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Motivated by recent experiments in ultracold atomic gases that explore the nonequilibrium dynamics of
interacting quantum many-body systems, we investigate the opposite limit of Landau’s Fermi-liquid
paradigm: We study a Hubbard model with a sudden interaction quench, that is, the interaction is switched
on at time t � 0. Using the flow equation method, we are able to study the real time dynamics for weak
interaction U in a systematic expansion and find three clearly separated time regimes: (i) An initial
buildup of correlations where the quasiparticles are formed. (ii) An intermediate quasi–steady regime
resembling a zero temperature Fermi liquid with a nonequilibrium quasiparticle distribution function.
(iii) The long-time limit described by a quantum Boltzmann equation leading to thermalization of the
momentum distribution function with a temperature T / U.
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The investigation of interacting quantum many-particle
systems in nonequilibrium has recently attracted a lot of
attention. A simple way to excite a system from its ground
state is an interaction quench, a sudden switch of parame-
ters in the Hamiltonian. The time evolution of the initial
state is then generated by the quenched Hamiltonian, for
which the initial state is generically not an eigenstate.
Recent experiments have implemented quenches of ultra-
cold atoms loaded on optical lattices and observed remark-
able subsequent dynamics described as iterated ‘‘collapse
and revival’’ of the initial superfluid phase [1,2]. Yet their
theoretical description remains a challenge since many
well-established equilibrium theoretical methods fail in
nonequilibrium. From a theoretical point of view, the
long-time limit poses particularly intriguing questions:
Will an interacting closed quantum system prepared in
some generic initial state equilibrate, that is behave like
the equilibrium system with some nonzero temperature
after waiting sufficiently long? In nonlinear classical sys-
tems similar questions have been addressed in a multitude
of publications since the seminal work by Fermi, Pasta, and
Ulam [3]. Nonequilibration has been linked to integrability
since an integrable system is constrained by an infinite
number of conservation laws.

However, much less is known about quantum systems.
Since a pure state remains a pure state under unitary time
evolution, the concept of thermalization is only meaningful
for suitable observables. First theoretical results have
shown that observables may approach limiting values or
exhibit persistent oscillations which, even when time aver-
aged, do not match with equilibrium properties [4,5]. A
proposition by Rigol et al. [6] gave a statistical description
for the stationary state of an integrable system in terms of a
generalized Gibbs ensemble. Conditions for the applica-
bility or nonapplicability of this scenario have been clari-
fied in [7], and specific results have been obtained for the
Luttinger model [8], hard core bosons in one dimension
[9,10], and the infinite dimensional Falicov-Kimball model

[11]. While the concept of a generalized statistical en-
semble proved helpful even for a less restrictive set of
constraints [12], the role of integrability has been ques-
tioned by further numerical works: Breaking the integra-
bility of spinless fermions on a 1D lattice has not altered
relaxation to a nonthermal state [12]. Similarly, for the
nonintegrable 1D Bose-Hubbard model signatures of ther-
malization could only be found for a limited regime of
quenches, while others seemed to drive the system to
nonthermal stationary states [13]. Exact results have been
obtained for the opposite case of quenches from the Mott
phase to the noninteracting Hamiltonian and show relaxa-
tion of local observables to a nonequilibrium steady state
[14].

Motivated by these questions, we study an interaction
quench in a Fermi liquid in d > 1 spatial dimensions, that
is, we suddenly switch on the interaction at time t � 0.
This is the extreme opposite limit of Landau’s adiabatic
switching on procedure, where one finds the celebrated
one-to-one mapping between physical electrons and qua-
siparticles. In the sudden quench scenario, the system is
prepared as the zero temperature ground state of the non-
interacting Fermi gas at times t < 0, and then, for t � 0,
subject to the time evolution with respect to the interacting
Hamiltonian. We find three regimes of the time evolution,
which are well separated for weak interaction: an initial
quasiparticle formation regime, followed by a quasi–
steady intermediate regime resembling a zero temperature
Fermi-liquid, and a long-time thermalization regime where
the momentum distribution function equilibrates. Con-
cretely, we investigate the fermionic Hubbard model at
half filling described by the following Hamiltonian
(Fermi energy �F � 0)
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and work out the time-dependent momentum distribution
functions Nk�t�. Notice that this system is clearly non-
integrable for d > 1 and one therefore expects generic
behavior. Most of our results are obtained in the limit of
high dimensions [15], but the calculation also applies to
finite dimensions with the same conclusions up to quanti-
tative details.

We study the above real time evolution problem by using
the approach introduced in [16]. One solves the Heisenberg
equations of motion for the operators that one is interested
in by performing a unitary transformation to an (approxi-
mate) eigenbasis of the interacting Hamiltonian. There one
can easily work out the time evolution and then transform
back to the original basis where the initial state is specified.
In this manner one induces a solution of the Heisenberg
equations of motion for an operator in the original basis but
without secular terms, which are usually a major problem
in other approximation schemes [17]. Figure 1 gives a
sketch of our approach. Notice that the same general idea
was recently also used by Cazalilla to study the behavior of
the exactly solvable one-dimensional Luttinger model sub-
ject to a quench [8].

Since our model is nonintegrable, we implement the
above diagonalizing transformation by the flow equation
method [18,19], which permits a systematic controlled
expansion for many equilibrium and nonequilibrium quan-
tum many-body problems [19]. One uses a continuous
sequence of infinitesimal unitary transformations parame-
trized by a parameter B with dimension �energy��2 that
connects the eigenbasis of the free Hamiltonian (B � 0)
with the energy diagonal basis of the interacting
Hamiltonian (B � 1). Each infinitesimal step of the uni-
tary transformation is defined by the canonical generator
��B� � �H0�B�; Hint�B�	, where H0�B� is the diagonal and
Hint�B� the interacting part of the Hamiltonian. This gen-
erator ��B� has the required property of making H�B�
increasingly energy diagonal for B! 1 [18]. All opera-
tors O�B� (including the Hamiltonian itself ) flow accord-
ing to the differential equation @O�B�=@B � ���B�;O�B�	.
Higher order terms generated by the commutator are trun-
cated after normal ordering (denoted by : :), and the flow
equations decompose into a set of ordinary differential

equations resembling scaling equations in a renormaliza-
tion approach. However, contrary to conventional renor-
malization schemes which reduce the size of the effective
Hilbert space, the flow equation approach retains the full
Hilbert space, which makes it particularly appropriate for
nonequilibrium problems (for more details, see [19]).

Flow equations for the Hubbard model.—First we work
out the diagonalizing flow equation transformation for the
Hubbard Hamiltonian. The expansion parameter is the
(small) interaction U and normal ordering is with respect
to the zero temperature Fermi-Dirac distribution:
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with Up0pq0q�B � 0� � U. The flow of the one-particle
energies and the generation of higher normal-ordered
terms in the Hamiltonian can be neglected since we
are interested in results in second order in U. The flow
of the interaction is to leading order given by Up0pq0q�B� �
U exp��B�2

p0pq0q� with an energy difference

�p0pq0q�
def
�p0 � �p � �q0 � �q.

Next we work out the flow equation transformation for
the number operator N k"�B� � Cyk"�B�Ck"�B�, which can be
obtained from the transformation of a single creation op-
erator Cyk"�B�. Under the sequence of unitary transforma-
tions the operator changes its form to describe dressing by
electron-hole pairs. A truncated ansatz reads
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We introduce the zero temperature momentum distribution

function of a free Fermi gas nk and define n�k �
def

1� nk and

a phase space factor Qp0pq0 �n	�
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flow equations for the creation operator are
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Here and in the ansatz (3) we have only taken into account
the terms that are required to describe the momentum
distribution function up to second order in U. The initial
conditions for the above transformation of Cyk" are hk�0� �

1 and Mk
p0q0p�0� � 0 [i.e., Cyk"�B � 0� � cyk"], and we de-

note the asymptotic values from the solution of (4) by
hk�B � 1; t � 0� and Mk

p0q0p�B � 1; t � 0�. Time evolu-
tion according to Fig. 1 yields hk�B � 1; t� � hk�B �
1; t � 0�e�i�kt and Mk

p0q0p�B � 1; t� � Mk
p0q0p�B �

1; t � 0�e�i��p0��q0��p�t, which are then input as the initial

FIG. 1. The Heisenberg equation of motion for an observable
O is solved by transforming to the B � 1 eigenbasis of the
interacting Hamiltonian H (forward transformation), where the
time evolution can be computed easily. Time evolution introdu-
ces phase shifts, and therefore the form of the observable in the
initial basis B � 0 (after a backward transformation) changes as
a function of time.
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conditions of the system of equations (4) at B � 1.
Integrating back to B � 0 gives the time evolved creation
operator in the original basis, and it is straightforward to
evaluate the time-dependent momentum distribution func-
tion with respect to the initial Fermi gas state [20].

Nonequilibrium momentum distribution function.—One
finds the following time-dependent additional term to the
distribution nk of the free Fermi gas in O�U2�:

 �NNEQ
k �t� � NNEQ

k �t� � nk

� �4U2
Z 1
�1

dE
sin2���k�E�t2 �

��k � E�2
Jk�E; n�: (5)

The phase space factor Jk�E; n� resembles the quasiparticle
collision integral of a quantum Boltzmann equation:
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For computational convenience we use the limit of infinite
dimensions, specifically a Gaussian density of states
���� � exp����=t
�2=2	=

�������
2�
p

t
 [15]. In the sequel �F �
��� � 0� denotes the density of states at the Fermi level.
Results from a numerical evaluation of the above scheme
for three time steps are presented in Fig. 2.

Equilibrium momentum distribution function.—
Equations (4) can also be used to evaluate the equilibrium
distribution function, which will later be important for
comparison. In fact, the asymptotic value hkF �B � 1� at
the Fermi energy is directly related to the quasiparticle
residue (Z factor), ZEQU � �hkF �B � 1�	

2 [19]. It is easy
to solve (4) analytically at the Fermi energy for zero
temperature in O�U2�, and one finds for momenta k infini-
tesimally above or below the Fermi surface

 �NEQU
k � �U2

Z 1
�1

dE
Jk�E; n�

��k � E�
2 (6)

consistent with a conventional perturbative evaluation.
Short-time correlation buildup.—The numerical evalu-

ation of the momentum distribution function depicted in
Fig. 2 shows the initial buildup of a correlated state from
the Fermi gas. For times 0< t & ��1

F U�2 one observes a
fast reduction of the Fermi surface discontinuity and 1=t
oscillations in the momentum distribution function. This
short-time regime can be understood as the formation of
quasiparticles from the free electrons of the initial non-
interacting Fermi gas.

Intermediate quasi–steady regime.—For times t of or-
der ��1

F U�2 the sinusoidal time dependence in (5) gener-
ates an increasing localization in energy space, which
eventually becomes a � function (Fermi’s golden rule).
There are no further changes in the momentum distribution
function for times t * ��1

F U�2 in the present order of the
calculation. For momenta k infinitesimally above or below
the Fermi surface one then finds from (5):

 �NNEQ
k �t! 1� � �4U2

Z 1
�1

dE
1

2

Jk�E; n�

��k � E�2
� 2�NEQU

k

(7)

since sin2 in (5) yields a factor 1=2 in the long-time limit.
In the quasi–steady state the momentum distribution func-
tion is therefore that of a zero temperature Fermi liquid.
However, from (7) one deduces that its Z factor is smaller
than in equilibrium, 1� ZNEQ � 2�1� ZEQU�. This factor
2 implies a quasiparticle distribution function in the vicin-
ity of the Fermi surface in the quasi–steady state equal to
the equilibrium distribution function of the physical elec-
trons, NQP:NEQ

k � NEQU
k , as opposed to its equilibrium

distribution, NQP:EQU
k � ��kF � k�.

Remarkably, Cazalilla’s findings [8] for the interaction
quench in the Luttinger model mirror these features: the
critical exponent describing the asymptotic behavior of the
electronic Green’s function differs from the equilibrium
result. As Cazalilla points out this corresponds to a non-
equilibrium distribution for the bosonic modes after bo-
sonization. A main difference between the Luttinger liquid
and the Fermi-liquid cases follows from the integrability of
the Luttinger liquid with an infinite number of conservation
laws, which make this regime stable for t! 1. For the
Fermi liquid, on the other hand, on shell interactions lead
to thermalization, as we will see next.

Thermalization.—The previous flow equation calcula-
tion of the real time dynamics contains all contributions to
the time evolution for times smaller than ��3

F U�4. For the
long-time dynamics one generally expects a quantum
Boltzmann equation (QBE) to be a valid description [21]

 

@NQP
k �t�
@t

� ��FU2Jk�E � �k; NQP�t��: (8)

Here the quasiparticle momentum distribution function

FIG. 2. (a)–(d) Time evolution of NNEQ��� plotted around the
Fermi energy for �FU � 0:6. A fast reduction of the disconti-
nuity and 1=t oscillations can be observed. The arrow in
(d) indicates the size of the quasiparticle residue in the quasi–
steady regime. In (e) the universal curves for �Nk � Nk � nk
are given for both equilibrium and for the nonequilibrium quasi–
steady state in the weak-coupling limit.
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NQP:NEQ
k derived above serves as the initial condition.

Because NQP:NEQ
k allows nonzero phase space for scatter-

ing processes in the vicinity of the Fermi surface [originat-
ing, ultimately, from the factor 2 in (7)], the initial
quasiparticle distribution function starts to evolve on the
time scale t / ��3

F U�4. This implies that the quasi–steady
electron distribution function depicted in Fig. 2(d) starts to
decay on this time scale, and one approaches a Fermi-Dirac
distribution [being the only stable fixed point of (8)] with a
nonzero temperature T.

The above scenario fits well into the picture of nonequi-
librium field theories describing, e.g., the early Universe
[17]. The excitation energy of the initial quantum state (the
Fermi gas) with respect to the equilibrium ground state of
(1) is Eex � ��FU2 in the weak interaction limit with
some lattice-dependent constant �> 0. The short-time
correlation buildup corresponds to prethermalization,
where the kinetic and interaction energy in (1) flow from
0 to ENEQ

int � �2��FU2 and ENEQ
kin � 2��FU2. This fol-

lows immediately from the Feynman-Hellman theorem
and the fact that the total energy remains zero for all times.
ENEQ

int equals the equilibrium interaction energy, while
ENEQ

kin � EEQU
kin � Eex. The kinetic and interaction energy

then remain constant throughout the quasi–steady regime
and the long-time limit, and therefore the system has
prethermalized for these average quantities. In the ther-
malization regime the system redistributes its additional
excitation energy Eex in the kinetic energy over the differ-
ent momenta and reaches a Fermi-Dirac distribution with
temperature T / U.

Higher order flow equations.—Clearly, it would be de-
sirable to derive (8) within the framework of the real time
flow equation calculation. However, a calculation to order
U4 is beyond the scope of the present work. Still, one can
identify a particular contribution in fourth order leading to
a finite lifetime of order ��3

F U�4 for an electron at the
Fermi surface, which is consistent with the dynamics im-
plied by the QBE. The short-time evolution of the system
for times smaller than ��3

F U�4 obtained from the full
solution of the Heisenberg equations of motion therefore
matches the long-time dynamics described by the QBE,
and we have a consistent picture on all time scales. Another
effect of the fourth order contributions is that the sharp
Fermi edge of the quasi–steady state gets smeared out on
an energy scale �3

FU
4, which, however, does not essentially

modify our previous conclusions. Therefore, strictly speak-
ing, the discontinuity of the momentum distribution func-
tion disappears immediately for t > 0, but this effect only
becomes noticeable for times of order ��3

F U�4.
Conclusions.—We have discussed the real time evolu-

tion of the Hubbard model with a sudden interaction
quench for a weak interaction U. Ultimately, the system
completely thermalizes its excitation energy Eex and

reaches a temperature T / U. This thermalization regime
only sets in on the time scale ��3

F U�4. This follows from
the observation that the short-time behavior up to times of
order ��1

F U�2 amounts to quasiparticle formation with a
momentum distribution function with a discontinuity at the
Fermi energy. Therefore, a quasi–steady prethermalized
state emerges for times ��1

F U�2 & t & ��3
F U�4. Its mo-

mentum distribution function looks like a zero temperature
Fermi liquid, but with the wrong quasiparticle residue with
respect to the interacting ground state. It is this nonequi-
librium quasiparticle residue that allows for phase space
for scattering processes in a quantum Boltzmann equation
description for times t * ��3

F U�4, which then leads to
thermalization of the momentum distribution function.
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