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To my sister and my parents



vi



Contents

Abstract xiii

I General Introduction 1

1 Introduction 3

2 Quantum dots (QDs) 7
2.1 History of the Kondo effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Quantum dot basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Quantum dots and the Kondo effect . . . . . . . . . . . . . . . . . . 8
2.2.2 Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Anderson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Transport processes in the Anderson model . . . . . . . . . . . . . . . . . . 14

2.4.1 Sequential tunnelling . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Second order co-tunnelling . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Next order corrections . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Kondo model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Poor man’s scaling for the Kondo model . . . . . . . . . . . . . . . 21

2.6 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Meir-Wingreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.2 Kubo formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 Landauer formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.4 Scattering theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.5 Scattering phase shifts . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Numerical Renormalizaton Group (NRG) 27
3.1 NRG transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 NRG eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Complete basis of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Calculation of local correlators with NRG . . . . . . . . . . . . . . . . . . 34



viii CONTENTS

3.5.1 General Lehmann representation . . . . . . . . . . . . . . . . . . . 35
3.5.2 Example of local density of states . . . . . . . . . . . . . . . . . . . 35
3.5.3 Local operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.4 Thermal averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.5 Sum rules and mean values . . . . . . . . . . . . . . . . . . . . . . 37
3.5.6 Previous approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Spectral function of the Anderson model . . . . . . . . . . . . . . . . . . . 39
3.7 Recent developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 Anderson-like impurity models studied in this work using NRG . . . . . . . 41

II Results 43

4 Transmission through multi-level quantum dots 45
4.1 Brief introduction to experiments and theory . . . . . . . . . . . . . . . . . 47

4.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.3 Measurement procedure . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.5 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Mesoscopic to universal crossover of transmission phase . . . . . . . . . . . 51
Phys. Rev. Lett. 98, 186802 (2007) . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Emergence of a broad level in the universal regime . . . . . . . . . . 56
4.2.2 Supplementary NRG data . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Phase lapses in transmission through two-level quantum dots . . . . . . . . 60
New J. Phys. 9, 123 (2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Interplay of mesoscopic and Kondo effects for transmission amplitude . . . 85
to be submitted to Phys. Rev. B, cond-mat/0805.3145 . . . . . . . . . . . . 85

5 NRG for the Anderson model with superconducting leads 97
accepted for publication in J. Phys.: Condens. Matter, cond-mat/0803.1251 98

5.1 Ground and bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Two-channel Kondo effect 119
6.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1.1 Brief introduction to the standard two-channel Kondo model . . . . 120
6.1.2 Expected phase diagram . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Two-channel Kondo-Anderson model . . . . . . . . . . . . . . . . . . . . . 122
6.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Related single-channel models . . . . . . . . . . . . . . . . . . . . . 125
6.2.3 Two-channel Kondo-Anderson model . . . . . . . . . . . . . . . . . 126

6.3 Two-channel Pustilnik model . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



Contents ix

6.3.2 Energy flow diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.3 Occupation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

III Appendix 137

A Spectral function 139
A.1 Smoothening discrete data . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.1 Discrete data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.1.2 Smooth curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.2 Self-energy representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2.1 Example: Anderson model with superconducting leads . . . . . . . 142
A.2.2 General self-energy representation . . . . . . . . . . . . . . . . . . . 144
A.2.3 Example: M-level, N-lead Anderson model . . . . . . . . . . . . . . 145

B Relation between Anderson and Kondo model 147
B.1 Schrieffer-Wolff transformation for a two-channel model . . . . . . . . . . . 147

B.1.1 Transformation of the Hamiltonian . . . . . . . . . . . . . . . . . . 148
B.1.2 Appropriate transformation . . . . . . . . . . . . . . . . . . . . . . 149
B.1.3 The effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 149
B.1.4 Some useful relations . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.2 Kondo temperature for the single-level Anderson and the Kondo model . . 152

C Scattering phases and NRG flow diagrams 155

D Some fermionic commutation relations 157

IV Miscellaneous 159

Bibliography 161

List of Publications 169

Deutsche Zusammenfassung 171

Acknowledgements 173

Curriculum Vitae 175



x Contents



List of Figures

2.1 Temperature dependence of the resistance of a gold sample . . . . . . . . . 9
2.2 Quantum dot (QD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Eigenbasis of the scattering matrix . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Transport for finite source-drain voltage . . . . . . . . . . . . . . . . . . . 15
2.5 Linear conductance in the Coulomb blockade regime . . . . . . . . . . . . . 16
2.6 Linear conductance through a Kondo QD . . . . . . . . . . . . . . . . . . . 16
2.7 Second order co-tunnelling processes in the Coulomb blockade regime . . . 17
2.8 Second order processes in the Kondo regime . . . . . . . . . . . . . . . . . 17
2.9 Fourth order processes in the Kondo regime . . . . . . . . . . . . . . . . . 20

3.1 Sketch of the NRG steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Sketch of the eigenenergies during the iterative procedure . . . . . . . . . . 31
3.3 Flow diagram for the symmetric Anderson model . . . . . . . . . . . . . . 32
3.4 Sketch of local operator representation and transition . . . . . . . . . . . . 38
3.5 Spectral function of the symmetric Anderson model . . . . . . . . . . . . . 40
3.6 Spectral function and occupation of the Anderson model . . . . . . . . . . 40
3.7 Temperature dependence of the spectral function . . . . . . . . . . . . . . 41
3.8 Models analyzed in this thesis with NRG . . . . . . . . . . . . . . . . . . . 42

4.1 Multi-terminal Aharonov-Bohm interferometer . . . . . . . . . . . . . . . . 48
4.2 Phase measurement procedure . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Transmission measurements in the universal and mesoscopic regime . . . . 50
4.4 Renormalized level widths . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Crossover from mesoscopic to universal phase behaviour . . . . . . . . . . . 58
4.6 Universal regime at zero and finite temperature . . . . . . . . . . . . . . . 59
4.7 Universal regime at finite temperatures . . . . . . . . . . . . . . . . . . . . 59

5.1 NRG representation of the superconductor-Anderson model . . . . . . . . . 98
5.2 Subgap bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 Scattering phases of a two-channel Kondo system . . . . . . . . . . . . . . 123
6.2 Phase diagram of the Kondo-Anderson model . . . . . . . . . . . . . . . . 126
6.3 Flow diagrams for the Kondo-Anderson model . . . . . . . . . . . . . . . . 128
6.4 Scattering phases of the Kondo-Anderson model . . . . . . . . . . . . . . . 129



xii List of Figures

6.5 Local occupation of the Kondo-Anderson model . . . . . . . . . . . . . . . 129
6.6 Phasediagram for large gate voltage . . . . . . . . . . . . . . . . . . . . . . 130
6.7 Scattering phase and occupation at the non-Fermi liquid line . . . . . . . . 130
6.8 Differential conductance at the non-FL line . . . . . . . . . . . . . . . . . . 131
6.9 Phase diagram of the Kondo-Anderson model versus occupation . . . . . . 132
6.10 Flow diagrams of the Pustilnik model . . . . . . . . . . . . . . . . . . . . . 135
6.11 Occupation of the Pustilnik model . . . . . . . . . . . . . . . . . . . . . . . 136

A.1 Raw data for the spectral function . . . . . . . . . . . . . . . . . . . . . . 140
A.2 Smoothened spectral function . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.3 Improved spectral function . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.1 Flow diagram of a Kondo and an Anderson model . . . . . . . . . . . . . . 153

C.1 Relation between scattering phases and NRG flow diagrams . . . . . . . . 156



Abstract

This thesis contributes to the field of transport through quantum dots. These devices allow
for a controlled study of quantum transport and fundamental physical effects, like the
Kondo effect [1]. In this thesis we will focus on dots that are well described by generalized
Anderson impurity models, where the discrete levels of the quantum dot are tunnel-coupled
to fermionic reservoirs. The model parameters, like level energy and width, can be tuned
in experiments. Therefore these systems constitute a valuable arena for testing experiment
against theory and vice versa. In order to describe these strongly correlated systems, we
employ the numerical renormalization group method [2]. This allows us to address both
longstanding questions concerning experimental results and new physical phenomena in
these fundamental models.

This thesis consists of three major projects. The first and most extensive one is con-
cerned with the phase of the transmission amplitude through a quantum dot. Measure-
ments of many-electron quantum dots with small level spacing reveal universal phase be-
haviour [3, 4, 5], a result not fully understood for almost 10 years. Recent experiments
[5] have seen that, contrarily, for dots with only a few electrons, i.e. large level spacing,
the phase depends on the mesoscopic dot parameters. Analyzing a multi-level Anderson
model, we show that the generic feature of the two regimes can be reproduced in the
regime of overlapping levels or well separated levels, respectively. Thereby the universal
character follows from Fano-type antiresonances of the renormalized single-particle levels.
Moderate temperature supports the universal character. In the mesoscopic regime, we also
investigate the effect of Kondo correlations on the transmission phase. In a second project
we analyze a quantum dot coupled to a superconducting reservoir. In contrast to previous
belief, the energy resolution of our method is not restricted by the energy scale of the
superconducting gap, leading to new insights into the method. The high resolution allows
us to resolve sharp peaks in the spectral function that emerge for a certain regime of pa-
rameters. A third project deals with a quantum dot coupled to two independent channels,
a system known to exhibit non-Fermi liquid behaviour. We investigate the existence of the
non-Fermi liquid regime when driving the system out of the Kondo regime by emptying
the dot. We find that the extent of the non-Fermi liquid regime strongly depends on the
mechanisms that couple impurity and reservoirs but prevent mixing of the latter.
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Chapter 1

Introduction

The vast progress in nanofabrication during the last decades made it possible to study basic
physical effects in a very controlled manner. One example of these highly controllable
devices are quantum dots [6]. In a quantum dot electrons are confined in a small two-
dimensional region coupled to external reservoirs (often called leads). Due to the spatial
confinement, transport through the quantum dot (triggered by a small voltage difference
between the leads) is determined by both energy and charge quantization inside the dot.
Both quantization effects are directly observable in transport measurements, including
elaborate setups, or the detailed analysis of basic physical effects like the Kondo effect
[1, 7, 8, 9, 10].

In the Kondo effect, below a critical temperature (Kondo temperature TK), a local
moment gets screened by reservoir electrons within an energy window TK around the
Fermi energy. The Kondo effect was observed experimentally [11] in the 1930’s, far before
quantum dots could be built. It emerged in the data as an anomalous behaviour of the
resistivity of metals below a certain temperature. Only in the 1960’s Kondo [1] was able
to explain the experimental curves with the existence of magnetic impurities inside the
metal. Scattering of electrons at these local moments does not die out with decreasing
temperature but gets enhanced, resulting in strongly correlated electron systems. Even
though well understood meanwhile, the Kondo effect received new interest for the study of
transport phenomena with the fabrication of devices on a micro or nano scale, where now
localized electrons in the quantum dot can provide the local moment to be screened: On
the one hand the Kondo effect strongly affects the transport properties of these systems
at low temperatures, on the other hand side quantum dots constitute a testing ground for
studying this prime example of a many-body effect in all its facets.

In order to analyze these strongly correlated systems theoretically, elaborate methods
beyond mean-field or perturbation theory have to be employed. In this thesis we study
quantum impurity models by means of Wilson’s numerical renormalization group method
[2] (NRG). The key idea of this method is the logarithmic discretization of the conduction
band, allowing all relevant energy scales to be considered in the calculation. Thermo-
dynamic and dynamic quantities like the linear conductance can be calculated in linear
response at zero and finite temperature.
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This thesis contributes to the understanding of transport phenomena through quantum
impurity systems. It describes three major projects. The first and most extensive one is
motivated by measurements of the phase of the transmission amplitude through a multi-
level quantum dot done in the Heiblum group [3, 4, 12, 13, 5, 14]. Experiments proved
coherence of transport but where not fully explained theoretically for almost 10 years. It
turns out that it is the ratio of mean level spacing to mean level width that governs the
generic properties of the system. Secondly, an impurity model with superconducting leads
is investigated. This study is motivated both by the high quality analyzis of the spectral
function and the quest for new insight into the mechanisms of NRG to that model. In a
third project, we investigate the existence of the non-Fermi liquid regime in two different
two-channel Kondo systems apart from half filling.

In the following, we give an overview of the content of this thesis. It is organized into
four parts. Part I provides an overview for the field of transport through quantum impurity
systems and the NRG method. In Chapter 2, some fundamental properties of transport
through quantum dots is summarized, and the standard models used to describe these
systems, the Anderson and the Kondo model, are introduced. The Kondo effect is discussed
and different ways to calculate the transmission amplitude through an impurity system are
motivated. A pedagogical introduction to the NRG method is given in Chapter 3, covering
also recent developments like the concept of a complete basis (within the framework of
NRG) and sum-rule conserving calculation of spectral functions.
The NRG method is applied in Part II to several quantum impurity problems. All models
involved are schematically depicted in their NRG representation in Fig. 3.8. A majority of
the results are published in this Part have been published.

Chapter 4 is motivated by measurements of the transmission phase through a quantum
dot, all performed in the Heiblum group [3, 4, 12, 13, 5, 14]. They find that in large
quantum dots, the phase exhibits universal behaviour, i.e. between any two electrons that
successively enter the quantum dot, the phase sharply drops by π (phase lapse), whereas
for a small number of electrons in the dot, the occurrence of the phase lapse depends on
the parameters of the successive levels (mesoscopic behaviour). In Sec. 4.2 we analyze the
transmission amplitude through a spinless multi-level Anderson model and find universal
phase behaviour when the level spacing is small compared to the mean level widths, as well
as a crossover to mesoscopic behaviour when increasing ratio or level spacing to level width,
in accordance with experiments. The universal phase lapse behaviour follows from Fano-
type antiresonances between the renormalized single-particle levels, that are obtained by
use of the functional renormalization group [15]. Section 4.3 contains a more detailed study
of both a spinful and spinless two-level Anderson model with both the NRG and functional
renormalization group method. The effect of spin and temperature in the mesoscopic
regime is investigated in Sec. 4.4 for up to three levels. For odd occupation of the quantum
dot, Kondo correlations dominate the physics in the low-temperature limit. We investigate
the consequence of the decrease of Kondo correlations with increasing temperature on phase
and magnitude of the transmission amplitude, focusing on the influence of the neighbouring
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level.
A model of a local impurity coupled to a superconducting reservoir is investigated in

Chapter 5. We show that NRG is able to resolve energy differences that are much smaller
than the energy scale of the superconducting gap. This is contrary to intuition, since energy
scales like a finite magnetic field or finite temperature act as a lower bound on the energy
resolution possible with NRG. This high resolution allows us to calculate the impurity
spectral function very accurately, and to resolve sharp peaks in the spectral function close
to the gap edge in case of the gap much smaller than TK .

The extent of the non-Fermi liquid regime in two-channel Kondo systems away from the
local moment regime is discussed in Chapter 6. We study two theoretical models that allow
for a tuning of the energy of the local level and thereby a control of the local occupation.
We are interested in the existence of non-Fermi liquid behaviour when emptying the local
level. The two models are motivated by the proposal [16], realized only recently [17].

At the end of this part, a short summary and outlook are given.
The Appendix, Part III, contains technical details relevant for the studies carried out in
Part II. App. A elucidates procedure and tricks to obtain a smooth spectral function from
the raw NRG output. The equation of motion method (self-energy trick) can be applied
to improve the accuracy of the spectral functions, as explained and illustrated in App.
A.2. The mapping from the Anderson to the Kondo model is performed in App. B for the
example of a two-channel model related to Sec. 6.2. At T = 0, standard Kondo systems
exhibit Fermi liquid behaviour and their transport properties are fully characterized by
the scattering matrix. Accordingly, the low lying energy levels of the converged NRG flow
diagrams can be understood in terms of the scattering phases defined by the eigenvalues of
the scattering matrix, as explained in App. C. Some useful fermionic commutator relations
are summarized in App. D.
The last part, Part IV, contains various miscellaneous items, the bibliography, a list
of publications, the acknowledgements, the “Deutsche Zusammenfassung” and finally the
author’s curriculum vitae.
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Chapter 2

Quantum dots (QDs)

The Kondo effect is one of the prime examples of strongly correlated many-body phe-
nomenon. After the first experimental signatures in 1934 and Kondo’s explanation in 1964
(sketched in the following Section), it attracted new interest with the development of nan-
otechnology. The second Section of this Chapter is about the basics of QDs. QDs are
experimental devices which allow for the study of scattering mechanisms (like the Kondo
effect) via transport measurements in a highly controllable manner. In the last Section
of this Chapter we introduce the Anderson impurity model. This is one of the standard
models for describing QDs tunnel-coupled to external reservoirs, as needed for transport.

2.1 History of the Kondo effect

In 1934, de Haas, de Boer and van den Berg [11] presented puzzling experimental data
of the resistivity of gold samples that were assumed to be pure. Their measurements
revealed a minimum of the resistance at about ∼ 10K, as well as a finite resistance in the
zero temperature limit. The results are sketched in Fig. 2.1. The striking behaviour was
confirmed also for other metals like silver or copper. This observation contradicted the
then known theories of resistance, predicting a monotonous increase with temperature.

The resistance of metals was known to be determined by different kind of scattering
mechanisms, all yielding a monotonous increase with temperature: (i) The low-temperature
limit is dominated by temperature independent potential scattering of conduction electrons
at impurity atoms embedded in the lattice structure of the solid. This results in a finite
resistance at zero temperature. (ii) Electron-electron scattering increases with temperature
as ρel

el ∝ T 2. Clearly, this gives only a minor contribution at low temperatures, vanishing
for T → 0. (iii) The same holds for scattering of electrons with phonons (lattice distor-
tions), which goes as ρel

phonon ∝ T 5, therefore dominating the resistance with increasing
temperature. Obviously, the scattering mechanisms (i)-(iii) cannot explain the minimum
in resistance observed by de Haas et al.

From its observation in 1934, this low-temperature anomaly was an open question for
30 years, until Jun Kondo solved the problem of the resistance minimum in 1964 [1]. The
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key to the solution was that the potential scattering (i) does not cover all electron-impurity
scattering processes. If the impurities possess a magnetic moment (typical examples are
ferrum, manganese or cobalt), also spin-spin scattering of the spin-1/2 conduction electrons
with the magnetic moment of the impurities has to be taken into account. Even a very low
concentration of these local moments (remember, the probes were assumed to be “pure”)
is enough to change the low-temperature properties dramatically.

The spin-spin interaction allows for spin-flip scattering, clearly not covered by the scat-
tering processes (i)-(iii). Kondo showed, using perturbation theory, that the novel scatter-
ing mechanism results in logarithmic divergences for decreasing temperature, ρel

magn.imp ∝
ln(TK/T ). TK is the Kondo temperature, i.e. the energy scale were the spin-flip scattering
starts to dominate the physics of the system. Including all four scattering mechanisms,
the resistance can be expressed as

ρel(T ) = acimpρ
el
0 + bT 2 + cT 5 + cimpρ

el
1 ln

TK

T
, (2.1)

with the characteristic resistances ρel
0 and ρel

1 , the impurity concentration cimp and the
constants a, b, c. The equation reproduces the experimental findings for T ∼ TK , where
the resistance minimum is at ∼ TK .

In Chapter 2.4 we will dwell on the higher order scattering processes leading to the
Kondo effect and sketch both a perturbative as well as a simple scaling method to estimate
the Kondo temperature and the logarithmic divergences. For temperatures T � TK , these
approaches fail (Kondo problem). More elaborate methods (like the numerical renormal-
ization group method (NRG), see Chapter 3) yield a screening of the local moments by the
surrounding bulk electrons of energy E ≈ EF±TK around the Fermi energy EF . Therefore,
the local spins are screened and the ground state is a singlet (Kondo singlet). Spin-flip
scattering and consequently also the logarithmic divergence are suppressed, resulting in a
finite resistance at zero temperature, in accordance with experiments.

2.2 Quantum dot basics

Due to the confinement of electrons on small spatial scales, QDs reveal both charge and en-
ergy quantization. Accordingly, they are ideal devices to study quantum impurity physics.
Following up on the preceding Section, we introduce (lateral) QDs as artificial impurities
with experimentally adjustable properties. Therefore they are ideal devices for the study
of quantum transport phenomenon like the Kondo effect.

2.2.1 Quantum dots and the Kondo effect

The Kondo effect, which was initially observed for magnetic impurities in a metallic reser-
voir, experienced a revival with the improvement of nanofabrication. In 1998, Goldhaber-
Gordon et al. [9] were the first to measure the Kondo effect in one of these highly con-
trollable nano devices, namely in a QD, which at that time still was called single-electron
transistor.
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T     10KK~

resistance

temperature

Figure 2.1: Sketch of the temperature dependence of the resistance of a gold sample
with a small concentration of magnetic impurities, as measured by de Haas et al. [11].
The resistance minimum at ∼ TK was a puzzle for 30 years, until Kondo related the non-
monotonicity with spin-flip scattering of electrons at magnetic impurities (Kondo effect).
For T . TK , this results in a resistance ∝ log(TK/T ). At temperatures above TK the
resistance is dominated by electron-phonon scattering ∝ T 5.

In a QD, electrons are confined within a very small area (a “dot”). The constraint
on mobility in all three spatial dimensions results in a discrete energy spectrum for the
electrons (and holes). Additionally, due to the spatial confinement, the Coulomb repulsion
between all electrons occupying the QD is an important energy scale, so that electrons
can only enter one by one. Therefore, QDs reveal both charge and energy quantization.
The discrete local levels of a QD are tunnel-coupled to the surrounding material. This is
usually a semiconductor (or rarely a metal) with continuous band structure, thus providing
a reservoir of electrons. An graphical energy representation of a QD setup is sketched in
Fig. 2.2(b).

If the total spin of the electrons confined in the QD is finite (in the simplest case one
electron occupies the QD), this localized magnetic moment acts like a magnetic impurity.
Therefore, as discussed in the preceding section, spin-flip scattering between the reservoir
electrons and the spin of the QD dominates the low-temperature physics and the Kondo
effect emerges.

The enhancement of the scattering rate due to the Kondo effect can be studied by
transport measurements. For this purpose the QD is coupled to two reservoirs (left and
right or source and drain) at slightly different chemical potential (achieved by applying a
small voltage bias Vsd between source and drain). Therefore the Kondo effect results in an
enhanced forward scattering, leading to an increase in current through the QD. Compare
the situation to a magnetic impurities in a bulk, where the direction of scattering is not
restricted. Then the enhanced scattering due to the Kondo effect effectively decreases the
flow of electrons in forward direction, thus it is the resistance and not the current that
increases for temperatures below TK .

QDs not only enable a “man made” Kondo effect, but allow for its controlled study.
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The energy of the local levels can be shifted via the control of the potential depth of the
QD by a gate voltage Vg. Therefore the number of electrons on the QD can be changed
by simply tuning a voltage, thereby switching the Kondo effect on (finite spin, e.g. one or
odd number of electrons) or off (zero spin, e.g. zero or even number of electrons). Further,
the coupling to the reservoirs can be controlled and it is possible to study the effect of
a magnetic field or the dependence of the strength of the source-drain voltage. It is also
possible to couple several QDs [18] or to integrate them into larger structures like an
Aharonov-Bohm interferometer [19], a geometry studied in Chapter 4.

g2

g1
g3

drain
500 nm

source
QD

QD

a)

EF

δ

δU+
RL

L ΓR
Γ

(b)

Figure 2.2: Lateral quantum dot. (a) Scanning electron microscope micrograph of a
lateral QD (courtesy by Clemens Rössler, LMU Munich). Electrons can tunnel from the
source through the QD to the drain lead. The electrostatic potential defining the quantum
dot is defined by gate electrodes. (b) Sketch of the relevant energy scales of a QD in
equilibrium. The continuous bands of the left (L) and right (R) reservoirs are filled up to
the Fermi energy, thus µL = µR = EF . Due to the spatial confinement of electrons inside
the QD, the local energy levels are discretized. Electrons can tunnel from the leads into the
QD and occupy the levels below the Fermi energy. Also the Coulomb interaction between
the localized electrons has to be paid.

2.2.2 Scales

For quantum mechanical effects to occur, the size of a QD is restricted by the thermal

wavelength λT =
√

h2

2m?kBT
and the de Broglie wavelength λB = h

p
of the electrons. m∗

is the effective mass of an electron. At low temperatures, the electron energy can be ap-
proximated by the Fermi energy, thus p ≈ m?vF , with the Fermi velocity vF . Because of
much the smaller Fermi velocities of semiconductors compared to metals, the de Broglie
wavelength of semiconductors (λB ∼ 100nm) is much larger than for metals (λB ∼ 0.1nm).
Therefore standard QDs are of semiconducting material with a diameter L . 100nm.

The corresponding energy quantization results in a finite spacing δ of the local levels.
Approximating the QD as a two-dimensional box (square) of length L, it can be estimated
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to behave as

δ ∝ 1/L2. (2.2)

The second energy scale important due to the spatial confinement, is the Coulomb
repulsion between the negatively charged electrons in the QD. An electron added to the
QD which acts as a capacitor, has to pay the charging energy U = e2/2C, where C denotes
the capacitance of the QD. For a disc capacitor of diameter L and dielectric constant ε0,
it can be estimated by C ∼ ε0L, yielding

U ≈ e2

2ε0L
. (2.3)

Additional interaction between localized electrons is given by the spin-spin exchange in-
teraction. In most cases this is a minor effect and can thus be neglected.

For typical QDs, the Coulomb repulsion is the dominant energy scale, U > δ. In
principal, both the level spacing and the Coulomb energy for a specific setup are fixed by
the material and the size1. A third energy scale of the system which can be varied more
easily in experiment is given by the coupling strength Γ between the reservoir and the local
levels. Usually δ > Γ so that the levels (that are broadened by Γ) do not overlap and the
levels get occupied one by one when lowering the energy of the local levels. Due to energy
and charge quantization, QDs are sometimes referred to as “artificial atoms”. The filling
of symmetric QDs is even known to obey a periodic table [6] according to two-dimensional
electron orbits and obeying Hund’s rule, i.e. maximizing the spin of each orbit.

2.2.3 Fabrication

The most commonly used QDs for transport measurements are lateral QDs. A scan-
ning electron microscope micrograph is shown in Fig. 2.2(a). In a semiconductor het-
erostructure, a potential minimum near the interface of the two different materials (e.g.
GaAs/AlGaAs) leads to the formation of a two-dimensional electron gas. Metallic gates
on top of the structure deplete the region below them when a negative voltage is applied.
With the proper design of these top gates, a small electron island (i.e. the QD) and a left
and right reservoir can be defined in the two-dimensional electron gas below the surface.
By control of the gates the tunnel coupling between dot and reservoirs can be adjusted. A
voltage bias applied between the reservoirs (acting as source and drain) results in trans-
port through the QD. Moreover, a gate electrode controls the potential depth of the QD,
thereby shifting the local levels so that the occupation of the QD can be changed.

As mentioned above, with progress of nano-fabrication methods, also more complicated
structures like several QDs coupled to each other [18] or a QD in one arm of an Aharonov-
Bohm geometry, see Fig. 4.1, can be realized.

Other standard types of QDs (for different fields of application) are e.g. vertical QDs,
where the QD is defined by chemical etching, or self assembled QDs which accumulate

1Depending on the type of QD, the size of the dot can be changed by adjusting the confining potential.
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at the barrier layer between two semiconducting materials with different lattice constant,
thereby reducing the lattice tension.

2.3 Anderson model

The Anderson model is commonly used to describe localized levels with local interaction
that are tunnel-coupled to one or several reservoirs – as realized in the above described
impurity or QD systems [9]. Initially, the model was invented by P.W. Anderson [20] to
explain the existence of local moments in metals.

The Hamiltonian of the Anderson model can be split into three parts,

H = Himp + Hres + Himp−res, (2.4a)

specifying the properties of the bare impurity, the reservoirs and the coupling between
the two systems, respectively. For M local levels coupled to N electronic reservoirs, these
terms are given by

Himp =
M∑

j=1

∑
σ

εdjndjσ +
∑

{jσ}6={j′σ′}

Ujj′ndjσndj′σ′ (2.4b)

Hres =
N∑

α=1

∑
kσ

εαkc
†
αkσcαkσ (2.4c)

Himp−res =
M∑

j=1

N∑
α=1

∑
kσ

Vjαkc
†
αkσdjσ + V ?

jαkd
†
jσcαkσ. (2.4d)

Electrons occupying the local level j with energy εdj and spin σ = {↑, ↓} are created by

the operator d†jσ. The level energies are measured w.r.t. the Fermi energy EF . The local

electrons interact via the Coulomb repulsion U with each other, where ndjσ = d†jσdjσ is the
charge operator. Additional local terms may be added, for example to take into account
the effect of an external magnetic field or exchange interaction.

An electron in reservoir α with momentum k and spin σ is created by the creation
operator c†αkσ. The reservoirs – also called leads or baths in the case of QDs – are assumed
to be identical, non-interacting and in equilibrium. The dispersion relation is then given
by εαk = εk for all α. The creation and annihilation operators obey the standard fermionic
anti-commutation relations [ai, a

†
i′ ]+ = δii′ , [ai, ai′ ]+ = 0 and [a†i , a

†
i′ ]+ = 0, where ai =

djσ, cαkσ, respectively.
The tunnelling between lead α and level j is characterized by the tunnelling matrix

element Vjαk, usually assumed to be momentum independent and real, Vjαk = Vjα. Fi-
nite level-lead coupling results in a broadening of the local levels. Each coupling term
contributes a width

Γjα = πρ|Vjα|2, (2.5)
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where ρ =
∑

k δ(ω − εk) is the density of states of the leads. The broadening is additive,
thus the total width of level j (due to tunnel coupling) is given for each spin channel by
Γj =

∑
α Γjα. We do not take into account other broadening mechanisms (e.g. due to

thermal fluctuations).
To summarize, the Anderson model (and therefore transport through a QD), as de-

scribed by Eq. (2.4), is characterized by the Coulomb interaction U , the local level en-
ergies εdj and the tunnel couplings Vjα. As mentioned above, these parameters are well
controllable by electrode voltages in experiments. There one usually measures transport
from source (say left reservoir) to drain (say right reservoir), thus N = 2.

In case of two leads and symmetric coupling (ΓjL = λ2ΓjR for all level j), a unitary
rotation of the lead operators results in an eventually simpler structure of the Anderson
Hamiltonian (2.4). The basis transformation u given by(

c1kσ

c2kσ

)
=

1√
V 2

L + V 2
R

(
VL VR

VR −VL

) (
cLkσ

cRkσ

)
(2.6)

decouples the system into part 1 and 2, respectively. The situation is sketched in Fig. 2.3.
Levels where the matrix elements for coupling to the left and right lead have the same
sign, sj = sign(VjLVjR) = +, couple only to channel 1 (depicted in yellow), whereas levels
with sj = − couple exclusively to channel 2 (red). The effective couplings are given by
V ′

j =
√

1 + λ2VLj.
Obviously, the condition of symmetric coupling holds always for the single level Ander-

son model (where we drop the index j). Then one of the channels (say channel 2) decouples
completely and all relevant physics is contained in system 1. Same holds if all sj have the
same sign. Therefore the dimension of the Hilbert space to treat is almost halved, reducing
the computational effort to solve the system considerably.

4V’
V’3

2V’
V’1

λV2

V3λ

V1

V4

3V

V2

V1

L R 1 2
u

V4λ

λ

−

−

Figure 2.3: Sketch of the action of the unitary rotation u diagonalizing the scattering
matrix for the case ΓLj = λ2ΓRj , see Eq. (2.6). Then the system decouples into part 1 and
2, respectively. This means that levels with sj = sign(VjLVjR) = + couple only to channel
1, whereas levels with sj = − couple exclusively to channel 2. Therefore the scattering
phase shift of each of the effective channels is related by the Friedel sum rule [21] to the
total occupation of the levels it couples to, see Sec. 2.6.5. The effective couplings are given
by V ′

j =
√

1 + λ2Vj .
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2.4 Transport processes in the Anderson model

The characteristic parameters of a QD (like Coulomb energy U or level spectrum) directly
influence its transport properties. Therefore they can be extracted from tunnelling spec-
troscopy, where the current I is measured as a function of gate voltage Vg shifting the local
level energies and source-drain voltage Vsd. Typical experimental data, with colour coded
differential conductance dI/dVsd [22], is presented in Fig. 2.4(a). The temperature fulfils
T � δ, U ; otherwise thermal fluctuations smear out features due to energy and charge
quantization.

The basic features of Fig. 2.4(a) can be explained by first order tunnelling processes,
as will be done in the next paragraph. We focus on the regime Vsd → 0 of linear response,
which can be treated with NRG, see Chapter 3 and Part II of this thesis. We then address
the issue of higher order tunnelling processes as well as their importance for the emergence
of the Kondo effect.

2.4.1 Sequential tunnelling

In first order, current flow across the QD is possible if at least one local level lies within
the transport window. The latter is defined by the shift of the chemical potentials µL,R

of the left and the right lead when a finite source-drain voltage Vsd is applied between
them. Therefore µL,R = EF ± eVsd/2, see Fig. 2.4(b), where e = |e|. We define the Fermi
energy EF = 0 as the Fermi energy of the system at Vsd = 0 and assume the leads large
enough so that the chemical potentials are not perturbed by the flow of the current. For a
level within that transport window, electrons can hop on and off the dot levels sequentially
(sequential tunnelling), leading to a net current from source to drain for Vsd > 0. Thereby
each local level within the transport window opens up a transport channel that contributes
up to 2e2/h to the differential conductance. The factor 2 accounts for the two possible
spin orientations. In the experimental data, see Fig. 2.4(a), the thin lines parallel to
the diamonds mark the excitation energies of the QD, whereas the lines elongating the
diamonds confine the regions where several levels contribute to the current.

If no level lies within the transport window, electron hopping is suppressed by Coulomb
repulsion (Coulomb blockade) and level spacing, therefore I = dI/dVsd → 0. In the experi-
mental data, this leads to the so-called Coulomb diamonds aligned along Vsd = 0. Clearly,
within each diamond the number of electrons is fixed. The next electron can populate
the QD for Vg tuning a level inside the transport window. First scans of the differential
conductance

Only recently, first success for applying NRG to non-equilibrium systems [23] is re-
ported. In this thesis we use the standard NRG to solve Anderson-like impurity models in
equilibrium. An introduction to the method is given in Chapter 3. Therefore we focus on
the regime of linear response (Vsd → 0), with the linear conductance defined as

G = lim
Vsd→0

dI

dVsd

. (2.7)
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Figure 2.5 shows an example for the Vg-dependence of the linear conductance, i.e. the
profile of dI/dVsd measurements as shown in Fig. 2.4(a) at Vsd = 0. Transport only occurs
when a level of the QD is aligned with the Fermi energy. At these charge degeneracy
points, there is no energy difference if an electron enters (or leaves) the level from (or to)
the leads, therefore current flow is possible even in the linear response limit. The resulting
conductance peaks at the charge degeneracy points are called Coulomb peaks.

At low temperature where all single-particle levels below the Fermi energy are filled,
the charge degeneracy points, and therefore the conductance peaks are separated by the
Coulomb energy; if a new level gets involved, also the level spacing has to be taken into
account. At the Coulomb peaks, the conductance may reach the unitary limit G = 2e2/h.
The width of a peak reflects the broadening of the corresponding level (due to thermal
fluctuations and coupling Γ of the level with the lead).

In the Coulomb valleys between two consecutive peaks, sequential transport is sup-
pressed exponentially with decreasing temperature: The probability that the QD gets
populated by an additional electron (energy cost U/2 in the middle of the valley) goes as
∝ exp(−U/2T ).

EF

Rµ =−eV/2

µ L =+eV/2

δ

δ

δU+
RL

(a)

Figure 2.4: Transport for finite Vsd. (a) Sketch of a QD with Vg adjusted such that
two electrons occupy the QD. Transport occurs through the two levels lying within the
transport window EF ±Vsd/2 (blue). We assume constant level spacing δ. (b) Conductance
measurement: Differential conductance dI/dVsd colour coded versus the source-drain (Vsd)
and gate voltage (Vg) (courtesy by A.K. Hüttel, TU Delft). Clearly, first order transport
processes only occur for at least one level within the transport window.

For sequential tunnelling, transport necessarily involves real scattering processes inside
the QD, randomizing the transmission phase. Therefore sequential tunnelling is incoherent,
contrary to higher order processes (presented in the next Section), that may well be coher-
ent. In Chapter 4 we analyze measurements that for the first time proved experimentally
that transport across a QD has a coherent component.

Furthermore, at low temperatures, where sequential tunnelling is suppressed in the
Coulomb blockade valleys, it is the higher order processes that govern the transport prop-
erties of the system. In the following, we introduce examples of higher order co-tunnelling
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Figure 2.5: Linear conductance G = limV→0 dI/dVsd versus gate voltage Vg [24]. The
Coulomb blockade peaks are separated alternately by U and δ+U . In the Coulomb valleys
in between, transport is suppressed. The Coulomb peaks are broadened due to the level
broadening and temperature.

Figure 2.6: Measurement of the linear conductance G through a Kondo QD upon lowering
the temperature T from 800mK (thick red line) to 15mK (thick black line) (carried out
by van der Wiel et al. [10]). For odd occupation of the QD (the number of electrons
is indicated, thereby N is an even number), the conductance increases with decreasing
temperature, saturating slightly below the theoretical maximum of 2e2/h (unitary limit),
see also the inset. In case of even occupation, the conductance decreases as T is lowered,
as in standard Coulomb blockade.

processes. Particular attention is given to spin-flip processes related to the Kondo effect.
For brevity we restrict the discussion to electron-like processes (dominant for example in
the regime |εd| � |εd + U |). The same argument holds for the hole-like analogues.
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2.4.2 Second order co-tunnelling

We present both inelastic and elastic second order co-tunnelling processes. Due to en-
ergy conservation, the former are only possible at finite temperature or finite source-drain
voltage. For details we refer to the review of Pustilnik and Glazman [25] and reverences
therein. Figures 2.7 and 2.8 sketch examples of second order virtual co-tunnelling processes
deep inside the Coulomb blockade.

EF

(a) (b)

Figure 2.7: Examples of second order co-tunnelling processes deep in the Coulomb block-
ade regime. The first tunnelling process is indicated in blue, the second one in green. The
filled circles stand for either spin up or down. (a) Inelastic co-tunnelling leaving an electron-
hole pair of energy & δ on the QD. (b) Elastic co-tunnelling for even (left) and odd (right)
occupation of the QD. Transport occurs through an initially empty level. Therefore, the
spin of the incoming electron does not depend on the spin configuration of the QD which
remains unchanged.

ε+εd 2εd+U

V
U

ε

V

V
ε+εd

ε

ε

Figure 2.8: Example of elastic second order co-tunnelling processes deep in the Coulomb
blockade regime which is only possible for initially odd occupation of the QD. The spin of
the incoming electron is opposite to the local spin in the QD. Spin-flip of the local spin is
possible. The energy of the system at the different states are indicated.
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Inelastic co-tunnelling

A typical example for second order inelastic co-tunnelling is sketched in Fig. 2.7(a). An
electron from the left lead tunnels into the QD occupying some local level. An electron
from another level hops off the QD (to the right lead), leaving an electron-hole pair in the
dot.

Elastic co-tunnelling

Elastic co-tunnelling processes are not accompanied by the creation of an electron-hole
pair, implying that the occupation of each level of the QD is the same before and after
the virtual process. For second order processes, this condition is fulfilled if only one level
is involved. Examples for an electron transfer via an initially empty level is shown in Fig.
2.7(b). All other local levels remain unchanged in every step and the spin of the QD is
conserved.

For odd number of local electrons the QD provides a local moment (local moment
regime). In this case, additional elastic processes may occur if the spin of the incoming
electron is opposite to the local spin on the QD. Then the lead electron can tunnel onto the
singly occupied level. In the second step, a spin-flip of the local spin is possible, as sketched
in Fig. 2.8. Note that these processes are only possible for opposite spin alignment of the
incoming and the initial local electron, whereas the previous examples were independent
of the spin orientation (and the local moment of the QD). Consequently, for opposite spin
alignment and local moment regime, the energy of the system is lowered by the additional
processes by

∆Ee(ε) =
V 2

εd + U − ε
and ∆Eh(ε) =

V 2

ε− εd

, (2.8)

where ∆Eh stands for the corresponding hole-like process. Therefore anti-alignment of the
lead and dot spin is favourable, resulting in a singlet ground state, the so called Kondo
singlet.

Transmission amplitude

The transmission amplitude (for an initial lead electron of energy ε) for all presented second
order processes is given by

A(2) = − V 2

∆E
, (2.9)

where we assume left-right symmetric and energy independent coupling, V = VL = VR.
The energy difference between the virtual and the initial (final) state is denoted by ∆E.
For processes mediated by a singly occupied level it is given by ∆E = εd + U − ε. If
the first unoccupied level is involved, the level distance has to be taken into account, thus
∆E = εd + U + δ − ε. Note that the sign depends on the chosen order of the fermionic
states. Then in Coulomb blockade, where εd + U � EF (and assuming ε ≈ EF ), the
transmission amplitude is negative.
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2.4.3 Next order corrections

In the previous Section we saw that in the Coulomb blockade regime, the lowest order
co-tunnelling processes do not lead to any divergence of the co-tunnelling amplitude. In
the following we present corrections to the amplitude in next order (O(V 4)) that contribute
to a logarithmic divergence in the tunnelling amplitude for the QD in the local moment
regime. This logarithmic divergence is characteristic for the Kondo effect. We discuss the
relation of this divergence to the Kondo temperature and the breakdown of perturbation
theory for energy scales smaller than the Kondo temperature. The full argument for the
Kondo model (Sec. 2.5) can be found for example in [26].

The dominant fourth order process leading to Kondo physics is depicted in Fig. 2.9.
It involves a virtual state with the local electron flipped and an electron of energy ε′ in
the leads. This intermediate state is essential for the emergence of the Kondo effect. The
similar process without intermediate spin-flip cancels a transition that involves the virtual
creation of an electron-hole pair [27].

The transmission amplitude of the fourth order process with virtual spin flip is given
by

A
(4)
K (ε) = −

∫ εc

−εc

dε′ [1− f(ε′)] ρ(ε′)
V 4

∆E · (ε′ − ε) ·∆E
. (2.10)

The integration is done over all lead levels of energy ε′ available for the intermediate state.
For temperature T → 0, the Fermi function f(ε′) = 1/(e(ε′−EF )/kBT + 1) turns to a step
function and integration starts at the Fermi energy EF . εc � EF is some high-energy
cutoff; usually εc < |εd|, |εd + U |. ∆E = εd + U − ε, as above. For constant lead density of
states ρ and zero temperature, the amplitude yields

A
(4)
K (ε) = −ρ

V 4

∆E2

∫ εc

EF

dε′
1

ε′ − ε
= −ρ

V 4

∆E2
ln

∣∣∣∣ εc

ε− EF

∣∣∣∣. (2.11)

As the second order amplitude A(2) for the transitions leading to the Kondo singlet, A
(4)
K is

always negative, therefore it enhances the co-tunnelling contribution to the conductance.
Consequently, transport across a QD is not only possible at the Coulomb blockade peaks,
but also in the local moment regime, i.e. for odd occupation of the QD.

At finite temperature, the energy of the incoming electron can be approximated by
the temperature, ε − EF ≈ T , and the correction is proportional to ln

[
εc

T

]
. For T → 0

and ε → 0, the tunnelling correction diverges logarithmically. Clearly, perturbation the-
ory breaks down for A

(4)
K comparable to the second order amplitude A(2) given in Eq.

(2.9), V 4ρ
∆E2 ln

[
εc

T

]
∼ V 2

∆E
. This is the case for the temperature of the order of TK ∼

εc exp
[
−c ∆E

V 2 ρ

]
, also called Kondo temperature. Consequently, below TK , physics is dom-

inated by higher order processes (as the one presented in Fig. 2.9) and the perturbative
treatment is no longer justified. This is the Kondo effect.

Consequently, for temperatures below the Kondo temperature, transport across the
QD is no longer suppressed in the regime between two Coulomb blockade peaks if an odd
number of electrons occupies the QD (local moment regime). A plateau (Kondo plateau)
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in the conductance forms between the neighbouring Coulomb peaks. It may reach the
unitary limit of conductance, see Sec. 2.6. Typical experimental data in the Kondo regime
are presented in Fig. 2.6. The Kondo temperature for the Anderson model – accounting for
all possible processes and giving the right prefactor – can be estimated in the framework
of the exact Bethe-Ansatz [28] or poor man’s scaling [29] to be

TK =

√
ΓU

2
e−π

εd−EF
2U

(εd+U−EF )

Γ . (2.12)

The last term in the exponent accounts for the processes presented above, the other term
stems from the effect of processes not described here (e.g. hole-like processes).

The poor man’s scaling method for the Kondo model will be introduced in Sec. 2.5.1. As
perturbation theory, it fails for energy scales below TK . An ingenious scheme for solving
the Kondo problem also for energies well below TK was devised by K.G. Wilson in the
1970’s: the numerical renormalization group method [2]. This method will be introduced
in Chapter 3 and used to solve various impurity problems in Part II of this thesis.

ε+εd 2εd +U 2εd +U

ε+εd

V V V

ε +ε d’

virtual state
spin flipped

V

V

ε

ε

ε

ε ’

Figure 2.9: Fourth order processes leading to Kondo physics. The doubly occupied
intermediate states of energy 2εd + U are not drawn explicitly. The intermediate spin-
flipped state is crucial for the emergence of the Kondo effect.

2.5 Kondo model

In the preceding Section we saw that Kondo physics occurs in the local moment regime
were the QD is occupied by an odd number of electrons. At low enough temperature
(T � δ � U) all levels except the one directly below the Fermi energy are either double
or not occupied, thus provide net spin zero. The spin of the QD is therefore determined by
the one singly occupied level and as explained above, for low temperature the tunnelling
amplitude is dominated by higher order spin-flip processes mediated by the singly occupied
local level.
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In this regime the QD can be described by the Kondo model: A single magnetic moment
S interacts via second order coupling with the spin s =

∑
kk′σσ′

1
2
c†kσσσσ′ck′σ′ of the lead

electrons (to be precise: of the even combination of the lead electrons). Since no additional
local level is provided, only processes as were depicted in Fig. 2.8 are possible. This leads
to an effective spin-spin coupling S · s. The coupling constant is determined by the energy
gain due to the second order virtual processes,

J =
V 2

EF − εd

+
V 2

εd + U − EF

, (2.13)

see Eq. (2.8). In order to obtain an energy independent coupling constant, we assumed
that ε ≈ EF . Summing up all possible processes, the Kondo Hamiltonian reads

HK = 2J S · s +
∑
kσ

εkc
†
kσckσ. (2.14)

A rigorous transformation from the Anderson model to the Kondo model is given by the
Schrieffer-Wolff transformation [30], see Appendix B Eq. (B.14).

Two short checks against the results of Sec. 2.4.2: (i) Since S · s = [Szsz + 1
2
(S+s− +

S−s+)], HK contains all relevant second order processes in V . We use the usual definition
of the ladder operators S± and s±, respectively. (ii) In the local moment regime the level
energy fulfils εd < EF < εd + U , thus the interaction is antiferromagnetic, J > 0, and the
ground state is a spin singlet.

2.5.1 Poor man’s scaling for the Kondo model

Since it is a very intuitive introduction to scaling or renormalization methods, we introduce
the poor man’s scaling method. This method was proposed in 1970 by P.W. Anderson [31]
to solve the Kondo problem. The key idea is to arrive at an effective Hamiltonian that (i)
captures the low-energy properties of the system but (ii) still has the same structure than
the initial Hamiltonian. This is achieved by successively reducing the bandwidth, always
including the effect of the virtual transitions via this narrow band-strip into the coupling
constant of the new effective Hamiltonian with reduced (effective) bandwidth. When the
effective bandwidth reaches the energy scale of interest, the physics at that scale is covered
by lowest order perturbation theory in the effective coupling, since higher order processes
are negligible for energies of the order of the effective bandwidth.

Let us sketch the poor man’s scaling for the Kondo model described by the Hamiltonian
(2.14). For details, see Ref. [32] or [26]; poor man’s scaling for the Anderson model can be
found in [29, 33].

Consider a second order transition that involves as intermediate state a level of energy ε
close to the band edge D, say D−|δD| < |ε| < D, where 0 < |δD‖llD. This corresponds to
high energy excitations of order ∼ D, therefore such transitions can only occur virtually,
i.e. to higher order in J . Each such process contributes ∼ J2/D to the second order
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correction of the tunnelling amplitude. For all ρ |δD| electronic states contained in the
narrow strips the correction sums to [31]

A
(2)
J ∼ 2ρJ2 |δD|

D
. (2.15)

The factor 2 accounts for electron and hole-like processes. Therefore, a renormalization of
the coupling constant

JD → JD̃ = J + 2ρJ2 |δD|
D

(2.16)

includes the second order transitions under consideration into the first order processes of
an effective system of bandwidth D̃ = D − δD. The new situation is described by the
effective Hamiltonian

H̃K = 2JD̃S · s +
∑
kσ

εkc
†
kσckσ, with |εk| < D̃ < D, (2.17)

having the same structure than the original Kondo Hamiltonian (2.14).
For successive infinitesimal reduction of the bandwidth, Eq. (2.16) leads to the scaling

equation of the Kondo model
dJD̃

d ln D̃
= −2ρJ2

D̃
. (2.18)

Note that δD negative here. Integration yields

JD̃ =
JD

1 + 2ρJD ln (D̃/D)
, (2.19)

which is a continuously growing function for decreasing D̃ if one starts in the weak coupling
regime, ρJ � 1. This means that by reducing the bandwidth, the system tends towards
strong coupling.

The properties of the system at temperature T are described for D̃ ≈ T , with an
effective coupling JT = J

1+2ρJ ln (T/D)
. This is a logarithmically diverging function, where

the divergence at 1+2ρJ ln (T/D) = 0 yields an estimate of the Kondo temperature of the
Kondo model

T
O(J2)
K ∼ De−1/(2ρJ). (2.20)

Applying poor man’s scaling to third order in the coupling J , the estimate of the Kondo
temperature can be improved to [26]

T
O(J3)
K ∼ D|2Jρ|1/2e−1/(2ρJ), (2.21)

which is the result that reasonably agrees with the solution of the Kondo model obtained
with NRG, see Appendix B.1. There we also relate the Kondo temperature of the Anderson
model to the Kondo temperature of the Kondo model.
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2.6 Conductance

In the preceding Section we discussed some of the most important tunnelling processes
contributing to transport across a QD. Let us now present the theoretical framework (or
a formulary) for calculating the experimentally accessible quantities, i.e. the current I
and the differential conductance G = limVsd→0dI/dVsd. Typical experimental curves were
presented in Figs. 2.4 and 2.5.

The current is defined as change in time of the relative charge in the left and right lead.
The current operator is given by

I =
d

dt

e

2
(NL −NR), (2.22)

where Nα =
∑

kσ c†αkσcαkσ is the occupation number operator for lead α = L, R, respec-

tively. For an Anderson-like Hamiltonian with hopping term Himp−res =
∑

kσ,α Vα(c†αkσdσ +

h.c.), we use d
dt

Nα = i
~ [H, Nα] = i

~ [Himp−res, Nα] to rewrite the current operator as

I =
ie

~
∑
kαj

(Vkαj c†kαdj − V ?
kαj d†jckα), (2.23)

with the level index j. Note that in the following we use the same symbol for the current
(I = 〈Ioperator〉) and the current operator.

2.6.1 Meir-Wingreen

Meir and Wingreen [33] showed (using the Keldysh formalism [34]) that the current through
an interacting region can be expressed in terms of the Fermi functions of the leads fα(ε) =
1/(e(ε+µα)/T + 1) together with purely local properties of the interacting region like the
occupation and the spectral function A = −1/πImGR. GR = −iθ(t)〈

[
d(t), d†

]
+
〉 is the

local retarded Green’s function. For the single-level Anderson model this yields

I =
e

h

∑
σ

∫
dε (fL(ε)− fR(ε)) 4π2ρ

|VL|2|VR|2

|VL|2 + |VR|2

[
− 1

π
ImGR(ε)

]
, (2.24)

leading to the differential conductance

G =
dI

dVsd

=
e2

h

∑
σ

∫
dε

(
−df(ε)

dε

)
4π2ρ

|VL|2|VR|2

|VL|2 + |VR|2

[
− 1

π
ImGR(ε)

]
. (2.25)

Note that the Green’s function covers all possible tunnelling processes, including inelastic
processes and spin flips. In case of more than one level, a similar equation holds if the
couplings to the left and right lead differ only by a factor λ for all levels j, VLj = λVRj.
Note that this condition also restricts the signs of the couplings. Therefore Meir-Wingreen
does not hold for the s = − case studied in connection with the many-level Anderson
model, see Chapter 4.
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In order to evaluate Eq. (2.25), the Green’s function has to be calculated in presence of
the source-drain voltage Vsd. In this thesis, we focus on the linear response regime Vsd → 0,
where the local Green’s function can be evaluated in equilibrium. An example of a spectral
function A ∝ ImGR of a one level Anderson model calculated with NRG is given in Chapter
3.5.

2.6.2 Kubo formula

For arbitrary couplings, the linear conductance can be calculated using the Kubo formula
[35]. It expresses the linear response of a system to some perturbation (here the applied
source-drain voltage) in terms of the unperturbed system. Here it relates G with the
current-current correlator,

G = limω→0
1

~ω

∫ ∞

0

dteiωt〈[I(t), I]〉, (2.26)

where the current-current correlator is evaluated in equilibrium. For VLj = λVRj, Eq.
(2.25) is recovered.

2.6.3 Landauer formula

In case of zero temperature and linear response, only single-electron, elastic processes are
allowed by energy conservation. The system can be assumed to be a Fermi liquid and the
Landauer formula

G =
e2

h

∑
σ

|tLR|2, (2.27)

originally derived for non-interacting systems [36], holds even in the presence of local
interactions [33]. The transmission amplitude from lead α to α′ is given by

tαα′ = 2
∑
ij

πρ Vαi GR
ij V ?

α′j, (2.28)

were the spin index is suppressed.

2.6.4 Scattering theory

In the Fermi liquid regime, the transmission is completely characterized by the scattering
phase shifts δ0σ for lead electrons with spin σ at the Fermi energy. Therefore, the Landauer
formula (2.27) can be reformulated in terms of these phase shifts.

The scattering matrix S and the transmission amplitude t are related by

Sαα′ = δαα′ + itαα′ , (2.29)
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thus SLR = itLR. The scattering matrix can be diagonalized by a unitary rotation in the
L−R lead space,

Sσ = u†
(

ei2δ1σ 0
0 ei2δ2σ

)
u, with u =

(
eiφ cos θ eiφ sin θ
−e−iφ sin θ e−iφ cos θ

)
. (2.30)

Therefore the transmission amplitude (2.28) from the left to the right lead reads

tLR = sin (2θ) sin (δ1σ − δ2σ) ei(δ1σ+δ2σ)+iφ. (2.31)

Note that this result holds for arbitrary signs of the couplings Vjα, contrary to Meir-
Wingreen. Eq. (2.31) further simplifies in case of ΓjL = λ2ΓjR. The angles θ and φ of the
unitary transformation u are then given by cos θ = VjL, sin θ = VjR and φ = 0 (This is the
same transformation given by Eq. (2.6), which was shown to decouple the system into two
parts). Therefore, an alternative representation of the Landauer formula (2.27) is given by

G =
2e2

h
4

|VL|2|VR|2

(|VL|2 + |VR|2)2
sin (δ1σ − δ2σ)2. (2.32)

In case of a single level Anderson model, only one scattering channel (say channel 1)
is coupled to the impurity, therefore the scattering phase shift of the decoupled channel
is zero, δ2σ = 0. Additionally, the spectral function at zero frequency is known by the

Friedel sum rule to be A(ω = 0) = sin (δ1σ)2

π(ΓL+ΓR)
. Then, at zero temperature where the Fermi

functions becomes δ-functions2, the Meir-Wingreen formula given by Eq. (2.25) agrees with
the scattering representation of the Landauer formula.

For fixed couplings, the maximum of the linear conductance is reached for |δ1σ− δ2σ| =
π/2. We next argue that this is the case in the local moment regime, therefore retrieving the
Kondo plateaus between two charge degeneracy points, as can be seen in the experimental
data presented in Fig. 2.5.

2.6.5 Scattering phase shifts

For ΓjL = λ2ΓjR, the diagonalization of the scattering matrix, see Eq. (2.30) results in a
real decoupling of the system into part 1 and 2, see Fig. 2.3 in Sec. 2.3. Depending on
the relative sign sj = sign(VjLVjR) of the hopping matrix elements, each level j couples
only to channel 1 (sj = +) or channel 2 (sj = −), respectively. Therefore the phase shift
for channel 1, 2 can be related via the Friedel sum rule [21] to the occupation of the levels
coupling to (only) channel 1, 2,

δ1σ/π = n1 ≡
∑
sj=+

njσ, δ2σ/π = n2 ≡
∑
sj=−

njσ, (2.33)

respectively. Thus, Eq. (2.31) and (2.32) can be expressed in terms of the occupations n1

and n2. For the one level Anderson model, the transformation u completely decouples one

2 df(ε−eV )
dV = −edf(ε)

dε
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of the channels, say channel 2, therefore δ2σ = 0 always. The Kondo effect is fully developed
deep in the local moment regime where local spin on the QD is maximal, i.e. nσ = 1/2 (we
do not count doubly occupied levels, since these contribute 〈Sz〉 = 0). Therefore the phase
shift of channel 1 is given by |δ1σ| = π/2 and the conductance reaches its maximum, see
Eq. (2.32) The unitary limit (i.e. the maximal value of G) is reached if, additionally, the
system possesses left-right symmetric coupling, ΓL = ΓR. Then,

G =
2e2

h
. (2.34)

Consequently, knowledge of the phase shifts or level occupations of the system is suf-
ficient to obtain the transmission or linear conductance at zero temperature. Often these
quantities can be calculated much easier than the local Green’s function. The calculation
of both the local Green’s function and the occupation with NRG is subject of Sec. 3.5. The
phase shifts can be also directly extracted from the eigenspectrum derived by this method
[37], as explained in App. C.

Note that, actually, the Friedel sum rule relates the scattering phase shift not directly
to the impurity occupation, but to the change in electron distribution in the reservoir near
the impurity due to the screening of the local moment on the impurity, i.e. δσ = δNσ/π.
Here Nσ is the total occupation of spin up electrons in a finite region around the impurity.
For example, the complete screening of a local spin 1/2 (e.g. in the Kondo case) requires
|δN↑ − δN↓| = 1, thus |δ↑ − δ↓| = π. At zero magnetic field, particle-hole symmetry of
the system implies δ↑ = −δ↓, therefore the scattering phase shift is given by |δσ| = π/2.
Since the phase shifts are only defined modulo π, it does not make a difference whether
to relate them to the occupation of the reservoir or to the occupation of the impurity,
|δN↑ − δN↓| = nσmod(1).



Chapter 3

Numerical Renormalization Group
(NRG) after Wilson

In the preceding Chapter, we introduced perturbation theory and poor man’s scaling to
gain insight into the physics of strongly correlated impurity models, namely the Kondo
problem. Both methods fail for energy scales smaller than the Kondo temperature. A
method that is not restricted by the Kondo temperature is the numerical renormalization
group method (NRG) [2]. In the 1970’s, K.G. Wilson devised this ingenious scheme for
solving the Kondo problem non-perturbatively. Since then the NRG was generalized to
various impurity models, describing localized electronic states coupled to fermionic [38] or
bosonic [39, 40] reservoirs. The NRG allows thermodynamic and dynamic properties of
such strongly correlated systems to be calculated at zero as well as at finite temperature.

We explain the general concepts of NRG by means of the single impurity Anderson
model. In a first step we sketch the derivation of the NRG Hamiltonian with its typical
chain structure. The detailed derivations are nicely presented e.g. in the original article by
Krishna-murthy et al. [38], or the review of Bulla et al. [41]. We then introduce the only
recently developed concept of a complete basis set [42, 43], as well as the thereby improved
[44, 45] calculation of correlation functions.

3.1 NRG transformations

We introduce the NRG method by means of the single-level Anderson model [20]. For
convenience, we repeat the Hamiltonian. A multi-level and multi-channel version is given
in Eq. (2.4). As most quantum impurity models, the Hamiltonian consists of three parts,

H = Himp + Hres + Himp−res, (3.1a)

specifying the properties of the impurity, the reservoirs and the coupling between the two
parts, respectively. For notation and discussion of the Anderson model, see Sec. 2.3. The
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model describes a local impurity in a non-magnetic metal, implying

Himp =
∑

σ

εdndσ + Und↑nd↓ (3.1b)

Hres =
∑
kσ

εkc
†
kσckσ (3.1c)

Himp−res =
∑
kσ

Vk(c
†
kσdσ + d†σckσ). (3.1d)

Note that by basis transformation of the leads, the Hamiltonian also describes the situation
where a left and right lead (as necessary for transport measurements) couple to a single
impurity level, or a discrete energy level of a quantum dot, see Eq. (2.6).

In principle, NRG can be used for a variety of models where some impurity degrees
of freedom are coupled to some reservoir degrees of freedom. Recent developments e.g.
generalized the methods to bosonic reservoirs [39, 40]. The example of a superconducting
bath will be treated in Chapter 5.

For simplicity, we restrict the current discussion to a model with k-independent coupling
V (for the case Vk, see e.g. [41]). We further assume an isotropic and linearized dispersion

ε~k = vF |~k| = vF k, resulting in a constant density of states ρ = 1/2D, where the band
ranges from −D to D. Henceforth, D = 1 will serve as energy unit. Then the Hamiltonian
of the Anderson model can be written as [38]

H = Himp +
∑

σ

∫ 1

−1

dε εa†εσaεσ +

√
Γ

π

∑
σ

∫ 1

−1

dε(a†εσdσ + d†σaεσ), (3.2)

where we transformed k → ε and as well as the fermionic operators ckσ → aεσ. For
details of this transformation, see [38]. The structure of the Hamiltonian (3.2) is depicted
graphically in Fig. 3.1(a). The impurity, represented by a box, couples to a continuous
bath with constant density of states.

For solving quantum impurity models one has to keep in mind that for such strongly
correlated systems (i) all energy scales have to be taken into account and (ii) the properties
of the system are governed by energy scales that can be much smaller than the bare energies
of the initial Hamiltonian. For example, the energy scale of the Kondo effect, the Kondo
temperature TK , usually is orders of magnitudes smaller than the local Coulomb interaction
U or the broadening Γ. Therefore the highest resolution is needed at the Fermi energy
EF = 0.

For solving this problem, K.G. Wilson invented the numerical renormalization group
method. This non-perturbative method can be summarized as follows: The first step
consists in a logarithmic discretization of the conduction band, as depicted in Fig. 3.1(b).
The reservoir is divided into intervals±[Λm, Λm+1), with the discretization parameter Λ > 1
(typically Λ ≈ 1.5− 3) and m = 0, 1, ....

In a second step, Fourier transformation of the lead operators on each of these intervals
yields an infinite set of states for every interval. Each set of states can then be approximated
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Figure 3.1: Sketch of the NRG steps. (a) Impurity (square) couples to all degrees of
freedom of a continuous bath with constant density of states ρ. (b) Logarithmic discretiza-
tion of the conduction band with discretization parameter Λ > 1. The impurity couples to
infinitely many degrees of freedom of all energy scales. (c) The reservoir is approximated
by one state per interval, coupling directly to the impurity. (d) Tridiagonalization leads to
a chain Hamiltonian, the so-called Wilson chain. The impurity only couples to the zeroth
site of the chain. The couplings between successive sites fall off exponentially like Λ−n/2.

by the one state that directly couples to the impurity. The resulting situation with one
state per interval is sketched in Fig. 3.1(c). The circles represent the reservoir states.

In a third step the system is mapped onto a semi-infinite chain, the so-called Wilson
chain. A basis transformation of the leads combines all terms that directly couple to the
impurity to yield one conduction electron site. By construction this is the only site that
couples to the impurity. The remaining terms can be transformed by tridiagonalization
to a chain Hamiltonian with only nearest neighbour hopping. Importantly, the couplings
between the successive sites of that chain fall off exponentially with the site number. In
this representation, the Hamiltonian (3.2) reads

H = Himp +

√
Γ

π

∑
σ

(
f †0σdσ + d†f0σ

)
(3.3)

+
1

2

(
1 + Λ−1

)∑
σ

∞∑
n=0

Λ−n/2 ξn

(
f †nσfn+1σ + f †n+1σfnσ

)
. (3.4)

Electrons on site n are created by f †nσ and ξn = (1−Λ−n−1)(1−Λ−2n−1)−1/2(1−Λ−2n−3)−1/2,
where ξn ≈ 1 for large n. Due to the metallic reservoir, the chain part only consists
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of nearest neighbour hopping terms, no on-site energy is present. The hopping matrix
elements between the successive sites fall off exponentially with Λ−n/2, as depicted in Fig.
3.1(d).

The resulting energy scale separation between the successive sites ensures that, in a
fourth step, the problem can be solved iteratively. The recursion relation is found to be

H̃0 = 1/
√

Λ [Himp + Hhyb] (3.5)

H̃N+1 =
√

Λ H̃N +
1

2

(
1 + Λ−1

) ∑
σ

ξN

(
f †NσfN+1σ + f †N+1σfNσ

)
.

Where the initial Hamiltonian (3.2) of the system is related to the NRG Hamiltonian by
HN ≡ Λ−(N−1)/2 H̃N , therefore

H = lim
N→∞

HN . (3.6)

This mapping is exact in the limit Λ → 1 and N →∞. The scaling is chosen such that at
each iteration N the eigenenergies of H̃N are of the order 1.

Starting at the impurity, sites are added successively during the iterative procedure.
At each iteration n the enlarged system gets diagonalized by an unitary transformation
Un. Since the couplings between the chain sites fall off exponentially with distance to
the impurity, each added site can be understood as a perturbation of order Λ−1/2 on the
previous part of the chain, lifting the degeneracy of the old system. Consequently, the
resolution of the eigenstates of HN gets enhanced with increasing chain length, as sketched
in Fig. 3.2(a). The typical energy resolution δn at iteration n is governed by δn ∝ Λ−n/2,
to be precise δn = 1

2
(1 + Λ−1)Λ−(n−1)/2. Conversely, the energy resolution δn is reached

(approximately) at iteration

Nδn =
[
1 + 2 logΛ[(1 + Λ−1)/2δn]

]
. (3.7)

Obviously, Nδn has to be rounded to an integer number. Thus, by choosing the length N
of the chain large enough (so that Λ−N/2 is much smaller than all other energies in the
problem), all relevant energy scales can be resolved and treated properly. Typical chain
lengths are of the order of N ≈ 60− 80.

When adding a site to the system, the dimension of the Hilbert space gets multiplied
by the dimension of the state space |σ〉 of that site. For a single spinful fermionic lead, the
local state space of a reservoir site consists of the states empty, singly occupied (either up
or down) and doubly occupied, thus dim = 4 and |σ〉 = {|0〉, | ↑〉, | ↓〉, | ↑↓〉}. Therefore
the dimension of the Hilbert space increases exponentially with the length of the chain.
Wilson proposed a truncation scheme according to which only the lowest Nkept eigenstates
are kept at each iteration, thereby ensuring that the dimension of the Hilbert space to treat
stays manageable at each iteration. Consequently, the low energy part of the spectrum at
a certain iteration gets resolved more accurately in the next iteration, therefore the energy
resolution of NRG is highest at low energies. The truncation of the highest excited states
at each iteration is indicated in Fig. 3.2(a) by the dashed red line, separating the kept and
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discarded states. Usually one chooses Nkept such that no states are discarded during the
first few n0 iterations.

Accounting for the symmetries of the model, the dimensionality of the blocks that
have to be diagonalized at each iteration (and therefore the numerical effort for a given
Nkept) can be reduced significantly. As can be checked easily, the Hamiltonian Eq. (3.1a)

conserves the z-component of the total spin, SzN = 1
2

∑N
n=−1(nn↑ − nn↓), as well as the

particle number QN =
∑N

n=−1,σ(nnσ − 1). Note that this definition yields Q̃ = 0 for the
Fermi sea together with a singly occupied dot at Γ = 0. Therefore the state space can
be divided into subspaces according to the quantum numbers of the problem. Since the
Hamiltonian does not couple the different subspaces, each block of the Hamiltonian can be
diagonalized separately. In this work we use only Abelian symmetries like the z-component
of the spin or the charge. Further improvement can be achieved by exploiting non-Abelian
symmetries, as reported recently by Toth et al. [46].

⊗|σ> ⊗|σ>

⊗|σ>

⊗|σ>

n

kept

discarded

10 2 3 N

E(a) n

0 1 2 3

E

N

(b)

nn

Figure 3.2: Sketch of the eigenenergies of Hn during the iterative procedure, where
H = limN→∞ HN . Added sites act as a perturbation of order 1/

√
Λ on the previous

system, thus the resolution is increased exponentially with the iteration n. (a) To keep
the dimension of the Hilbert state manageable, only the lowest Nkept eigenstates are used
for later iterations, indicated by the dashed red line. Therefore the low energy properties
of the system are resolved best (with resolution δN ∝ Λ−(N/2)). (b) Anders-Schiller basis.
The entirety of the discarded states form a complete (but approximate) basis [42, 43] of
the dN+2 dimensional Fock space. The discarded states of all iterations n < N are tracked
to the last iteration N (where they are dN−n-fold degenerate). The complete basis set is
sketched inside the box on the right hand side.

In a fifth step, information gained about the system can be extracted. This can be
done by analyzing the energy spectrum or by the calculation of operators or correlation
functions, a problem covered in Sec. 3.5.

Before addressing these issues, we discuss the typical properties of NRG eigenspectra
in more detail, including recent developments, such as the construction of a complete basis
set.
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3.2 NRG eigenstates

During the iterative process, the level spacing drops exponentially with every added site
(see discussion above), leading to arbitrarily high resolution of the low energy physics, see
Fig. 3.2(a). But NRG does not only provide a highly resolved spectrum at the end of the
iterative process, instead information is gained at all iterations, i.e. energy scales. Thus, an
appropriate way of visualizing the physics at different energy scales is achieved by rescaling
of the energy spectrum. In these so-called energy flow diagrams, the eigenenergies for
every chain length are plotted in units of Λ−(n−1)/2 ∝ δn, so that the average level spacing
is constant. Said in a different way, these are the eigenenergies of H̃n. As an example,
the energy spectrum can be found in Fig. 3.3. The eigenenergies En of Hn (that fall off
exponentially with n) are shown in subplot (a). In (b), the corresponding flow diagram
is given. The flow of the energies is expected to change only at energy scales where the
system changes its properties.

We are mainly interested in the lowest of these scales, the Kondo temperature TK =√
UΓ
2

exp
[

πεd

2ΓU
(U + εd)

]
, indicated by a dashed arrow in the Figure. Below this tempera-

ture, i.e. for iterations with δn < TK , the system lowers its energy by means of the Kondo
effect. The local spin (magnetic moment) on the dot gets screened by the conduction elec-
trons, leading to a singlet ground state (Kondo singlet). The flow for δn < TK is universal.
For details of the various fixed points of the single-level Anderson model see e.g. [38].
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Figure 3.3: 50 lowest lying eigenenergies in the NRG procedure for a symmetric Anderson
model with U = −2εd = 0.6 and Γ = 0.02. The Kondo temperature TK = 6 · 10−7

(corresponding to NTK
= 39 for the chosen Λ = 2.1) is indicated by the dashed arrow. (a)

The eigenenergies E(n) of Hn fall off exponentially with the iteration number n. (b) Flow
diagram. By rescaling the energies of (a) with Λ(n−1)/2, the eigenenergies Ẽ(n) of H̃n are
obtained. The flow changes at energy scales where the system changes its properties.
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3.3 Complete basis of states

Recently, it was shown that by keeping track of the discarded states it is possible to
construct complete, but approximate, sets of basis states [42, 43]. We first introduce this
new concept and present its applications for the calculation of spectral properties in the
remaining Sections of this Chapter.

Due to the truncation of states at every iteration, the state space of the last iteration
of a NRG run obviously cannot be used as a complete basis for the whole system. It is
then a natural choice to describe physics at some energy scale by the eigenstates of Hn

corresponding to that scale. This implies the “NRG approximation”

HN |jσ〉n ≈ Hn|j〉n = Ej
n|j〉n, (3.8)

where |jσ〉n ≡ |j〉n ⊗ |σ〉⊗(N−n). The factor |σ〉⊗(N−n) accounts for the N − n sites (each
having state space |σ〉) that will be added at iterations later than n. Eigenstates at
some iteration n < N are therefore “tracked back” to the N -th iteration, i.e. they are
taken as dN−n-fold degenerate eigenstates of the full chain, disregarding the fact that their
degeneracy would have been lifted had the perturbation represented by the rest of the
chain been taken into account.

Anders et al. [42, 43] where the first to see that by this tracking of the states to the
last iteration, complete (but approximate) basis sets spanning the full dN+2-dimensional
Fock space can be constructed. This can be e.g. the entirety of the discarded states, some
combination of discarded and kept states, or all kept states of iteration n0, respectively.
The identity can then be expressed in different ways, for example

1 =
N∑

n=no

∑
j

|jσ〉Dn D
n 〈jσ| (3.9a)

=

k≤N∑
n=no

∑
j

|jσ〉Dn D
n 〈jσ|+

∑
j

|jσ〉Kk K
k 〈jσ| =

∑
j

|jσ〉Kno

K
no
〈jσ|, (3.9b)

respectively. In the following, sums over |σ〉 are implied. The hyper index X = D, K
indicates whether a state is discarded (X = D) or kept (X = K) at some iteration. The
states of the last iteration count as discarded. The basis set (3.9a) is visualized in Fig.
3.2(b). The second relation follows immediately, since all states that are discarded at some
late iterations n > k were kept at iteration k. Note that this also means that the subset
of the basis related to the K-states is only resolved with an accuracy ∝ δk, even though
NRG provides a better resolutions at later iterations.

For transformations between the different choices of basis sets the states are rotated
according to the NRG iterations lying in between: All unitary transformations Uk applied
to diagonalize the system at each iterative step between iteration n and iteration m > n are
now used to rotate states obtained at iteration n to the eigenstates obtained at iteration
m, for example

|jσ〉m>n =
∑

i

(Um · · ·Un+1)ji |iσ〉Kn ≡
∑

i

(u)mn
ji |iσ〉Kn . (3.10)
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Obviously, only states that were kept at a certain iteration may contribute to states of
later iteration. Here one can see nicely that the eigenstates of NRG actually are matrix
product states, as pointed out recently by Verstraete et al. [47].

3.4 Density matrix

It is convenient to write the density matrix such that the contribution of each iteration
emerges clearly. This is achieved for the representation

ρ =
1

Z

∑
n

∑
j

e−βEj
n|jσ〉Dn D

n 〈jσ| =
∑

n

wnρn, (3.11)

where we use β = 1/kBT and summation over iterations
∑

n ≡
∑N

n=no
in the following.

The density matrix ρn is composed of the discarded states of iteration n, and is weighted
by the weight wn that these states contribute to the total density matrix at a certain
temperature T ,

ρn =
1

Zn

∑
j

e−βEj
n|j〉Dn D

n 〈j| (3.12)

wn =
Znd

N−n

Z
. (3.13)

Clearly the density matrices fulfil Tr[ρ] = Tr[ρn] = 1, since we defined Zn ≡
∑

j∈D e−βEj
n .

The partition function of the whole system reads Z =
∑

n Znd
N−n and the weights sum

up to one,
∑

n wn = 1.
One expects wn to be peaked at some iteration n ≈ NT where the energy resolution

is of the order of the temperature. At earlier iterations temperature does not provide
enough energy to drive excitations. At later iterations, states of energy & kBT needed
for thermal excitations are discarded already. The structure of wn can be checked easily
by approximating the energy of all states of iteration n by the typical energy scale δn ∝
Λ−(n−1)/2 of that iteration. Then wn first increases and then decreases exponentially with
n. At T = 0 only the ground state of the system (i.e. the ground state of the last iteration
N) contributes, thus wN = 1 and wn<N = 0.

3.5 Calculation of local correlators with NRG

The logical next step is the calculation of physical quantities, taking advantage of the
complete basis set and density matrix derived above, as done recently [44, 45]. This can
be (i) dynamic quantities like spectral functions, or (ii) thermodynamic quantities like the
mean of some operator (occupation, magnetization, etc.). We will not discuss thermal
quantities that can be calculated with the knowledge of the energy spectrum only, like the
impurity specific heat.
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At the end of the section we briefly comment on previous approaches for the calculation
of physical quantities not based on a complete basis.

3.5.1 General Lehmann representation

The dynamics of the impurity can be characterized by spectral functions of the general
form

ABC(ω) =

∫
dt

2π
eiωt〈B(t)C〉T . (3.14)

The thermal average is given in Lehmann representation by

〈B(t)C〉T ≡ Tr[ρB(t)C] =
∑
a,b

e−βEa

Z
〈a|B(t)|b〉〈b|C|a〉, (3.15)

where B and C are some local operators acting on the impurity (or the first no sites, re-
spectively). With the time evolution defined by B(t) = eiHtBe−iHt, Fourier transformation
yields

ABC(ω) =
∑
a,b

e−βEa

Z
〈a|B|b〉〈b|C|a〉 δ(ω − (Eb − Ea)). (3.16)

3.5.2 Example of local density of states

In this thesis, we are mainly interested in transport properties. These often can be related
to the local Green’s functions (see Chapter 2.6) and accordingly the local density of states
A(ω). The latter is defined via the Fourier-transform of the retarded Green’s function
GR(t) = −iθ(t)〈[d(t), d†(0)]+〉T as

A(ω) ≡ − 1

π
Im[GR(ω)]. (3.17)

Consequently, the Lehmann representation of A(ω) reads

A(ω) =
∑
ij

e−βEi + e−βEj

Z
|〈i|d|j〉|2 δ(ω − (Ej − Ei)). (3.18)

The physical properties of the local density of states will be discussed in Sec.3.6.

In the following, we present how to calculate such expressions with NRG. In contrast to
previous methods (see Sec. 3.5.6), the complete basis representations presented above (i)
allows treat transitions between states resolved at different NRG iterations to be treated
correctly and (ii) avoids over counting of transitions resolved at more than one iteration.
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3.5.3 Local operators

NRG does not only provide the energy spectrum of an Hamiltonian, but matrix elements
of local operators, needed to evaluate (3.16), can be calculated, too. For this purpose the
operators have to be initialized in the local basis of the impurity, e.g.

d↑ =

0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , d↓ =

0 0 1 0
0 0 0 0
0 0 0 −1
0 0 0 0

 , (3.19)

for the case of one spinful local level with state space {|0〉, | ↑〉, | ↓〉, | ↑↓〉}. Similar to
the Hamiltonian, the operators are updated at every iterative step. To be concrete, at
iteration n the state space first gets inflated by the added site, followed by the unitary
basis transformation Un that diagonalizes the Hamiltonian Hn. Finally, for n > n0, the
state space gets truncated.

For each iteration, this only provides the matrix elements between the states resolved
at that iteration. A representation involving all transitions can be obtained as follows.
Starting from the complete basis at iteration no (see Eq. (3.9b) r.h.s.), all K-K transitions
are successively expressed in terms of later iterations,

B =
∑
jj′

|jσ〉Kno
[Bno ]jj′

K
no
〈j′σ| =

∑
n

6=KK∑
ii′,XX̄

|iσ〉Xn [Bn]ii′
X̄
n 〈i′σ|. (3.20)

We defined
∑

jj′ |jσ〉Kn−1 [Bn−1]jj′
K
n−1〈j′σ| = [BKK

n−1] =
∑

XX′ U †
n[BXX′

n ]Un. The procedure
is sketched in Fig. 3.4(a). This representation of B not only has the advantage that all
necessary information is provided by NRG. It also accounts for the fact that transitions
between K-states of a certain iteration are resolved with higher accuracy at later iterations.

Note that a time-dependent operator B(t), when evaluated using the NRG approxi-
mation (3.8), only contains eigenenergies calculated at the same iteration, i.e. accuracy,

[Bn(t)]ij ≈ [Bn]ije
it(Ei

n−Ej
n).

3.5.4 Thermal averages

The proper representation of operators as derived in Eq. (3.20) together with the density
matrix (3.11) leads to a NRG compatible expression of thermal averages,

〈B(t)C〉T =
∑

k

wk〈B(t)C〉k, (3.21)
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needed for the calculation of spectral functions. The thermal average for iteration k can
be expressed as

〈BC〉k = Tr[ρkBC] (3.22)

=
∑
n,l

D̄
n 〈l|

[∑
m≤k

|j〉D̄m [Cm] K̄
m〈j′|

][
e−βEi

k

Zk

|i〉Dk D
k 〈i|

][∑
m≤k

|j〉K̄m [Bm] D̄
m〈j′|

]
|l〉D̄n

=
∑
m≤k

∑
lj

∑
i∈D

[CD̄K̄
m ]lj |(u)mk

ji |2
e−βEi

k

Zk

[BK̄D̄
m ]jl ,

with implicit summation over i, j, j′ inside the square brackets and X̄ = X for n < k,
K̄ = K and D̄ = K, D for m = k. The trace is calculated using the basis given in Eq.
(3.9a), ρk using Eq. (3.12) and operators using the second Eq. of (3.20). For the second
line we used the fact that only the K-states of the iterations m < k have finite overlap
with the states |i〉Dk . To save space we use |j〉 = |jσ〉. To go to the last line, the D-states
of iteration k are rotated backwards to iteration m, equivalent to a change in basis (3.10).

We now can write the spectral function in an NRG compatible way, i.e.

A(ω) =
∑

k

wkAk(ω) (3.23)

with

Ak(ω) =
∑
m<k

∑
lj

∑
i∈D

[CDK
m ]lj |(u)mk

ji |2
e−βEi

k

Zk

[BKD
m ]jl δ(ω − (El

m − Ej
m)). (3.24)

An intuitive interpretation (that does not cover the details) of this formula is given in Fig.
3.4(b) for the case of the transition from the ground state (k = N) to an excited state
already discarded at m = 3. The ground state is thereby expressed in terms of the K
states of iteration m (or rotated back to iteration m).

Equation (3.23) yields a set of δ-peaks. Smoothening of the curve and improvement
of the data is discussed in Appendix A. The smooth curve is obtained by broadening
the δ-functions [48]. In this work we use the approach of [44]. For improvement of the
curves, small widths σ of the broadening functions together with z-averaging [49] (where
for fixed Λ the data is averaged for slightly shifted discretizations) can be used. For further
improvement of the spectral function A(ω), the local Green’s function may be expressed
in terms of the self-energy Σ ∝ UGR [50] via the equation of motion. The resulting curves
are almost independent of Λ as well as the broadening parameters the spectral function.
For details, see App. A.

3.5.5 Sum rules and mean values

Integration of Eq. (3.14) immediately yields the relation
∫∞
−∞ dωABC = 〈BC〉T between a

spectral function and the mean value of the corresponding operator product. Due to the



38 3. Numerical Renormalizaton Group (NRG)

⊗|σ> ⊗|σ>

⊗|σ>

⊗|σ>

⊗|σ>

nE

0 nN

(b)nE
DD

KD

KK

(a)

KD

KK
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Figure 3.4: (a) Sketch of representation (3.20) for local operators. At each iteration,
DD and KD transitions contribute; all KK transitions are successively expressed in terms
of later iterations. (b) Intuitive interpretation of Eq. (3.24): Sketch of a transition (orange
arrow(s)) between the ground state (red) and an excited state (blue) discarded in the
m = 3rd iteration. Due to a change in basis representation (3.10), the state of a later
iteration (here the ground state, k = N) is expressed as a linear superposition of the
states of iteration n. The radius of the circles indicates that every K-state of iteration
n contributes with a certain weight to the ground state. Thus, only matrix elements
connecting K and D states of iteration m are needed to describe the transition properly.

complete basis we use, the presented NRG approach (3.23) for the calculation of spectral
functions does fulfil this sum rule by construction for summation of the raw data (up to
numerical precision for each data point), i.e. before broadening. This means that the overall
spectral weight is calculated correctly. This is independent on the NRG parameter Λ or
even the number of K-states Nkept. The error in the sum rule, if the integral is calculated
using the broadened spectral function is usually of the order of 10−3 − 10−4.

Note that the above sum rule implies that the mean of an operator of the structure
F = BC can be calculated by integration of either ABC , AF1 or A1F , respectively. 1 is the
identity operator. Obviously, the mean of an operator F can be also calculated directly by
evaluating the thermal average (3.21) w.r.t. F ,

〈F 〉T =
∑

k

wk

∑
i∈D

e−βEi
k

Zk

[FDD
k ]ii . (3.25)

For the calculation of transport properties (see Sec. 2.6) one is usually interested in the
exact hight of the spectral function at |ω| ≈ T . Further, the Friedel sum rule [21] relates

the occupation of the QD at T = 0 to the spectral function A at ω = 0 via A(0) = sin2(δσ)
πΓ

,
where δσ = nσ/π. For the symmetric case (εd = −U/2) the occupation is known to be
nσ = 0.5, therefore A(0)πΓ = 1.

3.5.6 Previous approaches

Before the concept of a complete NRG basis set was known, some property X (like mean
value or spectral function) was calculated for each iteration separately, assuming that
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X(ω) ≈ Xn(ω) for ω ≈ δn []. Though leading to qualitative good results, the strategy
contains ambiguities. Transitions can be resolved at more than one Xn. Therefore data
from subsequent iterations had to be combined using some patching scheme, see e.g. [51].
As a consequence, the above mentioned sum rule was fulfilled only within a few percent.
The density matrix was represented by the contribution of iteration NT only, i.e. wNT

= 1,
wn6=NT

= 0 [52]. The iterations have to be stopped at NT , thus spectral information can
only be provided for ω & T . In contrast to that, [44] report excellent agreement with exact
Fermi-liquid relations even at ω . T .

3.6 Spectral function of the Anderson model

We present data for the local density of states (as defined in Eq. (3.17)), also called spectral
function A(ω), for T = 0 as well as finite temperature. We use U = 0.3, Γ = 0.014 and
the NRG parameter Λ = 2.1 and Nkept = 1024 for the first 30 iterations, then Nkept = 512.
Broadening is done as described in [44]. The results are improved by the self-energy trick
[50]. Therefore they almost do not depend on the broadening parameter σ. We choose
σ = 0.6. For details, see App. A.

The spectral function of the symmetric model is shown for T = 0 in Fig. 3.5. The three-
peak structure, characteristic for the Kondo regime (where nσ ∼ 0.5, i.e. εd ∼ −U/2), can
be explained es follows. Due to the local level, two peaks separated by the Coulomb
interaction U appear at εd and εd + U . Both peaks are of width Γ (half width half
maximum), reflecting the coupling of the level to the leads. For temperatures below the
Kondo temperature TK the local spin on the QD gets screened by electrons of the reservoirs.
This screening is due to virtual higher order spin-flip processes of electrons in a range of TK

near the Fermi energy with the local electron, giving raise to the third peak of the spectral
function, a sharp resonance of width TK . The net energy of the classically forbidden spin-
flip processes is zero always. Therefore the Kondo resonance is pinned at the Fermi energy,
independent of the exact energy εd of the local level.

The pinning of the resonance apart from half filling is visualized in Fig. 3.6(a). As
expected from the Friedel sum rule [21], the hight of the resonance decreases like A(0)/πΓ =
sin2(nσπ). The side peaks of A(ω) shift with εd. For both levels above/below EF , most of
the spectral weight accumulates at the level closest to the Fermi energy. Subplot (b) shows
the occupation versus level position. Level energies used in (a) are indicated. Electrons
enter the QD for (εd, εd+U)±Γ ∼ EF . The Kondo resonance does not affect the occupation
(since only particle conserving higher order processes are involved).

The disappearance of the Kondo resonance for T < TK → T > TK is visualized in Fig.
3.7. The side-peaks remain unchanged for T � U .
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Figure 3.5: Spectral function A(ω) for the symmetric Anderson model at T = 0, U = 0.3,
Γ = 0.014, i.e. TK = 10−5. (a) Two peaks of width Γ (half width half maximum) at
εd = −U/2 and U/2 reflect the coupling of the local level to the leads as well as the
Coulomb repulsion between electrons. The Kondo effect gives rise to a sharp resonance of
width TK at the Fermi energy, i.e. at ω = 0. Inset: Zoom into the Kondo peak of hight
A(0)πΓ = 1. (b) Sketch of the QD including the local density of states.
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Figure 3.6: Asymmetric Anderson model for T = 0, U = 0.3 and Γ = 0.014. (a) Spectral
function A(ω) for various values of εd. The hight of the resonance decreases according to
the Friedel sum rule A(ω)/πΓ = sin2(nσπ). The energy εd of the local level is indicated by
arrows on the ω-axis. (b) Occupation versus εd. Level energies used in (a) are indicated.
Electrons enter the QD for (εd, εd + U) ± Γ ∼ EF . The Kondo resonance does not affect
the occupation (since only particle conserving higher order processes are involved).

3.7 Recent developments

With the growth of computational power and improvements of the method, larger systems
(e.g. multi-channel models, see Chapters 4 and 6) and different models (e.g. an impurity
coupled to a superconducting reservoir, see Chapter 5) can be treated with higher and
higher accuracy. But there are also new developments pushing the method to completely
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Figure 3.7: Temperature dependence of A(ω) for U = 0.3, Γ = 0.014 and (a) εd/U = −0.5,
i.e. TK = 10−5 and (b) εd/U = −0.3, i.e. TK = 4 10−5. Same in the insets on a log-scale.
The side peaks remain unchanged for T � U .

new fields of application. The recent ideas of the concept of the complete basis as well
as the matrix product state structure of the NRG eigenstates open up such new ways
of thinking within the NRG method. Only recently, Anders et al. [42, 43] presented a
time-dependent NRG approach as well as a non-equilibrium approach [23] based on the
concept of the complete NRG basis. Further, the variational method of the density matrix
renormalization group (DMRG) [53, 54] was applied to the Wilson chain - combining
the clever mapping of NRG with the powerful variational tools of DMRG [55, 56]. This
opens up the possibility of studying time-dependent quantum impurity models using time-
dependent DMRG [57, 58], with possible applications to qubit-bath models. The thrilling
question arises: What next!

3.8 Anderson-like impurity models studied in this work

using NRG

In the second part of this thesis we analyze various Anderson-like impurity models within
the NRG framework. For convenience, the different models are summarized with graphical
depiction of the NRG Hamiltonians in Fig. 3.8.

The bare code used for the NRG calculations was generously provided by Andreas
Weichselbaum.
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Figure 3.8: NRG representation of models analyzed within this thesis with NRG.
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Chapter 4

Universal and mesoscopic behaviour
of transmission phase of multi-level
quantum dots

Standard transport measurements only reveal information about the magnitude of the
transmission amplitude, which does not distinguish between incoherent (like sequential
tunnelling) or coherent (like resonant tunnelling) contributions to transport. In 1994, Ya-
coby et al. [3] were the first to prove directly that transport through a QD has a coherent
component. In this novel kind of experiment, it was possible to measure not only the mag-
nitude but also the phase of the transmission amplitude through the quantum dot. They
showed that the signal oscillations of an Aharonov-Bohm interferometer still exist when a
QD is embedded in one arm of the interferometer. Not only interference persists but also
the oscillation period, strong indication of coherence. From the interference pattern, both
magnitude and phase of the transmission amplitude can be extracted.

Since this first break-through, a series of experiments (all done in the Heiblum group)
followed. In the Coulomb blockade regime, all experiments show a very striking behaviour
of the phase for large QDs [3, 4, 12, 13, 5]. Lowering the level position of the QD, the
transmission phase increases by π throughout each conductance peak. But between any
two successive peaks, a phase-lapse by π occurs, i.e. the phase sharply jumps downwards
by π. Contrary to intuitive expectations, this behaviour is independent of the dots shape,
the parity of the wave functions or other parameters of the specific experimental setup, i.e.
it is universal. New insight was gained in 2005 from an experiment that also explores the
regime with only a few electrons in the QD [5]. For less than about 8 electrons in the QD,
the universality of the phase is lost: The appearance of a phase lapse between successive
conductance peaks depends on the parameters of the QD.

There has been a large amount of theoretical work on this topic [59, 60, 32, 61, 62, 63,
64, 65, 66] (for a review see [67]), with no full explanation of the observed universal occur-
rence of phase lapses. We explore the idea [5] that in large quantum dots, the level distance
may become comparable to or smaller than the level broadening, causing levels to overlap.
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In such a situation the transmission is not dominated by the properties of individual levels,
thus making universal behaviour possible. In contrast, in the regime of only a few electrons
(where the phase shows mesoscopic behaviour), the levels are well separated and transport
is influenced by their specific properties. Varying the ratio of level spacing δ (assumed to
be the same for all levels) to mean level broadening Γ, we find a crossover from an universal
(δ/Γ . 1) to a mesoscopic (δ/Γ � 1) regime, independent on the exact parameters of the
system, as observed experimentally [5]. This study is based not only on NRG calculations
(performed by the author), but also on data obtained (by our collaborators C. Karrasch
and V. Meden) using the functional renormalization group (fRG) method [15]. This is an
approximation scheme to obtain the self-energy (and thus the one-particle Green’s func-
tion) for many-body systems at zero temperature, allowing the study of the renormalized
effective single-particle levels. Also higher order vertex functions can be obtained. We
find that for decreasing ratio δ/Γ, one of the renormalized single-particle levels becomes
wider than all others. Its energy hovers near the chemical potential of the leads, while the
narrow ones are shifted with varying gate potential. Each time one of them crosses the
chemical potential and therefore also the broad level, a Fano-type antiresonance causes a
transmission zero and therefore a phase lapse, see Sec. 4.2.

In the Kondo regime, at zero temperature the typical Kondo plateaus form in the
transmission amplitude for odd number of electrons in the dot. However, the phase is
expected to raise by π

2
for each entering electron, with a plateau at π

2
in between. This

is a direct result of the π
2

scattering phase shift off a Kondo impurity, as predicted by
the Kondo model for the local spin completely screened yielding a zero-spin Kondo singlet
[21, 68]. The π

2
phase shift was not observed in the first measurements of the transmis-

sion amplitude by Ji et al. [12, 13] claiming Kondo correlations. Only recently, Zaffalon
et al. [14] measured the transmission amplitude through the first level of a quantum dot
(starting from zero occupation). At temperature T � TK they do find the characteristic
plateau, yielding experimental proof for the π

2
phase shift of the Kondo problem. At finite

temperature, with the suppression of Kondo correlations, the monotonic phase evolution
is lost and a smeared phase lapse of ≤ π forms. Our studies of a spinful Anderson model
in the mesoscopic regime are in agreement with the results of [69, 70] where a single-level
model is studied. We extend the discussion to the mutual influence of adjacent levels. We
show numerical data for up to three levels. Then the second level can be assumed as any
arbitrary level of a quantum dot, experiencing the influence of a lower and an upper level.
Depending on the mesoscopic parameter and the relative couplings, the Kondo phase lapse
of the middle level may be shifted in Vg direction. Therefore, the value of α where the
phase lapse occurs is lowered or increased, possibly explaining the experimental data of Ji
et al. [12, 13]. The regime of even number of local electrons is not affected by these spin
effects; the evolution of the transmission amplitude is similar to the Coulomb blockade
regime described above.

The Chapter is organized as follows: In the next Section, we briefly introduce the
typical experimental setup and measurement procedure used by the Heiblum group. We
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present experimental results characteristic for the universal and the mesoscopic regime. We
further introduce the transmission formula and the model and summarize our arguments
for the universal phase behaviour. In the second Section the crossover from the mesoscopic
to universal phase behaviour in the Coulomb regime is analyzed with NRG and fRG. The
third Section presents calculations for a two-level system for both a spinless and spinful
model (using again NRG and fRG). In the last Section we present NRG results for the
temperature dependence of a spinful model with up to three levels. In that Section also
the transmission formula is derived.

4.1 Brief introduction to experiments and theory

4.1.1 Experimental setup

Figure 4.1 shows a top-view picture with a scanning electron microscope of the multi-
terminal Aharonov-Bohm interferometer with a QD embedded in the left arm. A plunger
gate allows the energy of the local levels of the QD to be swept, affecting transmission
amplitude (magnitude and phase) as well as the occupation of the dot. The device is
composed of three different regions: source (S), drain (D), and base (B). The source and
drain are large 2-dimensional electron gas reservoirs that are coupled to the Aharonov-
Bohm ring via two quantum point contacts (QPC). They support only one transverse mode,
thus producing a planar electronic wavefront in the far field. The voltage drop occurs at
the QPCs, therefore tunnelling processes through the QD can be described within linear
response. Electrons that enter the interferometer can either directly reach the drain via
one of the two interferometer arms or be scattered out of the interferometer to one of the
base regions. This open geometry ensures that no loop paths traversing the loop multiple
times are very rare and can be neglected. A four-terminal configuration [71] ensures that
due to separation of current and voltage electrodes the measurement does not affect the
result. Note that a special lithographic process, invoking a metallic air bridge, has been
developed in order to contact the center metal gate (that depletes the ring’s center).

4.1.2 Transmission

At low enough temperatures, both the elastic mean free path and the phase coherence
length exceed the sample size, so that transport is expected coherent. Due to the open
geometry, no loop paths are possible and the measured signal corresponds only to electrons
that traverse the interferometer through one of the two arms directly. Generalizing [59],
we derive in Appendix of Sec. 4.4 the Aharonov-Bohm contribution to the linear conduc-
tance through such a multi-terminal interferometer with open geometry and a multi-level
quantum dot embedded in one arm. For convenience, we summarize the results. The linear
conductance is given by

GAB =
e2

h

∫
dE

(
−∂f0(E)

∂E

)
|Tu| |Td(E)| cos(2πΦ/Φ0 + φ0 + φd(E)), (4.1)
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Figure 4.1: Scanning electron microscope picture of a multi-terminal Aharonov-Bohm
interferometer with a QD embedded in the left arm (courtesy by Heiblum group). The
two interfering paths are indicated by yellow arrows. A plunger gate enables to sweep
the energy of the local levels of the QD, affecting transmission amplitude (magnitude and
phase) as well as the occupation of the dot. The source (S) and drain (D) are large 2-
dimensional electron gas reservoirs that are coupled to the Aharonov-Bohm ring via two
quantum point contacts. The voltage drop occurs at the contacts, thus the QD remains in
equilibrium. Electrons that enter the interferometer can either directly reach the drain via
one of the two interferometer arms or be scattered out of the interferometer to one of the
base regions (B). This open geometry ensures that no loop paths are possible.

where Tu = |Tu|eiφ0 is the transmission amplitude through the reference arm which is
assumed to be energy-, Vg- and temperature-independent. f0 is the equilibrium Fermi
function of the leads. A magnetic field penetrating the interferometer contributes an
additional Aharonov-Bohm phase of 2πΦ/Φ0. It is added to one of the arms (here the
reference arm). Here Φ is the magnetic flux enclosed by the two arms and Φo = h/e is the
flux quantum [72, 19]. The magnetic field is assumed weak and the area of the QD small,
therefore it does not influence transport through the QD.

The transmission amplitude Td through the lower arm including the quantum dot is
given by

Td(E) =
∑
jj′

∑
σσ′

2πρ tjLtj
′

RG
R
jσ,j′σ′(E) ≡ |Td(E)| eiφd(E), (4.2)

with the local retarded Green’s function GR
jσ,j′σ′ . Therefore, the temperature-dependent

transmission amplitude through the quantum dot can be expressed as

td(T ) =

∫
dE

(
−∂f0(E, T )

∂E

)
Td(E, T ) ≡ |td(T )| eiα(T ), (4.3)

where only local properties and the Fermi function of the leads enter. The local Green’s
function is evaluated in equilibrium at temperature T . In the experiment, phase and mag-
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nitude of this transmission amplitude can be extracted from the interference measurements,
see below.

Note that for zero temperature and left-right symmetric coupling, ΓjL = λΓjR for all
levels j, the transmission amplitude can be expressed in terms of the scattering phase shift
δE and δO of the even and odd combination of the leads, respectively. The phase shifts
in turn can again be related via the Friedel sum rule [21] to the total occupation ndEσ,
ndOσ, of the levels coupled to the even and odd lead, respectively. Then the transmission
amplitude reads [73]

td = sin(π(ndEσ − ndOσ)) eiπ(ndEσ+ndOσ). (4.4)

4.1.3 Measurement procedure

For fixed configuration of the QD, the phase dependent part of GAB [Eq. (4.3)] oscillates as
a function of the magnetic flux with period Φ0. The maximum amplitude of the oscillation
is proportional to |tdσ| and thus shows the same Vg dependence than |tdσ. It can be
extracted (by a fast Fourier transform) from the experimental data shown in Fig. 4.2 for
various values of the gate voltage. Further, the shift of the Aharonov-Bohm oscillations
for different choices of Vg can be identified via Eq. (4.3) with the voltage dependent phase
α(Vg) of the transmission amplitude through the QD.

Figure 4.2: Phase measurement procedure (courtesy by Heiblum group). (a) Due to
the Aharonov-Bohm effect, the collector voltage oscillates with changing magnetic field.
The signal is shown for the values of gate voltage Vg indicated in (b). The shift of the
oscillations with Vg (indicated by the solid red line) can be identified via Eq. (4.3) with the
voltage-dependent transmission phase α(Vg). (b) Varying Vg, the collector voltage shows
the typical conductance peaks. The values of Vg used for (a) are indicated.

4.1.4 Experimental results

Experiments done in the Coulomb blockade regime [3, 4, 5] showed a very striking behaviour
of the phase. For large QDs occupied by many electrons the transmission phase increases
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by π throughout each conductance peak. Between any two successive conductance peaks,
the phase sharply jumps downwards by π, a phase-lapse occurs. This behaviour is found to
be universal for large dots, independent of the dots shape, the parity of the wave functions,
etc. Experimental data for this universal regime is shown (from the latest experiment) in
Figure 4.3(a).

New insight into the phase-lapse problem was obtained in an experiment in 2005 [5],
where also small QDs were probed. Measurements showed that for electron numbers up to
8 the phase is not universal but show mesoscopic behaviour. Whether a phase-lapse occurs
in a Coulomb blockade valley or not depends on the specific specific sample they work
with. Experimental data for this mesoscopic few-electron regime is shown in Figure 4.3(b).
Increasing the number of electrons, they report a crossover of the transmission amplitude
to the universal regime which is recovered for electron numbers above 14, see Fig. 4.3(a).

Figure 4.3: Transmission measurements in the universal and mesoscopic regime (courtesy
by Heiblum group). The electrons occupying the QD is indicated in red. (a) For more than
14 electrons, the phase evolution is universal: Between any consecutive conductance peaks
the phase sharply drops by π. (b) In the few-electron regime the occurence or not of a
phase lapse depends on the mesoscopic parameters of the QD.

4.1.5 The model

We use a multi-level Anderson model with a left and right lead, as introduced in Sec.
2.3 in Eq. (2.4a). For the discussion of the system in Coulomb blockade regime (Sec. 4.2
and 4.3) spin effects are assumed to be negligible and a spinless model is studied. Note
that notation in Sec. 4.3 is not consistent with Sec. 4.2 and 4.4: In Sec. 4.3 Γ denotes
the total width of all levels, whereas it stands for the mean level width in the rest of the
Chapter. γ = {Γ1L, Γ1R, ...}/Γ changes accordingly. s, σ = sgn(tjLtjRtj+1Ltj+1R) indicates
the relative signs of the matrix elements tjα for successive levels. We assume equidistant
level spacing δ and level-independent Coulomb interaction U .
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4.2 Mesoscopic to universal crossover of transmission

phase of multi-level quantum dots

We analyze the transmission amplitude through a spinless multi-level Anderson model.
We find universal phase behaviour for the level spacing to be small compared to the mean
level widths, as well as a crossover to mesoscopic behaviour for increasing ratio of level
spacing to level width, in accordance with experiments. The universal character follows
from Fano-type antiresonance between the renormalized single-particle levels. These are
obtained by use of the functional renormalization group [15].
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One of the longest-standing puzzles in mesoscopic phys-
ics is the intriguing phase-lapse behavior observed in a
series of experiments [1–3] on Aharonov-Bohm rings con-
taining a quantum dot in one arm. Under suitable condi-
tions in linear response, both the phase and magnitude of
the transmission amplitude T � jTjei� of the dot can be
extracted from the Aharonov-Bohm oscillations of the
current through the ring. If this is done as a function of a
plunger gate voltage Vg that linearly shifts the dot’s single-
particle energy levels downward, "j � "0

j � Vg (j �
1; 2; . . . is a level index), a series of well-separated trans-
mission resonances [peaks in jT�Vg�j, to be called
‘‘Coulomb blockade’’ (CB) peaks] of rather similar width
and height was observed, across which ��Vg� continuously
increased by �, as expected for Breit-Wigner–like reso-
nances. In each CB valley between any two successive CB
peaks, � always jumped sharply downward by � [‘‘phase
lapse’’ (PL)]. The PL behavior was observed to be ‘‘uni-
versal,’’ occurring in a large succession of valleys for every
many-electron dot studied in [1–3]. This universality is
puzzling, since naively the behavior of��Vg� is expected to
be ‘‘mesoscopic,’’ i.e., to show a PL in some CB valleys
and none in others, depending on the dot’s shape, the parity
of its orbital wave functions, etc. Despite a large amount of
theoretical work (reviewed in [4,5]), no fully satisfactory
framework for understanding the universality of the PL
behavior has been found yet.

A hint at the resolution of this puzzle is provided by the
most recent experiment [3], which also probed the few-
electron regime: as Vg was increased to successively fill up
the dot with electrons, starting from electron number Ne �
0, ��Vg� was observed to behave mesoscopically in the
few-electron regime, whereas the above-mentioned univer-
sal PL behavior emerged only in the many-electron regime
(Ne * 15). Now, one generic difference between few- and
many-electron dots is that the latter have smaller level
spacings �j � "0

j�1 � "
0
j for the topmost filled levels.

With increasing Ne, their �j’s should eventually become

smaller than the respective level widths �j stemming from
hybridization with the leads. Thus, Ref. [3] suggested that
a key element for understanding the universal PL behavior
might be that several overlapping single-particle levels
simultaneously contribute to transport. Because of the
dot’s Coulomb charging energy U, the transmission peaks
remain well separated nevertheless.

Previous works have studied the transmission amplitude
of multilevel, interacting dots [6–11]. However, no system-
atic study has yet been performed of the interplay of level
spacing, level width, and charging energy that combines a
wide range of parameter choices with an accurate treat-
ment of the correlation effects induced by the Coulomb
interaction. The present Letter aims to fill this gap by using
two powerful methods, the numerical (NRG) [12,13] and
functional (FRG) [14] renormalization group approaches,
to study systems with up to 4 levels (for spinless electrons;
see below). We find that if the ratio of average level spacing
� to average level width � is decreased into the regime � &

�, one of the renormalized effective single-particle levels
generically becomes wider than all others, and hovers in
the vicinity of the chemical potential � in the regime of Vg
for which the PLs occur. Upon varying Vg, the narrow
levels cross � and the broad level, leading to Fano-type
antiresonances accompanied by universal PLs. For � * �,
��Vg� behaves mesoscopically [15] for allU. Decreasing �
thus causes the PL behavior to generically change from
mesoscopic to universal, as observed experimentally [3].

Model.—The dot part of our model Hamiltonian is

 Hdot �
XN
j�1

"jnj �
1

2
U
X
j�j0

�
nj �

1

2

��
nj0 �

1

2

�
;

with nj � dyj dj and dot creation operators dyj for spinless
electrons, where U > 0 describes Coulomb repulsion. The
semi-infinite leads are modeled by a tight-binding chain
Hl � �t

P
1
m�0�c

y
m;lcm�1;l � H:c:� and the level-lead cou-

plings by HT � �
P
j;l�t

l
jc
y
0;ldj � H:c:�, where cm;l annihi-
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lates an electron on site m of lead l � L, R and tlj are real
level-lead hopping matrix elements. Their relative signs for
successive levels, sj � sgn�tLj t

R
j t
L
j�1t

R
j�1�, are sample-

dependent random variables determined by the parity of
the dot’s orbital wave functions. The effective width of
level j is given by �j � �Lj � �Rj , with �lj � ��jtljj

2. We
take �, the local density of states at the end of the leads, to
be energy independent, choose � � 0, and specify our
choices of tlj using the notation � � fs1; s2; . . .g, � �
f�L1 ;�

R
1 ;�

L
2 ; . . .g, � � 1

N

P
j;l�

l
j.

Methods.—We focus on linear response transport and,
unless stated otherwise, on zero temperature (� � 0). Then
the dot produces purely elastic, potential scattering be-
tween left and right lead, characterized by the transmission
matrix Tll0 � 2��

P
ijt
l
iG

R
ij�0�t

l0
j , where GR

ij�!� is the re-
tarded local Green function which we compute using NRG
and FRG. The NRG is a numerically exact method that is
known to produce very accurate results [12,13]. The FRG
is a renormalization procedure for the self-energy � and
higher order vertex functions (see [14] for details). We use
a truncation scheme that keeps the flow equations for �
and for the frequency independent part of the effective two-
particle (Coulomb) interaction. Comparisons with NRG
[14] have shown this approximation to be reliable provided
that the number of (almost) degenerate levels and the
interaction do not become too large. FRG is much cheaper
computationally than NRG, enabling us to efficiently ex-
plore the vast parameter space relevant for multilevel dots.

At the end of the FRG flow, the full Green function at
zero frequency takes the form �GR�0���1

ij � �hij � i�ij,
with an effective, noninteracting (but Vg andU-dependent)
single-particle Hamiltonian hij � �"

0
j � Vg��ij � �ij,

whose level widths are governed by �ij � ��
P
lt
l
it
l
j. To

interpret our results, we adopt the eigenbasis of �GR�0���1
ij ,

with eigenvalues �~"j � i~�j, and view ~"j and ~�j as level
positions and widths of a renormalized effective model
(REM) describing the system.

For left-right (LR) symmetry, �Lj � �Rj , an NRG short-
cut can be used, which is much less demanding than
computing the full GR

ij�!�: the S matrix is then diagonal
in the even-odd basis of the leads and its eigenvalues
depend on the total occupancies n� of all levels coupled
to the even (odd) lead (Friedel sum rule), so that the
transmission amplitude T � TLR takes the form T �
sin���n� � n���ei��n��n��. A transmission zero (TZ) and
hence PL occurs when n� � n�mod 1 [Figs. 1(b), 1(e),
and 1(h): n� in thin dashed (dash-dotted) line].

Results.—Our results are illustrated in Figs. 1–3. FRG
and NRG data generally coincide rather well (compare
black and orange lines in Figs. 1 and 2), except for N �
4 when both U	 �, � < �, and correlations become very
strong [Fig. 2(f)]. The figures show the following striking
qualitative features, that we found to be generic by running
the FRG for tens of thousands of parameter sets, which is

possible as a complete T�Vg� curve can be obtained within
a few minutes on a standard PC.

Mesoscopic regime.—For � * � [Figs. 1(a)–1(c), 2(a)–
2(c)], we recover behavior that is similar to theU � 0 case.
Within the REM it can be understood as transport occur-
ring through only one effective level at a time [see
Figs. 3(a)–3(c)], with ~�j’�j. Each ~"j that crosses � pro-
ducesa Breit-Wigner–like transmission resonance of width
2�j and height governed by �Lj =�Rj . At the crossing the
other levels are shifted upward by U [charging effect;
Fig. 3(a)] leading to renormalized peak separations (‘‘level
spacings’’) �j�U. Between two peaks, ��Vg� behaves
mesoscopically: depending on the sign sj one either ob-
serves a PL (sj��) or continuous evolution of � (sj��)
[15]. Additional PLs occur to the left or right, beyond the
last transmission peak [Fig. 2(a)].

Mesoscopic to universal crossover.—As the ratio �=� is
reduced, the behavior changes dramatically: the TZs and
PLs that used to be on the far outside move inward across
CB resonances [see evolution in Figs. 1(b), 1(e), and 1(h)].

Universal regime.—A universal feature [16] emerges
for � & � & U (crossover scales are of order 1, but depend
on the chosen parameters): for all choices of the signs �
and generic couplings �, the N CB peaks over which �
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FIG. 1 (color). jT�Vg�j and ��Vg� for N � 2, "0
2;1 � ��=2,

and � � 0: decreasing �=� produces a change from (a)–
(c) mesoscopic via (d)–(f) crossover to (g)–(i) universal behav-
ior; increasing U=� leads to increased transmission peak spac-
ing. (b),(e),(h) Include the occupancies n� (thin dashed line) and
n� (thin dash-dotted line) of the levels coupled to the even (odd)
lead in the case of LR symmetry. The condition n� � n�mod 1
produces a TZ and PL. For the blip and hidden TZ near Vg � 0
in (i), see [28].
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increases by � are separated by N � 1 PLs, each accom-
panied by a TZ [Figs. 1(g)–1(i), 2(d)–2(f)]. This is con-
sistent with the experimentally observed trend. For small to
intermediate values of U=� [Figs. 1(g) and 1(h), 2(d) and
2(e)], the transmission peaks are not well separated, and
��Vg� has a sawtooth shape. As U=� increases so does the
peak separation and the corresponding phase rises take a
more S-like form [Figs. 1(h) and 1(i), 2(e) and 2(f)]. At
finite temperatures of order � * � [17] sharp features are
smeared out (Fig. 2). For U=� as large as in Figs. 1(i) and
2(f), the behavior of ��Vg� (both the S-like rises and the
universal occurrence of PLs in each valley) as well as the
one of jT�Vg�j (similar width and height of all CB peaks) is
very reminiscent of that observed experimentally
[Fig. 2(f)]. For U=�	 1 the full width of the CB peaks
is of order 2N� (not 2�j as in the mesoscopic regime),
indicating that several bare single-particle levels simulta-
neously contribute to transport. The � dependence of the
width of the PLs is different from the behavior �2=���
U�2 found in the mesoscopic regime [18] and will be
discussed in an upcoming publication. Note that for the
temperatures considered here the width of the PLs is still
much smaller than the width of the CB peaks.

For certain fine-tuned parameters (� and�) the behavior
at small �=� deviates from the generic case. For N � 2 the
nongeneric cases were classified in [9]. In Fig. 1 only
generic parameters are shown. For N 
 3 LR-symmetric
couplings produce nongeneric features. However, these
features are irrelevant to the experiments. They quickly
disappear upon switching on LR asymmetry or � > 0.

Interpretation.—We can gain deeper insight into the
appearance of the TZs and PLs in the universal regime
from the properties of the REM obtained by FRG for
moderate U=� [at which NRG and FRG agree well;

Figs. 2(b) and 2(e)]. For N 
 3, � & � and U � 0, two
of the effective levels are much wider than the others, since
�ij, being a matrix of rank 2, has only two nonzero
eigenvalues [19] (for the N � 2 case, see [16,18]). We
found that this also holds at U > 0: for N � 3; 4 one
effective level is typically a factor of 2 to 3 wider than
the second widest, while the remaining 1 or 2 levels are
very narrow [Fig. 3(f)]. At � & � [Fig. 3(d)] the interac-
tion leads to a highly nonmonotonic dependence of ~"j on
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Vg which is essential for our universal PL scenario: As Vg
is swept, the widest level hovers in the vicinity of� over an
extended range of Vg values, whereas the narrow ones
cross �—and therefore also the widest one—rather rap-
idly. This leads to a Fano-type effect [20–24] whose
effective Fano parameter q is real, by time-reversal sym-
metry [21]. Thus, each TZ, and hence PL, can be under-
stood as a Fano-type antiresonance arising (irrespective of
the signs of tli) from destructive interference between trans-
mission through a wide and a narrow level. The crossings
of the narrow levels and �, and thus the PLs, are separated
by U due to charging effects. In contrast, for U � 0, ~"j /
�Vg for all renormalized levels and no levels cross each
other. Our FRG studies indicate that for the regime � & �,
the Fano-antiresonance mechanism is generic for U * �.
We thus expect it to apply also for interactions U	 � for
which FRG is no longer reliable.

The fact that the combination of a wide and several
narrow levels leads to PLs was first emphasized in [8]
(without reference to Fano physics). However, whereas in
[8] a bare wide level was introduced as a model assump-
tion (backed by numerical simulations for noninteracting
dots of order 100 levels), in our case a renormalized wide
level is generated for generic couplings if � & �. Also,
whereas in [8] the wide level repeatedly empties into
narrow ones as Vg is swept (because �wide � U was as-
sumed), this strong occupation inversion [25] is not re-
quired in our scenario. In Fig. 3(e), e.g., the wide level
remains roughly half-occupied for a large range of Vg, but
TZs and PLs occur nevertheless. We thus view occupation
inversion, if it occurs, as a side effect, instead of being the
cause of PLs [26].

Conclusions.—The most striking feature of our results,
based on exhaustive scans through parameter space for
N � 2; 3; 4, is that for any given generic choice of cou-
plings (� and �), the experimentally observed crossover
[3] from mesoscopic to universal ��Vg� behavior can be
achieved within our model by simply changing the ratio
�=� from * 1 to & 1, provided that U * �. The universal
� PLs result from Fano-type antiresonances of effective,
renormalized levels, which arise because interactions
cause a broad level (occurring, if � & �, already for U �
0) to be repeatedly crossed by narrow levels. A quantitative
description requires correlations to be treated accurately.
We expect that the main features of this mechanism carry
over to the case of spinful electrons, since for � & � spin
correlation physics (such as the Kondo effect) does not
play a prominent role [27].
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4.2.1 Emergence of a broad level in the universal regime

In Sec. 4.2 we argue that the universal behaviour of the phase in the regime δ � Γ can
be understood as a Fano-type antiresonance [74, 75, 76, 77] arising from destructive inter-
ference between transmission through a broad level hovering near the chemical potential
and several narrow levels that successively cross the chemical potential (and the broad
level) while the gate voltage is shifted. We shortly summarize the findings and provide
supplementary data.

Contrary to [32, 61], we do not assume that one of the bare levels is much wider
than the others. Actually, in the regime δ � Γ, we find that this situation is realized
automatically for the renormalized single-particle levels. Thereby the renormalized single-
particle Hamiltonian hij = (εdj − Vg)δij + Σij with eigenvalues −ε̃j + iΓ̃ can be obtained
at the end of the fRG flow from the full Green’s function at zero frequency,[

GR(0)
]−1

ij
= −hij + i∆ij, (4.5)

where εdj are the bare level energies, Σ is the self-energy and ∆ij =
∑

β πρtβj tβi . For more
detailed information, see [15] and “The fRG approach” in Sec. 4.3.

Extensive statistics of the renormalized level widths (starting from a Gaussian distribu-
tion for the relative bare level widths γ) show that one broad level emerges naturally once
δ < Γ, see Fig. 4.4. Interestingly, the renormalized level widths are essentially independent
of U .

  

AB_Gamma

Figure 4.4: Statistics of renormalized level widths for a spinless four-level Anderson
model at Vg = 0. The data is obtained with fRG. For δ < Γ, one level is much wider than
the others. Actually, due to the Dicke effect, two levels effectively decouple in the limit
δ/Γ → 0. The level widths are essentially independent of U .

The emergence of effective sharp levels is due to the Dicke effect [78, 79], see [80]. For
δ < Γ, it is the second term that dominates the inverse of the Green’s function given by
Eq. (4.5). Therefore, the level widths are essentially the eigenvalues of ∆. Since the system
has two independent reservoirs, this is a matrix of rank two - therefore possessing only two
nonzero eigenvalues [80]. Thereby the larger dominates, see Fig. 4.4.
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An (intuitive) picture is obtained when rearranging the tunnelling part of the Hamil-
tonian [Eq. (2.4d)],

Himp−res =
∑
kσ

[
c†Lkσ{

M∑
j=1

tjLdjσ}+ c†Rkσ{
M∑

j=1

tjRdjσ}+ H.c.

]
. (4.6)

Therefore, there are two linear combination of dot levels that couple strongly to either the
left or right lead (here in curly braces). Assuming that δ < Γ, these two levels are close to
the eigenlevels of the renormalized system.

4.2.2 Supplementary NRG data

We present some additional NRG data not included in the publication. They enlighten
the crossover of mesoscopic to universal behaviour of the transmission phase of a four-level
Anderson model with spinless electrons.

At T ≈ 0, the crossover from mesoscopic to universal behaviour of the magnitude
and phase of the transmission amplitude through a four-level quantum dot with spinless
electrons is shown in Fig. 4.5. For the level spacing much larger than the coupling, δ/Γ �
1 (a,b), the transmission amplitude shows mesoscopic behaviour, i.e. it depends on the
relative sign σ. of the matrix elements of the successive levels, σ = sgn(ViLViRVi+1LVi+1R):
A phase lapse only occurs for σ = +. Decreasing δ/Γ, a crossover from mesoscopic to
universal behaviour is observed: In one of the Coulomb blockade valleys, two additional
phase lapses occur (c). One of them (indicated by an arrow) crosses the neighbouring
Coulomb blockade peak for decreasing δ/Γ (d-f). Universal behaviour is reached for δ/Γ <
1 (g). Then the properties of the system do not depend on the details of the parameters
(like σ) any more; one phase lapse per Coulomb blockade valley always. For δ/Γ � 1 (h)
we find the correlation induced resonances (in accordance with [63]).

In the universal regime, finite temperature leads to universality not only of the phase
(shown in Fig. 4.5 for T ≈ 0) but also the magnitude of the transmission amplitude. The
sharp features of the correlation induced resonances found for δ/Γ � 1 smear and lead
to the same structure than for moderate ratio δ/Γ. Fig. 4.6 compares the results of Fig.
4.5(g,h) for T ≈ 0 to finite temperature calculations at T/Γ . 1. In the latter regime, the
magnitude has a characteristic triangular form [4], therefore the transmission amplitude
(phase and magnitude) capture the experimental trend qualitatively. Fig. 4.7 directly
compares the NRG finite temperature curves. It is obvious that the universality of the
curves not only holds w.r.t. the relative sign of the matrix elements σ, but also w.r.t. the
ratio of level spacing to coupling strength as long as δ/Γ < 1.
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Figure 4.5: Crossover from mesoscopic to universal behaviour of magnitude and phase
of the transmission amplitude td through a four-level quantum dot with spinless electrons.
Parameters: σ = −−+, Γ = 0.2, U/Γ = 24, T/Γ = 0.04 (corresponding to T ≈ 0), Λ = 2.2
and Nkept = 512 for the first 6 iterations, then Nkept = 256. (a,b) Mesoscopic, δ/Γ � 1:
The phase depends on the relative sign σ of the matrix elements of the successive levels.
In plot (a) σ is indicated; a phase lapse only occurs for σ = +. (c-f) Crossover: Decreasing
δ/Γ, two additional phase lapses occur in one of the Coulomb blockade valleys. One of them
(indicated by an arrow) crosses the neighbouring Coulomb blockade peak. (g) Universal:
Therefore, for δ/Γ < 1, the properties of the system do not depend on the details of the
parameters (like σ) any more; each Coulomb blockade valley has its corresponding phase
lapse. (h) For δ/Γ � 1 we find correlation induced resonances (in accordance with [63]).
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Figure 4.6: Universal regime: Comparison of zero and finite temperature (T/Γ . 1)
results of the transmission amplitude through a spinless four-level quantum dot. Same pa-
rameters than Fig. 4.5(g,h). Sharp features in the magnitude of the transmission amplitude
are smeared out at finite temperature; therefore also |td| shows universal behaviour. (b)
This even holds for the correlation induced resonances with its distinct structure.

-60 -40 -20 0 20 40 60
Vg/Γ

0

0.5

1

1.5

2

  |
t d|  

   
   

   
   

   
   

   
   

  α
 / 

π

δ/Γ=0.04
δ/Γ=0.2
δ/Γ=0.4

N=4, spinless:  T/Γ=0.4    s=--+,  U/Γ=24

Figure 4.7: Universal regime, finite temperature: For T/Γ . 1, both magnitude and
phase of the transmission amplitude show universal behaviour, independent not only of
σ but also δ/Γ as long as δ/Γ < 1. The magnitude is of triangular shape, therefore the
experimental trend [4] is captured qualitatively.
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4.3 Phase lapses in transmission through interacting

two-level quantum dots

We study both spin-polarized as well as spin-degenerate two-level QDs in more detail. We
therefore employ the NRG and fRG methods to a spinless and spinful two-level Anderson
model, respectively. In accordance with the previous discussion, we find universal and
mesoscopic behaviour, depending on the ratio of level distance to mean level width.
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Abstract. We investigate the appearance of π lapses in the transmission phase θ

of a two-level quantum dot with Coulomb interaction U. Using the numerical and
functional renormalization group methods we study the entire parameter space for
spin-polarized as well as spin-degenerate dots, modelled by spinless or spinful
electrons, respectively. We investigate the effect of finite temperatures T . For
small T and sufficiently small single-particle spacings δ of the dot levels we find
π phase lapses between two transmission peaks in an overwhelming part of the
parameter space of the level-lead couplings. For large δ the appearance or not
of a phase lapse between resonances depends on the relative sign of the level-
lead couplings in analogy to the U = 0 case. We show that this generic scenario
is the same for spin-polarized and spin-degenerate dots. We emphasize that in
contrast to dots with more levels, for a two-level dot with small δ and generic dot-
lead couplings (that is up to cases with special symmetry) the ‘universal’ phase
lapse behaviour is already established at U = 0. The most important effect of the
Coulomb interaction is to increase the separation of the transmission resonances.
The relation of the appearance of phase lapses to the inversion of the population
of the dot levels is discussed. For the spin-polarized case and low temperatures
we compare our results to recent mean-field studies. For small δ correlations are
found to strongly alter the mean-field picture.
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1. Introduction

The local Coulomb interaction U > 0 of electrons occupying quantum dots leads to a variety of
effects. Many of them can conveniently be studied in transport through the dot within the linear
regime. Theoretically as well as experimentally well-investigated examples are the Coulomb
blockade (CB) peaks of the transmission (conductance) [1] as well as the plateaus of width
U of the transmission (conductance) induced by the Kondo effect [2]. Additional features of
interacting multi-level dots that have recently attracted considerable theoretical attention are
the population inversions of the dot levels [3]–[6], the phase lapses of the transmission phase
θ or, equivalently, the zeros of the transmission amplitude t (transmission zeros) [3], [7]–[12]
and correlation-induced resonances of |t| [13]. They appear in certain parts of the parameter
space when the level occupancies and the transmission amplitude are investigated as functions
of the level positions, which can be tuned via a nearby plunger gate voltage. Such effects were
mostly studied in a minimal model involving only two levels. A very important step towards a
unified understanding of population inversions, phase lapses and correlation-induced resonances
in spin-polarized two-level dots was recently taken by a multi-stage mapping of the problem on
a generalized Kondo model and a subsequent renormalization group and Bethe ansatz analysis
of the effective Hamiltonian [14]–[16].

Theoretical studies of phase lapses (transmission zeros) are of primary interest in connection
with a series of linear response transmission measurements by the Weizman group [17]–[19] on
Aharonov–Bohm rings containing a quantum dot in one arm. Under suitable conditions both the
phase θ and magnitude |t| of the transmission amplitude t = |t|eiθ of the dot can be extracted
from the Aharonov–Bohm oscillations of the current through the ring [20]. When this is done as
function of a plunger gate voltage Vg that linearly shifts the dot’s single-particle energy levels
downward, εj = ε0

j − Vg (j = 1, 2, . . . is a level index), a series of well-separated CB peaks
of rather similar width and height was observed in |t(Vg)|, across which θ(Vg) continuously
increased by π, as expected for Breit–Wigner-like resonances. In each CB valley between any
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two successive peaks, θ always jumped sharply downward by π. This phase lapse behaviour
was found to be ‘universal’, occurring in a large succession of valleys for every many-electron
dot studied in [17]–[19]. This universality is puzzling, since naively the behaviour of θ(Vg) is
expected to be ‘mesoscopic’, i.e. to show a phase lapse in some CB valleys and none in others,
depending on the dot’s shape, the parity of its orbital wavefunctions, etc. Only recently [19],
also the few-electron regime was probed experimentally: as Vg was increased to successively fill
up the dot with electrons, starting from electron number Ne = 0, θ(Vg) was observed to behave
mesoscopically in the few-electron regime, whereas the above-mentioned universal phase lapse
behaviour emerged only in the many-electron regime (Ne � 15).

It was suggested in [19] that a generic difference between the few- and many-electron dots
may be that for the latter, transport might simultaneously occur through several partially filled
single-particle levels in parallel. A possible reason could be that the mean (noninteracting) level
spacing δ of the topmost filled levels decreases as the number of electrons increases, while the
charging energy U still implies well-separated transmission resonances [21]. This scenario forms
the basis of a recent systematic study by us of the interplay of level spacing, level width and
charging energy on the phase lapses for up to four interacting levels and spin-polarized electrons
[22].We showed that the universal phase lapse and transmission zero behaviour appearing at small
δ can be understood as resulting from a Fano-type interference effect [23] involving transport
through two or more effective dot levels, whose positions and widths have been renormalized
by the Coulomb interaction and coupling to the leads. The importance of several overlapping
levels for phase lapses had earlier been pointed out by Silvestrov and Imry [3] in a rather specific
model of a single wide and several narrow levels with strong interaction (see also [12]).

Here we supplement our earlier study [22] by discussing the relation between phase lapses
and population inversions and by investigating the role of finite temperatures T > 0 as well as
spin, focusing on N = 2 levels. When spin is included, the Kondo effect plays a role for an odd
average occupation of the dot, but we will show that the phase lapse scenario is unaffected by this.
Experimentally the behaviour of the phase in the presence of the Kondo effect was investigated
in [24, 25]. As in [22] we are concerned with the generic behaviour and thus investigate the
entire parameter space, going beyond subspaces of higher symmetry (such as left–right (l–r) or
1–2 symmetry of the couplings between the left and right leads and the two levels). For low
temperatures and sufficiently small single-particle spacings δ of the dot levels, we find π phase
lapses between two transmission peaks in an overwhelmingly large part of the parameter space of
the level-lead couplings. We point out that the two level case is special compared to models with
N > 2, as for generic level-lead couplings a transmission zero and phase lapse occurs between
the two transmission peaks even at U = 0. The effect of the interaction is merely to increase the
separation of the transmission peaks. For large δ the appearance or not of phase lapses between
transmission peaks depends on the relative sign of the level-lead couplings in analogy to the
noninteracting case [9].

For spin-polarized dots we in addition compare our T = 0 results with the ones of recent
mean-field studies [10, 11]. In these works level-lead couplings beyond the subspaces with
increased symmetry were studied, and a remarkably more complex behaviour was found once
the symmetries were broken. The importance of considering such generic parameter sets was
independently pointed out in [13]. We here elucidate how the phase lapse behaviour is affected
by correlations, which are expected to be strong in low-dimensional systems. We find that upon
including correlations, the part of the parameter space exhibiting universal π phase lapses between
well-separated CB peaks becomes larger than suggested by the mean-field study. In particular,
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we do not recover certain peculiar features of the mean-field results of [10, 11] namely the
occurrence, in certain regimes of parameter space, of a phase lapse of less than π (instead of
precisely π), accompanied by the disappearance of the corresponding transmission zero [6, 10].
These features thus turn out to be artefacts of the mean-field approximation, which misses the
rather simple scenario for the phase lapse behaviour of a two-level dot at small δ: for generic
level-lead couplings a phase lapse and transmission zero between two transmission peaks is
already present at U = 0; increasing the Coulomb interaction the peaks become well-separated
while the phase lapse and transmission zero remain in the valley between them.

In the model of a single wide and several narrow levels [3] a relation between phase lapses
and population inversions was discussed. Therefore, in phase lapse studies quite often also the
level occupancies nj, j = 1, 2, are investigated. We emphasize that the generic appearance of
a phase lapse and transmission zero even at U = 0 renders the two-level model unsuitable for
establishing a general relation between phase lapses and population inversions, as the latter only
appear at sufficiently large U. Furthermore, we show that discontinuities of the nj as a function of
Vg are an artefact of the mean-field solution (see [6, 10]). Within our approaches discontinuities
are only found for l–r symmetric level-lead couplings with a relative plus sign of the underlying
hopping matrix elements and degenerate levels, a case which was earlier identified as being
nongeneric [13, 14], because the transmission shows only a single peak.

This paper is organized as follows. In section 2, we introduce our model for the spin-polarized
and spin-degenerate two-level dot. We discuss the relation between the measured magnetic flux
φ dependence of the interferometer’s linear conductance and the magnitude and phase of the
dot’s transmission amplitude. The latter can be computed from the one-particle Green function
of the dot. We present a brief account of our techniques to obtain the latter, the numerical
renormalization group (NRG) [26] and functional renormalization group (fRG) methods. For an
introduction to the use of the fRG to quantum dots see [27, 28]. We have implemented the full
density matrix (FDM) NRG method of [29], which enables us to investigate dots with arbitrary
level-lead state overlap matrix elements tlj (with l = L, R) as well as to study finite temperatures.
In section 3–5 we present our results of the Vg dependence of |t| and θ. First we briefly discuss
the noninteracting two-level dot with generic level-lead couplings and point out that the phase
lapse scenario differs from the one for more than two levels. We then investigate interacting, spin-
polarized dots, study the relation between phase lapses and population inversions and compare
to the mean-field results for the phase lapses. The issue of continuous versus discontinuous Vg

dependence of the level occupancies n1 and n2 is commented on. Next we study the role of
finite temperatures. Finally, we consider spin-degenerate levels at small T which implies the
appearance of Kondo physics at odd average dot filling. Using NRG and fRG we show that the
spin does not alter the universal phase lapse scenario. Our findings are summarized in section 6.

2. The model and methods

In this section, we introduce our model for the two-level dot. We argue that it is the energy
dependent (effective) transmission amplitude t̃(ω) which one has to compute if one is interested
in comparing to the measurements of [17]–[19] of the magnitude of the transmission amplitude
and its phase. The amplitude t̃(ω) can be determined from the matrix elements of the dot’s
interacting one-particle Green function. We furthermore discuss aspects of the NRG and the fRG
specific to our problem.
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2.1. Two-level set-up and transmission amplitude

Our Hamiltonian consists of three parts

H = Hlead + Hdot + Hlead−dot. (1)

The two semi-infinite leads are modelled as noninteracting one-dimensional tight-binding chains
and for simplicity are assumed to be equal

Hlead = −τ
∑

l=L,R

∑
σ

∞∑
m=0

(
c

†
m,σ,lcm+1,σ,l + h.c.

)
. (2)

The hopping strength in the leads is τ. We use standard second quantized notation with l = L, R

indicating the left and right leads, where the quantum numbers m and σ label Wannier states and
spin, respectively. The dot is described by

Hdot =
∑

σ

∑
j=1,2

εjd
†
j,σdj,σ +

1

2
U

∑
σ,σ′

∑
j,j′

(
d

†
j,σdj,σ − 1

2

) (
d

†
j′,σ′dj′,σ′ − 1

2

)
, (3)

where the term with j = j′ and σ = σ ′ is excluded from the sum in the interacting part. We define
ε1/2 = ∓δ/2 − Vg. In experimental systems the inter- and intra-level Coulomb repulsion can be
expected to be comparable in size and to avoid a proliferation of parameters we assumed them
to be equal. This assumption is not essential; by relaxing it we have checked that our results are
robust against inter-level variations of the interaction strengths. Finally, the coupling between
dot and lead states is given by

Hlead-dot = −
∑

l=L,R

∑
σ

∑
j=1,2

(
tljc

†
0,σ,ldj,σ + h.c.

)
(4)

with real overlap matrix elements tlj.
For simplicity, part of our studies will be performed on a model of spinless electrons, for

which the spin index will be dropped. The resulting model may be regarded as a spin-polarized
version of the spinful model obtained if the latter is put in a very large magnetic field.

The experimental two-path interferometer has the following structure (see figure 1(a)
of [18]): an emitter and collector, are connected via two very narrow point contacts to a
large, grounded base region between them. The layout of the base region has three important
properties. (i) Electrons travelling from emitter to collector are guided by appropriately arranged
gates through a ring-like structure in the base region, containing an upper and lower arm, the
latter containing a quantum dot. (ii) The ring contains several additional wide exit channels
(apart from collector and emitter) towards grounded leads; their presence strongly reduces the
probability for an electron to traverse the upper or lower arm more than once along its journey
from emitter to collector. Thus, multiple ring traversal trajectories can be assumed to make a
negligible contribution to the measured conductance between collector and emitter. Moreover,
in the resulting multi-terminal geometry, the transmission phase through the quantum dot is not
fixed by Onsager relations (as it would be for a two-terminal device); instead, the phase evolves
smoothly with system parameters such as gate voltage. (iii) Since all parts of the base regions are
connected to ground, no voltage drops occur across the quantum dot, which thus is in equilibrium
with the Fermi seas of the base regions to which it is connected on its right and left. Instead,
voltage drops occur across the two point contacts between emitter and base region, and base
region and collector, but these contacts are so narrow, and the conductance across them so small,
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that the electrons traversing them do not drive the base region out of equilibrium. Thus, in this
particular geometry, the emitter can be viewed as injecting electrons toward the base region (and
quantum dot) at an energy set by the voltage difference between the two. The inelastic scattering
length can be assumed to be longer than the total path length between emitter and collector,
so that the Aharonov–Bohm interference signal is due solely to electrons reaching the collector
with the same energy as that with which they were injected at the emitter. (Energy relaxation of
these electrons can be assumed to occur only deep in the collector.) Moreover, we shall only be
interested in the linear response regime, where the voltage drop across the emitter point contact
is smaller than all other relevant energy scales.

Under these circumstances, the linear response conductance between source and drain is
essentially given by the equilibrium transmission amplitude from emitter to collector, calculated
at injection energy ω across the emitter point contact, and thermally averaged over all injection
energies: GEC = − ∫ ∞

−∞ dωf ′(ω)|tEC(ω)|2, where f ′ is the derivative of the Fermi function. We
may write tEC(ω) = trefei2πφ/φ0 + tdot(ω), where φ0 is the flux quantum and tref = |tref |eiθref and
tdot = |tdot|eiθdot are the transmission amplitudes through the reference arm and the arm containing
the dot, respectively. Thus, the flux-dependent part of GEC takes the form [19, 20, 30]

GAB ∝ −
∫ ∞

−∞
dωf ′(ω)|tdot(ω)||tref |cos[2πφ/φ0 + θref + θdot(ω)]. (5)

The transmission tdot is the product of the transmission t̃ through the dot and the transmission
trest through the rest of the interferometer arm containing the dot. It is reasonable to assume
that trest as well as tref are only weakly energy and gate voltage dependent and thus the Vg-
dependence of the Aharonov–Bohm oscillations of the measured linear conductance of the
interferometer is dominated by the Vg dependence of the magnitude and phase of the transmission
amplitude through the dot. As usual [9], we compute the energy-averaged transmission phase θ

and magnitude |t| of the dot for a fixed spin direction as the phase and absolute value of

t(Vg) = −
∫ ∞

−∞
dωf ′(ω)t̃(ω), (6)

where t̃(ω) = TLR(ω) is the LR-matrix element of the equilibrium transmission matrix of the
dot, which gives the amplitude for an electron injected from the left towards the dot with energy
ω and a given spin, to emerge with the same energy and spin on its right. In the limit T → 0, −f ′

reduces to a δ-function and t(Vg) is equal to t̃(µ). We here take the chemical potential µ = 0. Note
that in contrast to the more common geometries where the voltage difference between emitter
and collector causes voltages drops to arise across the quantum dot, so that the Meir–Wingreen
formula [31] applies, so-called vertex contributions to the conductance are not needed in the
present geometry.

Using scattering theory t̃(ω) (for fixed spin direction) can be related to the spin-independent
matrix elements (in the j = 1, 2 indices of the Wannier states) of the dot’s one-particle retarded
Green function G,

t̃(ω) = 2

(√
	L

1 	R
1 G1,1(ω + i0) +

√
	L

2 	R
1 G1,2(ω + i0)

+s

√
	L

1 	R
2 G2,1(ω + i0) + s

√
	L

2 	R
2 G2,2(ω + i0)

)
, (7)
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with (after taking the wide band limit; see below)

	l
j = π|tlj|2ρlead(0) � 0, (8)

where ρlead(ω) denotes the local density of states at the end of each semi-infinite lead. Without
loss of generality we have assumed that tl1 � 0, tL2 � 0 and tR2 = s|tR2 | with s = ±. For later
purposes we define s = sign (tL1 tR1 tL2 tR2 ) and γ = {	L

1 , 	R
1 , 	L

2 , 	R
2 }/	. The spin-independent dot

occupancies nj (per spin direction), that we will also investigate, follow from the Green function
Gj,j by integrating over frequency (or can be computed directly when using NRG). Here we
will compute G in two ways, using both a truncated, that is approximate, fRG scheme, and a
numerically exact method, the NRG. For l–r symmetry of the level-lead couplings the Friedel
sum rule can be used and at temperature T = 0, t̃(0) can also be expressed in terms of the spin
independent occupancies [22]

t̃(0) = sin ([ne − no]π)ei(ne+no)/π, (9)

where ne = n1 + n2, no = 0 for s = + and ne = n1, no = n2 for s = −, respectively. A
transmission zero occurs for gate voltages at which ne = no mod 1. Assuming that ne − no is
continuous close to these gate voltages at the same Vg a π phase lapse occurs.

2.2. The fRG approach

The truncated fRG is an approximation scheme to obtain the self-energy � (and thus the one-
particle Green function) and higher order vertex functions for many-body problems [32]–[34].
As a first step in the application of this approach to quantum dots one integrates out the
noninteracting leads within the functional integral representation of our many-body problem
[35]. The leads provide a frequency dependent one-particle potential on the dot levels. On the
imaginary frequency axis it is given by

V lead
j,σ;j′,σ′(iω) =

∑
l

tljt
l
j′glead(iω)δσ,σ′, (10)

where glead(iω) denotes the spin-independent Green function of the isolated semi-infinite leads
taken at the last lattice site

glead(iω) = iω + µ

2 τ2


1 −

√
1 − 4 τ2

(iω + µ)2


 . (11)

As we are not interested in band effects we take the wide band limit. The potential then
reduces to

V lead
j,σ;j′,σ′(iω) = −i

∑
l

√
	l

j	
l
j′ sign(ω)δσ,σ′ . (12)

After this step, instead of dealing with an infinite system we only have to consider the dot of two
interacting levels.

In the computation of the interacting one-particle Green function projected on to the dot
system the sum of the dot Hamiltonian with U = 0 and V lead

j,σ;j′,σ′(iω) can be interpreted as a
frequency dependent ‘single-particle Hamiltonian’and in the following will be denoted byh0(iω).
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For the spin-polarized case it is a 2 × 2 matrix in the quantum number j = 1, 2. Including spin,
because of the additional quantum number σ = ↑, ↓, h0(iω) is a 4 × 4 matrix which is block-
diagonal in σ (spin conservation). As we are here not interested in the role of a magnetic field
lifting the spin-degeneracy of each level the σ =↑ and σ =↓ blocks are equivalent. The resolvent
G0(z) = [z − h0(z)]−1 obtained from h0(z) is equivalent to the noninteracting propagator of our
two-level many-body problem projected on the dot levels. In the generating functional of the
one-particle irreducible vertex functions we replace G0(iω) by

G
0 (iω) = �(|ω| − )G0(iω) = �(|ω| − )[iω − h0(iω)]−1 (13)

with  being an infrared cut-off running from ∞ down to 0. Taking the derivative with respect
to  one can derive an exact, infinite hierarchy of coupled differential equations for vertex
functions, such as the self-energy and the one-particle irreducible two-particle interaction. In
particular, the flow of the self-energy � (one-particle vertex) is determined by � and the
two-particle vertex W, while the flow of W is determined by �, W, and the flowing three-
particle vertex. The latter could be computed from a flow equation involving the four-particle
vertex, and so on. At the end of the fRG flow �=0 is the self-energy � of the original, cut-off-
free problem we are interested in [32, 33] from which the Green function G can be computed
using the Dyson equation. A detailed derivation of the fRG flow equations for a general quantum
many-body problem that only requires a basic knowledge of the functional integral approach
to many-particle physics [35] and the application of the method for a simple toy problem is
presented in [34]. For an overview of the application to quantum dots see [27, 28].

We here truncate the infinite hierarchy of flow equations by only keeping the self-energy and
the frequency-independent part of the two-particle vertex. Higher order terms can be neglected if
the bare two-particle interaction is not too large. By comparison to NRG data this approximation
scheme was earlier shown to provide excellent results for a variety of dot systems [13, 22, 27].
For further comparison see figure 7 below. The present scheme leads to a frequency-independent
self-energy (see below). As finite frequency effects (inelastic processes) become important at
temperatures T > 0, but these are not accurately treated by the level of approximation used here,
in the present paper we shall show fRG results only for T = 0. It would be possible to extend
our results to T > 0 by using a fRG truncation scheme in which the frequency dependence of the
two-particle vertex is kept. Such a scheme was used in [33] to study the one-particle properties
of the single-impurity Anderson model. The truncation leads to the coupled differential flow
equations

∂

∂
�

k′,k = − 1

2π

∑
ω=±

∑
l,l′

eiω0+G
l,l′(iω)W

k′,l′;k,l (14)

and

∂

∂
W

k′,l′;k,l = 1

2π

∑
ω=±

∑
m,m′

∑
n,n′

{
1
2G

m,m′(iω)G
n,n′(−iω)W

k′,l′;m,nW

m′,n′;k,l

+G
m,m′(iω)G

n,n′(iω)
[

− W
k′,n′;k,lW


m′,l′;n,l + W

l′,n′;k,mW
m′,k′;n,l

]}
, (15)

where k, l, etc. are multi-indices representing the quantum numbers j, σ and

G(iω) = [G−1
0 (iω) − �]−1. (16)
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In the model with spin-degenerate levels each index k, l etc. can take four different values j = 1, 2
and σ =↑, ↓ which gives 16 equations for � and 256 for the two-particle vertex. For a spin-
polarized two-level dot the multi-indices take two values and one obtains 4 equations for �

and 16 for the two-particle vertex. The number of independent equations can be significantly
reduced (see below) taking into account the antisymmetry of the two-particle vertex and the
spin symmetry (for spin-degenerate levels) both being preserved by equations (14) and (15). The
initial conditions at  = 0 → ∞ are given by �

0
1,1′ = 0 while W

0
1′,2′;1,2 is given by the bare

antisymmetrized two-body interaction. In the spin-polarized case the only nonzero components
of the two-particle vertex at  = 0 → ∞ are

W
0
1,2;1,2 = W

0
2,1;2,1 = U and W

0
1,2;2,1 = W

0
2,1;1,2 = −U. (17)

In the model including spin the initial conditions take the form

W
0
1↑,1↓;1↑,1↓ = U, W

0
1↑,2↑;1↑,2↑ = U, W

0
1↑,2↓;1↑,2↓ = U,

W
0
2↑,2↓;2↑,2↓ = U, W

0
1↓,2↓;1↓,2↓ = U, W

0
1↓,2↑;1↓,2↑ = U. (18)

All other components which do not arise out of these by permutations (W0
1,2;1′,2′ = W

0
1′,2′;1,2 and

W
0
1,2;1′,2′ = −W

0
1,2;2′,1′) are zero. The self-energy matrix and thus the one-particle Green function

is completely independent of the spin direction and in the following we suppress the spin indices.
As already mentioned the present approximation leads to a frequency-independent self-

energy. This allows for a simple single-particle interpretation of its matrix elements. The sum
of the �

j,j and the bare level position correspond to the flowing effective level positions,
ε

j = εj + �
j,j, while t = −�

1,2 = −�
2,1 is a hopping between the levels 1 and 2 generated in

the fRG flow. The fRG formalism then reduces to a set of coupled differential flow equations for
ε

j , t and a few (one in the spin-polarized case and seven for spin-degenerate levels) independent
components of the two-particle vertex. These flow equations can easily be integrated numerically
using standard routines. It is important to note that although we start out with intra- and inter-
level Coulomb interactions of equal strengths they generically become different during the fRG
flow (because of the different 	l

j). Furthermore, additional interaction terms which are initially
zero will be generated in the flow. The set of equations significantly simplifies if the flow of
the vertex is neglected while the results remain qualitatively the same. Within this additional
approximation and for a spin-polarized dot the flow equations for ε

j and t are explicitly given
in [13]. In certain limiting cases it is even possible to analytically solve the differential equations
[13, 27]. However, in the present work, the flow of the vertex is retained which clearly improves
the quality of the approximation [27].

At the end of the fRG flow, the full Green function takes the form [G(iω)]−1
j,j′ =

iωδj,j′ − hj,j′(iω) with an effective, noninteracting (but Vg-, U- and ω-dependent) ‘Hamiltonian’

hj,j′(iω) = h0;j,j′(iω) − �j,j′ . (19)

In a last step we have to perform the analytic continuation to the real frequency axis iω → ω + i0.
This is straightforward, as the only frequency dependence of h(iω) is the trivial one of the lead
contribution equation (12). Then t̃(ω) can be computed using equation (7).

2.3. The NRG approach

The NRG was invented by K G Wilson in 1974 as a nonperturbative renormalization scheme
for the Kondo model [36]. It was later extended to the fermionic [26, 37] Anderson model
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which describes a localized electronic state coupled to a fermionic bath. The NRG allows
thermodynamic and dynamic properties of such strongly correlated systems to be calculated
at zero and finite temperature [29], [38]–[42].

The key idea of NRG is to discretize the conduction band of the bath logarithmically,
leading to a tight-binding chain for which the hopping matrix elements between the successive
sites fall off exponentially with 

−n/2
NRG , where NRG > 1 is the discretization parameter, typically

1 < NRG < 3, and n is the site index. This energy scale separation ensures that the problem
can be solved iteratively by adding one site at a time and diagonalizing the enlarged system at
each step, thereby resolving successively smaller and smaller energy scales. Thus, by choosing
the length N of the chain so large that the corresponding energy scale ∼ 

−N/2
NRG is smaller than

all other energies in the problem, all relevant energy scales can be resolved and treated properly.
Since the dimension of the Hilbert space of the chain increases exponentially with the length
of the chain, a truncation scheme has to be adopted, according to which only the lowest Nkept

eigenstates of the chain are retained at each iteration. Recently, it was shown that by also keeping
track of discarded states a complete, but approximate, basis of states can be constructed [43].
This can be used to calculate spectral functions which rigorously satisfy relevant sum rules [29].

In order to obtain the transmission through the dot t̃(ω) equation (7) we follow [29, 39] to
compute the imaginary part of the local Green functions at temperature T , using the Lehmann
representation

Im Gj,j′(ω) = − π
e−ωn/T

Z

∑
n,m

〈
n|dj,σ|m

〉 〈
m|d†

j′,σ|n
〉
δ(ω − [ωm − ωn])

− π
e−ωn/T

Z

∑
n,m

〈
n|d†

j′,σ|m
〉 〈

m|dj,σ|n
〉
δ(ω + [ωm − ωn]), (20)

with Z = ∑
n e−ωn/T , the many-body eigenstates |n〉 and eigenenergies ωn. Since these are causal

functions, the real part can be accessed by performing a Kramers–Kronig transformation [44].
Using this method we obtain numerically exact results for the local Green function.

In the next three sections we present our results. In section 3 for the U = 0 case. In section 4
we present the generic phase lapse scenario for interacting spin-polarized dots, compare to the
mean-field results and investigate the role of finite temperatures. Finally, in section 5 we study
the spinful two-level dot.

3. Results: noninteracting dots

The large number of parameters makes it essential to analyse the transmission for the
noninteracting case before considering the effect of two-particle interactions. We focus on T = 0.
A closed expression for |t(Vg)| and θ(Vg) (for a fixed spin direction) at U = 0 can be obtained
from equations (6) and (7) by replacing G(0 + i0) by G0(0 + i0),

|t(Vg)| =
2

[
	L

1 	R
1 ε2

2 + 	L
2 	R

2 ε2
1 + 2s

√
	L

1 	R
1 	L

2 	R
2 ε1ε2

]1/2

[(
	L

1 	R
2 + 	L

2 	R
1 − 2s

√
	L

1 	R
1 	L

2 	R
2 − ε1ε2

)2
+ (ε1	2 + ε2	1)2

]1/2 , (21)
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θ(Vg) = arctan


 ε1	2 + ε2	1

ε1ε2 −
(√

	L
1 	R

2 − s
√

	R
1 	L

2

)2


 mod π, (22)

with 	j = ∑
l 	

l
j. For a fixed set of 	l

j the δ dependence of |t(Vg)| and θ(Vg) is shown in the
first columns of figures 1 and 2 for U/	 = 0.2. The results are qualitatively the same as those
obtained for U = 0. For generic level-lead couplings 	l

j the gate voltage dependence of equation
(21) in the limit of small and large δ/	 is dominated by two peaks (of height � 1) and a
transmission zero. Associated with the transmission zero is a π phase lapse at the same gate
voltage. The transmission zero (and phase lapse) follows from perfect destructive interference at
a particular Vg. For a strong asymmetry in the couplings of the two levels to the leads, 	1 
 	2

or vice versa, this can be understood as follows: in this limit transport is simultaneous through
a broad and a narrow level which for small δ are almost degenerate. This is the typical situation
for the appearance of a Fano anti-resonance [23]. In the present set-up the Fano parameter q

is real (due to time-reversal symmetry); this guarantees that, upon sweeping the gate voltage,
the transmission amplitude must cross zero at some point or other, at which a phase lapse thus
occurs. (In [22], we show that a similar mechanism of phase lapses due to Fano anti-resonances
occurs in dots with more than two levels.) The Fano anti-resonance with vanishing transmission
is robust if one goes away from this limit towards more symmetric level-lead couplings. Across
each of the transmission resonances θ increases roughly by π as expected for a Breit–Wigner
resonance. Further details of |t(Vg)| and θ(Vg) depend on s. For s = + the transmission zero (and
phase lapse) is located between the two conductance peaks for all δ. For δ → 0 the resonance
peak positions depend on the asymmetry of the 	l

j and the separation of the peaks is small if
the 	l

j are close to l–r symmetry, that is close to 	L
j = 	R

j . For l–r symmetric dots and δ = 0 the
transmission zero (and phase lapse) disappears (not shown in the figures). This is an example of
a submanifold in parameter space with nongeneric behaviour. A complete account of such cases
(which also remain nongeneric for U > 0) is given in [13, 14]. As they require fine tuning these
parameter sets are presumably irrelevant in connection with the experiments and we will here
only briefly mention results obtained in such cases.

For s = − and fixed 	l
j the position of the transmission zeros and phase lapses with respect

to the CB peaks is different for small or large δ/	 (see figure 2). At small δ/	 it is located
between the two conductance peaks, whereas for large δ/	 it lies on one of the outer sides of
these peaks [9]. In the crossover regime between these limiting cases the height of one of the
peaks decreases, while the other becomes broader and splits up into two resonances separated
by a minimum with nonvanishing conductance (see figures 2(g) and (j)). The crossover scale
δc depends on the choice of 	l

j. For large δ/	, |t| has three local maxima, although the height
of one of the maxima is significantly smaller than the height of the other two (not shown in
figure 2). For fixed, asymmetric 	l

j and δ → 0 the separation of the two conductance peaks for
s = − is significantly larger than for s = + (compare figures 1(a) and 2(a)).

It is important to note that for small δ/	 essential features of the universal phase lapse
regime established in the experiments are already found at U = 0: regardless of the sign s for
generic 	l

j (that is with the exception of a few cases with increased symmetry) two transmission
resonances are separated by a transmission zero and π phase lapse. At U = 0 the peak separation
is too small and the shape of the Vg dependence of the transmission and phase close to the

New Journal of Physics 9 (2007) 123 (http://www.njp.org/)

4.3 Phase lapses in transmission through two-level quantum dots 71



12 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

–3 0
0

0.2

0.4

0.6

0.8

1.0

|t
|/2

,θ
/2

π,
n 1/2

,n
2
/2

U/Γ=0.2

(a)

–3 0

U/Γ= 2
(b)

–7 0

U/Γ=10

δ/Γ
=

0.02

(c)

–3 0
0

0.2

0.4

0.6

0.8

1.0

|t
|/2

,θ
/2

π,
n 1/2

,n
2
/2 (d)

–3 0

(e)

–7 0

δ/Γ
=

0.1

(f)

–3 0
0

0.2

0.4

0.6

0.8

1.0

|t
|/2

,θ
/2

π,
n 1/2

,n
2
/2 (g)

–4 0

(h)

–7 0

δ/Γ
=

0.5

(i)

–3 0
0

0.2

0.4

0.6

0.8

1.0

|t
|/2

,θ
/2

π,
n 1/2

,n
2
/2 (j)

–4 0

(k)

–7 0

δ/Γ
=

1.5

(l)

–7 0

Vg/Γ

0

0.2

0.4

0.6

0.8

1.0

|t
|/2

,θ
/2

π,
n 1/2

,n
2
/2 (m)

–8 0

Vg/Γ

(n)

–10 0 10

Vg /Γ

δ/Γ
=

10

(o)

3 3 7

3 3 7

3 4 7

3 4 7

7 8

Figure 1. Systematic account of the energy scales U/	 and δ/	 that govern the
gate voltage Vg dependence of the magnitude of the transmission |t| (black), the
transmission phase θ (red) and the level occupancies (green and blue) of a spin-
polarized two-level dot at T = 0. The parameters are γ = {0.1, 0.3, 0.4, 0.2} and
s = +. For better visibility n1/2 were shifted by 1. The depicted behaviour is the
generic one and in particular qualitatively independent of the actual choice of
γ (up to certain cases of increased symmetry; for examples see the text). The
behaviour at U/	 = 0.2 is qualitatively the same as the one at U = 0. The results
were obtained using the truncated fRG.
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Figure 2. The same as in figure 1, but for s = −.

peaks is qualitatively different from those observed experimentally (namely Lorentzian-like for
the magnitude of the transmission, S-shaped for the phase). As we show next the latter problems
do not arise for sufficiently large interactionU, which in particular leads to an increased separation
U + δ of the transmission peaks.
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4. Results: spin-polarized dots

4.1. The generic phase lapse scenario

In [22] it was shown that fRG and NRG results for |t(Vg)| and θ(Vg) agree quantitatively up
to fairly large U. For a generic set of couplings γ we present fRG data for θ(Vg) and |t(Vg)|
together with the occupancies of the levels nj for different U and δ in figures 1 (s = +) and
2 (s = −). Increasing U/	 the separation of the transmission peaks in the limit of small and
large δ/	 increases and is eventually given by U + δ. Even though this charging effect appears to
be straightforward it is important to note that in particular the groundstate at small δ/	 is highly
correlated. This becomes explicit from the mapping of the present problem on a generalized
single impurity Anderson and Kondo model as discussed in [14]–[16]. An indication of strong
correlation effects are the correlation-induced resonances of the transmission found in [13], which
we briefly mention below. With increasing U, even at small δ/	 the gate voltage dependence of
θ(Vg) across the transmission resonances becomes S-shaped and the resonances more Lorentzian-
like (see third columns of figures 1 and 2). Obviously, for s = + the transmission zero and phase
lapse remain between the two transmission peaks for all δ and U (see figure 1). For s = − this
only holds for sufficiently small level spacings as, similar to the U = 0 case, with increasing
δ/	 a crossover sets into a regime in which the transmission zero and phase lapse are no longer
between the peaks.Analogously to theU = 0 case, the crossover scale δc depends on the particular
choice of 	l

j. As can be seen from the second row of figure 2 (the CB peaks at large U have still
almost equal height), with increasing U/	, δc is pushed towards larger values. The Coulomb
interaction thus stabilizes the parameter regime of universal phase lapses. This shows that the
effect of the Coulomb interaction leading to universal π phase lapses between separated CB
peaks in a two-level dot is rather straightforward: for small δ/	 the phase lapse and transmission
zero are already present at U = 0, and the effect of finite U is simply that the CB peaks
become well-separated because of charging effects. They also lead to a Lorentzian-like lineshape
of the peaks and an S-like variation of θ across them. The present scenario has to be contrasted
to the one obtained for N > 2 levels discussed in [22]. The generic appearance of N − 1
transmission zeros and phase lapses separating the transmission peaks at small δ/	 and U = 0
is specific to the case with N = 2 levels. For N > 2 the number of transmission zeros and phase
lapses at U = 0 strongly depends on the parameters and the mechanism leading to universal
π phase lapses at sufficiently large U (at small δ/	) is much more involved [22]. This shows
that although important insights can be gained from studying two-levels, to achieve a complete
understanding of the phase lapse scenario it is essential to study dots with Coulomb interaction
and more than two levels [22].

The lineshape of |t| shows characteristic differences in the limits of small and large δ/	. In
the universal regime at small δ/	 and for sufficiently large U/	 the two CB peaks have equal
width of order 	 (not 	j) and equal height which is consistent with the expectation that at each
peak the transport occurs through both bare levels simultaneously.A similar behaviour is observed
in the experiments. In the mesoscopic regime (δ/	 � 1) the width of the jth peak is given by 	j

and the relative height hj governed by 	L
j /	R

j , independent of the value of U. This effectively
noninteracting lineshape can be understood from the gate voltage dependence of the effective
level positions ε=0

j at the end of the fRG flow. When one level is charged the effective level
position of the other level is pushed downwards by U. Besides this, the gate voltage dependence
of the ε=0

j remains linear, leading to two transmission peaks at gate voltages ε=0
j (Vg) = 0 with
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separation U + δ, but with the same width and height as for U = 0. The hopping between the
two effective levels generated in the fRG flow is small and can be neglected.

Apart from the CB peaks, for sufficiently large U/	 the transmission shows additional
features at small Vg/	 (see figures 1(b), (c), (e) and 2(c)). These are the correlation-induced
resonances mentioned in the Introduction section, which have been found to be most pronounced
at δ = 0 and in this case occur for interactions larger than a critical Uc which depends on the
	l

j and s [13, 14]. Their appearance indicates that the groundstate at small δ/	 is strongly
correlated (as mentioned in [13] the correlation-induced resonances are not captured by a mean-
field analysis; see below). Associated with the correlation-induced resonances is a sharp increase
of θ (see figures 1(b) and (e)). At large U/	 the correlation-induced resonances are exponentially
(in U/	) sharp features that vanish quickly with increasing T (see below), which might be one of
the reasons why up to now they have not been observed in experiments. The correlation-induced
resonances are not directly linked to the universal phase lapse scenario.

For increasing U/	 at fixed δ/	 and decreasing δ/	 at fixed U/	 we observe an increased
tendency towards population inversion of the nj. We define that a population inversion occurs
if (i) n1(V

PI
g ) = n2(V

PI
g ) at a certain V PI

g and (ii) one nj has positive and one negative slope at
V PI

g so that the filling of one level causes a tendency for the other to empty. For large U/	

and small δ/	 it is mainly the more strongly coupled level (in figures 1 and 2, this is the level
2 shown in blue) whose population increases across both CB peaks while it is depopulated in
between. This behaviour is reminiscent of the one discussed in the model with a broad and several
narrow levels [3], where a relation between population inversion and phase lapse behaviour was
proposed. Remarkably, for sufficiently large U/	, we find population inversion even for small
asymmetries 	2/	1 (which is only 1.5 in the example of figures 1 and 2). We emphasize that
despite this resemblance to the observation of [3], the N = 2 model is not appropriate to establish
a general relation between the appearance of population inversions and π phase lapses at small
δ/	 [6, 10]. While the latter are already present at U = 0, the former only develop with increasing
U (compare figures 1(a), (d) or 2(a), (d) to figures 1(c), (f) or 2(c), (f)). Note that the gate voltage
V PI

g at which the population inversion occurs is generically not identical to the position of the
phase lapse and transmission zero (see figures 1(b), (c), (f) and 2(c), (f)) [14]. However, for l–r
symmetric 	l

j equation (9) ensures that if a population inversion occurs its position is identical
to the one of the phase lapse and transmission zero.

As can be seen in figures 1(c), (f) and 2(c), (f) for small δ/	 and large U/	 the nj

show a rather strong gate voltage dependence between the CB peaks. Nevertheless the total
dot occupancy n1 + n2 is only weakly Vg dependent and close to 1 within the entire CB valley.
This is reminiscent of the plateau-like occupancy in the local moment regime of the single
impurity Anderson model showing the Kondo effect. As discussed in [14]–[16] a relation to this
model can indeed be established.

We note in passing that with the exception of the nongeneric case of l–r symmetric 	l
j, s = +

and δ = 0, the nj are continuous functions of Vg.

4.2. Comparison with mean-field theory

In [10, 11] Golosov and Gefen (GG) analyse the phase lapse scenario of the spin-polarized
interacting two-level dot within the mean-field approximation. However, they anticipated
themselves that correlations not captured in the mean-field approach could be important.
Examples of this had been pointed out already in [5, 13]. Thus, GG emphasized that the effects of
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such correlations on their results need to be studied in subsequent work. The present subsection
is devoted to this task.

GG consider the subspace of level-lead couplings defined by 	L
1 − 	R

1 = 	R
2 − 	L

2 .
Performing a unitary transformation on the dot states the part of the Hamiltonian equation (1)
containing dot operators can be transformed to (see [10, 11])

Hdot + Hlead−dot =
∑
j=1,2

ε̂jd̂
†
j,σd̂j,σ + Ud̂

†
1d̂1d̂

†
2d̂2 − t̂(d̂

†
1d2 + h.c.)

−
[
c0,L

(
t̂1d̂

†
1 + t̂2d̂

†
2

)
+ c0,R

(
t̂1d̂

†
1 − t̂2d̂

†
2

)
+ h.c.

]
, (23)

with the transformed operators and parameters indicated by a hat. The change of basis leads to
a direct hopping t̂ between the transformed levels. We here focus on the relative sign ŝ = −.
GG then introduce the two new dimensionless parameters κ and α as t̂ = −κδ̂/(2

√
1 − κ2)

and α = (|t̂1| − |t̂2|)/
√

t̂2
1 + t̂2

2. Varying κ and α GG investigate the phase lapse behaviour for

fixed level spacing (in the new basis) ε̂2 − ε̂1 = δ̂ = 0.256	̂ and interaction U/	̂ = 6.4. As the
parameters in the new basis are rather complicated combinations of the original ones, the variation
of α and κ corresponds to the variation of the 	l

j (within the above specified subspace), δ and
even s. Our simple picture that increasing the level spacing δ of the untransformed model leads
from the universal to the mesoscopic regime cannot easily made explicit using the parameters
of GG. To make the comparison of our results to the mean-field study definite we nevertheless
follow the steps of GG.

Varying α, κ ∈ [0, 1[ at ŝ = − we move around in the right part of what is called the ‘phase
diagram’ by GG (figure 4 of [11]). In figure 3, we show the behaviour of |t| and θ varying α

at fixed κ (figures 3(a)–(d)) and κ at fixed α (figures 3(e)–(h)), respectively. In the first case,
upon increasing α at constant κ = 0.5, we move from GGs ‘phase 2’, (red in figure 4 of [11]),
with the transmission zero and phase lapse outside the two CB peaks, into ‘phase 1’ (blue in
figure 4 of [11]), with the transmission zero and phase lapse between the peaks. The mean-field
approximation correctly captures the presence of these two regimes. We find a smooth crossover
between them (which is why we prefer the notion of different ‘regimes’ rather than ‘phases’):
the Vg value at which the transmission zero and phase lapse occur smoothly crosses from lying
outside the right CB peak to lying between the two CB peaks. This is similar to the smooth
crossover we observe in the s = − case of the untransformed model when moving from the
mesoscopic to the universal regime (see columns of figure 2).

For fixed α = 0.6 and increasing κ we move from ‘phase 3’ (green in figure 4 of [11]) into
‘phase 1’. In contrast to the mean-field approximation where an abrupt transition from ‘phase 3’
to ‘phase 1’ occurs, figures 3(e)–(h) show a rather smooth evolution. The mean-field ‘phase 3’
is characterized by discontinuous population switching and a phase lapse between the CB peaks
which, surprisingly, is smaller than π [6, 10]. Furthermore, in this parameter regime the mean-
field results show no transmission zero, as discussed in [6]. However, from figures 3(e)–(h) it is
apparent that ‘phase 3’, is an artefact of the mean-field approximation: upon taking correlations
into account via fRG, the π phase lapse and the transmission zero are found to remain in the
CB valley. The evolution with increasing κ is similar to the s = + case of the untransformed
model when the level spacing is increased at fixed 	l

j (see the second and third columns of figure
1). ‘Phase 3’ then corresponds to the parameter regime with small level spacing and a sizeable
U/	 in which correlations are of particular importance leading e.g. to the correlation-induced
resonances (see figures 3(e)–(h)). That the mean-field approximation fails to properly describe
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Figure 3. Two traces through the mean-field ‘phase diagram’ of GG. Panels
(a)–(d) are for constant κ and different α moving from GGs ‘phase’ 2 into
‘phase’ 1. Panels (e)–(h) are for constant α and different κ moving from GGs
‘phase 3’ into ‘phase 1’. The inset in panel (e) shows a zoom in of the gate
voltage region around the phase lapse. For a detailed comparison to the
mean-field results see the text. The results were obtained at T = 0 using
the truncated fRG.
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Figure 4. Temperature dependence of |t(Vg)| and θ(Vg) obtained by NRG for
γ = {0.27, 0.33, 0.16, 0.24}, U/	 = 10 for s = ± and in the universal (δ/	 =
0.02) and the mesoscopic (δ/	 = 4) regime. We used the NRG parameters
NRG = 2.3 and Nkept ∼ 512.

this strongly correlated regime is not surprising and has been recognized earlier [13]. In [14]–[16]
a connection between the small δ regime of the present model and the local moment (Kondo)
regime of the single-impurity Anderson model was established. Thus, the artefacts of the mean-
field approximation for the spinless two-level dot are reincarnations of the well-known artefacts
it produces when applied to the Anderson model in the local moment regime.

Upon taking correlations into account, the discontinuities of the n1/2 in ‘phase 3’are washed
out. The only choice of parameters for which we find discontinuous behaviour is the one with
l–r symmetric 	l

j, s = + and δ = 0, a case which was already identified as being nongeneric
[13]. Any arbitrarily small deviation from these conditions leads to a continuous gate voltage
dependence of n1/2. For parameters close to the nongeneric point the change in nj at first sight
appears to be rather sharp and an extremely high resolution in Vg is required to identify the
behaviour as continuous.

The fact that the mean-field treatment at U > 0 and small level spacings incorrectly causes
the transmission zero to disappear and the corresponding phase lapse to become smaller than π

is its most consequential problem. By generating such features, the mean-field treatment masks
the very simple scenario that emerges upon properly including fluctuations: for increasing U,
the π phase lapse and transmission zero found for small δ/	 at U = 0 remain in the CB valley,
while the transmission peaks become well-separated, Lorentzian-like and the phase acquires an
S-shape across the resonances.
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4.3. Finite temperatures

We next investigate how the phase and magnitude of the transmission are affected by finite
temperatures. To this end, we use the new FDM-NRG algorithm recently proposed in [29]. In
figure 4 we show NRG data for |t(Vg)| and θ(Vg) at different T . We consider generic level-lead
couplings γ = {0.27, 0.33, 0.16, 0.24}, U/	 = 10, s = ± and δ/	 = 0.02 (universal regime)
as well as δ/	 = 4 (mesoscopic regime). As expected, with increasing temperature the sharp
π phase lapses are gradually smeared out, the transmission zero vanishes and the change of θ

at the phase lapse becomes smaller than π. Furthermore, the CB peaks decrease and broaden.
For δ/	 = 4 and s = − (figure 4(d)) the phase lapse lies outside the CB peaks and outside the
window of gate voltages shown.

In the mesoscopic regime (figures 4(b) and (d)) the explicit temperature dependence of
the Green function entering equation (6) via equation (7) is rather weak and the temperature
dependence of the CB peaks and the phase lapse can be understood from the behaviour in the
noninteracting model, but with level spacing U + δ. For small T the height hj(T) of the jth CB
peak scales as 1 − hj(T)/hj(0) ∼ T 2/	2

j and the width w of the phase lapse as w ∼ T 2/(δ + U)2

[9]. The relevant scale for sizeable temperature effects in the peak height is thus 	j while it is
U + δ in the smearing of the phase lapses. Since we have chosen 	j 
 δ + U a reduction of hj

is visible for temperatures at which the phase lapse is still fairly sharp (see figure 4(b)).
Due to the importance of correlation effects at small δ/	, the T dependence of |t(Vg)|

and θ(Vg) in the universal regime is different from the noninteracting case. Here the explicit
temperature dependence of G is much stronger and cannot be neglected. The resulting T

dependence of |t(Vg)| and θ(Vg) is shown in figures 4(a) and (c).A comparison to figure 4(b) shows
that in the universal regime the smearing of the phase lapse sets in at a lower energy scale than in
the mesoscopic regime. This scale depends on the relative sign s of the level-lead hopping matrix
elements (compare figures 4 (a) and (c)). Furthermore, in contrast to the mesoscopic regime the
scales on which the CB peaks and the phase lapse are affected by temperature are comparable.
A more detailed investigation of the temperature dependence in the universal regime, which also
discusses the fate of the correlation-induced resonances, is beyond the scope of the present work
and is left as subject for future studies.

5. Results: spin-degenerate dots

We finally investigate the effect of the spin degree of freedom on the discussed phase lapse
scenario, at T = 0. In figures 5 (s = +, U/	 = 3) and 6 (s = −, U/	 = 4) we show fRG data
for the evolution of |t(Vg)|, θ(Vg) and nj(Vg) (for a fixed spin direction) with increasing δ for
a generic γ = {0.1, 0.2, 0.5, 0.2}. The overall dependence of θ(Vg) on δ is similar to the one
observed in the spinless case (compare figures 1 and 2). In particular, the behaviour at small δ/	

appears to be almost unaffected by the presence of the spin degree of freedom (figures 5(a), (b)
and 6(a), (b)). For large δ/	 (figures 5(d) and 6(d)) the transmission resonances are located at
odd average total filling of the two-level dot indicated by shoulders in the nj. At these fillings
and for sufficiently large U/	 the Kondo effect is active and the resonances cannot be regarded
as Lorentzian-like CB peaks. Instead they show a plateau-like shape known from the spinful
single-level dot (see [30] and references therein). Across the Kondo plateaux of |t| the S-shaped
increase of the phase is interrupted by a shoulder at θ ≈ π/2 as expected for the Kondo effect
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Figure 5. Gate voltage Vg dependence of |t| (black), θ (red) and the level
occupancies per spin direction (green and blue) of a spinful two-level dot at
T = 0 for different δ obtained by fRG. The parameters are U/	 = 3, γ =
{0.1, 0.2, 0.5, 0.2} and s = +. In (a), no data are shown around Vg = 0 for reasons
explained in the text.

[30]. It would be very interesting to study how each of the Kondo plateaus of |t| with increasing
temperature crosses over to two CB peaks and how the phase behaves in the generated CB valley.
This question is left for future investigations.

The behaviour of the phase in the presence of the Kondo effect was experimentally
investigated at temperatures comparable to the Kondo temperature [24], and much below the
Kondo temperature [25]. As we study the zero temperature case it is proper to compare our
calculations to the measurements at low temperatures. Indeed figure 6(c) for intermediate δ/	

qualitatively reproduces the experimental results at low temperature as shown in figure 3 (c) of
[25]. In particular the increase of the phase by more then π and the absence of clearly developed
Kondo plateaus are reproduced.

In figure 5(a) we left out the fRG data around Vg = 0 as for these gate voltages some of
the components of the flowing two-particle vertex become large. This indicates the breakdown
of our present truncation scheme [27, 28] and the results for |t|, θ and nj become unreliable.
For an explicit comparison to NRG data of |t| see figure 7(a). We note in passing that for s = +
correlation-induced resonances occur also in the model with spin (figure 5(a)]) [27].

In figure 7 we compare fRG and NRG results for l–r symmetric level-lead couplings. The
computational resources required to obtain NRG data away from l–r symmetry become large
and such data are not required for the aim of the present paper. We can then use equation (9)
and must only compute the occupancies nj, which is numerically less demanding. For δ > 0
(as exclusively shown) it is only the absence of the correlation-induced resonances for s = +
(compare figures 5(a) and 7(a)) which is different from the results of the generic γ shown in
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Figure 6. The same as in figure 5, but for U/	 = 4 and s = −.

figures 5 and 6. With the exception of the Vg ≈ 0 regime in the case of small δ and s = + the
fRG and NRG data compare quite well. In this case we only show the fRG data for |t| as the
results for the phase and occupancies become rather erratic. The reason for the breakdown of the
currently used truncated fRG is explained in [27, 28] and is related to the fact that at small δ and
small Vg the correlations in effect become extremely large.

6. Summary

In the present paper, we studied the appearance of phase lapses in an interacting two-level
quantum dot considering the entire parameter space using NRG and a truncated fRG scheme.

As a starting point we briefly discussed the noninteracting case at temperature T = 0 and
pointed out that for generic level-lead couplings, that is up to cases with increased symmetry,
essential features of the universal phase lapse scenario are already established at U = 0. For
single-particle level spacings δ small compared to the level broadenings 	j the transmission is
characterized by two transmission peaks of equal width with a transmission zero and an associated
π phase lapse between them (universal regime). For a large asymmetry of the level-lead couplings,
	1 
 	2 or vice versa this can be understood as resulting from a Fano anti-resonance. The Fano
effect is robust for more symmetric couplings as well as for U > 0. For large δ/	 at U = 0
the appearance or not of a transmission zero and phase lapse between the two transmission
peaks depends on the relative sign s of the level-lead couplings (mesoscopic regime). Within
a spinless model we have shown that the separation of the two transmission peaks increases
linearly with the interaction U while the π phase lapse and transmission zero remain in the valley
between them. Furthermore, with increasing U the increase of the phase across the peaks takes
an S-shape and the peaks become Lorentzian-like, thus assuming shapes resembling those
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Figure 7. Comparison of fRG (solid) and NRG (dashed) data for |t(Vg)|, θ(Vg)

and nj(Vg) (per spin direction) in the universal (small δ/	) and mesoscopic regime
(large δ/	) of a spinful two-level dot at T = 0. The parameters are U/	 = 3 and
γ = {0.15, 0.15, 0.35, 0.35}. In (a) the fRG data for θ(Vg) and nj(Vg) around
Vg = 0 are not shown. Already the unsatisfactory comparison between fRG and
NRG for |t| indicate that the fRG becomes unreliable in this regime. For more
details on this, see the text. For the NRG parameters we used NRG = 2.5,
Nkept = 1024 for s = + and Nkept = 2048 for s = −.

observed experimentally [17]–[19]. For s = − and increasing δ, a crossover occurs to a regime in
which the π phase lapse and transmission zero lies outside the two CB peaks. The crossover scale
δc increases with increasing interaction and thus the Coulomb repulsion stabilizes the universal
phase lapse behaviour. We have investigated the relation between phase lapses and population
inversions of the level occupancies nj.

Experimentally the universal phase lapse behaviour was found for every many-electron
dot measured [17]–[19]. In contrast, for dots with only a few electrons the phase behaves
mesoscopically, that is it shows a −π jump in certain transmission valleys while it increases
continuously in others, depending on the dot measured [19]. One generic difference between
few- and many-electron dots is the noninteracting single-particle level spacing of the topmost
filled levels. It is expected to decrease as the number of electrons increases. Consistent with this
we find a crossover from mesoscopic to universal phase lapse behaviour when δ was decreased
in our model.

We have shown that a mean-field treatment of the present problem correctly reproduces
certain features of the behaviour discussed above, but is not able to produce the universal phase
lapse scenario at small δ/	 due to artefacts of the approximation such as a phase lapse by less
than π [10, 11] and a vanishing of the transmission zero [6]. Furthermore, the discontinuous gate
voltage dependence of the nj found in the mean-field approximation turned out to be an artefact.

New Journal of Physics 9 (2007) 123 (http://www.njp.org/)

82 4. Transmission through multi-level quantum dots



23 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Next, we studied how the phase lapse behaviour is affected by temperatures T > 0. The
universal phase lapse (at small δ/	) is smeared out but remains visible for not too large T .
In the mesoscopic regime with δ/	 � 1 the smearing of the phase lapse and the decrease of
the CB peaks can be understood in detail in analogy to the noninteracting case. For δ/	 
 1
correlations are more important and a detailed understanding of the temperature dependence of
the transmission t(Vg) requires further studies.

The phase lapse behaviour in both the universal and mesoscopic regimes is also stable if
the spin degree of freedom is included. For sufficiently large U/	 in this case the Kondo effect
is active at odd average dot filling, leading to minor modifications of the scenario discussed
above. In particular, at large δ/	 the T = 0 transmission peaks are Kondo plateaus rather than
Lorentzian-like CB peaks. Across these Kondo plateaus the phase shows a shoulder at θ ≈ π/2.
In contrast, the behaviour at small δ/	 appears to be almost unaffected by the spin degree. A
study of the combined effect of finite temperature and spin is left for future work.
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4.4 Interplay of mesoscopic and Kondo effects for trans-

mission amplitude of few-level quantum dots

We present numerical calculations of the magnitude and phase of the transmission am-
plitude of a multi-level quantum dot in the mesoscopic regime. We discuss the T - and
Γ-dependence of the transmission amplitude with focus on the influence on Kondo corre-
lations. The influence of the neighbouring levels is discussed for the different choices of
the mesoscopic paramter s. We give a derivation of a formula for the Aharonov-Bohm
contribution to the linear conductance through a multi-terminal interferometer with open
geometry, as used in the Heiblum group. This formula has already been used in the previous
Sections.
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Interplay of mesoscopic and Kondo effects for transmission amplitude of few-level

quantum dots
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The magnitude and phase of the transmission amplitude of a multi-level quantum dot is calculated
for the mesoscopic regime of level spacing large compared to level width. The interplay between
Kondo correlations and the influence by neighboring levels is discussed. As in the single-level case,
the Kondo plateaus of magnitude and phase disappear with increasing temperature. At certain
gate voltages, “stationary” points are found at which the transmission phase is independent of
temperature. Depending on the mesoscopic parameters of the adjacent levels (like relative sign and
magnitude of tunneling matrix elements), the stationary points are shifted to or repelled by the
neighboring level.

PACS numbers: 73.23.Hk, 73.23.-b, 73.63.Kv, 73.40.Gk

I. INTRODUCTION

In a remarkable series of experiments,1,2,3,4,5,6 the
Heiblum group has analyzed the complex transmission
amplitude, td = |td|e

iα, of a quantum dot embedded in
an Aharonov-Bohm ring. In particular, by analyzing the
Aharonov-Bohm oscillations of the conductance of such
a ring, the dependence of both the magnitude and phase
of the transmission amplitude, |td| and α, were measured
as a function of various parameters such as gate volt-
age Vg applied to the dot, temperature T , mean coupling
strength to the leads Γ, etc.

The first two experiments in this series,1,2 dealt with
large dots containing many (> 100) electrons. The exper-
iment by Yacoby et al.1 showed that coherent transport
through a quantum dot is possible despite the presence of
strong interactions. The next experiments by Schuster et
al.2 generated tremendous interest because the behavior
of the transmission phase showed a surprisingly “univer-
sal” behavior as function of gate voltage: the phase ex-
perienced a series of sudden jumps by −π (phase lapses)
between each pair of Coulomb blockade peaks in the con-
ductance through the dot. This contradicted a naive ex-
pectation that the behavior of the transmission phase
should depend on microscopic details of the dot, such as
the signs of the matrix elements coupling a given level to
the left or right lead.

Subsequent experiments by Ji et al.,3,4 performed on
smaller dots containing tens of electrons, analyzed how
the occurrence of the Kondo effect influences the trans-
mission amplitude, and in particular its phase. For
transmission at zero temperature through a single level,
the Kondo effect causes the magnitude of the transmis-
sion amplitude to exhibit (as function of gate voltage) a
plateau at the unitary limit (|td| = 1). For this regime
it had been predicted by Gerland et al.7 that the phase
should show a plateau at α = π/2, a result very different
from the universal behavior mentioned above. While the

experiments of Ji et al. did yield deviations from the uni-
versal phase behavior, they did not verify the prediction
of a π/2 Kondo plateau in the phase. With hindsight, the
reason probably was that the experiments did not realize
the conditions assumed in the calculations of Gerland et
al.,7 namely transport through only a single level.

Truly “mesoscopic” behavior for the phase was ob-
served only rather recently by Avinun-Kalish et al.,5 in
even smaller dots containing only a small (< 10) num-
ber of electrons. For these, the mean level spacing δ
was significantly larger than the average level width Γ,
so that for any given gate voltage, transport through the
dot is typically governed by the properties of only a sin-
gle level, namely that closest to the Fermi energies of
the leads. When the number of electrons was increased
beyond about 14, universal behavior for the phase was
recovered. Consequently, it was proposed5,8,9,10,11,12,13

that the universal behavior occurs whenever a quantum
dot is large enough for that the ratio δ/Γ is sufficiently
small (≃ 1) that for any given gate voltage, typically
more than one level contributes to transport.

The latest paper in this series, by Zaffalon et al.,6 stud-
ied the transmission phase through a quantum dot in the
“deep mesoscopic” regime δ/Γ ≫ 1, containing only one
or two electrons. When this system was tuned into the
Kondo regime, the transmission phase indeed did show
the π/2 Kondo plateau predicted by Gerland et al.7.

The experiments of Avinun-Kalish et al.,5 which ob-
served mesoscopic effects for the transmission phase
through a small number of levels, and those of Zaffalon et
al.,6 which found characteristic signatures of the Kondo
effect in the transmission phase through a single level,
raise the following question: what type of phase behav-
ior can arise in the deep mesoscopic regime from the in-
terplay of (i) random signs for tunneling amplitudes of
neighboring levels and (ii) the Kondo effect for individual
levels? In the present paper, we address this question by
studying spin-degenerate models of dots with 2 or 3 lev-
els in the deep mesoscopic regime of δ/Γ ≫ 1. This is the
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regime relevant for the experiments of Zaffalon et al.6 (for
those of Ji et al.,3,4 the ratio δ/Γ was presumably smaller
than used here). Our goal is to provide a catalogue of the
types of behavior that can occur in this regime, and to
illustrate how the characteristic transmission amplitude
(magnitude and phase) depends on temperate as well as
on the strength of the coupling to the leads.

This paper is organized as follows. In Sec. II we in-
troduce our many-level model for the quantum dot sys-
tem. We discuss the relation between the Aharonov-
Bohm contribution to the linear conductance and the
transmission amplitude through the quantum dot. The
latter can be expressed in terms of the local Green’s func-
tion of the dot. We briefly present the technique used to
calculate the latter, the numerical renormalization group
method. In Sec. III we present our numerical results of
both the phase and the magnitude of the transmission
amplitude through a two- and three-level model in the
regime δ/Γ ≫ 1. We discuss the T - and Γ-dependence of
the transmission amplitude with focus on the influence
on Kondo correlations. We study all relevant choices of
the mesoscopic parameters given by the relative signs of
the tunneling amplitudes of adjacent levels. The influ-
ence of neighboring levels is studied. It results not only
in a phase lapse in Coulomb blockade valleys but also in-
troduces a Vg-asymmetry in the finite temperature mod-
ulations of the Kondo plateaus. “Stationary” points of
T - and Γ-independence are discussed. In the Appendix,
we give a derivation of a formula for the Aharonov-Bohm
contribution to the linear conductance through a multi-
terminal interferometer with open geometry, as used in
the Heiblum group. This formula has been used in several
publications including some of the present authors,7,11,12

but its derivation had not been published before.

II. THE MODEL AND THE METHOD

In the experiments,2,3,4,5,6 the temperature-dependent
transmission amplitude through the quantum dot is ex-
tracted from the Aharonov-Bohm oscillations of the con-
ductance in a multi-lead ring geometry. In the Appendix
we show that this transmission amplitude can be ex-
pressed in terms of the equilibrium local Green’s func-
tion of the dot tunnel-coupled only to two leads on its
left and right side, without explicitly incorporating the
other leads of the ring geometry in the calculation.

In this Section we introduce a “reduced model” de-
scribing the latter situation of a spinful multi-level quan-
tum dot coupled to two reservoirs and present the trans-
mission formula derived in the Appendix. Further, we
comment on NRG, the method used to calculate the lo-
cal Green’s function.

1. The model Hamiltonian

The model Hamiltonian can be split into three parts,

H = Hd + Hl + Ht, (1a)

specifying the properties of the bare dot, the leads and
the coupling between the two systems, respectively. For
N spinful levels coupled to a left (emitter) and right (col-
lector) lead, these terms are given by

Hd =
∑

j=1..N

∑

σ

εdjndjσ +
∑

{jσ}6={j′σ′}

Undjσndj′σ′ (1b)

Hl =
∑

α=L,R

∑

kσ

εkc†αkσcαkσ (1c)

Ht =
∑

j

∑

α=L,R

∑

kσ

(tjαc†αkσdjσ + H.c.) . (1d)

Dot creation operators for level j and spin σ = {↑, ↓}

are denoted by d†jσ , with ndjσ = d†jσdjσ , where j =
1 · · ·N labels the levels in order of increasing energy
(εdj < εdj+1). We use an inter- and intra-level inde-
pendent Coulomb energy U > 0. The leads are as-
sumed to be identical and non-interacting with constant
density of states ρ = 1/2D, where the half-bandwidth
D = 1 serves as energy unit. Electrons in lead α are cre-

ated by c†αkσ . The local levels are tunnel-coupled to the
leads, with real overlap matrix elements tjα that for sim-
plicity we assume to be energy- and spin-independent.
The resulting broadening of each level is given by Γj =
ΓjL + ΓjR, with Γjα = πρ(tjα)2. Notation: We define

si = sgn(tiLtiRti+1
L ti+1

R ) = ±. For example, matrix ele-
ments of same sign result in si = +, whereas one different
sign yields si = −. We further define s ≡ {s1 · · · sN−1},
and use γ = {Γ1L, Γ1R, · · · , ΓNL, ΓNR}/Γ, with the
mean level broadening Γ = 1/N

∑

j Γj . We assume con-
stant level spacing δ = εdi+1 − εdi. The local levels can
be shifted in energy by a plunger gate voltage Vg, with

εdj = jδ− (Vg + Vg0), where Vg0 = N−1
2 δ + 2N−1

2 U . This
convention ensures that in case of maximal symmetry
(tjα = const. for all j, α), the system possesses particle-
hole symmetry at Vg = 0.

2. Transmission

In the Appendix we generalize a result of Bruder, Fazio
and Schoeller14 to show that the Aharonov-Bohm con-
tribution to the linear conductance through the multi-
terminal interferometer with open geometry with a multi-
level quantum dot embedded in one arm (see Fig. 4 in
the Appendix) can be expressed as

GAB(T ) =
e2

h
|Tu||td(T )| cos(2πΦ/Φ0 + φ0 + α(T )). (2)

Here Tu = |Tu|e
iφ0+i2πΦ/Φ0 is the energy- and

temperature-independent transmission amplitude
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through the upper reference arm including the Aharonov-
Bohm contribution 2πΦ/Φ0 to the phase, where Φ is the
magnetic flux enclosed by the interferometer arms and
Φ0 = h/e is the flux quantum. The equilibrium Fermi
function of the leads are denoted by f0. The effective,
temperature-dependent transmission amplitude td(T )
through the lower arm including the quantum dot is
given by

td(T ) =

∫

dE

(

−
∂f0(E, T )

∂E

)

Td(E, T ) ≡ |td| eiα, (3)

where

Td(E, T ) =
∑

jj′

∑

σσ′

2πρ tjLtj
′

RG
R
jσ,j′σ′(E, T ). (4)

Therefore, only local properties like the local retarded
Green’s function GR

jσ,j′σ′ and the Fermi function of the
leads enter in the transmission amplitude through the
quantum dot td [Eq. (3)]. Thereby the local Green’s
function is evaluated for the model given in Eqs. (1) in
equilibrium at temperature T .

In the zero temperature limit and in linear re-
sponse, the dot produces purely elastic potential scat-
tering between left and right leads, which can be fully
characterized15 by the eigenvalues ei2δν (ν=a, b) per spin

of the S-matrix, and the transformation

(

cos θ sin θ
− sin θ cos θ

)

,

that maps the left-right basis of lead operators onto the
a-b eigenbasis of S. The transmission amplitude through
the dot then reads

td = −iSLR=sin(2θ) sin(δa − δb)e
i(δa+δb), (5)

where in general θ and δν are all Vg-dependent. The
phase δν is related by the Friedel sum rule16 to the charge
(per spin) nν = δν/π extracted by the dot from effec-
tive lead ν. As Vg is swept, the transmission amplitude
goes through zero whenever na = nbmod1, and a phase
lapse by π occurs. Equation (5) is useful for the spe-

cial case of “proportional couplings”, tjL = ±λtjR with
λ independent of j, in which the occupations na,b take
a simple form. Then the two effective leads a and b
are the even and odd combinations of the left and right
leads, respectively, with tan θ = 1/λ independent of Vg.
Then each level either couples to the even or the odd
lead, and the occupations extracted from the leads are
given by nE,O =

∑

j∈E,O ndjσ. Note that if all levels

are coupled to the same effective lead (which is the case
for s = {+ · · ·+}), the other effective lead decouples,
thereby reducing the computational complexity signifi-
cantly.

3. The method

We calculate the local Green’s function GR needed
for the transmission amplitude (Eqs. (3) and (4), re-
spectively) using the numerical renormalization group

method17 (NRG), a well-established method for the
study of strongly correlated impurity systems. For a re-
view, see Ref. 18. The key idea of NRG is the logarithmic
discretization of the conduction band with a discretiza-
tion parameter Λ > 1. As a result, Hl is represented as
a semi-infinite chain, where only the first site couples to
the local level. The hopping matrix elements along the
chain fall off exponentially like Λ−(n−1)/2 with the site
number n (energy scale separation). The NRG Hamil-
tonian can be solved iteratively by successively adding
sites and solving the enlarged system, thereby increasing
the energy resolution with each added site by a factor
of Λ1/2. The corresponding increase in Hilbert space is
dealt with by a truncation strategy that keeps only the
lowest Nkeep states for the next iteration.

For the calculation of ImGR we use the full density
matrix NRG19,20, based on the only recently developed
concept of a complete basis set within NRG21. The real
part of GR is obtained by Kramers-Kronig transforma-
tion. Improvement of the results is obtained by the self-
energy representation, where the U -dependent part of the

impurity self-energy Σ(ω) = U F R(ω)
GR(ω) is expressed by two

correlation function22, which both are calculated with
the full density matrix NRG.

III. RESULTS

In this Section we present our results for the phase and
magnitude of the transmission amplitude td through the
quantum dot. The gate voltage Vg is swept over a range
sufficiently large that the full occupation spectrum of
the quantum dot is covered ranging from 0 to 2N . The
exact distribution of the couplings seems to play only
minor role for the transmission amplitude. Therefore
we choose left-right symmetric coupling in the cases
where all sj = +, reducing the computational effort
significantly, since then the odd channel decouples.
In the regime of interest, the deep mesoscopic regime, the
mean level spacing δ is much larger than the typical level
widths Γj , δ/Γ ≫ 1. Therefore electrons enter the dot
one by one when increasing the gate voltage. Transport
thus occurs mainly through one level at a time; more
precisely, it occurs through a linear combination of all
levels, where in the mesoscopic regime the level closest
to the Fermi energy dominates.11

The Section is organized as follows: We first eludicate
the basic properties of the transmission amplitude for the
example of a two-level system. Varying temperature T
(at fixed coupling Γ), or average coupling Γ (at fixed T ),
we study both possible choices s = + and s = −, respec-
tively. In order to analyze the interplay of s = + and
s = −, we then present data for a three-level system for
all four possible combinations of s1, s2. Additionally, this
has the advantage that for the middle level “boundary ef-
fects” (effecting the outermost levels) can be assumed to
be eliminated, thus the behavior of the middle level can
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FIG. 1: Transmission td = |td|e
iα through a spinful two-level quantum dot for various temperatures and constant couplings.

Regimes (i), (ii), indicated in panel (a) only, refer to Kondo valleys or Coulomb blockade valleys, respectively (see text). The
levels involved are indicated by their level number 1, 2. Level 2 is coupled more strongly to the leads than level 1, resulting

in different bare Kondo temperatures, e.g. T j=1
K >T j=2

K . We use Γ/U = 0.03 (a,c) and Γ/U = 0.08 (b,d), thus T
(a,c)
K < T

(b,d)
K .

The minimum value of the T j

K (in the center of the Kondo valleys) are indicated in the legends. In accordance with Ref. 23,
we find shoulders in the phase (see e.g. the fat purple arrow and the purple curve (T/U = 10−6) in (c) for level 1) and an
enhanced sensitivity of the phase to Kondo correlations compared to the magnitude, see e.g. the green (T/U = 10−4) curves in
(d) for level 1 or the purple curve (T/U = 10−6) for level 2 in (a). There, the typical π

2
-Kondo plateau in the phase is present,

whereas the Kondo plateau in amplitude is not fully developed yet. At certain points in gate voltage, say V
cj

g (as indicated
by red arrows), we find stationary points where the curves for α for all temperatures intersect. The position of V

cj
g is shifted

by the presence of a neighboring level, being repelled by or shifted towards the latter for s = + or −, compare (a,c) or (b,d),
respectively. Depending on the mesoscopic parameter s = ±, the phase either exhibits a sharp drop of π, accompanied by a
zero in the amplitude |td| (s = +, see (a,b)), or increases monotonically (s = −, see (c,d)) in the Coulomb blockade valleys.

be viewed as representative of a generic level in a multi-
level quantum dot in the deep mesoscopic regime.

Unless otherwise noted, we use U = 0.6. In order to
cover all relevant energy scales with reasonable compu-
tational effort, we usually use Λ = 3.2 for the two-level
model and Λ = 3.5 in case of three levels. We checked
that already by keeping ∼ 1000 states at each iteration,
also for the two-channel calculations (that involve at least
one si = −) the physical trends are captured qualita-
tively. Note that since the eigenvalues of the scattering
matrix are given by ei2δν , the transmission phase α is de-
fined modulo π. For clarity of the Figures, curves showing
α are shifted by multiples of π as convenient.

A. Two-level model

1. Temperature dependence

Figure 1 shows the transmission amplitude for both
s = + (a,b) and s = − (c,d), for fixed dot parame-
ters and various different temperatures. The mean level
broadening is chosen to be Γ/U = 0.03 in panels (a,c),
and Γ/U = 0.08 in panels (b,d). Therefore the (Vg-

dependent) bare Kondo temperatures

T j
K =

√

ΓjU

2
exp

[

−π
εdj

2U

(εdj + U)

Γj

]

(6)

vary in a lower-lying range of energies for panels (a,c)
than for panels (b,d). In all panels the relative coupling
of the first and the second levels are chosen to be
γ = {0.8, 1.2}. Therefore, the bare Kondo temperature

for level 1 is lower than for level 2, T j=1
K < T j=2

K , as
indicated in the legends. The resulting difference in the
temperature dependence can be nicely observed in the
Figure. We first describe those general properties of the
transmission amplitude that qualitatively agree with
those that one would obtain for just a single level, then
discuss the effect of the presence of a second level.

General properties: In the mesoscopic regime, where
transport mainly occurs through one level at a time, two
different regimes of transmission can be distinguished as
Vg is varied, as indicated in Fig. 1(a): (ii) In the regime
between the Kondo valleys, to be called “Coulomb block-
ade valleys”, the transmission amplitude is mainly deter-
mined by the mesoscopic parameter s, showing a phase
lapse only in case s = +, similar for both spinful and

4.4 Interplay of mesoscopic and Kondo effects for transmission amplitude 89



5

spinless models11,12.

In the zero temperature limit, T ≪ T
(j)
K , the transmis-

sion amplitude exhibits the typical Kondo behavior: in
the local-moment regime a typical Kondo plateau forms,
with |td| approaching the unitary limit, |td| → 1. In
the mixed valence regime the magnitude changes rapidly
as a function of Vg. In the Coulomb blockade valleys,
transmission is suppressed by Coulomb interaction. The
transmission phase increases by ∼ π/2 for each entering
electron (see black curves for α in Fig. 1), increasing only
slightly in between. In the Kondo valleys this results in
a plateau at αmodπ = π

2 , as direct consequence of the π
2

phase shift due to the formation of the Kondo singlet.

With increasing temperature, the Kondo effect is sup-
pressed, thus the behavior in the middle of the Kondo
valleys changes dramatically. The Kondo plateaus in td
and α disappear: The magnitude tends towards Coulomb
blockade behavior, with a resonance of width ∼ Γj for
each entering electron. The phase develops a S-like shape
in the Kondo valleys with increasing temperature. As in
the single-level case, all finite-temperature curves of the
phase intersect the zero-temperature at the same gate
voltage, say V

cj
g (see red arrows). We shall refer to this

gate voltage as a “stationary” point (w.r.t. temperature).

As observed in the experiments of Ji et al.3 and
emphasized by Silvestrov and Imry,23 the transmission
phase reacts more sensitively to the buildup of Kondo
correlations with decreasing temperature than the trans-
mission magnitude: α approaches its T = 0 behavior
already at temperatures T ≃ TK (the π

2 -plateau devel-
ops), whereas |td| develops its plateau for T significantly
less than TK (see, the green curve (T/U = 10−4) for level
1 in Fig. 1(b) or the purple curve (T/U = 10−6) for level
2 in Fig. 1(a)). Similar to the predictions of Silvestrov
and Imry,23 we find shoulders in the evolution of the
phase, see for example the fat purple arrow and the
purple curve (T/U = 10−6) in Fig. 1(c). This indicates
that the temperature is large enough to suppress Kondo
correlations in the deep local-moment regime (in the
middle of the Kondo valley), where TK is very small.
Towards the borders of the local-moment regime the
crossover temperature for the onset of phase sensitivity
increases (as does the Kondo temperature, see Eq.
(6)), eventually exceeding the temperature. Then the
phase tends towards its zero-temperature behavior, thus
producing shoulders.

Properties special to the multi-level model: The most
obvious difference between the transmission amplitude of
the many-level model in the mesoscopic regime compared
to the single-level model is the phase behavior in the
Coulomb blockade valleys between the levels. Depending
on s, i.e. on the relative sign of the tunnelling matrix ele-
ments of the two adjacent levels, the phase either exhibits
a sharp drop (phase lapse) by π in the s = + case (ac-
companied by a transmission zero, |td| = 0), or evolves
continuously for s = −11,12,14,24,25,26. Contrary to the
non-monotonic phase evolution discussed above, this ef-

fect occurs already at zero temperature and also exists
for spinless models.11,12 Therefore, the relevant energy
scale for the temperature dependence of this phase lapse
is not related to the Kondo temperature but to the level
distance and width of the effective transport levels.23 It is
therefore not a relevant energy scale in the temperature
range studied in this work.

A further peculiarity for models with more than
one level is the asymmetry (w.r.t. the center of the
Kondo valleys) of the transmission amplitude in the
local-moment regime at finite temperature, introduced
by the mixing of neighboring levels. The asymmetry
in phase can be characterized by the position of the
stationary points, V

cj
g (indicted by red arrows in Fig.

1). In case s = +, these points are repelled by the
neighboring level, whereas they are shifted to the latter
for s = −, compare for example Fig. 1(a) and (c) or (b)
and (d). For Γ1/Γ2 6= 1, the repulsion and attraction
is enhanced or reduced compared to Γ1 = Γ2 for the
level that is coupled less or more strongly to the leads,
respectively. Clearly, in the limit of one decoupled
level (effective one-level system), the stationary point
of the other level is symmetric w.r.t. the corresponding
Kondo plateau. The dips that form in the plateaus of
the amplitude with increasing temperature develop a

distinct asymmetry only for T ≫ T
(j)
K , for which they

tend to shift towards the corresponding V
cj
g . This is

consistent with the fact that as the phase drop in the
Kondo valley gets sharper with increasing temperature
and approaches a quasi-phase lapse, the magnitude
experiences a minimum, as for every complex function.
Interestingly, the asymmetry in phase is the same for
all temperatures, thus already at temperature T . TK

the phase “knows” in which direction (of Vg) the dip in
magnitude will shift at higher temperatures.

B. Dependence on the coupling strength

In experiments, it is more convenient (and easier to
control) to change the coupling strength between the
quantum dot and the reservoirs than the temperature.
Accordingly, Fig. 2 presents the transmission amplitude
for various values of Γ, keeping the temperature constant.
With decreasing Γ, the decrease of TK together with the
suppression of Kondo correlations is nicely illustrated.
At fixed temperature T > TK , the S-like shape of the
phase evolution gets more pronounced and sharper with
decreasing Γ.

In the single-level problem, in addition to stationary
points w.r.t. temperature, we also find stationary points
w.r.t. Γ for td, i.e. for magnitude and phase of the trans-
mission amplitude. These occur at the outer flanks of the
Kondo plateaus. Varying the mean coupling strength Γ
at fixed γ, δ and T in the two-level model, as shown in
Fig. 2, these points can still be recognized (indicated by
green arrows in (d)), even though the Γ-independence
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FIG. 2: Transmission through a spinful two-level quantum dot for both choices of s = ± and various values of mean couplings
Γ at fixed temperature T , level spacing δ and relative couplings γ. Due to the mixing of the levels, no stationary points w.r.t.
Γ exist, Γ-independence exist, see text and the green arrows in (d).

is not perfect (within our numerical accuracy). We ex-
pect that due to the mixing of the levels, also the level
distance δ has to be taken into account to recover these
stationary points. Between the levels, near Vg/U ≈ 0,
another stationary point seems to occur.

C. Three-level model

Naturally, the question arises about the effects of sev-
eral levels, with different choices of si = ±, which is
present only for models with more than two levels. As-
suming that in the mesoscopic regime only neighbor-
ing levels mix significantly, i.e. simultaneously influence
transport, any local level of a quantum dot (except the
lowest or highest one) can be represented adequately by
the middle level of a three-level model.

In Fig. 3 we present numerical data of a three-level
model for all four possible combinations of s = s1, s2

and various temperatures. The second level is influenced
by the effect of both s1 and s2, resulting in an effective
enhancement or compensation of the asymmetry of the
stationary point V c2

g of level 2, as discussed in Section
III A 1. Also the relative strength of the level-couplings
(given by γ) has to be considered. In Fig. 3(a), both s
and γ symmetrize the transmission curves of the middle
level, whereas in panel 3(b) γ shifts V c2

g to positive Vg.
In panels 3(c) and 3(d) both s and γ tend to increase
the asymmetry.

Therefore, the transmission phase through a spinful
quantum dot with Kondo correlations present has S-like
shape in the local-moment regimes at T ≫ TK . Analo-
gously to experiments, we find an asymmetry of this S-

like shape. It is determined by both the relative strength
γ and the sign s of the level couplings.

IV. CONCLUSION

In this paper we present temperature-dependent NRG
calculations of the magnitude and phase of the transmis-
sion amplitude through a multi-level quantum dot in the
regime δ/Γ ≪ 1. Clearly, the Kondo correlations are
suppressed with increasing temperature. The presence
of neighboring levels results in a Vg-asymmetry in the fi-
nite temperature modulation of the Kondo valleys. The
asymmetry depends on the relative signs of the tunnel-
ing matrix elements as well as on the relative couplings
of the adjacent levels. Further, sharp phase lapses may
occur between the levels. Studying a three-level model,
the middle level can be understood as a representative of
a generic level in a multi-level quantum dot.

Throughout the paper, we deliberately focussed only
on the deep mesoscopic regime, for which the results can
be understood rather straightforwardly. The crossover
into the regime δ/Γ ≃ 1, which is certainly of interest
too in order to understand the fate of Kondo physics
in the universal regime, and which we believe to be the
regime relevant for the experiments of Ji et al.,3,4 will be
left as a subject for future studies.
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APPENDIX A: CONDUCTANCE FORMULA

FOR MULTI-TERMINAL GEOMETRY

1. General case

We generalize the current formula derived in by
Bruder, Fazio and Schoeller14 for a single-level quantum
dot embedded into one arm of an Aharonov-Bohm
interferometer with two-terminal geometry to a multi-
terminal geometry with a multi-level dot (as used in the
Heiblum group2,3,4,5,6).

Consider a N -level quantum dot described by Hd [Eq.
(1b)] embedded in one arm of an Aharonov-Bohm inter-
ferometer connected to M leads, as depicted in Fig. 4.
Each lead, and each arm connecting them, is assumed
to support only a mode. The tunnelling between the lo-
cal levels j = 1 · · ·N on the quantum dot and the leads
α = 1 · · ·M is described by

Ht =
∑

jσ

∑

αk

tjεασc†αεσdjσ + H.c. (A1)

Here tjεασ =
∑

i=L,R tjiσAi
εασ (indicated in green in Fig.

4) is chosen real, where tjiσ = 〈xi|jσ〉 (blue) is the ampli-
tude to get from dot state |jσ〉 of level j and spin σ to
point xi on side i = L, R of the dot, and Ai

εασ = 〈εασ|xi〉
(red) is the amplitude to get from point xi to lead state
|εασ〉 in lead α with energy ε and spin σ, see Fig. 4.

α=1

t Lσ
j

t εασ
jA

L
εασ

L R

P1 P2

α=6

α=4α=3

α=5

Φ
α=2

x xj

FIG. 4: Geometry of the multi-terminal Aharonov-Bohm in-
terferometer with a multi-level quantum dot embedded in the
lower arm. The different tunnelling amplitudes used in the
text are indicated. Φ is the magnetic flux penetrating the
interferometer.

Following Büttiker,27 the current operator in reservoir
α is given by

Îα(t) =
e

h

∑

εε′

∑

σσ′

1

ρ

[

c†ε′ασ′(t)cεασ(t)− b†ε′ασ′ (t)bεασ(t)
]

,

(A2)
where ρ, the density of states, is assumed to be constant
and equal for each reservoir. The first term inside the
bracket stands for the incident, the second term for the
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reflected current in reservoir α, thus bεασ =
∑

β Sε
αβcεβσ,

with Sε
αβ the scattering amplitude to get from lead β to

lead α with energy ε. Defining the lesser, retarded and
advanced correlation functions

G<
µ,µ′ (t− t′) ≡

i

~
〈a†µ′(t

′)aµ(t)〉

=

∫

dE

2π~
e−iE(t−t′)/~ G<

µ,µ′ (E), (A3)

GR,A
µ,µ′ (t− t′) ≡ −

i

~
θ(±(t− t′))〈

[

a†µ′(t
′), aµ(t)

]

+
〉

=

∫

dE

2π~
e−iE(t−t′)/~ GR,A

µ,µ′ (E), (A4)

where aµ denotes a fermionic operator with composite
index µ, the expectation value of the current operator
(A2) can be expressed as

〈Îα(t)〉 =
e

h

∑

εε′

∑

ββ′

∑

σσ′

1

ρ

[

δαβ′δαβ − S⋆ε′

αβ′Sε
αβ

]

×(−i)

∫

dE

2π
G<

εβσ,ε′β′σ′(E). (A5)

To calculate G<(E) in Eq. (A5), we use the standard
Dyson equation for the Keldysh 2 × 2 matrix Green’s
function28 Ĝ(E),

Ĝεασ,ε′α′σ′(E) = δεε′δαα′δσσ′ Ĝ0
εασ(E) (A6)

+
∑

jj′

Ĝ0
εασ(E)tjεασ Ĝ

d
jσ,j′σ′(E)t⋆j′

ε′α′σ′ Ĝ
0
ε′α′σ′(E),

which yields

G<
εασ,ε′α′σ′(E) = δεε′δαα′δσσ′G0<

εασ(E) (A7)

+
∑

jj′

tjεασ [A+B+C] t⋆j′

ε′α′σ′ ,

where terms in square brackets are given by

A = G0R
εασ(E) GR

jσ,j′σ′ (E) G0<
ε′α′σ′(E) ,

B = G0R
εασ(E) G<

jσ,j′σ′ (E) G0A
ε′α′σ′(E) ,

C = G0<
εασ(E) GA

jσ,j′σ′ (E) G0A
ε′α′σ′(E) ,

where the free Green’s functions for the leads have the
form

G0R,A
εασ (E) =

1

E − ε± io+
, (A8)

G0<
εασ(E) = 2πifα(E)δ(ε− E), (A9)

with fα(E) the Fermi function of lead α. Inserting G<

[Eq. (A7)] into Eq. (A5), the current can be written as

〈Îα〉 = I0
α + δIα. (A10)

I0
α arises from the first term of Eq. (A7). It describes

the situation when the dot is completely decoupled
(tjεασ = 0), thus does not contribute to Aharonov-Bohm

oscillations. The influence of the quantum dot on the
Aharonov-Bohm oscillations is caused by δIα, arising
from the second expression of Eq. (A7). Performing the
energy sums

∑

εε′ in Eq. (A10) or (A5), respectively, the
two contributions to the current read

I0
α =

e

h

∫

dE
∑

σ

∑

β

[

δαβ − |SE
αβ |

2
]

fβ(E) , (A11a)

δIα =
e

h
Re

{
∫

dE
∑

ββ′

∑

jj′

∑

σσ′

[

δαβ′δαβ − S⋆E
αβ′SE

αβ

]

× πρ tjEβσt⋆j′

Eβ′σ′(−i) (A11b)

×
[

2GR
jσ,j′σ′(E)fβ′(E)+G<

jσ,j′σ′ (E)
]

}

.

2. Simplification to effective 2-lead geometry

For the experimental setup used by Schuster et al.2

(and equivalently for the ensuing papers3,4,5,6) to mea-
sure transmission phase shifts, two simplifying assump-
tions can be made. The first allows us to neglect non
equilibrium effects, the second to perform NRG calcula-
tions for a simplified geometry, in which the dot is cou-
pled only to two leads.

(i) Neglect of non equilibrium effects: In the experi-
mental setup used by Schuster et al.,2 the leads α = 3, 4, 5
and 6 serve as draining reservoirs (to prevent multiple
traversals of the ring, see below), and are all kept at
chemical potential µα = 0. This also fixes the chemical
potential of the ring, referred to as “base region” in Ref.
2, to equal zero. Lead 1 and 2 serve as emitter and col-
lector, respectively, with chemical potentials µ1 and µ2,
and Fermi functions f1,2(E) = f0(E − µ1,2). Now, the
point contacts between emitter or collector and the base
region (marked P1 and P2 in Fig. 4) are so small that
the voltage drops occur directly at these point contacts,
and not at the tunnel barriers coupling the dot to the
ring. Thus, while the emitter or collector inject or ex-
tract electrons into or from the base region, respectively,
this is assumed to happen at a sufficiently small rate that
the base region is not disturbed. In other words, we may
assume that the dot, ring, and electrodes 3, 4, 5, 6 are all
in equilibrium with each other, and that the dot Green’s

functions GR,A,<
jσ,j′σ′(E) do not depend on µ1 and µ2 at all.

Thus, the lesser function can be expressed in terms of the
retarded and advanced ones using the following standard
equilibrium relation:

G<
jσ,j′σ′(E) = −f0(E)

[

GR
jσ,j′σ′(E) − GA

jσ,j′σ′(E)
]

.

(A12)
The conductance in the linear response regime can be
obtained by taking µ1 − µ2 = eV , where e = |e|, e.g. by
setting

µ1 = 0, µ2 = −eV, (A13)

and calculating G = ∂I1/∂V , with I1 given by Eq. (A11).
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(ii) Reduction to two-lead geometry: The reason why
a multi-lead geometry was used in experiment is to avoid
phase-rigidity: in an Aharonov-Bohm ring connected to
only two leads, the transmission phase of the dot does
not vary smoothly with gate voltage, but can assume
only two distinct values, differing by π. A multi-lead ge-
ometry avoids this by strongly reducing the probability
amplitudes for paths from emitter to collector to traverse
the ring multiple times, since with each traversal of the
ring the probability increases that electrons travelling in
the ring are “siphoned off” into the side arms. We shall
exploit this fact by making the assumption that the prob-
ability amplitudes for multiple traversals of the ring are
negligibly small. This assumption allows us to replace the
multi-lead geometry with one where the Aharonov-Bohm
ring is coupled to only two leads, i.e. α is restricted to the
values 1 and 2 (corresponding to emitter and collector),
while multiple traversals of the ring are eliminated (by
hand) by the following specification: The amplitude tjεασ

to get from state |jσ〉 on the dot to state |εασ〉 in lead
α is taken to be nonzero only for the short, direct path
from the dot to lead α, without traversing the upper arm
(more correctly: we take AL

εασ = 0 for α = 2, 4, 6 and
AR

εασ = 0 for α = 1, 3, 5). When calculating the current
we do allow for direct paths from lead 1 to 2 via the upper
arm, and lump all flux-dependence into the correspond-
ing scattering amplitude, taking SE

12 ∼ ei2πΦ/Φ0 . How-
ever, the upper arm is ignored for the calculation of the
equilibrium local retarded or advanced Green functions

GR,A
jσ,j′σ′(E) using NRG. For the latter purpose, we thus

use a model of a multi-level dot coupled to two indepen-
dent leads, say L and R, with equal chemical potentials
µL = µR, representing the two segments of the ring to
the left and right of the ring, coupled to it by tunnelling
contacts. (These two segments should be treated as in-
dependent leads, due to the assumption of no multiple
traversals made above.) With the assumptions (i) and

(ii) just described, let us now obtain an expression for
that part of the conductance showing Aharonov-Bohm

oscillations with applied flux, GAB =
∂IAB

1

∂V , where IAB
1 is

that part of the current in lead 1 depending on ei2πΦ/Φ0 .
For the chemical potentials given by Eq. (A13), this cor-
responds to evaluate Eq. (A11b) with α = 1, β′ = 2 and
β = 1, and we readily obtain

GAB(T ) =
e2

h

∫

dE Re [T ⋆
u (E)Td(E)]

(

−
∂f0(E)

∂E

)

,

(A14)
where

Td(E) =
∑

jj′

∑

σσ′

2πρ tjE1σG
R
jσ,j′σ′(E)t⋆j′

E2σ′ (A15)

T ⋆
u (E) = iS⋆E

12 SE
11=|Tu(E)|ei(2πΦ/Φ0+φ0(E)) (A16)

may be interpreted as the transmission amplitudes
through the lower and upper arms, respectively.

Assuming the transmission amplitude Tu through the
upper arm to be energy- and temperature-independent,
the Aharonov-Bohm contribution to the conductance is
given by

GAB(T ) =
e2

h
|Tu||td(T )|cos(2πΦ/Φ0+φ0+α(T )).(A17)

Then, the temperature-dependent magnitude and phase
of the transmission amplitude through the quantum dot,

td(T ) =

∫

dE

(

−
∂f0(E, T )

∂E

)

Td(E, T ) ≡ |td(T )|eiα(T ),

(A18)
can be (i) extracted via Eq. (A17) from the experimen-
tal results as well as (ii) calculated with NRG using Eq.
(A15).
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Chapter 5

NRG calculation for the Anderson
model with superconducting leads

In Chapter 3 we introduced the NRG method for the single level Anderson model. General-
ization to a multi-level and multi-band Anderson model is straightforward , “only” limited
by the increase of the Hilbert space and for this reason by the computational resources.

For conceptual change of the system, e.g. when replacing the fermionic reservoirs by
bosonic baths [39, 40], one has to check carefully that the concepts of NRG (like energy
scale separation due to the logarithmic discretization of the conduction band) still apply
to the new model.

Such an issue is addressed in this Chapter. Imagine a magnetic moment coupled to a
superconducting reservoir. In principle, the system is well known in terms of a magnetic
impurity in a superconducting host. In the low temperature limit, the two many-body
effects involved, i.e. Cooper pair formation and the Kondo effect, compete with each other.
For a system dominated by the superconducting gap ∆ (TK � ∆), all reservoir electrons
within the gap around the Fermi energy are paired to effective spin-0 bosons (Cooper pairs).
Therefore, no electrons are available at the Fermi energy to screen the local moment on
the QD. This unscreened moment leads to spin doublet as ground state. For TK � ∆,
electrons clearly do exist within a range of TK around the Fermi energy. The local spin
gets screened and the ground state is the Kondo singlet.

But new questions arise with the possibility of well-controlled measurements of trans-
port through a quantum dot coupled to a left and a right superconducting lead, similar to
a Josephson contact. But in this setup the Josephson effect is not only determined by the
phase difference of the superconducting order parameter of left and right reservoir, but it
also depends on the properties of the quantum dot.

Reliable impurity solvers are needed to tackle this system. Already in the early 1990’s
use the numerical renormalization group method (NRG) to determine the ground state of
the system [81, 82, 83, 84]. But also dynamic quantities like the spectral function [85] or
the Josephson current can be calculated with NRG, as was done recently [86, 87].

It is, however, not at all obvious whether NRG still works for energy resolutions well
below the gap. One aspect of this work is to show that, indeed, NRG is a reliable method
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for solving this system, even at resolutions well below the gap.
Why does this question arise? In order to describe the pairing property of the leads,

the term H∆

H∆ = −
∑
k

∆(c†k↑c
†
−k↓ + c−k↓ck↑) (5.1)

is added to the Anderson model given by Eq. (3.1). For simplicity we assume only a single-
channel system with real superconducting order parameter ∆. Applying the standard NRG
transformations (see Chapter 3.1) to the additional term H∆, it gives a constant on-site
contribution of magnitude ∆ for each site of the Wilson chain, contrary to the exponen-
tially decaying couplings between neighbouring sites. The situation is depicted in Fig. 5.1.
At iterations where the coupling of the Wilson chain reaches ∆, it is not obvious whether
the then added sites still can be understood as a perturbation in the iterative process or
not, that is whether NRG still works or not.

In the next Section we find that NRG is able to solve the impurity-superconductor
problem without restriction of the energy resolution by the gap. We further calculate the
local spectral function. We focus on the near-gap behaviour and find (and are able to
resolve) very sharp peaks near the gap edge in the regime ∆ � TK . For illustration of the
effect of the competition between the Kondo effect and Cooper pair formation, we study
the ground state of the system as a function Γ/∆, see the last Section of this Chapter.

  −1/2∝Λ   −1∝Λ   −n/2∝Λ   −(n+1)/2∝Λ

0 1

V

Himp

2 n−1 n n+1

∆ ∆ ∆ ∆ ∆ ∆

coupling

site

on−site

Figure 5.1: Sketch of the Wilson chain for a local level coupled to a superconducting
reservoir. The superconducting property of the lead contributes a constant on-site term
of magnitude ∆ for each site, additional to the exponentially decaying couplings of the
standard Anderson model.
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Abstract. We use the numerical renormalization group method (NRG) to investigate

a single-impurity Anderson model with a coupling of the impurity to a superconducting

host. Analysis of the energy flow shows, in contrast to previous belief, that NRG

iterations can be performed up to a large number of sites, corresponding to energy

differences far below the superconducting gap ∆. This allows us to calculate the

impurity spectral function A(ω) very accurately for frequencies |ω| ∼ ∆, and to resolve,

in a certain parameter regime, sharp peaks in A(ω) close to the gap edge.

PACS numbers: 75.20.Hr, 74.50.+r

1. Introduction

The vast progress in nanofabrication during the last decades made it possible to

study basic physical effects in a very controlled manner. One example of such highly

controllable devices are quantum dots [1], which are used, amongst various applications,

for a detailed and very controlled study of the Kondo effect [2, 3, 4, 5], which is one

of the prime examples of many-body phenomena. Below a critical temperature (Kondo

temperature TK) a local moment, provided by the spin of an electron occupying the

quantum dot, gets screened by reservoir electrons within an energy window TK around

the Fermi energy.

These seminal experimental works on the Kondo effect, together with the possibility

to engineer reservoir properties, raise the following intriguing question: What interesting

effects may arise if the local moment in the quantum dot is coupled to superconducting

leads while parameters like the Kondo temperature or the superconducting gap can

be adjusted arbitrarily? In a superconductor as described by Bardeen, Cooper and

Schrieffer (BCS) [6], electrons with opposite spin and momentum form Cooper pairs,

thereby expelling the lead density of states around the Fermi energy. An energy
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gap occurs. Obviously, when combining a Kondo quantum dot with superconducting

reservoirs both effects compete: Screening of the local moment by electrons around the

Fermi energy against pair formation of the latter.

This competition has attracted a lot of interest and various methods were used to

analyze the properties of the system in the above-mentioned limits, see for example the

references in [7] or [8, 9, 10, 11]. In the early 1990’s Satori et al. [12] proposed to apply

the numerical renormalization group method (NRG) [13, 14] to the problem. Since

then NRG was used to calculate the ground state and subgap bound state properties

like position and degeneracy [12, 15, 16] as well as their spectral weight [17, 18]. Also

dynamic quantities like the spectral function [18] or the Josephson current [19, 20] can

be calculated with NRG, as was done recently.

The first main goal of the present paper is to gain insight into the way NRG works

when applied to a system of one local level coupled to a superconducting lead. NRG is

a well established method for solving strongly correlated impurity problems. Actually,

it was invented to solve the Kondo problem [13] and since then has been generalized to

various schemes involving localized states coupled to fermionic [21] or bosonic [22, 23]

baths. For a review, see [14]. The key idea of NRG is to discretize the conduction

band logarithmically. This leads to a chain Hamiltonian with exponentially decreasing

couplings, the so called Wilson chain. It can be solved iteratively by enlarging the

system site by site: Due to the decreasing couplings every new site can be treated as a

perturbation of the old system, thus increasing the resolution with every step.

It is, however, not at all obvious whether NRG still works for superconducting leads

at energy resolutions well below the gap. This is because the pairing energy ∆ is the

same at all energy scales, thus remains a constant on-site contribution also in the above-

mentioned chain structure. At iterations where the coupling of the Wilson chain reaches

∆, it is not obvious whether added sites still can be understood as a perturbation in

the iterative process or not, that is whether NRG still works or not.

In order to address this problem, we analyze in detail the flow of the eigenenergies

during the NRG procedure. We show that NRG is indeed capable to resolve the

continuum close to the gap without any restriction on the energy scale of the

superconducting gap.

The second goal of this work consists in the calculation of the impurity spectral

function close to the gap edge at zero temperature. As in the Anderson model (with

normal leads) a Kondo resonance may form. However, due to the superconducting

property of the leads a gap opens up around the Fermi energy, cutting the resonance.

Our main interest lies in the study of the continuum contribution to the spectral

function close to the gap edge, implying the need of high resolution in that regime.

Our calculations cover not only the regime ∆ & TK , for which the continuum part of

the spectral function was studied in [18], but also ∆ ≪ TK . In the latter regime we find

a sharp peak at the gap edge, vastly exceeding the Kondo resonance contribution. We

expect this to lead to an enhanced linear conductance, as observed in a recent experiment

[24] with carbon nanotube quantum dots coupled to superconducting leads. They report

100 5. NRG for the Anderson model with superconducting leads
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dramatic enhancement of the linear conductance (only) in the regime ∆ ≪ TK .

We find similar behaviour of the spectral function in the non-interacting case where

an analytical solution exists. We analyze this solution and compare our NRG results

against it. We find excellent agreement especially at energies close to the gap, as ex-

pected from our study of the energy spectrum.

The paper is organized as follows: In section 2 we introduce the superconducting-

lead Anderson model (SC-AM) and the NRG method. In section 3 the flow of the energy

spectrum of the SC-AM is analyzed. NRG is shown to work at resolutions well below

the energy scale of the superconducting gap. Section 4 discusses the calculation of the

spectral function. In the last part we conclude and summarize our results.

2. The model and the method

In this section we introduce our model for the quantum dot coupled to a left

and right superconducting reservoir, as well as the method we use, the numerical

renormalization group method [13, 21]. We perform a Bogoliubov as well as a particle-

hole transformation. We derive the formulas in a general form. For convenience, the

discussions in the later sections will be restricted to a real order parameter of the

superconductors, equivalent to only one lead. In the non-interacting limit the system

can be understood in terms of a simple single-particle picture. The latter can be solved

exactly and will serve as a guideline for gaining a deeper understanding of the problem.

2.1. Superconducting-lead Anderson model (SC-AM)

To describe a quantum state coupled to two superconducting reservoirs, we consider the

standard Anderson model (AM) for a local level coupled to two metallic, non-interacting

reservoirs [25], and add a BCS-type term H∆, describing pair formation in the leads.

This SC-lead Anderson model, to be called SC-AM, is then described by

H = Hdot + Hhyb + Hlead + H∆, (1)

with

Hdot =
∑

σ

εdndσ + Und↑nd↓ (2)

Hhyb =
∑

l=L,R

∑

kσ

Vl(c
†
lkσdσ + d†σclkσ) (3)

Hlead =
∑

l=L,R

∑

kσ

εkc
†
lkσclkσ (4)

H∆ = −
∑

l=L,R

∑

k

∆l(e
iφlc†lk↑c

†
l−k↓ + e−iφlcl−k↓clk↑). (5)

Electrons on the dot with spin σ = {↑, ↓} are created by d†σ and interact via the Coulomb

repulsion U with each other, ndσ = d†σdσ being the charge operator for spin σ. In
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the hybridization term Hhyb, the coupling strength Vl between dot and lead states is

assumed to be real and independent of the wave vector k. c†lkσ creates an electron in

lead l = L, R, respectively. Hlead describes the conduction band of metallic leads. We

assume an isotropic and linearized dispersion. The density of states is then constant,

ρ0 = 1/2D, where the band ranges from −D to D. In the following D = 1 will serve

as energy unit. The pairing of electrons with opposite spin and momentum (Cooper-

pairs) is described by H∆. ∆l is the magnitude (later on often called the gap), φl the

phase of the order parameter of the superconductor. For simplicity, we assume left-right

symmetry, i.e. ∆l = ∆, φl = ±φ/2 and Vl = V , where l = L, R, respectively. Then the

unitary rotation
(

cekσ

cokσ

)

=
1√
2

(

e−iφ/4 eiφ/4

−ie−iφ/4 ie−iφ/4

) (

cLkσ

cRkσ

)

of the reservoir operators yields a real Hamiltonian.

It is well known [26, 27] that the Hamiltonian of a bulk superconductor [equations

(4) and (5)] can be diagonalized by a Bogoliubov transformation. Note, though, that

the SC-AM cannot be understood as an AM with a superconducting lead density of

states (ρ∆ = |εk|/
√

ε2
k + ∆2). This is because the Bogoliubov transformation explicitly

depends on k. The hybridization term c†lkσdσ +d†σclkσ would transform to a complicated

object that cannot be simplified by rotating the d operators of the local dot space.

2.2. The numerical renormalization group method (NRG)

In the 1970’s, K.G. Wilson came up with a scheme for solving the Kondo problem

nonperturbatively: the numerical renormalization group (NRG) [13]. Since then it

was generalized to various schemes, describing localized electronic states coupled to

fermionic [21] or bosonic [22, 23] baths. The NRG allows thermodynamic and dynamic

properties of such strongly correlated systems to be calculated at zero as well as at finite

temperature. We first discuss the method for the AM (∆ = 0), then for ∆ 6= 0. For

brevity we apply all NRG transformations to the full SC-AM already in the discussion

of the AM.

The key idea of NRG is to discretize the conduction band of the reservoir

logarithmically. The Hamiltonian can then be transformed to a chain Hamiltonian.

In this representation, equations (3) to (5) are mapped onto

Hhyb =

√

2Γ

π

∑

σ

[

cos
φ

4
(f †e0σdσ + h.c.)− sin

φ

4
(f †o0σdσ + h.c.)

]

(6)

Hlead =
1

2

(

1 + Λ−1
)

∑

l=e,o

∑

σ

∞
∑

n=0

Λ−n/2 ξn (f †lnσfln+1σ + f †ln+1σflnσ) (7)

H∆ = −∆
∑

n

[

(f †en↑f
†
en↓ + h.c.)− (f †on↑f

†
on↓ + h.c.)

]

. (8)

Electrons on site n in lead l = e, o are created by f †nlσ. The dot level only couples to

the zeroth site of the so-called Wilson chain Hlead, where the hybridization is given by
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Γ = πρ2V 2 (the factor 2 stems from the two leads). Λ > 1 is the discretization parameter

of the conduction band. ξn = (1−Λ−n−1)(1−Λ−2n−1)−1/2(1−Λ−2n−3)−1/2 ≈ 1 for large

n. The hopping matrix elements between successive sites of Hlead fall off exponentially

with Λ−n/2. The resulting energy scale separation ensures that the AM can be solved

iteratively. The recursion relation reads

H0 = 1/
√

Λ

[

Hdot + Hhyb −∆
∑

l=e,o

∑

σ

sl

(

f †l0↑f
†
l0↓ + h.c.

)

]

HN+1 =
√

Λ HN +
1

2

(

1 + Λ−1
)

∑

l=e,o

∑

σ

ξN

(

f †lNσflN+1σ + h.c.
)

(9)

−∆ ΛN/2
∑

l=e,o

∑

σ

sl

(

f †lN+1↑f
†
lN+1↓ + h.c.

)

,

ere sl = ±1 for l = e, o, respectively. The initial Hamiltonian of the system is related

to the NRG Hamiltonian by H = limN→∞ Λ−(N−1)/2 HN . This relation is exact in the

limit Λ → 1 and N →∞.

Sites are added successively and at each step the enlarged system is diagonalized.

Each added site then acts as a perturbation of order Λ−1/2 on the previous part of the

chain. Consequently, the typical energy resolution δn of the AM at iteration n is given

by δAM
n ∝ Λ−n/2. Thus, by choosing the length N of the chain large enough (so that

Λ−N/2 is much smaller than all other energies in the problem), all relevant energy scales

can be resolved and treated properly. When adding a site to the system, the dimension

of the Hilbert space gets multiplied by the dimension d of the state space of that site,

yielding d = 4 for a single fermionic lead (empty, singly occupied (either up or down),

doubly occupied). Therefore the dimension of the Hilbert space increases exponentially

with the length of the chain. Wilson proposed a truncation scheme according to which

only the lowest Nkept eigenstates are kept at each iteration, thereby ensuring that the

dimension of the truncated Hilbert space stays manageable. Recently, it was shown that

by keeping track of the discarded states a complete, but approximate, basis of states

can be constructed [28, 29]. This can be used to calculate dynamic properties like the

spectral function A (see equation (20) below) which rigorously satisfy relevant sum rules

[30, 31], like
∫

dωA(ω) = 1.

Applying the NRG mapping also to the pairing term of the SC-AM (as already

done above), an on-site contribution appears, see equation (8), constant in magnitude

for each site. In the limit Λ−n/2 ≫ ∆, this additional term hardly affects the properties

of the system. But, when Λ−n/2 ∼ ∆, it is not obvious whether the added sites still act

as a perturbation in the iterative process (9) or not, that is whether the energy scale

separation still works or not. In section 3 we will show that the separation of energy

scales does work also at resolutions much smaller than the gap.
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2.3. Bogoliubov and particle-hole transformations

Satori et al. [12] have shown that a computationally more convenient representation of

the Hamiltonian can be obtained by performing a Bogoliubov-Valatin transformation

[bln,σ = 1/
√

2(σfln,σ + f †ln,−σ)] as well as a particle-hole transformation [c̃l,2n,σ =

bl,2n,σ, −σc̃l,2n−1,−σ = b†l,2n−1,σ]. n = −1 represents the dot, thus d̃σ = c̃−1,σ. Applying

these transformations to (9), the Hamiltonian reads

H̃dot =
U

2
(1− ñd + 2ñd↑ñd↓)− (εd +

U

2
)(d̃†↑d̃

†
↓ + d̃↓d̃↑) (10)

H̃hyb =

√

2Γ

π

∑

σ

[

cos
φ

4
(c̃†e0σd̃σ + h.c.)− sin

φ

4
(c̃†o0σ d̃σ + h.c.)

]

(11)

H̃lead =
1

2
(1 + Λ−1)

∑

l=eo

∞
∑

σ,n=0

Λ−n/2 ξn (c̃†lnσc̃ln+1σ + c̃†ln+1σ c̃lnσ) (12)

H̃∆ = −
∞
∑

n=0,σ

(−1)n∆ (ñenσ − ñonσ). (13)

Operators in the new basis will always be denoted by a tilde, e.g. ñdσ = d̃†σd̃σ or

ñlnσ = c̃†lnσc̃lnσ. The Q̃ nonconserving property of H∆ has been transferred to H̃dot.

This has two useful effects: (i) For the symmetric model not only the z-component

of the total spin (per iteration), S̃zN = 1
2

∑N
l,n=−1(ñln↑ − ñln↓

), but also the particle

number Q̃N =
∑N

l,n=−1,σ(ñlnσ − 1) is a conserved quantum number (note that this

definition yields Q̃ = 0 for the Fermi sea together with a singly occupied dot at Γ = 0).

Therefore the dimensions of the matrices to be diagonalized at each iteration (and

therefore the numerical effort) is reduced significantly. (ii) Additionally, in the non-

interacting symmetric case (U, εd = 0) the Hamiltonian takes a very simple quadratic

form. We will focus on its exact solution in the next section. In section 3 the resulting

single-particle picture will serve as a tool to gain a deeper understanding of reasons why

NRG does work for the SC-AM.

For simplicity, we use φ = 0 in the following. Then, the odd channel decouples and

the problem reduces to an effective one-lead system. The resulting model is equivalent

to that describing an impurity embedded in a bulk superconductor.

2.4. Single-particle picture

Some properties of the system show up already in the non-interacting case, U = 0.

The Hamiltonian is then of quadratic form and we only have to solve a single-particle

problem. The NRG Hamiltonian [(10)-(13)] can be diagonalized up to a large number

of iterations exactly - that is without truncating the Hilbert space. One can use

the resulting exact solution as benchmark for the NRG result. We obtain very good

agreement in the energy spectrum, thus confirming that NRG is capable of accurately

treating superconducting leads. In section 3 the single-particle picture will also serve as

a tool to gain a deeper understanding of reasons why NRG does work for the SC-AM.

104 5. NRG for the Anderson model with superconducting leads



NRG calculation of the spectral function of the SC-AM 7

Without lack of generality we restrict the discussion to the symmetric case, εd = 0.

Then the NRG Hamiltonian only contains quadratic terms of the form a†iai′ , with ai

some fermionic operator. For every iteration N the single-particle Hamiltonian can be

diagonalized by some unitary transformation T to HN =
∑N

j=−1 εjα
†
jαj . Here αj = T †

jiai

and the eigenstates |nj〉 = α†
j |vac〉 satisfy α†

jαj |nj〉 = nj |nj〉. The many-body eigenstates

and the energy spectrum follow from the Schrödinger equation

H|m〉 = Em|m〉, Em =

(

∑

{nj}m

εjnj

)

− E0, (14)

with the many-body eigenstates |m〉 = |n1 . . . nN 〉 and eigenenergies Em which are

calculated w.r.t. the ground state energy E0. In the ground state |0〉 all single-

particle levels with energy below the Fermi energy εF = 0 are occupied, thus

E0 =
∑

l(εl<0) εl. Expectation values of local operators are evaluated easily, e.g.

〈0|a−1a
†
−1|0〉 =

∑

l U
†
−1,l〈0|αlα

†
l |0〉Ul,−1 =

∑

l(εl<0) |Ul,−1|2.
The construction of the many-body spectrum from the single-particle energy levels

using (14) is illustrated in figure 1 for the SC-AM. Figure 1(a) shows a sketch of a typical

single-particle spectrum. The single-particle level spectrum consists of a continuum

above and below the gap, |εl| > ∆ (represented by a discrete set of closely-spaced

levels), as well as one subgap level with energy 0 ≤ ε0 < ∆, the so-called Andreev

level. Note that because of the discretized conduction band, we also have a discretized

continuum.

The sketch also demonstrates the construction of the lowest lying many-body

eigenenergies using (14). For Γ > 0, no single-particle level exists at the Fermi energy

and the many-body ground state is a singlet (S̃z = 0, Q̃ = 0). The first excitation

is a degenerate doublet (E1,2 = ε0, S̃z = ±1/2, Q̃ = 1), corresponding to the bound

single-particle level, occupied by either a spin up or down. If ε0 < ∆/2, an additional

subgap state forms (E3 = 2ε0 < ∆, S̃z = 0, Q̃ = 2), corresponding to spin up and

down occupying the subgap single-particle level. Otherwise E3 > ∆ is part of the

continuum energies. A concrete example of the many-body as well as the single-particle

eigenenergies is shown in figure 1(b). Both the single-particle levels (stars, crosses)

as well as the resulting many-body eigenenergies are shown. On the vertical axis the

energies of the many-body eigenstates constructed in figure 1(a) are specified.

3. Energy spectrum

In this section we analyze the many-body energy spectrum generated during the iterative

NRG procedure. As already mentioned in the last section, the spectrum consists of a

continuum above and subgap bound states below the gap ∆. The competition between

the Kondo effect and Cooper pair formation is reflected in the ground state properties

of the system. A detailed analysis of the structure of the continuum with the help of the

single-particle picture reveals that, interestingly, energy scale separation is even more

efficient at energy scales smaller than the gap (compared to the AM).
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Figure 1. Single-particle and many-body eigenenergies for the SC-AM (U = εd = 0).

(a) Schematic sketch of a typical single-particle level spectrum of the SC-AM. The

continuum is represented by a discrete set of closely-spaced levels. The construction

of the lowest lying many-body eigenstates in terms of single-particle states according

to (14) is illustrated. The corresponding energies Em (w.r.t. the ground state energy)

and quantum numbers of the many-body states are also given. Two dots stand for a

doubly occupied level. (b) Single-particle energies εj (ε+
j > 0: stars, ε−j < 0: crosses),

as well as the corresponding many-body eigenenergies Em (lines) for ∆ = 10−4 and

Γ/∆ = 0.3 at a late NRG iteration (δn ≪ ∆). The many-body eigenenergies depicted

in (a) are specified on the right hand side. The single-particle continuum energies

go like ε±j − ∆ ∝ Λ2j , see section 3.2. Due to many-particle excitations, this dense

profile repeats as substructures in the many-body spectrum at m∆+rε0 (m = 1, 2, . . .,

r = 0, 1, 2).

Figure 2 shows the 280 lowest lying many-body eigenstates for the even NRG

iterations of a SC-AM in different regimes of TK/∆. We first discuss the case ∆ = 0 (AM,

figure 2(a),(d)), then ∆ 6= 0. For the AM the effective level spacing of the Wilson chain

drops exponentially with every added site (see discussion above). The energy resolution

of the kept states is enhanced exponentially with increasing iteration n, see figure 2(a).

Thus, an appropriate way of visualizing the physics at different energy scales is given

by the rescaled energy spectrum. In these “energy flow diagrams”, the eigenenergies

are plotted in units of Λ−n/2 ∝ δAM
n , see figure 2(d). Only at energy scales where the

system changes its properties, the flow of the eigenenergies changes. For the AM we are

interested in the lowest of these scales, the Kondo scale TK =
√

UΓ
2

exp
[

πεd

2ΓU
(U + εd)

]

,

indicated by dashed arrows in the figure. For details of the various fixed points of the

AM see e.g. [21].

In contrast to the exponential decaying couplings of the Wilson chain (7), the

on-site contribution ∆ of the pairing term (8) is constant in magnitude for each

site. Consequently, for δn < ∆, the BCS contribution is a relevant perturbation and

determines the physics of the system. Typical energy spectra (or energy flow diagrams,

respectively) for finite ∆ are shown in figure 2(b,c) (or 2(e,f)). At energy scale ∆, the

exponential reduction of the eigenenergies crosses over to a saturation towards ∆. The

characteristic gap as well as the subgap Andreev bound states form.
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The structure of the continuum energies near the gap will be discussed in section

3.2. We show there that even though the on-site terms of H∆ do not fall off exponentially

like the couplings of the Wilson chain, the energy scale separation (the heart of NRG)

still works.
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Figure 2. Energy spectra (a,b,c) and the corresponding energy flow diagrams (d,e,f)

for the lowest 280 eigenenergies of the even NRG iterations of a SC-AM. U = 0.2,

Γ = 0.01, TK = 1.25 · 10−5, Λ = 2.5 and Nkept = 512 in all plots. The iteration

numbers NTK
or N∆, where δAM

n ≈ TK or ∆, respectively, are indicated by dashed

or solid arrows. (a,d): ∆ = 0, AM. Since δAM
n ∝ Λ−n/2, the eigenenergies (a) fall

off exponentially with n and the energy flow diagram (d) converges. At energy scale

TK the localized spin gets screened by the conduction electrons and the Kondo singlet

(ground state) forms. (b,c,e,f): ∆ > 0. At energy scale ∆ the exponential decrease

crosses over to a saturation towards ∆. The characteristic gap as well as the Andreev

bound states form. Consequently, the flow diagram energies grow with ∆Λn/2 due

to rescaling. For comparison, the result for the AM is indicated (brown), too. For

∆ ≪ TK (b,e) it is energetically favorable to break Cooper pairs and lower the energy

by TK by screening the local spin, thus the ground state is a singlet. For ∆ ≫ TK

(c,f) Cooper pair formation dominates the low energy properties and the ground state

is a doublet.

3.1. Competition between Kondo effect and Cooper pair formation

The system possesses two energy scales determining the characteristics of the system, TK

and ∆. The resulting competition between Kondo effect and Cooper pair formation is

reflected in the ground state properties of the system: For TK ≪ ∆, H∆ is the dominant

term of the Hamiltonian. The system lowers its energy by ∆ by the formation of Cooper

pairs leading to effective spin zero bosons (singlets) in the reservoir. The lead density

of states gets depleted, a gap from −∆ to ∆ forms. Therefore no electrons are available
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to screen the localized spin. Consequently, the ground state is a spin doublet with

Sz = ±1/2. In case when the Kondo effect is dominant (TK ≫ ∆), it is energetically

favorable to break Cooper pairs so that the localized spin on the quantum dot gets

screened by the non-paired electrons near the Fermi energy. The energy is lowered by

TK and as ground state the typical Kondo singlet forms (Sz = 0). The influences of the

different scales is also apparent in the NRG energy flow diagrams, see figure 2(e),(f).

For example, for TK ≫ ∆, the effect of H∆ sets in at iterations after the Kondo fixed

point is reached (i.e. at lower energies). A phase diagram for the singlet and doublet

ground state including the spectral weight of the bound states was recently derived by

[18] (also using NRG) for the whole regime of ∆, Γ.

3.2. Analysis of the continuum

The key feature of NRG is the energy scale separation: The couplings between successive

sites of the Wilson chain describing a normal lead fall off exponentially, therefore each

added site can be treated as a perturbation of the previous system. However, when

generalizing the AM to superconducting leads, a constant on-site energy ∆ is added at

each site (see (9)). In order to understand why NRG works even at resolutions well

below ∆, we now take a closer look at the structure of the continuum produced during

the iterative NRG procedure.

We therefore analyze the (positive) continuum of the single-particle problem. Figure

3 shows an example of a single-particle spectrum for three different scalings of the

vertical axis: In (a) the (unscaled) spectrum is plotted versus the iteration number. The

NRG eigenenergies decrease with iteration number n and tend towards ∆. However,

the decrease of the continuum eigenenergies depends on whether n is smaller or larger

than N∆, the iteration number for which δAM
n ≈ ∆. We find the following asymptotic

behaviour:

εjn :

{

εjn ∝ Λj−n/2 for n < N∆,

ε′jn = εjn −∆ ∝ Λ2j−n for n > N∆.
(15)

Primed energies will henceforth always be understood to be measured relative to

∆. Both relations of (15) are illustrated in figures 3(b) and 3(c), by plotting the

eigenenergies εjn and ε′jn in units of Λ−n/2 and Λ−n, respectively.

These results can already be understood by further reducing the problem to only

the superconducting reservoir (Hl + H∆): For fixed iteration n, the j-dependence of

(15) reflects the standard logarithmic discretization of the continuous conduction band,

according to which the single-particle energies of the Wilson chain grow in powers of

Λ, i.e. εk ∝ Λj [21]. Inserting this into the single-particle dispersion relation of BCS

quasiparticles, the effective discretization of the isolated superconducting reservoir is

obtained, as sketched in figure 4. The limits yield

ξk =
√

ε2
k + ∆2 :

{

ξk ≈ εk → Λj for εk ≫ ∆ (n < N∆),

ξ′k ≈
ε2

k

2∆
→ Λ2j for εk ≪ ∆ (n > N∆).

(16)
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The n-dependence of (15) follows heuristically from considering the coupling of two

neighbouring sites n − 1 and n, with hopping matrix element tn ∼ δAM
n and on-site

energy ±∆ (see (12) and (13), respectively). Since tn ∼ Λ−n/2, the eigenstates λ± of

this two-state problem show the asymptotic behaviour

λn± = ±
√

∆2 + t2n :

{

λn+ ≈ tn ∝ Λ−n/2 for n < N∆,

λ′n+ ≈ t2n
2∆

∝ Λ−n for n > N∆.
(17)

Note that the Λ−n/2 versus Λ−n scaling of the two limits of (15) implies that

the energy scale separation is actually more efficient in the second limit, when the

gap dominates the spectral features. This establishes one of the central results of the

present paper: The energy scale separation, being the heart of the NRG approach, is

not impaired but rather enhanced (w.r.t. ∆) by the presence of the energy gap in the

superconducting leads. Increasing the chain length leads to an exponential enhancement

of the resolution at the continuum edge at ∆.

The many-body spectrum is constructed according to equation (14). For n < N∆,

as in the AM, the mean level spacing (at fixed iteration) does not depend on energy,

as can be seen in figure 2(d-f). For n > N∆ the gap forms, and every many-body state

with energy Em < ∆ + ε0 can only stem from adding one electron (or hole) to the

Fermi sea. ε0 is the energy of the single-particle subgap level. Therefore in this regime

Ejσn = εjn. Due to many-particle excitations, this dense profile repeats as substructures

in the many-body spectrum at m∆ + rε0 (m = 1, 2, . . .; r = 0, 1, 2), as can be found in

figure 1(b), which was calculated for some late iteration with n ≫ N∆.

4. Spectral function

In this section we study basic properties of the spectral function that are special for the

SC-AM. We therefore begin by analyzing the analytic solution of the non-interacting case

and find not only a continuum for energies |ω| > ∆ together with subgap resonances

(as expected from the energy spectrum), but also a sharp peak at the gap edge for

∆ < Γ. The agreement between NRG results and the analytic solution is excellent,

especially when resolving that sharp feature, again confirming that NRG is valid also

at resolutions well below the gap. Subsequently, we consider spectral functions at finite

U , which show some of the same feature as found for the non-interacting case.

Knowledge of the energy spectrum suffices to calculate thermodynamic quantities,

such as the impurity specific heat. We focus here instead on the more complex

calculation of the local spectral function Aσ(ω). As this is a dynamic quantity, all

energy scales have to be taken into account even at temperature zero. The spectral

function is defined as

Aσ(ω) = −1

π
Im GR

σ (ω), (18)

where GR
σ (ω) is the Fourier-transformed of the retarded Green’s function GR

σ (t) ≡
−iθ(t)〈[dσ(t), d†σ(0)]+〉. Motivated by the structure of the eigenspectrum we distinguish
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Figure 3. Positive single-particle energies plotted for three different scalings of the

vertical axis for even iterations. The vertical dashed line indicates the iteration N∆

for which δAM
n ≈ ∆. (a) Energy versus iteration number. The single-particle levels

flow towards the gap and form a continuum. The bound state can be also seen. (b)

The eigenenergies ε representing the continuum in units of Λ−n/2, corresponding to

the customary scaling for energy flow diagrams of the (normal) AM. For n < N∆, the

single-particle energies run horizontally, since they obey εjn ∝ Λj−n/2, see text and

[21]. (c) ε′ in units of Λ−n. The single-particle energies run horizontally for n > N∆,

since here they scale as ε′jn ∝ Λ2j−n. The line sloping upwards at the left of figures

(b) and (c) is due to the fact that at every iteration a degeneracy is split and hence

an extra eigenenergy is generated.
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Figure 4. Logarithmic discretization of εk leads to high resolution at the band edge

of the BCS quasiparticle eigenenergies.

two contributions to the spectral function,

Aσ(ω) =
∑

|Em|<∆

wmδ(ω − Em) + Aσ(ω) θ(|ω| −∆). (19)

wm denotes the weight of excitations to the Andreev bound states, which contribute as δ-

peaks within the gap between −∆ and ∆. Aσ(ω) represents the continuum contribution,
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with |ω| > ∆. In the following we present results for the continuum part of the spectral

function. We focus on the behaviour of the continuum contribution of the spectral

function close to the gap.

4.1. NRG

NRG calculations of the spectral function are based on the Lehmann representation:

Aσ(ω) =
1

Z

∑

mm′

(e
− Em

kBT + e
−E

m′

kBT ) |
〈

m|d†σ|m′〉 |2 δ(ω − (Em − Em′)). (20)

Here Z =
∑

m e−Em/kBT is the partition function at temperature T , and |m〉 denotes an

exact eigenstate of the Hamiltonian with eigenenergy Em. The matrix elements of these

operators as well as the eigenenergies can be calculated with NRG at all energy scales.

The δ-peaks of the continuum contribution are broadened as described by [32, 31]. As

expected from the findings about the spectra, broadening w.r.t. ∆ (i.e. using ω′ = |ω|−∆

in [31]) leads to good results, see below. We use the full density matrix NRG [31, 30]

at effective temperature zero, i.e. at temperature much smaller than any other energy

scale of the problem. Only matrix elements connecting the ground state(s) with excited

states then contribute.

As NRG parameters we choose Λ = 1.8 and use z-averaging [33] (where for fixed

Λ data is averaged for different discretizations) with an interval spacing of δz = 0.05

to impoove the results. We keep Nkept = 1024 at the first 6 to 10 iterations, and use

Nkept = 512 for the rest of the iterations. We test NRG against the analytic solution at

U = 0 and find excellent agreement, implying that the broadening procedure as well as

the choice of Nkept are adequate for the present problem.

4.2. Spectral function for U = 0

For analyzing the basic properties of A(ω), we first review the non-interacting problem.

There, the local (retarded) Green’s function is known exactly [18]. The continuum

contribution to G0 then reads

G0
∆(ω) =

1

D(ω)
{(ω + εd) + i Γρ∆}, (21)

with D(ω) = (ω2 − Γ2 − ε2
d) + i 2Γωρ∆, and ρ∆ the density of states of a bulk

superconductor. At temperature T = 0, the latter has the limits

ρ∆(ω) =
θ(|ω| −∆) |ω|√

ω2 −∆2
≈
{
√

∆
2|ω′| θ(ω′), for ω′ ≪ ∆,

1, for ∆ ≪ |ω|.
(22)

For ∆ = 0, equation (21) simplifies to the well known formula for the AM, G0
∆=0(ω) =

(ω − εd − iΓ)−1. For the spectral function we obtain from equations (21) and (18),

A(ω) =
(ω + εd)

2 + Γ2

(ω2 − ε2
d − Γ2)2 + (2Γ2ωρ∆)2

Γ ρ∆/π. (23)

This function is shown for various parameter combinations in figure 5. The common

features are (i) the atomic resonance of width (half width half maximum) ∼ Γ centered
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Figure 5. Continuum contribution A(ω) to the spectral function for U = 0, Γ = 0.008

and ∆ = 10−4 as well as ∆ = 10−2 obtained from equation (23). (a,c) show a

symmetric and (b,d) an asymmetric SC-AM. In (a,b), a linear scale is used revealing

sharp peaks near the gap if ω′c ≪ ∆. The insets, which zoom in the region of the gap

edge, show the full height of the near-gap peaks. They also indicate, using position

and length of arrows, the energy and weight of the subgap contribution for the case

∆ = 10−2 (calculated with NRG). In (c,d), for the same data a log-log scale is used to

elucidate the asymptotic behaviour of (25) (dashed and dotted lines) and (26) (dashed-

dotted lines).

at εd, reflecting the level broadening due to the level-lead coupling and (ii) a gap from

−∆ to ∆, with (iii) bound states at some energy ±ωB inside the gap. The energy and

weight of the subgap contribution is indicated for ∆ = 10−2 by position and length of

the red arrows in the insets of figure 5(a,b). Here they are calculated with NRG, but

can be also obtained analytically, see equation (7) of [18]. Note that for finite Γ bound

states exist also for εd ≫ ∆, see figure 5(b). They asymptotically approach the gap

edge for |εd| → ∞, in accordance with equation (7) of [18].

Additionally, the continuum part of the spectral function may feature near-gap

sharp peaks, point of interest in the following discussion. The behaviour near the gap

edge can be approximated (using equation (22) and writing s = sign(ω)) by

A(ω) ≈ (s∆ + εd)
2 + Γ2

(∆2 − Γ2 − ε2
d)

2 + 4Γ2∆2 + 2Γ2∆3/ω′ Γρ∆/π (24)

≈
{ (s∆+εd)2+Γ2

2Γ2∆3 Γρ∆ω′/π ∝
√

ω′, for ω′ ≪ ω′
c,

(s∆+εd)2+Γ2

(∆2−Γ2−ε2

d
)2+4Γ2∆2 Γρ∆/π ∝ 1√

ω′
, for ω′

c ≪ ω′ ≪ ∆.
(25)
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Figure 6. Continuum contribution A(ω′) to the spectral function for U = 0,

Γ = 0.008, as obtained from (23), for (a) various values of ∆ and εd = 0 (symmetric

model) and (b) ∆ = 10−4 and various values of εd (asymmetric model). For ω′c ≪ ∆ a

sharp peak forms at the gap edge. The increase (decrease) of A(ω′) goes as ω′
1

2 (ω′−
1

2 ).

NRG results, shown for ∆ = 10−4 only (thick black lines), are in excellent agreement

with the exact analytical results for ω′ ≪ ∆. Note in (b) that the height of the near-gap

peak at the gap edge does not depend on εd.

The limits given in (25) are indicated by the thin lines in figure 5(c,d): A(ω) increases

as
√

ω′ when ω′ is increased from 0 (dashed lines), decreasing again for ω′ > ω′
c =

2Γ2∆3

(∆2−Γ2−ε2

d
)2+4Γ2∆2 (which is the zero of derivative of equation (24)). If ω′

c ≪ ∆, Γ, this

leads to a very sharp near-gap peak which decreases as ρ∆ (dotted lines). Then the near-

gap spectral function is greatly enhanced compared to the AM (where the symmetric

case yields A(0)πΓ = 1).

The solution of the AM (dash-dotted lines) describes the high-energy limit of the

SC-AM:

A(ω) ≈ Γ/π

(ω − εd)2 + Γ2
= −1

π
Im G0

0 for ∆ < |ω|. (26)

The emergence of the near-gap peak is depicted in figure 6(a) for the symmetric

model, where the gap ∆ is varied over four orders of magnitude, starting from ∆ = 0.

For ∆ = 10−4, we also show numerical NRG results (fat solid line). Their agreement

with the analytical results is excellent. The height of the near-gap peak does not depend

on εd, see figure 6(b), where εd is increased up to 8Γ for fixed ∆ = 10−4.

4.3. Spectral function for finite U

Figure 7 shows spectral functions of the SC-AM for finite U and −U < εd < 0. The two

atomic resonances of width Γ are now separated by the Coulomb repulsion, thereby they

are centered near εd and εd + U . The Coulomb repulsion also drives the Kondo effect,

yielding a sharp resonance of width TK pinned at the Fermi energy. This resonance is cut

by a gap reaching from −∆ to ∆, reflecting the influence of the superconducting lead.

Depending on the ratio TK/∆, the Kondo resonance can be cut completely (TK/∆ ≪ 1)

or emerge clearly (TK/∆ ≫ 1).
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Figure 7. Continuum contribution A(ω) to the spectral function for U = 0.6,

Γ = 0.049, calculated using NRG. (a,c) show a symmetric and (b,d) an asymmetric

SC-AM. In (a,b), a linear scale is used revealing the sharp near-gap peaks appearing

for ∆ ≪ TK . The position εd of the local level is indicated by an arrow. The insets

zoom into the gap edge and show the sharp peaks as well as the subgap resonances

(for ∆ = 3 · 10−2, indicated by red arrows). In (c,d), A(ω′) is plotted on a log-log

scale for various parameters. The asymptotic behaviour of the near-gap peaks is in

agreement with that given in (25) and (26). In particular, for ω′ → 0, the continuum

edge decreases as
√

ω′. (c) εd = −U/2, TK = 10−3, various ∆. The singlet-doublet

transition occurs between ∆/TK = 0.3 and 3 (orange: ground state is doublet, black:

singlet). (d) ∆ = 3 · 10−5, various εd, ∆ ≪ TK always.

Additionally, a similar near-gap feature as found for the non-interacting case may

emerge. For TK/∆ ≫ 1, a sharp resonance forms at the gap edge, highly exceeding

the Kondo resonance, see figure 7 for the symmetric case (where the height of the

Kondo resonance is given by 1/πΓ) as well as the antisymmetric case. The asymptotic

behaviour of the near-gap peak is in agreement with that given in equations (25) and

(26). In particular, for ω′ → 0, the continuum edge decreases as
√

ω′.

5. Conclusion

The NRG is a well established method for a variety of quantum impurity models. It

is usually applicable in the whole parameter range and allows to calculate physical

quantities for a wide range of temperatures and frequencies. In this paper we showed

that in the presence of a superconducting reservoir, NRG provides information for

resolutions far below the energy scale of the gap ∆. Moreover, Wilsonian energy scale

114 5. NRG for the Anderson model with superconducting leads



NRG calculation of the spectral function of the SC-AM 17

separation, being the heart of the success of the NRG approach, is not impaired but

rather enhanced by the presence of the energy gap of the superconducting leads. This

allows sharp features of spectral functions at the continuum gap edge to be resolved.

Our calculations of the impurity spectral function cover the whole region from ∆ ≫ TK

to ∆ ≪ TK . In the latter case, we find a sharp peak at the continuum gap edge, vastly

exceeding the Kondo resonance contribution. We expect this to result in an enhanced

linear conductance, as recently reported for experiments with carbon nanotube quantum

dots coupled to superconducting leads [24].

The ability of the NRG to resolve spectral functions at energy resolutions well

below the gap should be useful for other problems as well. As discussed in detail in [34],

the problem of an impurity in a superconducting host can be mapped (under certain

conditions) to a model in which the superconductor couples to a normal metal, with a

modified density of states. For the problem studied in this paper we have performed

such a mapping; the resulting Hamiltonian is given in Equation (8). In this case, the

oscillating on-site energies, (−1)n∆, generate a hard gap of width 2∆.

This connection allows us, in principle, to calculate the dynamic quantities for

impurity models with arbitrary gapped bath spectral function (but for this one still

has to develop an algorithm which produces directly the chain parameters from the

hybridization function). Such calculations might also help to improve the resolution

of the NRG in DMFT calculations for the Hubbard model where the standard

implementation of the NRG does not describe the shape of the Hubbard bands properly

(for dynamic DMRG calculations for this problem, see [35]).
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5.1 Ground and bound states

Due to the coupling of a superconductor to a local level, Andreev bound states form below
the gap. Figure 5.2(a) shows the energy of these bound states as well as the nature of
the ground state. If the ground state is a (Kondo) singlet, the first two bound states
are degenerate and form a doublet, similar to the U = 0 case. If the ground state is
a degenerate doublet, the first bound state is a singlet. Varying the ratio Γ/∆, a level
crossing of the lowest bound states with the ground state occurs when TK/∆ ∼ O(1). At
this point (where Esinglet −Edoublet = 0), the ground state (and therefore the properties of
the system) changes its nature. A phase diagram for the singlet and doublet ground state
scanning the whole parameter regime was derived recently by [85] (also using NRG).

Figure 5.2(a) also shows higher excited bound states (thin lines). For U = 0, the
relation E3 = 2Edoublet, obtained in the preceding Section, is recovered.

The limit Γ/∆ → 0 corresponds to the decoupling of the local level from the super-
conducting reservoir. Therefore the energy spectrum is composed of the continuum of the
superconducting reservoir together with the eigenenergies of a bare quantum dot described
by Himp in Eq. (3.1b). As illustrated in figure 5.2(b), these are 0, εd and 2εd + U for the
states |0〉, | ↑〉, | ↓〉 and | ↑↓〉, respectively. The nature of the ground state (thick dashed
line) and the excited states can be read off. These appear as Andreev bound states in the
full energy spectrum if they lie within the superconducting gap. It follows immediately
that in this limit, a doublet ground state only exists for εd ∈ (−U, 0), including the sym-
metric case (indicated by the vertical dotted line). Note that for U = 0, all four eigenstates
of Himp are degenerate at energy zero.
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Figure 5.2: (a) Subgap bound state energies for the symmetric model at fixed ∆ = 10−4

as functions of Γ/∆, for three values of U/∆. The lowest bound state (bs) is either a
doublet or a singlet, depending on whether the ground state (gs) is a singlet or a doublet,
respectively. Thus, a level crossing occurs when Esinglet − Edoublet (thick lines) changes
sign. Additional bound states (of energy E3, thin lines) may occur. (b) Eigenenergies of
an isolated level described by Himp (3.1b) as a function of εd/U . These energies determine
the subgap energy spectrum of the superconductor-Anderson model in the limit Γ/∆ → 0.
The ground state (thick dashed line) is a doublet only for εd ∈ (−U, 0), what includes the
symmetric case (vertical dotted line). Otherwise it is a singlet.



Chapter 6

Two-channel Kondo effect in two
different models

In 1998, Goldhaber-Gordon et al. [9] where the first to observe the Kondo effect in quantum
dot devices. Electrons confined within a small region (quantum dot, modelled by a local
level) provide a local net spin, say S = 1

2
. Below a critical temperature TK the spin

gets completely screened by the reservoir electrons and the ground state is a spin singlet.
Therefore, at T = 0, the electrons exhibit only potential scattering and the system is a
Fermi liquid (FL) [68]. The number of channels is irrelevant, as long as they are connected
by tunnelling via the impurity. As shown in Section 2.3, they then can be combined to one
effective reservoir that couples exclusively to the impurity. The other effective channels
decouple and the system is reduced to a single-channel problem, exhibiting the standard
Kondo effect.

The situation changes if two (or more) independent electronic channels couple to the
quantum dot, in such a way that no channel mixing occurs. For equal coupling strengths
each channel tends to screen the local spin, resulting in an overscreening, called “two-
channel Kondo effect”. The ground state is a twofold degenerate spin-1/2 singlet. The
system then cannot be described by (potential) scattering theory and the FL description
does not apply, the system exhibits non-Fermi liquid (NFL) behaviour [88].

The experimental challenge consists in realizing two channels that have to be discon-
nected from each other in the low-temperature limit, so that no mixing of electrons from
different channels is possible. A possible scenario was proposed by Oreg and Goldhaber-
Gordon (OG) [16]. They suggest to prevent mixing of the channels by a Coulomb in-
teraction on one of the reservoirs that suppresses occupation non-preserving tunnelling
processes. Experimental success of the proposed setup was reported only recently [17],
again in the group of Goldhaber-Gordon.

In this Chapter we study two theoretical models that cover not only the particle-hole
symmetric point (as in [16] or the two-channel Kondo model, see below) but allow for a
tuning of the energy of the local level into the mixed-valence regime. We are interested in
studying for how long NFL behaviour survives when emptying the local level. The models
are motivated by the proposal of OG. Their key idea is that mixing between the channels
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can be suppressed if the number of particles of at least one reservoir is kept constant;
this can be achieved by realizing one of the reservoirs by a large quantum dot exhibiting
Coulomb interaction. We generalize the idea that processes that result in channel mixing
have to be energetically unfavourable.

In the following, we first introduce the standard two-channel model and comment on
the idea of an ending NFL line for a energy-dependent local level more precisely. Then we
introduce two different two-channel models both exhibiting NFL behaviour. We analyze
the models at T = 0 and find a non-vanishing NFL line in the first case, whereas the NFL
line of the second model stops at some critical gate voltage. Note that the work presented
in this Chapter was done in collaboration with M. Pustilnik. It is still in process, so that
several open questions remain.

6.1 Introductory remarks

6.1.1 Brief introduction to the standard two-channel Kondo model

For the local occupation fixed to ndσ = 1
2
, the standard impurity model with two discon-

nected channels is the two-channel Kondo model [89, 90],

H2CK = 2J1S · s1 + 2J2S · s2 + Hres1 + Hres2. (6.1)

It is derived analogously to the one-channel Kondo model introduced in Eq. (2.14). For
equal coupling of the reservoirs, J1 = J2, both channels screen the impurity spin, resulting
in an overscreening of the local magnetic moment. Therefore the ground state has spin
1/2. It is degenerate so that the system is a NFL that cannot be described by scattering
formalism.

If J1 6= J2, one of the channels dominates and “wins” the screening competition. The
other channel effectively decouples at low energies (the competition and the decoupling can
be seen in the NRG flow diagrams, see Fig. 6.3) and the system is reduced to an effective
one-channel Kondo problem [89]. Therefore the system is a FL and the scattering phases
can be extracted from the NRG flow diagram, see App. C.

In the two-channel Kondo model the occupation of the local level is fixed to ndσ = 1/2.
At T = 0, the two-channel Kondo effect can be only destroyed by an asymmetry in the
couplings. In this Chapter we are interested in systems exhibiting two-channel Kondo ef-
fect where the occupation is not fixed but can be varied by shifting the energy of the local
level. We study whether and how the NFL behaviour breaks down when, for symmetric
effective coupling of the two channels, the system is driven from the local-moment regime
with ndσ ≈ 1/2 (NFL) to the empty-orbital regime with ndσ ≈ 0. In the latter regime no
local spin is left to be screened, thus no (two-channel) Kondo effect is possible and the
system is a FL for all couplings. Thus, as the level position is swept, we expect a transition
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to occur from a NFL to a FL.

Within our convention, the gate voltage is related to the position of the local level via
Vg = −εd + U/2. Therefore Vg/U = 0 corresponds to the symmetric model, Vg/U = −0.5
to εd = 0. Obviously, for Vg → −Vg one gets ndσ → |1− ndσ|, thus we restrict our studies
to |Vg| and only discuss the case ndσ ≤ 1/2.

6.1.2 Expected phase diagram for two-channel models symmet-
ric in the coupling mechanisms

When the system does not exhibit two-channel Kondo correlations, one of the channels
“wins”, i.e. completely screens the local spin while the other channel decouples. Then, at
zero temperature, the FL description applies and only potential scattering occurs. The
system can be characterized by two scattering phase shifts δ1,2. Since the two channels are
disconnected, each phase describes the scattering properties of one of the channels. For
spin asymmetry (e.g. induced by a magnetic field), four phase shifts have to be considered.
The scattering phase shifts can be extracted from the NRG-flow diagrams, see App. C.
In case of NFL behaviour, the system (and therefore the NRG flow diagrams) cannot be
expressed in terms of phase shifts.

In this introductory Section, we qualitatively discuss the phase behaviour expected at
T = 0 for a system where two-channel Kondo behaviour is possible. From simple consid-
erations, one expects (i) the NFL-line to end at some V c

g when the system is driven out
of the local-moment regime, and (ii) a rapid change of continuous to discontinuous phase
evolution near the end of the NFL line.

Assume a local level coupled to two disconnected channels by the same coupling mech-
anism. The coupling constants are denoted by J1 and J2, respectively. Figure 6.1 depicts
the scattering phases one intuitively expects of such a system as a function of the local
occupation and the couplings. Later we will see, that for the models we study this pic-
ture is oversimplified, i.e. it is influenced too much by our understanding of the standard
Anderson model.

In the local moment regime, the two-channel system exhibits NFL behaviour at J1 = J2,
indicated by the yellow line. Apart from that line, the system is a FL. We distinguish
different regimes: In the local moment regime, where the local level provides enough spin
for Kondo correlations, the channel coupled strongest completely screens the spin, the other
channel is decoupled and the system is a FL. We denote these regions by FL1 (J1 > J2)
and FL2 (J1 < J2), respectively. They are separated by the NFL line, as indicated in
the Figure. In the empty orbital regime, ndσ ≈ 0, no Kondo screening and therefore no
competition between the two channels is possible. This FL regime (called FL0) connects
FL1 and FL2.

By definition, the system is either a FL or a NFL, thus the NFL abruptly ends at some
point in the mixed valence regime when emptying the local level for J1 = J2 fixed. We



122 6. Two-channel Kondo effect

are interested in gaining a deeper understanding of the NFL-FL transition and the system
properties nearby. Let us illustrate the problem by discussing the phase evolution along the
three different paths indicated by arrows (green) in Fig. 6.1. The paths connect two points
in FL1 and FL2 (indicated by rounded boxes) of known scattering phase configuration: For
asymmetric coupling (say Ji > Ji′) and ndσ = Sz = 1/2, the phases are given by δi = π/2
(fully evolved Kondo effect) and δi′ = 0 (decoupled channel).

Path 1: Crossing the NFL line at fixed occupation, the phases jump by |∆δi| = π/2.
Hereby the phase decreases if the channel decouples. Actually, the jump of π/2 is inde-
pendent of ndσ.

Path 2 is chosen such that the phase evolution is continuous: Physically decoupling
channel 2 by J2 → 0, the phases do not change but δ1 can now be related to the occupation,
δ1 = ndσπ (Friedel sum rule, see Sec. 2.6.5). Depopulating the local level continuously such
that δ1 ∼ 0, the system is brought into the FL0 regime where no Kondo-correlations are
present. Increasing the coupling J2, the point where J1 = J2, i.e. δ1 = δ2 = ndσ/2 ∼ 0, is
reached without any discontinuity in the scattering phases. The phase evolution along the
remaining path is analog, but with interchanged indices.

The question of interest arises for path 3. It passes along the NFL-line. Assuming
that this line ends at some point, the path can either cross the line slightly before its end
(accompanied by phase jumps of |∆δi| = π/2) or pass via the FL0, yielding a continuous
phase evolution, since it is topological equivalent to path 2. It is the interest about this
transition from continuous to discontinuous behaviour that triggered our interest in that
problem. In the following two Sections, we shall explore this question in the context of two
different models.

6.2 Two-channel Kondo-Anderson model

We study the possibility of NFL behaviour in a two-channel impurity model exhibiting
both Kondo- and Anderson-like coupling. By analyzing the scattering phases obtained
from the NRG flow diagrams, we find that the NFL-line divides the parameter space into
two disconnected regions. Therefore, in this model, the NFL-line does not stop at some
critical gate voltage, contrary to the simple considerations sketched in Fig. 6.1. This is
because large enough Kondo-like coupling forces the local occupation to stay near ndσ = 1

2
,

therefore extending the local moment regime allowing for Kondo physics to |Vg/U | → ∞.

6.2.1 The model

The model is motivated by the proposal of OG [16]. They suggest to mimic one of the
reservoirs by a large quantum dot. Neglecting the discreteness of the level spectrum in
the large dot but retaining Coulomb repulsion, the number of electrons on the large dot is
fixed for the dot in Coulomb blockade at zero temperature. Therefore, only occupation-
preserving higher-order tunnelling processes between the large dot and the local impurity
level are allowed energetically. Consequently, the two reservoirs are not connected to each
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Figure 6.1: Sketch of the expected scattering phases δ1,2 of an impurity system coupled
to two disconnected channels. In the local-moment regime, the system exhibits non-Fermi
liquid (NFL) behaviour for equally coupled channels, J1 = J2 (yellow line). For Ji > Ji′ ,
channel i′ effectively decouples and only channel i screens the local spin (FLi) and the
system is a Fermi liquid. For ndσ ≈ 0, the local level does not provide enough spin for
Kondo screening and the system is a FL (FL0), independent on the couplings. Therefore,
the NFL-line is expected to stop at some critical occupation. In the text, we discuss three
different paths to go from the FL1 to FL2, indicated by the green arrows.

other and independently screen the impurity, resulting in two-channel Kondo physics for
equal effective coupling of the two reservoirs.

In the proposal they focus on the particle-hole symmetric point with one electron on the
local level. Therefore they perform a Schrieffer-Wolff transformation, eliminating charge
fluctuations on the small dot. In the low-temperature limit where also charge fluctuations
on the large dot are frozen, they obtain the standard two-channel Kondo model [88] given
by Eq. (6.1).

In this work we want to analyze the dependence of the NFL behaviour on the local
occupation. We therefore assume that at low energies, the coupling between the large
dot and the local level is dominated by a spin-spin exchange interaction, but tunnelling is
possible between the local level and reservoir 2, resulting in the following toy model:

H = Himp + (Hres1 + HJ) + (Hres2 + HV), (6.2a)

with

Himp =
∑

σ

εdndσ + Und↑nd↓, (6.2b)

Hres α =
∑
kσ

εkc
†
αkσcαkσ, (6.2c)

HJ = 2J1 S · s1, (6.2d)

HV =
∑
kσ

V2(c
†
2kσdσ + d†σc2kσ). (6.2e)
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The impurity level (small dot, index d) with energy εd and Coulomb repulsion U is coupled
by Kondo-like (spin-spin) interaction to reservoir 1 (large dot), whereas the coupling to
reservoir 2 is described by an Anderson-like tunnelling term, allowing for change of the local
occupation. Therefore the model is not restricted to the local moment regime, contrary
to the standard two-channel model given by Eq. (6.1). As usual we define Γ2 = πρV 2

2

with ρ = 1/(2D) the density of states per spin near the Fermi energy and D = 1 the
half-bandwidth. The spin of the local level is given by S = 1/2

∑
σσ′ d

†
σ~σσσ′dσ′, the spin of

the large dot reads s1 = 1/2
∑

kk′,σσ′ c
†
1k,σ~σσσ′c1k′,σ′. Due to the structure of this toy-model

we refer to it as the Kondo-Anderson model.
Note that this model truly has the status of a toy model, since it cannot be derived by

a Schrieffer-Wolff transformation with fixed occupation of the large dot. We perform the
according transformation in Appendix B. It results in a variety of terms with prefactors
that non-trivially depend on the bare parameters of the system.

Applying the NRG transformations described in Sec. 3.1 to the Kondo-Anderson model
[Eq. (6.2)], the NRG chain Hamiltonian reads

Himp =
∑

σ

εdndσ + Und↑nd↓, (6.3a)

Hres α = D
1

2
(1 + Λ−1)

∑
σ

∞∑
n=0

Λ−n/2ξn(f †αnσfαn+1σ + f †αn+1σfαnσ), (6.3b)

HJ = 2ρD 2J1 S · s1 = 2J1 S · s1, (6.3c)

HV =

√
2Γ2D

π

∑
σ

f †20σdσ + h.c., (6.3d)

which can be solved iteratively analogous to the Anderson model, see Sec. 3. f †αnσ creates
an electron on site n of the Wilson chain, and s1 =

∑
σσ′ 1/2f

†
10σ~σσσ′f10σ is the spin oper-

ator of the zeroth reservoir site.

In the following, we study the NFL-line as a function of the gate voltage and the occu-
pation. The line is characterized by a jump ∆δi = ±π

2
of the scattering phases of channel

i = 1, 2 when changing the relative couplings at fixed gate voltage. Contrary to expecta-
tions, we do not find a critical value V c

g where the NFL-line ends.

In order to be able to compare the strength of the Kondo-like and Anderson-like cou-
pling in same units, we define a parameter J2(Γ2), having the same units as J1. For
simplicity we use the relation connecting the standard Kondo and Anderson model in the
particle-hole symmetric point,

J2 =
4Γ2

πρU
, (6.4)

independent of εd
1. Therefore, at fixed U , we get J2 ∝ Γ2. For scanning the parameter

1The εd-dependent analogon, see Eq. (B.15) would complicate things since J2 is negative for εd > 0.
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space, we keep J2 fixed and vary the parameter

j ≡ J1

J2

, (6.5)

i.e. the coupling strength J1, see below. We use U = 0.2 and Λ = 2.5.

6.2.2 Related single-channel models

For a detailed understanding of the impact of each of the two different types of coupling we
first study the scattering phase of the corresponding single-channel models in which we set
either J1 = 0 or J2 = 0. At zero temperature, both models exhibit Fermi liquid behaviour,
therefore the scattering phases can be related to the occupation of the local level using the
Friedel sum rule [21], δ′ = ndσπ. The single-channel models are labelled by a prime.

Kondo-like model

We first discuss a system representing the large dot coupled via Kondo-like spin-spin cou-
pling to the local level, which is described by Himp (6.2b). Contrary to the standard Kondo
model, the occupation of the local level is not fixed. The Hamiltonian of the system then
reads

H ′
KM = Himp(εd, U) + 2J ′1S · s1 + Hres1. (6.6)

From the FL relation and the absence of a hopping term it is clear that the scattering
phase δ′1 (or occupation) can have either the value π

2
(1

2
) - resulting in a Kondo effect - or

0 (0), where no Kondo effect is possible.
The border between these two regions (as a function of Vg) is indicated in Fig. 6.2(a)

by the dashed red line. Let us start at J ′1 = 0, where the model simply consists of a
localized level at energy εd and a decoupled reservoir. Clearly, for |Vg/U | ≤ 0.5, one
electron occupies the dot, thus δ′1 = π

2
, whereas for |Vg/U | > 0.5, either both or no levels

are below the chemical potential, thus δ′1 = 0. For finite J1 the system can lower its energy
by spin-spin coupling and accordingly by the Kondo effect. Obviously, this is only possible
for finite spin on the dot. Therefore, the regime with δ′1 = π

2
and ndσ = 1

2
is extended with

increasing coupling strength. Consequently, we conclude that in the Kondo-like model
given by Eq. (6.6), the Kondo effect tends to maximize the local spin. Obviously, for this
model, the width of the transition region from δ′1 = π

2
to δ′1 = 0 is zero for all J ′1.

Anderson model

The second single-channel model, obtained from the Kondo-Anderson model by setting
J1 = 0, is the standard Anderson model,

H ′
AM = Himp + Hres2 +

∑
kσ

J ′2(Γ2) (c†2kσdσ + d†σc2kσ). (6.7)
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Figure 6.2: Phase diagram: The single-channel models are labelled by a prime. (a) Phase
diagram of the single-channel models in (Vg-J ′α)-space. In the Kondo-like model given by
Eq. (6.6), the phase is either δ′1 = 0 or δ′1 = π

2 . Only for the latter case the system can lower
its energy by the spin-spin coupling term (Kondo effect). Therefore this region is extended
for large coupling. The dashed red line separates the two regions. For the single-channel
Anderson model (6.7), the phase evolution of δ′2 is continuous due to the hopping term. We
indicate the border between Kondo possible/not possible by the dotted blue line defined
by δ′2(Vg, J2) = π

4 . (b) The yellow solid line jNFL(Vg, j) is the value of j separating the
region where (i) the Kondo-like coupling wins (FL1) and (ii) the Anderson-like coupled
channel wins (FL2), thus it is the line of NFL behaviour. Dashed red line: same as in (a)
but in (Vg-j) space, j = J1/J2. Note that in order to have a constant width ∆AM , we fix
the Anderson coupling to J2 = 0.1. Note that jNFL lies within the region where Kondo is
possible for the single-channel Kondo-like model. For details, see text.

The tunnelling term allows the phase to change continuously from π
2

(at Vg/U = 0) to
≈ 0 (for |Vg/U | >> 0.5). In order to compare the coupling-dependence of the phase with
the results of the Kondo-like model, we define the border between Kondo possible / not
possible as the line where the phase obeys δ′2(Vg, J

′
2) = π

4
. The border is indicated by the

blue dotted line in Fig. 6.2(a). Obviously, as in the Kondo-like model, for zero coupling
the line starts at |Vg/U | = 0.5. The width of the phase change (at constant J ′2) scales with
the coupling strength J ′2.

6.2.3 Two-channel Kondo-Anderson model

When combining the two single-channel models to the two-channel Kondo-Anderson model
given by the Hamiltonian (6.2), we fix the coupling strength J2 of the tunnel coupling.
Therefore, for both (individual) channels the scale on which the system changes from
Kondo possible / not possible is constant for all j. Scanning the parameter space, we
vary Vg and J1. For the presented data we fix the Anderson coupling to J2 = 0.1 and the
Coulomb interaction to U = 0.2.
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The NFL-line jNFL(Vg) of the Kondo-Anderson model is shown in Fig. 6.2(b) (yellow
solid line). It separates the region where (i) the Kondo-like channel 1 (j > jNFL, FL1)
or (ii) the Anderson-like coupled channel 2 (j < jNFL, FL2) completely screens the local
spin. The line starts at Vg = 0 at j ≈ 0.8, where the effective couplings (and Kondo
temperatures) of the two channels equal. The NFL-line increases with increasing spin-spin
coupling J1, we find that there is no critical V c

g where the line stops.
How can we understand this result contradicting the intuitive picture of Fig. 6.1? For

clarity, Fig. 6.2(b) also shows the border line of the Kondo-like model. As in that model,
the spin-spin coupling of the Kondo-Anderson model tends to maximize the local spin.
Upon increasing the coupling strength J1, the system prefers to keep the local occupation
can be kept close to ndσ = 1

2
even in the limit |Vg/U | → ∞. Therefore, at all values of

Vg the dot can provide enough local spin for screening, i.e. for a screening-competition
between the two channels which results in NFL behaviour. Consequently, due to the spin-
spin coupling, the dot does not necessarily enter the regime ndσ ≈ 0 when increasing |Vg|,
and therefore the NFL-line does not stop at some V c

g in the Kondo-Anderson model.

NRG flow diagrams

The transition between FL1 to FL2 when crossing the NFL line manifests itself in the
NRG flow diagrams. The energy flow for fixed Vg/U and different couplings is given in
Fig. 6.3. From top to bottom the system starts in FL2 (a,b), exhibits NFL behaviour
for j = jNFL in (c) and finally ends in FL1 (d,e). Not only the (non-)FL character and
the scattering phases (if existent) can be extracted, as explained in App. C, but also
the competition between the two-channels becomes apparent. At high energy scales (low
iteration number n), an initially small difference in the couplings of the two channels is
not resolved, thus all flow diagrams start similarly to the NFL. During the renormalization
flow, with increasing iteration number (i) the energy resolution gets enhanced and (ii)
the couplings renormalize such that one channel effectively decouples and the other one
completely screens the impurity spin.

At the iteration where the difference in the renormalized couplings is resolved, the
flow diagram changes from NFL-like to FL behaviour, and the scattering phases can be ex-
tracted, see App. C. Obviously, this change in energy flow is shifted to smaller energy scales
(larger iterations) when approaching the NFL line. Note that in the Figure |Vg/U | 6= 0.5,
therefore the degeneracy of the energy levels shown in Fig. 6.1 for a symmetric Anderson
and two-channel Kondo model is lifted.

More details about the scattering phases and the occupation

Let us take a closer look at the scattering phases and the local occupation near the NFL-
line. The two scattering phases describing the two-channel system (except at the NFL-
line) are directly related to the Kondo channel (δ1 = π

2
or 0) and the Anderson channel

(continuously varying phase δ2).
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Figure 6.3: NRG flow diagrams for the Kondo-Anderson model at Vg/U = 0.3 and various
couplings j∗. Here j∗ ≡ (J2 − J1)/J , with varying J1,2 but J = J1 + J2 = 0.2. U = 0.2
and Λ = 2.5. The transition from (a,b) FL2 to (d,e) FL1 when crossing (c) the NFL line
manifests itself in the characteristics of the energy flow. Only when the energy resolution
is large enough to resolve the difference in the renormalized couplings, the energy flow
changes from NFL-like to FL behaviour, see e.g. n ≈ 60 in (d). In the FL regime the
scattering phases can be extracted, see (a,e). For details, see App. C.

They are shown in Fig. 6.4 as a function of j and Vg. For clarity of Fig. (b) the
phase δ2 in FL1 is shifted upwards by π. The two regions separated by the NFL-line are
characterized as follows: (i) FL1 (j > jNFL). Channel 1 screens the local spin, thus δ1 = π

2
,

channel 2 decouples. (ii) FL2 (j < jNFL). Channel 1 decouples, δ1 = 0, and the local
spin is either screened by channel 2 or, for j � jNFL, the local spin → 0 and no screening
is possible. Crossing the NFL-line at fixed Vg, both phases jump by ±π

2
, respectively.

Approaching the NFL-line from FL2, δ2 is given by π
2

for Vg/U = 0. Increasing |Vg/U |, it
decreases and saturates at π

4
, see below.

The local occupation is shown in Fig. 6.5. In the limit j = J1 = 0 (remember that
J2 = 0.1 always), the standard Anderson model is recovered and the occupation changes
rapidly at |Vg/U | ≈ 0.5. For finite J1, the influence of the spin-spin coupling on the
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occupation can be nicely seen for |Vg/U | > 0.5. ndσ increases abruptly with j and saturates
at ndσ = 0.5.
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Figure 6.4: (Vg-j)-dependence of the scattering phases of the Kondo-Anderson model.
Crossing the NFL-line at fixed Vg, they jump by exactly ±π

2 . (a) Due to the Kondo-like
coupling of channel 1, δ1 can take either the values 0 or π

2 . (b) The scattering phase δ2

varies continuously, except at the NFL-line, where it jumps by −π
2 when crossing from the

FL2 (blue) to FL1 (red). Note that for better visibility we shifted the phase by +π in the
FL1.
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Figure 6.5: (Vg-j)-dependence of the local occupation nd,σ. For J1, j →∞ the spin-spin
coupling dominates the system and the occupation saturates at ndσ = 0.5.

Properties at the NFL-line in the limit |Vg/U | → ∞

Next we summarize the properties of the system at the NFL-line and extend the regime of
the gate voltage to |Vg/U | → ∞.
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The NFL-line separates the regimes in parameter space where channel 1 screens the
spin and channel 2 decouples (FL1) and vice versa (FL2). In (Vg-j) space, the NFL line
jNFL(Vg) increases with |Vg|, see Fig. 6.6. It does not stop at some critical point.

Large enough spin-spin coupling between channel 1 and the local level forces the occu-
pation to remain close to ndσ = 0.5. The occupation at the NFL line saturates at ndσ = 0.25
as |Vg/U | increases to ∞, see Fig. 6.7(a). The scattering phases jump by ±π

2
when crossing

the NFL-line at fixed Vg. Due to the spin-spin coupling, the scattering phase δ1 of channel
1 is either π

2
(FL1) or zero (FL2). In contrast, the scattering phase δ2 of the tunnel-coupled

channel 2 changes continuously, except at the NFL-line. The behaviour at the NFL-line
is shown in Fig. 6.7(b). For j → jNFL from the FL2 (or FL1)-side, the phase is given by
δ2,NFL2 = π

2
(or δ2,NFL1 = 0) at Vg = 0, saturating at δ2,NFL2 = π

4
(or δ2,NFL1 = −1π

4
) for

|Vg/U | → ∞.
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Figure 6.6: Phasediagram in (Vg-j)-space. The NFL-line separates the regime where
channel 1 screens the local spin and channel 2 is decoupled (FL1) and vice versa (FL2).
jNFL increases linearly in the limit |Vg/U | → ∞. For the limit |Vg/U | ≈ 0, see Fig. 6.2.
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Figure 6.7: Properties at the NFL-line. (a) The jump of the scattering phase at the NFL-
line is always π

2 . For j → jNFL from the FL2 side, δ2 is given by δ2,NFL2 = π
2 for Vg = 0,

saturating at δ2,NFL2 = π
4 for increasing |Vg/U |. (b) The occupation at the NFL-line is

given by ndσ = 1
2 for Vg = 0 and saturates at ndσ = 0.25 (Vg > 0) and 0.75 (Vg < 0) for

increasing |Vg/U |.
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The experimentally accessible quantity to observe the NFL-line is the differential con-
ductance. Due to the related jump in phase when crossing the NFL line, also the con-
ductance exhibits a jump which can be observed. Let us assume that the conductance is
probed via reservoir 2 (which could be the even combination of a left and right channel
coupled with matrix elements tL, tR, respectively). The conductance then reads (see Eq.
(2.32) or [73]).

G/G0 =
1

2

∑
σ

sin2 δ2σ = sin2 δ2, (6.8)

where G0 = 2e2

h
sin 2θ with tan θ = |tL/tR|. Therefore, the jump of the conductance crossing

the NFL-line is given by

∆G/G0 =
[
sin2 δ2,FL2 − sin2 δ2,FL1

]
= 2 sin2 δ2,FL2 − 1, (6.9)

since the phase jump of δ2 is always π
2
. The evolution of ∆G as a function of the gate voltage

is shown in Fig. 6.8. At Vg = 0, δ2,FL2 = π
2
, thus ∆G/G0 = 1. In the limit |Vg/U | → ∞,

the phase approaches π
4
, therefore ∆G/G0 asymptotically goes to zero. The inset shows

the conductance for j → jNFL from the FL1 and FL2, respectively. The dependence of G
and ∆G on channel asymmetry, temperature and magnetic field for the two-channel Kondo
model is studied in [25].
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Figure 6.8: Differential conductance G (probed at channel 2) at the NFL line. The
jump in phase and therefore the NFL line manifest in a jump in G which can be observed
experimentally. In the limit |Vg/U | → 0 this jump vanishes. In the inset a zoom of G
approaching the NFL line from FL1 or FL2, respectively, is shown.

To visualize the difference of the Kondo-Anderson model to the scenario of Fig. 6.1, we
show for conclusion the NFL-line in (ndσ-j)-space in Fig. 6.9. There one can see that, actu-
ally, below nc

dσ = 1
4

no NFL-behaviour does occur. However, the NFL-line does not stop at
nc

dσ but approaches infinity asymptotically with increasing spin-spin coupling. Therefore,
in the Kondo-Anderson model, it is not possible to connect the two Fermi liquid regions
FL1 and FL2 without crossing the NFL-line. This qualitatively coincides with a result of
Anders et al. [91] where they study a related model for |Vg/U | < 0.5.
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Figure 6.9: Phase diagram in (ndσ-j)-space for the Kondo-Anderson model. High enough
Ss-coupling between channel 1 and the local level forces the occupation to remain finite.
On the NFL-line, the occupation saturates at ndσ = 0.25 and 0.75, respectively. Therefore,
in the Kondo-Anderson model, the two Fermi liquids FL1 and FL2 are not connected,
contrary to the considerations sketched in Fig. 6.2.

The two main conceptual differences between the considerations that lead to Fig. 6.1
and the Kondo-Anderson model are, that (i) in the Kondo-Anderson model large enough
spin-spin coupling always favours the occupation to stay between 1

4
and 3

4
, therefore ex-

tending the local moment regime allowing for Kondo physics to |Vg/U | → ∞, and that
(ii) the effective couplings of the two channels do not scale equally with Vg,resulting in the
asymmetry in j of Fig. 6.9. In the next Section we analyze a model where both channels
are tunnel-coupled to the local level in the same way, to ensure that point (ii) is eliminated.

6.3 Two-channel Pustilnik model

The second model that we analyze, proposed by M. Pustilnik (private communication), is
symmetric w.r.t. channel 1 and channel 2, therefore the effective couplings evolve equally
when sweeping the gate voltage. We find a NFL-line for J1 = J2 in the regime where
ndσ ≈ 0.5. The NFL-line ends at some critical gate voltage, similar to Fig. 6.1. Con-
trary to the simple considerations that motivated that Figure, we find a non-monotonic
behaviour of the occupation. The non-monotonicity occurs at a critical gate voltage V c

g

for J1 = J2, but it also exists for arbitrary asymmetry.

We first introduce the model, then present NRG energy-flow diagrams that clarify the
FL or NFL-character of the system. In a third part the jump in occupation is analyzed.

6.3.1 The model

The Hamiltonian of the Pustilnik model consists of four parts,

H = Himp + Hres + Himp−res + HM , (6.10a)
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describing the local level, the non-interacting reservoirs, the tunnel coupling between the
reservoirs and the local level and a fourth term that suppresses inter-channel particle
exchange, respectively. The four contributions are given by

Himp =
∑

σ

εdndσ + Und↑nd↓, (6.10b)

Hres =
∑

α=1,2

∑
kσ

εkc
†
αkσcαkσ, (6.10c)

Himp−res =
∑

α=1,2

∑
kσ

Vl(c
†
αkσdσ + d†σcαkσ), (6.10d)

HM = Ec(n1 − n2)
2. (6.10e)

For Ec > 0, the last term can be interpreted as a Coulomb-like potential that favours the
reservoirs to be equally occupied (nα=1,2 =

∑
kσ c†αkσcαkσ), thus suppressing all tunnelling

processes that contribute to a mixing of the channels. Note, that this term also disfavours a
change in the local occupation. The term HM cannot be treated within the NRG formalism.
It combines operators with arbitrary k, thus cannot be transformed to a Wilson chain-like
Hamiltonian.

Following the idea of [92, 91], HM can be mapped to yield a local term that is treatable
with standard NRG. This is done by introducing the pseudo spin operator M̂ , where

Mz ≡ n1 − n2 =
∞∑

m=−∞

m|m〉〈m| (6.11)

labels the occupation difference between the channels. m is lowered or increased by the
operators

M± = |m± 1〉〈m|. (6.12)

According to the tunnelling processes between reservoirs and local level, Himp−res (6.10d)
is replaced by

Himp−res =
∑
kσ

V1(M
+c†1kσdσ + h.c.) + V2(M

−c†2kσdσ + h.c.). (6.13)

For consistency in notation (compared to Fig. 6.1), the level broadening is henceforth
denoted by Ji = πρV 2

i (usually called Γi). At temperature T � Ec, asymmetric occupation
is strongly suppressed, thus one can restrict the discussion to a finite-size local subspace,
Mz =

∑m̃
m=−m̃ m|m〉〈m|. Then, the Coulomb-like potential term HM (6.10e) reads

HM = Ec(Mz)
2. (6.14)

The resulting Hamiltonian can be treated with NRG: the Hilbert space of the first
iteration is built not only of the state space of the local level (dimension 4) and the
first sites of the Wilson chain (dimension 4 for each site and channel), but also of the
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2m̃ + 1−dimensional state space of the pseudo spin, as indicated in the second model
illustrated in Fig. 3.8(d).

We use Ec/U = 0.4 and fix the total coupling to J/U = 0.1, where J = J1 + J2 and
U = 1. An asymmetry parameter α is defined by

α =
J1 − J2

J
, (6.15)

yielding α = 0 for symmetric coupling and α = ±1 if one of the channels is decoupled.

In our calculations we use m̃ = 1, 2; checks with up to m̃ = 4 qualitatively lead to
the same results. In order to keep enough states as well as to cover all relevant energy
scales with reasonable computational cost, we keep about 6000 states for the first 4 − 10
iterations and choose the NRG discretization parameter to be Λ ≥ 3. Checks for up to
9000 kept states during the first 20 iterations qualitatively lead to the same results.

6.3.2 Energy flow diagrams

Information about the FL or NFL character of the system can be obtained by analyzing the
NRG flow diagrams, see App. C. Typical examples of flow diagrams of the Pustilnik model
are shown in Fig. 6.10. For α = 0 (symmetric coupling) the energy flow is shown in Fig.
6.10(a-c). In the particle-hole symmetric point, see (a), the lowest energy levels are given
by 1, 4, 5 and 8 (in units of the lowest excited level), typical for the two-channel Kondo
effect. For increasing |Vg|, the degeneracy of the levels is lifted but the NFL structure is
still apparent, see (b). At the critical gate voltage V c

g /U ≈ 0.4799, the structure of the
energy flow changes abruptly to a FL spectrum, as shown in (c) for |Vg| & Vg. V c

g /U
depends on Ec/U . We find V c

g < 0.5 always.

A small asymmetry in the couplings, α 6= 0, results in a FL spectrum for all Vg. Fig.
6.10(d-f) show flow diagrams for the same gate voltages than (a-c), but at α = 0.05. As
for α = 0, an abrupt change in the flow diagrams is observed at ∼ V c

g . As explained in
App. C, in (d,e) the flow starts similar to α = 0, but changes to FL behaviour at iterations
where the asymmetry in the couplings is resolved. For |Vg| > V c

g , the system is a FL for
all couplings, thus the energy spectra in (c) and (f) are similar.

6.3.3 Occupation

We calculate the mean value of the local occupation of the Pustilnik model with NRG, as
explained in Chapter 3.5. The local occupation ndσ is shown in Fig. 6.11(a) as a function
of gate voltage. We find for all values of α a sharp jump (within our resolution) from
ndσ . 1

2
to ndσ & 0 at some critical gate voltage. The Figure visualizes the two extreme

cases of (i) symmetric coupling, α = 0, where the position of the jump coincides with the
border between NFL and FL, and (ii) α = 1, where channel 2 is physically decoupled, i.e.
J2 = 0 and J1 = J , since J1 +J2 = J is kept constant. The results qualitatively agree with
the phase shifts extracted from the flow diagrams in the FL regions (here δ1 + δ2 = πndσ).
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Figure 6.10: NRG flow diagrams of the Pustilnik model. Λ = 3, m̃ = 1. (a-c) α = 0:
At V c

g /U ≈ 0.4799, the flow diagram changes abruptly from NFL [(a), |Vg| = 0, (b)
|Vg/U | = 0.478] to FL [(c) |Vg/U | = 0.48] characteristics. (d-f) α = 0.05: Same Vg than in
(a-c). For asymmetric couplings, the system is a FL for all Vg. Still an abrupt change in
the flow diagrams is observed at |Vg| ∼ V c

g .

The α-dependence of the critical gate voltage is shown in Fig. 6.11(b). For J =const. it
seems to obey a quadratic rule, V c

g (α) ≈ (0.067α)2 + V c
g (0).

The jump can be understood as follows: Independent of any initial asymmetry in the
couplings, the Coulomb-like term HM suppresses a change in occupation of the reservoirs.
Consequently, this term also counteracts a change in local occupation ndσ. This is similar
to an impurity system that exhibits Kondo-like coupling (favouring ndσ = 0, 1

2
), together

with a small tunnelling term. Therefore, both the local-moment regime with ndσ ≈ 1
2
, as

well as the empty-orbital regime, where ndσ∼0, are extended maximally. Consequently, the
mixed-valence regime usually connecting the two regimes does not exist and the occupation
jumps abruptly as a function of Vg. Whether there is some critical value Ec for the jump
to occur is left for further studies. In the limit Ec →∞ the tunnelling contribution is
expected to vanish and the difference in occupation at the jump approaches 1

2
.

The results for the Pustilnik model are very encouraging, in that they suggest that
an abrupt transition between NFL and FL regimes as functions of Vg does indeed occur.
It would be very interesting to follow up this study with a detailed investigation of the
properties of this critical point, but that lies beyond the scope of this thesis.
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Figure 6.11: Local occupation ndσ of the Pustilnik model. Λ = 4, m̃ = 2. (a) Occupation
for both extremal cases α = 0 (J1 = J2) and α = 1 (J1 = J, J2 = 0). For any α we
find a jump in the occupation at some critical gate voltage V c

g (α). This agrees with the
abrupt change in flow diagrams, see Fig. 6.10(e,f). (b) For J =const. V c

g seems to depend
quadratically on α. For Ec/U = 0.4, we find V c

g (α) ≈ (0.067α)2 + V c
g (0).
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Appendix A

Spectral function

A.1 Smoothening discrete data

A NRG calculation of a spectral function via the Lehmann sum (3.23) yields a discrete set
of data points (ωj, aj),

Araw(ωi) =
∑

j

aj δ(ωi − ωj). (A.1)

In this Appendix, we explain the basics about the typical structure of (ωj, aj), show the
effects of the broadening of the raw data to a smooth function and explain some tricks to
improve the results.

Without loss of generality, the discussion is done for positive frequencies of a symmetric
single-level Anderson model (where A(ω) = A(−ω) anyway). As in Chapter 3.5, we use
U = 0.3, Γ = 0.014 and the NRG parameters Λ = 2.1 and Nkept ≈ 1024 for the first 30
iterations, then Nkept ≈ 512.

A.1.1 Discrete data

Figure A.1(a) shows typical NRG raw data (ωj, aj) in the Kondo regime. Due to the
logarithmic discretization, the density of data points increases exponentially with ω → 0.
For ω � TK , no new physics is expected. Remember that also the flow diagram is constant
in that regime, see Fig. 3.3(a). Therefore, the structure of the data does not change any
more. It can be modelled by

ωl ∝
1

2
(1 + Λ−1) Λ−(l−1)/2, al ∝

1

2
(1 + Λ−1) Λ−(l−1)/2, (A.2)

thus al/ωl = const., and the spectral weight is constant in that regime. l = 1, 2, . . ..
“z-averaging” [49]: The density and therefore the quality and resolution of the raw

data can be increased by combining several (say Nz) data sets obtained for slightly shifted
logarithmic discretizations (Λ−n → Λ−n−z). In order to obtain a regular data grid, the
values of z are chosen to lie at equidistant intervals (of range ∆z) between −0.5 and 0.5.
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To ensure normalization, A(ω) = 1/Nz

∑
z Az

raw(ω). The raw data shown in Fig. A.1(b)
consists of 5 data sets (each indicated by different colour), thus ∆z = 0.2. For each choice
of z, the tridiagonalization leading to the Wilson chain has to be done separately. Note
that z-averaging does not cure NRG intrinsic errors due to the logarithmic discretization.
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T= 0   Γ/U= 0.0467,  Λ=2.1

Figure A.1: Raw data for the spectral function A(ω) of the symmetric single-level An-
derson model at T = 0 for Λ = 2.1, U = 0.3 and Γ = 0.014. The Kondo temperature
TK = 10−5 and U are indicated by arrows. (a) For ω � TK , clearly aj/ωj = const., as in
the model data (A.2). Inset: Same data on a log-log scale. (b) 5 data sets (ωz

j , a
z
j ) obtained

for slightly shifted discretization grids (∆z = 0.2) are combined to one (dense) data set
[49].

A.1.2 Smooth curves

Equation (A.1) yields a set of discrete δ peaks. A smooth curve can be obtained by
broadening of the δ functions [48]. This is done by folding of the raw data with a properly
chosen kernel K(ω, ω′),

A(ω) ≡
∫

dω′K(ω, ω′)Araw(ω′). (A.3)

A common choice for the kernel K is a log-Gaussian for ω & ω0 and a Lorenzian [51] or
regular Gaussian [44] for connecting the regimes ±ω . ω0, where ω0 ≈ T . In this work,
we follow the approach of [44] and use ω0 = T/2. Then, at T = 0, the kernel is given by
the log-Gaussian

L(ω, ω′) =
θ(ωω′)√
πσ|ω|

e
−

“
log |ω/ω′|

σ
−σ

4

”2

. (A.4)

On a logarithmic scale, where the raw data is almost uniformly distributed, this is a
Gaussian of width ∝ σ always. Therefore this kernel allows to treat high and low energy
data in the same way. Since

∫
dωL(ω, ω′) = 1, it conserves the overall spectral weight,∫

dωA(ω) =
∫

dωAraw(ω). The influence on the broadening parameter σ is presented in

Fig. A.2(a). Usually, σ ≈ 1/
√

Λ leads to a nicely smoothened curve without suppressing
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details. For small choices of σ, the underlying discretization gets visible. A(ω) is not
constant for ω � TK (due to broadening). This can be cured with z-averaging. Then also
small values of σ are allowed, see Fig. A.2(b), so that sharp features can be resolved.
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Figure A.2: Smoothened spectral function A(ω) of the symmetric model at T = 0 for
Λ = 2.1, U = 0.3, Γ = 0.014. Various widths σ of the log-Gaussian kernel are used. Same
raw data as shown in Fig. A.1 is used. (a) For small values of σ, the underlying discreteness
of the raw data is resolved. Inset: Same data on a linear ω-scale. Often, a good choice of
σ is given by σ = 1/

√
Λ (here: ≈ 0.7). (b) With z-averaging, much smaller values of σ can

be used.

Further improvement of the spectral function (e.g. A(ω = 0)πΓ = 1) is obtained by the
self-energy representation, presented in the next Section.

A.2 Self-energy representation

In the Heisenberg picture, the time evolution of an operator B(t) = eiHtBe−iHt can be
expressed as a linear differential equation,

Ḃ = − i

}
[B, H] . (A.5)

We use } = 1 in the following. Bulla et al. [50] showed that applying this equation of mo-
tion to local correlation functions, the quality of spectral functions obtained with NRG can
be improved significantly. The local correlator is written in terms of the self-energy which
in turn is a ratio of two correlators that both can be calculated with NRG. Dependencies
of each correlator on the discretization parameter Λ or on broadening parameters cancel
to a high degree, leading to high quality curves. Additionally, the exact solution for T = 0
and U = 0 can be obtained - useful to test the accuracy of the results (e.g. in dependence
of Nkept, Λ, etc.). A comparison of the spectral function at finite U calculated with and
without the self-energy representation is given in Fig. A.3.
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For keeping notation simple, we write (where convenient) the retarded correlation func-
tion between two operators D and B as

GR
DB(t) = 〈D||B〉t = −iθ(t)〈[D(t), B]+〉, (A.6)

with the Fourier transform 〈D||B〉ω. For convenience, we usually drop the index ω and R.
Square brackets with index + correspond to anti-commutation, without index to commu-
tation.

With Eq. (A.5), the equation of motion of a correlation function GDB(t) reads

d

dt
GDB(t) = −iθ(t)〈[−i [D, H] , B]+〉 − iδ(t)〈[D, B]+〉. (A.7)

Fourier transformation together with analytic continuation ω → ω1 + iω2 ≡ z leads to

zGDB(z) = G[D,H]B(z)− tr
(
ρ [D, B]+

)
. (A.8)

A.2.1 Example: Single-level Anderson model coupled to super-
conducting leads

As an example, we derive the self-energy representation of the local Green’s function for
a single level coupled to a superconducting reservoir, a model studied in Chapter 5. The
Hamiltonian is given by

H =
∑

σ

εdnσ + Un↑n↓ +
∑
kσ

V (c†kσdσ + d†σckσ) (A.9)

+
∑
kσ

εkc
†
kσckσ −

∑
k

∆ (c†k↑c
†
−k↓ + c−k↓ck↑).

For the calculation of the Green’s function of this system it is convenient to work in Nambu
space, where the operators are combined to the spinors

D† ≡
(

d†↑
d↓

)
, C†

k ≡
(

c†k↑
c−k↓

)
, (A.10)

which obviously fulfil the standard fermionic anti-commutation relations by components,
[Ckµ,C

†
k′µ′ ]+ = δkk′δµµ′ and [Ckµ,Ck′µ′ ]+ = 0, analogously for Dµ. Thereby µ = 1, 2

denotes the first and second component of the spinors. In this representation, the Hamil-
tonian (A.9) reads

H = (εd +
U

2
) Nd +

U

2
(Nd)

2 +
∑
k

V (C†
kσzD + H.c. ) +

∑
k

C†
kAkCk, (A.11)

where we use Nd = D†σzD, Ak = εkσz−∆σx, and the Pauli matrices σz and σx. The local
Green’s function

G∆(ω) = 〈D||D†〉 =

(
〈d↑||d†↑〉 〈d↑||d↓〉
〈d†↓||d

†
↑〉 〈d†↓||d↓〉

)
(A.12)
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can then be calculated componentwise by evaluation of the equation of motion (A.8). The
commutator [Dµ, H] yields

[Dµ, H] = εdsµDµ + UDµNd +
∑
k

V sµCkµ, (A.13)

where for simplicity of notation we define sµ = σz,µµ. The resulting equation of motion
reads

(z − sµεd) 〈Dµ||D†
µ′〉 = U〈DµNd||D†

µ′〉+
∑
k

sµV 〈Ckµ||D†
µ′〉 − δµµ′ . (A.14)

The correlators 〈Ckµ||D†
µ′〉 still need to be expressed in terms of local operators. For this

we apply Eq. (A.8) to 〈Ckµ||D†
µ′〉,

z〈Ckµ||D†
µ′〉 = sµV 〈Dµ||D†

µ′〉+ sµεk〈Ckµ||D†
µ′〉 −∆〈Ckµ̄||D†

µ′〉, (A.15)

where µ̄ 6= µ. Replacing the last term by the analogous expression with interchanged µ
and µ̄, we arrive at

〈Ckµ||D†
µ′〉 =

[
z − sµεk +

∆

z + sµεk

]−1

V sµ

(
〈Dµ||D†

µ′〉+
∆

z + sµεk

〈Dµ̄||D†
µ′〉
)

. (A.16)

Inserting this result into Eq. (A.15), we obtain an expression where only local operators
contribute,

∑
β

(
zδµβ − εdσzµβ −

∑
k

V 2 zδµβ + εkσzµβ −∆σxµβ

z2 − (ε2
k −∆2)

)
〈Dβ||D†

µ′〉 = U〈DµN ||D†
µ′〉 − δµµ′ .

(A.17)
In the wide band limit where we assume a constant density of states in the leads ρ, the
summation over k leads to the hybridization term [85]

Π(z) = −Γ
z12 −∆σx

E(z)
, (A.18)

with Γ = πρV 2. Note that Π is usually referred to as ∆, which is already in use for the
superconducting gap in this Appendix. After analytic continuation, E(z) reads

E(ω) =

{
−isgn(ω)

√
ω2 −∆2 for |ω| > ∆,√

∆2 − ω2 for |ω| < ∆.
(A.19)

In matrix notation, the Green’s function is then defined by the equation(
ω12 − εdσz + Γ

ω12 −∆σx

E(ω)

)
G∆(ω) = UF (ω)− 12, (A.20)
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where the local correlator F is given by F (ω) = 〈DµN ||D†
µ′〉. For the non-interacting

Green’s function the analytic expression follows to be

G0∆(ω)−1 = ω12 − εdσz + Γ
ω12 −∆σx

E(ω)
. (A.21)

For each of the components of G0∆, this leads to an analytic expression for the corresponding
spectral function (A(ω) = − 1

π
ImG(ω)), which can be very useful for checking the NRG

results. As an example we give the formulas for the continuum contribution (|ω| > ∆) of
the 1− 1 component (as used in Chapter 5 mainly to check the broadening procedure for
the special case of superconducting leads at T = 0). Matrix inversion immediately yields

G0∆,11(ω) =
1

D(ω)
{(ω + εd) + i Γρ∆}, (A.22)

with the determinant D(ω) = (ω2 − Γ2 − ε2
d) + i 2Γωρ∆, where ρ∆(ω) = θ(|ω|−∆) |ω|√

ω2−∆2 is the
density of states of a bulk superconductor. Therefore the spectral function for U = 0,
T = 0 and |ω| > ∆ is given by

A(ω) =
(ω + εd)

2 + Γ2

(ω2 − ε2
d − Γ2)2 + (2Γ2ωρ∆)2

Γ ρ∆/π. (A.23)

A.2.2 General self-energy representation

Equation (A.20) can be rewritten in terms of the Dyson equation,

G−1(ω) = G−1
0 −Σ(ω), (A.24)

which is a general way to express impurity Green’s functions. Comparison with Eq. (A.20)
leads to the (also general) expression for the self-energy

Σ(ω) = UF(ω)G−1(ω). (A.25)

Therefore the self-energy can be obtained with NRG by the calculation of the two correla-
tion functions G and F [50]. To be precise, the imaginary part of the correlation functions
is calculated with NRG. The real part of GR is obtained by Kramers-Kronig transforma-
tion. Moreover, Bulla et al. [50] point out that the full Green’s function can be obtained
with higher accuracy when employing Eq. (A.24) compared to the direct evaluation of
G(ω). NRG-intrinsic errors as due to the Λ-discretization or the broadening procedure are
the same for G and F , therefore “cancel” up to some point in the self-energy Σ ∝ F/G.
Figure A.3 shows the example of the spectral function of the single-level Anderson model
calculated with and without this self-energy representation. The formulas for this case are
given below. Clearly, the oscillations due to the Λ-discretization reduce considerably and
the Friedel sum rule [21] stating A(0)πΓ = 1 is fulfilled to high extent.
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A.2.3 Example: M-level, N-lead Anderson model

As a further example we give the results for the M -level N -lead Anderson model (as used
in Chapter 4), which can be obtained via the equation of motion in a similar way. The
non-interacting Green’s function matrix then reads

G0(ω) = [ω1− h0 − Π(ω)]−1 , (A.26)

with the local term (h0)iµ,i′µ′ = εd,iµδii′δµµ′ , the hybridization

Πiµ,i′µ′(z) =
∑
µk

ViµkµV
∗
i′µkµ′

z − εk

δµµ′ = (−iπ + log{|(z − 1)/(z + 1)|})ρViµV
∗
i′µ (A.27)

and the F-correlation matrix Fiµ,i′µ′ = 〈diµ

∑
jµ′′ nd,jµ′′||d†i′µ′〉.
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Figure A.3: Improvement of the spectral function with the self-energy representation
for various broadening parameters σ. As for the previous Figures, we use T = 0, Λ = 2.1,
U = 0.3 and Γ = 0.014. (a) Aπ = Im[G], Im[F] as extracted directly from NRG. Both
functions show the same “artefacts” due to the logarithmic discretization and broadening.
Inset: Im[F] on a linear scale. (b) A(ω) calculated using the self-energy representation of
G. The artefacts cancel and the result is improved significantly. Much smaller value of σ
can be used. In this plot, the Friedel sum rule [21] (here: A(0)πΓ = 1) is fulfilled up to
0.15%.
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Appendix B

Relation between the Anderson and
the Kondo model

In the local moment regime of the Anderson model, the impurity level is fixed at εd �
EF � εd + U . Then the QD is approximately singly occupied; the empty or doubly occu-
pied states of the QD are energetically highly unfavourable. As motivated in Sec. 2.5, it is
intuitive to relate the Anderson model to an effective model of a local spin S interacting via
a ferromagnetic Heisenberg interaction with the spin s provided by the reservoir. The map-
ping was done rigorously in 1966 by J.R. Schrieffer and P.A. Wolff [30]. They presented a
canonical transformation, the Schrieffer-Wolff transformation, that relates the single-level
Anderson model in the local moment regime with the Kondo model, the model J. Kondo
had used in 1964 to explain the Kondo effect [1]. The existence of the transformation
proves that the single-level Anderson model (for which perturbation theory cannot solve
the Kondo problem) has similar low-temperature anomalies than the Kondo model [30] and
shows Kondo physics. The idea of the Schrieffer-Wolff transformation can be summarized
as follows: (i) Processes to first order in V are eliminated from the tunnelling amplitude
by a canonical transformation and (ii) then the system is project onto the subspace of one
local electron. The result is the Kondo model with an Heisenberg exchange interaction Jkk′ .

In the first part of this Appendix we apply the Schrieffer-Wolff transformation to a
two-channel Anderson-like model known to show Kondo physics [16]. We find no simple
direct relation between the Anderson-like model and the Anderson-Kondo model studied
in Chapter 6.2. In the second part we relate the Kondo temperatures of the single-level
Anderson model and the Kondo model presented in Sec. 2.4.3 and 2.5.1, respectively.

B.1 Schrieffer-Wolff transformation for a two-channel

model

Recently, Potok et al. [17] reported the experimental realization of the two-channel Kondo
effect. Their setup was motivated by a proposal of Oreg et al. [16], where a two-channel
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Anderson-like model was shown to lead to two-channel Kondo physics. The model consists
of a local level, tunnel-coupled to reservoir 1 and 2. Reservoir 1 is realized by a big dot,
modelled by a standard reservoir plus Coulomb energy U1 which ensures that the number
of particles in reservoir 1 is conserved. This results in two-channel Kondo physics, since
due to energy conservation, particle exchange between reservoir 1 and 2 is suppressed.

In Chapter 6.2 we studied a quite similar model, where channel 1 is coupled to the
impurity via antiferromagnetic Heisenberg coupling. At first glance one expects that, sim-
ilar to the Anderson and Kondo model, also in this case a Schrieffer-Wolff transformation
should provide a mapping between the two two-channel models. Following the original
article [30], we apply the Schrieffer-Wolff transformation to the Anderson-like model. But,
contrarily to the standard mapping where the state space of the impurity is projected to
single occupancy, the number of particles in channel 1 is kept constant and not on the local
level. We do not find a transformation directly relating the two models. Additional terms
are generated and the coupling constants are infinite series in the occupation and Coulomb
interaction of reservoir 1.

We start from the two-channel Anderson-like model proposed in [16],

H = H0 + H1, (B.1)

H0 = εdnd + Un↑n↓ +
U1

2
(N̂1 − nC)2 +

∑
α=1,2;kσ

εαkσnαkσ +
∑
kσ

V2(c
†
2kσdσ + H.c.),(B.2)

H1 = V
∑
kσ

(c†1kσdσ + H.c.). (B.3)

H1 is the tunnelling term we want to “eliminate” and replace by a Heisenberg interaction
with coupling constant J ∝ V 2. In the following, we drop the summation sign. Where
necessary for clarity, variables or operators related to the impurity are denoted by an
index d. N̂1 =

∑
k′σ′ n1k′σ′ counts the number of electrons on the big dot (reservoir 1). We

consider nC = 0, otherwise −U1N̂1nC can be included into the definition of εk.

B.1.1 Transformation of the Hamiltonian

We search a canonical transformation S such that the effective Hamiltonian

H̃ = eSHe−S (B.4)

is quadratic in V , i.e. it does not contain any terms of order V , V 3 or higher order. For

eS ≈ 1 + S +
1

2
S2 (B.5)

the effective Hamiltonian is given by

H̃ ≈ H0 + H1 + [S, H0] + [S, H1] +
1

2
[S, [S, H0]]. (B.6)
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It is easy to check that the terms of order V vanish for

H1 = −[S, H0], (B.7)

since under this condition S ∝ V . Consequently, the transformed (and approximated)
Hamiltonian reads

H̃ = H0 +
1

2
[S, H1] (B.8)

B.1.2 Appropriate transformation

We search a generator S such that H1 = [H0, S] is fulfilled. We start from S0, i.e. the
transformation for the standard Anderson model [30]. As usual, potential scattering terms
(∝ V V2c

†
1c2) are neglected. S is extended such that the term generated by the Coulomb

interaction of the impurity vanishes1. But, contrarily to the standard Schrieffer-Wolff
transformation, the equations do not close, because many electrons interact on the large
dot via the Coulomb interaction U1, and obviously N̂1N̂1 6= N̂1. The calculation yields

S = S0 + S1 +
∞∑

m=2

Sm (B.9)

S0 =
∑
kσ

V

ε̄k − εd

(c†1kσdσ −H.c.) +
∑
kσ

V

ε̄k − εd

U

ε̄k − εd − U
(c†1kσdσn

d
−σ −H.c.),

S1 = −
∑
kσ

V

ε̄k − εd

U1

ε̄k − εd

(c†1kσdσN̂1 −H.c.),

−
∑
kσ

V

ε̄k − εd

(
UU1

ε̄k − εd − U
− UU1

ε̄k − εd

)
1

ε̄k − εd − U
(c†1kσdσn

d
−σN̂1 −H.c.),

Sm =
∑
kσ

Xk
mc†1kσdσ(N̂1)

m +
∑
kσ

Y k
mc†1kσdσn

d
−σ(N̂1)

m −H.c.,

where Y k
m ∝ V UUm

1 and Xk
m ∝ V Um

1 . Apart from ε̄k = εk + U1

2
, S0 is the same than for the

standard Anderson model. Actually, for nC 6= 0 and U1

2
= U1nC , it is exactly the same.

It is convenient to shorten the result to

S =
∑

n

Sn =
∑

n

[(∑
kσ

Xk
nc†1kσdσ(N̂1)

n +
∑
kσ

Y k
n c†1kσdσn

d
−σ(N̂1)

n

)
−H.c.

]
. (B.10)

B.1.3 The effective Hamiltonian

Let us now evaluate H̃ = H0 + 1
2
[S, H1]. Operators with index d refer to the impurity, with

index k to the big dot (reservoir 1). Notation: Ψ†
k = (c†1k↑, c

†
1k↓), ~skk′ = (Ψ†

k1/2~σΨk′), with
~σi the Pauli matrix σi. Same for the dot.

1 It vanishes since nσnσ = nσ.
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The contribution of S0 leads to the well known result for the standard Anderson model,

1

2
[S0, H1] = 2Jkk′

~Sd · ~skk′ (B.11a)

+ 2(Wkk′ −
1

4
Jkk′(Ψ

†
dΨd))(Ψ

†
kΨk′) (B.11b)

− 2(Wkk −
1

2
Jkknd−σ)ndσ (B.11c)

− 1

2
Jkk′c

†
k−σc

†
k′σdσd−σ + H.c. (B.11d)

The coupling constants are given by

Jk′k =
1

2
UVkVk′

[
1

(εk − (εd + U))(εk − εd)
+

1

(εk′ − (εd + U))(εk′ − εd)

]
, (B.12)

Wk′k =
1

4
VkVk′

[
1

εk − εd

+
1

εk′ − εd

]
. (B.13)

In order to obtain the standard Kondo-model (when assuming a single-channel system),
the contributions of Eq. (B.11) are evaluated for the subspace of one electron on the dot

so that only the ~S~s term survives and the Kondo Hamiltonian

HK = 2Jkk′
~Sd · ~skk′ + εkσnkσ (B.14)

is obtained. For k, k′ ∼ kF = 0, the coupling constant is given by

J = − UV 2

εd(εd + U)
, (B.15)

as motivated in Sec. 2.5. The coupling is antiferromagnetic, J > 0, for −U < εd <
0. Actually, the Schrieffer-Wolff transformation does not make sense out of that regime
anyway.

In our case of the two-channel model, we focus on the subspace of constant number of
electrons in reservoir 1, i.e. < Ψ†

kΨk >=< N̂1 >= N1 = const. Then the contribution of
S0 results in:

• The first term describes the Kondo coupling.

• (Ψ†
kΨk′) is potential scattering and can be neglected.

• A term (Ψ†
dΨd)(Ψ

†
kΨk′) is generated.

• In the third line the impurity parameters εd and U of H0 are renormalized.

• The last term leads out of the subspace, thus cancels.
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Therefore, already S0 leads to a different Hamiltonian than studied in Chapter 6.2. But
let us now evaluate H̃ in its general form:

1

2
[Sn, H1]|<N̂1>=N1

= (B.16)

1

2

∑
kk′σσ′

{Xk
nV [ (c†1kσc1k′σ − nd

σ) (N1)
n

− (c†1kσc1k′σ′dσd
†
σ′) [

n−1∑
x=1

(N1)
n−x(N1 − 1)x]]

+Y k
n V [ (c†1kσc1k′σ − nd

σ) nd
−σ (N1)

n

+ (c†1kσc1k′−σdσd
†
−σ) (N1)

n

− (c†1kσc1k′σ′dσn
d
−σd

†
σ′) [

n−1∑
x=1

(N1)
n−x(N1 − 1)x]]

}+ H.c.

Written in SU(2) symmetric form, this reads

1

2
[Sn, H1] =

[
−Y kk′

n (N1)
n + (−Xkk′

n + Y kk′

n )(Mn)
]

~Sd~skk′ (B.17)

−
[
1

2
(N1)

n(Xkk
n − Y kk

n nd
−σ)

]
nd

σ

+

[
1

2
Xkk′

n (N1)
n +

1

2
Xkk′

n (Mn)

]
(Ψ†

kΨk′)

+

[
1

4
Y kk′

n (N1)
n − 1

4
(Xkk′

n + Y kk′

n )(Mn)

]
(Ψ†

dΨd)(Ψ
†
kΨk′)

+
1

2
Y kk′

n (Mn) c†kσck′σn
d
σn

d
−σ

were we used Y kk′
n = V (Y k

n + Y k′
n ), same for Xkk′

n . Therefore, Y kk′
n ∝ V 2

ε̂k
(U1N1)

n, Xkk′
n ∝

V 2

ε̂k
(U1)

n(Mn), with (Mn) =
∑n−1

x=1(N1)
n−x(N1 − 1)x. The terms for n = 0, 1 you can get

from Eq. (B.9). Except for the last term, the Hamiltonian has the same structure than the
S0 contribution. But the coupling constants are infinite series in the occupation N1 and
Coulomb interaction U1 of reservoir 1.

B.1.4 Some useful relations

− (Ψ†
d

σz

2
Ψd)(Ψ

†
k

σz

2
Ψk′) =

1

4
[−ndσc

†
kσck′σ + ndσc

†
k−σck′−σ] (B.18)

1

4
(Ψ†

dΨd)(Ψ
†
kΨk′) =

1

4
[ndσc

†
kσck′σ + ndσc

†
k−σck′−σ] (B.19)

−2Sd
zs

kk′

z +
1

2
(Ψ†

dΨd)(Ψ
†
kΨk′) = nd−σc

†
kσck′σ (B.20)
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B.2 Kondo temperature for the single-level Anderson

and the Kondo model

Applying the Schrieffer-Wolff transformation to the standard single-level Anderson model
[30], the coupling V of the Anderson model and the coupling J of the Kondo model are
related by Eq. (B.15),

J(Γ) = − Γ

πρ

U

(U + εd)εd

,

with Γ = πρV 2. For the symmetric case, where εd = −U/2, the relation yields

J(Γ) =
4Γ

Uπρ
. (B.21)

For the single-level Anderson model the scale of the Kondo temperature can be esti-
mated by poor man’s scaling [29] or by Bethe-Ansatz [28]

TAM
K =

√
UΓ

2
e−

π
2UΓ

εd(U+εd). (B.22)

Note that, depending on convention, TK is often multiplied by the Wilson number w =
0.41071 that can be extracted from the exact Bethe Ansatz.
For the Kondo model perturbation theory or poor man’s scaling to second order in J lead

to T
O(J2)
K ≈ De−1/2Jρ, as derived in Sec. 2.5.1, see Eq. (2.20). Poor man’s scaling to third

order in J is more sophisticated,

T
O(J3)
K ∼ DKM |2Jρ|2 e−1/2Jρ. (B.23)

This is the formula that agrees with the results of NRG for the Kondo model.

But it is known that relating the Anderson model and Kondo model, the effective
bandwidth DKM of the Kondo model is proportional to the Coulomb energy U of the
Anderson model, DKM = cU . Therefore, relating the symmetric Anderson model to the

Kondo model, TAM
K (Γ) = T

O(J3)
K (J(Γ)), one finds the proportionality constant c to be

c =
√

π
4

.
It is important to keep this U -dependence of the Kondo bandwidth in mind when

comparing NRG results obtained for the Anderson model and the corresponding Kondo
model, see Fig. B.1. There the flow diagrams for a Kondo model with J = 0.1 and a
symmetric Anderson model with Γ(J = 0.1) and U = 0.2 are shown. Clearly the iteration
where the system changes to the strong coupling limit differs for the two models. They are
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well described by the Kondo temperatures given by Eq. (B.23) for the Kondo model with
DKM = 1 and Eq. (B.22) for the Anderson model, respectively. Both Kondo temperatures
are indicated by a vertical line. The Figure also shows the Kondo temperatures for the
effective couplings Jeff and Γ(Jeff ), where Jeff (Λ) = J/A(Λ) with A(Λ) = 1

2
ln Λ1+λ−1

1−λ−1

takes the NRG intrinsic discretization with discretization parameter Λ into account [38].

0 20 40 60
iteration N

0

1

2

3

E
i / 

ω
N

KM
AM

TKAM

TKeff
AM

TKeff
KM

TKKM

J=0.1, U=0.2, Λ=2.5

Figure B.1: NRG flow diagram for a Kondo model with J = 0.1 and the corresponding
symmetric Anderson model with Γ(J = 0.1) and U = 0.2. The NRG discretization parame-
ter is chosen to be Λ = 2.5. The energy scale of the transition to the strong coupling regime
differ by a factor of ∝ U . The Kondo temperatures (for J as well as Jeff (Λ), see text)

are indicated by vertical lines. For the Kondo model T
O(J3)
K is given by Eq. (B.23) with

DKM = 1, for the Anderson model we use Eq. (B.22) multiplied by the Wilson number
w ≈ 0.41071.
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Appendix C

Scattering phases and NRG flow
diagrams

At T = 0, a Fermi liquid can be described by potential scattering. It is therefore fully
characterized by the scattering matrix. Accordingly, the low lying energy levels of the
converged NRG flow diagrams can be understood in terms of the scattering phases δνσ

defined by the eigenvalues eiδνσ of the scattering matrix, with ν = 1, 2 denoting the two
(spinful) eigenchannels.

Within the NRG method, the Hamiltonian of an impurity system like the Anderson
or Kondo model is transformed to a chain Hamiltonian that can be solved iteratively by
successively adding sites, thereby increasing the energy resolution. For details, see Sec. 3.
Actually, with increasing chain length N , not only the energy resolution gets enhanced like
∼ Λ−(N−1)/2, but also the length scale of the system increases like L ∼ Λ(N−1)/2 [38]. Λ > 1
is an NRG parameter characterizing the logarithmic discretization of the conduction band.

Therefore, if the stable low-energy fixed-point is reached (i.e. at iterations where the
system rescaled by Λ−(N−1)/2 is self-similar and the resulting spectrum is invariant w.r.t.
added sites), the rescaled spectrum is the spectrum of a system of size L in units of 2πvF /L,
with vF the Fermi velocity.

It can then be understood in terms of boundary conformal field theory [37]. In case
of a Fermi liquid, the fixed-point spectrum is equal (within the accuracy of NRG) to the
spectrum of the effective fixed-point Hamiltonian [37, 93]

Hfp =
∑
νσ

∆ν

(
q − δνσ

π

)
c†q,νσcq,νσ. (C.1)

Here, q is integer (half-integer) for even (odd) NRG iterations and ∆ν are Λ-dependent
constants to be determined from the NRG spectrum.

The spectrum of Hfp is built of four equidistant free-particle spectra (labelled by ν), each
shifted by the phase δνσ. Actually, δν↑ = −δν↓ for zero magnetic field, thus we use δν = δν↑
for convenience. The phases can be extracted from the NRG flow diagrams by comparison
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with the many-body spectrum constructed out of the four shifted single-particle spectra,
see Chapter 5. To identify the states from the constructed and the NRG spectra with
each other, labelling with quantum numbers is useful. Note that an exactly equidistant
energy spectrum is only obtained in the limit Λ → 1, where the NRG transformations are
exact. With increasing Λ some of the degeneracies are lifted, compare for examples the
flow diagrams of Fig. C.1(a) (Λ = 2) and Fig. B.1 (Λ = 2.5). Usually it is possible to
extract the phases out of the lowest lying levels which are unconcerned of this effect.

The example of a flow diagram for the symmetric Anderson-model is shown in Fig.
C.1(a). The low-energy fixed-point is characterized by an equidistant energy spectrum for
the lowest levels. The ground state is non-degenerate. The equidistant levels are separated
by ∆1/2. Thus, as expected for the symmetric Anderson model, the phase is given by
δ1 = π/2. The second eigenchannel of the scattering matrix decouples from the impurity,
thus δ2 = 0. It is not included in the NRG calculation. A NRG flow diagram of a non-Fermi
liquid is given in Fig. C.1(b). It shows the case of a the two-channel Kondo model, see Eq.
(6.1). The ground state is two-fold degenerate and the lowest energy levels are given by 1,
4, 5, 8 in units of the lowest excitation. Clearly the flow diagram cannot be explained by
equidistant single-particle spectra.

Further flow diagrams are given in Figs. 6.3 and 6.10 for two-channel models that in
a certain regime exhibit non-Fermi liquid behaviour. Not only the (non-)Fermi liquid
character and the phases (if existent) can be extracted, but also the competition between
the two disconnected channels can be seen.
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∆

(a) (b)one-channel Kondo model, J=0.1 two-channel Kondo model, J1=J2=0.1

Figure C.1: NRG flow diagrams. The low-energy fixed point can be explained by bound-
ary conformal field theory [37]. (a) One-channel Kondo model. The energy spectrum of
the Fermi liquid is related to phase-shifted equidistant single-particle spectra with level
distance ∆. Here δ1 = π/2. J = 0.1, Λ = 2. Note that for increasing Λ, some of the degen-
eracies are lifted, see e.g. Fig. B.1. (b) Two-channel Kondo model. In case of a non-Fermi
liquid scattering theory does not apply, thus the energy levels cannot be related to scatter-
ing phases. The energy spectrum shows the typical 1 − 4 − 5 − 8 pattern. J1 = J2 = 0.1,
Λ = 2.



Appendix D

Some fermionic commutation
relations

All fermionic operators obey the anti-commutation relations[
ci, c

†
j

]
+

= δij, (D.1)[
c†i , c

†
j

]
+

= [ci, cj]+ = 0. (D.2)

For commutation relations, this results in[
ci, c

†
j

]
= 2cic

†
j − δij = −2c†jci + δij, (D.3)[

c†i , c
†
j

]
= 2c†ic

†
j, [ci, cj] = 2cicj. (D.4)

Useful commutator properties (independent on the operator statistics):

[ab, cd] = a[b, c]d + [a, c]bd + ca[b, d] + c[a, d]b (D.5)[
a†, b†

]
= −([a, b])† (D.6)

For composite operators these relations can be combined to

[ni, c
†
j] = c†iδij, (D.7)

[ni, cj] = −ciδij, (D.8)[
ni, c

†
jck

]
= c†jckδij − c†jckδik, (D.9)[

ni
↑n

i
↓, c

†
jσckσ

]
= c†iσckσni−σδij − c†jσckσnk−σδik, (D.10)[

ninj, c
†
k

]
= c†k(niδjk + njδik) + c†kδijk, (D.11)

[ninj, ck] = −ck(niδjk − njδik) + ckδijk, (D.12)

[(Nk)
m, ck] = −

m−1∑
x=1

(Nk′)
m−xck′(Nk′)

x; Nk′ =
∑
k′

nk′ , (D.13)
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[
a†b, c†d

]
= a†dδbc − c†bδad (D.14)

and ∑
k′

[
ckσ, c

†
k′↑c

†
−k′↓ + H.c.

]
= σc†−k,−σ, (D.15)∑

k′

[
c†kσ, c

†
k′↑c

†
−k′↓ + H.c.

]
= −σc−k,−σ. (D.16)
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Miscellaneous
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Deutsche Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit dem Transport durch Quantenpunkte. Sys-
teme mit Quantenpunkten ermöglichen Studien des Quantentransportes, sowie der damit
verknüpften grundlegenden physikalischen Effekte, wie z.B. dem Kondoeffekt, unter wohlkon-
trollierten Bedingungen. In dieser Arbeit behandeln wir Quantenpunkte, die sich gut durch
Störstellenmodelle nach Anderson beschreiben lassen. In diesen Modellen sind die diskreten
Niveaus des Quantenpunktes durch Tunnelprozesse an fermionische Bäder gekoppelt. Die
Modellparameter, wie Energie und Breite der Niveaus, lassen sich im Experiment kontrol-
liert verändern. Hierdurch ermöglichen diese Systeme den direkten Test von Experiment
gegenüber Theorie und umgekehrt. Um die Eigenschaften dieser stark korrelierten Systeme
zu berechnen, verwenden wir die numerische Renormierungsgruppenmethode (NRG) [2].

Die Resultate dieser Arbeit sind in drei Projekte untergliedert. Das erste und umfangre-
ichste Projekt beschäftigt sich mit der Transmissionsamplitude durch Quantenpunkte und
insbesondere mit der Phase der Transmission. Messungen an Quantenpunkten mit vielen
Elektronen, d.h. für kleine Niveauabstände, ergeben ein universelles Verhalten der Phase,
d.h. die Phase ist unabhängig von den einzelnen Niveaus oder den verwendeten Proben
[3, 4, 5]. Dieses experimentelle Resultat war fast zehn Jahre lang unverstanden. Neuere Ex-
perimente [5] hingegen zeigen, dass die Transmissionsphase bei Quantenpunkten mit weni-
gen Elektronen, d.h. grossen Niveauabständen, mesoskopisches Verhalten zeigt: Sie hängt
von den Parametern der einzelnen Niveaus bzw. Quantenpunkte ab. Wir zeigen, dass das
generische Verhalten durch ein Andersonmodell mit mehreren Niveaus reproduziert wer-
den kann: Mesoskopisches bzw. universelles Phasenverhalten ergibt sich für wohlseparierte
bzw. überlappende Niveaus. Eine Analyse der renormierten Einteilchenniveaus zeigt, dass
sich in letzterem Fall ein überproportional breites Niveau in der Nähe der Fermikante
bildet. Der universelle Phasencharakter ergibt sich dann aus Fano-Antiresonanzen dieses
breiten mit den schmaleren renormierten Niveaus. Moderate Temperaturen verstärken den
universellen Charakter der Phase. Für den Fall wohlseparierter Niveaus untersuchen wir
weiters den Effekt von Kondokorrelationen auf die Transmissionsphase. Ein zweites Projekt
beschäftigt sich mit einem Quantenpunkt mit einem Niveau, welcher an ein supraleiten-
des Bad gekoppelt ist. Wir zeigen, dass die Energieauflösung der NRG Methode nicht
durch die Grösse der Energielücke des Supraleiters beschränkt ist, wodurch es möglich
ist, auch scharfe Strukturen in der Spektralfunktion aufzulösen. Damit finden wir im Fall
von kleinen Energielücken schmale Spitzen in der Spektralfunktion bei Energien nahe der
Bandkante. In einem dritten Projekt untersuchen wir einen Quantenpunkt, der an zwei un-
abhängige Bäder gekoppelt ist, wodurch im Kondobereich Nichtfermiflüssigkeitsverhalten
auftreten kann. Mittels zweier Modelle untersuchen wir den Übergang zum normalen
Verhalten einer Fermiflüssigkeit. Unsere Untersuchungen ergeben, dass die Ausdehnung
des Parameterbereiches in welchem Nichtfermifluessigkeitsverhalten vorliegt stark von den
Kopplungsmechanismen zwischen Quantenpunkt und Bädern abhängt.
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Peter Fritsch, Udo Hartmann and Markus Storcz for sweeties-supply. Stefan Kehrein for



174 Acknowledgements

his encouraging comments. Ralph Simmler for the Dachstein course and, together with
his team, for the maintenance of the cluster. And, of course, the rest of the group, Wolf-
gang Münder, Florian Bauer, Maximilian Treiber, Björn Kubala, Max Ludwig, Clemens
Neuenhahn, Ferdinand Helmer, Alexander Hoffmann, Alexander Buchner, Markus Heyl,
Barbara Englert, Enrique Solano, Afif Siddiki, Oleg Yevtushenko, Vitaly Golovach, Pei
Wang, Frank Wilhelm, Ioana Serban, Mikhail Kiselev, Johannes Ferber, Corinna Kollath,
Henryk Gutmann, Robert Dahlke, Andreas Friedrich, Stéphane Schoonover and Sylvia
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