
Full Counting Statistics of Rough
Superconducting Tunnel Junctions

Georg Heinrich

München 2007





Full Counting Statistics of Rough
Superconducting Tunnel Junctions

Georg Heinrich

Diplomarbeit
an der Fakultät für Physik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Georg Heinrich
aus Heidelberg

München, den 23.10.2007



Erstgutachter: Prof. Dr. Jan von Delft

Zweitgutachter: Prof. Dr. Jörg Kotthaus



Contents

1 Introduction 1
1.1 Noise and mesoscopic transport . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Superconducting circuits as implementation scheme . . . . . . . . . . . . . . . 2
1.4 Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 1/f noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Rough superconducting tunnel junctions . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Multiple Andreev Reflections (MAR) . . . . . . . . . . . . . . . . . . . 5
1.5.2 Noise enhancement due to MAR . . . . . . . . . . . . . . . . . . . . . 7
1.5.3 Junction Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Full Counting Statistics 11
2.1 General aspects on FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Attempts to calculate the FCS . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 FCS of a general quantum mechanical variable . . . . . . . . . . . . . . . . . 12

3 Quantum field-theoretical methods 19
3.1 Keldysh Green’s functions formalism . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Coupling to an external potential . . . . . . . . . . . . . . . . . . . . . 23
3.2 Quasiclassical Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Eilenberger and Usadel equation . . . . . . . . . . . . . . . . . . . . . 25

4 Keldysh Green’s function approach 27
4.1 Extending FCS to the Keldysh contour . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Relating CGF to Keldysh Green’s functions . . . . . . . . . . . . . . . . . . . 28
4.3 Counting field as a modified boundary condition . . . . . . . . . . . . . . . . 30
4.4 Circuit Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Model summery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 CGF normal conducting case 35

6 CGF superconducting case 37
6.1 Nambu formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Voltage-biased Josephson junction . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.1 Toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



vi Contents

7 Leakage Current 43
7.1 Average Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Homogeneous contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3 Probabilities of MAR-Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 Characterizing Pinhole Thresholds . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5 Pinholes in Josephson Qubit Devices . . . . . . . . . . . . . . . . . . . . . . . 50

8 Noise 53
8.1 Noise and cumulant generating function . . . . . . . . . . . . . . . . . . . . . 53
8.2 Dieleman’s noise measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3 Homogenous contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4 Noise of tunnel junctions containing pinholes . . . . . . . . . . . . . . . . . . 63

9 Full Counting Statistics of Pinholes 65
9.1 Full Counting Statistics and Cumulant Generating

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2 Full Counting Statistics of high transmission channels . . . . . . . . . . . . . 66
9.3 Pinholes as Junction Resonators . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.3.2 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.3.3 Interpretation in terms of two-level fluctuator . . . . . . . . . . . . . . 70
9.3.4 Alternative, consistent interpretation . . . . . . . . . . . . . . . . . . . 72
9.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Conclusion 74

Acknowledgments 77

A Bulk solutions 79
A.1 Normal conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2.1 Bulk solutions in the literature . . . . . . . . . . . . . . . . . . . . . . 79
A.2.2 Used bulk solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B Notes on computational details 81
B.1 Rotation in Keldysh space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.2 Toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C Numerics 83

Bibliography 85



Chapter 1

Introduction

1.1 Noise and mesoscopic transport

For decades physicists have been interested in noise not only as undesirable fluctuations
hampering experimental signal detection, but also as an additional source of information.
Landauer summarized this in the statement ”The noise is the signal” [1]. One of the earliest
examples of noise featuring an additional information source was Walter Schottky’s work on
fluctuations in vacuum diodes [2]. The result, known as the Schottky formula

SI = 2eI,

relates the zero-frequency noise power of current fluctuations SI to the average current I and
gives direct access to the charge quantum e of the charge carriers, notifying information which
is not accessible through conductance measurements only.

An extremely powerful concept in mesoscopic physics is the description of transport
through mesoscopically small devices in terms of quantum transport channels or tubes [3].
Each conductor possesses a number of conductance channels depending on its cross sectional
area and is characterized by a set of transmission eigenvalues {Tn} which correspond to the
electron transmission probability through several channels. The total conductance is the sum
of contributions from the individual transport channels.

As a well known result, a normal conducting single-mode quantum point contact (QPC),
i.e a contact containing only a single quantum transport channel, with transmission T and
bias voltage V produces shot noise [4]

SI =
V e3

π~
T (1− T )

As for partition noise, shot noise reflects the uncertainty whether an incident electron is
reflected or transmitted through the channel under consideration. In this sense, shot noise
refers to the discreteness of charge. In the the limit of small transmission T � 1 we infer the
Schottky formula which is also known as Poissonian shot noise.

1.2 Quantum computing

In contrast to classical computers, where information is represented by bits, i.e. two classical,
distinct states 0 and 1, a quantum computer uses quantum mechanical variables to store
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and process information [5]. Typically, these variables consist of superposed and entangled
two-state quantum systems which, in general, are denoted as quantum bits or qubits.

Due to the quantum mechanical nature of their fundamental units, quantum computers
can capitalize on intrinsic quantum mechanical resources, which are unknown to classical com-
puters and traditional information processing technology, and reveal an enormous source of
computing power. Utilizing these resources, various quantum algorithms have been developed
which allocate an enormous speedup over classical computation [6, 7, 8].

The challenging requirements that realizations of a quantum computer have to accomplish
are summarized by the DiVincenzo Criteria [9]. These are first of all the ability to prepare
qubits in an initial state, to do coherent manipulations with sufficiently long coherence times
using a universal set of gates, to couple qubits with each other and finally to measure their
state at the end of computation.

1.3 Superconducting circuits as implementation scheme

So far, no specific physical system is singled out to be the quantum computational device of the
future. Since every quantum mechanical two-state system that meets the criteria mentioned
above might be considered as a quantum computer, there are several physical systems under
investigation. The range of systems reaches from ions trapped in electromagnetic fields [10],
NMR [11], to photons [12], and solid-state realizations [13, 14]. Currently the most elaborate
systems are found in liquid-state NMR setups, where, as proof of principle, small quantum
algorithms have already been carried out [15].

Despite these achievements in NMR and other microscopic systems it seems to be ex-
tremely hard to scale these kinds of systems to a large number of qubits where a quantum
computer could finally beat its classical counterpart in performance. In this context, im-
plementing qubits using superconducting circuits [13] is very promising, as coupling and
scaling to a large number of devices is expected to be straightforward using established cir-
cuit fabrication techniques. In addition to scalability, manufacturability and controllability
of superconducting qubit devices are assets as well.

Figure 1.1: (a) Circuit diagram of a Josephson junction including its inherent capacitance
and the maximal current through the junction Ic. (b) Circuit diagram of a phase qubit biased
by current I. (c) Circuit diagram of a charge qubit or Cooper pair box. The superconduct-
ing island is situated between the Josephson junction and the capacitance. (d) Washboard
potential of a phase qubit as a function of phase. The potential barrier of hight ∆U can be
tuned by the voltage bias. Here it is adjusted such that there are three energy states in the
well. |0〉 and |1〉 are the qubit states. Higher levels can be used for readout.
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The basic idea to describe superconducting qubits is to quantize the Hamiltonian of a
given superconducting circuit using the fact that the flux and charge operators are canonically
conjugate variables [13]. Following this procedure, depending on the circuit setup, there are
basically three types of superconducting qubits. The first type, utilizing flux quantization, is
denoted as flux qubit and consists of a superconducting loop that is interrupted by a Josephson
junction [16, 17, 18]. The two different basis states, which are represented by the magnetic
flux pointing in different directions along the loop axis, are superposed and yield symmetric
and antisymmetric eigenstates. The second type of qubit, the charge qubit, which is sometimes
also referred to as Cooper pair box, uses charge quantization [19, 20]. The setup consists of
a superconducting island which is coupled by a Josephson junction and a capacitance to a
superconducting reservoir. The eigenstates which are superimposed refer to different excess
charges on the island. The third qubit setup is the phase qubit, which consists of a current-
biased Josephson junction [21, 22, 23]. The relevant eigenstates are given by the ground and
first exited state of the tilted-washboard potential [24]. The energy states of a phase qubit’s
washboard potential and its circuit diagram as well as that of a charge qubit are shown in
Figure 1.1.

The crucial device in all the setups presented above, which is indispensable for designing
superconducting qubits, is the Josephson tunnel junction which, due to the Josephson effect,
introduces an important non-linear circuit element [25]. This feature is necessary to provide an
anharmonicity missing in circuits containing solely linear elements such as an LC-resonator.
By reason of this non-degenerate level spacing, single-qubit transitions can be addressed
selectively and the dynamics of the system can be restricted to only two qubit states. Both
are essential to operate qubits.

Hence, understanding Josephson tunnel junctions and all possible features that might
be introduced by them is essential to advance building quantum computing devices from
superconducting circuits. In this thesis we will be concerned with Josephson tunnel junctions
as they are used in superconducting qubit devices.

1.4 Decoherence

One of the major challenges for the realization of practical quantum computing is to do
quantum manipulations within the coherence time. The need to maintain quantum coherence
during the operation process is especially difficult to achieve in solid state systems. Unlike, for
example, in case of an ion trapped in an electromagnetic field, which can be well isolated from
its environment, solid-state systems couple relatively strongly to uncontrollable environmental
degrees of freedom, such as fluctuations that generate quick decoherence.

The typical understanding of decoherence comprises the two effects of dephasing and
energy relaxation. Dephasing refers to the effect of vanishing phase correlation between states
that, for instance, might be caused by fluctuations in the energy-level spacing induced by
some sort of noise. This process finally leads to a classical state mixture instead of quantum
mechanical superposition. In contrast, relaxation refers to energy exchange and usually leads
to thermal equilibrium.

Gaussian noise sources can be described with a heat bath modeled by a set of harmonic
oscillators that represent unobserved environmental degrees of freedom [26]. In such an ap-
proach, the complete system consisting of the two-state system and the bath is fully quantum-
coherent. However, the reduced system, which is obtained after integrating out the bath’s
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degrees of freedom, shows both relaxation and dephasing. Central for describing decoherence
in this scheme is the symmetrized spectral noise power

S(ω) =
1
2

∫ ∞
−∞

dτ eiωt 〈ξ(τ)ξ(0) + ξ(0)ξ(τ)〉

due to quantum noise ξ(t) where 〈. . .〉 denotes quantum statistical average. (Later, ξ(t) will
be the current fluctuation operator δI(τ) = I(τ)− 〈I〉).

This way, by choosing appropriate spectral densities, we can model Gaussian noise sources,
where only the first two cumulants are non-zero. However, after electromagnetic qubit envi-
ronments have been successfully shaped to improve decoherence we are now mostly concerned
with intrinsic noise of the solid state system. Hence in this thesis we will investigate the in-
trinsic noise of few high-transmission channels, so-called pinholes, that potentially reside in
the Josephson tunnel junction.

1.4.1 1/f noise

The most prominent source of intrinsic decoherence is non-Gaussian 1/f noise, for which the
spectral function behaves like S(ω) ∝ 1/ω [27, 28]. Although 1/f noise is ubiquitous in solid-
state systems, a fully universal origin has not yet been found. 1/f noise typically appears due
to slowly moving defects in strongly disordered materials and is usually explained by two-level
fluctuators that couple to the system under consideration. A heat bath causes uncorrelated
switching events between the two states, which are described by a Poissonian distribution with
mean switching time τ . For a single fluctuator this model is known as random telegraph noise.
Superposing several such fluctuators using an appropriate mean switching time distribution
ρ(τ) results in a 1/f noise spectrum.

A prominent, possible decoherence mechanism for low-frequency 1/f noise in junctions of
superconducting qubits is critical-current fluctuations due to charge trapping at defects in
the tunnel barrier [29]. As a result of Coulomb repulsion, a trapped electron might block
tunneling through a region of the junction and hence effectively modulate the junction area
or the number of transport channels. Consequently, the untrapped state results in high
critical current. The trapped state results in low critical current. Thus, a single-charge
fluctuator can produce random telegraph noise due to the charge-fluctuator state and its
lifetime. Considering several fluctuators with appropriate lifetime distribution leads to 1/f
noise as mentioned above.

1.5 Rough superconducting tunnel junctions

The crucial importance of Josephson junctions for designing superconducting qubits was em-
phasized in Section 1.3. The oxide layer defining the Josephson junction between the two
superconductors can be considered as an insulator. It is a well-known concept in mesoscopic
physics to describe transport through such sufficiently small scatterers by quantum trans-
port channels [3]. In the following, when we discuss transmission eigenvalues or channels of
Josephson junctions, we will always implicitly refer to those of the respective oxide layer.

Typically, Josephson junctions, as used in superconducting qubit devices, are considered
as tunnel junctions, meaning that the transmission eigenvalues of all transport channels are
assumed to be small. However, the fabrication process is not at all epitaxial quasi-equilibrium
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Figure 1.2: Schematic diagram of the oxide layer of a Josephson Junction. Several transport
channels are indicated. The arrow thickness corresponds to the respective transmission eigen-
value. Left: schematic diagram of an ideal Josephson tunnel junction. The transmission of all
channels is small. Right: considered rough Josephson tunnel junction, i.e., a tunnel junction
including some high-transmission channels: so-called pinholes.

growth, thus one has to expect the oxide layer to be non-crystalline and disordered. Hence,
in this thesis we will investigate rough superconducting tunnel junctions, where we assume
that the junction additionally possesses some transport channels with very high transmission
eigenvalues: so-called pinholes, see Figure 1.2. These pinholes might occur as defects due to
the fabrication process. Indeed in Ref. [30, 31] the importance of pinholes was pointed out,
but also work in Ref. [32] discusses the significance of pinholes in mesoscopic devices, e.g., for
the Kondo effect.

Not long ago, there was particular interest in pinholes to understand subharmonic gap
structure in weak links, meaning current characteristics as a function of voltage for voltage
energies smaller than the superconducting gap 2∆. In Ref. [33] the subharmonic gap structure
of a tunnel junction was modeled by assuming that 30 percent of all transmission channels
have pinhole character with transmission eigenvalue T = 0.6. Regarding superconducting
qubits having an amount of pinholes in the Josephson junction is particularly interesting in
many respects. We will present some of these motivating aspects in the following subsections.

1.5.1 Multiple Andreev Reflections (MAR)

In Josephson Junctions with voltage bias smaller than the superconducting gap, direct tunnel-
ing is impossible due to the energy gap 2∆. In this case, effective charge transport is governed
by Multiple Andreev Reflection (MAR), see Ref. [34, 35, 36]. Andreev Reflections occur at
contacts consisting of a scatterer and a superconductor, see Figure 1.3. For voltage bias
smaller than the superconducting gap, electrons from the scatterer have insufficient energy
to be transferred to the superconductor as quasiparticles. Charge can only be transmitted
in a higher-order process, where a normal electron grabs a second one with adequate energy
and momentum to generate an additional Cooper pair. Hence, in this process effectively two
electrons are transferred at a time. After this process, the missing electron appears as a
reflected hole.

In a system consisting of two superconductors separated by a scatterer there are two
superconductor-scatterer interfaces, where Andreev Reflection can occur. This leads to pro-
cesses involving sequential Andreev cycles known as Multiple Andreev Reflections, in which
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Figure 1.3: Andreev Refection in a schematic energy diagram between a scatterer (left) and
a superconductor possessing energy gap 2∆ (right) at T = 0K and voltage bias V ≤ 2∆/e.
The diverging density of states of the superconductor is indicated. Energy levels are filled
up to the Fermi energy (colored). Due to the energy gap, direct tunneling is impossible and
charge can only be transferred in a higher order process where a normal conducting electron
grabs a second one with adequate energy and momentum to generate an additional Cooper
pair in the superconductor. After the process the missing electron appears as a reflected hole.

charge can be transferred even for voltages smaller than 2∆/e, see Figure 1.4.
In general, an nth order MAR process transferring n charge quanta at a time, a so-called

Andreev cluster, comprises (n− 1) Andreev Reflections and occurs above a threshold voltage

Figure 1.4: Schematic diagram of charge transport trough a weak link involving Multiple
Andreev Reflection (MAR) for different voltage bias, taken from Ref [37]. Left: voltage energy
larger than the superconducting energy gap. As indicated, direct quasi-particle transport is
possible. Middle: eV ≥ 2∆/2. An electron coming from the left, crossing the center, gains
energy eV . However, this is insufficient to enter the second superconductor as a quasi-particle.
After Andreev Reflection due to the reversed charge sign, the reflected hole gains additional
energy eV on its way back to the left superconductor such that in total, the excitation can
overcome the superconducting energy gap. Charge transport at this voltage involves at least
one Andreev Reflection and conveys at least two charge quanta at a time. Right: eV ≥ 2∆/3.
Charge transport involves at least two Andreev Reflections and conveys at least three charge
quanta at a time.
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Vn = 2∆/(en). For voltages below this so-called MAR voltage Vn, the energy gap cannot be
overcome by n crossings. As these processes are composed of several transmission cycles, it
is intuitively clear that they will sensitively depend on the electron transmission probability,
i.e., the set of transmission eigenvalues characterizing the junction.

Hence, coming back to our original interest, rough superconducting tunnel junctions will
be highly affected by MAR and we will see that even very few pinholes will have an extreme
impact on the junction.

1.5.2 Noise enhancement due to MAR

In Ref. [30, 31], shot noise of NbN/MgO/NbN superconductor-isulator-superconductor tun-
nel junctions was measured. The result of this measurement is shown in Figure 1.5 and shows
shot noise enhanced by Andreev reflection. The authors attributed this to the occurrence
of MAR processes in pinholes, which are assumed to be present in the MgO barrier. They
modeled their data assuming Poissonian shot noise 2eI, where they replaced the single charge
quantum e by an effective transferred charge q(V ), due to MAR.

Such processes might be highly relevant as a source of intrinsic noise in superconducting
qubit devices due to pinholes residing in the Josephson junction. As a first guess, we might
think of arbitrarily large Andreev clusters transferred due to MAR in very high-transmission
channels, that might drastically enhance Poissonian shot noise 2eI due to the effectively
transferred charge. On the other hand, in the case of transport through pinholes, this intuitive
idea has to be revised, as the Poissonian shot noise formula is strictly only valid in the case
of small transmission.

The method, we will use to investigate rough superconducting tunnel junctions, properly
deals with all possible transmission eigenvalues. Hence, quantitative statements on the impact

Figure 1.5: Andreev Reflection enhanced shot noise in NbN/MgO/NbN superconductor-
insulator-superconductor tunnel junctions measured in Ref. [30]. The dashed line corresponds
to naively guessed expected Poissonian shot noise which would be directly proportional to
the measured current. The (MAR) labeled line includes an increased effective charge due to
MAR.
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of rough barriers will be possible.

1.5.3 Junction Resonators

One of the central measurements revealing major intrinsic sources of decoherence in Josephson
junction qubits was performed in Ref. [38]. After improving their phase qubit, the authors
performed spectroscopy, driving transitions between qubit states |0〉 and |1〉 with excitation
frequency ω and reading out state |1〉 via higher non-qubit states, see Figure 1.1 (d). The
experimental result is shown in Figure 1.6. Apart from the theoretically expected decrease in

Figure 1.6: Spectroscopy on a phase qubit done in Ref. [38]. For a given bias current transi-
tions between qubit states |0〉 and |1〉 are driven with excitation frequency ω. The |1〉 qubit
state is read out. Its occupation probability is encoded in terms of color. Dotted vertical lines
are centered at level splittings due to so-called spurious resonators.

transition frequency for bias current approaching the critical current, at certain voltages, there
are characteristics of energy-level repulsion, as predicted for coupled two-state systems. This
structure of level-splittings that is unique for different, but identically constructed qubits,
and thus, can be considered as a ’qubit fingerprint’, was attributed to so-called spurious
resonators residing in the Josephson tunnel junction. Measurements of Rabi oscillations
revealed that these resonators cause significant decoherence. Similar to a scenario of charge
trapping, mentioned in Section 1.4.1 with respect to 1/f noise, the energy-level repulsion
could be explained by assuming two-state current fluctuators in the junction. Since its first
measurement, new designs separating the capacitance from now smaller Josephson tunnel
junctions have significantly reduced the number of two-level fluctuators coupled to the qubit,
see Ref. [39].

Although other processes such as charge trapping might be more relevant effects for real-
izing such spurious resonators within the junction barrier, pinholes in rough tunnel junctions
considered here might be additional candidates for introducing two-state current fluctuators,
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see Section 9.3.

1.6 Methods

To investigate rough superconducting tunnel junctions with respect to the raised questions, we
will be interested in the full counting statistics (FCS) of charge transfer through the junction.
This is the probability distribution Pt0(N) for N total charge quanta to be transmitted within
measurement time t0. This probability distribution will not only supply us with the noise
characteristic proportional to the second cumulant, but also with all other cumulants that
are especially important in describing non-Gaussian noise such as contributions resembling
two-level systems.

To calculate Pt0(N) we will use the non-equilibrium Keldysh Green’s function approach,
which was at first suggested in Ref. [40]. Within this scheme, by diagrammatic expansion
technique, the full counting statistics of a general quantum mechanical variable can be related
to Keldysh Green’s functions, which were originally invented to describe non-equilibrium sys-
tems and turned out to be particularly useful in the case of non-equilibrium superconductors.
By doing so, we can use several quantum field-theoretical methods used in the transport
theory of metals [41] and describe the system under consideration microscopically. This way,
we accurately take into account high transmission channels and the effects due to Multiple
Andreev Reflections.
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Chapter 2

Full Counting Statistics

2.1 General aspects on FCS

Having motivated the the interest in noise as an additional source of information, see Sec-
tion 1.1, it is natural to ask for higher correlators of the current operator, see Section 1.4, to
obtain more information on the transport process. To make calculation of these correlators
feasible, and thereby gain deeper insight into the transport process of electrons in solid-state
systems, Levitov and Lesovik introduced the concept of full counting statistics (FCS), already
known in the field of quantum optics, to mesoscopic physics [42, 43, 44]. In quantum optics,
it is experimentally possible to count the number of photons occupying a certain quantum
state, see Ref. [45]. Due to quantum and thermal fluctuations, this result fluctuates and a
statistical description of the number of counted photons is necessary. Conceptually general-
ized, in mesoscopic physics, the full counting statistics refers to the probability distribution
Pt0(N) for N electrons having passed a certain conductor within the measurement time t0.
Equivalently, instead of computing P (N), we can also regard its cumulant generating function
(CGF) S(χ)

exp[S(χ)] =
∑
N

Pt0(N) exp(iNχ). (2.1)

Given the full counting statistics, we can calculate all cumulants

C1 = N̄ ≡
∑
N

NPt0(N),

C2 = (N − N̄)2,

C3 = (N − N̄)3,

C4 = (N − N̄)4 − 3(N − N̄)2
2
,

and so on. Sequentially the meaning of the first three cumulants, with respect to the prob-
ability distribution, are average, width and skewness. More easily, the cumulants can be
determined by the cumulant generating function

Cn = (−i)n ∂n

∂χn
S(χ)

∣∣∣∣
χ=0

.

Hence, altogether the full counting statistics, as a new concept in mesoscopic physics, repre-
sents all information on the electron transport process contained in charge counting.
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2.2 Attempts to calculate the FCS

The central question in the following chapters will be be how the full counting statistics, or
equivalently the cumulant generating function, can be calculated. The first idea to establish
full counting statistics in mesoscopic physics [42] was to consider a transfered-charge operator

Q̂ =
∫ t0

0
dt Î(t). (2.2)

Very intuitively, this operator counts transfered charge quanta. The operator of electrical
current is well-defined in the Fockspace spanned by the scattering states of electrons and it
might appear reasonable to apply the measurement postulate of quantum mechanics. Follow-
ing this approach, the probability for N charge quanta being transfered equals to the square
of the projection of the system state on the eigenstate of Q̂ with eigenvalue N . However,
the result turned out to be unsatisfactory, for example, see Ref. [42], the quantum of charge
in this approach was given by the non-interger 2e

√
T , where T was the transparency of the

quantum channel under consideration.
The problem is that operator 2.2 in connection with the measurement postulate of quan-

tum mechanics does not properly respect causality. The measurement paradigm, described
above, assumes an instantaneous measurement. In contrast, Equation 2.2 accumulates in-
formation over the measurement time t0. Generally, causality in quantum mechanics is in-
troduced by a time ordering operator which seems to be missing in the expression above.
To address this, in preceding work [43, 44], it was pointed out that the electrical current
operators, appearing in Equation 2.2 at different times, do not commute so that, in general,
the operator of transfered charge Q̂ is unphysical. Instead, the measurement device has to be
included into the system Hamiltonian. In Ref. [44], this was done by introducing a spin-1/2
detector, modeling a quantum galvanometer, consisting of a spin 1/2 that precesses in the
magnetic field of the current.

In Ref. [46], this idea was further elaborated by defining the full counting statistics of
a general quantum mechanical variable Â, replacing the specific current operator Î above.
This way, by using an exact quantum mechanical description of the measurement setup in
terms of a path integral over detector variables, the essence of statistics was pointed out and
the full counting statistics was generally adopted as relation between quantum mechanical
density operators. This deeper understanding is fundamental to appreciate and cope with
the calculation of ”negative probabilities” for transport between superconductors reported in
Ref. [47].

Therefore, in the remainder of this chapter, we will present the full counting statistics of a
general quantum mechanical variable basically following Ref. [46] although, we will add some
additional calculation steps and remarks to improve comprehensibility. The following chapters
will build on this and will present how, based on this general expression, quantum-field
theoretical methods can be used to calculate the full counting statistics of charge transport.

2.3 FCS of a general quantum mechanical variable

As a generalization of the counting statistics in electrical transport, we are generally interested
in the expression

∫
dt Â(t), where A(t) is an arbitrary quantum mechanical observable. Note

that for an arbitrary operator, in general, the result does not have to be discrete, like in case
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of counting charges. However, the term ”counting” is kept. In the general case of an arbitrary
operator Â, to properly take into account the measuring device and its back-action on the
system, we introduce a detector variable x whose operator x̂ commutes with all operators of
the system to be measured. We assume that the canonically conjugate detector variable q,
with [x̂, q̂] = i, can be measured following the measurement postulate of quantum mechanics.
(Here we use units with ~ = 1). The basic idea will be to introduce a detector-system
interaction such that, during the measurement time t0, the Heisenberg equation of motion is
given by

˙̂q(t) = Â(t).

This way, the time integral of Â(t) is accurately linked to an operator that, as postulated,
can be measured.

The detector, given its one degree of freedom x and canonically conjugated variable q, is
modeled with the Hamiltonian q̂2/2m. We assume a linear coupling of the detector variable x
to the system operator Â that is measured within the measurement time interval (0, t0). Given
appropriate times ta < 0 and tb > t0, a smooth coupling function

αt0(t) =


1 t ∈ (0, t0)
0 t /∈ [ta, tb]

adiabatic switching else
(2.3)

provides adiabatic coupling between detector and system. The entire Hamiltonian, comprising
the measured system and the detector, amounts to

Ĥ(t) = Ĥsys − αt0(t)x̂Â+
q̂2

2m
(2.4)

and the Heisenberg equation for the detector variable q reads

˙̂q(t) =
1
i
[q̂, Ĥ] = αt0(t)Â(t)

suggesting that the statistics of variable q, after measurement time t0 and uncoupling the
detector from the system, corresponds to the statistics of the expression

∫ t0
0 dt Â(t), that we

are interested in. To rule out classical back-action of the detector, we will consider a static
detector in the limit m→∞ such that ˙̂x = 0.

Given the detector model and the entire Hamiltonian 2.4, comprising detector and the
measured system, we can ask the question how can we calculate the full counting statistics
from this. To obtain the statistics of measurement outcomes, we need the reduced density
matrix of the detector. This way it will be possible to relate the detector’s density-matrix
elements after measuring ρf (x1, x2) = 〈x1|ρ̂f |x2〉, t ≥ tb, to the ones before the measurement
has taken place ρin(x1, x2) = 〈x1|ρ̂in|x2〉, t ≤ ta. We will define the full counting statistics to
be contained in this expression using path integrals.

In basic quantum mechanics [48], the propagator between two states, |xN , tN 〉 at time tN
and |x1, t1〉 at time t1, can be written in terms of a Feynman path integral

〈xN , tN |x1, t1〉 = 〈xN , t1|Û †(tN , t1)|x1, t1〉

=
∫ xN
x1

D [x(t)] exp
[
i
∫ tN
t1

dt Lclassical(x,ẋ)
~

]
,

(2.5)
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where
∫ xN
x1

D [x(t)] denotes integration over all paths with fixed starting point x1 and fixed
end point xN . The time integral over the classical Lagrangian is also known as action S.

To understand the structure of later formulas, let us first neglect the measured system
and consider only the detector. Then the detector’s density matrix can easily be written in
the form of two path integrals

ρf (x1, x2) = 〈x1|Û †(tb, ta) ρ̂in Û (tb, ta)|x2〉

=
∫
dx′
∫
dx′′ 〈x1|Û †|x′〉〈x′|ρ̂in|x′′〉〈x′′|Û |x2〉

=
∫
x̃1(tb)=x1

D [x̃1(t)] exp [iSDet(x̃1(t))]

×
∫
x̃2(tb)=x2

D [x̃2(t)] exp [−iSDet(x̃2(t))] ρin(x̃1(ta), x̃2(ta)),

(2.6)

where SDet denotes the detector action. Due to the detector Hamiltonian q̂2/2m, it is given by

SDet(x) =
∫ tb

ta

dt
m

2
ẋ2.

Note that, in contrast to the propagator for the wave function (2.5), for both integrals in Equa-
tion 2.6 only the end point x̃i(tb) is fixed. The start point is integrated out. Hence, there is
implicit integration over both arguments of the initial density matrix ρin(x̃1(ta), x̃2(ta)) which
are always given by the starting point x̃i(ta) of the two specific paths under consideration.

Now we come back to the entire Hamiltonian 2.4 considering detector and measured
system. ρ̂system denotes the initial density matrix of the system. We assume that the entire
density matrix is initially factorized, thus D̂ = ρ̂systemρ̂in. Remember, when modeling the
measuring device we already assumed the operator x̂ to commute with all system operators.
To find the reduced density matrix of the detector after the measurement, the system’s degrees
of freedom have to be traced out. Hence we have

ρf (x1, x2) = TrSystem〈x1|Û †(tb, ta) ρ̂systemρ̂in Û (tb, ta)|x2〉

= TrSystem
〈
x1

∣∣∣→T e−i
R tb
ta
dt [Ĥsys−αt0 (t)x̂Â+q̂2/2m]

× D̂
←
T ei

R tb
ta
dt [Ĥsys−αt0 (t)x̂Â+q̂2/2m]

∣∣∣x2

〉
,

(2.7)

where we have inserted the time-evolution operator using time-
→
T , and anti-time-ordering

operator
←
T .

Basically, we can proceed using path integrals like in Equation 2.6. Due to the larger
Hilbert space, which is now composed of system and detector spaces, to construct our complete
set of states we use product states, generated by any complete set of states of the system and
the detector. By inserting such designed sets into Equation 2.7, using alternately complete
sets of eigenstates of the position or the momentum operator of the detector, in Ref. [46]
the position and momentum operator in the exponential were replaced by their eigenvalues.
Therewith, we receive an expression in terms of double path integrals whose structure is
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similar to Equation 2.6

ρf (x1, x2) =
∫
x̃1(tb)=x1

D [x̃1(t)]
∫
x̃2(tb)=x2

D [x̃2(t)] ρin(x̃1(ta), x̃2(ta)) eiSDet(x̃1(t),x̃2(t))

× TrSystem
[→
T e−i

R tb
ta
dt [Ĥsys−αt0 (t)x̃1(t)Â]ρ̂system

←
T ei

R tb
ta
dt [Ĥsys−αt0 (t)x̃2(t)Â]

]
,

(2.8)
where the detector action is given by

SDet(x̃1(t), x̃2(t)) =
∫ tb

ta

dt
m

2
[ ˙̃x1(t)2 − ˙̃x2(t)2

]
.

Again, for both path integrals only the end point x̃i(tb) is fixed and hence, there is implicit
integration over both arguments of the initial density matrix of the detector ρin(x̃1(ta), x̃2(ta))
via the starting points of each path considered.

One of the crucial steps here and in Ref. [46] is to replace the detector’s operators x̂ and
q̂ by their eigenvalues, by virtue of the argument given above. Nevertheless, this step is far
from being trivial. For instance, although by definition the operator x̂ commutes with all
system operators, because it acts on a different Hilbert space, we still have [x̂, q̂] = i. This
relation does not have to be taken into account, but it is implicit in the use of path integrals,
see Ref. [49].

We make this point explicit by summarizing the derivation of path integrals in the simplest
case of a Hamiltonian in its standard form, being the sum of a kinetic and a potential energy

Ĥ = T (p̂, t) + V (x̂, t),

which is, for example, given in Ref. [50]. Note that, if we take into account that the measured
system is traced out, the Hamiltonian 2.4 has this form. To find the Feynman description of a
propagator like that given in Equation 2.5, it is standard procedure to slice the time-evolution
operator into infinitesimal (N →∞) time intervals of width ε ≡ tn− tn−1 = (tN − t1)/(N+1)
and factorize the displacement operator for these time intervals according to the Baker-
Campbell-Hausdorff formula

e−iεĤ/~ = e−iε(T̂=V̂ )/~ = e−iεV̂ )/~e−iεT̂ /~e−iε
2X̂/~2

X̂ ≡ i

2
[V̂ , T̂ ]− ε

~

(
1
6

[V̂ , [V̂ , T̂ ]]− 1
3

[[V̂ , T̂ ], T̂ ]
)

+ . . . .

To proceed, firstly, powers of ε are neglected and, due to factorization of e−iεĤ/~, it is straight-
forward to derive an expression for the propagator like that given in Equation 2.5 and thereto,
replace operators by their eigenvalues. Finally, it can be easily shown that in the limit N →∞
the commutator term proportional to ε2 does not contribute such that the approximation con-
verges to something other than the expression given in Equation 2.5. Expressions of this kind
are called the Trotter product formula.

From this short review of the derivation we essentially see that the replacement of the
detector operators by their eigenvalues is central to Feynman path integrals. The set of paths
takes care of the commutation relation which is inherent in this formulation of quantum
mechanics. This is one of the central incentives and gains of describing the system in terms
of path integrals.
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Having understood Equation 2.8, by introducing a kernel K we can rewrite this expression
as

ρf (x1, x2) =
∫
dx̃1

∫
dx̃2K(x1, x2; x̃1, x̃2)ρin(x̃1, x̃2).

Taking the limit of infinite detector mass, ruling out classical back-action, the detector action
SDet in Equation 2.8 suppresses all fluctuations in the path integrals. In the appendix of
Ref. [46] it was shown that the kernel becomes local in position space

K(x1, x2; x̃1, x̃2) = δ(x1 − x̃1)δ(x2 − x̃2)P (x1, x2, t0)

with

P (x1, x2, t0) = TrSystem
[→
T e−i

R tb
ta
dt [Ĥsys−αt0 (t)x1Â]ρ̂system

←
T ei

R tb
ta
dt [Ĥsys−αt0 (t)x2Â]

]
(2.9)

Equation 2.9 is the central result concerning the full counting statistics of a general quan-
tum mechanical variable, comprising the entire statistics we are interested in. To see this, it
is instructive to rewrite the density matrices in Wigner representation

ρ(x, q) =
∫
dχ

2π
e−iqχ ρ(x+

χ

2
, x− χ

2
)

and define
P (x, q, t0) =

∫
dχ

2π
e−iqχ P (x+

χ

2
, x− χ

2
, t0). (2.10)

Then, we finally get a convolution relating the reduced density matrix of the detector after
the measurement to the one before measuring

ρf (x, q) =
∫
dq1 P (x, q − q1, t0) ρin(x, q1) (2.11)

Following Ref. [46], Equation 2.9 to 2.11 define the full counting statistics of the variable
A. If we assume that we can interpret the detector and its density matrix classically, ρ(x, q)
in Wigner representation gives the probability for the detector to be at position x showing
momentum q. Thus, in this interpretation the kernel P (x, q, t0) of convolution 2.11 gives the
probability of shifting the detector’s momentum. Consequently, in this classical interpretation,
P (x, q, t0) gives the probability of having measured q =

∫ t0
0 dt A(t).

Certainly, in general, the density matrix in Wigner representation cannot be interpreted
in this classical sense since it is not everywhere positive. In fact, non-positivity is a hallmark
of non-classicality, see Ref. [51]. Nevertheless, Equation 2.11 still predicts the outcome of
measurement. Thus, due to the fact that the full counting statistics is defined as a relation
between density matrices, quantum-mechanically the calculation of ”negative probabilities”,
as reported in Ref. [47], can make sense but we have to beware of interpreting these results
classically.

Anyhow, we can immediately find a situation where the classical interpretation of P (x, q, t0)
is applicable. If P (x, q, t0) does not depend on x we can integrate Equation 2.11 to

Πf (q) =
∫
dq1 P (q − q1) Πin(q1),



2.3 FCS of a general quantum mechanical variable 17

where Πk(q) ≡
∫
dx ρk(x, q). In this case the full counting statistics relates the probability

distribution of the detector before and after the measurement, i.e., Πin(q) and Πf (q), which
are now positive and, thus, so is P (q, t0). A glance at Equation 2.10 shows that this is the
case if P (x1, x2, t0), in Equation 2.9, does only depend on the difference x1 − x2. Therefore,
we immediately see that the possibility of classical interpretation of the full counting statistics
is associated with certain symmetries.

Further analysis reveals that, in case of charge transport, this symmetry is related to
gauge invariance. In the normal conducting case, using a specific gauge transformation, see
Ref. [40, 46], it is possible to transform P (x1, x2, t0) to an (x1 − x2)-dependence. In the
superconducting case, the mean-field approach of the BCS theory, see Ref [24], sets a fixed
phase. Thus, in this mean-field sense, superconductivity breaks gauge invariance and it turns
out that we cannot transform to an (x1 − x2)-dependence anymore, making the classical
interpretation of the full counting statistics, given above, impossible. This is precisely the
reason for the emerging ”negative probabilities” in the superconducting case, reported in
Ref. [47]. Thus, regarding our interest in rough superconducting tunnel junctions, we will
have to take care of this issue later on.

As a final remark, we note that, in the case when the measurement time t0 exceeds the
time scale associated with the system, P (x1, x2, t0), given in Equation 2.9, can be directly
related to the cumulant generating function by using a simple saddle point approximation
[46]

P (x1, x2, t0) = eS(x1,x2).

That such a relation makes sense can already be seen by comparing Equation 2.10 with the
definition of the cumulant generating function in Equation 2.1. In the above mentioned case,
where we can interpret P (x, q, t0) (Equation 2.10) classically and P (x1, x2, t0) (Equation 2.9)
does only depend on the difference χ = x2−x1, we find for the cumulant generating function

eS(χ) = TrSystem
[→
T e−i

R t0
0 dt [Ĥsys+

χ
2
Â] ρ̂system

←
T ei

R t0
0 dt [Ĥsys−χ2 Â]

]
, (2.12)

where finally we have considered the smooth coupling function αt0(t) defined in Equation 2.3.
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Chapter 3

Quantum field-theoretical methods

3.1 Keldysh Green’s functions formalism

Quantum field theoretical methods formulated in terms of Green’s functions are a powerful
instrument in many-body problems, see for example [52, 53]. Many systematic methods and
calculation schemes have been formulated for them. The Keldysh Green’s Function formal-
ism [54, 55] is a diagrammatic approach, analogous to the usual Feynman technique in field
theory, see for example [56], which was developed to describe many-body systems out of
equilibrium. This formalism turns out to be particularly useful in the case of nonequilibrium
superconductors [57, 58]. Concerning our goal to describe charge transport through a rough
superconducting tunnel junction, the Keldysh technique will be essential to connect the gen-
eral full counting statistic, basically given in Equation 2.9, to a microscopic description of the
junction in terms of Green’s Functions.

We consider a physical system described by the time-independent Hamiltonian

H = H0 +H i (3.1)

that is composed of the free particle part H0 and the interaction between particles H i. Such
a decomposition for time-independent Hamiltonians becomes convenient in the case of a
diagrammatic Green’s function expansion in terms of the single-particle propagator. In ther-
modynamic equilibrium, the state of the system is described by the statistical operator

ρ(H) =
e−βH

Tr [e−βH ]
.

The standard way to introduce a nonequilibrium state is to disconnect the system from the
reservoir, with which it is assumed to be in thermodynamic equilibrium at time t0, and expose
it to a disturbance, represented by the Hamiltonian H ′(t); hence, the total Hamiltonian is
given by

H (t) =
{
H t < t0
H +H ′(t) t ≥ t0

. (3.2)

Nonequilibrium statistical mechanics deals with calculating expectation values for some phys-
ical observable AH (t), given in the Heisenberg picture, for times t ≥ t0

〈AH (t)〉 = Tr [ρ(H)AH (t)] .
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Figure 3.1: Left: standard time-ordering along a straight line. Right: time ordering along
contour c. The ”closed time path” starts and ends at time t0 but introduces an upper and
lower time branch each possessing different ordering directions. The contour passes through
time point t1 and t1′ once.

A diagrammatic theory always requires one to take into account various time-orderings
that can become quite complicated. The usual forward ordering

→
T arranges operators, de-

pending on their time argument, along the straight time line depicted in Figure 3.1 (left). To
simplify the description of nonequilibrium systems, Keldysh introduced a very different kind
of time-ordering. Instead of organizing along a straight line, the so called contour-ordering
operator Tc orders operators according to the position of their time argument on the con-
tour c which is depicted in Figure 3.1 (right). This contour starts and ends at t0 and passes
through t1 and t1′ once. It is important to note that this contour introduces two different
time branches. This way, a time argument can reside either on the upper or on the lower
branch of the contour.

Completely analogous to the standard single-particle Green’s function [53], the so-called
contour-ordered Green’s function

G(1, 1′) = −i〈Tc(ψH (1)ψ†H (1′))〉 (3.3)

is introduced, where, in comparison to the standard version, only the time-ordering operator
→
T is changed to the new contour-ordering operator Tc. We use the common abbreviation
1 ≡ (t1,x1). ψ(1) and ψ†(1′) refer to single particle field operators.

Given the field operators, we can formally define Tc as

Tc(ψH (1)ψ†H (1′)) ≡

{
ψH (1)ψ†H (1′) t1 >c t1′

±ψ†H (1′)ψH (1) t1 <c t1′
,

where the contour ordering relation t1 >c t1′ means t1 is further along the contour than t1′

like, for instance, depicted in Figure 3.1 (right). Like in case of usual Green’s functions, due
to their different commutation relations, we have to distinguish Bose (upper sign) and Fermi
(lower sign) fields.

So far, purely formally, we have introduced a new type of time ordering Tc and a Green’s
function utilizing this new operator. Let us see why in case of nonequilibrium systems it is
useful to do so. Although basically following Ref. [55], we will give some additional calculation
steps and comments that might appear to be trivial once written down, yet may be very useful
both to those new in the field and to understand the idea of contour-ordering.

We are interested in a diagrammatic expansion of the contour-ordered Green’s func-
tion (3.3). First of all we note that the well-known transformation, relating an operator
AH in the Heisenberg picture to the corresponding one AH in the interaction picture with
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respect to H
AH (t) = u†(t, t0)AH(t)u(t, t0)

with

u(t, t0) =
→
T exp

[
−i
∫ t

t0

dt′ H ′H(t′)
]
,

can be expressed using a time ordering along the contour ct, shown in Figure 3.2 (left). This
contour is designed such that it starts and ends at the initial time t0 of the transformation
u(t, t0). Additionally, the course of the contour changes from the upper to the lower branch
at time t. We get

AH (t) = u†(t, t0)AH(t)u(t, t0)

=
←
T exp

[
−i
∫ t0

t
dt′ H ′H(t′)

]
︸ ︷︷ ︸
ordered lower branch ct

AH(t)
→
T exp

[
−i
∫ t

t0

dt′ H ′H(t′)
]

︸ ︷︷ ︸
ordered upper branch ct

= Tct

[
exp

(
−i
∫
ct
dτ H ′H(τ)

)
AH(t)

]
.

(3.4)

This can be used to express the contour-ordered Green’s function (3.3)

G(1, 1′) = −i〈Tc
{
ψH (1)ψ†H (1′)

}
〉

= −i〈Tc
{
Tct

[
exp

(
−i
∫
ct
dτ H ′H(τ)

)
ψH(1)

]
× Tct′

[
exp

(
−i
∫
c′t
dτ H ′H(τ)

)
ψ†H(1′)

]}
〉

= −i〈Tc
{
SHc ψH(1)ψ†H(1′)

}
〉,

(3.5)

where in the final step we have taken care of the proper time-ordering Tc, combining the
contours ct and ct′ into contour c, and abbreviated

SHc = exp
[
−i
∫
c
dτ H ′H(τ)

]
.

Figure 3.2: Left: contour ct. The contour changes from upper to lower branch at time t.
Right: contour ci composed of the dotted and solid part. The dotted part formally arises due
to the transformation to the interaction picture with respect to the single-particle Hamiltonian
H0
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In Equation 3.5, the operators are given in the interaction picture with respect to the
entire time-independent Hamiltonian H = H0 +H i, Equation 3.1. However, as the goal of the
Keldysh formalism is to derive a diagrammatic expansion for nonequilibrium systems which
is analogous to the usual Feynman technique in equilibrium, we wish to employ the standard,
statistical Wick’s theorem [56]. The usual diagrammatic expansion uses Wick’s theorem to
find Green’s function expansions in terms of the single-particle propagator. Hence, in a final
step, we have to transform to the interaction picture with respect to the free, single-particle
Hamiltonian H0, Equation 3.1.

Formally using t− t0 ≡ −iβ and the standard relation [48]

ũ(t, t0) = e−iH0tũI(t, t0)eiH0t0 ,

where

ũI(t, t0) =
→
T exp

[
−i
∫ t

t0

dt′H i
H0

(t′)
]
,

relating the time-evolution operator ũ(t, t0), due to Hamiltonian H = H0 +H i, to its repre-
sentation in the interaction picture ũI(t, t0) with respect to H0, we find the relation

e−βH = e−βH0 ũI(t0 − iβ, t0).

Utilizing this expression, the contour-ordered Green’s function can be written as

G(1, 1′) = −i
〈Tc
{
SciSc ψH0(1)ψ†H0

(1′)
}
〉0

〈Tc {SciSc}〉0

≡ −i
Tr
[
e−βH0Tc

{
SciSc ψH0(1)ψ†H0

(1′)
}]

Tr [e−βH0Tc {SciSc}]
(3.6)

with

Sci = exp
[
−i
∫
ci
dτ H i

H0
(τ)
]
,

Sc = exp
[
−i
∫
c
dτH ′H0

(τ)
]
,

employing the contour ci shown in Figure 3.2 (right).
Equation 3.6 is a remarkable result: it shows that equilibrium and nonequilibrium statisti-

cal mechanics are formally and structurally equivalent. We are left with an expression which
is completely analogous to its counterpart in equilibrium theory and we can now use Wick’s
theorem, as usual, to get a perturbation expansion of the contour-ordered Green’s function.
The only, but essential, difference here is integration over a contour instead of the real time
axis, and the modified time-ordering. Taking this into account, the contour-ordered Green’s
function is mapped onto its Feynman diagrams and rules exactly as in equilibrium theory. For
instance, like stated by the linked cluster theorem the denominator in Equation 3.6 cancels
all unlinked diagrams.

As we do not consider initial correlations, we let t0 approach −∞. It can be shown that,
in this case, we can neglect the dotted part of the contour ci, Figure 3.2 (right), proceeding
from t0 to t0 − iβ which arose from the transformation of Equation 3.5 to the interaction
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Figure 3.3: Keldysh contour cK composed of upper branch c1 proceeding from −∞ to +∞
and lower branch c2 going from +∞ to −∞

picture with respect to the single-particle Hamiltonian H0, see [55, 59]. Furthermore, due to
the unitary of the time-evolution operator, we can expend the largest time to +∞ and finally
get the original Keldysh contour cK , shown in Figure 3.3, which consists of an upper branch
c1 going from −∞ to +∞ and a lower branch c2 going from +∞ back to −∞.

To enable the rather complicated time-ordering along cK , the so-called Keldysh space is
established which incorporates contour-ordering into a matrix structure. The contour-ordered
Keldysh Green’s function GcK is mapped onto this space

GcK (1, 1′) 7→ Ǧ ≡
(
Ǧ11 Ǧ12

Ǧ21 Ǧ22

)
, (3.7)

such that the ij component of Ǧ corresponds to GcK (1, 1′) in the case when t1 and t1′ are
located on the contour branches ci and cj respectively. Within each component of Ǧ it is

now sufficient to use the usual time-
→
T and inverse-time-ordering operator

←
T . For example,

given Ǧ11(1, 1′), as both time argument t1, t1′ reside on the upper branch, going from −∞ to
+∞, the field operators are ordered using

→
T . As the lower branch proceeds in the opposite

direction, from +∞ to −∞, in Ǧ22(1, 1′) the standard inverse time-ordering
←
T is used. By

contrast, in Ǧ12(1, 1′) and Ǧ21(1, 1′), we do not need any ordering operator because, due to
the fact that both times reside on different branches, it is immediately clear which argument
is the first along the contour.

Finally, we remark that the components Ǧij are not linearly independent [54] and it is
possible to transform Ǧ into a triangular form in Keldysh space [55]

G =
(
GR GK

0 GA

)
.

This is important to note as different forms of the Keldysh Green’s function can be found
in the literature. We will explain the rotation axis used when performing calculations in
Chapter 6 and Appendix B.1.

3.1.1 Coupling to an external potential

As a concrete example of how the contour ordering in Keldysh space is taken into account,
we treat the simplest case of an external potential U(t,x). The coupling of such a potential
will be essential for calculating the full counting statistics of charge transport in the following
chapters.

As mentioned before, the contour-ordered Green’s function is mapped onto the same
Feynman diagrams and rules as in equilibrium theory. Following the linked cluster theorem,
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Figure 3.4: Diagrammatic expansion of GcK in the case of an external potential U(t,x). A
cross denotes interaction with the potential.

only connected diagrams are relevant and we find the simple standard diagrammatic expansion
of GcK shown in Figure 3.4, see for example [52]. Using the Keldysh time-ordering, we find
for the correction first-order in U(t,x), i.e., second diagram in the expansion series,

G(1)
ck

(1, 1′) =
∫
dx2

∫
cK

dτ2 G
(0)
cK

(1, 2) U(2) G(0)
cK

(2, 1′).

We can map the contour integration onto the real time axis respecting the two different
contour directions ∫

cK

dτ 7→
∫ ∞
−∞

dt−
∫ ∞
−∞

dt.

Thus, in Keldysh space we find

Ǧ
(1)
ij (1, 1′) =

∫
dx2

∫ ∞
−∞

dt2

[
Ǧ

(0)
i1 (1, 2)U(2)Ǧ(0)

1j (2, 1′)− Ǧ(0)
i2 (1, 2)U(2)Ǧ(0)

2j (2, 1′)
]
,

where the different indices originate from the two distinct cases where U(t,x) either resides
on the upper or on the lower branch of the contour. This can be rewritten as

Ǧ
(1)
ij (1, 1′) =

∫
dx2

∫ ∞
−∞

dt2 Ǧ
(0)
ik (1, 2) Ǔkk′(2) Ǧ(0)

k′j(2, 1
′),

where we use the Einstein summation convention and introduce

Ǔij(2) = U(2)τ3
ij .

τ i denote the set of Pauli matrices. Hence, we see that an external potential U(t,x) couples
to a particle in Keldysh space through a τ3 matrix. Different couplings in Keldysh space, due
to other interactions, can be found along similar lines and in general can lead to a tensor,
e.g., for electron-phonon interaction. It will turn out that the coupling relevant for the FCS
also has this simple τ3 form.

3.2 Quasiclassical Approximation

Unfortunately, finding exact solutions for Green’s functions in mesoscopic transport problems
is almost impossible, thus simplifications and approximations seem to be always necessary.
An important way to simplify the Green’s function in a transport problem is via the qua-
siclassical approximation. This is a very well described theory and will not go into details
here. Nevertheless, we will shortly summarize the essentials. For further details we refer to
Ref. [60, 41].
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3.2.1 Eilenberger and Usadel equation

The quasiclassical approximation uses the fact that most energy scales involved in transport
are small compared to the Fermi energy. The Green’s function, depending on two spatial
coordinates, oscillates as a function of relative coordinate |r − r′| on a scale of the Fermi
wavelength λF . Typically this is much shorter than the characteristic length scales of the
considered system, e.g., the superconducting coherence length ξ0. Thus, for most systems it
is sufficient to integrate out the dependence on the relative coordinate. Following this idea
the equation of motion of the Green’s function, see for example Ref. [41], can be reduced
to the so-called Eilenberger equation [61], eliminating the complicated dependence on two
coordinates.

Frequently, due to strong impurity scattering in the superconducting material, another
important simplification arises, described by the so-called dirty limit, l � ξ0, but still qua-
siclassical, i.e., l � λF , where l is the impurity mean free path. The requirement is that
the self-energy term, see for instance [52, 56], of the Eilenberger equation is dominated by
elastic impurity scattering. In this case the electron motion becomes diffusive and the Green’s
function will be nearly isotropic. By expanding the Green’s function in spherical harmonics
the Eilenberger equation can be further simplified to the so-called Usadel equation [62].
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Chapter 4

Keldysh Green’s function approach

In this chapter we will present how the Keldysh Green’s function approach can be employed
to calculate the cumulant generating function. The idea to apply the Keldysh technique to
compute the full counting statistics was introduced by Nazarov in Ref. [40]. We began by
laboriously learning this method from [40, 63, 47, 64]. Later, we found the very advisable
short review given in Ref. [65]. Here, we will concentrate on presenting the central aspect of
formally connecting the statistics to transport theory in terms of Green’s functions. For details
on utilizing methods to approximate the relevant Green’s functions, such as the quasiclassical
limit, we refer the reader to the well-elaborated theory and the references given in Section 3.2,
i.e., Ref. [41, 60, 61, 62]

4.1 Extending FCS to the Keldysh contour

In Chapter 2 we saw that the cumulant generating function of charge transport can be cal-
culated according to Equation 2.12 via

eS(χ) = TrSystem
[→
T e−i

R t0
0 dt [Ĥsys+

χ
2e
Î] ρ̂system

←
T ei

R t0
0 dt [Ĥsys− χ

2e
Î]
]
, (4.1)

where the general quantum mechanical operator Â is now replaced by the current operator Î/e.
For reasons becoming clear very soon, we would like to express this in terms of an expectation
value using contour-time ordering, introduced in Section 3.1. Given time and inverse-time
ordering in Equation 4.1, we could do so if the sign in front of the so-called counting field
χ in the inverse-time-ordered exponential was changed. Therefore, we introduce a counting
field that possesses two distinct signs on the upper and lower branch of the Keldysh contour,
see Figure 4.1, which effectively results in two different Hamiltonians H1(2) on the respective
contours,

H1(2) = Ĥsys +
χ1(2)(t)

2e
Î with χ1(2)(t) =

{
+χ t ∈ C1

−χ t ∈ C2
. (4.2)

Hence, the counting field is treated as a perturbation and we note that the current operator
is coupled in Keldysh space exactly like an external potential, see Section 3.1.1. From the
explanations on the Keldysh Green’s function formalism in Section 3.1 it is clear that we can
express the cumulant generating function as

eS(χ) = 〈TcKe
− χ

2e

R
cK

dτ Î(τ)〉, (4.3)
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Figure 4.1: Counting field χ(t) possessing two different signs on the upper c1 and lower c2

branch of the Keldysh contour between 0 and t0 that results in two different Hamiltonians
H1(2)

.

see for instance Equation 3.5. We note the curial role the Keldysh technique plays here to
separate the perturbation, due to the counting field, from an arbitrary system Hamiltonian
Hsys. In most references Equation 4.3 can be found as a starting point.

4.2 Relating CGF to Keldysh Green’s functions

With Equation 4.3 we have related the cumulant generating function to a nonequilibrium
system treated in terms of a Keldysh contour. The counting field couples in Keldysh space
like an external potential. The next step is to connect this to accessible field-theoretical
quantities. For this reason we rewrite the system Hamiltonian

Ĥsys =
∫
dx ψ̂†(x)ĥsys(x)ψ̂(x),

and the time-dependent perturbation

χ

2e
Î(t) = ± χ

2e

∫
dx ψ̂†(x, t)ĵ(x)ψ̂(x, t), (4.4)

in terms of the usual field operators ψ̂† and ψ̂. ĥsys is the usual single-particle Hamiltonian
of the system. Therewith, we formulate the equation of motion, see for example Ref. [41],
for the counting field-dependent, contour-ordered Green’s function Ǧ(1, 1′;χ) using Keldysh
space [

i
∂

∂t
− ĥsys(x) +

χ

2e
τ3 ĵ(x)

]
Ǧ(1, 1′;χ) = δ(1− 1′). (4.5)

Here ĵ(x) denotes the current density operator and, as seen in Section 3.1.1, it has to be
coupled by a τ3 Pauli matrix.

Given the Green’s function Ǧ(1, 1′;χ) as solution of Equation 4.5 it is straightforward
to calculate the current which now depends on the counting field χ and thus is called the
counting current,

I(χ, t) =
∫
dx Tr

[
τ3 ĵ(x)Ǧ(1, 1′;χ)

]∣∣∣
1→1′

. (4.6)

Additionally, in comparison to standard Green’s functions, in Equation 4.6 we have to mind
the Keldysh space structure leading to the additional τ3 matrix and the trace with respect
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to its components. The usual current density operator is given by

ĵ(x) = (∇F (x)) lim
x→x′

ie

2m
(∇x −∇x′), (4.7)

where F (x) is designed such that we obtain the current flowing through a cross-section c as
depicted in Figure 4.2.

By virtue of the discussion in Chapter 3, we can directly write down the expansion of the
Green’s function defined by Equation 4.5. Its diagrams are shown in Figure 3.4. Taking into
account Equation 4.4, we get

G(1, 1′;χ) = −i
∑∞

n=0
1
n!

(
−i χ2e

)n ∫
cK
dτ1 · · ·

∫
cK
dτn

× 〈TcKψ(x, t)ψ†(x′, t′)Î(τ1)Î(τ2) · · · Î(τn)〉connected,
(4.8)

where again we use the standard diagram technique replacing usual by contour time-ordering.
Disconnected diagrams are canceled due to the linked cluster theorem. Utilizing Equation 4.6,
we calculate the current

I(χ, t) = −
∑n=∞

n=1
1

(n−1)!

(
−i χ2e

)n−1 ∫
cK
dτ1 · · ·

∫
cK
dτn−1

× 〈TcK Î(τ1)Î(τ2) · · · Î(τn−1)Î(t)〉connected.
(4.9)

Expansion 4.9 is the field-theoretical quantity the cumulant generating function will be con-
nected to.

To make this connection, we write down the power series of the exponential function in
Equation 4.3

eS(χ) =
∞∑
n=0

1
n!

(
−i χ

2e

)n ∫
cK

dτ1 · · ·
∫
cK

dτn〈TcK Î(τ1)Î(τ2) · · · Î(τn)〉. (4.10)

The crucial difference, in contrast to the Green’s function in Equation 4.8, is that here also
unconnected diagrams occur. There is no cancelation of unlinked graphs. Thus to connect

Figure 4.2: Schematic picture of a terminal with a cross-section c through which charge
transport is calculated. The cross-section function F (x) is 0 on the left and 1 on the right of
c and changes on a certain length scale such that, its gradient is nonzero and perpendicular
to the separating surface.
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the cumulant generating function with the counting current we are left with a standard com-
binatoric problem of counting the number of connected graphs possessing n vertices contained
in the diagram sum in Equation 4.10. The result can be expressed in another exponential
series

exp [S(χ)] = exp
[∑∞

n=1
1
n!

(
−i χ2e

)n ∫
cK
dτ1 · · ·

∫
cK
dτn

× 〈TcK Î(τ1)Î(τ2) · · · Î(τn−1)Î(t)〉connected
]
.

(4.11)

By integrating the time argument of I(χ, t) in Equation 4.9 over the Keldysh contour
between t = 0 and t = t0, using

∫
cK
dτ I(χ, τ) = 2

∫ t0
0 dt I(χ, t) and matching it with the

expression for the cumulant generating function S(χ), resulting from Equation 4.11, we finally
obtain the essential result

∂

∂χ
S(χ) =

i

e

∫ t0

0
dt I(χ, t). (4.12)

It relates the cumulant generating function to the counting current. Once the Green’s function
Ǧ(1, 1′;χ) (Equation 4.5) is known the counting current (Equation 4.6) provides the desired
accessible field-theoretical quantity. Unfortunately, finding exact solutions for such Green’s
functions is almost impossible and approximations have to be used. In the rest of this chapter
we will deal with the question: how to find Ǧ(1, 1′;χ).

4.3 Counting field as a modified boundary condition

The first step towards dealing with the Green’s function Ǧ(1, 1′;χ) is to address the pertur-
bation, due to the counting field χ

2eτ
3 ĵ(x), in the equation of motion (4.5). The incentive will

be to find a transformation to relate the general solution to the χ = 0 case. This way, the
counting field drops out the calculation and we are ”only” left with the problem of finding
the Green’s function of the system described by Hsys, see Equation 4.2.

Let us consider for a moment a charged particle in a vector potential A(x) leading to the
Hamiltonian

H =
∫
dx ψ†(x)

[
(p− eA)2

2m

]
ψ(x).

Taking into account [p,A(x)] 6= 0, utilizing the position space representation of p and ne-
glecting the term quadratic in A(x), we can write down the perturbation H ′ due to the vector
potential as

H ′ = − e
2m

∫
dx ψ†(x) [pA + Ap]ψ(x)

=
∫
dx A(x) ·

[
ie

2m

(
ψ†∇ψ − (∇ψ†)ψ

)]
.

(4.13)

In our case, the perturbing Hamiltonian is given by Equation 4.4. We rewrite this in
Keldysh space using τ3 and the representation of the current density operator in Equation 4.7

H ′ = τ3

∫
dx

χ

2e
∇F (x) ·

[
ie

2m

(
ψ†∇ψ − (∇ψ†)ψ

)]
.

Comparison with Equation 4.13 suggests that we can incorporate the counting field into a
gauge like transformation [48]

A→ A +∇Λ
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with
Λ =

χ

2e
F (x)τ3.

This would yield a rotation in Keldysh space

G = exp
[
i
χ

2
τ3
]
, (4.14)

where in the argument of the exponential (Equation 4.14), we assumed that we can choose
a point x on the right of the cross-section c in Figure 4.2, where F (x) = 1. Here, in this
simple, motivating analogy, this step cannot be further justified. It turns out that, under
very general approximations of the Green’s function (4.5), Equation 4.14 is indeed the correct
transformation. Needless to say, the comparison to the perturbation due to a vector potential
is not a rigorous proof. Nevertheless, we think this is a very accessible way to illustrate the
essential idea.

To get this result formally, we have to go through the steps explained in [65]: Assuming
adequate conditions for the length scale on which the cross-section function F (x) changes
from 0 to 1, we can derive a quasiclassical version of the equation of motion (4.5). Given
the Eilenberger equation, see Section 3.2.1, it formally follows that the counting field can be
eliminated transforming its solution ǧ(x,vF , t, t′, χ) by

ǧ(x,vF , t, t′, χ) = e−iχF (x)τ3/2 ǧ(x,vF , t, t′, 0) eiχF (x)τ3/2.

Finally, we assume the electrons are counted through a cross-section of a terminal where
the dirty limit, l � ξ0 but l � λF (see Section 3.2.1), is applicable. Hence, the Green’s
function becomes constant in position and isotropic in momentum space. This finally supplies
the opportunity to consider a point on the right of the cross-section c in Figure 4.2, where
F (x)=1. Diffusive approximation and Usadel Equation in the terminal provide

Ǧ(χ) = e−iχτ
3/2 Ǧ(0) eiχτ

3/2. (4.15)

This is exactly the same transformation as in Equation 4.14 that we motivated heuristically.
To summarize this crucial fact, we see that we can completely incorporate the counting

field into a modified boundary condition. We can easily count electrons in one of the terminals
and the counting field is then simply introduced by the rotation in Keldysh space (4.15).

4.4 Circuit Theory

In the previous sections of this chapter we have seen how to relate the cumulant generating
function to the counting field-dependent counting current (4.6) and that, in the case when
electron counting is accomplished within one of the terminals, we can incorporate the counting
field into a modified boundary condition utilizing the gauge-like transformation (4.15). All
this is necessary to handle charge counting and its statistics. Nevertheless, it does not solve
or simplify the general transport problem posed by the system Hamiltonian Ĥsys. Hence,
to complete our task, we need an approach that describes transport given the equation of
motion (4.5) in the case χ = 0. Additionally, this theory must respect the full Keldysh
space matrix structure such that rotations in this space, see Equation 4.15, can be performed.
This request is particularly important with respect to the remark given in Section 3.1, that
the components of the Keldysh Green’s function’s matrix representation are not linearly
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independent. A theory that uses this source of simplification will not be general enough to
handle the counting field introduced by Equation 4.15.

The Circuit Theory of mesoscopic transport introduced by Nazarov in Ref. [66, 67] fulfills
this requirement. It originated from the attempt to introduce an appliciable formulation of
the adequate, extensive theory of nonequilibrium superconductivity which is given in terms
of the quaisclassical and dirty limit approximation, see for instance Ref. [68, 69]. An overview
of this well elaborated theory as well as the important extension of introducing an arbitrary
connector is given in Ref. [70]. We briefly summarize the points that will be important for us
here.

The central idea of this theory is to describe a mesoscopic device by discrete elements
similar to the approach used in Kirchhoff’s classical circuit theory. A specific device will be
arbitrarily well approximated depending on the number of chosen elements. Formally this is
achieved by formulating a discrete version of the relevant Usadel equation, see Section 3.2.1.
The current is described by a matrix current in terms of Green’s functions analogous to
Equation 4.6. Following this approach, a circuit is subdivided into three kinds of elements:
terminals, nodes and connectors. Terminals set boundary conditions on both, thermodynamic
quantities (voltage, temperature etc.) and material properties (normal metal vs. supercon-
ductor etc.). Nodes refer to the approximate discreteness. Their Green’s functions have
to be determined using quasiclassical normalization conditions Ǧ2 = 1 and matrix current
conservation, taking into account individual connectors between particular nodes.

The crucial element in this theory is the arbitrary connector given by a set of transmission
eigenvalues {Tn}. Given the Green’s functions Ǧ1(2)(t, t′), on the right and the left of the
contact, the matrix current is given by

Ǐ(t, t′) = −e
2

π

∑
n

2Tn [Ǧ1
⊗, Ǧ2]

4 + Tn
(
{Ǧ1

⊗, Ǧ2} − 2
) , (4.16)

where in case of two explicit time arguments ⊗ denotes a convolution over the intermediate
time (A⊗B)(t, t′) =

∫
dt′′A(t, t′′)B(t′′, t′). From matrix current Ǐ(t, t′) the current is obtained

by

I(t) =
1
4e

Tr[τ3Ǐ(t, t)],

analogous to Equation 4.6. It is essential to note that the matrix current in Equation 4.16 is
derived by using quasiclassical Zaitsev boundary conditions which properly describe bound-
aries between metals, see Ref. [71].

4.5 Model summery

We can now concretize the model describing the Josephson junction under investigation. We
consider two superconducting terminals in the zero temperature limit T = 0K, setting a given
voltage bias as the boundary condition. The oxide layer separating the two superconductors
is treated as a constriction incorporated by a scatterer which is characterized by a set of
transmission eigenvalues {Tn}. This set will comprise values T � 1, referring to usual tunnel
transmission channels, and pinholes with eigenvalues close to unity. This model is connected
to the physics of single mode contacts but, because the tunneling channels combined give a
large contribution to the total conductance, is markedly distinct.
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Figure 4.3: Schematic diagram of the modeled Josephson junction consisting of two supercon-
ducting terminals and a separating oxide layer which is characterized by a set of transmission
eignevalues {Tn}. The counting field χ counting electrons passing through cross-section c can
be incorporated into Green’s function Ǧ1.

The oxide layer is much short than the superconducting coherence length. Thus, the
proper equivalent circuit using circuit theory is just an arbitrary connector with transmission
eigenvalues {Tn}, connecting the two superconducting terminals, see Figure 4.3. The terminal
Green’s functions are given in terms of their bulk solutions, see [41] and Appendix A.2.

So finally, by performing electron counting in one of the terminals, we incorporate the
counting field into the Green’s function Ǧ1 (4.15) and can use the resulting matrix current
(4.16) to calculate the cumulant generating function (4.12).
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Chapter 5

CGF normal conducting case

To get familiar with calculations which use the Keldysh Green’s function technique, we cal-
culated the cumulant generating function in the case of two normal conducting terminals,
see Figure 4.3. Although the properties of a normal conducting quantum point contact are
well known, we nevertheless briefly mention this case to appreciate its simplicity, and to put
emphasis on the complications arising when dealing with the superconducting case.

For normal conducting reservoirs, following the steps described in Section 4.5, and by
using energy instead of time representation of the Green’s functions, we can write down the
cumulant generating function, see [47, 65],

S(χ) =
t0
2π

∑
n

∫
dE Tr ln

[
1 +

Tn
4

({Ǧ1(χ), Ǧ2} − 2)
]
, (5.1)

where the trace only refers to the components of the Keldysh space and we just have matrix
products between the Green’s functions given at fixed energy E. We get

S(χ) =
et0V

π

∑
n

ln
[
1 + Tn(eiχ − 1)

]
, (5.2)

where µ1 − µ2 = eV ≥ 0 is the potential difference between the two normal conducting
terminals (see Appendix B.1 for clarification on some details of the calculation). With Equa-
tion 5.2 we reproduced the well known result which statistics for a single-mode contact with
transmission T is binomial

Pt0(N) =
(
M
N

)
TN (1− T )M−N ,

defining the number of attempts M = et0V/π. The second cumulant can be related to the
noise power (Chapter 8). Using Equation 5.2 we find exactly the standard shot noise formula
[4]

SI =
2e3V

π

∑
n

Tn(1− Tn).

Equation 5.2 is one of the first results on full counting statistics in mesoscopic solid-state
systems [44] and can be understood as one of the starting points of this theory. Although its
calculation using Keldysh technique already involves some algebra, it is extremely simplified,
due to the fact that the normal conducting terminal Green’s functions only depends on the
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difference of its time arguments Ǧ(t, t′) = Ǧ(t − t′). Hence, in energy representation these
Green’s functions become diagonal Ǧ(E,E′) = Ǧ(E)δ(E−E′), see Appendix A.1, and we can
find an expression like Equation 5.1 involving only a single energy integral and simple matrix
multiplication of Keldysh Green’s functions at a fixed energy E. Even though, by taking into
account superconductivity, the terminal Green’s functions become more complicated, the
cumulant generating function for this contact, assuming equilibrium, can still be expressed
by Equation 5.1. In fact, formula (5.1) was at first derived for such a superconducting contact,
see Ref. [47].

However, considering the system of a voltage-biased Josephson junction, in which we are
interested here, the ac Josephson effect, see for instance [72], gives rise to time-dependent
currents and due to the Josephson relation (∂/∂t)φ(t) = 2eV/~ the terminal Green’s function
will depend on both time arguments independently, Ǧ(t, t′) 6= Ǧ(t − t′), see Chapter 6.
This will introduce a major complication that can not be circumvented as is possible, for
example, in case of an Andreev SN contact, where we can set the energy offset such that the
superconductor is at zero chemical potential for all times.

We will discuss how to treat this complication in the following chapter.



Chapter 6

CGF superconducting case

6.1 Nambu formalism

Superconductivity is one of the great areas of interest in many-body physics. Without ques-
tion, the BCS theory, celebrating its 50 year jubilee this year, counts to one of the great
theoretical highlights in this field. Although diagrammatic expansion techniques have been
especially invented for dealing with such many-body systems, it turns out that, in the su-
perconducting case, the usual graphical method using the ordinary propagator G(1, 1′) =
−i〈T (ψ(1)ψ†(1′))〉 is not sufficient. In fact, the expansion of the propagator creates classes
of diagrams that cause an unstable diagram sum, see for instance Ref. [56]. These diagrams
involve scattering of pairs of particles with momentum equal in magnitude but opposite in
direction, i.e., Cooper pairs.

The fact, that the BCS theory, see Ref.[24], provides the superconducting state by in-
troducing a paired superconducting wave function, suggests that, in order to treat super-
conductivity, the pairing interaction has to be made compatible with the standard Feynman
diagrammatic method. To do so, Nambu introduced the pseudospinor creation and annihila-
tion operator, see Ref. [52, 73],

ψk =

(
ψk↑
ψ†−k↓

)
ψ†k =

(
ψ†k↑ ψ−k↓

)
and used it to define a matrix propagator

Ḡ(k; t) = −i〈T{ψk(t)ψ†k(0)}〉

= −i

(
〈T{ψk↑(t)ψ†k↑(0)}〉 〈T{ψk↑(t)ψ−k↓(0)}〉
〈T{ψ†−k↓(t)ψ

†
k↑(0)}〉 〈T{ψ†−k↓(t)ψ−k↓(0)}〉

)

= −i
(
G(k ↑, t) F (k, t)
F ′(k, t) −G(−k ↓,−t)

)
,

(6.1)

where index k refers to momentum state |k〉, T denotes usual time ordering and the Green’s
function is given in its momentum representation.

The matrix propagator should not be confused with the Keldysh space representation in
Section 3.1. By introducing the anomalous propagators F , F ′ (which give the probability
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amplitude for creation and destruction of Cooper pairs) in addition to the ordinary propa-
gator G, superconductivity can be treated by the usual diagrammatic technique. The only
additional feature of the Feynman rules is to interpret Green’s functions in this particle-hole
or Nambu space, represented by the component of the matrix propagator (6.1). In case of
nonequilibrium treated in terms of Keldysh Green’s functions, each Kelysh component is then
naturally represented by a matrix propagator in Nambu space. The components can be seen
as the electron and hole components of pair correlations.

Coming back to the calculation of the cumulant generating function in the superconducting
case, we can utilize Green’s functions Ǧ using both Keldysh and Nambu formalism. The
Green’s function in this Keldsh(∧)-Nambu(−) space will be represented by 4 × 4 matrices,
and the approach presented in Chapter 4 completely takes over. The only change that must
be made is to add another σ̄3 Pauli matrix to the current density operator in Equation 4.7,
to account for the particle-hole structure in Nambu space, see Ref. [41]. Hence, the equation
of motion 4.5 becomes[

i
∂

∂t
− ĥsys(x) +

χ

2e
τ̌k ĵ(x)

]
Ǧ(1, 1′;χ) = δ(1− 1′),

where we introduce τ̌k = σ̄3τ̂3. Note that there is no matrix product between σ̄3 and τ̂3 as
they operate in different spaces. The counting field transformation 4.15 becomes

Ǧ(χ) = e−iχτ̌k/2 Ǧ(0) eiχτ̌k/2. (6.2)

For details on the quasiclassical Green’s function description in the superconducting case see
Ref. [41].

6.2 Voltage-biased Josephson junction

Finally, after introducing the methods and techniques above, we are able to discuss how to
calculate the cumulant generating function of a voltage-biased Josephson junction, modeled
according to Section 4.5. The case of a single-mode superconducting quantum point contact
with arbitrary transmission T was addressed in Ref. [37, 74]. To generalize this to a junction
containing multiple transport channels characterized by a set of transmission eigenvalues {Tn},
we have to consider this set by a sum over individual channels within the matrix current of
an arbitrary connector given in Equation 4.16. Basically, we will follow Ref. [74] adding
some additional notes and calculation steps. Unfortunately, to our understanding, there were
some misprints that hindered understanding of the details of the calculation. To improve the
accessibility we will give some additional notes in Appendix B.2.

We are facing two voltage-biased terminals, see Figure 4.3, that are described by Keldysh-
Nambu Green’s functions Ǧ1(2). We set the chemical potential of the right Green’s function
Ǧ2 to zero and incorporate the constant voltage bias V completely into Ǧ1. Hence, we have
Ǧ2 = ǦS(t− t′), where ǦS is the Green’s function of a superconducting reservoir given by

ǦS(t− t′) =
∫
dE ǦS(E)eE(t−t′) (6.3)

ǦS(E) =

 (Ā− R̄)f + R̄ (Ā− R̄)f

(Ā− R̄(1− f) (R̄− Ā)f + Ā

 ,
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f(E) is the Fermi function. R̄, Ā denote the retarded and advanced Green’s function re-
spectively, each possessing Nambu structure R̄, Ā = gR,Aτ̄3 + fR,Aτ̄1, see Ref. [41] and Ap-
pendix A.2.

Given the phase φ0, the BCS wave function [24], is given by

Ψ =
∏
k

(uk + vke
iφ0ψ†kψ

†
−k).

The voltage bias at one electrode can be considered by a gauge transformation on each electron
state ψ†k → ei(e/~)

R
dt V ψ†k

Ψ→
∏
k

(uk + vke
i[φ0+(2eV/~)t]ψ†kψ

†
−k)

Taking into account the Nambu structure, we can thus write for the left terminal Green’s
function

Ǧ1(t, t′) = eiφ(t)σ̄3/2ǦS(t− t′)e−iφ(t′)σ̄3/2, (6.4)

where φ(t) = φ0 + (2eV/~)t is the time-dependent phase difference. Note that Equation 6.4
is a rotation solely in Nambu space. Incorporating the counting field into the left terminal
via Equation 6.2, we find

Ǧ1(χ; t, t′) = e−iχτ̌k/2Ǧ1(t, t′)eiχτ̌k/2 (6.5)

Using the time dependence of these Green’s functions it can be shown that the counting
current can be expressed in the following Fourier series

I(χ, t) =
∑
n

In(χ)einφ(t).

Thus, the current oscillates with the harmonics of the Josephson frequency, whereas, the
coefficients In(χ) are independent of the dc part of the superconducting phase φ0. This is
a crucial point as it helps us to circumvent the interpretation problems of the full counting
statistics discussed in Chapter 2 that arise in the superconducting case. I(χ, t) enters further
calculations of the cumulant generating function via Equation 4.12, i.e., integrated over its
time argument. Thus, if we restrict ourselves to measurement times t0, much longer than
the inverse of the Josephson frequency, or to say to the dc part of the cumulant generating
function, φ0 drops out the calculation and thus we can set φ0 = 0. The gauge transformation
mentioned in Chapter 2 still applies such that Equation 2.10 does not depend on x. Only in
this way is the cumulant generating function free of the problem related to the broken gauge
invariance in the mean field sense of BSC theory, discussed in Chapter 2. Thus, we obtain
a classical, and therefore accessible, interpretation of the full counting statistics, free of the
problem of ”negative probabilities”, see Ref. [47] and Chapter 2. Note that by writing down
Equation 2.12 this was already used.

Using the matrix current of an arbitrary connector (4.16) with a given set of transmission
eigenvalues {Tn}, and, as explained above, neglecting the oscillating terms of the counting
current, we can integrate Equation 4.12 to find the expression

S(χ) =
t0
h

∑
n

Tr ln
(

1 +
Tn
4
[
{Ǧ1(χ), Ǧ2}⊗ − 2

])
, (6.6)
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where in energy representation ⊗ denotes a convolution of the Green’s functions over the
internal energy agrument

(G1 ⊗G2)(E,E′) =
∫
dE1 G1(E,E1)G2(E1, E

′).

Additionally, the trace here does not only run over Keldysh-Nambu space but also includes a
trace over the energy arguments. It is crucial that, in contrast to Equation 5.1, where in the
normal conducting case we had a simple energy integral and the trace only referred to the
Keldysh-Nambu space, we now have to account for off-diagonal elements of the Green’s func-
tion Ǧ1(χ) in energy space, because of the two independent time arguments, see Equation 6.4.
Using the normalization condition of the time-dependent Green’s function, Ǧ⊗ Ǧ = δ(t− t′),
see Ref. [41], and the expression Tr ln Ǎ = ln det Ǎ, we can express Equation 6.6 as

S(χ) =
2t0
h

∑
n

ln det Q̌n,

where

Q̌n = 1 +
√
Tn
2
(
Ǧ1(χ)− Ǧ2

)
is a matrix in both Keldysh and Nambu space. Thus we are left to calculate the determinant
of an infinite matrix and hence we have to take a closer look at Ǧ1(2)(E,E′) including its
Keldysh-Nambu structure.

The reservoir Green’s function ǦS , Equation 6.3, is diagonal in energy space. Given
ǦS(t− t′), by the components of its Keldysh-Nambu matrix representation [ǦS(t− t′)]ij we
write Equation 6.4 in matrix form

Ǧ1(t, t′) =


(

eieV/~(t−t′)[ǦS(t− t′)]11 eieV/~(t+t′)[ǦS(t− t′)]12

e−ieV/~(t+t′)[ǦS(t− t′)]21 e−ieV/~(t−t′)[ǦS(t− t′)]22

)
(· · ·)

(· · ·) (· · ·)

 ,

where we indicated each Nambu matrix propagator, that is placed for the individual Keldysh
components, by brackets. As (6.4) is a rotation only in Nambu space, all other Keldysh
components denoted by (· · ·) pick up the same distribution of e±ieV/~(t±t′) exponentials in
their Nambu components. By applying a Fourier transformation to transform to energy
representation, we get

Ǧ1(E,E′) =


(

[ǦS(E − eV )]11 δ(E − E′) [ǦS(E − eV )]12 δ(E − E′ + 2eV )
[ǦS(E + eV )]21 δ(E − E′ − 2eV ) [ǦS(E + eV )]22 δ(E − E′)

)
(· · ·)

(· · ·) (· · ·)

 .

(6.7)
Thus, in energy space Ǧ1(E,E′) possesses diagonal and off-diagonal elements in a tridiagonal
form. Note that the energy argument of the upper Nambu row is lowered by eV and the lower
row is increased by the same amount. Physically this becomes clear if we imagine the upper
and lower row in Numbu space characterizing electron and hole character, respectively (see
Equation 6.1). Furthermore, to introduce the counting field, we rotate in Keldysh-Nambu
space following Equation 6.5. Of course this will not change the structure in energy space.
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Having calculated Ǧ1(2) and understood the structure of each in energy space, we can
restrict ourself to the energy interval (E − E′) ∈ [0, eV ] and express Q̌n using the notation
[Q̌n]k,l = Q̌n(E + keV,E + leV ) as

Q̌n =



. . . . . . . . . 0̌
[Q̌n]−2,−4 [Q̌n]−2,−2 [Q̌n]−2,0 0̌
0̌ [Q̌n]0,−2 [Q̌n]0,0 [Q̌n]0,2 0̌

0̌ [Q̌n]2,0 [Q̌n]2,2 [Q̌n]2,4

0̌
. . . . . . . . .

 (6.8)

and the cumulant generating function becomes S(χ) = (2t0)/h)
∑

n

∫ eV
0 dE ln det Q̌n. Using

the bulk solution (6.3) we can easily write down [Q̌n]k,k, [Q̌n]k,k+2 and [Q̌n]k,k−2 in terms of
the counting field χ and the advanced and retarded Green’s functions gR,A and fR,A. These
4× 4 matrices can be found in Ref. [74]. However note the misprint in Q̌n,n where it should
be [Q̌n,n]22 = ρn − ρn−1 + gRn − gRn−1 in the paper’s notation. We would like to give some
further remarks on how to proceed with calculations of the determinant of (6.8)

We define the 4× 4 matrices

F̌±k = [Q̌n]±k,±k − [Q̌n]±k,±k±2F̌
−1
±k±2[Q̌n]±k±2,±k k ≥ 2

F̌0 = [Q̌n]0,0 − [Q̌n]0,−2F̌
−1
−2 [Q̌n]−2,0 − [Q̌n]0,2F̌−1

2 [Q̌n]2,0 (6.9)

Using these definitions, the determinant is given by det Q̌n =
∏∞
j=−∞ det F̌2j . Both this form

of the determinant, and the definition F̌ in Equation 6.9 become immediately clear if we take
into account the determinate of a triangular matrix and elementary matrix operations which
do not change the determinant.

In the zero temperature limit the lengthly but straightforward calculation was done ana-
lytically in Ref. [37, 74]. The result is given by

S(χ) =
2t0
h

∑
n

∫ eV

0
dE ln

[
1 +

∞∑
n=0

Pn(E, V, Tn)(einχ − 1)

]

Pn(E, V, Tn) = P ′n(E, V, Tn)/
∞∑
n=0

P ′n(E, V, Tn)

P ′n(E, V, Tn) =
n−l∑
l=0

J−n+l

[
l−1∏

k=−n+l+1

Tn
4
|fAk |2

]
Jl n ≥ 1

P ′0(E, V, Tn) = K

{
ZR0

[
1 +
√
Tn
2

(gR0 − gA−1)− Tn
4

(fA−1)2BA
−2

]
− Tn

4
(fR0 )2

}
×[R↔ A] (6.10)

where we use the abbreviation xA,Rn (E) = gA,R(E + neV ) with x = g, f and defined using
α = R,A for n ≥ 0

Zα±n = 1±
√
Tn
2

(gα±(n+1) − g
α
±n)− Tn

4
(fα±(n+1))

2Bα
±(n+2) (6.11)

K = (
∞∏
j=1

det F̌−2j)(
∞∏
j=1

det F̌2j) (6.12)
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(Bα
±n)−1 = 1±

√
Tn
2

(gα±n − gα±(n−1))−
T

4
(fα±n)2/Zα±n (6.13)

det F̌±n =
∏

α=A,R

(
Zα±n

{
1±
√
Tn
2

(gα±n − gα±(n−1))
}
−
√
Tn
4

(fα±n)2

)
(6.14)

J±n =

 ∞∏
j=1

det F̌±(n+2j)

[√Tn
2

(gA±n − gR±n)
(
ZR±nZ

A
±n −

Tn
4
|fA±n|2

)
(6.15)

∓ Tn
4

(fA±n − fR±n)(fR±nZ
A
±n + fA±nZ

R
±n)
]

(6.16)

(6.17)

With Equation 6.10 we have finally obtained the desired cumulant generating function for
charge transport in our model. It has the form of a multinomial distribution in energy space.
The different terms in the sum in the argument of the logarithm correspond to transfers of
multiple charge quanta ne, i.e., Andreev Cluster, at energy E with probability Pn(E, V, T ).
This can be seen from the (2π/n)-periodicity of the accompanying factor (einχ − 1). The
actual probabilities have to be calculated numerically, see Appendix C.

6.2.1 Toy model

To get a feeling for the calculation and matrix structure arising in the superconducting case,
a strongly simplified model was presented in Ref.[74]. It basically neglects Andreev reflections
for energies outside the gap region and replaces the quasiparticle density of states by a constant
for |E| > ∆. In this case the superconducting bulk solutions, see Appendix A.2, reduce to
fR,A(|E| < ∆) = 1, gR,A(|E| > ∆) = ±1 and both are equal to zero otherwise. Additionally,
only MAR voltages Vn = 2∆/n are taken into account. Due to the fact that always only
one MAR process is considered, the cumulant generating function simplifies to the one of a
binomial distribution

S(χ) =
2eV t0
h

ln
[
1 + PN (eiNχ − 1)

]
,

where the first three probabilities are given by

P2 =
T 2

(2− T )2

P3 =
T 3

(4− 3T )2

P4 =
T 4

(8− 8T + T 2)2
.

Probabilities to transfer larger charge quanta N can be calculated equally well. To improve
accessibility and understanding of the calculation in Ref.[74] will give some note on the cal-
culation details in Appendix B.2 and fix a misprint that slowed down comprehension and
reproduction of these results.



Chapter 7

Leakage Current

We will investigate leakage current, i.e., current in the subgap voltage regime eV < 2∆ of
a voltage-biased rough superconducting tunnel junction, as it was modeled in Section 4.5.
With the method used here, we are able to properly quantify the current contribution due to
few high-transmission channels residing in the junction. This will show that, in reality, we
face the possibility of much fewer pinholes than suggested in Ref. [33], where a simple tunnel
ansatz was used, and which was a major motivation to investigate potential high transmission
channels present in Josephson junctions. We will demonstrate how highly sensitive current
measurements can clarify the existence of pinholes and can set boundaries to their fraction
in all transmission channels. Finally we will point out that current measurements done for
the junction of the superconducting qubit device in Ref. [38] does not strictly rule out the
existence of a pinhole.

7.1 Average Current

Having calculated the probabilities Pn(E, V ) for multiple-charge transport with quanta ne,
determined by Equation 6.10, employing the numerical procedure explained in Appendix C,
we obtain the average current

Ī =
1
t0

∫ t0

0
dt〈I(t)〉 =

e

t0
〈N〉 = −i e

t0

∂

∂χ
St0

∣∣∣∣
χ=0

=
2e
h

∑
n

∫ eV

0
dE
∑
n

nPn(E, V, Tn)

=
2e
h
M

∫ 1

0
dTρ(T )

∫ eV

0
dE
∑
n

nPn(E, V, T ). (7.1)

Here, we will consider a junction with M transport channels where the set of transmission
eigenvalues {Tn} is described by the distribution ρ(T ). To approach our goal to discuss a
rough superconducting tunnel junction, we will first start to investigate its constituents in
terms of homogeneous contacts.
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7.2 Homogeneous contacts

We start from single-mode quantum point contacts (QPC) between superconductors with
a transmission eigenvalue distribution ρ(T ) = δ(T − T1). Later on we will apply this to
contacts with multiple channels, given a set of transmission eingenvalues {Tn}, to model the
rough superconducting tunnel junctions under consideration. These are composed of small
and high-transmission channels. We discuss all resulting conductance in units of the normal
state conductance GN = 2e2

h M
∫
dTρ(T ).
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Figure 7.1: Current through a single-mode QPC with small transmission between supercon-
ductors as a function of bias voltage at T = 0K. Left panel: linear current scale. Right panel:
logarithmic current scale.

We start discussing contacts with small transmission eigenvalues. Figure 7.1 shows the
current as a function of bias voltage for low transmission probability T1 � 1 on a linear
(left panel) and logarithmic (right panel) scale. We see that a contact with T1 = 0.1 already
develops a relatively large leakage current in the subgap regime eV < 2∆. Another immediate
observation, which will become important below, is the scaling of the subgap current. On a
logarithmic scale, conductance steps of size T1 arise at MAR voltages 2∆/n demonstrating
that the current is reduced at each step by a factor of T1. As we will see in Section 7.3,
current transport for small transmission values in the voltage interval [2∆/(ne), 2∆/(n− 1)e]
is dominated by the nth-order MAR process and its average probability P̄n = 1

eV

∫ eV
0 dEPn.

In Ref. [74], the authors reduced Equation 6.10 by a perturbative calculation in the case of
T � 1 to

Pn(T � 1) =
Tn

4n−1
ρ0ρn

n−1∏
k=1

|fAk |2, (7.2)

where ρ(E) is the reservoir density of states. This explicitly shows the Tn dependence. It
was mentioned by the authors of Ref. [74] that, with Equation 7.2, one recovers for the
current the result from the multiparticle tunneling theory of Schrieffer and Wilkins [75], but
it leads to divergences in the current. This demonstates that, even for small transmission
eigenvalues, the problem cannot be treated by low-order perturbation theory in T and even
in this transmission regime we must use the full expression given in Equation 6.10, as we do
here.
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Experimentally, the reduction of the subgap current by a factor T at MAR voltages 2∆/n
in break junctions was addressed in [76].

After looking at small transmission eigenvalues T1 � 1, we consider single mode-contacts
with high transmission. Perturbative tunnel approaches will fail in this regime and it is nec-
essary to use more extensive non-perturbative methods, as we do here. This will become
especially important for deriving quantitative results in rough junctions containing low- and
high- transmission channels. Figure 7.2 shows the current for a selection of transmission
probabilities T ≥ 0.1.
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Figure 7.2: Current through a single-mode QPC with high transmission between supercon-
ductors as a function of bias voltage at T = 0K. Left panel: linear current scale. Right panel:
logarithmic current scale.

For high transmission, we see leakage current much larger than the current we find in
contacts with tunnel transmission coefficients on the order of T = 0.1. This is especially true
at small voltages where, in comparison, the current through high-transmission modes is larger
by orders of magnitude. Another aspect to be mentioned is that channels with extremely high
transmission (T = 0.8 and higher) exhibit very little subgap structure, as we see very smooth
current curves. Thus, subgap structure is not a special feature of channels with extremely
high transmission. This aspect will become clear in Section 7.3 and we will come back to this
in Section 7.4.

7.3 Probabilities of MAR-Processes

To understand the current transport process more deeply, it is instructive to look at average
MAR probabilities:

P̄n(V ) =
1
eV

∫ eV

0
dEPn(E, V, T ).

A glance at equation 7.1 shows that the average current Ī is proportional to
∑

n nP̄n, showing
that P̄n can indeed be interpreted as the probability for charge transport with a charge
quantum of size ne.
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Figure 7.3: Average MAR probabilities P̄n = 1
eV

∫ eV
0 dEPn as a function of applied voltage

bias for several transport processes transferring n charge quanta at a time. Left panel: trans-
mission eigenvalue T = 0.99. Right panel: transmission eigenvalue T = 0.90. (To improve
readability, we have omitted the obvious labels for even process orders n).

In Figures 7.3 to 7.5, the average MAR probabilities P̄n are plotted for several transmission
coefficients ranging from very high to very low transparencies. As expected, independent of
the eigenvalue T , there is a voltage threshold for the nth-order MAR process at MAR voltage
Vn = 2∆/n (see Section 1.5.1). Below this voltage, the energy gap 2∆ can simply not be
overcome by an nth-order process.

First, we discuss high-transmission eigenvalues (see Figure 7.3). The average probabilities
are smooth and we see that, especially for small voltages, many MAR processes contribute to
transport. This smoothens the I-V characteristic and explains the lack of subgap structure
observed for the current through high-transmission channels in Section 7.2. For each curve,
the probability P̄n rises for voltages above the threshold Vn = 2∆/n. This is due to the fact
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Figure 7.4: Average MAR probabilities P̄n = 1
eV

∫ eV
0 dEPn, as in Figure 7.3. Left panel:

transmission eigenvalue T = 0.80. Right panel: transmission eigenvalue T = 0.60. (To
improve readability, we have omitted the obvious labels for even process orders n)
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Figure 7.5: Average MAR probabilities P̄n = 1
eV

∫ eV
0 dEPn as in Figure 7.3 and 7.4 on log-

arithmic scale. Left panel: transmission eigenvalue T = 0.17. Right panel: transmission
eigenvalue T = 0.01. (To improve readability, we have omitted the obvious labels for even
process orders n)

that, with an nth-order process, we connect energies at E with thoses at E + neV and their
densities of states in the left and right terminal, respectively. For V = Vn, only the exact
energies at the edges above and below the energy gap 2∆ can be connected by an nth-order
process . By increasing the voltage above Vn, a larger energy window enters in the nth-order
transport process, causing the rise in probability. For higher voltages, the energy gain of the
nth-order process neV starts to exceed 2∆ so much that the decrease of the density of states
above and below the gap in both terminals reduces the contribution of the nth-order process
again. It is worth mentioning that the BCS density of states does not cause any divergences
not even at Vn = 2∆/n. The possible divergence at Vn = 2∆/n is renormalized by the full
expression given in Equation 6.10.

Reducing the transmission coefficient (Figure 7.4) naturally decreases the probabilities.
This is especially true for high-order MAR processes which involve multiple channel crossings
and thus depend on high orders of T . Due to this, the P̄n curves become deformed, causing
subharmonic gap structure in the current, as seen in Section 7.2. Finally, for small transmis-
sion eigenvalues (Figure 7.5) transport in the voltage interval [2∆/ne, 2∆/(n−1)e] is strongly
dominated by the nth-order MAR process. As already mentioned in Section 7.2, this causes
the jumps in current and produces effectively exclusive transport in charge quanta of size ne.
This behavior is also responsible for the charge quantization of noise in tunnel junctions seen
in [31]. We will discuss this in Chapter 8.

7.4 Characterizing Pinhole Thresholds

So far, for illustrative reasons, we have looked at contacts with M channels but only a single
transmission eigenvalue T1 with distribution ρ(T ) = δ(T −T1). Our ultimate goal is, however,
to investigate rough Josephson tunnel junctions as they are used in superconducting qubit
devices, assuming a small number of pinholes with transmission eigenvalues close to unity
that reside in the junction.
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We consider a contact with M channels. Each of these channels has either transmission
eigenvalue T1 = 0.986 or T2 = 0.01. The variable a determines the ratio of pinholes with
transmission T1 among the many of transport channels and is small according to our model.
(1−a) is the ratio of channels with small transmission coefficients, typical for tunnel contacts.
Altogether, we consider the eigenvalue distribution

ρ(T ) = aδ(T − T1) + (1− a)δ(T − T2), (7.3)

causing a normal conductance of

GN =
h

2e2
M [aT1 + (1− a)T2].

In Section 7.5 we will discuss why this distribution captures the essential physics of even more
complicated distributions.
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Figure 7.6: Leakage current on a logarithmic scale as a function of bias voltage at T = 0K for
a rough superconducting tunnel junction with transmission eigenvalue distribution ρ(T ) =
aδ(T − T1) + (1 − a)δ(T − T2), T1 = 0.986, and T2 = 0.01. The different curves refer to
different pinhole fractions within all transport channels, given by the parameter a.

We calculate the current for this arrangement, taking into account the very different
transport properties of T1 and T2, as seen in the previous sections. The result is shown in
Figure 7.6. A look at the values of parameter a reveals that, in this plot, we have considered
extremely small fractions of pinholes, but even for those the leakage current changes dramat-
ically. We see that, starting at high voltages, the current follows the well-known curve for
tunnel transmission coefficient T2 only to a certain point, depending on a. In this voltage
regime the current exhibits the steps explained in Section 7.2 and Section 7.3.

As we have seen before, due to their high transmission, the current carried by pinholes
shows a smooth, weakly structured subgap contribution and is barely reduced even at small
voltages (cf. Figure 7.2). In contrast, the current carried by the tunnel transmission eigen-
values is reduced by a factor of T2 each time the voltage falls below another MAR voltage
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2∆/n. Consequently, at sufficiently low voltages, the current through rough tunnel contacts
considered here, including some high transmission channels, is carried by the pinhole fraction
only.

We can use this result to characterize the proportion of pinholes in all transmission chan-
nels by very sensitive current measurements. For a homogeneous tunnel contact with all
channels having the same eigenvalue T2, we expect current steps scaling with a factor of this
transmission each time we pass another MAR voltage. In contrast, as we have seen, the
current through very high-transmission channels does not exhibit these steps and proceeds
smoothly as a function of bias voltage. Consequently, due to this kind of current in tun-
nel junctions possessing a small amount of pinholes, at some point the current will drop by
less than a factor of T2. From there on, continuing to smaller bias voltages, it is predomi-
nantly carried by the junction’s proportion of high transmission channels showing the specific
characteristics of these channels.
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Figure 7.7: Leakage current on a logarithmic scale as a function of bias voltage at T = 0K for
a rough superconducting tunnel junction with transmission eigenvalue distribution ρ(T ) =
aδ(T − T1) + (1− a)δ(T − T2), T1 = 0.6 and T2 = 0.01. The different curves refer to different
pinhole fractions within all transport channels given by the parameter a.

In Figure 7.7 we use the same transmission eigenvalue distribution as above, but with pin-
hole transmission T1 = 0.6. As anticipated, at the crossover where finally the pinhole fraction
starts to dominate the current characteristic, the current drop is smaller, in general, than
T2. For voltages below the crossover, the current shows the characteristic of a homogeneous
T1 = 0.6 contact, cf. Figure 7.2.

Finally, looking at the value of parameter a, we emphasize that, from this simple model,
we have to anticipate that talking about high-transmission pinholes in tunnel junctions, which
possess their typical step-like current-voltage characteristic, means talking about very few of
such channels in huge junctions. For example, from Figure 7.7 we infer that, in a tunnel
junction, where a possible measurement shows two full current steps, each scaling with a
factor of T = 0.01 at eV = 2∆ and eV = 2∆/2, respectively, we can have roughly less than
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1 out of 106 channels with transmission T ≥ 0.6!
In Ref. [33], experimental data of current measurements in Nb-AlOx-Nb tunnel junctions

were modeled with a certain fraction of pinhole defects contributing to the total normal state
conductance. The authors consider this fraction and a value for the transmission of pinhole
channels within a simple tunnel ansatz. Although experimental data can be modeled well,
the tunneling approach, which considers a current reduction by a factor Tn for the nth-order
process in high-transmission channels, is naturally insufficient. With the method used here
we can quantify the current due to pinholes with high transmission in an appropriate way.
This way, we properly take into account the very different transport properties of channels
with high- and low- transmission eigenvalues, which we have seen in Section 7.3. As a major
result, we see that, in tunnel junctions with characteristic current steps similar to Figure 7.1,
we can only have very few pinholes and even these only in large junctions, but in general
the existence of pinholes cannot be ruled out, see Section 7.5. Using the methods presented
here, we anticipate that the description in Ref. [33], which suggested a junction consisting
of 30 percent pinholes with transmission T = 0.68, and which was a major motivation for
investigating pinholes residing in tunnel junctions is far from describing a tunnel junction. In
fact, we have seen here that these kinds of junctions, with characteristic current steps, have
to be huge such that we might have very few pinholes. If there were more, the subgap current
would behave differently.

7.5 Pinholes in Josephson Qubit Devices

While we were looking for subgap current characteristics of tunnel junctions used in super-
conducting qubit devices, John M. Martinis kindly referred us to Ref [77]. In this paper,
the authors present a current-voltage plot for a Al-Al2O3-Al junction used in a Josephson-
junction qubit. The data are shown in Figure 7.8 in comparison with a sample calculation
using the simple junction model from Section 7.4.

The experimental plot presents a voltage drop at eV = 2∆, corresponding to a tunnel
transmission eigenvalue of T = 0.003. At eV = ∆ the current starts to drop again, but
the fall-off is less steep and the measurement does not reach the next expected plateau.
As there are only very few data points in this region, and we obviously seem to reach the
limitations of measurement, it might be too speculative to ascribe the broadening of the
second decline to some additional tunnel channels with transmission slightly higher than
T = 0.003. Nevertheless, the fact that we see the current drop at eV = 2∆ and the beginning
of a second one at eV = ∆ gives us an order of magnitude estimate for the possible number
of high-transmission pinholes which might reside in the junction.

To estimate this order of magnitude, we present theoretical results (see right panel of
Figure 7.8) for the simple junction model given in Section 7.4 with tunnel transmission co-
efficient T2 = 0.003 according to the measured voltage drop at eV = 2∆ and, for instance,
a pinhole transmission coefficient of T1 = 0.6. As we have seen in Figure 7.2, for voltages
around eV = ∆ and higher, the magnitude of the GN -normalized current through channels
with transmission of T = 0.6 and larger have roughly the same magnitude. The plot with
parameter a = 0.5 · 10−5 develops the full current drop with factor T2 = 0.003 at eV = 2∆,
but only a reduced drop at eV = ∆. Below this voltage the current is primarily carried by
the pinhole channels. Such a scenario could be embodied in the experimental measurement
(left panel Figure 7.8). There, as well, we see the voltage drop by T2 = 0.003, but the current
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characteristics following the indicated drop at eV = ∆ is unknown.
The fraction of pinholes in all transport channels a = 0.5 · 10−5, that would be consistent

with the current measurement above, corresponds to one pinhole in 1/a = 200 000 channels.
The question is whether the junction under consideration is large enough such that there are
enough channels for these extremely open channels to be possible to exist.
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Figure 7.8: Left Panel: T = 20mK Current-voltage plots for a Al-Al2O2-Al junction on
normal and logarithmic scale, measured in Ref. [77]. The current drop at V = 390µm
corresponds to eV = 2∆. Right Panel: Calculation for current at T = 0K for a rough
superconducting tunnel junction with transmission eigenvalue distribution ρ(T ) = aδ(T −
T1) + (1− a)δ(T − T2), T1 = 0.6 and T2 = 0.003

In Ref [38], the authors estimate the number of transport channels for the junction mea-
sured in Ref [77] and for which a current-voltage characteristic is shown in Figure 7.8. They
do so using the average tunneling transmission τ = 4 · 10−3 and the junction’s normal-state
resistance RN = 29Ω with the Landauer formula to calculate Nch = 1/(2τRNe2/h) = 125 000
channels. Thus from the estimations given here, we see that the magnitude of channels is
roughly comparable to the number of channels needed for a single pinhole with high trans-
mission to exist, consistent with current measurements. Altogether, we see that the existence
of pinholes in state-of-the-art superconducting qubit devices is not strictly ruled out by cur-
rent measurements so far. Indeed, using new design concepts have significantly reduced the
junction size (see Ref.[39]). Nevertheless, to our knowledge, for those setups there are no
reported highly sensitive current-voltage measurements in the low voltage regime stretching
out over several current steps at Vn = 2∆/n. Future very sensitive current measurements in
the low-voltage regime may clarify the actual existence of pinholes in superconducting qubit
devices. In the following, we will assume very few pinholes to exist in a rough superconducting
tunnel junction. We will show that having even very few of them will result in import effects.

Now it becomes clear why we used this very simple transmission distribution function,
introduced in Section 7.4. When we started the project, we thought about doing statistics on
the pinhole channels. For example, we considered a model where the transmission eigenvalues
are determined by WKB, T = exp(−κd), and this way, depend on the junction width d. Then
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the pinhole transmission eigenvalues might be related to a width distribution ρ(d) of the oxide
layer separating the superconductors. Considering the strict non-negativity of d, a lognormal
distribution might be appropriate for describing ρ(d) for the pinholes.

All this can be done in our approach, but as we have seen above, in state-of-the-art
superconducting qubit devices we might only have a small, single-digit number of pinholes
in a huge junction. Thus, doing statistics is unjustified and considering a single value T1

to represent the pinhole transmission eigenvalue distribution, as done in Equation 7.3, is a
sensible way to consider them.



Chapter 8

Noise

We will examine the noise properties of rough superconducting tunnel junctions possessing
some high-transmission channels residing in the junction. For high and subgap voltage, for
which the energy is not too far below the superconducting gap 2∆/e, we will find that such a
junction basically behaves like a tunnel contact. However, we will demonstrate that already
very few of these spurious pinholes give rise to an enormous increase of noise in the very
low-subgap voltage regime. Although details of the comprehensive calculation given by the
full expression, Equation 6.10, show quite complex behavior, and we will indicate that the
character of noise enhancement due to MAR in open channels is much more complicated than
in small transmission ones, we will discuss that the physical essence of the observed noise en-
hancement still has its seeds in the increased charge quantum that is transferred. Comparison
to a simple model containing this essence will show qualitative agreements, but quantitative
failure. This will demonstrate the necessity to utilize more sophisticated methods, as we do,
in order to find the quantitative results present here. Along the way, we will calculate explicit
results for the junction measured in Ref [30], see Figure 1.5.

8.1 Noise and cumulant generating function

The relation between the current noise power,

SI ≡
∫ ∞
−∞

dτ〈{δI(τ), δI(0)}〉, (8.1)

and the second cumulant, which is given by the cumulant generating function, is less obvious
than the analogous equation for the current [78]. Here, δI(τ) = I(τ)− 〈I〉 is the current-
fluctuation operator and 〈. . .〉 denotes quantum statistical average. The second cumulant can
be written as

C2 = (N −N)2 =
1

2e2

∫ t0

0

∫ t0

0
dtdt′〈{δI(t), δI(t′)}〉. (8.2)

After transforming to average t̄ = (t + t′)/2 and relative τ = t − t′ time coordinates, and
assuming that the observation time t0 is much longer than the current correlation times,
the correlator above will not depend on t̄. Thus, after executing both integrations using
Equation 8.1, we find the relation

SI =
2e2

t0

∂2

∂χ2
St0

∣∣∣∣
χ=0

.
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Note that, by using the cumulant generating function, we calculate zero-frequency noise since
finite frequency would give rise to another factor eiωt in Equation 8.2. Using Equation 6.10
for St0 , we finally get

SI =
4e2

h

∫ eV

0
dE[

∑
n

n2Pn(E, V, T )− (
∑
n

nPn(E, V, T ))2]. (8.3)

8.2 Dieleman’s noise measurement

As mentioned in the introduction (see Section 1.5.2) one of the main motivations for looking
at pinholes in tunnel junctions is the measurement of doubled shot noise due to 2nd order
MAR presented in Ref. [30, 31]. For this reason we come back to this experiment and start to
calculate current and noise for this setup using our approach and considering a homogeneous
superconducting tunnel junction with reported transmission eigenvalue T = 0.17. The results
for current and noise are shown in Figure 8.1. Our calculation shows the peak at eV = 2∆
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Figure 8.1: Noise and current for a homogeneous superconducting tunnel junction possessing
transmission T = 0.17 at zero temperature, as a function of bias voltage. The calculation
corresponds to the measurement done in Ref. [30] (see Figure 1.5 in Section 1.5.2).

measured in Ref. [30] (see Figure 1.5) which is effectively due to the sharp decline of the
current. For voltages above this value, the noise follows Poissonian shot noise SI = 2eI
[4]. Below eV = 2∆, the noise is approximately enhanced by a factor of two, and below
eV = ∆ by an even higher value. This indicates that, for this junction and its transmission
eigenvalue, the model of enhanced Poissonian shot noise due to a larger transfered charge
quantum q(V ), which is simply used in the Schottky formula SI = 2q(V )I, is still valid, thus
explaining experimental data in [30] well (see also the calculated average MAR probabilities
P̄n in Figure 7.5). In the experimental paper [30] the effective charge

q(V ) = e ·
∑∞

m=1mIm(V )∑m=∞
m=1 Im(V )
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was determined by weighting the quantum m with the current Im, carried by m Andreev
reflections. Im was calculated using the semiclassical trajectory method of the original paper
on MAR [34] assuming unity transmission.

For higher transmission, which will become important with respect to our question re-
garding the effects of pinholes residing in the tunnel junction, the concept of effective charge
is questionable. Firstly, we don’t expect the Poissonian shot noise formula to be valid in this
high-transmission regime, and secondly, as we have seen in Section 7.3, not one, but many
MAR processes transferring differently-sized charge quanta ne will contribute to transport,
with each process sensitively depending on T , cf. Figure 7.3 to Figure 7.5. The approach we
are using here properly deals with this T -dependence.

8.3 Homogenous contacts

Again, as in Chapter 7 at the beginning, we will look at the constituents of rough supercon-
ducting tunnel junctions being composed of high- and small- transmission channels. Thus,
firstly we regard homogeneous contacts with each channel having the same transmission eigen-
value (Ref. [74]) We start with small transmission tunnel contacts T � 1. Figure 8.2 shows
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Figure 8.2: Noise and current as a function of bias voltage for two homogeneous supercon-
ducting tunnel junctions with different transmission eigenvalues. Left Panel: T = 0.1. Right
Panel: T = 0.01.

noise and current characteristics for this case. At voltages above the gap, we see Poissonian
shot noise SI = 2eI. Below eV = 2∆, the noise scales with an additional effective charge
factor, depending on the dominating MAR-process, as seen in Section 7.3. Thus, as already
mentioned in the tunneling regime, we have Poissonian shot noise with quantized effective
charge q(V ) = e(1 + Int(2∆/eV )), depending on the relevant MAR-process, where Int(x) is
defined as n ∈ N0 with n < x.

In the case of large-transmission eigenvalues, as shown in Figure 8.3, the noise character-
istic changes dramatically. For very high probabilities T , the noise increases with decreasing
voltage in the subgap regime, depending on the value of T . It develops a maximum, but
falls off again at even lower V. Remarkably, and in strong contrast to any simpler model,
we note that a contact with perfect transmission T = 1 shows low, but finite noise. This
is completely different from the normal conducting case, where given the shot noise formula
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Figure 8.3: Noise of a single-mode QPC between superconductors as a function of bias voltage
for large transmission eigenvalues T. Left panel shows transmission up to a value of T = 0.9.
Right panel shows shows transmission values larger than T = 0.9

SI = (V e3/π~)T (1 − T ), we would anticipate zero noise in the case of perfect transmission.
Furthermore, we see that the larger the transmission the steeper and higher is the noise
ascent for small voltages. For high eV , the high transmission curves approach the T = 1
characteristic.

Altogether, although we see a dramatic increase of SI as function of decreasing voltage
bias in the subgap regime, the noise does not agree with pure Poissonian shot noise 2qI given
a larger charge quantum q(V ), which depends on the relevant MAR transport process. On
the one hand, this could not explain the decrease of noise after reaching its maximum. On
the other hand, for very high transmission, the noise does not follow the current curve for
eV ≥ 2∆ and is even finite for T = 1, which is very different from the the normal conducting
case, where we have SI = e3V

π~ T (1− T ), see ([4]).
Finally, it is instructive to look at the noise curve from a different perspective, focussing

on the T -dependence. In Figure 8.4, we set voltage as a parameter and plot the noise as
a function of transmission. We see that, for small voltages, the noise develops a maximum
at high transmission values, but as we noticed before, each curve falls off to a small but
finite residual noise level at T = 1. For smaller voltages, the maximum becomes more and
more pronounced and it seems to be squeezed into the high-transmission regime, although
calculations show that

∫
SI dT is not constant for different voltage parameters. At small

voltages on the order of eV = 0.1 only channels with very high transmission significantly
contribute to the noise.

We now provide a physical explanation for these observed features. We start with the
small-transmission case. As we have already seen in Section 7.3 for small transmission, there is
always one very dominant MAR-process effectively causing charge transport in charge quanta
of q(V ) = e(1 + Int(2∆/eV )) only. Thus, in the small-transmission regime Poissonian shot
noise with modified charge quantum ne, which is determined by the dominant MAR-process,
properly explains the observed noise features.

The explanation for high transmission is more difficult. We begin with the extreme case
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Figure 8.4: Noise SI as a function of transmission eigenvalue T for a single-mode QPC between
superconductors, where bias voltage in the subgap regime is set as a parameter.

of perfect transmission T = 1, where we have seen finite noise, in absolute contrast to the
normal-conducting situation. Using Equation 8.3, we can express the noise in terms of the
variance of Pn(E, V, T ), which is the probability distribution of a MAR-proces transferring
charge quanta ne

SI =
4e2

h

∫ eV

0
dE[〈n2〉 − 〈n〉2] =

4e2

h

∫ eV

0
dE Var(n) (8.4)

For a single-mode normal conductor with perfect transmission T = 1, there is no uncertainty
whether a particle is transmitted or reflected. Thinking of shot noise as partition noise,
this results in zero noise. In the superconducting case considered here, we are still certain
about charge transfer taking place, due to perfect transmission, but an additional uncertainty
is introduced, namely the size of the transferred charge in each cycle, which is given by the
probability distribution Pn. In Section 7.3 we have seen that, for high transmission probability
including T = 1, there are many different MAR-processes contributing to charge transport
(see Figure 7.3). This additional uncertainty is the qualitative physical explanation of the
finite noise observed in the case of perfect transmission in the superconducting case.

To understand the noise features for high but imperfect transmission as seen in Figure 8.3,
we have to look at the probabilities Pn(E, V, T ), which determine the variance entering Equa-
tion 8.4. In Figure 8.5 we illustrate the energy dependence of Pn(E, V, T ) for the transmission
probabilities T = 0.9, T = 0.97 and T = 1 at voltage bias eV = 0.1∆. We have seen before,
that the noise of high-transmission eigenvalues as a function of voltage primarily increases if
we reduce the applied voltage, but after developing a maximum, the noise falls off again. Thus,
apart from the special case of perfect transmission, we chose the two additional transmission
eigenvalues such that, at eV = 0.1∆, we consider one point in the increasing (T = 0.97)
and one in the decreasing noise regime (T = 0.9); see first panel in Figure 8.5. We should
remark again that talking about increase and decrease, we always consider the noise slope
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Figure 8.5: Panel 1: noise as a function of bias voltage for single-mode QPCs between su-
perconductors for the three transmission eigenvalues considered in panels 2-4. Panels 2-4:
Energy dependence of MAR probabilities Pn for several transport processes transferring n
charge quanta at a time for voltage bias eV = 0.1∆. The individual panels refer to the trans-
mission eigenvalues T = 1, T = 0.97 and T = 0.9, whose noise characteristics are regarded in
panel 1, where the voltage parameter eV = 0.1∆ is indicated by the dotted line.

depending on voltage coming from high energies eV , going to smaller ones. In Figure 8.6, the
energy dependence of Pn(E, V, T ) is shown for the same transmission parameters at voltage
bias eV = 0.5∆. Note that here, in contrast to the previous case, T = 0.9 shows the highest
noise of all three values, as the T = 0.9 and T = 0.97 noise curves cross around eV = 0.3∆
(see first panel of Figure 8.5 or Figure 8.6)

Looking at Figure 8.5 and Figure 8.6, we see that there is a specific energy dependence of
Pn(E, V, T ). Furthermore, we note that, in principle, all the graphs for different parameters
shown here look very similar. For example the curve of the lowest possible MAR process with
finite probability is always concave, with reduced probability at the energy interval edges.
Higher process probabilities are convex. As expected, starting with perfect transmission and
going to smaller transmission eigenvalues strongly reduces Pn(E, V, T ). Additionally, we see
that the curves might as well become slightly distorted by changing the parameters. This can
be seen clearly in Figure 8.6 for the n = 5 case.
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Figure 8.6: Panel 1: noise as a function of bias voltage for single-mode QPCs between su-
perconductors for the three transmission eigenvalues considered in panels 2-4. Panels 2-4:
Energy dependence of MAR probabilities Pn for several transport processes transferring n
charge quanta at a time for voltage bias eV = 0.5∆. The individual panels refer to the trans-
mission eigenvalues T = 1, T = 0.97 and T = 0.9, whose noise characteristics are regarded in
panel 1, where the voltage parameter eV = 0.5∆ is indicated by the dotted line.

Looking at the different noise curves resulting from these MAR process probability distri-
butions with their very different quantitative behavior, and in the case of perfect transmission
even qualitative difference, we have to adopt that these little changes in Pn(E, V, T ), due to
parameter change, very sensitively affect the resulting noise features. Consequently, to get
quantitative noise results from the Pn(E, V, T ) distribution, we really have to take into ac-
count all its energy dependence, and have to do the long calculation to finally integrate over
the MAR process probability distribution (Equation 8.4) correctly.

With respect to our goal of understanding the essential physics behind our calculated noise
characteristics, the previous statement, which basically solely refers to the long calculation
using the full expression in Equation 6.10, seems to be unsatisfactory. Thus, we will try to
explain the basic noise features with the use of the strongly simplified toy model presented
before in Section 6.2.1. Originally, this model was introduced to illustrate, in a strongly
simplified way, how to calculate the cumulant generating function of a weak link with voltage
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bias in an easy analytically solvable case. We briefly summarize the basic simplifications
again.

We only look at MAR voltages eV = 2∆/n, and for each voltage we only take into account
one MAR process. This simplifies the cumulant generating function S(χ) in Equation 6.10
to the one of a binomial distribution. Given the MAR voltage eV , the only incorporated
transport process, as mentioned above, is the one which transfers N = 2∆/eV + 1 charge
quanta. We have seen in Figure 7.3 that, in the actual multiprocess case, at MAR voltages,
this process is the one with the highest probability. Furthermore, in this analytically solvable
model, Andreev reflection above the gap was neglected and the Green’s function was simplified
by assuming a constant density of states.

Due to the fact that in this model, we consider a binomial, rather than the actual multi-
nomial distribution, it is clear from partition noise arguments, given above, that this way, we
will not be able to explain the feature of finite noise at perfect transmission. Thus, we already
see that this model will only be sufficient to illuminate certain aspects of the more compli-
cated full calculation and cannot supply an easy demonstrative explanation for everything.
We have to compromise model generality and descriptive simplicity.

The cumulant generating function for the toy model in this case reads

S(χ) =
2eV t0
h

ln
[
1 + PN (eiNχ − 1)

]
. (8.5)

At each MAR voltage, the only considered, but mostly relevant, transport process is the one
which transfers

N =
2∆
eV

+ 1 (8.6)

charge quanta. Thus, for every MAR voltage, another specific transport process with proba-
bility PN is relevant. We emphasize the point that, due to this the argument of the logarithm
in Equation 8.5 depends on voltage via the selection of the relevant PN , see Equation 8.6.

The left panel of Figure 8.7 shows the toy-model probabilities PN as a function of transmis-
sion eigenvalue T . For perfect transmission, each probability is unity, as we have reduced the
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system to a binomial distribution involving only one transport process. The transfer probabil-
ities for N ≥ 2 and imperfect transmission are always smaller than in the normal conducting
case, because a higher-order process, multiplicatively depending on T , is necessary in order
to transfer charge. To transfer huge charge quanta, N , with sufficient probability, very high
transmission is necessary, since many Andreev reflections are involved in such a process. Thus,
for larger N which, in our model, directly corresponds to small voltage bias (see Equation 8.6)
nonzero probabilities shown in the left panel of Figure 8.7 are more and more shifted to the
high-transmission regime.

From the cumulant generating function we get the second cumulant

C2 = N2 2eV t0
h

PN (1− PN ) (8.7)

which is proportional to the noise correlator. The expression PN (1 − PN ), which depends
on transfered charge, or conversely on voltage, matches the one in the traditional shot-noise
formula if we replace T by PN . The expression PN (1− PN ) is displayed in the right panel of
Figure 8.7. We see that, for large N, or conversely, small voltages, the maximum is shifted
and squeezed into the high-transmission regime.

The corresponding diagram which shows the noise, using the full expression (Equa-
tion 6.10), depending on transmission, is Figure 8.4.

So, altogether, we can distinguish two ingredients to the noise given in Equation 8.7.
One is the expression PN (1 − PN ) we just discussed. Additionally, there is the prefactor
N2(2eV t0/h). If we take into account the relation between N and eV in our model, which
is given in Equation 8.6, we see that this part results in noise enhancement that behaves
approximately like 1/V in the small-voltage regime. As the noise is determined by the product
of both parts, for a fixed transmission coefficient, there will be a voltage regime where the
noise gets enhanced by lowering the applied voltage bias. However, at some voltage, or
conversely for some N , the behavior of PN (1− PN ) presented in the left panel of Figure 8.7
will overcompensate this increase and reduce the noise again. So, we can summarize that the
toy model still explains the noise enhancement by an increased charge quanta, cf. discussion of
the T � 1 case. The decrease of noise at very low voltage follows from the overcompensation
of this effect of charge quanta enhancement by the decrease of transfer probability in the
expression PN (1− PN ).

In Figure 8.8, for comparison, the noise calculated using the full expression and the toy
model at MAR voltages, is presented in one plot. We see that the toy model qualitatively
shows the basic features of our numerical calculation with noise enhancement for decreasing
voltage in the subgap regime up to a certain point, where the noise starts to decrease again.
Nevertheless, there is a huge quantitative difference. Thus, we realize that the toy model is
sufficient and good to understand the shape and characteristic of the noise curves as well as
its physical origin, but it fails dramatically to give quantitative results. Thus, for quantitative
calculations, which are necessary below, the extensive calculation used here is essential.

The final aspect we investigate is what is fundamentally driving the noise increase. In the
toy model we reduced the actual multiprocess problem to a binomial one and we have seen
that, in this model, the explanation of the noise enhancement is simply reduced to the increase
of charge quanta transfered. We can now ask the question: What is the maximal noise for
a certain voltage? This means, for fixed voltage bias, we use the transmission eigenvalue as
a parameter to find the maximal noise. With respect to Equation 8.7 and its illustration in
Figure 8.7, in the toy model, the maximum of the expression PN (1− PN ) is always 1

4 . Thus,
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here, the maximal noise maxT [SI(T, V )] depends only on the prefactor given in Equation 8.7.
Consequently, for small voltages, it approximately scales like 1
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Figure 8.9: Maximal noise maxT [SI(T, V )], optimized with transmission as a parameter,
as a function of bias voltage on a double logarithmic scale for a single-mode QPC between
superconductors. The calculated data using the full expression, Equation 6.10, are fitted
using the given power law.

The question now is, how does the maximal noise behave performing a calculation with
the full expression. In Figure 8.9, the maximal noise over all transmission eigenvalues for a
given voltage maxT [SI(T, V )] is plotted against voltage bias on a double logarithmic scale.
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In the small-voltage regime, the data can be fitted extremely well using a power-law. We find

max
T

[SI(T, V )] ∝ 1
V 0.8

Thus, although, as we have seen, that quantitative statements resulting from the toy model
and from the full expression differ significantly, here we see that the maximal noise at given
voltage follows a similar power law in the full expression as in the case of the toy model, if we
just change the exponent from unity to 0.8. Hence, even in the much more complicated situ-
ation, including multiple MAR processes, the inherent 1

V dependence, which basically results
from the increased charge quanta due to MAR, seems to be incorporated and a characteristic
feature of noise enhancement.

8.4 Noise of tunnel junctions containing pinholes

After discussing homogeneous contacts and their noise features, we come back to our original
goal of investigating rough superconducting tunnel junctions containing a small number of
pinholes. For this reason, we continue considering the model of Section 7.4. There, we looked
at a contact with M transport channels, each having either transmission eigenvalue T1 = 0.986
or T = 0.01 and eigenvalue distribution

ρ(T ) = aδ(T − T1) + (1− a)δ(T − T2).

The variable a determines the small ratio of pinholes among the number of transport channels.
Here, we are concerned with the noise generated in this kind of junction. Figure 8.10 shows
the calculated results.
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Figure 8.10: Noise SI as a function of bias voltage for a rough superconducting tunnel junction
including pinholes, characterized by the transmission eigenvalue distribution ρ(T ) = aδ(T −
T1)+(1−a)δ(T −T2), T1 = 0.986 and T = 0.01. The different curves refer to different pinhole
fractions within all transport channels, given by the parameter a. Left panel: normal noise
scale. Right panel: logarithmic noise scale.

We see a dramatic change in the noise characteristic of tunnel junctions due to very few
pinholes with an enormous noise increase at small voltages. As in the case of leakage current,



64 8. Noise

at some point in the small-voltage regime, the ratio of pinholes begins to dominate the noise
characteristic, see right panel of Figure 8.10. In this range, SI is solely carried by the pinhole
fraction and we see the enormous rise of noise, as discussed in Section 8.3, introduced by only
a very small ratio of pinholes contained in the junction.

We note again that, as explained in Section 7.4, sensitive measurements of the leakage
current will supply us with a threshold on the fraction of pinholes that might be contained in
the considered junction. Together with the junction size and the number of channels we then
might rule-out the existence of pinholes and the effect presented here in the case of a specific
junction.

The considered pinhole eigenvalue of T = 0.986 is an example chosen due to the considered
voltage regime going down to eV = 0.05 ∆ (see Appendix C). Nevertheless, considering the
explanations given in Section 8.3, we can add two more aspects: Firstly, for smaller voltages
than given in Figure 8.10, the noise will show a maximum and then will fall off again. Secondly,
considering higher values of transmission will lead to an even steeper and higher ascent, which
will, however, start at smaller voltages.



Chapter 9

Full Counting Statistics of Pinholes

We will investigate the full counting statistics (FCS) of charge transport through pinholes.
This crucially depends on the measurement time t0. It has to be chosen sufficiently short so
that we do not lose most structure due to individual transport processes in the statistics but
on the other hand, has to be considerably longer than the inverse of the Josephson frequency.
Despite this limited window of measurement time, we will show that it is nevertheless feasible
to resolve non-Gaussian peak structure in the FCS of pinholes. Using this deep insight into the
transport process, we will furthermore discuss a possible model of high transmission channels
as microscopic origin of two-level current fluctuators. Due to different MAR processes, this
scenario could be an additional source of junction resonators, see Ref. [38], even though
in practice, other processes like charge-trapping might be much more relevant. Indeed, for
certain voltage parameters the FCS will show two-level peak structure but, although tempting
at first sight, a more detailed analysis will show that this cannot be related to distinct MAR
processes. Hence, we will find the result that given the dc part of the probability distribution,
see Section 6.2, there is no evidence that a pinhole might introduce an additional source of two-
level current fluctuators. Finally, we will present an alternative, consistent interpretation of
the observed peak structure in terms of successful transmission attempts of Andreev clusters.

9.1 Full Counting Statistics and Cumulant Generating
Function

Given the definition of the cumulant generating function, Equation 2.1,

exp [S(χ)] =
∑
N

P (N) exp(iNχ),

it is clear that we can get the full counting statistics, the probability to transfer a total number
of N charge during the measuring time t0, by a Fourier transformation

P (N) =
1

2π

∫ π

−π
dχ e−iNχ exp [S(χ)] .

As presented before, the cumulant generating function in the considered case reads

S(χ) =
2t0
h

∫ eV

0
dE ln

[
1 +

∞∑
n=0

Pn(E, V, T )
(
einχ − 1

)]
,
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where the probabilities Pn(E, V ) have to be calculated numerically as explained above. Thus,
altogether we can write the full counting statistics as

P (N) =
1

2π

∫ π

−π
dχ e−iNχ exp

(
2t0
h

∫ eV

0
dE ln

[
1 +

∞∑
n=0

Pn(einχ − 1)

])

=
1
π

∫ π

0
dχ Re

{
e−iNχ exp

(
2t0
h

∫ eV

0
dE ln

[
1 +

∞∑
n=0

Pn(einχ − 1)

])}
. (9.1)

9.2 Full Counting Statistics of high transmission channels

We have seen in the previous sections that, for rough superconducting tunnel junctions in-
cluding a small number of pinholes, current and noise characteristics in the low voltage bias
regime are dominated by the incorporated high transmission channels. Thus, here we will
focus on the features of this kind of transport channels and we will investigate their properties
with respect to the full counting statistics.

To calculate the probability distribution, we have to set the measurement time t0. We
commented on this time before when we derived the cumulant generating function of a voltage
biased Josephson Junction, see Section 6.2. This issue was significantly complicated due to
the ac Josephson effect. In order to make calculation feasible, and to prevent us from the
(in Chapter 2) already mentioned interpretation difficulties of arising ’negative probabilities’
[47] in our superconducting system, we set the dc part φ0 of the superconducting phase
φ(t) = φ0 + 2eV

~ t to zero. For sufficiently long measuring times this procedure is justified
because the matrix current

I(χ, t) =
∑
n

In(χ)einφ(t),

which entered the derivation of the cumulant generating function (see Equation 4.12), only
integrated over measurement time t0, oscillates with all harmonics of the Josephon frequency,
while the coefficients In(χ) are independent of φ0. Thus, φ0 drops the calculation if t0 is
sufficiently longer than the inverse of the Josephson frequency TJosephson. This makes the
derivation of the FCS feasible and enables a classical, and therefore accessible, interpretation
of the probability distribution in our superconducting case. Consequently TJosephson sets a
time scale in our approach and there is a lower bound for the measurement time.

We consider a contact with transmission eigenvalue T = 0.936 and examine three bias
voltages: above the gap eV = 2.2∆, not too far from the energy gap eV = 1.5∆ and low
voltages eV = 0.3∆ where qubits might be operated. To start with, we consider two different
measurement times t0 = 10 · TJosephson and t0 = 100 · TJosephson. Figures 9.1 to 9.3 show the
results.

We see that in every case the FCS for the long measurement time t0 = 100 · TJosephson
is a Gaussian. The average and variance of this is exactly the first and second cumulant
respectively, which are given by the cumulant generating function in the accordant case.
For the two voltage biases eV = 2.2 ∆ and eV = 1.5 ∆ the FCS, in the case of smaller
measurement time t0 = 10 TJosephson, is as well nearly Gaussian. Both results are solely
slightly tilted against this form. More interesting is the case of small measurement time t0
for low voltage bias eV = 0.3 ∆ in Figure 9.3. Here we see a rich comb structure.
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Figure 9.1: FCS for a transport channel between superconductors with transmission T = 0.936
and voltage bias eV = 2.2∆. Left panel: measurement time t0 = 10 · TJosephson. Right panel:
measurement time t0 = 100 · TJosephson
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Figure 9.2: FCS for a transport channel between superconductors with transmission T = 0.936
and voltage bias eV = 1.5∆. Left panel: measurement time t0 = 10 · TJosephson. Right panel:
measurement time t0 = 100 · TJosephson

We will discuss this comb structure and its origin in detail later on, but intuitively we
can already anticipate that it is related to MAR transport processes transferring large charge
quanta like encountered in previous chapters. Here, we want to point out that this structure
turns into a Gaussian for long measurement times. This is as we would expect because, if
we sum the number of transfered charges over a very long measurement time it will become
possible, instead of considering individual MAR processes with their specific probabilities, to
just assign an average probability for one elementary charge quantum to be transfered. Thus,
in the long measurement time limit, transport can be described by a sum of many independent
and identically-distributed events, namely transfer of an elementary charge quantum, which
results in a Gaussian. This is the essence of the central limit theorem extensively used in
statistical physics. Indeed, the problem above can be related to the concept of quasi-ergodic
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Figure 9.3: FCS for a transport channel between superconductors with transmission T = 0.936
and voltage bias eV = 0.3∆. Left panel: measurement time t0 = 10 · TJosephson. Right panel:
measurement time t0 = 100 · TJosephson

hypothesis, see for instance Ref [79], which constitutes the basis of the essential thermodynamic
limit. Hence, it is clear that for very long measurement times the comb structure due to
individual, discrete transport processes is washed out. In the additionally considered cases of
eV = 2.2 ∆ and eV = 1.5 ∆, see Figure 9.1 and 9.2, the most relevant transport processes
transfer only very small charge quanta whose discrete structure in the FCS cannot be resolved
in the used time interval. Therefore, even with a measurement time of just t0 = 10 ·TJosephson
we see a nearly Gaussian distribution.

So the central question is how far the measurement time can be reduced. We have men-
tioned above that, for very small detection intervals, we are running into problems with the
approximations we made on our way to derive the FCS in our superconducting case. For long
measurement time, we saw that we lose the peak structure and we cannot resolve structures
due to individual, discrete transport processes that reflect information contained in higher
cumulants. Despite this window of possible or rather interesting times, we are able to see
discrete structure in the FCS and we can use it to gain information from it. We can use
normalization of the probability distribution to roughly verify that our values of t0 are still
sufficiently long. In all calculations that we performed, for very small measurement times
at some point the shape of the calculated probability distribution becomes unreasonable and
the resulting FCS diverged significantly from its usual normalization to unity. We used this
as a criterion bounding the measurement time to figure out how short it can be chosen for
a given set of parameters. As an example, for smaller measurement times in Figure 9.4 the
FCS for a channel with transmission T = 0.972, voltage bias eV = 0.3 ∆ and detection period
t0 = 6 · TJosephson is shown.

9.3 Pinholes as Junction Resonators

9.3.1 Motivation

So far we have seen that, in spite of the limitations on the measurement time t0, we are able
to resolve pronounced structures in the FCS for high transmission transport channels. In
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Figure 9.4: FCS for a transport channel between superconductors with transmission T = 0.972
and voltage bias eV = 0.3 ∆ for a measurement time t0 = 6 · TJosephson

particular we have shown several discrete peaks in the probability distribution in case of low
subgap voltage for high transmission channels, which as pinholes might reside hidden in huge
tunnel junctions. We note the obvious fact that discrete probabilities to transfer different
total numbers of charge during the measurement time t0 result in discrete probabilities for
different, distinct values of average current flow.

One of the original motivations of this research was decoherence from junction resonators
in phase qubits. It was measured in Ref. [38] and hence, we are especially interested in the
microscopic origin of systems that might cause two-level current fluctuators. Moreover, this
is particularly relevant in trying to reveal sources of 1/f noise, see Ref. [27, 28, 29] and the
discussion in Section 1.4.1.

Thinking of the different possible MAR processes, which transfer different sizes of charge
quanta, a pinhole might introduce current fluctuators: imagine a high transmission channel,
i.e., a pinhole hidden in the junction. Two different MAR processes A and B transfer two
different charge quanta nAe and nBe in each cycle. Thus, we might think of two current
states |A〉 and |B〉; each of them carry charge using one of the different MAR processes A, B.
Due to the different Andreev clusters being transfered, the two states will cause two different
currents. In principle the mechanism is similar to the idea of charge-trapping in Ref. [29],
where a, for instance by defects, trapped charge blocks tunneling through a transport channel.
One introduces an untrapped state |τu〉 causing high current and a trapped state |τt〉 causing
low current. In comparison, we suggest two states |A〉 and |B〉 corresponding to two different
MAR processes and thereby causing two different currents.

9.3.2 Calculation

If such a system is actually generated by a pinhole we expect to find two distinct peaks pA and
pB in the FCS, where probability pA refers to charge transport due to MAR process A within
time interval t0 and pB to MAR process B. Hence, let us see whether we find parameters
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that result in such an FCS.
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Figure 9.5: Average MAR probabilities P̄n = 1
eV

∫ eV
0 dE Pn as function of applied voltage

bias for a perfect transmission channel T = 1. (To improve readability we only labeled every
third process orders n).

We consider very high transmission channels, for instance T = 0.99. We have seen before
that the MAR probabilities Pn(E, V, T ) depend very sensitively on parameters (see Figure 8.5
and 8.6). Although by looking at average MAR probabilities P̄n = 1

eV

∫ eV
0 dE Pn (see Sec-

tion 7.3), we disregard much information (see Chapter 8), we use them to get a first hint at
what kind of voltages we might find a two peak structure in the FCS. In Figure 9.5 we see
that in the case of of perfect transmission, there are points, always close to MAR voltages,
where two curves cross with the same probability and the subsequent processes have a much
smaller probabilities than the other two. Here we use the extreme case of perfect transmission
as representative for high transmission channels. In fact, as we have seen in Chapter 8, P̄n
curves in the high transmission regime do not differ significantly.

We calculate the FCS for some of these voltages and the transmission eigenvalue T = 0.99.
The results are shown in Figure 9.6. Actually, for some of these parameters, we find two very
pronounced peaks in the FCS. We call them pA and pB. Note that here the measurement
time is very short but, despite some artifacts in the diagrams, the distribution still has a
normalization close to unity.

9.3.3 Interpretation in terms of two-level fluctuator

So given these pronounced peaks, does this indicate that a pinhole via its different MAR
processes can actually introduce a two-level current fluctuator? If we assume so, we associate
peak pA with the case where charge transport is carried by charge quanta nAe, in the time
interval t0, and pB with the case of transport using charge quanta nBe. In all the probability
distributions in Figure 9.6 we see a sharp boundary for the appearance of peaks for large
total charge numbers N . In contrast to such an boundary to the right, in some plots we see a
little peak on the left of the dominating ones. Under the assumption made above, this sharp
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Figure 9.6: Set of FCSs for a transport channel between superconductors with transmis-
sion eigenvalue T = 0.99 and voltage bias eV = 0.227∆, eV = 0.290∆ and eV = 0.333∆,
respectively, showing a double peak structure. The measurement time is t0 = 4 · TJosephson.

boundary is surprising because, for a given voltage there is in fact a lower threshold for the
MAR order n, i.e., a lower bound on the minimal charge cluster transferred in each MAR
cycle. Although there might be the two very dominant processes A and B, there will also be
finite probability to transfer higher charges which would result in little peaks on the right.
So the two-level interpretation, given the above, identifying each peak with different MAR
processes, is not consistent with the sharp boundary for peaks at large total charge number
N that we see in all the FCSs.

The second aspect is the spacing between the peaks. For all the distributions in Figure 9.6,
the distance is slightly larger than (2∆/eV + 1). With respect to the MAR threshold, this is
roughly the size of the average charge quantum that we would expect to be transferred by one
Andreev cluster. Looking at the number of, in total, transferred charges of each rightmost
peak in all distributions in Figure 9.6 and, additionally, noting the MAR threshold 2∆/eV i.e.,
the minimum Andreev cluster size, we infer that, within the measurement time t0, roughly 5
MAR processes contributed to all the three rightmost peaks. The discussion in Section 7.3
strongly suggests that, in the above two-level scenario, A and B are adjacent MAR processes
meaning their transferred charge quanta differ only in one elementary charge. (See also the
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order of processes n whose P̄n curves cross at equal probabilities in Figure 9.5). Thus, if a
pinhole introduced a two-level current fluctuator in the way suggested above, in Figure 9.6
we would expect a peak spacing of ∆N = 5 elementary charge quanta rather than a value
larger than (2∆/eV + 1).

9.3.4 Alternative, consistent interpretation

Thus, the structure we have seen in the FCS of a pinhole does not strictly correspond to
the scenario of a two-level current fluctuator, due to different MAR processes, as suggested
above. In fact, the description of the probability distribution becomes consistent if we do
not identify each peak with different MAR processes but, with the total number of attempts
being successful to transmit Andreev cluster: within the measurement time t0 we might think
of a total number of attempts to transfer charge cluster, where the actual size of the quantum
might differ due to different MAR processes. In the distributions in Figure 9.6, each rightmost
peak corresponds to the case where every attempt is successful to transfer an Andreev cluster,
so we get the sharp boundary observed for the appearance of peaks at large N . The next
peak to the left corresponds to the case where exactly one attempt fails and so on. Thus, the
peaks are naturally separated by a distance larger than 2∆/eV , namely the average Andreev
cluster size transferred in case of a successful attempt. Due to the individual MAR processes,
where in fact, the most likely ones differ only by one or two elementary charge quanta, the
pronounced peaks of successful attempts are broadened. This description is also consistent
with the distribution in Figure 9.4. The peak spacing is again given by a value slightly larger
than (2∆/eV + 1) and we seem to have a sharp boundary for peaks to the right. Due to
the fact that, in comparison to Figure 9.6, we have a smaller transmission eigenvalue, the
rightmost peak, corresponding to the case where all attempts have been successful, is not the
one with the highest probability.

9.3.5 Conclusion

To summarize this section, we have discussed the possibility of a pinhole to introduce a two-
state current fluctuator due to its different MAR transport processes. This is conceptually
similar to the mechanism of charge-trapping, Ref. [29]. Although at a first sight it is tempting
to relate the observed peak structure to different MAR processes, we have shown that a more
detailed analysis suggests a very different, consistent interpretation in terms of successful
transport attempts of Andreev cluster. Actually, at first, this was not immediately obvious to
us. Taking this into account, within the dc part of the probability distribution, see Section 6.2,
we see no clear evidence that a pinhole might be a microscopic origin for introducing two-
level current fluctuators. Charge-trapping in junctions is probably one of the most relevant
mechanisms. However, it might be especially interesting to think about such a process opening
and closing a very high transmission channel i.e. a pinhole. Due to the large charge quanta
transfered, the process of trapping and untrapping might result in much higher magnitudes
of current fluctuations. So far, electron-electron interacting has not been taken into account.
A very intuitive picture might be an occupied upper Andreev bound state with energy EJ+,
see Ref [80], that causes such a repulsion within the channel. Nevertheless, in the case of
voltage bias, such a state with energy EJ± = ±∆[1−T sin2(φ(t)/2)]1/2, where subscript EJ−
additionally refers to the lower bound state and φ(t) is the superconducting phase, might
be adiabatically carried above the gap directly after population within the actual Josephson
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cycle. Further investigation might clarify this aspect.
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Conclusion

We have investigated voltage-biased rough superconducting tunnel junctions containing some
high transmission channels, so-called pinholes, through the junction. We have done this using
the method of full counting statistics formulated within the non-equilibrium Keldysh Green’s
functions technique. By reason of this microscopic, field-theoretical approach, we were able
to properly quantify physical effects due to low- and high- transmission channels.

We explored leakage current, i.e., current in the subgap voltage regime eV < 2∆ of
such systems. We discussed that charge transport through pinholes is effectively carried by
various MAR processes, transferring Andreev clusters of different sizes. In contrast, for low-
transmission channels, there is always a single strongly dominant MAR process, transferring
charge clusters of a single specific size, depending on voltage. We have confirmed the intuitive
result that the current contribution of high-transmission modes is larger than the one due
to low-transmission channels by orders of magnitude. We were able to properly quantify
this contribution to tunnel junctions for all values of transmission coefficients. We observed
that such a junction of a given leakage characteristics may contain much fewer pinholes than
previously speculated in Ref. [33]. We further demonstrated how highly sensitive current
measurements can clarify the existence of pinholes and set boundaries to their fraction in
all transmission channels. We pointed out that current measurements, done for the junction
of the superconducting qubit device in Ref. [38], do not strictly rule out the existence of a
pinhole hidden in the junction.

Furthermore, we examined noise properties. For voltage bias above or slightly below
the gap edge we found that a rough superconducting tunnel junction behaves much like a
tunnel contact. However, we demonstrated that even very few of these pinholes give rise
to a drastic increase of the noise in the very low subgap voltage regime. The height and
the position of the emerging noise maximum depend on the transmission coefficient of the
actual pinhole. In fact, higher values of transmission lead to a higher and steeper noise
ascents which, however, occur at smaller voltages. Although, for pinholes, details of this
noise enhancement, comprising contributions of several, different MAR processes, turned
out to be quite complicated, we proposed that the physical essence of the observed noise
boost still lies in the increased charge quanta that is transfered. We compared the explicit
noise calculation to a simple model containing this essential feature but no further details.
This showed qualitative agreements, and thus illuminated some essential features, but failed
quantitatively, therefore demonstrating the need of detailed calculations to obtain our results.
Moreover, similar to previous authors, we observed finite shot noise in perfect transmission
channels between superconductors, that is completely different from what we would anticipate
from the normal conducting case. We have explained this feature in terms of the additionally
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introduced uncertainty of the actual Andreev cluster size, by reason of several possible MAR
processes. Furthermore, we calculated explicit results for the junction measured in Ref [30],
see Figure 1.5. We confirmed that, in this transmission eigenvalue regime, it is still valid to
use the simple picture of Poissonian shot noise 2qI with modified charge quantum q.

Finally, we investigated the full counting statistics (FCS) of charge transport through
pinholes. This crucially depends on the measurement time t0. To obtain a classical, and
therefore accessible, interpretation of the FCS in our superconducting case, this time must
not be chosen too short. For long detection times, we demonstrated that we lose most
structure, due to individual transport processes, in the statistics. Despite this window of
limited measurement time, we showed that it is nevertheless feasible to resolve non-Gaussian
peak structure in the FCS of a pinhole. Using this deep insight into the transport process,
we discussed a possible model of high-transmission channels as a microscopic origin of two-
level current fluctuators. Due to different MAR processes, this scenario could have been an
additional source of junction resonators, see Ref. [38], even though in practice, other processes
like charge-trapping might be much more relevant. Indeed, for certain voltage parameters,
the FCS showed a two-level peak structure. Nevertheless, although tempting at first sight,
from a more detailed analysis we inferred that this structure cannot be related to charge
transport by distinct MAR processes. Hence, we found the result that, given the dc part
of the probability distribution (see Section 6.2), there is no evidence that a pinhole might
introduce an additional source of two-level current fluctuators. In addition, we presented an
alternative, consistent interpretation of the observed peak structure in terms of successful
transmission attempts of Andreev clusters.

So far, although the method we used provides much insight into the microscopic transport
process, it is basically limited to the stationary or quasi-stationary case. Further improve-
ments on this might incorporate time-dependence into the Keldysh Green’s function approach.
This may permit a more rigorous discussion of finite-frequency noise with respect to pinholes.
Very recently, first steps concerning the discussion of time-dependence using this method have
been made see Ref. [81], where elementary events in the statistics of a normal conducting QPC
driven by an arbitrary time-dependent voltage bias were discussed. Also, electron-electron
interactions describing the traditional 1/f noise scenario for Josephson junctions should be
included as mentioned in Section 9.3.5.
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Appendix A

Bulk solutions

It took us a while to find the correct bulk solutions in the superconducting case as there seems
to be different sign conventions in the literature. Thus it might be useful to discuss this issue
in some detail. We will use the Keldsh(∧)-Nambu(−) notation introduced in Section 6.1.

A.1 Normal conductor

The bulk solution of a normal conducting terminal, see for example Ref. [70, 65], is given by,

Ǧ =
(
R̄ K̄
0 Ā

)
(A.1)

with
R̄ = σ̄3

Ā = σ̄3

K̄ = 2
(

1− 2f(E) 0
0 1− 2f(−E)

)
.

Here f(E) is the Fermi function. Sometimes this solution is stated using the equation tanh(x/2) =
1− 2f(x). Note that the Keldysh Green’s function in Equation A.1 is given in its triangular
form, see remark at the end of Section 3.1 and Appendix B.1.

A.2 Superconductor

A.2.1 Bulk solutions in the literature

In nearly all references on full counting statistics in the superconducting case, see for in-
stance Ref. [47, 74, 65], the bulk solution of the Usadel equation (see Section 3.2.1), for BCS
superconductors at zero potential µS = 0 is stated as

ǦS(E) =
(

(Ā− R̄)f + R̄ (Ā− R̄)f
(Ā− R̄)(1− f) (R̄− Ā)f + Ā

)
(A.2)

with Nambu structure
R̄, Ā = gR,Aσ̄3 + fR,Aσ̄1
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fR,A =
i∆√

(E ± iδ)2 −∆2
(A.3)

where f refers to the Fermi function, ∆ denotes the superconducting gap and δ = 0+. Note
that different forms of Equation A.2, that can be found in the literature, usually depend
on whether or not the Keldysh Green’s function is given in its triangular from (see also
Appendix B.1). Given Equation A.3, gR,A should follow from quasiclassical normalization,
g2 +f2 = 1. Here, in this representation, δ is necessary to choose the correct signs when doing
square roots. If we do this calculation, using Equation A.3 and including the limit δ = 0+,
we find the explicit representation of the bulk solution

R̄(Ā) = σ̄3

[
± |E|√

E2 −∆2
δ(E2 −∆2) + i

−E√
∆2 − E2

δ(∆2 − E2)
]

+ σ̄1

[
∆√

∆2 − E2
δ(E2 −∆2)± i ∆

sign(E)
√
E2 −∆2

δ(∆2 − E2)
]
. (A.4)

It turns out that Equation A.4 is exactly the solution found in one of the very early reviews
on kinetic equations for superconductors, see Ref. [58]. From Equation A.3 and A.4 it follows
that

fA = −(fR)∗ (A.5)

However, our calculations of Equation 6.10 using Equation A.4 failed. For this reason we
look at the extensive review in Ref. [41].

A.2.2 Used bulk solution

In Ref. [41] the derivative of the bulk solution for the Usadel equation in case of BCS super-
conductors at zero potential µS = 0 results

R̄(Ā) = σ̄3

[
± |E|√

E2 −∆2
δ(E2 −∆2) + i

−E√
∆2 − E2

δ(∆2 − E2)
]

+ σ̄1

[
∆√

∆2 − E2
δ(∆2 − E2)± i ∆

sign(E)
√
E2 −∆2

δ(E2 −∆2)
]
. (A.6)

Note that here, in comparison with Equation A.4, the delta functions in the anormalous
propagator part are interchanged. Thus, instead of Equation A.5, we get

fA = (fR)∗.

We can rewrite Equation A.6 in a form similar to Equation A.3

gR,A = ± |E|√
(E ± iδ)2 −∆2

fR,A = ± i∆√
(E ± iδ)2 −∆2

(A.7)

Apparently there must be different sign conventions involved. We used this solution that
is consistently derived in Ref. [41] and we found consistent results using it.
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Notes on computational details

B.1 Rotation in Keldysh space

It was already pointed out at the end of Section 3.1 that the components of the Keldysh
Green’s function, in its original form (Equation 3.7), are not linearly independent and can be
transformed into a triangular form similar to Equation A.1. The transformation can be found
in Ref. [41]. Here, we want to point out that the rotation in Keldysh space incorporating the
counting field (Equation 6.2)

Ǧ(χ) = e−iχτ̌k/2 Ǧ(0) eiχτ̌k/2

naturally depends on the representation of the Green’s function. The τ3 coupling, see Sec-
tion 3.1.1 and 4.2, requires a representation as in Equation 3.7. In fact, we calculated the
normal conducting QPC using the bulk solution A.1 in its triangular form. In this case, the
rotation axis is changed to τ1. If we use τ3 under these circumstances the counting field will
actually drop out calculations due to the wrong rotation axis.

B.2 Toy model

We do not want to repeat the entire calculation of the toy model, introduced in Ref. [74] to
illustrate the calculation of the cumulant generating function in a strongly simplified case. For
this we refer to the mentioned reference. Nevertheless, we want to point out some additional
remarks since we think the computational details are not very easily understandable and
there are some misprints at the beginning of section III.3 in this paper that complicate its
accessibility.

In the remainder of this section we will exclusively talk about labels of equations in
Ref. [74] and it should be read in parallel with section III.3 of that paper. We consider only
MAR voltages eV = 2∆/n. At each of these voltage we only consider the MAR process
transferring N = 2∆/n + 1 charge quanta. Note that a process transferring 2∆/n quanta
only connects the gap edges. An odd (even) number N means that we can subdivide the
energy gap into an even (odd) number of energy intervals of length eV . In section III.3
it is best to set the energy offset such that we have for the chemical potential of the left
terminal µL = −eV/2 and for the one on the right µR = eV/2. This way, in contrast to
the derivation in section B, we have off diagonal elements in energy space for both terminal
Green’s functions and the subdivision of the energy gap 2∆ into intervals of length eV becomes
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handy. Note that this way, the energy off-diagonal elements, see Equation 6.7 in this thesis,
become δ(E − E′ ± 2µL,R) = δ(E − E′ ± eV ). For odd N we use the fundamental interval
[−eV/2, eV/2] and introduce M such that N = 2M + 1. For even N we use the interval
[0, eV ] and N = 2(M + 1). This way Table II and Equation (40) become consistent with the
description. Now, Equation (40) can be easily understood with Equation 6.7 in this thesis.



Appendix C

Numerics

Finally, to find concrete results, the probabilities Pn(E, V, T ), emerging in the expression of
the cumulant generating function of the voltage-biase Josephson junction, had to be calculated
numerically. According to Equation 6.10, this can be accomplished by an iterative procedure
making use of the fact that for |n| � ∆/eV expressions like gα±n − gα±(n−1), with α = A,R,

vanish and thus, we can use the boundary conditionBA,R
n = det F̌n = 1. We set an appropriate

threshold ε for accuracy of the calculation. The physical reason that makes this iterative
calculation feasible is that practically only energies around the Fermi energy contribute to
transport.

Nevertheless, as it can already be guessed from the structure of Equation 6.10, the expres-
sions, which finally always have to be integrated over energy, become very complicated and
the software package Maple 10, which was used, was unable to do this kind of calculation. So
we did this by choosing a certain number of equal-distant points within the energy interval
[0, eV ], evaluated the integrand at these points and sumed the contributions multiplied by
the point distance.

Additionally, the smaller the voltage bias, the more calculation steps are necessary to
finally make use of the boundary condition. This number of steps increases in proportion to
1/V . This becomes immediately clear if we look at the structure of Equation 6.10. Thus
there is a lower limit for voltage bias due to computational effort. The smallest voltage we
calculate is eV = 0.05∆.
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