed by g/∆. (b) Phase shift of the resonator field for the two states of the qubit as a
function of ∆. Readout of the qubit is realized at, or close to, zero detuning where the depen-
dence of the phase shift on the qubit state is largest. Coherent manipulations of the qubit are
realized close to the qubit frequency. Taken from [22].

and the state of the resonator field. Therefore, we can measure the phase shift φ and the
frequency shift g2∆ of the resonator field by measuring the phase shift and the frequency
shift of the rf field in a homodyne measurement (see App. E.2). With this, the state of the
qubit can be reproduced.

In the measurement of the small rf signal, an amplifier is used. This amplifier adds
noise in addition to amplifying the signal and can obscure the original signal. The signal-to-
noise ratio (SNR) of the measurement is then given by the ratio of the number of photons
nsig = nκ∆t/2, accumulated over the integration period τ , divided by the detector noise
namp = kBTN/~ωr ≈ 100 (TN being the noise temperature of the amplifier).

SNR =
nκ τ

2namp
(3.22)

The integration time is limited by the qubit’s decay time T1 = 1/γ and the number of photons
by the critical amplitude of the resonator ncrit ≈ 100. The SNR can be very large if the qubit
lifetime is longer than a few cavity decay times [22].

In the experiment [11], the SNR in an integration time of 100 ns is approximately 25.
To determine the readout fidelity, each trace of the data has to be analyzed individually to
assess the most likely prepared qubit state [27]. The single-shot readout fidelity for the qubit
state integrated over the relaxation time (T1 ≈ 7µs) then is approximately 30%. This fidelity
can be improved by either using an amplifier with lower noise temperature or a larger signal
power. In the current experiments, a fidelity of 70 − 80% [79] was achieved.

Nevertheless, this measurement is a QND measurement, since the interaction Hamiltonian
of the cavity and the measurement field Hrf does commute with the qubit Hamiltonian. Only
the very small second-order effect of the coupling between the qubit and the measurement
field might disturb the QND character of the measurement.

In conclusion, the dispersive readout scheme is a rather slow measurement (∼100 ns) since
many measurements have to be carried out for a high fidelity. The SNR is limited in practice
due to nonlinear effects that occur at a stronger driving field [80]. Due to the QND character
of the measurement, the qubit remains in the measured state and can be used for further
processing.
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3.3 Readout with the Josephson Bifurcation Amplifier

Another QND-like measurement uses the Josephson bifurcation amplifier to read out the
qubit state. It was firstly proposed and experimentally realized in a quantronium circuit by
Siddiqi et al. [12; 81]. This readout method is based on an rf-driven JJ that acts as a nonlinear
resonator coupled to the qubit via a quadratic type of interaction. As a result of this nonlinear
coupling, the resonance frequency of the oscillator becomes qubit-state dependent. The state
of the qubit can thus be inferred from a measurement of the properties of the oscillator. Under
certain driving conditions, the resonator state also depends on the qubit state; therewith, the
qubit state is amplified and can be determined with a fidelity up to 95%. However, due to
the interaction with the oscillator, a decrease of the qubit coherence time and a change of the
qubit bias is observed [82]; consequently, the QND character of the measurement is not ideal.

Nowadays, this method is used to determine the state of a flux qubit, see e.g. [37; 82; 83;
84; 85]. A dc SQUID, which is a nonlinear oscillator, is coupled to the qubit via a mutual
inductance M and driven with an ac microwave signal. The driving picks up the phase of
the oscillator that depends on the resonance frequency ωres and the state of the oscillator and
thus on the qubit state.

3.3.1 Coupling of the Qubit to the Readout SQUID

We concentrate on the PCQ, that is described in Sec. 2.2.2, since only this qubit is used in
the experiment3. The uncoupled PCQ Hamiltonian is given by

HPCQ =
εpcq

2
σ̄z +

∆pcq

2
σ̄x. (3.23)

with σ̄z = |l 〉〈 l| − |r 〉〈 r|. The qubit states are built by currents circulating in the loop. This
current depends on the qubit state; in the {|l〉 , |r〉} basis its expectation value is Icirc,q = Ipcqσ̄

z

(cp. Sec. 2.2). Rabi oscillations of the qubit can be induced with a flux pulse δΦac.
The qubit is now coupled to a current-biased dc SQUID via a mutual inductance M . In

the experiment, an ac microwave signal Id(t) with amplitude Id0 and frequency ωs close to the
resonance frequency ωres, is used to drive the dc SQUID. The Hamiltonian of the uncoupled
current-biased readout SQUID reads

HRS,u = Ec,rsN̂
2 − EJ,rs cosϕ− Φ0

2π
Id(t)ϕ, (3.24)

with Ec,rs = (2e)2/2CJ,rs being the charging energy of the readout SQUID,EJ,rs = E0
J,rs cos (πfx,rs)

the flux-dependent Josephson energy (with fx,rs = Φx,rs/Φ0 and E0
J,rs = 2ESJ

J,rs, E
rs,SJ
J being

the Josephson energy of the single junction), N̂ the Cooper pair number operator, and ϕ the
phase of the readout SQUID.

Due to the inductive coupling of the two systems, the average flux induced in the SQUID
loop by the qubit is MIpcqσ̄

z. The external flux through the SQUID loop then changes as

fx,rs → fsq = fx,rs + fx,q, (3.25)

with fx,q = MIpcqσ̄
z/Φ0. If we assume that the flux generated by the qubit is small, we do

not have to take into account the magnetic energy and can use a linear approximation for

3Of course, the measurement would also work for the rf SQUID qubit.
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this flux. The Josephson coupling energy now reads

−E0
J,rs cos (πfsq) cosϕ = −E0

J,rs cosϕ [cos (πfx,rs) cos (πfx,q) − sin (πfx,rs) sin (πfx,q)]

≈ −E0
J,rs cosϕ cos (πfx,rs) + E0

J,rs cosϕπfx,q sin (πfx,rs)

= −EJ,rs cosϕ+MIpcqIcirc,rs σ̄
z cosϕ︸ ︷︷ ︸

=HQS

,
(3.26)

where HQS is the Hamiltonian that describes the coupling of the qubit to the readout SQUID.
Icirc,rs = Φ0/π ·E0

J,rs sin (πfx,rs) is the maximum value of the circulating current in the SQUID
loop (cp. App. B.4.1). Introducing the state- and flux-dependent Josephson energy EJ,σ̄z =
EJ,rs −MIcirc,rsIpcqσ̄

z, the complete Hamiltonian of the readout SQUID reads

HRS = HRS,u + HQS = Ec,rsN̂
2 − EJ,σ̄z cosϕ− Φ0

2π
Id(t)ϕ (3.27)

Expanding the cosine up to ϕ4 and assuming that we are in the flux regime, whereEJ,rs/Ec,rs ≫
1, we can approximate this Hamiltonian by

HRS ≈ ~ωresd
†d− Ec,rs

48

(
d† + d

)4
−
√
Ec,rs

~ωres

Φ0

2π
Id(t)

(
d† + d

)
, (3.28)

with the bosonic creation and annihilation operators

d† =

√
Ec,rs

~ωres

(
~ωres

2Ec,rs
ϕ− ∂

∂ϕ

)
, and d =

√
Ec,rs

~ωres

(
~ωres

2Ec,rs
ϕ+

∂

∂ϕ

)
, (3.29a)

respectively, and

~ωres =
√

2EJ,σ̄zEc,rs. (3.29b)

This is the same approximation that we have already used for the transmon in Sec. 2.1.2. It
describes a nonlinear driven oscillator with the resonance frequency ωres; due to the coupling
to the qubit, the resonance frequency now depends on the state of the qubit. The interaction
Hamiltonian can be described in terms of the creation and annihilation operators d† and d;
in first order, we get

HQS ≈ −1

2

√
Ec,rs

2EJ,σ̄z

MIpcqIcirc,rs

︸ ︷︷ ︸
≡~gQS

σ̄z
(
d† + d

)2
, (3.30)

with ~gQS being the coupling energy. This quadratic-type of interaction is the reason for the
qubit-state-dependent resonance frequency of the oscillator.

To determine the QND character of the measurement, the commutator of the measurement
Hamiltonian and the qubit Hamiltonian has to be determined; it reads

[HQS,HPCQ] =
∆pcq

i
~gQS σ̄y

(
d† + d

)2
. (3.31)

This commutator depends on σ̄y = −i (|l 〉〈 r| − |r 〉〈 l|), the tunnelling probability ∆pcq, and
the coupling gQS. If we assume the product ∆pcq gQS to be small, the commutator is nearly
zero; this means, the measurement is QND-like.
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Figure 3.4: (a) Stability diagram of the driven oscillator as a function of the driving frequency
ωs. In the hatched region, two oscillation states are possible. Below the hatched region, only the
state L with low oscillation amplitude is present. Above, only the state H, with high amplitude,
is possible. ωres is the resonance frequency of the undriven system. (b) Limits of the bistability
region for the cases of a qubit in state |g〉 (blue) or |e〉 (red). Due to the state-dependency of
the nonlinear oscillator, the stability diagrams (and also the resonance frequencies) of the two
states differ. At a certain frequency (indicated by a dashed line), the bifurcation thresholds
IbH(g) and IbH(e) differ significantly. Both taken from [37].

3.3.2 State Detection

To a good level of approximation, the circuit can be described by the classical Duffing

oscillator model [86]. In this model, for ωs > ωres

[
1 −

√
3

2Q

]
, the oscillator state results in

one unique forced oscillation state. For ωs < ωres

[
1 −

√
3

2Q

]
, three solutions are possible,

depending on the driving amplitude Id0:

Id0 < IbL : one oscillation state: L

IbL < Id0 < IbH : two oscillations states: L or H

IbH < Id0 : one oscillation state: H.

(3.32)

IbL and IbH are the values of the driving current where bifurcation occurs, dependent on ωs

and the parameters of the resonant circuit; the oscillator then either resides in the lower (L)
or the higher (H) state. In our circuit, damping of the oscillator arises from quasi-particle
tunnelling and thus the quality factor of the oscillator is Q = R

√
CJ,rs/LJ0,rs (CJ,rs being the

Josephson capacitance, LJ0,rs the Josephson inductance of the readout SQUID, and R the
resistance that describes the normal current, see also App. B.3.1).

Fig. 3.4(a) shows the stability diagram of the driven oscillator as a function of the driving
frequency. For different values of the driving frequency and amplitude, the oscillation state
results in L or H or both. If one starts with Id0 < IbL and slowly increases the driving
amplitude, the oscillator resides in state L until Id0 reaches IbH where the oscillator switches
to state H. Thermal fluctuations will cause the transition L → H to occur randomly at
IbL < Id0 < IbH . Vice versa, a decrease of the driving amplitude starting at Id0 > Ibr resides
in H until Id0 reaches IbL.

This bistable regime, where the oscillator shows hysteretic behaviour, can be used to de-
termine the state of the qubit. The bifurcation current IbH strongly depends on the resonance
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Figure 3.5: (a) Pulse sequence of the oscillator driving amplitude for a typical readout pulse
(taken from [84]) (see also text). (b) Switching probability (P(H)) curves for the qubit in state
|g〉 (blue) and |e〉 (red) as a function of the switching current Isq (see also text). Both taken
from [37].

frequency ωres of the oscillator4. Fig. 3.4(b) shows the stability diagram of the oscillator for
the ground (|g〉) and excited (|e〉) state of the qubit. As can be seen, IbH(g) and IbH(e) differ
significantly at a certain driving frequency. The oscillator is set to this fixed frequency; the
rate of the transition L→ H then strongly depends on the qubit state.

One can also use the monostable regime of the oscillator to measure the qubit state. This
regime does not exploit the L → H transition. One measures the phase and the voltage of
the driven oscillator that also depend on σ̄z. This just corresponds to a flux measurement
with a dc SQUID, see e.g. [54].

We now focus on the bistable regime since the novel ideas are used in this measurement
technique. Fig. 3.5(a) shows the pulse sequence of the driving amplitude. It has to be noted
that in [37], a voltage instead of a current is used to control the probing power; however,
the principle is the same since voltage and current are related by the resistance R of the
measurement device via Ohm’s law. The oscillator is driven with an ac pulse of fixed frequency
ωs < ωres

[
1 −

√
3/(2Q)

]
. Firstly, the amplitude Id0 is set to a value Isw, with IbL < Isw . IbH ,

such that the oscillator switches to the H state with a high probability if the qubit was
projected on |g〉 by the measurement, while it stays in the L state if the qubit was projected
on |e〉. The information of the qubit state is thus transferred on the oscillator state. In the
ideal case, the oscillator is in state H if the qubit was in |g〉 and in L if the qubit was in
|e〉. The second part of the pulse (latching) has a reduced amplitude Ilatch such that both
transitions L → H and H → L have negligibly small probabilities. The pulse duration tlatch
is set long enough to allow amplifier noise suppression; therefore, discrimination of the states
H and L against electrical noise is possible. In the measurement, the oscillator states can
then be distinguished via their amplitudes (low for L and high for H).

To determine the readout contrast of the measurement, the state of the qubit is firstly
prepared in the ground state with large probability by waiting for a time much longer than
the qubit relaxation time. Ideally, the oscillator is then in the higher state H. The probability
P(H) that the oscillator is switched into state H is then measured for different values of Isw
by repeating the measurement sequence many times. The qubit is then rotated in the excited
state with a π-pulse and P(H) is measured again. Ideally, P(H) = 1 for |g〉 and P(H) = 0
for |e〉. Fig. 3.5(b) shows the switching probability curves when the qubit is prepared in

4The lower bifurcation current IbL also depends on ωres, but not that strongly as IbH .
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Figure 3.6: Potential energy of the phase qubit during (a) state preparation and (b) state
measurement. The state is prepared with ac microwave pulses Iac (x- and y- rotations) and
dc pulses Idc (z-rotation). During the readout, the potential barrier is reduced with a dc
measurement pulse Imeas, allowing only the state |e〉 to tunnel out of the well with a high
tunnelling rate (see also text).

the ground or excited state. The maximum separation between the two curves, that is the
readout contrast, is 85.4%. Thus, if we assume that the state |e〉 is prepared optimally, the
oscillator state switches with an efficiency of 85.4%.

The readout fidelity can be calculated by following the general arguments introduced
in [85]. The fidelity is determined by the decay of the oscillator and the qubit during the
switching and latching time. During the first part of the latching time, no relevant decay
mechanisms occur since during this time the oscillator state is prepared. Therefore, the
latching time tlatch mainly determines the readout fidelity. It has to be much shorter than the
qubit and the oscillator coherence times to gain a high-fidelity readout. A detailed analysis of
the decay of the system in the end results in an intrinsic readout fidelity, that is the fidelity of
the experiment where non-ideal state preparation was already taken into account, of 95% [85].

The readout with the Josephson bifurcation amplifier results in a high readout fidelity.
However, the QND character of this measurement scheme is not ideal; therefore, additional
measurements have a lower fidelity and the back-action on the qubit is not negligible. The
measurement time (∼50 ns [37]) is not very long, but still needs to be improved.

3.4 Tunnelling-Readout of Phase Qubits

The last measurement scheme we consider is the readout of flux-biased phase qubits using
state tunnelling5 that was developed by the Martinis group [14]. In this measurement, the
flux in the qubit loop that depends on the qubit state is measured with a dc SQUID. This
readout scheme is very fast (∼ 2−4 ns) and results in a fidelity above 90% [64; 87] (∼ 93%
for |e〉 and ∼ 96% for |g〉). With this advanced measurement technique it was also possible
to measure gate fidelities of ∼ 98% [64] and to perform a state measurement of coupled
phase qubits [88]. Nevertheless, this measurement destroys the state of the qubit (quantum
demolition measurement) and therefore cannot be used for qubit initialization or additional
measurements.

5In principle, one could also use a regular current-biased phase qubit; however, the qubit has to be coupled
to a dc SQUID via a mutual inductance for measurement purposes. Therewith, the flux-biased phase qubit is
the best choice for this readout.
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Fig. 3.6 shows the potential energy of the phase qubit during qubit preparation and
measurement. As already derived for the rf SQUID (cp. Sec. 2.2.1), the height of the potential
barrier ∆Ufp of the flux-biased phase qubit depends on the magnetic energy of the loop,
EL = Φ2

0/(4π
2L), the Josephson energy of the junction, EJ, and the external flux bias ϕx =

2πΦx/Φ0,

∆Ufp ≈ 1

2
(EL + EJ)ϕ

2
0 − ELϕxϕ0 −

EJ

24
ϕ4

0 ∼ ϕx, (3.33)

whereas ϕ0 is the position of the potential minimum (the maximum is located at ϕ ≈ π for
ϕx ≈ 2π); we have neglected constant terms in this approximation. The flux bias corresponds
to dc and ac currents circulating in the loop since Φx = L · Ix. Consequently, we will talk
about external currents in the following.

In the experiment, at first an external dc current is adjusted such that the height of the
potential barrier is high enough to suppress tunnelling of the qubit states out of the potential
well. The potential then can be approximated by a cubic potential and thus with a nonlinear
oscillator model; the two lowest oscillator states build the qubit, whereas the well altogether
contains 3 −5 oscillator states. The qubit state then is prepared by applying ac microwave
pulses Iac to induce x- and y-rotations and quasi-dc (low-frequency) pulses Idc that induce
z-rotations, cp. Fig. 3.6(a).

After the state preparation, the qubit is in a superposition of the ground and excited state.
To measure the qubit state, a dc readout pulse with a width of ∼5 ns that adiabatically reduces
the well depth is applied. The pulse is chosen such that the state |e〉 lies very near the top
of the well when the current pulse is at its maximal value Imeas, see also Fig. 3.6(b). The
excited state |e〉 now tunnels to the right side of the well with the tunnelling rate Γe that is
at least 2 orders of magnitude larger than the tunnelling rate Γg of |g〉. Calculations show
that the ratio of these two tunnelling rates for a shallow well is Γe/Γg ≈ 102 whereas this rate
decreases with increasing bias current [89].

The actual measurement time is shorter than the full width of the measurement pulse
because the tunnelling rate Γe is exponentially sensitive to the total bias current. Therefore,
the qubit will be far more likely to tunnel near the peak of the readout current which results
in an estimated effective measurement duration of 2−4 ns. This is a very short time, more
than an order of magnitude shorter than previous measurement techniques of the phase qubit,
where the qubit state |e〉 was driven to a higher level which then tunneled to the right well [66];
the time is also lots of shorter than the measurement times of the readout schemes introduced
in the previous sections. The probabilities of tunnelling during the time τ (switching to the
right well), Ps,e and Ps,g for levels |e〉 and |g〉, respectively, are given by (k = e,g)

Ps,k = 1 − exp


−

τ∫

0

Γk(t)dt


 , (3.34)

where the fact that Γk can be time-dependent has been taken into account. Γk(t) can be
obtained with a WKB approximation and depends on the value of the current pulse. The
maximum measurement fidelity after the readout pulse is defined as the difference of the
tunnelling probability when the qubit was projected on state |e〉 versus state |g〉.

In the following we mainly follow the arguments and methods derived in [89]. Fig 3.7
shows the tunnelling probabilities as a function of the pulse length τ and the maximum
readout current Imeas, obtained with a WKB-approximation. Imeas is normalized by the
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Figure 3.7: The probabilities Ps,e (red lines, left hand side) and Ps,g (blue lines, right hand
side) of tunnelling to the right well during the measurement pulse starting from the states
|e〉 or |g〉, respectively. The probabilities are plotted as a function of the readout time τ and
the maximum readout current Imeas normalized by the critical value I0 at which the barrier
between the two wells disappears, starting at the initial current Ii = 0.94I0. The pulse duration
is τ = 2ns (solid lines) 10 ns (dashed lines), or 50 ns (dotted lines). Taken from [89].

critical current I0 at which the barrier between the two wells disappears. The current starts
at the initial value Ii ≈ 0.94I0, where approximately 5 states are in the left well. The curves
remain at practically 0% probability for small measurement currents and saturate at 100%
for a large enough Imeas (“S-curve” shape)6. The current shift between the curves for Ps,g

and Ps,e for all times is sufficiently large to reliably distinguish between |g〉 and |e〉. However,
the measurement error, defined as (Ps,g + Ps,e)/2, is finite for any Imeas; it is in the order
of 1% at the optimal point. The minimal measurement error decreases with increase of the
pulse duration τ and can be further reduced by changing the qubit parameters. Even though
the separation of the two S-curves decreases with increase of τ , they become sharper, leading
to better discrimination between the states |e〉 and |g〉. It has to be noted that the WKB-
approximation does not take into account the discreteness of the levels in the right well. A full
numerical simulation of the system would result in oscillations of the switching probabilities.

If one state has tunneled to the right well, the flux in the qubit loop is changed by ∼Φ0.
This flux change now can easily be read out with a pulsed critical-current measurement in a
SQUID detector that is inductively coupled to the qubit loop7.

In first experiments, only a fidelity of 63% has been achieved. This fidelity has been
increased above 90% by separating the capacitive element from the JJ, that is, shunting a
small JJ in parallel with a large capacitance to achieve a small charging energy instead of using
a large JJ [87] (cp. Sec. 2.1.2). Due to this capacitance, the back-action of the measurement
device on the qubit is reduced significantly.

In conclusion, the tunnelling-readout of phase qubits results in a high readout fidelity and
is very fast. However, the readout destroys the state of the qubit and therefore, the state is
lost for additional measurements and computational processes and cannot be prepared with
this technique. Moreover, the tunnelling readout can only be used for phase qubits.

6The switching probability Ps,g for τ = 1ns does not fully approach 100% since the pulse duration is too
short.

7This corresponds to the measurement in the monostable regime in Sec. 3.3.



Chapter 4

Mesoscopic Shelving Readout

In the previous chapter we have discussed the state-of-the-art in SC qubit readout and we
have shown that fast measurements of SC qubits with relatively high fidelities are possible.
Nevertheless, even the highest achieved fidelity of ∼95% is not sufficient for the requirements
of quantum computation. As already mentioned in Sec. 1.1.5, a fidelity above 99% is necessary
for efficient quantum computation, that is, quantum error correction and determination of
the computational output. It is difficult to improve the fidelities of the existing readout
techniques to this value. Therefore, novel ideas for the readout of SC qubits is required that
breaks the limit of 99% fidelity.

For this, we have a look at qubit readout in other physical fields and see if we can adopt
some of these ideas to SC qubits. A prominent technique is the very successful electron
shelving readout in trapped ions. We show that it is possible to apply ideas from the electron
shelving on SC qubits. By combining these with novel ideas, we get a new readout technique
that we term the Mesoscopic Shelving Readout (MSR) [90]. We show that with this readout
technique it might be possible to achieve a fidelity above 99% in a very short readout time.

In this chapter, we firstly describe the concept of the electron shelving readout in trapped
ions. Then, we compare available features in trapped ion with those in SC qubits. This
then leads us to the concept of the MSR. After introducing the basic principle of the MSR,
we present the analytical model including the decay of the cavity. We also show numerical
simulations for the full dissipative dynamics including qubit decay and off-resonant couplings.
Lastly, we discuss the SNR, the fidelity, and the QND character of the measurement.

4.1 Electron Shelving in Trapped Ions

In contrast to SC qubits, experiments in trapped ions have exceeded the threshold of 99%
years ago. Recent experiments report a fidelity of 99.99% [17]. In this section, we introduce
this successful electron shelving readout of trapped ions. This technique was suggested by
H. Dehmelt in the 1960s [91; 92; 93]; in 1989, the Nobel Prize in Physics was awarded to
H. Dehmelt due to his contributions for the development of atomic precision spectroscopy.

In trapped ions, the qubit is represented by a selected pair of internal atomic states that
are e.g. Zeeman-splitted or hyperfine states. The transition frequency of the two qubit states
lies in the optical regime, in contrast to SC qubits where the transition frequency lies in the
microwave regime. Though the Hilbert space of the atom can be truncated to this pair of
states, atoms are many-level systems and thus, several other energy levels lie near the two
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Figure 4.1: Sketch of the electron shelving readout. The qubit is encoded in the states |g〉 and
|e〉; a third level |u〉 is used for state detection. A detection signal is collected on the |g〉 ↔ |u〉
transition if the qubit is projected on the state |g〉. If the qubit is projected on the state |e〉,
no fluorescence is observed. Many measurement shots can be accomplished due to the cyclic
feature of the measurement (see also text).

qubit levels. The shelving readout now exploits the existence of these levels. Fig. 4.1 shows
the principle idea of the shelving readout. After the state preparation with a laser pulse,
the qubit is in a superposition of the ground and the excited state, |Ψ0〉 = α |g〉 + β |e〉. For
efficient quantum computation, the coherence time of the qubit has to be as long as possible
and thus the transition |g〉 ↔ |e〉 is reduced (indicated by green dashed lines) We now take
into account a third level |u〉 that is chosen such that the transition |e〉 ↔ |u〉 is forbidden
and the transition |g〉 ↔ |u〉 is allowed.

For the state measurement, a photon that is resonant to the transition |u〉 ↔ |g〉 is sent
on the qubit, ωph = ωgu. If the ion collapses to the eigenstate |g〉, the state is excited to |u〉
by the photon. |u〉 then decays back to |g〉 in a short time by sending out a photon with
the same frequency as the incoming photon. This fluorescence signal can be detected with
a single photodetector. If the ion collapses to the eigenstate |e〉, no fluorescence signal is
observed—the state is shelved. Thus, in the experiment, one photon is detected for |g〉 and
zero photons for |e〉.

Until now, we have only considered the ideal case where the single photodetector always
clicks if one photon is sent out from the qubit. In real life, the photodetector has a certain
efficiency ηd; high-quality photodetectors have ηd ≈ 80%, but ηd = 20% is also possible.
This means that only 20% of the photons produce a “click” in the detector. Though, the
fluorescence process can be repeated many times until the qubit decays so that even the worst
photodetector can detect a photon; this is the cyclic transition depicted in Fig. 4.1. At this
point we note that the values of the photodetector efficiencies are only valid in the optical
regime where photons have a sufficiently high energy. As already mentioned, the transition
frequency of trapped ion qubits lies in the optical regime; we return to this subject later in
this chapter.

To calculate the number of cycles that are required for an efficient state detection, we
follow the method introduced in [94]. We assume that the detector has no “dark counts”
meaning that it does not click if no photons are sent in from the qubit. Therefore, the
probability of detecting state |e〉 when the qubit is in state |e〉 is Pe(e) = 1 (the probabilities
Py(x) and the corresponding readout fidelity have been introduced in the introductory part
of chapter 3). The efficiency of the detector is then given by the number of detected photons
divided by the number of total photons, ηd = nd/N . The probability that one photon is not
detected by the detector then is (1−nd/N). Accordingly, the probability that after N cycles
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no photons are detected is

PN (0) =
(
1 − nd

N

)N
≃ e−nd = e−ηdN . (4.1)

The probability that at least one photon is detected, corresponding to detecting state |g〉 if
the qubit was projected on |g〉, then is

Pg(g) = 1 − e−ηdN . (4.2)

Even for the worst efficiency of ηd = 20%, after N = 50 cycles we get Pg(g) ≈ 99.995%
and thus a fidelity of

F = Pe(e) + Pg(g) − 1 = 99.995%. (4.3)

As already mentioned, this huge fidelity was also achieved in the experiment [17].

4.2 Evaluation of Shelving Ideas for SC qubits

The electron shelving readout results in a huge fidelity readout. Consequently, it would be
convenient to achieve a shelving-like readout in SC qubits. For this purpose, we compare
features of trapped ions with those of SC qubits and analyze if a shelving readout is possible
in SC circuits.

Firstly, the shelving readout uses three levels to shelve the ground state on the upper
state. Since we have many levels accessible in SC qubits, this third shelving level is easy to
achieve.

Secondly, selection rules are required to assure that the upper state only decays to the
ground state and not to the excited state. Like atoms, SC qubits have selection rules; however,
they are more rudimental than the distinctive selection rules in atoms. At the degeneracy
point, i.e. at the point where the energy dispersion has no slope, dipole transitions are only
possible between two neighbouring qubit states [95]. Therefore, we have rudimental selection
rules for the charge and the flux qubit at the degeneracy point. Since phase qubits have no
degeneracy point, selection rules are not available in these systems.

Nevertheless, it is possible to engineer additional selection rules by placing the qubit inside
a cavity. The spontaneous emission rate of a qubit (in general, a two-level state) is changed
when it is coupled resonantly to a cavity; this is known as the Purcell effect [96]. The Purcell
effect arises from the fact that the cavity has a reduced mode volume compared to the free
space and thus prefers excitations that are resonant to these modes. We assume that no
photons are inside the cavity in the beginning and that we are in the strong coupling regime.
If the qubit is resonant with the cavity, the system is in an equally weighted superposition
of a single photon state and the excited qubit state (see also Sec. 1.3.1). The decay rate of
the qubit then is (γ + κ) /2, with γ being the decay rate of the excited state in absence of
the cavity and κ = ωr/Q the cavity decay rate (ωr being the resonance frequency and Q
the quality factor of the cavity) [22]. Consequently, the lifetime of the qubit is reduced to
T1,κ = 2/ (γ + κ). This means, the resonant transition in the presence of the cavity is “more
allowed” than in the absence of the cavity. If the qubit is in the regime of large detuning,
where |∆| = |ωq − ωr| ≫ g, the decay rate reduces to γ − (g/∆)2 κ. The lifetime of the
qubit in the dispersive limit is increased which corresponds to forbidding the transition. In
conclusion, selection rules are available in SC qubits and we can engineer additional ones that
allow for a cyclic transition and an efficient state shelving.



60 4 Mesoscopic Shelving Readout

Coherent
driving

Cavity

cyclic
 transition

Microwave 
ampli!er Oscilloscopeω

c
=ω

d
=ω

eu

  ≠ω
ge

ω
eu

ω
c

ω
d

ω
q

Figure 4.2: Sketch of the MSR. A three-level system, where the qubit is encoded in the
first two levels, is placed inside a cavity with transition frequency ωr. The cavity is coupled
resonantly to the transition |e〉 ↔ |u〉 with transition frequency ωeu. In addition, this transition
is driven with a coherent field ωd. The transitions |g〉 ↔ |e〉 and |g〉 ↔ |u〉 are reduced (green
dashed lines). If the qubit was projected on state |e〉, a mesoscopic field leaks out the cavity; the
field then is amplified with a linear amplifier and measured with an oscilloscope. The ground
state is associated with the vacuum field (see also text).

For the measurement of the fluorescence signal, a single photodetector is necessary. This is
the main problem because the transition frequency of SC qubits lies in the microwave regime.
Until now, single microwave photodetectors are not available in this regime. However, it is
possible to detect coherent fields in the microwave regime efficiently by amplifying the field
with a linear amplifier and measuring the amplified field with an oscilloscope. The linear
amplifier has a certain floor noise of ∼20 photons in the microwave regime (ω/2π ≈ 10 GHz)
and at low temperatures (∼10 K). Therefore, a field with a mean photon number above this
floor noise is required (see App. E.3 for more information on the measurement with a linear
amplifier and the floor noise). Therefore, we need a mesoscopic field instead of a single photon
that is associated with one qubit state whereas the other state is associated with the vacuum.
Since we already require a cavity for the selection rules, it would be convenient to also use
this cavity for the creation of the field. In the following section, we therefore discuss how to
build this required field.

4.3 The Idea of the Mesoscopic Shelving Readout

We now discuss the configuration of our readout proposal where a mesoscopic field is built
inside a cavity if the qubit was projected on the excited state and a negligible field if the qubit
was projected on the ground state. Since this readout is inspired from the electron shelving
readout in trapped ion, we term it Mesoscopic Shelving Readout (MSR), although several new
ideas are used in this technique.
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Fig. 4.2 shows a sketch of the MSR. The qubit is built by the two states |g〉 and |e〉 with
the transition frequency ωq. We now take into account a third level |u〉. This level can be
e.g. a superposition of the higher charge states (corresponding to N = 2,3) of the CPB qubit
or the third level of the anharmonic oscillator potential of the phase qubit. The transition
|e〉 ↔ |u〉 with the transition frequency ωeu is coupled resonantly with a strong coupling to an
initially empty cavity mode (resonance frequency ωr). Due to this coupling, the off-resonant
transitions |g〉 ↔ |e〉 and |g〉 ↔ |u〉 are reduced by the Purcell effect; the resonant transition
|e〉 ↔ |u〉 is allowed. For flux and charge qubits, at the degeneracy point, the transition
|g〉 ↔ |u〉 is also forbidden by the selection rules in SC qubits.

The qubit state is prepared as for the dispersive readout that is described in Sec. 3.2. A
field that is resonant to the qubit transition ωq and thus off-resonant to the cavity drives the
cavity axially. Due to second-order processes, this field can rotate the qubit. After the state
preparation, the qubit will be in a superposition of the ground and the excited state,

|Ψq
0〉 = α |g〉 + β |e〉 . (4.4)

The field that is used for the state preparation is now switched off and we can measure the
qubit state.

Our measurement procedure can be described as follows. To start the measurement, a
strong microwave driving field that is also resonant to the transition ωeu is switched on; thus,
we have ωeu = ωr = ωd. Since the driving field is also resonant to the cavity, it is important
that the former is orthogonal with the cavity mode in order to minimize the crosstalk between
them.

Let us assume that the qubit was projected on the excited state. The driving field then
excites |e〉 to the upper state |u〉. This upper state interacts with the cavity via a JC interac-
tion meaning that due to the strong coupling to the cavity, the state immediately decays back
to |e〉 by sending a photon into the cavity (this corresponds to Rabi oscillations that fastly
rotate the qubit to the ground state and the cavity excitation to one photon state). But now,
the driving field, again, excites |e〉 to |u〉 and |u〉 sends out a a second photon. This cyclic
process is repeated until the driving field is switched off. The wavefunctions of the photons in
the cavity superpose and so the driving has produced a coherent field in the cavity. Therefore,
if the qubit was projected on |e〉, the cavity is populated with a large, mesoscopic field. Since
the cavity has a certain loss, the field leaks out the cavity. Then, it is amplified with a linear
amplifier and measured with an oscilloscope.

The qubit can also be projected on the ground state by the measurement. If this happens,
the driving field does not excite the qubit and therewith, the cavity is left empty. Therefore,
we expect no outcoming field for the ground state. However, the driving field scatters into
the cavity via the qubit. This crosstalk between the driving and the cavity results in a
population of the cavity even if the qubit was projected on the ground state. The produced
field is negligibly small because the crosstalk is small.

In conclusion, we expect a large coherent field at the cavity output if the qubit was
projected on the excited state and a small field if the qubit was projected on the ground
state. Thus, the state of the qubit can be determined with a high efficiency.
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4.4 Analytical Model of the Mesoscopic Shelving Readout

In this section we present the analytical model of the MSR. We firstly discuss the unitary
dynamics of the system; then, we consider the dissipative model where the decay of the cavity
is taken into account.

4.4.1 Unitary Dynamics of the Driven Superconducting Qubit

For the analytical model, we consider the two-level system, built by |e〉 and |u〉, which is
coupled to the cavity and the driving field. The Hamiltonian that describes the system
depicted in Fig. 4.2 reads

HMSR = ~
ωeu

2
σz

eu + ~ωra
†a+ ~ωdb

†b+ ~geu

(
σ+

eua+ σ−eua
†
)

+ ~gd

(
σ+

eub+ σ−eub
†
)

+ ~gct

(
a†b+ ab†

)
.

(4.5)

Here, b (b†) denotes the annihilation (creation) operator of the driving field with the transition
frequency ωd (this field will be treated classically later). a (a†) denotes the annihilation
(creation) operator of the resonator field with the transition frequency ωr. The operators
σ+

eu = |u 〉〈 e|, σ−eu = |e 〉〈u|, and σz
eu = |u 〉〈u| − |e 〉〈 e|, describe the |e〉 ↔ |u〉 transition with

ωeu being the transition frequency. We do not take into account the energy of the ground
state due to the fact that the ground state is rotated neither by the driving field nor by the
cavity (the qubit transition is off-resonant to both fields). The couplings that have to be
taken into account are that of the resonator to the upper states of the SC qubit (coupling
energy ~geu) and the driving field to the same qubit transition (~gd). Additionally, due to the
presence of the qubit, a coupling of the driving field to the cavity field occurs. This crosstalk
between the driving and the cavity is taken into account by the coupling ~gct. This term has
to be deduced from the full network analysis of two cavities coupled to a qubit [97]. Since we
assume the driving field to be orthogonal to the cavity, this term only arises from the presence
of the qubit in the cavity; it is very small compared to geu, usually less then 10% · geu.

We now choose the cavity and the driving field both resonant with the transition |e〉 ↔ |u〉,
ωr = ωd = ωeu, and assume the driving field to be a classical (=coherent) field with field
amplitude |µ|,

b→ µe−iωdt = |µ|e−iωdteiφ,

b† → µ∗eiωdt = |µ|eiωdte−iφ.
(4.6)

The phase φ can be eliminated by applying the unitary transformation

Uφ = exp

[
iφ

(
a†a+

σz
eu

2

)]
. (4.7)

Neglecting constant terms, the Hamiltonian now reads

H
′(t) = ~

ωeu

2
σz

eu + ~ωra
†a+ ~geu

(
σ+

eua+ σ−eua
†
)

+ ~Ωd

(
e−iωdtσ+

eu + eiωdtσ−eu
)

+ ~Ωct

(
e−iωdta† + eiωdta

)
,

(4.8)

with the classical couplings Ωd = gd|µ| and Ωct = gct|µ|.
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We utilize the Hamiltonian in a reference frame rotating with the driving field frequency,
via the transformation

Ud = exp

[
−iωd

(
a†a+

σz
eu

2

)
t

]
. (4.9)

In the rotating frame, we get

H
d = ~Ωdσ

x
eu + ~geu

(
σ+

eua+ σ−eua
†
)

+ ~Ωct

(
a† + a

)
, (4.10)

with σx
eu = σ+

eu + σ−eu. Defining

H
d = H0 + H

I, H0 = ~Ωdσ
x
eu,

H
I = ~geu

(
σ+

eua+ σ−eua
†
)

+ ~Ωct

(
a† + a

)
,

(4.11)

we derive the Hamiltonian in the interaction picture with the transformation U int = exp
[
− i

~
H0t

]

Hint = ~
geu
2

{(
|+ 〉〈+| − |− 〉〈−| − e2iΩdt |+ 〉〈−| + e−2iΩdt |− 〉〈+|

)
a+ H.c.

}

+ ~Ωct

(
a† + a

)
,

(4.12)

where the dressed states

|±〉 =
1√
2

(|e〉 ± |g〉) (4.13)

are the eigenstates of the σx-operator, with σx
eu = |u 〉〈 e| + |e 〉〈 u| = |+ 〉〈+| − |− 〉〈−|. We

now assume to be in the strong driving regime, where Ωd ≫ geu. Under this condition, we can
apply an RWA and eliminate the fast rotating terms e±2iΩdt in Eq. (4.12). The assumption
of strong driving is essential for the existence of the analytical solutions of the model. Due to
this approximation, the analytical calculation of the full time evolution, even in the dissipative
model, is possible.

After neglecting the fast rotating terms, we obtain the final effective Hamiltonian of the
driven two-level system in the interaction picture

Heff = ~
geu
2

(
σ+

eu + σ−eu
) (
a+ a†

)
+ ~Ωct

(
a† + a

)
, (4.14)

The first part of this Hamiltonian simultaneously realizes JC and anti-JC interactions in the
RWA. It is interesting to note that even though we started with the JC interaction that
rotates the qubit in Eq. (4.5), the qubit is no longer rotated by this effective Hamiltonian.
The simultaneous JC and anti-JC interaction would, apart from the crosstalk-term Ωct, result
in a coherent field state if the qubit was projected on the excited state by the measurement,
and in a vacuum field state if it was projected on the ground state [98].

Initially, the qubit is in a superposition of the ground state |g〉 and the excited state |e〉,
|Ψq

0〉 = α |g〉 + β |e〉 (the upper state |u〉 is not populated in the beginning). The cavity does
not contain any photons in the beginning and so the initial cavity field is |Ψr

0〉 = |0〉. The
initial state of the whole qubit–resonator system then reads

|Ψ0〉 = |Ψq
0〉 ⊗ |Ψr

0〉 =
(
α |g〉 + β |e〉

)
⊗ |0〉 = α |g〉 ⊗ |0〉 +

β√
2

(
|+〉 + |−〉

)
⊗ |0〉 . (4.15)
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The evolved state after a time t can be determined with the time-evolution operator; since
the effective Hamiltonian is time-independent in the rotating frame, the time evolution of the
state then reads (cp. App. A.1)

|Ψ(t)〉 = e−iHeff t/~ |Ψ0〉 = exp
[
−i
(geu

2
σx

eu + Ωct

)
t a† − H.c.

]
. (4.16)

As can be seen, the time evolution of the state is just given by the displacement operator

|Ψ(t)〉 = D

[
−i
(geu

2
σx

eu + Ωct

)
t
]
|Ψ0〉 , (4.17)

whereas the displacement operator creates a coherent state from the vacuum (see App. D.1
for more details on coherent states),

D(α) = eαa†−α∗a, |α〉 ≡ D(α) |0〉 = e−
|α|2

2

∞∑

n=0

αn

√
n!

|n〉 . (4.18)

Therefore, the evolved state reads

|Ψ(t)〉 = α |g〉 |ν̄(t)〉 +
β√
2

(
|+〉 |η̄(t) + ν̄(t)〉 + |−〉 |−η̄(t) + ν̄(t)〉

)
. (4.19)

Here, |±η̄(t)〉 and |ν̄(t)〉 are coherent fields with field amplitudes

η̄(t) = −igeu
2
t and ν̄(t) = −iΩctt, (4.20)

respectively.

This implies that a coherent field |±η̄(t) + ν̄(t)〉 is created inside the cavity if the qubit
was projected on the excited state |e〉 = (|+〉 + |−〉) /

√
2; the ground state |g〉 is associated

only with the small crosstalk-field |ν̄(t)〉. So, we expect a large field for |e〉 and a small field
for |g〉 inside the cavity. Even though we also expect a field for the ground state, this allows
us to discriminate the two states of the qubit with a high efficiency because the crosstalk
coupling Ωct is very small compared to the coupling of the qubit to the cavity, geu.

Let us finally calculate the mean number of photons inside the cavity for the two states
|g〉 and |e〉. A coherent state |α〉 is defined as an eigenstate of the annihilation operator a [99]
with the eigenvalue α, a |α〉 = α |α〉. The mean photon number of a coherent state then is

N = 〈n̂〉 = 〈α| a†a |α〉 = αα∗〈α|α〉 = |α|2 . (4.21)

Therefore, depending on the state on which the qubit was projected the mean photon number
in the cavity will be

N̄e(t) = |η̄(t)|2 + |ν̄(t)|2 =

(
g2
eu

4
+ Ω2

ct

)
t2 for state |e〉 , (4.22a)

N̄g(t) =
∣∣ ¯ν(t)

∣∣2 = Ω2
ctt

2 for state |g〉 . (4.22b)

Thus, the photon number in the cavity grows with a quadratic power law. A more detailed
discussion of the mean photon numbers is given in Sec 4.5.
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4.4.2 Dissipative Model

Hitherto, we have only considered the unitary dynamics of the system, that is, we have only
calculated the field inside the cavity without taking into account the decay of the cavity.
However, we want to know the field that leaks out the cavity since this is the field that is
measured. For this purpose, we include the dissipative coupling of the cavity to the envi-
ronment. We assume to be in the limit of zero temperature, where the cavity cannot absorb
a photon from the environment but only emit a photon into the environment. The system
dynamics then can be described by the master equation for a damped harmonic oscillator
(see App. A.3),

ρ̇QF = − i

~
[Heff ,ρQF] − κ

2
L[a]ρQF, (4.23)

with the cavity decay rate κ and the Liouvillian superoperator L[a]ρQF

L[a]ρQF = a†aρQF − 2aρQFa
† + ρQFa

†a. (4.24)

Following the methods introduced in [100], we firstly introduce the decomposition of the
density matrix in field and qubit parts,

ρQF = |+ 〉〈+| ⊗ ρ1F (t) + |− 〉〈−| ⊗ ρ2F (t) + |+ 〉〈−| ⊗ ρ3F (t)

+ |− 〉〈+| ⊗ ρ4F (t) + |g 〉〈+| ⊗ ρ5F (t) + |g 〉〈−| ⊗ ρ6F (t)

+ |+ 〉〈 g| ⊗ ρ7F (t) + |− 〉〈 g| ⊗ ρ8F (t) + |g 〉〈 g| ⊗ ρ9F (t).

(4.25)

where the field parts of the density matrix, ρiF (t) (i = 1, . . . ,9), are defined as

ρ1F (t) = 〈+|ρQF(t)|+〉, ρ2F (t)= 〈−|ρQF(t)|−〉,
ρ3F (t) = 〈+|ρQF(t)|−〉, ρ4F (t)= 〈−|ρQF(t)|+〉,
ρ5F (t) = 〈g|ρQF(t)|+〉, ρ6F (t)= 〈g|ρQF(t)|−〉,
ρ7F (t) = 〈+|ρQF(t)|g 〉, ρ8F (t)= 〈−|ρQF(t)|g 〉,

ρ9F (t) = 〈g|ρQF(t)|g〉.

(4.26)

With this decomposition, we can write the density operator in its matrix representation in
the {|+〉 , |−〉 , |g〉} basis, where |+〉 = (1, 0, 0)T , |−〉 = (0, 1, 0)T , and |g〉 = (0, 0, 1)T . The
density operator in the matrix representation in this basis then reads

ρQF =



ρ1F (t) ρ3F (t) ρ7F (t)
ρ4F (t) ρ2F (t) ρ8F (t)
ρ5F (t) ρ6F (t) ρ9F (t)


 . (4.27)

This means, ρ1F (t), ρ2F (t), and ρ9F (t) are diagonal in the {|+〉 , |−〉 , |g〉} basis, whereas the
other field parts are off-diagonal and thus can be removed by tracing over the qubit variables
(we will come back to this matrix representation in the next section).

Initially, the SC qubit is in the state |Ψ0〉 ≡ |Ψq
0〉 ⊗ |Ψr

0〉 = (α |g〉 + β |e〉) ⊗ |0〉, whereas
|Ψq

0〉 = α |g〉+β |e〉 and |Ψr
0〉 = |0〉 are the initial states of the qubit and the resonator, respec-

tively, and |e〉 = (|+〉 + |−〉) /
√

2. This means that the initial qubit–field density operator is
ρQF(0) = |Ψq

0 〉〈Ψq
0| ⊗ |0 〉〈 0|. Thus, the initial field density operators ρiF (0) are

ρiF (0) = |0〉〈0| ·





|β|2
2 , i = 1,2,3,4,

β∗α√
2
, i = 5,6,

βα∗
√

2
, i = 7,8,

|α|2, i = 9.

(4.28)
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With the decomposition of the density operator (4.25), the master equation (4.23) can
be rewritten to the following set of differential equations for the field operators ρiF (t) (see
App. D.3 for more details),

ρ̇1,2F = ∓igeu
2

[
a† + a,ρ1,2F

]
− iΩct

[
a† + a,ρ1,2F

]
+ L[a]ρ1,2F ,

ρ̇3,4F = ∓igeu
2

{
a† + a,ρ3,4F

}
− iΩct

[
a† + a,ρ3,4F

]
+ L[a]ρ3,4F ,

ρ̇5,6F = ±igeu
2
ρ5,6F (a† + a) − iΩct

[
a† + a,ρ5,6F

]
+ L[a]ρ5,6F , (4.29)

ρ̇7,8F = ∓igeu
2

(a† + a)ρ7,8F − iΩct

[
a† + a,ρ7,8F

]
+ L[a]ρ7,8F ,

ρ̇9F = −iΩct

[
a† + a,ρi,F

]
+ L[a]ρ9F ,

where braces {. . . } denote the anticommutator symbol.
We now map these equations onto a set of partial differential equations for the character-

istic functions of the Wigner probability distribution (see App. D.2 for more information on
the characteristic functions); they are the expectation value of the displacement operator,

χi(ξ,t) = TrF [ρiF (t)D(ξ)] , (4.30)

where D(ξ), again, denotes the displacement operator (ξ being a complex variable),

D(ξ) = eξa†−ξ∗a. (4.31)

The functions χi(ξ,t) do not fulfill all conditions for quantum characteristic functions, however,
they are continuous and square-integrable [100]. With this transformation, the partial differ-
ential equations for the density matrices (4.29) that depend on the creation and annihilation
operator a and a†, respectively, change into a set of partial differential equations that depend
on the complex variable ξ. Even though, an analytical expression of the expectation value of
the field density operators can be found, the full solution for the operator equations (4.29) is
not possible. This problem can be overcome by using characteristic functions.

As shown in App. D.3, the transformed partial differential equations read:

∂χ1,2

∂t
=

[
±igeu

2

(
1 ± 2Ωct

geu

)
(ξ + ξ∗) + Λ(L[a])

]
χ1,2,

∂χ3,4

∂t
=

[
iΩct (ξ + ξ∗) ∓ igeu

(
∂

∂ξ
− ∂

∂ξ∗

)
+ Λ(L[a])

]
χ3,4,

∂χ5,6

∂t
=

[
±igeu

4

(
1 ± 4Ωct

geu

)
(ξ + ξ∗) ± i

geu
2

(
∂

∂ξ
− ∂

∂ξ∗

)
+ Λ(L[a])

]
χ5,6, (4.32)

∂χ7,8

∂t
=

[
±igeu

4

(
1 ± 4Ωct

geu

)
(ξ + ξ∗) ∓ i

geu
2

(
∂

∂ξ
− ∂

∂ξ∗

)
+ Λ(L[a])

]
χ7,8,

∂χ9

∂t
=

[
iΩct (ξ + ξ∗) + Λ(L[a])

]
χ9,

with Λ(L[a])χi (i = 1, . . . , 9) being the transformed Liouvillian superoperator,

Λ(L[a])χi ≡ TrF [L[a] ρiF (t)D(ξ)] = −κ
2
|ξ|2 χi −

κ

2

(
ξ
∂

∂ξ
+ ξ∗

∂

∂ξ∗

)
χi. (4.33)
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Rewriting the complex variable ξ in terms of its real and imaginary part, ξ = x+ iy, we get
x = (ξ + ξ∗) /2 and y = (ξ − ξ∗) /2. The derivatives with respect to ξ and ξ∗ then can be
written as

∂

∂ξ
=

1

2

(
∂

∂x
− i

∂

∂y

)
, and

∂

∂ξ∗
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (4.34)

Eqs. (4.32) then become

∂χ1,2

∂t
=

[
±igeu

(
1 ± 2Ωct

geu

)
x+ Λ(L[a])

]
χ1,2,

∂χ3,4

∂t
=

[
2iΩct x∓ geu

∂

∂y
+ Λ(L[a])

]
χ3,4,

∂χ5,6

∂t
=

[
±igeu

2

(
1 ± 4Ωct

geu

)
x± geu

2

∂

∂y
+ Λ(L[a])

]
χ5,6, (4.35)

∂χ7,8

∂t
=

[
±igeu

2

(
1 ± 4Ωct

geu

)
x∓ geu

2

∂

∂y
+ Λ(L[a])

]
χ7,8,

∂χ9

∂t
=

[
iΩct x+ Λ(L[a])

]
χ9,

where Λ(L[a])χi (i = 1, . . . , 9) has changed as

Λ(L[a])χi = −κ
2

(
x2 + y2

)
χi −

κ

2

(
x
∂

∂x
+ y

∂

∂y

)
χi. (4.36)

With a shift of the variable y (ỹ = y± 2 geu/κ in the equations for χ3,4 and ȳ = y± geu/κ
in the equations for χ5,6 and χ7,8) we obtain

∂χ1,2

∂t
+
κ

2

(
x
∂

∂x
+ y

∂

∂y

)
χ1,2 =

(
x
[
C ′

1(x) ± C ′
2(x)

]
+ y D′

1(y)
)
χ1,2,

∂χ3,4

∂t
+
κ

2

(
x
∂

∂x
+ ỹ

∂

∂ỹ

)
χ3,4 =

(
xC ′

1(x) + ỹ
[
D′

1(ỹ) ±D′
2(ỹ)

])
χ3,4,

∂χ5,6

∂t
+
κ

2

(
x
∂

∂x
+ ȳ

∂

∂ȳ

)
χ5,6 =

(
x
[
C ′

1(x) ± C ′
3(x)

]
+ ȳ

[
D′

1(ȳ) ∓D′
3(ȳ)

])
χ5,6,

∂χ7,8

∂t
+
κ

2

(
x
∂

∂x
+ ȳ

∂

∂ȳ

)
χ7,8 =

(
x
[
C ′

1(x) ± C ′
3(x)

]
+ ȳ

[
D′

1(ȳ) ±D′
3(ȳ)

])
χ7,8,

∂χ9

∂t
+
κ

2

(
x
∂

∂x
+ y

∂

∂y

)
χ9 =

(
xC ′

1(x) + y D′
1(y)

)
χ9,

(4.37)

where we have introduced the derivatives of the functions

C1(x) = −κ
4
x2 + 2iΩctx, C2(x) = igeux, C3(x) =

i

2
geux,

D1(y) = −κ
4
y2, D2(y) = 2geu

(
y − geu

κ
ln(y)

)
, D3(y) = geu

(
y − geu

2κ
ln(y)

)
.

(4.38)

The partial differential equations in Eq. 4.37 generally read

∂χi

∂t
+
κ

2

(
x
∂

∂x
+ y̆

∂

∂y̆

)
χi =

(
xH ′

i(x) + y̆G′
i(y̆)

)
χi, (4.39)
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where Hi(x) and Gi(y̆) denote the functions on the right-hand side of Eq. (4.37) and

y̆ =





y, i = 1,2,9,

ỹ, i = 3,4,

ȳ, i = 5,6,7,8.

(4.40)

We solve Eq. (4.39) by using the method of characteristics as shown in [99]1. In this
method, the partial differential equation is reduced to a system of ordinary differential equa-
tions on a hypersurface that is given by the characteristic curves. The ordinary differential
equations then can be integrated easily from an initial function. On the characteristic curves,
we have

dt =
2

κ

dx

x
=

2

κ

dy̆

y̆
, (4.41a)

dx

x
=

dy̆

y̆
, (4.41b)

2

κ

dy̆

y̆
=

dχi

(xH ′
i(x) + y̆G′

i(y̆))χi
. (4.41c)

Eq. (4.41a) and results in the following equations that hold on a characteristic curve,

K1 = xe−κt/2, K2 = y̆e−κt/2. (4.42)

From Eqs. (4.41b) and (4.41c), we obtain

dχi

χi
=

2

κ
· (xH ′

i(x) + y̆G′
i(y̆))

y̆
dy̆ =

2

κ

(
H ′

i(x)dx+G′
i(y̆)dy̆

)
. (4.43)

This equation can easily be solved by integration,

χi = K3 exp

(
2

κ
[Hi(x) +Gi(y̆)]

)
. (4.44)

A general solution of the partial differential equation can be obtained by making the integra-
tion constant K3 a function of K1 and K2, K3 = Fi(K1,K2). This function follows from the
initial functions at t = 0 that are associated with the initial density matrices in Eq. (4.28)
and given by

χi,0(x,y) ≡ χi(x,y,0) = ζi exp

(
−x

2 + y2

2

)
, with ζi =





|β|2
2 , i = 1,2,3,4,

β∗α√
2
, i = 5,6,

βα∗
√

2
, i = 7,8,

|α|2, i = 9.

(4.45)

Since

χi,0(x,y) = Fi(x,y) exp

(
2

κ
[Hi(x) +Gi(y̆)]

)
, (4.46)

1We will not go into detail on the mathematical theory of the characteristic curves since it would go beyond
the scope of this thesis. Note that the characteristics have nothing to do with the characteristic functions of
the Wigner probability function, χi.
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we finally arrive at

K3 = Fi(xe
−κt/2,y̆e−κt/2) =

χi,0(xe
−κt/2,y̆e−κt/2)

exp
(

2
κ

[
Hi(xe−κt/2) +Gi(y̆e−κt/2)

]) . (4.47)

Using Eqs. (4.44) and (4.47), the time-dependent solutions of the characteristic functions then
read

χ1,2(x,y,t) =
|β|2
2

exp

(
−x

2 + y2

2
± 2i

geu
κ

[
1 ± 2Ωct

geu

]
x
[
1 − e−κt/2

])
,

χ3,4(x,y,t) =
|β|2
2
f1(t) exp

(
−x

2 + y2

2
∓ 2igeu

κ

[
iy ∓ 2Ωct

geu
x

] [
1 − e−κt/2

])
,

χ5,6(x,y,t) =
β∗α√

2
f2(t) exp

(
−x

2 + y2

2
± i

geu
κ

[(
1 ± 4Ωct

geu

)
x+ iy

] [
1 − e−κt/2

])
,

χ7,8(x,y,t) =
βα∗
√

2
f2(t) exp

(
−x

2 + y2

2
± i

geu
κ

[(
1 ± 4Ωct

geu

)
x− iy

] [
1 − e−κt/2

])
,

χ9(x,y,t) = |α|2 exp

(
−x

2 + y2

2
+

4iΩct

κ
x
[
1 − e−κt/2

])
,

(4.48)

where we have introduced the fast-decreasing functions

f1(t) = exp

(
−2

g2
eu

κ
t+

4g2
eu

κ2

[
1 − e−κt/2

])
,

f2(t) = exp

(
−g

2
eu

2κ
t+

g2
eu

κ2

[
1 − e−κt/2

])
.

(4.49)

Rewriting Eqs. (4.48) in terms of the complex variable ξ = x + iy and the time-dependent
functions

η(t) = −igeu
κ

[
1 − e−κt/2

]
,

ν(t) = −2i
Ωct

κ

[
1 − e−κt/2

]
,

(4.50)

results in the following form of the characteristic functions,

χ1,2(ξ,t) =
|β|2
2

exp

(
−|ξ|2

2
+ ξ {±η∗(t) + ν∗(t)} − ξ∗ {±η(t) + ν(t)}

)
,

χ3,4(ξ,t) =
|β|2
2
f1(t) exp

(
−|ξ|2

2
+ ξ {∓η∗(t) + ν∗(t)} − ξ∗ {±η(t) + ν(t)}

)
,

χ5,6(ξ,t) =
β∗α√

2
f2(t) exp

(
−|ξ|2

2
+ ξ {±η∗(t) + ν∗(t)} − ξ∗ν(t)

)
,

χ7,8(ξ,t) =
βα∗
√

2
f2(t) exp

(
−|ξ|2

2
+ ξν∗(t) − ξ∗ {±η(t) + ν(t)}

)
,

χ9(ξ,t) = |α|2 exp

(
−|ξ|2

2
+ ξν∗(t) − ξ∗ν(t)

)
.

(4.51)

The corresponding density operators ρiF (t) follow from the Fourier transform of the char-
acteristic functions

Wi (δ, δ
∗) =

1

π2

∫
d2ξ χi(ξ,t) exp (δξ∗ − δ∗ξ) . (4.52)
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Here, δ is a complex variable and
∫

d2χ =
∫∞
−∞ dx

∫∞
−∞ dy denotes a two-dimensional integral

over the complex plane. These are two-dimensional Fourier transforms of the characteristic
functions χi(ξ, t) that define the Wigner probability distributions Wi(δ, δ

∗). The relation of
the Wigner function and the density operator is given by [99]

Wi (δ, δ
∗) =

2

π2

∫
d2γ 〈δ + γ|ρiF (t)|δ − γ〉 exp (δ∗γ − δγ∗) , (4.53)

where γ and δ again denote complex variables (note that this γ has nothing to do with a decay
rate). The calculation of the transformation is given in App D.3.3. The density operators
then are

ρ1F (t) =
|β|2
2

|η(t) + ν(t) 〉〈 η(t) + ν(t)| ,

ρ2F (t) =
|β|2
2

|−η(t) + ν(t) 〉〈 − η(t) + ν(t)| ,

ρ3F (t) =
|β|2
2

f1(t)

e−2|η(t)|2 |η(t) + ν(t) 〉〈 − η(t) + ν(t)| ,

ρ4F (t) =
|β|2
2

f1(t)

e−2|η(t)|2 |−η(t) + ν(t) 〉〈 η(t) + ν(t)| ,

ρ5F (t) =
β∗α√

2

f2(t)

e−|η(t)|2/2
|ν(t) 〉〈 η(t) + ν(t)| , (4.54)

ρ6F (t) =
β∗α√

2

f2(t)

e−|η(t)|2/2
|ν(t) 〉〈 − η(t) + ν(t)| ,

ρ7F (t) =
βα∗
√

2

f2(t)

e−|η(t)|2/2
|η(t) + ν(t) 〉〈 ν(t)| ,

ρ8F (t) =
βα∗
√

2

f2(t)

e−|η(t)|2/2
|−η(t) + ν(t) 〉〈 ν(t)| ,

ρ9F (t) = |α|2 |ν(t) 〉〈 ν(t)| .
Therewith, the full density matrix of the qubit–resonator system that was introduced in

Eq. (4.25) reads

ρQF =
|β|2
2

(
|+ 〉〈+| ⊗ |η(t) + ν(t) 〉〈 η(t) + ν(t)|

+ |− 〉〈−| ⊗ |−η(t) + ν(t) 〉〈 − η(t) + ν(t)|
)

+
|β|2
2

f1(t)

e−|η(t)|2
(
|+ 〉〈−| ⊗ |η(t) + ν(t) 〉〈 − η(t) + ν(t)|

+ |− 〉〈+| ⊗ |−η(t) + ν(t) 〉〈 η(t) + ν(t)|
)

+
β∗α√

2

f2(t)

e−|η(t)|2/2

(
|g 〉〈+| ⊗ |ν(t) 〉〈 η(t) + ν(t)|

+ |g 〉〈−| ⊗ |η(t) + ν(t) 〉〈 ν(t)|
)

+
βα∗
√

2

f2(t)

e−|η(t)|2/2

(
|+ 〉〈 g| ⊗ |η(t) + ν(t) 〉〈 ν(t)|

+ |− 〉〈 g| ⊗ |−η(t) + ν(t) 〉〈 ν(t)|
)

+ |α|2 |g 〉〈 g| ⊗ |ν(t) 〉〈 ν(t)| .

(4.55)
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At the end of this section, we now discuss the two limiting cases for short (κt ≪ 1) and
long (κt ≫ 1) timescales for a better understanding of the dynamics. In the next section,
we then focus on the state measurement. In the limit of short times, the density matrix is
just that of the unitary dynamics that were derived in the previous section. For κt ≪ 1, we
can expand the

[
1 − e−κt/2

]
-term in η(t) and ν(t) until the first order in t, and that in f1(t)

and f2(t) until the second order (since they contain the exponential function of this term),
by using the Taylor expansion 1 − e−κt/2 ≈ κt/2 − κ2t2/8. Therefore, for short times, the
functions are approximated by

η(t) ≈ −igeu
2
t = η̄(t), ν(t) ≈ −iΩctt = ν̄(t),

f1(t) ≈ e−2|η̄(t)|2 , f2(t) ≈ e−|η̄(t)|2/2,
(4.56)

so that the state of the qubit–field system is well described by

|Ψ(t)〉 = α |g〉 |ν̄(t)〉 +
β√
2

(
|+〉 |η̄(t) + ν̄(t)〉 + |−〉 |−η̄(t) + ν̄(t)〉

)
. (4.57)

This means, in the limit of short times the unitary dynamics dominate and the field grows
with the same power-law fashion as for the calculations where the cavity decay was not taken
into account (cp. Sec. 4.4.1).

On the other hand, the steady state (t→ ∞) of the qubit–field system is the mixed state

ρss
QF =|α|2 |g 〉〈 g| ⊗ |νss 〉〈 νss| + |β|2

2
(|+ 〉〈+| ⊗ |ηss + νss 〉〈 ηss + νss|

+ |− 〉〈−| ⊗ |−ηss + νss 〉〈 − ηss + νss|),
(4.58)

with

ηss = − igeu
κ
, and νss = −2iΩct

κ
. (4.59)

For long times, the field inside the cavity saturates at the steady state values ηss and νss. This
has its origin in the fact that the cavity population by the driving field is in an equilibrium
with the cavity loss after a time t ≈ 1/κ.

4.5 State Detection

We now again focus on the measurement of the qubit state. In the MSR, the excited state is
associated with a large cavity field and the ground state with a small field that originates from
the crosstalk. In this section, we discuss this coherent field that is generated in the cavity
by the driving and the corresponding outleaking field. We firstly focus on the analytical
model; then, we present numerical simulations in the intermediate driving regime including
all dissipative dynamics and off-resonant couplings of the system.

4.5.1 Cavity Field

We obtain the reduced density operator for the cavity field by tracing over the qubit variables
{|+〉 , |−〉 , |g〉}

ρF (t) = TrQ [ρQF(t)] = ρ1F (t) + ρ2F (t) + ρ9F (t) = |α|2 |ν(t) 〉〈 ν(t)|

+
|β|2
2

(
|η(t) + ν(t) 〉〈 η(t) + ν(t)| + |−η(t) + ν(t) 〉〈 − η(t) + ν(t)|

)
,

(4.60)
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Figure 4.3: Mean photon number in the cavity for the ground state (blue) and the excited
state (red) (for geu/2π = 100MHz, κ/2π = 1MHz and Ωct/2π = 10MHz). The grey dotted
lines show the mean photon number of the unitary dynamics. (a) and (b) only differ in the
timescale that is plotted.

which is always a mixed state. This partial trace can be made clear by considering the matrix
representation of the density operator in Eq. (4.27) and taking the trace of this matrix, which
just corresponds to summing up the diagonal elements.

The dynamics associated with the excited state is given by ρ1F (t) and ρ2F (t); the dynamics
of the ground state is described by ρ9F (t). Again, we expect a large field |±η(t) + ν(t)〉 for
state |e〉 and the small crosstalk-field |ν(t)〉 for state |g〉 (η(t) and ν(t) have been introduced
in Eq. (4.50)).

The mean photon number inside the cavity is now given by the trace over the field vari-
ables,

〈n̂〉 = TrF

[
a†aρF (t)

]
. (4.61)

Thus, the mean photon number of the cavity field mapped on the excited state |e〉 or the
ground state |g〉, Ne(t) and Ng(t), respectively, is

Ne(t) = |η(t)|2 + |ν(t)|2 =

(
geu
κ

+
2Ωct

κ

)2 [
1 − e−κt/2

]2
for state |e〉 , (4.62a)

Ng(t) = |ν(t)|2 =
4Ω2

ct

κ2

[
1 − e−κt/2

]2
for state |g〉 , (4.62b)

Fig. 4.3 shows the time-dependent mean photon number for the two qubit states using the
realistic parameters geu/2π = 100 MHz and κ/2π = 1 MHz and an overestimated crosstalk
coupling of Ωct/2π = 10 MHz (in the experiment, this coupling lies around 2 MHz [97]). Also
shown are the photon numbers for the unitary dynamics, where the cavity does not decay (grey
dotted lines). Firstly, we observe that for short times (Fig. 4.3(a)) the curves for the dissipative
and the unitary dynamics are nearly the same whereas the curves of the dissipative dynamics
converge to a constant value for larger times (Fig. 4.3(b)). This is exactly the behaviour that
we have discussed in the end of the previous section. As can be seen clearly, Ne(t), which
is the mean number of photons in the cavity when the qubit was projected on the excited
state, differs significantly from Ng(t) even for the overestimated crosstalk coupling of 10 MHz.
Thus, the number of photons for state |e〉 and |g〉 can be distinguished easily. Ne(t) grows
very fast in time and saturates in the steady state, which is reached after ∼1 µs (Fig. 4.3(b)).
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The number of photons in the steady state for |e〉 is N ss
e =

(geu

κ + 2Ωct

κ

)2 ≈ 104 photons; this
is a huge number of photons. The steady state field that is built inside the cavity for the

ground state has N ss
g =

4Ω2
ct

κ2 = 400 photons inside the cavity. So, the field for the ground
state is two order of magnitudes smaller than the field for the excited state. This means, we
can neglect the crosstalk field from now on. Moreover, the negligence of the crosstalk field

just corresponds to shifting the number of photons by −4Ω2
ct

κ2

[
1 − e−κt/2

]2 ≡ −Ng(t) since
this crosstalk term appears in both the ground and excited state mean photon number.

Neglecting the crosstalk, the mean number of photons for the state |e〉 and |g〉 now are

Ne(t) = N ss
e

[
1 − e−κt/2

]2
for state |e〉 , with N ss

e =
(geu
κ

)2
, (4.63a)

Ng(t) = 0 for state |g〉 . (4.63b)

Until now, we have only considered the photons inside the cavity; however, we cannot build
the measurement devices in the cavity. Hence, we want to know the field that leaks out
the cavity. The photons bounce against the resonator walls with the rate κ, so the mean
transmitted photon rate for the excited state is

Ṅ ss
out = κ ·Ne(t) = κ ·N ss

e

[
1 − e−κt/2

]2
=
g2
eu

κ

[
1 − e−κt/2

]2
. (4.64)

The steady state value of this leakage field is Ṅ ss
out = g2

eu/κ = 6 · 104 photons
µs . This is an

amazingly huge photon rate in a time of only 1µs. Though, as we show in Sec. 4.6, we do
not have to reach the steady state for a high-fidelity state measurement.

4.5.2 Numerical Simulations in the Intermediate Regime

An interesting question is, if our assumptions are also valid in a more realistic picture. So,
is a large field also achievable in the intermediate driving regime? For the solutions with
an intermediate driving strength, where Ωd ≈ geu, that include the decay of the qubit and
off-resonant couplings, numerical simulations are required. For the numerical simulations we
choose the charge qubit in different regimes as a proof of principle. The Hamiltonian of the
CPB coupled to the cavity and the driving field can be calculated according to Sec. 2.4 but
now Nac

g also contains the classical driving field with amplitude V and frequency ωd,

Nac
g = N (2)

rms

(
a† + a

)
+
CgV

2e
cos (ωdt) , (4.65)

with N
(2)
rms =

Cg

2e

√
~ωr
2Cr

. The final Hamiltonian then also includes a term

(
Nac

g

)2
= N (2)

rms

CgV

e
cos (ωdt)

(
a† + a

)
+
[
N (2)

rms

(
a† + a

)]2
+

[
CgV

2e
cos (ωdt)

]2

. (4.66)

The last two terms can be neglected since they are an artifact from the calculation of the
voltage-biased JJ (cp. App. B.3.3). The first term represents the crosstalk between the
driving and the cavity; therewith, the classical crosstalk-coupling for the charge qubit is

~Ωct = N (2)
rms

CgV

e
=
C2

gV

2e2

√
~ωr

2Cr
. (4.67)
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Following the steps in Sec. 2.4, this results in the generalized JC Hamiltonian of the complete
system,

Hsys =~

∑

k

ωk |k 〉〈 k| + ~ωra
†a+ ~

∑

k

gk,k+1 |k 〉〈 k + 1|
(
a† + a

)

+ ~

∑

k

Ωk,k+1 cos (ωdt) |k 〉〈 k + 1| + ~Ωct

(
e−iωdta† + eiωdta

)
,

(4.68)

where we have only taken into account the coupling between two neighbouring states. Note
that the RWA has not been applied on this Hamiltonian. Thus, the numerical simulations
also take into account fast rotating terms. The coupling energies are

~gk,k+1 = ~gk+1,k = 2EcN
(2)
rms

∣∣∣〈k|N̂ |k + 1〉
∣∣∣ , (4.69a)

~Ωk,k+1 = ~Ωk+1,k = Ec
CgV

e

∣∣∣〈k|N̂ |k + 1〉
∣∣∣ , (4.69b)

corresponding to geu and Ωd in the previous sections, respectively. The first two levels of the
Hamiltonian (4.68) build the qubit states (|0〉 ≡ |g〉 and |1〉 ≡ |e〉), whereas the auxiliary level
coincides with the third level (|2〉 ≡ |u〉).

In the numerical simulations, we now take into account the (non-radiative) decay of the
SC qubit. The evolution of the total density matrix of the system obeys the master equation

ρ̇ = − i

~
[Hsys,ρ] −

κ

2
L[a]ρ− Γρ. (4.70)

The dissipator Γρ written in the basis of the uncoupled qubit states reads

(Γρ)kl =
γk + γl

2
ρkl − (1 − δkl) γφρkl − δkl

∑

j

ρjjγj→k, (4.71)

with γk =
∑

k 6=l γk→i being the total decay rate of the state |k〉 and γφ the total dephasing
rate which we choose to be equal for all qubit levels.

In the simulations, we solve the master equation (4.70) numerically in a subspace of four
qubit and nph photon states. We assume the decay rates of these four qubit levels to be

γ0 = γg = 0,

γ1 = γe = γe→g ≡ γ,

γ2 = γu = γu→e = 10γ,

γ3 = γ3→u + γ3→e + γ3→g = 100γ,

(4.72)

where the selection rules for the charge qubit at the degeneracy point have been taken into
account by setting γu→g = 0. The relaxation and dephasing rate of the qubit, γ = T−1

1 and
γφ = T−1

2 , respectively, are obtained from the experiment [11; 25; 101] and depend on the
ratio EJ/Ec.

Fig. 4.4 shows the numerical solutions of the master equation in a charge-phase regime
(EJ/Ec = 1, 4.4(a)) and an intermediate transmon regime (EJ/Ec = 8, 4.4(b)). For the
comparison of the different solutions, the figure shows the analytical solutions for the unitary
dynamics N̄ e(t) (black dashed lines) and dissipative dynamics of the cavityN e(t) (blue dashed
lines) with the corresponding numerical data in the intermediate regime (red bold lines and
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Figure 4.4: Numerical simulations of the mean cavity photon number for |e〉. Shown are
the analytical solutions N̄e(t) (black dashed line) and Ne(t) (blue dashed line) with the corre-
sponding numerical data (red bold line and orange bold line, respectively) and the full “noisy”
dynamics (green line). Simulations have been done considering four levels of the CPB and
nph photon number states. In both pictures, we use geu/2π = 150MHz, κ/2π = 1.6MHz,
Ωd = 5geu, and Ωct/2π = 10MHz. (a) shows the simulations in the intermediate transmon
regime, with EJ = 8Ec = h · 20GHz, T1 = 2µs, T2 = 1µs, and nph = 22, and (b) in the
charge-phase regime, with EJ = Ec = h · 10GHz, T1 = 5µs, T2 = 500 ns, and nph = 25 (see
also text).

orange bold lines, respectively). The green lines show the full dynamics including the decay
of the qubit. Due to the truncation of the Hilbert space to nph photon states, the curves show
small oscillations which are more distinctive for the smaller photon state number of nph = 22
in (a) compared to nph = 25 in (b). Thus, we expect that this oscillations disappear when
more photon states are taken into account.

In the figures, it is possible to notice a slower increase with respect to the analytical models
of the mean cavity photon number even in the numerically noiseless case (red lines) due to
the intermediate driving strength and the presence of more qubit levels and off-resonant
couplings. The effect of the qubit decoherence (green curves) leads to a further reduction
of the mean cavity photon number growth. However, even for this realistic model, if the
qubit is projected on the excited state |e〉, significant photon numbers can be achieved within
very short measurement times. Thus, we expect a large measurement fidelity even in the
intermediate, noisy case.

Finally, we remark that we expect similar results for the flux qubit since it also couples
strongly to the cavity field and has selection rules at the degeneracy point. For the phase
qubit, the mean photon number might be further reduced due to the absence of selection
rules. The MSR cannot be directly applied in a deep transmon regime (EJ/Ec ≫ 1) due to
the non-sufficient anharmonicity between the levels. In fact, in this case the measurement
field will be almost resonant also with the qubit, thus inducing unwanted transitions. Never-
theless, modified measurement schemes exploiting a different auxiliary level or a two-photon
measurement drive can in principle be engineered.
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Figure 4.5: Mean transmitted photon rate for the excited state. In (a) the rate is illustrated
for small times, (b) shows the steady state behaviour. The dashed line in (a) marks the photon
rate that has to be exceeded for an efficient measurement (SNR > 1).

4.6 Characterization of the Mesoscopic Shelving Readout

For the characterization of the MSR, we want to know the measurement time that assures a
good SNR, the fidelity of our readout technique, and the QND character.

4.6.1 Signal-to-Noise Ratio

For the measurement, the coherent field that leaks out the cavity (Eq. (4.64)) is increased
with a linear amplifier and then measured with an oscilloscope.

As discussed in App. E.3, a linear amplifier has a certain floor noise that is given by the
ratio of the thermal energy of the amplifier noise (TN = 10 K) and the energy of the measured
photons (ωr/2π ≈ 10 GHz) [22],

namp =
kBTN

~ωr
≈ 20. (4.73)

We define the SNR after a time t as the outcoming cavity photon rate divided by the
photon number of the amplifier and the measurement bandwidth γmeas,

SNR(t) =
κ ·Ne(t)

γmeas · namp
. (4.74)

The device that sets the measurement bandwidth in the experiment is that with the narrowest
bandwidth; thus, we have γmeas = κ. The photon number of the outleaking field can be
discriminated against the noise of the linear amplifier if SNR > 1.

To achieve this ratio, the measurement time τ has to be

τ ≥ −2

κ
ln

(
1 −

√
γamp · namp

κ ·N ss
e

)
= −2

κ
ln

(
1 −

√
namp

N ss
e

)
≈ 15 ns. (4.75)

This time is very short, much shorter than the coherence time (T1 ≈ 2 µs) of the qubit.

Fig. 4.5 shows the photon rate that leaks out the cavity for the excited state, again, for
short (Fig. 4.5(a)) and long timescales (Fig. 4.5(b)). The dashed line marks the photon rate
where the SNR exceeds 1. As can be seen, the outcoming field grows rapidly for short times
thus giving the possibility of a very fast high-fidelity readout.
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4.6.2 Single-Shot Readout Fidelity

Let us now have a look at the fidelity of the readout. According to [6] (see also Eq. (3.1)),
the fidelity can be defined as

F = Pe(e) + Pg(g) − 1 = 1 − (Pg(e) + Pe(g)) , (4.76)

where Py(x) is the conditional probability to measure the state y when the qubit was projected
on |x〉 by the measurement ({x,y} = {g,e}). Let τ be the measurement time which assures a
sufficient SNR. For the qubit measurement, a coherent field state with a mean photon number
Ne(τ) (Ng(τ)) in a time 1/κ is measured. However, this does not mean that we also measure
Ne(τ) (Ng(τ)). As shown in App. D.1, a coherent field has a Poissonian distribution of the
photon number. Thus, the probability of detecting nd photons when the mean photon number
is N is

P (nd) = e−N N
nd

nd!
, with

∞∑

nd=0

P (nd) = 1. (4.77)

For example, for a mean photon number of N ≈ 20, the probability of measuring N photons
is only 8.9%; this probability decreases with increasing photon number. We define nth(τ)
as the threshold photon number which allows us to distinguish between the qubit states; it
depends on the measurement time since the mean number of photons for the qubit states and
therewith the threshold photon number grows in time. Then, the probability Pe(e) is the sum
of the coefficients of all Fock states in the coherent state that have photon numbers above
the threshold, when the qubit was projected on |e〉,

Pe(e) =
∞∑

n=nth

e−Ne(τ) (Ne(τ))
nth

nth!
= 1 −

nth∑

n=0

e−Ne(τ) (Ne(τ))
n

n!
. (4.78)

where Ne(t) is given by Eq. (4.62) (we take the crosstalk into account to show that we get
a high fidelity even with this term). Consistently, for Pg(g) we have to consider the photon
numbers below the threshold value and the qubit in the ground state,

Pg(g) =

nth∑

n=0

e−Ng(τ) (Ng(τ))
n

n!
. (4.79)

Let us now assume that we measure for a time of τ = 25 ns, where Ne(τ) ≈ 60 photons and
Ng(τ) ≈ 2 photons. We set the threshold photon number of this measurement time to a
totally overestimated value of nth = 402. This means that any output with a photon number
above nth = 40 will be associated with the excited state and any output with lower photon
number with the ground state. The sums in Eq. (4.78) and (4.78) can easily be calculated
with e.g. Mathematica. The probabilities for these values then are

Pe(e) = 99.5%,
Pg(g) = 100%.

⇒ F = 99.5%. (4.80)

This means, even for the unrealistically high value of nth = 40 (and also an overestimated
value for the crosstalk, Ωct = 10 MHz) and a very short measurement time of τ = 25 ns, the
fidelity of the readout scheme approaches unity.

2The linear amplifier has a Gaussian photon number distribution; the probability that the noise of the
linear amplifier is above 40 in one single shot is below 10−6, see also App. E.3.
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In conclusion, we have an SNR of the measurement device that exceeds 1 for a time of
15 ns. The fidelity of the readout scheme is above 99% for a measurement time of ∼ 25 ns.
For more realistic parameters of Ωct and Nth, the measurement time is even decreased. To
our knowledge, this is the first readout technique for SC qubits that prognoses a fidelity that
approaches unity in such a short measurement time and only for a single shot. Since the
proposed measurement-scheme gives good knowledge of the qubit state in z-direction, it will
lead to a full tomography of the wavefunction with a following rotation of the driving field in
the x- and y-direction.

4.6.3 Quantum Non-Demolition Character

Finally, we analyze the QND character of the MSR. For this, we firstly calculate the com-
mutator of the qubit Hamiltonian and the interaction Hamiltonian of the qubit with the
readout device. If this commutator is zero, we have a QND measurement. The interaction
Hamiltonian is given by (see also Eq. (4.5))

Hmeas = ~geu

(
σ+

eua+ σ−eua
†
)

+ ~Ω
(
σ+

eu + σ−eu
)
. (4.81)

The qubit Hamiltonian, as usual, reads

Hq =
~

2
ωqσ

z, (4.82)

with σz = |e 〉〈 e| − |g 〉〈 g|. Therewith, the commutator is

[Hq,Hmeas] =
~

2

2
ωq

[
geu

(
σ−eua

† − σ+
eua
)

+ Ωd

(
σ−eu − σ+

eu

)]
6= 0. (4.83)

This means, strictly speaking, we do not have a QND measurement.
However, let us discuss the interaction Hamiltonian (4.81) in detail. The interaction

Hamiltonian only acts on the excited state of the qubit. This means, if the qubit was projected
on |g〉 by the measurement, it remains in |g〉. Thus, for the ground state, the MSR is a QND
measurement and can be used for state preparation and additional state readout.

Now, what happens if the qubit was projected on the excited state? After the driving
field is switched off, the system will either be in state |e〉 or |u〉. An additional measurement
of the system will then again result in the measurement of a large coherent field. Since we
associate the measurement of such a large field with the excited state, we again have the
output |e〉. Thus, the system can be used for additional measurements. Nevertheless, if the
system is in either state |u〉 or |e〉 after the measurement, the qubit state |e〉 is destroyed
since we get Rabi oscillations between the cavity and the |e〉 ↔ |u〉 transition, that is, the
state switches between |e〉 and |u〉. Thus, the excited state is not available for additional
quantum computational processes which means that for the excited state the MSR is not a
QND measurement in the usual sense.

Therefore, we call the readout scheme a “QND-like measurement” since additional mea-
surements are possible but the state of the qubit itself is destroyed and thus the measurement
in general cannot be used for state preparation or additional computational processes.



Chapter 5

Conclusion and Outlook

The goal of this work was to develop a novel readout technique for superconducting (SC)
qubits that breaks the limit of 99% fidelity. Current readout fidelities in SC qubits are not
large enough for the requirements of quantum computation.

Therefore, we have theoretically introduced this new high-fidelity readout technique that
profits from circuit quantum electrodynamics (QED) and is inspired from the electron shelving
readout in trapped ions. We have shown how this Mesoscopic Shelving Readout (MSR) can
be used to determine the state of an SC qubit by using a third qubit level such that the
transition of the upper two states is coupled resonantly to a microwave cavity and driven
(also resonantly) with a strong microwave driving field. The MSR can be used to readout
phase, flux, and charge qubits, whereas the readout scheme is especially suitable for the two
last ones since only in charge and flux qubits, selection rules are available at the degeneracy
point.

We have presented the analytical model of the MSR, where we have used techniques from
quantum optics to describe the system. The dissipative dynamics predicts a mesoscopic field
outside the cavity for one qubit state and a small, negligible field for the other qubit state.
Additional numerical simulations confirm that a large field is also achievable in the inter-
mediate driving regime. As we have demonstrated, the readout may result in an amazingly
high fidelity above 99% in a fast (τ ≈ 25 ns) single-shot QND-like qubit measurement. This
represents a big step forward for the implementation of quantum computation in solid-state
architectures.

All the technical requirements for the MSR are experimentally feasible. Therefore, future
experiments can lead to an unprecedented high measurement fidelity of SC qubits. Thus, the
next step is the experimental realization of this new readout technique. Further theoretical
works will have to study how this readout technique can be used in standard and one-way
quantum computation in different architectures, that is, for example how we can use the MSR
for efficient quantum error correction.
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Appendix A

Details on Quantum Mechanics

We use many tools of quantum mechanics in this thesis. Consequently, we recapitulate some
of these in this part of the appendix.

A.1 Time Evolution in Quantum Mechanics

We firstly have a short review on the time evolution on quantum mechanical states and
operators in the three mainly used pictures in quantum mechanics, the Schrödinger, the
Heisenberg and the interaction picture; the latter one is also known as the Dirac picture.

A.1.1 Schrödinger Picture

In the Schrödinger picture, the state of the system evolves in time whereas the operators
(corresponding to observables) are constant in time. The time evolution of the wavefunction
|ΨS(t)〉 is given by the Schrödinger equation

∂

∂t
|ΨS(t)〉 = − i

~
HS(t) |ΨS(t)〉 , (A.1)

where we use the notation HS(H/int)

(∣∣ΨS(H/int)

〉)
for the Hamiltonian (wavefunction) in the

Schrödinger (Heisenberg/interaction) picture, respectively. This equation is generally solved
by

|ΨS(t,t0)〉 = U(t,t0) |ΨS(t0)〉 , with U(t0,t0) = 1, (A.2)

where |ΨS(t0)〉 is the initial wavefunction and U(t,t0) is a unitary operator, the so-called
time-evolution operator which also obeys the Schrödinger equation1,

∂

∂t
U(t,t0) = − i

~
HS(t)U(t,t0). (A.3)

From now on, we set t0 = 0. The previous equation can be integrated (see e.g. [16]) which
yields the time-evolution operator

U(t) = Te−
i
~

∫ t
0

HS(t′)dt′ , (A.4)

1Strictly speaking, this equation is an operator equation which is equivalent to the Schrödinger equation.
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with T being the time ordering operator. If we assume that the HS(t
′) at different times

commutate with each other, we do not have to take into account T .

For a time-independent (≡conservative) Hamiltonian, Eq. (A.4) then reduces to

U(t) = e−iHS t/~. (A.5)

A.1.2 Heisenberg Picture

In the Heisenberg picture, operators are time-dependent and the state vectors are time-
independent. The states in the Heisenberg picture are given by |ΨH〉 = U †(t) |ΨS(t)〉 =
|ΨS(0)〉; an operator (and also the Hamiltonian) OS therefore changes as

OH(t) = U †(t)OSU(t). (A.6)

Inserting this expression in the Schrödinger equation (A.3) yields the equation that corre-
sponds to the Schrödinger equation in the Heisenberg picture—the Heisenberg equation—for
the operator OH

i~
dOH(t)

dt
= [OH(t),HH(t)] + i~

∂OH(t)

∂t
. (A.7)

Mostly, OH is not explicitly time-dependent and therefore the last part in the Heisenberg
equation disappears.

A.1.3 Interaction Picture

In the interaction picture both the wavefunction and the operators are time-dependent. This
picture is mainly is used if one part of the Hamiltonian is time-dependent and the other not.
The Hamiltonian HS(t) firstly is divided into two hermitian parts,

HS(t) = H
0
S + H

′
S(t), (A.8)

where H0
S is the time-independent and H′

S(t) is the time-dependent part of the Hamiltonian.
To solve the Schrödinger equation (A.3), the unitary operator U(t) is also divided in a time-
independent and a time-dependent part2,

U(t) = U0(t) U
′(t), (A.9)

with U̇0(t) = − i

~
H0U0(t) and U̇ ′(t) = − i

~
Hint(t)U

′(t), (A.10)

which immediately gives us

U0(t) = e−iH0 t/~. (A.11)

The state vector in the interaction picture is now given by

|Ψint(t)〉 = U †
0(t) |ΨS(t)〉 = U ′(t) |ΨS(t0)〉 . (A.12)

The operators transform as

Oint(t) = U †
0(t)OS U0(t), (A.13)

2We only differentiate between U0 and U ′ in this part of the thesis since we always write the explicit form
of the transformations in the other parts.
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whereas the Hamiltonian in the interaction picture itself is

Hint(t) = i~U̇ †
0(t)U0(t) + U †

0(t)HS U0(t) = U †
0(t)H

′
S U0(t). (A.14)

The operators, again, evolve according to the Heisenberg equation (A.7), but now only the
time-independent part of the Hamiltonian, H0, appears in the commutator.

In most cases, the Hamiltonian in the interaction picture, Hint(t), is time-independent.
In this case, one can easily derive the state evolution,

|Ψint(t)〉 = eiHint t/~ |ΨS(0)〉 . (A.15)

The Heisenberg and the interaction picture are especially suitable in cases where the
dynamics of a system that is coupled to an environment shall be analyzed (see Sec. 1.2.2).
This dissipative dynamics cannot be described with the Schrödinger equation.

A.2 Unitary Transformations

Since in this thesis, and generally in quantum mechanics, we have to deal with many uni-
tary transformations, we want to find a more easy way to calculate them. Therefore, in this
section we rewrite the transformation (A.5) in terms of the eigenfunctions of the Hamilto-
nian. We assume the Hamiltonian to be time-independent; thus, the eigenfunctions |εn〉, with
corresponding eigenvalues En, are conform with the time-independent Schrödinger equation,

H |εn〉 = En |εn〉 . (A.16)

The eigenfunctions span the Hilbert space (|εn 〉〈 εn| = 1) and are orthogonal (〈εk|εl〉 = δkl

with δkl denoting the Kronecker- Delta). Therefore, the wavefunction |Ψ〉 can be expressed
in terms of the eigenfunctions,

|Ψ〉 =
∑

n

|εn〉 〈εn|Ψ〉︸ ︷︷ ︸
=αn

=
∑

n

αn |εn〉 . (A.17)

The Hamiltonian can be written in matrix form, whereas all off-diagonal elements disappear
since the Hamiltonian is diagonal in its eigenbasis,

H =
∑

n

En |εn 〉〈 εn| , (A.18)

With this knowledge we can now rewrite the transformation U (which is the time-evolution
operator),

U(t) = e−iHt/~ = e−it/~
∑

n En|εn〉〈εn| =
∞∑

k=0

(−it/~∑nEn |εn 〉〈 εn|)k

k!

= 1 +
∑

n

|εn 〉〈 εn|
∞∑

k=1

(−iEnt/~)k

k!
=
∑

n

|εn 〉〈 εn| e−iEnt/~.

(A.19)

We now examine two examples which also are needed in the main part of this thesis.
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a) H ∝ σ
z

We consider a two-level Hamiltonian of the form H = ~
ω
2σ

z, with σz = |e 〉〈 e| − |g 〉〈 g| and
1 = |g 〉〈 g| + |e 〉〈 e|. The initial wavefunction is |Ψ0〉 = α |g〉 + β |e〉. The evolved state thus
reads

|Ψ(t)〉 = e−iHt/~ |Ψ0〉 = e−
i
2
ω t σz |Ψ0〉 = e−

i
2
ω t |e〉〈e|e

i
2
ω t |g〉〈g| |Ψ0〉

=

(
1 + |g 〉〈 g|

∞∑

k=1

(
i
2ω t

)k

k!

)
·
(

1 + |e 〉〈 e|
∞∑

k=1

(
− i

2ω t
)k

k!

)
|Ψ0〉

=

(
1 + |g 〉〈 g|

∞∑

k=1

(
i
2ω t

)k

k!
+ |e 〉〈 e|

∞∑

k=1

(
− i

2ω t
)k

k!

)
|Ψ0〉

=
(
|g〉 〈g| e i

2
ω t + |e〉 〈e| e− i

2
ω t
)
|Ψ0〉 ,

(A.20)

Summarized we get

|Ψ(t)〉 = α e−
i
2
ω t |g〉 + β e+

i
2
ω t |e〉 (A.21)

b) H ∝ a
†
a

The Hamiltonian of a harmonic oscillator has the form H = ~ωa†a = ~ω
∑

n n |n 〉〈n|3, with
n being the number of excitations. The initial state is |Ψ0〉 =

∑
n αn |n〉. The evolved state,

according to Eq. (A.19), is

|Ψ(t)〉 = e−iω t
∑

n n |n〉〈n| |Ψ0〉 =

(
∑

n

|n 〉〈n| e−iω n t

)
|Ψ0〉 =

∑

n

αne
−iω n t |n〉 . (A.22)

A.3 Stochastic Master Equation

For the analysis of the dissipative dynamics of a given quantum-mechanical system, a stochas-
tic master equation that describes the coupling of the system to the environment is required.
The state of a given system can be described by the master equation4. The master equation
in the quantum mechanical picture k (k = S,H,int) reads

ρ(t) = |Ψk(t) 〉〈Ψk(t)| , (A.23a)

ρ̇S = − i

~
[HS, ρS], ρ̇H = 0, ρ̇int = − i

~
[Hint, ρint], (A.23b)

where Hk is the Hamiltonian and Ψk the qubit state of the system in picture k. In the
following, we always write ρ̇ = −i i

~
[H,ρ] since it should now be clear how the master equation

in certain picture looks like.

We now want to describe the loss dynamics of the system; for this purpose, we follow the
derivations in [20; 19]. We start in the Schrödinger picture, where the system is described
by the Hamiltonian HS. We now consider a reservoir described by the Hamiltonian HR and

3Normally, the Hamiltonian of an electromagnetic field has the form H = ~ω
(
a†a + 1

2

)
with ~

2
ω being the

zero–point energy of the field. Since this term only yields an energy shift, we neglect it in this thesis.
4This equation corresponds to the Heisenberg equation of motion (A.7) for the density operator.



A.3 Stochastic Master Equation 85

an interaction between the system and the reservoir, V (t). The total Hamiltonian of the two
coupled systems then reads

H
tot = HS + HR + V (t). (A.24)

If the Hamiltonians of the pure systems, HS and HR, do not depend on time, the total
Hamiltonian in the interaction picture is just Vint(t). The master equation of the total system
thus reads

ρ̇tot(t) = − i

~
[Vint(t), ρtot(t)]. (A.25)

The reservoir variables can be traced out which yields the reduced density matrix

ρ(t) = TrR{ρtot(t)}. (A.26)

The master equation (A.25) can be integrated iterative which yields the reduced density
matrix in a second order perturbation [20].

We now model the reservoir as a collection of bosonic field modes with frequency ωk

described by the creation and annihilation operators d†k and dk, respectively; d†k and dk

obey the usual commutation relation for the mode operators of the bosonic field modes,
[di, d

†
k] = δik. The Hamiltonian of the system is given by HS = ~ωS†S, where S† and S are

the creation and annihilation or raising and lowering operators that describe the system, e.g.
S† = σ+ (S = σ−) for a qubit or S† = a† (S = a) for a harmonic oscillator. The interaction
part is given by a JC interaction with the coupling constant gk (see Sec. A.4). The total
Hamiltonian thus reads

H
tot = ~ω0S

†S + ~

∑

k

ωkd
†
kdk + ~

∑

k

(
gkd

†
kS + g∗kdkS

†
)
, (A.27)

and

Vint(t) = ~

∑

k

(
gkd

†
kSe

i(ω0−ωk)t + g∗kdkS
†e−i(ω0−ωk)t

)
. (A.28)

After a long and physically uninteresting calculation that can be found in the literature
(see e.g. [20; 99]), one obtains the stochastic master equation in the Markov approximation
in the thermal equilibrium:

ρ̇(t) =
Γ

2
(N + 1)

(
2SρS† − S†Sρ− ρS†S

)
+

Γ

2
N
(
2S†ρS − SS†ρ− ρSS†

)

= −Γ

2
(N + 1)L[S†]ρ− Γ

2
NL[S]ρ,

(A.29)

with the number of thermal photons

N(ω0) =
(
e~ω0/kBT − 1

)−1
, (A.30a)

and the Liouvillian superoperator

L[S]ρ(t) = S†Sρ(t) − 2Sρ(t)S† + ρ(t)S†S. (A.30b)

Here, T denotes the temperature and kB the Boltzmann factor; Γ = ρ2(ω0)g
2(ω0) is the

damping rate. The first part of Eq. (A.29) describes the emission of a photon by the system,
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the second part the absorption. In the case of zero temperature5 N = 0. The master equation
in a certain picture thus reduces to

ρ̇(t) = − i

~
[H, ρ] − Γ

2
L[S]ρ(t), (A.31)

From this expression, we can easily obtain the master equation of a harmonic oscillator
described by a† ≡ S† and a ≡ S and the decay rate κ ≡ Γ. Analogue, this gives the master
equation of a qubit with σ+ ≡ S†, σ− ≡ S, and γ ≡ Γ.

The stochastic master equation (A.31) describes only the decay in the energy basis of
the system. To describe the dephasing of a two-level system, one has to take into account a
reservoir that couples to the σz and not the σx component of the system [19]:

Vdephase = ~σz
∑

k

(
gkd

†
k + g∗kdk

)
. (A.32)

This Hamiltonian commutes with σz and thus does not contribute to the decay of the inversion.

A.4 Jaynes–Cummings Interaction

In this part of the appendix we give a more detailed discussion of the interaction between
a two-level system (=qubit) and a single mode of the electromagnetic field, the so-called
Jaynes–Cummings (JC) interaction [21]. For this treatment, we assume the quantization
of the electromagnetic field to be known; for more information on this subject see e.g. [16]
or [102].

A.4.1 Dipole Interaction Between an Electromagnetic Field and a Two-

Level System

We consider a qubit with frequency ωq that couples to a single mode of the electromagnetic
field of e.g. a resonator (=cavity) with frequency ωr that is described by the creation and
annihilation operators a† and a, respectively. The Hamiltonian of the non–interacting part is
given by

H0 = ~ωra
†a+ ~

ωq

2
σz, (A.33)

a† and a act on the Fock state |n〉 (n being the photon number) as

a† |n〉 =
√
n+ 1 |n+ 1〉 , a |n〉 =

√
n |n− 1〉 , a†a |n〉 = n |n〉 . (A.34)

In the Hamiltonian we have, as in the rest of this thesis, neglected the zero–point energy ~

2ωr

of the field since it only leads to an energy shift.

The coupling of the resonator and the qubit can be described via a dipole coupling. The
electromagnetic field in the dipole approximation in the Schrödinger picture is given by [102]

E =

√
~ωr

2ε0V
ε

(
a+ a†

)
. (A.35)

5This condition is fulfilled at optical frequencies.
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where ε0 denotes the dielectric constant, V the volume of the resonator, and ε the polar-
ization of the field. The dipole momentum of the qubit is described by the σx operator
(σx = |g 〉〈 e| + |e 〉〈 g| = σ+ + σ−),

d = δσ− + δ∗σ+ = |δ|
(
eiφσ− + e−iφσ+

)
→ |δ|σx, (A.36)

where, in the last step, we have removed the phase φ via the unitary transformation with

U = e−
i
2
φ σz

(cp. Eq. (A.20)); δ is the (complex-valued) dipole strength of the qubit.

The complete Hamiltonian of the interaction between the qubit and the field in the
Schrödinger picture thus reads

HQF = H0 + d · E = H0 +

√
~ωr

2ε0V
ε|δ|

︸ ︷︷ ︸
≡~g

σx
(
a+ a†

)
. (A.37)

The interaction part of the Hamiltonian consists of two parts—the JC and the anti JC inter-
action,

HQF = H0 + ~g
(
a†σ+ + aσ−︸ ︷︷ ︸

anti JC

+ a†σ− + aσ+

︸ ︷︷ ︸
JC

)
. (A.38)

A.4.2 Rotating Wave Approximation

To obtain the JC Hamiltonian, we introduce the rotating wave approximation (RWA). In this
approximation, one neglects very fast rotating terms since they do not affect the dynamics of
the system; this corresponds to averaging in time.

We can evaluate the qubit–field Hamiltonian (A.38) in the interaction picture (Sec. A.1.3)
by applying the transformation U = e−iH0 t/~,

H
int
QF = ~g

(
a†σ+ei(ωr+ωq)t + aσ−e−i(ωr+ωq)t + aσ+ei∆t + a†σ−e−i∆t

)
. (A.39)

Here, ∆ = ωq − ωr is the detuning between the resonator and the qubit. Mostly, |∆| ≪
|ωq + ωr|; this means that the anti JC parts of Eq. (A.39) (a†σ+ and aσ−) oscillate with
a much higher frequency than the JC parts (a†σ− and aσ+). Therefore, we neglect those
rapidly oscillating terms in an RWA.

Back in the Schrödinger picture the JC Hamiltonian thus reads

HJC = ~ωra
†a+ ~

ωq

2
σz + ~g

(
a†σ− + aσ+

)
. (A.40)

A.5 Effective Hamiltonian Approach

For the solution of the JC interaction in the dispersive regime, we require the method of
effective Hamiltonians. We suppose a given Hamiltonian of the general form

H = H0 + H1, (A.41)

where H0 denotes the non–interacting part of the Hamiltonian and H1 includes the interac-
tion. We want to isolate higher order interactions of this Hamiltonian. For this, we use the
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Schrieffer–Wolff transformation [103] to derive the effective Hamiltonian of the system. In
this transformation, one performs a unitary transformation which eliminates H1 to first order

Heff = eSHe−S = H0 + H1 + [S,H0] + [S,H1] +
∞∑

n=2

1

n!
[S,H0 + H1](n), (A.42)

where we have expanded the transformation with the Baker-Campbell-Hausdorff relation (see
e.g. [16]):

eLMe−L =
∞∑

n=0

1

n!
[L,M ](n) , (A.43a)

with

[L,M ](0) = M, [L,M ](1) = [L,M ],

[L,M ](n) = [L,[L,M ](n−1)].
(A.43b)

Heff should have no terms which are first order in H1. Thus, the requirement for S is

[S,H0] = −H1, (A.44)

This yields the effective Hamiltonian

Heff = H0 +
∞∑

n=1

n

(n+ 1)!
[S,H1](n) ≈ H0 + [S,H1] +

1

2
[S,[S,H1]]. (A.45)

Note that not for all Hamiltonians a transformation that fulfills [S,H0] = −H1 can be found.
In this case, Eq. (A.42) has to be used to calculate the effective Hamiltonian.



Appendix B

Theory of Superconductivity and

Josephson Junctions

In this part of the appendix we recapitulate the theory of superconductivity. We explicitly
present the London theory wherewith we explain the Josephson effect and the properties and
applications of Josephson junctions (JJs). Then, we introduce the resistively and capacitively
shunted junction model (RCSJ-model) which gives us the possibility to describe JJs quantum
mechanically with a Hamiltonian. Lastly, we have a look at the main properties of supercon-
ducting quantum interference devices (SQUIDs) including their theoretical description.

Since there are several works describing the phenomena and theories of superconductivity,
see e.g. [54; 104; 105; 106], we will just focus on the results that are important for this thesis.
We will mainly follow the derivations and explanations of [54] to obtain the different equations
and to describe the properties of superconductors.

B.1 London Theory

The London theory is a phenomenological theory for T = 0. It describes the main electromag-
netic properties of a superconductor such as the ideal conductivity, the Meißner-Ochsenfeld
effect [107] and the fluxoid quantization in multiply connected superconductors. Moreover,
it motivates the theoretical description of the Josephson effects with the Josephson equa-
tions [108]. However, it does not describe the pairing of electrons to Cooper pairs, the
existence of type II superconductors, and the temperature response of superconductors. This
can be done with the BCS or the Ginzburg-Landau theory, see e.g. [105; 106].

Since we have to deal with Cooper pairs1, the mass and the charge of the considered
particles are different from those of electrons,

q → Q = −Ke, m→M = Kme, (B.1)

where the factor K = 2 takes into account the pairing of electrons to Cooper Pairs.

1In superconductivity, two electrons are bound to Cooper pairs that are quasi-bosons. See e.g. [109] for
more information on Cooper pairs.

89
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B.1.1 London Equations

We start with the Schrödinger equation of a particle with mass M and charge Q in an
electromagnetic field that is described by the vector potential A (r,t) and the scalar potential
φ (r,t)2,

i~
∂Ψ (r,t)

∂t
=

1

2M

(
~

i
∇ −QA (r,t)

)2

Ψ (r,t) +Qφ (r,t) Ψ (r,t) . (B.2)

A (r,t) and φ (r,t) are related to the magnetic and electric field via B (r,t) = ∇×A (r,t) and

E (r,t) = −∇φ (r,t) − ∂A(r,t)
∂t , respectively.

Superconductivity is a coherent quantum phenomenon of all Cooper pairs [109]; thus, the
main assumption of the London theory is that the entire ensemble can be described by a
macroscopic quantum wavefunction

Ψ (r,t) =
√
ρ (r,t) · eiθ(r,t). (B.3)

This representation corresponds to the so-called Madelung transformation3 [110]. Here, θ
denotes the macroscopic phase of the superconductor, and ρ is the local Cooper pair density
(ρe being the local electron density),

ρ (r,t) =
1

K
ρe (r,t) = |Ψ (r,t)|2 . (B.4)

Additionally, the whole ensemble has to satisfy the normalization condition

∫
dV |Ψ (r,t)|2 = N = KNe, (B.5)

with N being the number of Cooper pairs and Ne the number of electrons.

The Schrödinger equation for Ψ now changes into two equations for ρ and θ; therefore,
we obtain

~
∂θ

∂t
+

1

2
Mv2 +Qφ = Uqm, (B.6)

∂ρ

∂t
+ ∇ (ρv) = 0. (B.7)

Here, Uqm is the quantum mechanical Bohm potential [111], Uqm =
~
2∇2√ρ
2m

√
ρ , and v the particle

velocity that corresponds to the probability current,

j (r,t) = ρv (r,t) =
~ρ

M
∇γ (r,t) . (B.8)

where we have introduced the gauge-invariant phase gradiant ∇γ,

∇γ (r,t) = ∇θ − Q

~
A , (B.9)

2For the sake of simplicity we will not write the dependency of the quantities on (r,t) in each equation.
3Like every complex value, Ψ can be written in terms of its absolute value

√
ρ (r,t) and the argument θ (r,t),

which are both real values. This is the Madelung transformation.
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according to the gauge-invariant phase γ 4. Eqs. (B.6) and (B.7) correspond to hydrodynamic
equations of motion [110]. Eq. (B.7) is equivalent to a continuity equation for ρ and j, and
Eq. (B.6) is conform to the hydrodynamic equation for an irrotational flow in a conservative
potential. In the semiclassical limit (~ → 0), we can neglect Uqm; Eq. (B.6) then corresponds
to a Hamilton–Jacobi equation for the action function ~ θ [111].

The probability current is related to a supercurrent density, Js = Qj 5 of the charged
particle. Likewise, the probability density corresponds to a charge density ρs = Qρ = −eρe.
Js and ρs also obey the continuity equation.

Therefore, we obtain the main equations of the London theory in the semiclassical limit:

−~
∂θ (r,t)

∂t
=

M

2 ρ2
s (r,t)

J2
s (r,t) +Qφ (r,t) ,

Js (r,t) =
~

QΛ
∇γ (r,t) ,

(B.10)

(B.11)

with Λ = M
ρsQ2 = me

ρe e2 being the London coefficient. These equations already are the London
equations, but in an uncommon notation. The London equations in the more familiar form can
be derived easily by considering the curl and the time derivative of the supercurrent (B.11)
together with the Maxwell equations and the continuity equation (B.7). Introducing the

London penetration depth λL =
√

Λ
µ0

=
√

me
µ0ρe e2 , this yields

∂

∂t
(ΛJs) = E +

1

eρe
∇
(
ΛJ2

s

)
(1st London equation), (B.12)

∇
2B =

1

λ2
L

B (2nd London equation). (B.13)

The first London equation can be linearized for |E| ≫ |vs| · |B| [54], which corresponds
to neglecting the second term on the right hand side (kinetic energy of the superelectrons);
this linearized equation describes the ideal conductivity of the superconductor. The second
equation describes the screening of an applied magnetic field by a thick superconductor, which
is the Meißner–Ochsenfeld effect [107]. The field falls off exponentially in the superconductor
with e−λLx.

The first London equation also results from Lorentz’s law and the second London equation.
This shows that not the ideal conductivity, but the perfect diamagnetism is the more fun-
damental property of the SC state. Note that the London equations—especially the London
coefficient Λ and therewith the London penetration depth λL—do not depend on the factor
K. All results could have been achieved without the assumption of having Cooper pairs.

B.1.2 Fluxoid Quantization

One quantum-mechanical consequence of the macroscopic quantum nature of superconductors
is the quantization of the flux in unites of the fluxoid quantity Φ0 in multiply connected

4It can be shown that γ is invariant under the gauge transformations A → A + ∇χ and φ → φ− ∂χ
∂t

, with
χ being an arbitrary scalar function.

5The supercurrent Is then is Is =
∫

dS · Js. For a homogeneous supercurrent density the supercurrent is
just Is = S · Js.
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superconductors. The fluxoid quantization proofs the hypothesis that electrons build Cooper
pairs which are responsible for the SC state.

We start with the supercurrent density (Eq. (B.11)).

Js =
~

QΛ
∇γ, (B.14)

and integrate over a loop through the multiply connected superconductor,

− ~

Q

∮
dr · ∇θ =

∮
dr · (A + ΛJs) , (B.15)

− ~

Q

∮
dr · ∇θ

︸ ︷︷ ︸
2πn

=

∫
dS · (B + Λ∇ × Js)

︸ ︷︷ ︸
fluxoid Φ′

, (B.15′)

n
2π~

2e
= Φ′, (B.15′′)

where we have used the theorem of Stokes. This yields the fluxoid quantity

Φ0 =
h

2e
. (B.16)

Deep in the superconductor, flux and fluxoid are the same since the supercurrent den-
sity Js vanishes6; this is not the case for the outer shell. Note that in a simply connected
superconductor the integral over ∇θ vanishes and therefore no flux can be found in such
a superconductor; in this case, Eq. (B.15′) is just the integral form of the second London
equation.

With the fluxoid quantity, the phase difference ϕ can be related to a magnetic flux,
ϕ = 2π Φ

Φ0
.

B.2 Josephson Effect

A second consequence of the macroscopic inherent quantum nature of superconductors ap-
pears if two superconductors are weakly coupled via an electrical contact, e.g. a tunnelling
barrier or a point contact, see Fig. B.1. We assume an SIS (superconductor-insulator-
superconductor) contact, without loss of generality. In the normal conducting case, electrons
can tunnel through the barrier. In the SC case, at T = 0, no quasi particles can be found at
the Fermi level and we expect no normal current through the metal. If the applied voltage
is big enough to break up Cooper pairs, which is the case for eV ≥ 2∆, a normal current
through the contact can be observed again; see also Sec. B.3.1.

In both cases, also Cooper pairs tunnel through the contact in a coherent process; the
tunnelling probability for this process is the same as that for single electrons. This quantum
interference of the two superconductors is called Josephson effect [108], and the junction
therefore Josephson junction (JJ).

6In general, if the thickness of the SC material is much larger than λL, we can choose an integral contour
deep inside the SC material where in very good approximation we have Js = 0.
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Figure B.1: Sketch of a Josephson junction. Two superconductors, SC1 and SC2 with phases
θ1 and θ2, respectively, build a Josephson junction (JJ) when they are coupled weakly via an
electrical contact. This leads to the Josephson effect that is due to quantum interference of the
two macroscopic wavefunctions of the superconductors.

B.2.1 Josephson Equations

The two superconductors are described by their probability densities ρ1 and ρ2 and their
phases θ1 ≡ θ(−d

2 ,t) and θ2 ≡ θ(d
2 ,t). We assume the densities to be equal, ρ1 = ρ2 ≡ ρs/Q,

and homogeneous; the second assumption is warranted for small junction areas7. For the
derivation of the Josephson equations we follow the general method of L. D. Landau and
E. M. Lifschitz [112]. Since the Josephson equations are derived from the London equations,
these equations also only hold for T = 0.

We introduce the gauge-invariant phase difference ϕ with its definition

ϕ (r,t) = γ2 (r,t) − γ1 (r,t) ≡
2∫

1

dl · ∇γ = θ2 − θ1 +
2π

Φ0

2∫

1

dl · A. (B.17)

The current density Js through the junction is a function of this phase difference, Js = Js(ϕ).
The gauge-invariant phases are well-defined modulo 2π. Thus, Js(ϕ) has to be a periodic
function in ϕ. Likewise, the current Is also must be a periodic function,

Is(ϕ) =
∑

n

(
Io,n sinnϕ+ Ie,n cosnϕ

)
. (B.18)

Under a time reversal transformation both the current and the phase change sign; there-
fore, the cosine term cannot describe the current properly. Since we are considering weak
coupling, the sum converges very fast and all expansion coefficients except of Io,1 ≡ Ic vanish.
Therefore, we obtain

Is = Ic sinϕ (1st Josephson equation), (B.19)

which is also called the current–phase relation.
The Josephson critical current Ic for T = 0 can be obtained from the BCS theory [106],

Ic =
π∆

2eRn
, (B.20)

7We cannot always neglect the size of the junction. Especially for Josephson junctions in external fields,
we would have to change this [54].
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with S being the face of the JJ, ∆ the energy gap, and Rn the resistance of the superconductor
in the normal state. Here, as in the rest of this thesis, we assumed the energy gaps of the two
superconductors to be equal.

The second Josephson equation, which describes the change in time of the phase difference
ϕ, can be derived from Eq. (B.17). We examine the time derivative of the gauge-invariant
phase difference which reads

∂ϕ

∂t
= − 1

~

{
M

2ρs

(
J2

s (r2,t) − J2
s (r1,t)

)

+Q
(
φ (r2,t) − φ (r1,t)

)}
+

2π

Φ0

∂

∂t

2∫

1

dl · A (r,t) ,

(B.21)

where we have used Eq. (B.10) to obtain Eq. (B.21). The supercurrent density across the
junction is continuous, and therefore J2

s (r2,t) = J2
s (r1,t). Thus, we obtain

∂ϕ

∂t
=

2π

Φ0

2∫

1

dl ·
(

∇φ+
∂A

∂t

)
=

2π

Φ0

2∫

1

dl · (−E) . (B.21′)

The line integral over the electric field is just the voltage V between the two Josephson
junctions. Eq. (B.21′) then immediately yields the voltage–phase relation

∂ϕ

∂t
=

2π

Φ0
V (2nd Josephson equation). (B.22)

The two Josephson equations, (B.19) and (B.22), can also be obtained from the micro-
scopic BCS–theory [106], the phenomenological Ginzburg–Landau theory [105] or a quantum
well ansatz that was proposed by Richard Feynman [54; 104].

B.2.2 Josephson Coupling Energy

The energy EJ,c that is stored in the JJ can be calculated by integrating over the electrical
power P = Is · V :

EJ,c =

t∫

0

dt′ Is · V =
Φ0Ic
2π

t∫

0

dt′ sinϕ(t′)
∂ϕ(t′)
∂t′

. (B.23)

With ϕ(t′) ≡ ϕ̃ and the integral limits ϕ̃(0) = 0 and ϕ̃(t) = ϕ we can write the integral as

EJ,c =
Φ0Ic
2π

ϕ∫

0

dϕ̃ sin ϕ̃, (B.24)

and therefore obtain the Josephson coupling energy

EJ,c = EJ (1 − cosϕ) , with EJ =
Φ0Ic
2π

. (B.25)

EJ is the Josephson energy of the JJ.
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B.2.3 Josephson Inductance

Taking the time derivative of the first Josephson equation and using the second Josephson
equation we obtain

İs = Ic
Φ0

2π
V cosϕ. (B.26)

If we remember that the induced voltage of an inductance is V = L· İ, we can immediately
see that the JJ behaves as a nonlinear inductance

LJ =
LJ,0

cosϕ
, with LJ,0 =

Φ0

2πIc
. (B.27)

B.2.4 DC and AC Josephson Effect

The most obvious effects that follow from the Josephson equations (B.19) and (B.22) are the
dc and the ac Josephson effect.

For a constant voltage V Eq. (B.22) can be integrated very easily and yields

ϕ(t) = ϕ0 +
2π

Φ0
V · t, (B.28)

with ϕ0 = ϕ(t = 0) being a constant value. The supercurrent then reads

Is = Ic sin

(
ϕ0 +

2π

Φ0
V · t

)
. (B.29)

Thus, for V = 0, a constant direct current Is = Ic sinϕ0 crosses the junction due to the
difference in the phases of the superconductors. This is the dc Josephson effect.

For a constant voltage V 6= 0 the Josephson current is oscillating at the Josephson fre-
quency

ω

V
=

2π

Φ0
≈ 500

MHz

µV
. (B.30)

This is the ac Josephson effect. Therefore, the JJ can be considered as a voltage controlled
oscillator that can be used to generate very high frequencies (≈ 500 GHz at 1 meV) [54].

There are several other effects that follow from the Josephson equations. For a detailed
information see [54; 104].

B.3 Whole Junction Dynamics

The Josephson equations characterize the properties of the JJ very accurately at zero voltage
and zero temperature. In this regime the whole dynamics is described by the Josephson equa-
tions (B.19) and (B.22). To derive the Lagrangian and the Hamiltonian of the junction, one
has to take into account additional channels which is done with the resistively and capacitively
shunted junction model (RCSJ model). In this section, we introduce this model and derive
the Hamiltonian of the JJ.
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Figure B.2: (a) Equivalent circuit for a JJ in the voltage–state. A current Iext is applied
to the junction. This yields the Josephson current channel Is, corresponding to the ideal JJ;
the normal current channel In, with the resistance R; and the displacement current channel Id,
with the Josephson capacitance CJ. The junction is probed via the voltage V . In this thesis, a
simple cross in a circuit diagram indicates an ideal JJ and a boxed cross a real JJ. (b) Motion
of the gauge–invariant phase difference of the JJ in the tilted washboard potential. Increasing
the applied current Iext results in a tilt of the potential. See also [54; 104].

B.3.1 RCSJ Model

In the voltage-state, where |V | > 0 due to a change in time of the gauge-invariant phase
difference, additional current channels appear, the resistive and the capacitive channel, see
Fig. B.2(a). Therefore, a JJ can be described by an equivalent circuit with both a resistance
and a capacitance shunted in parallel to the JJ. This is the resistively and capacitively shunted
junction model [113; 114] which describes the response curves to external fields and the
dynamics of the JJ very well.

At both finite voltages |V | ≥ 2∆/e and finite temperatures T > 0 Cooper pairs are broken
up into quasi particles. These quasi particles can tunnel through the junction which yields a
normal current In. The normal current is described by the resistance R and the voltage V
via

In =
V

R
=

Φ0

2π

ϕ̇

R
. (B.31)

where we have taken into account the second Josephson equation (B.22).

Accessorily, a JJ also has a finite capacitance CJ since it has a geometry like a parallel
plate capacitor. At a time-dependent voltage, this then leads to a displacement current Id
that is given by

Id = CJ · V̇ (t) = CJ
Φ0

2π
ϕ̈(t). (B.32)

Due to Kirchhoff’s laws the sum of the different current channels is equal to the bias
current,

Iext = Is + In + Id. (B.33)

Therefore, we can obtain a non-linear differential equation for the gauge-invariant phase
difference ϕ:

Iext = Ic sinϕ+
Φ0

2π

ϕ̇

R
+

Φ0

2π
CJ ϕ̈. (B.34)

This equation of motion is equivalent to that of the motion of a particle with mass CJ

(
Φ0

2π

)2

in a so-called tilted washboard potential with the potential energy U = EJ(1 − cosϕ − I
Ic
ϕ)
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and the damping 1
R

(
Φ0

2π

)2
, see Fig. B.2(b)8.

B.3.2 Hamiltonian of the Current-Biased Junction

We now want to treat both the gauge-invariant phase difference ϕ and the charge Q as quan-
tum mechanical variables and describe the dynamics of a JJ with a Hamiltonian. We firstly
have to determine the Lagrangian of the circuit in order to find the canonically conjugated
variables.

To present the circuit dynamics in the Lagrangian form, and therewith in the Hamiltonian
form, we assume the damping term Φ0

2π
ϕ̇
R in the Kirchhoff equation (B.34) to be zero. This

assumption is fulfilled for low temperatures (T ≈ 0) and small voltages (|V | < 2∆/e) as the
normal current In is negligible in this regime.

We want to obtain the kinetic and potential energy appendant to Eq. (B.34). Again, the
stored energy can be calculated by integrating over the electrical power P , see Sec. B.2.2;
therewith, the energy of the current channel Ii (i = e, s,d) is

Ei =
Φ0

2π

t∫

0

dt′ ϕ̇ · Ii. (B.35)

The kinetic energy corresponds to the displacement current (B.32) and thus reads

T (ϕ̇) =
1

2

(
Φ0

2π

)2

CJ ϕ̇
2 =

Q2

2CJ
. (B.36)

It is common to describe this charging energy (or electrostatic energy) in terms of the number

of Cooper pairs, N , and the charging energy of one Cooper pair, Ec = (2e)2

2CJ
,

T (ϕ̇) = EcN
2. (B.37)

The potential energy consists of the energy of the Josephson supercurrent and the magnetic
energy of the bias current,

U(ϕ) = EJ (1 − cosϕ) − Φ0

2π
Iextϕ, (B.38)

which gives us the classical Lagrangian of the junction,

L =
1

2

(
Φ0

2π

)2

CJ ϕ̇
2 − EJ (1 − cosϕ) +

Φ0

2π
Iextϕ. (B.39)

In order to quantize the circuit equation (B.34), we follow the conventional way of canon-
ical quantization. The canonically conjugate variable of ϕ̇ is proportional to the number of
Cooper pairs N ,

∂L

∂ϕ̇
=

(
Φ0

2π

)2

CJ ϕ̇ = ~N. (B.40)

8Another analogue of the dynamics of the JJ is the physical pendulum [54; 104].



98 B Theory of Superconductivity and Josephson Junctions

Thus, the charge corresponds to the momentum of the circuit and the phase to the position
which gives us the quantum mechanical commutator relation of the variables ϕ̂ and N̂ as the
quantization condition, [

N̂ , ϕ̂
]

= −i. (B.41)

Therefore, we can make the operator replacement

N → N̂ = −i ∂
∂ϕ

. (B.42)

N̂ can be associated with the momentum operator and ϕ̂ with the position operator; in this
thesis we will write ϕ instead of ϕ̂ since the difference between them should be clear. This
then yields the Hamiltonian of the current-biased Josephson junction

HcJ = EcN̂
2 − EJ cosϕ− Φ0

2π
Iext ϕ , (B.43)

where we have neglected constant terms.

B.3.3 Hamiltonian of the Voltage-Biased Junction

To derive the Hamiltonian of a voltage-biased JJ, we firstly have to take a closer look at the
so-called Single Electron Box (SEB), see Fig B.3. The derivation of the voltage-biased SEB
can be found in [115]; we adopt the derivation of [116].

A metallic island, the SEB, is connected to a voltage source via a capacitance and a tunnel
junction. It is possible to add or remove single electrons to or from the island with this device.
The Gibbs free energy of the circuit reads

G (Vg,qt,qg) =
q2t
2Ct

+
q2g

2Cg
− q̃Vg, (B.44)

where the first two terms correspond to the charging energies of the two electrodes and the
third term q̃Vg represents the work done by the voltage source, q̃ being the charge that passed
the voltage generator. To rewrite G as a function only of the gate voltage Vg and the number

SEB C

Vg

n.e
q
g

q
t

R

gCt

t

Figure B.3: Equivalent circuit of the Single Electron Box. A metallic island is connected to
a voltage source Vg via the gate capacitance Cg and a tunnel junction with capacitance Ct and
resistance Rt. With this device it is possible to put a well-defined number of excess electrons
onto the island.
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of excess electrons on the island ne, we have a look at the equations of the circuit following
from charge conservation,

Vg =
qt
Ct

+
qg
Cg
, (B.45a)

ne e = −qt + qg. (B.45b)

We solve these equations with respect to qt and qg which gives

qt (n,Vg) =
Ct

CΣ
(CgVg − ne e) , (B.46a)

qg (n,Vg) =
Cg

CΣ
(CtVg + ne e) , (B.46b)

with CΣ = Ct + Cg. We obtain the charge q̃ via an analysis of the charge variation at the
electrodes when the charge on the island changes from ne = 0 to a certain value ne,

q̃ = ne e+ q (ne,V ) − q (0,V )︸ ︷︷ ︸
variation at the tunnel electrode

= qg (ne,V ) − qg (0,V )︸ ︷︷ ︸
variation at the gate electrode

=
Cg

CΣ
ne e. (B.47)

Substituting Eqs. (B.46a), (B.46b), and (B.47) in Eq. (B.44) yields Gibb’s free energy as a
function of the applied voltage and the number of electrons on the island,

G =
CtCg

2CΣ
V 2

g +
1

2CΣ
(ne e)

2 − Cg

CΣ
ne eVg =

1

2CΣ
(ne e− CgVg)

2 +
CgCt − C2

g

2CΣ
V 2

g

︸ ︷︷ ︸
=const.

. (B.48)

The constant terms can be neglected since they only lead to an energy shift. Therewith, the
Gibbs free energy now reads

G(V,n) = Ẽse
c (ne − neg)

2 , (B.49)

with Ẽse
c = e2

2CΣ
being the charging energy of a single electron in the voltage-biased SEB9 and

neg =
CgVg

e the dimensionless gates charge.
In a JJ, the capacitance Ct corresponds to the Josephson capacitance CJ. For the case

of Cooper pairs, the number of electrons ne changes into the number of Cooper pairs N , the

charging energy into Ẽc = (2e)2

2CΣ
(CΣ = CJ + Cg), and the dimensionless gates charge neg

into Ng =
CgVg

2e . Thus, for the voltage-biased junction the charging energy term, Eq. (B.37),
changes as

EcN̂
2 → Ẽc

(
N̂ −Ng

)2
, (B.50)

and the Hamiltonian of the voltage-biased junction thus reads

HvJ = Ẽc

(
N̂ −Ng

)2
− EJ cosϕ (B.51)

We indicate the voltage-biased charging energy of a Cooper pair Ẽc with a ∼ only in cases
where the notation is not explicit.

9The ∼ indicates that we do have a voltage-biased SEB and therefore Ese
c = e2

2Ct

, being the charging energy

of the unbiased system, changes into Ẽse
c .
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B.4 Superconducting Quantum Interference Devices

In this section we describe Superconducting Quantum Interference Devices (SQUIDs) that are
the elementary circuits to implement SC qubits. A SQUID combines two basic phenomena
that are due to the macroscopic phase coherence in superconductors, the fluxoid quantization
and the Josephson effect. It is composed of a SC loop that is intersected by one (rf SQUID,
Sec. B.4.1) or two (dc SQUID, Sec. B.4.2) Josephson junctions10. In JJs, the maximal current
strongly modulates with the applied field, see [54]. This sensitivity increases with increasing
size of the junction. As a result, SQUIDs are the most sensitive detectors for external magnetic
fields.

B.4.1 DC SQUID

The dc SQUID consists of two JJs that are connected in parallel on a SC loop, see Fig. B.4.
As the name implies, the dc SQUID is operated by applying a direct current (dc) Idc.

To derive the Hamiltonian of the dc SQUID, we start with Kirchhoff’s laws. If we assume
the JJs to be identical11, and therefore Ic1 = Ic2, we obtain the total current

Is = Is1 + Is2 = Ic sinϕ2 − Ic sinϕ1 = 2Ic sin (φ−) cos (φ+) , (B.52)

where we have, following the notation of [4], introduced the new variables

φ± =
ϕ2 ± ϕ1

2
. (B.53)

Integration over the whole SC loop [54] yields

φ+ = π
Φ

Φ0
. (B.54)

This constraint comes from flux quantization in multiply connected superconductors. The
supercurrent through the dc SQUID then is

Idc
s = 2Ic cos

(
π

Φ

Φ0

)
sinφ−. (B.55)

For small junctions or small applied currents, the inductance of the loop and therewith the
flux generated in the loop by the circulating current can be neglected. In this case, Φ is just
the external flux Φext. If the induced flux cannot be neglected, the flux Φ is given by the
sum of the external flux Φext and the induced flux ΦL due to the circulating screening current
Icirc,

Φ = Φext + ΦL = Φext + LIcirc. (B.56)

We assume the two sides of the loop to be identical; therefore, the circulating current reads

Icirc =
Is1 − Is2

2
. (B.57)

10There are several SQUIDs available. A detailed description of those devices is given in [54; 117].
11The calculation for non-identical junctions does not differ much from ours; see e.g. [6; 48].
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φ
1 Φext V
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φ
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Figure B.4: Circuit diagram of the current-biased dc SQUID. It is formed by two identical
JJs with phases ϕ1 and ϕ2 in a SC loop (inductance L). Arrows indicate the direction of the
positive Josephson current. The dc SQUID is operated with an applied direct current Idc. An
external flux Φext threads the loop. Readout of the dc SQUID is done with the voltage signal
Vdc.

Therewith, the total flux Φ threading the loop is

Φ = Φext +
1

2
LIc (sinϕ1 − sinϕ2)

= Φext + LIc sin

(
π

Φ

Φ0

)
cos (φ−) .

(B.58)

In general, Eq. (B.58) together with Eq. (B.55) have to be solved self-consistently for
the flux Φ for different conditions of the loop inductance L and the external current Iext. To
analyze limiting cases of the external flux one introduces the screening parameter βL,dc = 2LIc

Φ0
;

it represents the ratio of the magnetic flux generated by the maximum possible circulating
current Icirc = Ic and Φ0/2; for further information see [54].

For βL,dc ≪ 1 the inductance of the loop is negligible and we easily obtain the Hamilto-
nian of the current-biased dc SQUID12. Henceforth, we write ϕ ≡ φ− for consistency in the
notation. Finally, the dc SQUID Hamiltonian reads

Hdc = EcN̂
2 − EJ (Φx) cosϕ− Φ0

2π
Idc ϕ , (B.59)

with EJ (Φext) = 2EJ cos
(
πΦext

Φ0

)
being the flux-dependent Josephson coupling energy. Thus,

if we neglect the loop inductance, the dc SQUID acts like a single JJ with flux-tunable
Josephson coupling.

B.4.2 RF SQUID

The rf SQUID is formed by a SC loop with inductance L containing only one JJ, see Fig B.5.
In contrast to the dc SQUID (which is operated with a direct current) it is operated by
applying a radio frequency (rf) current via an inductively coupled resonant tank circuit.

Again, flux quantization imposes a constraint for the total flux Φ in the loop [54],

ϕ = 2π
Φ

Φ0
. (B.60)

12The full Lagrangian of the dc SQUID, including also the induced flux can be found in [4].
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Φ

L

L
T

M

ext V
rf

φ

I
rf

Figure B.5: Circuit diagram of the rf SQUID which is formed only by a single JJ with phase
ϕ in a SC loop (inductance L). It is coupled to an oscillating tank circuit (inductance LT) via a
mutual inductance M . Again, an external flux Φext threads the loop. Vrf is the readout signal.

The supercurrent in the loop is just that of a single JJ,

Irf
s = Ic sin

(
2π

Φ

Φ0

)
. (B.61)

In the case of the rf SQUID the circulating current and the supercurrent are identical, Icirc =
Irf
s . Therewith, we can determine the total flux Φ in the loop,

Φ = Φext + LIcirc = Φext + LIc sin

(
2π

Φ

Φ0

)
. (B.62)

The screening parameter for the rf SQUID is βL,rf = 2πLIc
Φ0

; note that βL,rf = Λ−1 with
Λ = LJ,0/L. Again, for βL,rf ≪ 1 the total flux would just be the external flux. For βL,rf & 1,
the magnetic energy of the loopEL = Φ2

0/4π
2L is in the order of the Josephson coupling energy

EL = Φ0 Ic/2π (βL,rf = EJ/EL). In this regime, the induced flux is just Φ0 − Φext mod1 or
−Φext to reach an integer multiple of Φ0 in the loop.

We do not neglect the induced flux since SC qubits that consist of rf SQUIDs are build
with the intent to have a non-vanishing inductance L. The kinetic energy of the rf SQUID is,
again, given by the charging energy EcN̂

2. The potential energy consists of two parts. The
first part is the Josephson coupling energy having its seeds in the supercurrent. The second
part is due to the magnetic energy of the flux in the loop13. It is generated by the circulating
screening current Icirc; thus, the magnetic energy is 1

2LI
2
circ = (Φ − Φext)

2 /2L. Therefore, the
total Hamiltonian of the rf SQUID reads

Hrf = EcN̂
2 +

(Φ − Φext)
2

2L
− EJ cos

(
2π

Φ

Φ0

)
. (B.63)

The first term of the Hamiltonian, corresponding to the kinetic energy, can be neglected since
the number of Cooper pairs is constant in absence of macroscopic quantum tunnelling.

13We have neglected the magnetic energy in the Hamiltonian of the dc SQUID since we have used L ≈ 0.
The magnetic energy would also appear in dc SQUIDs for large junction sizes.



Appendix C

Detailed Calculations on SC Qubits

In this part of the appendix, we give details on some calculations that would go beyond the
scopes of the main part of the thesis.

C.1 Charge Qubit Hamiltonian in the Charge Basis

To derive the charge representation of the CPB Hamiltonian, we start in the phase represen-
tation |ϕ〉,

H = Ec

(
N̂ −Ng

)2
− EJ

2

(
eiϕ̂ + e−iϕ̂

)
. (C.1)

N and ϕ̂ are canonically conjugated variables, [N̂ ,ϕ̂] = −i and therefore N̂ = |ϕ〉 − i ∂
∂ϕ̂ 〈ϕ|

(see App. B.3.3) and vice versa ϕ̂ = |N〉+i ∂
∂N̂

〈N |. We want to express the Hamiltonian (C.1)

in the charge representation |N〉. For this purpose, we firstly write the number operator as
N̂ = d†d =

∑
N N |N 〉〈N |, where d† and d are bosonic creation and annihilation operators

for Cooper pairs, respectively, that obey the commutation relations:

[d, d†] = 1, [d†, d†] = [d, d] = 0. (C.2)

According to [99; 118], the creation and annihilation operators in terms of N̂ and ϕ̂ are

d =eiϕ̂N̂1/2,

d† =
(
eiϕ̂N̂1/2

)†
= N̂1/2e−iϕ̂,

with N̂1/2 =
∑

N

√
N |N 〉〈N | . (C.3)

d and d† fulfill the commutation relations (C.2) and the condition N̂ = d†d:

d†d = N̂1/2e−iϕ̂eiϕ̂N̂1/2 = N̂ , (C.4a)

dd† = eiϕ̂N̂e−iϕ̂ = eiϕ̂
(
−i ∂
∂ϕ̂

)
e−iϕ̂ = 1 + N̂ , (C.4b)

⇒ [d,d†] = dd† − d†d = 1, [d, d] = [d†, d†] = 0. (C.4c)

Therewith, the Hamiltonian in the charge representation reads

HCQ =
∑

N

(
Ec (N −Ng)

2 |N 〉〈N | − EJ

2
(|N + 1 〉〈N | + |N 〉〈N + 1|)

)
. (C.5)

Note that this representation is only possible in the charge regime, where EJ/Ec ≪ 1 since
N is only a good quantum number in this regime.
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C.2 Nonlinear Oscillator

Since we need the theory of nonlinear oscillators several times in this thesis, we recapitulate
the basic theoretical description of such a system in this part of the appendix. We start with
the Hamiltonian of a nonlinear oscillator

H = H0 + H1, (C.6a)

with

H0 =
p2

2m
+

1

2
mω2x2, (C.6b)

H1 = C4 x
4, or H1 = C3 x

3. (C.6c)

Here, p = ~

i
∂
∂x is the momentum operator, m the mass of the particle1, ω the oscillator

frequency, and C4 (C3) is a constant associated with the nonlinearity x4 (x3). H0 describes
the usual harmonic oscillator, H1 contains the nonlinearities that can for example be quartic,
cubic, or both.

We now consider the quartic nonlinearity H1 = C4 x
4. Following the usual steps for the

solution of the harmonic oscillator (see e.g. [16]), we firstly introduce the bosonic creation
and annihilation operators d† and d,

d† =
1√

2~ωm
(ωmx− ip) , d =

1√
2~ωm

(ωmx+ ip) , (C.7a)

with the inversion

x =

√
~

2ωm

(
d+ d†

)
, p = −i

√
~ωm

2

(
d− d†

)
. (C.7b)

H0 and H1 in terms of d and d† thus read

H0 = ~ω

(
d†d+

1

2

)
, H1 = ~ω4

(
d+ d†

)4
, (C.8)

with2

~ω4 = C4 ·
(

~

2ωm

)2

. (C.9)

The actions of d† and d are, as usual,

d†
∣∣k0
〉

=
√
k
∣∣(k − 1)0

〉
, d

∣∣k0
〉

=
√
k + 1

∣∣(k + 1)0
〉
, d†d

∣∣k0
〉
≡ k̂

∣∣k0
〉

= k
∣∣k0
〉
, (C.10)

where
∣∣k0
〉

denotes the eigenfunctions of the pure oscillator Hamiltonian, H0, and k the

occupation number (k̂ = d†d being the occupation number operator). We now assume the
nonlinearity part H1 to be small compared with H0 (ω4 ≪ ω). Therefore, we can apply a
first-order Rayleigh–Schrödinger perturbation theory [16]. The non-perturbed eigenvalues of
H0 are

E0
k = ~ωk, k = 0,1,2, . . . , (C.11)

1m does not have to be an actual mass, but can also represent an energy.
2For the cubic nonlinearity: ~ω3 = C3 ·

(
~

2ωm

)3/2
.
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Figure C.1: Energy landscape of the nonlinear resonator with a nonlinearity (a) ~ω4(d+d†)4

and (b) ~ω3(d+d†)3. Both nonlinearities result in an anharmonic level spacing. The spectrum
was calculated by diagonalizing a part of the Hamiltonian with the program Mathematica.

with corresponding oscillator eigenfunctions
∣∣k0
〉
. We have neglected the zero point energy

~ω/2 in Eq. (C.11). The first-order corrections to these eigenvalues are

E1
k =

〈
k0
∣∣H1

∣∣k0
〉
. (C.12)

Expanding the term (d+ d†)4 in Eq. (C.8) we get

(
d+ d†

)4
=
(
6k̂2 + 6k̂ + 3

)

︸ ︷︷ ︸
diagonal

+ d4 + (d†)4 + (4k̂ + 6)d2 + (4k̂ − 2)(d†)2. (C.13)

We observe that (d+ d†)4 contains parts that are diagonal in the
∣∣k0
〉

eigenbasis. Therewith,
we obtain

E1
k = ~ω4

(
6k2 + 6k + 3

)
. (C.14)

The nonlinearity of the x4-term in the original Hamiltonian (C.6a) yields a anharmonicity in
the energy levels. The full energy levels in first-order perturbation theory are Ek = E0

k +E1
k ;

therewith, we obtain the level spacing between two levels:

∆E = Ek+1 − Ek = ~ω + ~ω4 · 12 (k + 1) ∝ k. (C.15)

The level spacing is no longer homogeneous due to the energy corrections; it depends on the
quantum number k.

In general, a term ∝ x4 (or ∝ x3) in the Hamiltonian results in an anharmonic level
spacing. Fig. C.1(a) shows the energy spectrum of a nonlinear oscillator with a quartic
nonlinearity ~ω4(d + d†)4. For ω4 > 0, the level spacing increases with increasing quantum
number. For ω4 < 0 the level spacing decreases with increasing quantum number. For
comparison, Fig. C.1(b) shows the energy spectrum of a nonlinear oscillator with a cubic
nonlinearity ~ω3(d+d†)3. For all values of ω3 6= 0, the level spacing decreases with increasing
quantum number. A nonlinearity with both quartic and cubic terms has a more complex
structure. However, a sufficiently large anharmonicity is still available.

C.3 Minima of the PCQ Potential

In this part of the appendix we show the detailed calculation of the minima and maxima of
the PCQ potential. We start with the potential of the PCQ in the ϕ± representation,

U(ϕ+, ϕ−) = −EJ [2 cosϕ+ cosϕ− + α(2πf + cos 2ϕ−)] , (C.16)
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with 0 < α < 1 and ϕ1,2 = (ϕ+ ± ϕ−)/2. We set the value of the external flux to Φ0/2 and
thus f = 1/2; defining u = U/EJ we get

u = −2 cosϕ+ cosϕ− + α cos 2ϕ−. (C.17)

For the following discussion we restrict the values of the phase differences to ϕ1,2 ∈ {−π,π}
since the critical values should be modπ, see also Fig. 2.9(a).

To find the critical points of this potential we firstly have to calculate the gradient and
then set it to zero,

∂u

∂ϕ+
= 2 sinϕ+ cosϕ−

!
= 0, (C.18a)

∂u

∂ϕ−
= 2 [cosϕ+ sinϕ− − 2α sinϕ− cosϕ−]

!
= 0. (C.18b)

where we have used the identity sin(2x) = 2 sinx cosx in Eq. (C.18b). Therewith, we find
several possible critical points in one π × π cell,

(ϕ+, ϕ−)(1) = (0 modπ,0 modπ), (C.19a)

(ϕ+, ϕ−)(2) = (0,±ϕ∗) , (C.19b)

(ϕ+, ϕ−)(3) =
(
±π

2
,± π

2

)
, (C.19c)

where modπ also includes the negative values (e.g. 0 modπ = −π,0,π) and ϕ∗ = arccos 1
2α .

These pairs now have to be analyzed with the Hessian matrix to decide if they mark a
minimum, maximum, or a saddlepoint [119].

The Hessian matrix of the potential u is3

H =




∂2u
∂ϕ2

+

∂2u
∂ϕ+∂ϕ−

∂2u
∂ϕ2

−

∂2u
∂ϕ−∂ϕ+


 =

(
2 cosϕ+ cosϕ− −2 sinϕ+ sinϕ−
−2 sinϕ+ sinϕ− 2 cosϕ+ cosϕ− − 4α

(
cos2 ϕ− − 1

)
)
.

(C.20)
We now have to determine if the matrices are positive or negative definite which are the criteria
for minima or maxima, respectively. A matrix is positive (negative) definite if all eigenvalues
are positive (negative). If some eigenvalues are positive and others negative, the matrix is
infinite; if the Hessian matrix is infinite for a certain point, this point is a saddlepoint; for
more information see [119].

We now analyze the different pairs in Eq. (C.19) separately. For the first points (ϕ+,ϕ−)(1)

we obtain two cases,

(ϕ+,ϕ
(1a)
− ) = (0,0) : H(1a) =

(
2 0
0 2 − 4α

)
, (C.21a)

ϕ
(1b)
+ = ϕ

(1b)
− ± π : H(1b) =

(
−2 0
0 −2 − 4α

)
. (C.21b)

For α < 1/2, H(1a) is positive definite and therewith the point (0,0) is a minimum. For
α > 1/2, H(1a) is semi-definite; the corresponding points then are saddlepoints. H(1b) is
negative definite for all values of α4 and the points define maxima.

3We have used the identity cos(2x) = 2 cos2 x − 1; note, that this is only valid for x < π.
4Remember that 0 < α < 1.
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For the second pair (ϕ+,ϕ−)(2) we get

(ϕ+,ϕ−)(2) = (0,± ϕ∗) : H(2) =

(
1/α 0
0 −1/α+ 4α

)
. (C.22a)

For α > 1/2, H(2) is positive definite and therewith the points (0,± ϕ∗) are minima. ±ϕ∗ is
not defined for α < 1/2.

For the last pair (ϕ+,ϕ−)(3), we obtain

(ϕ+, ϕ−)(3) =
(
±π

2
,± π

2

)
: H(3) =

(
0 ±2
±2 4α

)
, (C.23)

H(3) is indefinite for all values of α; the points (ϕ+,ϕ−)(3) are saddlepoints.
For all values of α, the points (0,± π) and (±π,0), corresponding to (ϕ1,ϕ2) = (±π,± π),

are maxima, as shown in Eq. (C.22a). They correspond to the peaks in the potential landscape
shown in Fig. 2.9(a). The saddlepoints between these maxima are the points (ϕ+,ϕ−)(3) =(
±π

2 ,±π
2

)
(see Eq. (C.23)); they correspond to (ϕ1,ϕ2) = (±π,0), (0,± π).

For α < 1/2, one minimum exists at point (0,0), according to Eq. (C.21a). This minimum
bifurcates into the two minima (0,±ϕ∗) for α > 1/2 (see Eq. (C.22a)). At α = 1/2 the points
(ϕ+,ϕ−)(1a) and (ϕ+, ϕ−)(2a) are the same, (ϕ+,ϕ−)(1) = (ϕ+, ϕ−)(2) = (0,0). In this case,
the Hessian matrix H(1a) = H(2a) is positive semidefinite; since the determinant of the matrix
is zero, the point (ϕ1,ϕ2) = (0,0) is a degenerate critical point (minimum) at α = 1/2. Since
we want to use the states in the two minima as a qubit, we set α > 1/2. The minima are
thus located at (ϕ1,ϕ2) = (ϕ∗,− ϕ∗) and (ϕ1,ϕ2) = (−ϕ∗,+ ϕ∗).

Thus, we have four maxima, two minima and five saddlepoints that define the qubit
environment. The saddlepoints (0,0) separates minima of the same or neighbouring unit cells;
a double well potential as for the rf SQUID is formed between these minima (see Fig. 2.9(c)).
The height of the potential at the saddlepoints defines the height of the tunnel barrier; it
depends on α.

C.4 Quantization of the 1D Transmission Line Resonator

To calculate the interaction of a qubit with a TLR we firstly have to find a quantum-
mechanical expression of the voltage (charge qubit) or the flux (flux qubit) of the transmission
line at the position of the qubit. Thus, we have to quantize the field generated by the TLR
which we do in this section of the appendix. A transmission line of length l, can be approxi-
mated by a 1D model if the height and thickness of the line are much less then the wavelength
of the transmitted signal. It can be described by an infinite series of inductors with each node
capacitively connected to the ground, as shown in Fig. 2.12; a quantization of the TLR using
this approach is given in [22]. We quantize the TLR with a different method, by solving the
one-dimensional Maxwell equations for the electric field Ey(x,t) that is polarized in y-direction
and propagates in x-direction and correspondingly the magnetic field Bz(x,t) that is polarized
in z-direction. The x- and y-directions are the in-plane directions in Fig. 2.12, where the TLR
defines the x-direction; the z-axis is the out-of-plane axis. We will mainly follow the general
quantization arguments of [102] and some specific steps of [22].

The one-dimensional Maxwell equations are

∂Ey

∂x
=
∂Bz

∂t
,

∂Ey

∂t
=

1

µǫ

∂Bz

∂x
, (C.24)
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where µ = µ0µr is the permeability and ǫ = ǫ0ǫr the permittivity of the transmission line (ǫ0
and µ0 being the vacuum values). The Maxwell equations result in a wave equation

(
∂

∂x2
− 1

v2

∂

∂t2

)
Ey = 0, (C.25)

with the propagation velocity c = 1
µǫ . Eq. (C.25) can be solved by performing a mode

expansion of Ey,

Ey(x,t) =
∑

k

(
E
−
k (t)uk(x) + E

+
k (t)u∗k(x)

)
. (C.26)

Here, E
±
k (t) are the time-dependent expansion coefficients,

E
−
k (t) =

(
E

+
k (t)

)†
= Nkak = Nkak(0) e−iωkt, (C.27)

where ωk = c · k is the frequency of the mode k and ak (a†k) is the bosonic annihilation
(creation) operator of the kth resonator mode with the usual commutation relations

[ak,a
†
k′ ] = δk,k′ , [ak,ak′ ] = [a†k, a

†
k′ ] = 0. (C.28)

N is a normalization constant that will be chosen such that

HTLR =

l∫

0

dx

(
ǫ

2
E

2
y(x,t) +

1

2µ
B

2
z(x,t)

)
= ~

∑

k

ωk

(
a†kak +

1

2

)
. (C.29)

The uk(x) in Eq.(C.25) are plane waves with

uk(x) = Ñeikx = Ñ[cos(kx) + i sin(kx)], (C.30)

where Ñ, again, is a normalization constant such that
∫ l
0 dx |uk|2 = 1.

The boundary conditions due to charge neutrality are Ey(0,t) = Ey(l,t) = 0. Thus, only
the sine-part of uk(x) is a valid solution for Ey(x,t). Applying the normalization condition
for uk(x), we get (k = νπ/l)

Ey(x,t) = i

√
2

l

νcutoff∑

ν=1

(
Nνaν − N

∗
νa

†
ν

)
sin
(νπx

l

)
, (C.31)

where νcutoff takes into account the fact that the TLR is not exactly one-dimensional.

From Eq. (C.24) follows

Bz(x,t) = −i1
c

√
2

l

νcutoff∑

ν=1

(
Nνaν + N

∗
νa

†
ν

)
cos
(νπx

l

)
. (C.32)

A convenient choice for Nν is

Nν = i

√
~ων

2ǫ
. (C.33)

with ων = νπc
l .
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C.4.1 Capacitive Coupling

A charge or a phase qubit couples to the voltage of the resonator via the gate capacitance
Cg. The voltage drop over the resonator circuit, Vrc, induces an ac part of the dimensionless
gate charge in the qubit circuit, Nac

g , which is related to the voltage in the resonator circuit
via the gate capacitance Cg as

Nac
g =

Cg

2e
Vrc =

Cg

2e

∫
dxEy(t) =

Cg

2e

νcutoff∑

ν=1

√
~ων l

ν2π2ǫ

(
aν + a†ν

)
cos
(νπx

l

)
. (C.34)

As shown in Fig. 2.12, the charge qubit is fabricated at the centre (x = l/2) of the resonator.
Since the mode ν = 1 is minimal at this point, the qubit is coupled to the mode ν = 2 of the
resonator at low temperatures. The dimensionless rms charge between the centre conductor

and the ground plane then is N
(2)
rms =

Cg

4πe

√
~ωrl/2ǫ (1/

√
2 due to the sinusoidal oscillations),

with ωr = ω2 = 2πc/l. The dimensionless gate charge felt by the qubit then is

Nac
g = N (2)

rms

(
a+ a†

)
. (C.35)

For the phase qubit, that is fabricated at the end of the TLR (Fig. 2.15), the ν = 1 mode
(λ/2-mode) couples to the qubit. Therefore, the rms value of the dimensionless gate charge

for the coupling to a phase qubit is N
(1)
rmrs = N

(2)
rms/

√
2, since the resonance frequency now is

ωr/
√

2 = ω1.
We now consider the TLR as an infinite series of inductors (total inductance Lr) with each

node capacitively (total capacitance Cr) connected to the ground. At the moment where the
energy is purely that of the electric field, we have CrVrc,max = ~ωr/2. Thus, we can rewrite

N
(2)
rms and ωr in terms of Cr and Lr,

N (2)
rms =

Cg

2e

Vmax√
2

=
Cg

2e

√
~ωr

2Cr
, with ωr =

1√
LrCr

. (C.36)

C.4.2 Inductive Coupling

A flux qubit couples to the flux of the TLR via the mutual inductance M . To calculate this
interaction, we firstly remove the complex parts of Bz via unitary transformations and obtain

Bz(x,t) =

νcutoff∑

ν=1

√
~ωνµ

l

(
aν + a†ν

)
cos
(νπx

l

)
. (C.37)

The flux in the qubit circuit, Φac
x , is related to the flux in the TLR circuit, Φrc, via the mutual

inductance M and the TLR inductance Lr,

Φac
x =

M

Lr
Φrc =

M

Lr

∫

A

dABz(x,t) =
MA

Lr

νcutoff∑

ν=1

√
~ωνµ

l

(
aν + a†ν

)
cos
(νπx

l

)
, (C.38)

with A being the face of the qubit. At low temperatures, the qubit, again, couples to the
ν = 2 mode. The rms flux between the centre conductor and the ground plane then is

Φ
(2)
rms = MA

√
~ωrµ/2l/Lr, with, again, ωr = ω2 = 2πc/l. The flux felt by the qubit is

Φac
x = Φ(2)

rms

(
a+ a†

)
. (C.39)
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Again, we want to rewrite Φ
(2)
rms and ωr in terms of the inductance and capacitance of the

TLR. Using Φ2
rc,max/2Lr = ~ωr/2, with Φmax being the maximal flux in the TLR circuit, we

get

Φ(2)
rms = M

√
~ωr

2Lr
, with ωr =

1√
LrCr

. (C.40)

The mutual inductance M for the ν = 2 mode can be estimated via a semi-classical
approach (cp. [75]). M is given by

M =
Φ2

rc,rms

I2
qc,rms

, (C.41)

with Iqc being the current induced in the qubit circuit. Iqc can be estimated with the Biot-
Sawart law for an infinite 1D conductor,

I2
qc,rms ≈

2πr

µ0
B

2
z,rms, (C.42)

with r is half the width of the gap between the centre conductor and the ground plane (we
assume the qubit is placed at the centre of the gap). The mutual inductance then is

M ≈
µ0AB2

z,rms

2πrB2
z,rms

=
µ0A

2πr
. (C.43)

C.5 Dispersive Regime of the Generalized JC Model

The following calculation can be reduced to the normal JC model by constraining k to k = 0,1.
The Hamiltonian of the generalized JC model is (cp. (2.50))

HgJC = ~

∑

k

ωk |k 〉〈 k| + ~ωra
†a+ ~

∑

k

gk,k+1

[
|k 〉〈 k + 1| a† + |k + 1 〉〈 k| a

]
. (C.44)

The transition between the two levels |k〉 and |k + 1〉 is coupled via gk,k+1 = gk+1,k and
detuned from the resonator by ∆k,k+1 = ωk+1 − ωk − ωr, whereas the different transitions
all are off–resonant (|∆k,k+1| ≫

√
n+ 1 gk,k+1). To calculate the effective Hamiltonian (cp.

Sec. A.5), we choose the unitary transformation as [25]

U = exp

[∑

k

gk,k+1

∆k

(
|k + 1 〉〈 k| a− |k 〉〈 k + 1| a†

)

︸ ︷︷ ︸
≡Sk

]
, (C.45)

Again, we expand the transformation up to the order gk,k+1gk′,k′+1/∆k,k+1; for this, we have
to calculate the following commutators,

[
∑

l

Sl , ~

∑

k

ωk |k 〉〈 k| + ~ωra
†a

]
= −~

∑

k

gk,k+1

[
|k 〉〈 k + 1| a† + |k + 1 〉〈 k| a

]
, (C.46)
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and
[
∑

l

Sl , ~
∑

k

[
|k 〉〈 k + 1| a† + |k + 1 〉〈 k| a

]]

= ~

∑

k

{ g2
k,k+1

∆k,k+1

[
2a†a (|k + 1 〉〈 k + 1| − |k 〉〈 k|) + 2 |k + 1 〉〈 k + 1|

]

+
gk,k+1gk−1,k

∆k,k+1

[
a2 |k + 1 〉〈 k − 1| +

(
a†
)2

|k − 1 〉〈 k + 1|
]

+
gk,k+1gk+1,k+2

∆k,k+1

[
a2 |k + 2 〉〈 k| +

(
a†
)2

|k − 2 〉〈 k|
]
.

(C.47)

Using Eq. (A.42), we obtain the effective Hamiltonian

H
eff
gJC = ~

∑

k

ωk |k 〉〈 k| + ~ωra
†a

+ ~

∑

k

g2
k,k+1

∆k,k+1

(
a†a (|k + 1 〉〈 k + 1| − |k 〉〈 k|) + |k + 1 〉〈 k + 1|

)

+ ~

∑

k

gk,k+1gk+1,k+2

2∆k,k+1

(
a2 |k + 2 〉〈 k| + (a†)2 |k 〉〈 k + 2|

)

+ ~

∑

k

gk,k+1gk−1,k

2∆k,k+1

(
a2 |k + 1 〉〈 k − 1| + (a†)2 |k − 1 〉〈 k + 1|

)
.

(C.48)

Changing the index of the last sum in Eq. (C.48) and combining the other terms we obtain
the effective Hamiltonian of the generalized JC model

H
eff
gJC = ~

∑

k

ωk |k 〉〈 k| + ~ωra
†a+ ~

∑

k

χk,k+1 |k + 1 〉〈 k + 1|

− ~χ0,1a
†a |0 〉〈 0| + ~

∞∑

k=1

(χk−1,k − χk,k+1)a
†a |k 〉〈 k|

+ ~

∑

k

ηk

(
a2 |k + 2 〉〈 k| + (a†)2 |k 〉〈 k + 2|

)
,

with

χk,k+1 =
g2
k,k+1

∆k,k+1
and ηk = gk,k+1gk+1,k+2

(
1

∆k+1,k+2
− 1

∆k,k−1

)
. (C.49)

The terms in the last line of Eq. (C.49) describe two-photon transitions and are negligible as
compared to the remaining terms due to the smallness of the parameter ηk.

Therefore, the level |k〉 is shifted by ~χk,k+1; again, an ac Stark shift (a state-dependent
shift of the cavity frequency) occurs.

C.6 Time-Dependent “Constant” Term

In this section, we show that a time-dependent term in the Hamiltonian that does not couple
to the rest of the system via an operator (we denote this with “constant”) can be neglected
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when calculating the time evolution of the wavefunction. We consider a Hamiltonian of the
form

H(t) = H
′(t) + C(t), (C.50)

with C(t) being a time-dependent, “constant” term, [H′(t),C(t)] = 0. The final time-evolution
operator (A.4), not taking into account the time ordering operator, thus reads

U(t,t0) = e−
i
~

∫ t
0

H0(t′)dt′e−
i
~

∫ t
0

C(t′)dt′ . (C.51)

The time-dependent, constant term C(t) is just a function of t, e.g. C(t) ∝ cos(ω t). Therefore,
this term simply yields a global phase in the time-evolution operator. Due to this, time-
dependent, “constant” terms in the Hamiltonian can be neglected.



Appendix D

Additional Information on the

Mesoscopic Shelving Readout

In this part of the appendix we discuss some properties of coherent states and quantum-
optical characteristic functions, where we mainly follow the arguments and explanations given
in [99; 120]. After this, we give details on calculations of the MSR.

D.1 Coherent States

A coherent state is a specific kind of eigenstate of the harmonic oscillator whose dynamics
most closely represents the behaviour of a classical field. In contrast to Fock states, the
photon number of a coherent state is indefinite and the phase is well-defined; therefore, the
coherent state is an eigenstate of the annihilation operator a. Coherent states are used to
describe fields with a minimal uncertainty such as a laser; these fields are then most closely to
classical fields. A single-mode coherent state |α〉 is generated by the action of the displacement
operator D(α) on the vacuum state |0〉,

|α〉 = D (α) |0〉 ≡ eαa†−α∗a |0〉 , (D.1)

where α = |α|eiφ is a complex number. The displacement operator is a unitary operator,

D
†(ξ) = D(−ξ) ≡ D

−1(ξ). (D.2)

Using the Baker-Campbell-Hausdorff relation, we get

D (α) = eαa†
e−α∗ae−

|α|2

2 . (D.3)

It then follows from Eq. (D.1) and e−δ∗a |0〉 = |0〉 that the coherent state can be expressed as

|α〉 = e−
|α|2

2

∞∑

n=0

αn

√
n!

|n〉 , (D.4)

and analogue

〈α| = e
|α|2

2

∞∑

n=0

(α∗)n

√
n!

〈n| . (D.5)

113



114 D Additional Information on the Mesoscopic Shelving Readout

We now calculate the action of the annihilation operator a on |α〉,

a |α〉 = e−
|α|2

2

∞∑

n=0

αn

√
n!

√
n |n− 1〉 = e−

|α|2

2

∞∑

n=0

αn

√
n!

√
n |n− 1〉

= αe−
|α|2

2

∞∑

(n−1)=0

αn−1

√
(n− 1)!

|n− 1〉 = α |α〉 .
(D.6)

The coherent state is an eigenstate of the annihilation operator which means that its photon
number is indefinite. Vice versa, we have 〈α| a† = α∗ 〈α|. The mean photon number of the
coherent state is given by

〈n̂〉 = 〈α|a†a|α〉 = αα∗〈α|α〉 = |α|2 . (D.7)

The photon number probability distribution P (n) for the coherent state |α〉 in Eq. (D.5)
then is

P (n) = |〈n|α〉|2 = e−|α|2 |α|2n

n!
= e−〈n̂〉 〈n̂〉n

n!
. (D.8)

The coherent state |α〉 is normalized, since 〈α|α〉 = 〈0|D†(α)D(α) |0〉 = 1, but different
coherent states are not orthogonal. Let us suppose two coherent states |α〉 and |β〉; the scalar
product of these two states is given by

〈α|β〉 = e−|α|2/2e−|β|2/2eδ
∗β 6= δ (α− β) . (D.9)

Thus, the coherent states form an over-complete set of eigenstates in which the identity can
be resolved in terms of the coherent states via the two-dimensional Fourier integral

1

π

∫
d2α |α 〉〈α| =

∞∑

n=0

|n 〉〈n| = 1, (D.10)

where
∫

d2α =
∫∞
−∞ dαrdαi denotes a double integral over the whole complex α-plane (αr and

αi being the real and imaginary part of α, respectively). Therewith, the trace of an operator
Ô evaluated in the coherent state basis is

Tr(Ô) =
1

π

∫
d2α 〈α|Ô|α〉. (D.11)

D.2 Characteristic Functions and Quasi-Probability Distribu-

tions

The quantum description of the properties of the electromagnetic field is necessarily a prob-
abilistic one in that we can only find the probability that a given property of the field has
a particular value. Consequently, it might be suitable to use the methods of (classical) sta-
tistical physics and to obtain the probability distribution of the possible value of a given
property of the field. A characteristic function or a quasi-probability distribution contains
all the information necessary to reconstruct the density matrix for the state, including the
photon number statistics. In this sense, they are alternative complete descriptions of the state
of the field. Both rely on the properties of the coherent states and the displacement operator.
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The p-ordered characteristic function is defined via the expectation value of the displace-
ment operator by

χ (ξ, p) = Tr
[
ρD (ξ)

]
ep|ξ|

2/2, (D.12)

where ξ is a complex-valued variable with real and imaginary part x and y, respectively.
Each value of the parameter p corresponds to a specific ordering of the creation and an-
nihilation operators in this expression; specifically, p = 1 represents the normal ordering
(P-representation), p = −1 the antinormal ordering (Q-representation), and p = 0 the sym-
metric ordering (Wigner-representation) of the operators a† and a (the specific expressions for
these orderings are given below in Eq. (D.14)). If the characteristic function is known, the ex-
pectation value of any p-ordered combination of a† and a can be calculated by differentiation
with 〈

a†man
〉

p
=

(
∂

∂ξ

)m(
− ∂

∂ξ

)n

χ (ξ,p)

∣∣∣∣
ξ=0

(D.13)

where

〈
a†man

〉

p
=





a†man, p = 1,

ana†m, p = −1,
1
2

[
a†man + ana†m

]
, p = 0.

(D.14)

An alternative to the characteristic function is the quasi-probability distribution P (α, p)
that is defined as

P (α, p) =
1

π2

∫
d2ξ χ(ξ,p) eαξ∗−α∗ξ. (D.15)

This is a two-dimensional Fourier transform of χ(ξ,p), where
∫

d2ξ =
∫ ∞
−∞ dxdy is an integral

over the complex ξ-plane. Since the quasi-probability distribution P (α, p) is not always
positive, a consequent interpretation as a probability distribution is not always possible.

For p = 1 we get the Glauber-Sudarshan P-representation of the quasi-probability distri-
bution, P (α) = P (α,1). The density matrix then can be expressed directly with

ρ =

∫
d2αP (α) |α 〉〈α| , (D.16)

where |α〉 is a coherent state. The p = 0-ordered quasi-probability distribution is called
Wigner (quasi-probability) distribution or function. It can be expressed by

W (α) =
2

π2

∫
d2β 〈α+ β|ρiF |α− β〉 exp (α∗β − αβ∗) . (D.17)

For p = −1, we get the Q-function, Q(α) = P (α,− 1). The representation for Q(α) is simple,

Q(α) =
1

π
〈α| ρ |α〉 . (D.18)

Thus, the Q-function will have zeros for all pure states other than the coherent state (and
a squeezed state, see [99]). Unlike P (α) and W (α), Q(α) has an interpretation as a real
probability distribution.

Let us now have a look on the application of the characteristic functions and the quasi-
probability distributions. A master equation for the density ρ(t) is an operator equation. It
is generally not possible to solve this operator equation directly to find ρ(t) in operator form
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since the time-dependence is in general not harmonic. We can only derive equations of motion
for the expectation values, and if these form a suitable closed set, solve these equations for
time-dependent operator averages. However, we can establish a correspondence between the
quantum-mechanical operators and ordinary functions, such that the quantities of interest
can be calculated with the characteristic functions or the corresponding quasi-probability
distributions. The operator master equation then transforms into an equivalent partial differ-
ential equation for either the characteristic function or a quasi-probability distribution which
represents ρ. The action of a number operator on ρ is then transformed into that of the
corresponding ordering of differential operators on P (α, p).

All of the representations introduced above can be used for this transformation. However,
the P-distribution may be a generalized function; the Q- and the Wigner distributions are
always well-behaved functions. Therefore, the Q- or Wigner representation is often the choice
for studies of nonclassical states of the electromagnetic field; they provide the basis for the
quantum-classical correspondence. Since the partial differential equations can be solved easier
in the Wigner representation, we choose this representation for the dissipative model of the
MSR in Sec. 4.4.2.

D.3 Detailed Calculations on the MSR

D.3.1 Master Equation in Terms of ρiF

To transform the master equation (4.23) for ρQF onto a set of equations for ρiF , we have to
calculate the commutator with the effective Hamiltonian (4.14) (k,l = {+,−, g}),
[
σx
(
a† + a

)
, |k 〉〈 l| ⊗ ρiF

]
= σx |k 〉〈 l| ⊗ [a† + a, ρiF ] + [σx, |k 〉〈 l|] ⊗ ρiF

(
a† + a

)

= (|+ 〉〈 l| δ+,l − |− 〉〈 l| δ−,l)
[
a† + a, ρiF

]

+ {(|+ 〉〈 l| δ+,l − |− 〉〈 l| δ−,l) − (|k 〉〈+| δ+,k − |k 〉〈−| δ−,k)} ρiF

(
a† + a

)
.

(D.19)

Therewith, we obtain a decoupled set of differential equations (4.29).

D.3.2 Transformation into Characteristic Functions

To map the set of equations for the density operators (4.29) onto a set of partial differential
equations for the characteristic functions, we calculate the expectation value

χi (ξ, t) = TrF [ρiF (t)D (ξ)] (D.20)

for the different parts of the equations for the density operators. For simplicity, we will just
write ρ instead of ρiF and Tr instead of TrF in the following. We introduce some properties
of the displacement operator,

D (ξ) = exp
(
ξa† − ξ∗a

)
, D

†(ξ)D(ξ) = 1, D
†(ξ) = D(−ξ) ≡ D

−1(ξ),

D
†(ξ)a†D(ξ) = a† + ξ∗, D

†(ξ)aD(ξ) = a+ ξ,

a†D(ξ) =

(
∂

∂ξ
+

1

2
ξ∗
)

D(ξ), D(ξ) a = −
(

∂

∂ξ∗
+

1

2
ξ

)
D(ξ),

(D.21)
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and the cyclic property of the trace

Tr [c1 c2 c3] = Tr [ci cj ck ǫijk] (D.22)

with ǫijk being the Levi–Civita symbol.

a) Terms ∝ L [σ−]ρ

The Liouvillian term consists of three parts,

Tr
[
L [σ−]ρD(ξ)

]
= Tr


−

κ

2

(
a†aρ︸︷︷︸
(1)

−2aρa†︸ ︷︷ ︸
(2)

+ ρa†a︸︷︷︸
(3)

)
D(ξ)


 . (D.23)

The transformations of these parts are given by

(1) = Tr
[
a†aρD(ξ)

]
= Tr

[
ρD(ξ)a†a

]
= Tr

[
ρD(ξ)a†D†(ξ)D(ξ)a

]

= Tr
[
ρD†(−ξ)a†D(−ξ)D(ξ)a

]
= Tr

[
ρ
(
a† − ξ∗

)
D(ξ)a

]

= −
(
∂

∂ξ
− 1

2
ξ∗
)(

∂

∂ξ∗
+

1

2
ξ

)
χ(ξ, t),

(D.24)

(2) = −2 Tr
[
aρa†D(ξ)

]
= −2 Tr

[
ρa†D(ξ)a

]
= 2

(
∂

∂ξ
+

1

2
ξ∗
)(

∂

∂ξ∗
+

1

2
ξ

)
χ(ξ, t), (D.25)

and

(3) = Tr
[
ρa†aD(ξ)

]
= Tr

[
ρa†D(ξ)D†(ξ)aD(ξ)

]

= Tr
[
ρa†D(ξ)

(
a† + ξ

)]
= −

(
∂

∂ξ
+

1

2
ξ∗
)(

∂

∂ξ∗
− 1

2
ξ

)
χ(ξ, t).

(D.26)

Thus, we obtain

L [σ−]ρ → −κ
2

[
(1) + (2) + (3)

]
= −κ

2

(
ξ∗

∂

∂ξ∗
+ ξ

∂

∂ξ

)
χ(ξ, t) − κ

2
|ξ|2 χ(ξ,t). (D.27)

b) Terms ∝
(
a† + a

)

We have to consider two terms to transform the commutators and anticommutators in
Eq. (4.23); they are

(1) = Tr
[(
a† + a

)
ρD(ξ)

]
= Tr

[
ρD(ξ)a†

]
+ Tr [ρD(ξ)a]

= Tr
[
ρD†(−ξ)a†D(−ξ)D†(−ξ)

]
−
(

∂

∂ξ∗
+

1

2
ξ

)
χ(ξ, t)

= Tr
[
ρ
(
a† − ξ∗

)
D(ξ)

]
−
(

∂

∂ξ∗
+

1

2
ξ

)
χ(ξ, t)

=

(
∂

∂ξ
− ∂

∂ξ∗

)
χ(ξ,t) − 1

2
(ξ + ξ∗)χ(ξ, t),

(D.28)
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and

(2) = Tr
[
ρ
(
a† + a

)
D(ξ)

]
= Tr

[
ρa†D(ξ)

]
+ Tr

[
ρD(ξ)D†(ξ)aD(ξ)

]

=

(
∂

∂ξ
+

1

2
ξ∗
)
χ(ξ, t) + Tr [ρD(ξ) (a+ ξ)]

=

(
∂

∂ξ
− ∂

∂ξ∗

)
χ(ξ,t) +

1

2
(ξ + ξ∗)χ(ξ, t).

(D.29)

Therewith, we obtain the commutator and anticommutator, respectively,

[
a† + a, ρ

]
→ (1) − (2) = − (ξ + ξ∗)χ(ξ, t), (D.30a)

{
a† + a, ρ

}
→ (1) + (2) = 2

(
∂

∂ξ
− ∂

∂ξ∗

)
χ(ξ,t). (D.30b)

D.3.3 Fourier Transform

The characteristic functions χi(ξ,t) (i = 1, . . . , 9) have the general form

χi(ξ,t) = Ai exp

(
−|ξ|2

2
+ ξλ∗1,i − ξ∗λ2,i

)
, (D.31)

with the prefactors

Ai =





|β|2
2 , i = 1,2,

|β|2
2 f1(t), i = 3,4,

β∗α√
2
f2(t), i = 5,6,

βδ∗√
2
f2(t), i = 7,8,

|α|2, i = 9,

(D.32)

and the time-dependent functions

λ1,i =





η(t) + ν(t), i = 1,4,5,

−η(t) + ν(t), i = 2,3,6,

ν(t), i = 7,8,9,

and λ2,i =





η(t) + ν(t), i = 1,3,7,

−η(t) + ν(t), i = 2,4,8,

ν(t), i = 5,6,9.

(D.33)

As already discussed in Sec. D.2, the field density operators can be calculated with their
corresponding Wigner function that is defined by the Fourier transform of the characteristic
function,

Wi(δ) =
1

π2

∫
d2ξ χi(ξ,t) exp (δξ∗ − δ∗ξ) . (D.34)

where δ is a complex variable; the relation between the density operators and the Wigner
functions is given by [99]

Wi(δ) =
2

π2

∫
d2γ 〈δ + γ|ρiF |δ − γ〉 exp (δ∗γ − δγ∗) , (D.35)

where γ again denotes a complex variable that defines a coherent state.
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We expect that the density operator has the general form

ρiF (t) = Bi |α1,i 〉〈α2,i| , (D.36)

where the prefactor Bi and the amplitudes α1,i and α2,i (|α1,i〉 and |α2,i〉 are coherent states)
have to be determined from the Fourier transform.

To calculate the density operator, we now firstly calculate the two equations (D.34) and
(D.35) independently; we then compare the two sides to determine the values Bi, α1,i, and
α2,i. The Fourier integral in Eq. (D.34) reads

Wi(δ) = Ai π
−1

∫
d2ξ exp

[
−|ξ|2/2 + ξ

(
λ∗1,i − δ∗

)
− ξ∗ (λ2,i − δ)

]
(D.37)

Rewriting ξ in its real and imaginary part, ξ = x+ iy, the integral changes to

Wi(δ) = Ai
1

π2

+∞∫

−∞

dxdy exp

[
−x

2

2
− y2

2
+ (x+ iy)

(
λ∗1,i − δ∗

)
− (x− iy) (λ2,i − δ)

]

=
Ai

π2

∞∫

−∞

dxdy exp

[
−1

2

(
x−

[
λ∗1,i − δ∗ − λ2,i + δ

])2

− 1

2

(
y − i

[
λ∗1,i − δ∗ + λ2,i − δ

])2 − 2
(
|δ|2 + λ∗1,iλ2,i − δ∗λ2,i − δλ∗1,i

)]

=
2A

π
exp

[
−2
(
|δ|2 + λ∗1,iλ2,i − δ∗λ2,i − δλ∗1,i

)]
,

(D.38)

where we have used the Gaussian integral

∞∫

−∞

dx e−(x−a)2/b2 =
√
πb. (D.39)

The Fourier integral in Eq. (D.35) contains the expectation value of the density operator,

〈δ + γ|ρiF |δ − γ〉 = Bi〈δ + γ|α1,i〉 〈α2,i|δ − γ〉

= Bi exp

[
−1

2

(
|δ + γ|2 + |α1,i|2

)
+ (δ + γ)∗α1,i −

1

2

(
|δ − γ|2 + |α2,i|2

)
+ (δ − γ)α∗

2,i

]

= Bi exp

[
−|δ|2 − |γ|2 − 1

2

(
|α1,i|2 + |α2,i|2

)
+ (δ + γ)∗α1,i + (δ − γ)α∗

2,i

]
(D.40)

= BiC(α,δ) exp
[
−|γ|2 − γα∗

2,i + γ∗α1,i

]
,

with

C(α,δ) = exp

[
−|δ|2 − 1

2

(
|α1,i|2 + |α2,i|2

)
+ δ∗α1,i + δα∗

2,i

]
. (D.41)

The Fourier integral can then be calculated as in Eq. (D.38), but now we have to integrate



120 D Additional Information on the Mesoscopic Shelving Readout

over the real and imaginary parts γr and γi, respectively, of γ = γr + iγi,

Wi(δ) =
2B

π2
C(α,δ)dγr

∞∫

−∞

dγi exp
[
−|γ|2 + γ

(
δ∗ − α∗

2,i

)
− γ∗ (δ − α1,i)

]

=
2B

π
C(α, δ) exp

[
−|δ|2 + α∗

2,iδ + α1,iδ
∗ − α∗

2,iα1,i

]

=
2B

π
exp

[
−2
(
|δ|2 − δ∗α1,i − δα∗

2,i

)
− 1

2

(
|α1,i|2 + |α2,i|2

)
− α∗

2,iα1,i

]
(D.42)

Since the two Wigner probability distributions that are given in Eq. (D.38) and (D.42)
have to be equal for equal i, Bi, α1,i, and α2,i have to fulfill the equality

Bi exp

[
2
(
δ∗α1,i + δα∗

2,i

)
− 1

2

(
|α1,i|2 + |α2,i|2

)
− α∗

2,iα1,i

]

= Ai exp
[
2
(
δ∗λ2,i + δλ∗1,i − λ∗1,iλ2,i

)]
.

(D.43)

From this we immediately see that

α1,i = λ2,i, and α2,i = λ1,i. (D.44)

Bi has to be chosen such that

Bi = Ai exp

[
−λ∗1,iλ2,i +

1

2

(
|λ1,i|2 + |λ2,i|2

)]
. (D.45)

With this, we can easily calculate the field operators ρiF (t) = Bi |α1,i 〉〈α2,i| in Eq. (4.54) by
using Eqs. (D.32) and (D.33).

The result above can also be obtained by considering the Q-representation,

〈δ| ρiF (t) |δ〉 = πQi(α) =
1

π

∫
d2ξ χi(ξ,t)e

−|ξ|2/2 exp (δξ∗ − δ∗ξ) . (D.46)



Appendix E

Measurement Techniques

In this part of the appendix we consider the measurement of a quantum-mechanical field
state. For this, we firstly introduce the quadrature operators x̂ and p̂. Then, we describe
the theoretical principles of a homodyne detection scheme. Lastly, we present the theoretical
description of a linear amplifier.

E.1 Quadratures

The electric field strength E of the light field is given by

Eφ = u∗(x,t)ae−iφ + u(x,t)a†eiφ, with u(x,t) = u0e
i(kx−ωt). (E.1)

where φ is a phase shift that is usually picked up by the quantum amplitude a. We have put
the time-dependency of the operators a and a† in the function u(x,t).

We introduce a pair of operators, x̂ and p̂ that are called the quadratures (quadrature
phase and moment, respectively). They correspond to the “real” and “imaginary” part of the
“complex” amplitude a,

x̂φ =
1√
2

(
a†eiφ + ae−iφ

)
, p̂φ =

i√
2

(
a†eiφ − ae−iφ

)
, (E.2)

so that

ae−iφ =
1√
2

(x̂φ + ip̂φ) . (E.3)

In optics x̂φ and p̂φ correspond to the in-phase and, respectively, the out-of-phase compo-
nent of the electric field amplitude of the spatial–temporal mode (with respect to a reference
phase)1. The quadratures can be regarded as the position and the momentum of the electro-
magnetic oscillator in phase space2.

For a coherent state |α〉, with real and imaginary part αr and αi, respectively, the quadra-
tures are

x̂φ =
1√
2

(
α∗eiφ + αe−iφ

)
=

√
2αr, p̂φ =

i√
2

(
α∗eiφ − αe−iφ

)
= −

√
2αi (E.4)

1For the magnetic field, p̂φ corresponds to the in-phase component of the electric field and x̂φ, vice versa,
to the out-of-phase component.

2Note that they have nothing to do with the position and the momentum of a photon
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Photodetector

Input

Output

Beam Splitter

Figure E.1: Sketch of a homodyne detection scheme. Two input signals (with the annihilation
operators aS and aLO) interfere optically to produce to output signals (with a2 and a4). These
can be measured with photodetectors.

Thus, we can identify the amplitude of the coherent state by measuring both quadratures.
We can only measure x̂φ or p̂φ in an experiment due to Heisenberg’s uncertainty principle,

[x̂φ, p̂φ] = i. (E.5)

However, with the determination of higher quadratures (i.e. x̂2
φ, x̂3

φ, . . . ) we get a full state
tomography of the signal; see [121] for more information. For the measurement of the intensity
of the electric field, we only have to measure x̂2

φ (p̂2
φ).

E.2 Homodyne and Heterodyne Detection

For the determination of the quadrature of a signal, we use a homodyne measurement scheme.
Fig. E.1 shows the measurement scheme of the homodyne detection. The measurable signal,
with the annihilation operator aS, interferes with a coherent laser beam, with the annihilation
operator aLO, at a 50:50 beam splitter. The laser-light field is called the local oscillator; it
provides the phase reference φ for the quadrature measurement. The local oscillator should
be intense with respect to the signal for providing a precise phase reference. After the optical
mixing of the signal with the local oscillator, each emerging beam (a2 and a4) is directed to a
photodetector, where either the intensities (photocurrents) or the quadratures of the beams
are measured, as discussed below.

The interference of the two input signals is given by a linear transformation
(
a2

a4

)
= B

(
aS

aLO

)
, (E.6)

described by the matrix

B =

(
B11 B12

B21 B22

)
. (E.7)

The incoming and the outcoming beams are both independent bosonic modes, so their anni-
hilation and creation operators must satisfy (k,l = S,LO,2,4)

[ak, a
†
l ] = δkl, and [ak, al] = [a†k, a

†
l ] = 0. (E.8)
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Consequently, B has to be unitary, B−1 = B†, because

|B11|2 + |B12|2 = |B21|2 + |B22|2 = 1, B11B
∗
21 + B12B

∗
22 = 0. (E.9)

We assume a lossless four-port with a real transition matrix B that is represented in terms of
the transmissivity τ and the reflectivity ρ,

B =

(
τ −ρ
ρ τ

)
, (E.10)

where, due to energy conservation, ρ2 + τ2 = 1. Our four-port is a 50 : 50 beam splitter and
therewith τ = ρ = 1/

√
2.

For the field detection, the photocurrent of the photodetectors is measured; this photocur-
rent Ii (i = 2,4) is a linear function of the photon number, Ii = a†iai. The outcoming field is
described by the annihilation operators

a2 =
1√
2

(aS − aLO) , a4 =
1√
2

(aS + aLO) . (E.11)

The difference of the photocurrents, I2 − I4 is the quantity of interest because it contains the
interference term of the local oscillator and the signal,

I2 − I4 = a†2a2 − a†4a4 = aSaLO + a†LOaS (E.12)

We will assume that the local oscillator is powerful enough to be treated classically; therewith,
the annihilation and creation operator of the reference field change as (remember that we only
consider the time-independent part of the operators)

aLO → αLO = |αLO| eiφ,
a†LO → α∗

LO = |αLO| e−iφ.
(E.13)

With this, we immediately see that we measure the quadrature phase of the signal by mea-
suring the difference of the intensities of the outcoming beams,

I2 − I4 = |αLO| x̂φ,S (E.14)

Therefore, a homodyne detector measures the quadrature component x̂φ,S of the signal,
whereas the reference phase φ is provided by the local oscillator. An experimental method
for finding the scaling |αLO|2 in the difference current is to keep a record of the sum current,

I2 + I4 = a†LOaLO + a†SaS = |αLO|2 + a†SaS, (E.15)

because it is proportional to |αLO|2 in leading order.

E.3 Linear Amplifier

In the MSR, the coherent field that leaks out the cavity is amplified with a linear amplifier.
Therefore, we discuss some properties of this devices in this part of the appendix. A linear
amplifier amplifies the voltage (corresponding to the mean value of the quadrature, 〈x̂〉) or
the power (〈x̂2〉) of a signal.
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E.3.1 Floor Noise

A linear amplifier is a electric device with a certain resistance. Due to this resistance, the
linear amplifier has a certain floor noise (Nyquist noise). This thermal noise can be expressed
in terms of a mean photon number namp that is given by the ratio of the thermal energy
of the amplifier noise (TN ≈ 10 K) and the zero-point energy of the field with frequency
ωr/2π ≈ 10 GHz which we want to measure,

namp =
kBTN

~ωr
≈ 20. (E.16)

This noise is added to the signal at the input of the linear amplifier. The entire input signal is
then amplified; the output thus has an additional thermal noise part from the linear amplifier.

However, namp is only a mean number of photons that is achieved after several mea-
surement. In a single shot, namp can differ significantly from this value. The probability of
measuring y noise photons is given by a Gaussian probability distribution since thermal noise
is just white noise,

P (y,namp) =
√

2πnamp
−1

exp

[
(y − namp)

2

2namp

]
. (E.17)

The standard derivation of this distribution is σN =
√
namp. This means that we can also

have a floor noise of e.g. 100 photons with a certain probability.

Therefore, we can calculate the probability of having a floor noise below a certain cutoff
photon number nc by integration,

P (y < nc, namp) =

nc∫

−∞

dy P (y,namp) =
1

2
+ erf

(
nc − namp√

2namp

)
, (E.18)

with erf(x) denoting the error function,

erf(x) =
2√
π

x∫

0

dy e−y2

. (E.19)

With this we can easily calculate the probability for having a floor noise below nc photons in
a single shot. For nc = 40, this number already approaches unity (99.9996%).

E.3.2 Theoretical Description

For the theoretical description of the linear amplifier we mainly follow the derivations in [122].
In general, a linear amplifier takes the input signal, expressed by the bosonic creation and
annihilation operators ain and a†in (where we only take into account one bosonic mode), and
produces an output signal, also expressed by bosonic creation and annihilation operators bout

and b†out. This output signal can be written as linear functions of the input operators:

bout =M ain + La†in + bamp,

b†out =M∗ a†in + L∗ ain + b†amp,
(E.20)
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where the operators bamp and b†amp are responsible for the additive noise of the linear amplifier,

Gnamp = 〈b†ampbamp〉 (the value G is defined below). Since the input and output operators
obey the bosonic commutation relations, we obtain the unitary condition

|M |2 − |L|2 + [bamp,b
†
amp] = 1. (E.21)

We can split the operators in their Hermitian real and imaginary parts:

x̂in =
1√
2
(a†in + ain), p̂in =

i√
2
(a†in − ain),

x̂out =
1√
2
(b†out + bout), p̂out =

i√
2
(b†out − bout),

x̂amp =
1√
2
(b†amp + bamp), p̂bamp

=
i√
2
(b†amp − bamp),

(E.22)

where x̂i (p̂i), (i = in, out, amp) are the (phase-independent) quadrature phases (moments)
of the input and output signal, and the amplifier noise, respectively. It has to be noted that
the averaged quadrature phase of the linear amplifier is zero, 〈x̂amp〉 = 0, and the averaged
quadrat of x̂amp corresponds to the photon number, 〈x̂2

amp〉 = Gnamp.
We can differentiate between two types of linear amplifiers. The most common type is the

phase-insensitive linear amplifier, that produces the same (L = 0) or the opposite (M = 0)
phase-shift of the input, in contrast to a phase-sensitive linear amplifiers, whose response
depends on the phase of the input. If the input signal of a phase-insensitive linear amplifier
has phase-insensitive noise, the output signal will also have phase-insensitive noise. The linear
amplifier is prepared in an operating state for which it is phase-insensitive. We can always
find a phase transformation of the input and output phase, for which M and L are real and
positive. Therewith, we can express Eq. (E.20) in equations for x̂i and p̂i, (i = in,out,bamp),

x̂out =(M + L)x̂in + x̂amp,

p̂out =(M − L)p̂in + p̂amp.
(E.23)

We now define the gains G1 = (M + L)2 and G2 = (M − L)2 for the quadratures and
a mean gain G = 1

2(G1 + G2) = M2 + L2. The gain of a phase-insensitive amplifier does
not depend on the phase and thus (G = G1 = G2). A phase-sensitive linear amplifier has
phase-dependent gains, but a reduction of the noise added to one quadrature phase requires
an increase of the noise added to the other phase. Without loss of generality we can choose
a phase-preserving linear amplifier with L = 0 and therefore G = M2.

We now consider the measurement of the coherent field calculated in chapter 4. Our input
signal is the coherent field state |η(t)〉 (the input operators are ain ≡ a and a†in ≡ a†); with
this, we can now calculate the expectation values of x̂out and x̂2

out that correspond to the
voltage and the power of the outcoming signal, respectively,

〈x̂out〉 = 〈Mη(t)| x̂in + x̂amp |η(t)〉 =

√
G

2
[η(t) + η∗(t)] ,

〈x̂2
out〉 = G 〈η(t)| (x̂in + x̂amp)

2 |η(t)〉

=
[
〈η(t)|

(
Ga†inain + b†ampbamp

)
|η(t)〉 +G 〈η(t)| a†ina

†
in + ainain |η(t)〉

]

= G
[
|η(t)|2 + namp + 1 + (η∗(t))2 + (η(t))2

]

= G
[
|η(t)|2 + namp + 1 − (ℑ[η(t)])2

]
= G

[
N e(t) + namp + 1

]
.

(E.24)



126 E Measurement Techniques

In the last step, we have used N e(t) = |η(t)|2 and the fact that η(t) = −ig/κ
[
1 − e−κt/2

]
is

purely imaginary and therewith (ℑ[η(t)])2 = |η(t)|2. We have neglected constant shifts that
only originate from the vacuum energies of the input and the noise field.

Therefore, by measuring 〈x̂2
out〉 we can amplify and measure the mean photon number

N e(t) with an additional noise Gnamp = 〈b†ampbamp〉. The calculations in Eq. (E.24) also hold
for the mean photon number of the ground state, Ng(t), and for a non-negligible crosstalk,
where the input signal is the field

(
|η(t) + ν(t)〉 + |−η(t) + ν(t)〉

)
/
√

2.
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[16] E. Fick, Einführung in die Grundlagen der Quantentheorie (Akademische Verlagsge-
sellschaft, Frankfurt am Main, 1968).

[17] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis,
G. Imreh, J. A. Sherman, D. N. Stacey, A. M. Steane, and D. M. Lucas,
High-Fidelity Readout of Trapped-Ion Qubits, Phys. Rev. Lett. 100, 200502 (2008).

[18] L. F. W. Yu-xi Liu and F. Nori, Quantum tomography for solid-state qubits, Euro-
phys. Lett. 67, 874 (2004).

[19] K. Hornberger, Introduction to decoherence theory, arXiv:quant-ph/0612118 (2006).

[20] D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 2008).

[21] E. T. Jaynes and F. W. Cummings, Comparison of the quantum and semiclassical
radiation theories with application to the beam maser, Proc. IEEE 51, 89 (1963).

[22] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cav-
ity quantum electrodynamics for superconducting electrical circuits: An architecture for
quantum computation, Phys. Rev. A 69, 062320 (2004).

[23] C. F. Wildfeuer, Erzeugung verschränkter Zustände im Zwei-Moden-Jaynes-
Cummings-Modell, Ph.D. thesis, Universität Siegen (2003).

[24] A. B. Klimov, L. L. Sánchez-Soto, A. Navarro, and E. C. Yustas, Effective
Hamiltonians in quantum optics: a systematic approach, J. Mod. Opt. 49, 2211 (2002).

[25] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer,
A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive
qubit design derived from the Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[26] A. Wallraff, D. I. Schuster, A. Blais, J. M. Gambetta, J. Schreier, L. Frun-

zio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Sideband Transitions
and Two-Tone Spectroscopy of a Superconducting Qubit Strongly Coupled to an On-
Chip Cavity, Phys. Rev. Lett. 99, 050501 (2007).

[27] D. I. Schuster, Circuit Quantum Electrodynamics, Ph.D. thesis, Yale University
(2007).

[28] J. I. Cirac and P. Zoller, Quantum Computations with Cold Trapped Ions, Phys.
Rev. Lett. 74, 4091 (1995).

[29] M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J.

Wineland, Ionic crystals in a linear Paul trap, Phys. Rev. A 45, 6493 (1992).

http://arxiv.org/abs/quant-ph/0411174


Bibliography 129

[30] R. Blatt and A. Steane, Quantum information processing with trapped ions, in:
T. Van der Pyl, A. Karlson, and M. Belina-Podgatsky, (Eds.), Quantum In-
formation Processing and Communication in Europe (European Communities, 2005).
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