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We study inelastic scattering of energetic electrons off a Kondo impurity. If the energy E of the incoming
electron �measured from the Fermi level� exceeds significantly the Kondo temperature TK, then the differential
inelastic cross section ��E ,��, i.e., the cross section characterizing scattering of an electron with a given
energy transfer �, is well defined. We show that ��E ,�� factorizes into two parts. The E dependence of
��E ,�� is logarithmically weak and is due to the Kondo renormalization of the effective coupling. We are able
to relate the � dependence to the spin-spin correlation function of the magnetic impurity. Using this relation,
we demonstrate that in the absence of the magnetic field, the dynamics of the impurity spin causes the electron
scattering to be inelastic at any temperature. At temperatures T low compared to the Kondo temperature TK, the
cross section is strongly asymmetric in � and has a well-pronounced maximum at ���TK. At T�TK, the
dependence � vs � has a maximum at �=0; the width of the maximum exceeds TK /� and is determined by the
Korringa relaxation time of the magnetic impurity. Quenching of the spin dynamics by an applied magnetic
field results in a finite elastic component of the electron scattering cross section. The differential scattering
cross section may be extracted from the measurements of relaxation of hot electrons injected in conductors
containing localized spins.
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I. INTRODUCTION

Scattering of an electron off a magnetic impurity embed-
ded in a conductor is known to be anomalously strong.1 The
origin of the anomaly is rooted in the degeneracy of the
localized spin states. This degeneracy, being removed by a
weak exchange interaction with the itinerant electrons in a
metal, gives rise to the strong scattering of electrons with
low energy—the Kondo effect. Perturbation theory in the
exchange interaction constant J is singular. The second-order
contribution in J to the scattering amplitude diverges
logarithmically2 if the electron energy E �measured from the
Fermi level� and temperature T are approaching zero. It is
important to notice that the logarithmically divergent contri-
bution to the amplitude corresponds to an elastic process.
Indeed, this contribution comes from the change of state of
one electron: states of all other itinerant electrons are the
same in the beginning and end of the scattering process.
Therefore, the energies of the electron before and after the
scattering is unchanged.

The divergence noticed by Kondo is not unique to the
second order of the perturbation theory. Its higher orders �n
�2� also contain divergent terms of the type Jn lnn−1�D /��,
where �=max�E ,T�, and D is some ultraviolet energy cutoff,
whose value depends on the specific model: D��. These
leading logarithmic terms may be summed up by diagram-
matic method3 or by means of the “Poor man’s scaling”4

renormalization group �RG�, yielding for the scattering am-
plitude

Ak,�,S→k�,��,S� =
1

ln��/TK�
s�,�� · Ss,s�, �1�

where s�,�� and Ss,s� are the spin operators of the conduction
electrons and the impurity, respectively. The so-called Kondo
temperature is given in terms of the cutoff D and the ex-
change interaction J as TK=De−1/�J��, where � is the density
of states. Like the lowest-order perturbation theory result, the
leading-logarithmic approximation Eq. �1� corresponds to
purely elastic electron scattering.

The leading-logarithmic approximation is adequate at
��TK, but it fails at low temperatures. A convenient phe-
nomenological description of the low-energy behavior of a
single-channel Kondo model is given by Nozières’ effective
Fermi liquid theory. In this theory, a scattering problem can
be formulated, too. It is clearly seen,5 however, that the scat-
tering is not purely elastic at �	TK. At T=0, for example,
the inelastic contribution to the electron scattering cross sec-
tion scales as �E /TK�2 and becomes comparable to the elastic
part at E�TK.

The Kondo effect is a crossover phenomenon, rather than
a phase transition. The measurable characteristics, such as
the contribution to the susceptibility or resistivity due to
magnetic impurities depend smoothly on temperature. Simi-
larly, the electron scattering off a magnetic impurity, which is
deeply inelastic at ��TK, must have some inelastic compo-
nent at any energy E. In this paper, we investigate in detail
the inelastic scattering of a high-energy electron off a mag-
netic impurity.
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A study of the energy-resolved, differential cross section,
��E ,��, is interesting in its own right, but it can, in prin-
ciple, also be measured, e.g, in a modification of the experi-
ments of Pothier et al.6 Further motivation to study ��E ,��
beyond perturbation theory comes from the recent theoretical
work of Zaránd et al.7 In Ref. 7, the energy dependence of
the total scattering cross section, �tot�E�=�d���E ,��, was
addressed. With the help of the optical theorem, the total
cross section �tot�E� was compared with the elastic part of it.
The conclusion reached in Ref. 7 regarding the energy do-
main E�TK is striking: at T=0, the scattering is deeply in-
elastic: the elastic part turns out to be negligibly small. This
seemingly contradicts the leading-logarithmic result for the
scattering amplitude Eq. �1�. The physical explanation of this
phenomenon, however, remained unclear in Ref. 7 and mo-
tivates us to revisit the problem of inelastic scattering. The
dependence of the differential cross section ��E ,�� on �,
which we consider in this paper, clarifies the issue, as we are
able to determine the distribution of energy losses in the
inelastic electron scattering off a magnetic impurity.

The separation of the electron scattering cross section in
the Kondo effect into elastic and inelastic parts at E�TK was
not addressed for decades, as it does not affect the routinely
measured quantity, the resistivity. The anomalously fast elec-
tron energy relaxation in some mesoscopic metallic wires,6

which was discovered in the last decade, prompted a search
for relaxation mechanisms driven by impurities with internal
degrees of freedom. A viable mechanism of energy relax-
ation was suggested in Ref. 8 and was associated with the
electron-electron scattering mediated by exchange interac-
tion of electrons with magnetic impurities. The removal of
degeneracy of the localized spin states by the exchange in-
teraction results in an anomaly of the electron-electron scat-
tering cross section at small energy transfers;8 the collision
of two electrons with energies E ,E��TK leads to a redistri-
bution of the energies between the two particles, E ,E�→E
−� ,E�+�, and has cross section K�� ,E ,E��
J4 /�2 in the
lowest-order perturbation theory.10 The 1/�2 dependence of
K allowed the experimental observations6 to be explained
qualitatively. Later experiments12 performed in a magnetic
field sufficient for the Zeeman splitting of impurity energy
levels did confirm the origin8 of the inelastic electron-
electron scattering, and indicated the irrelevance of more ex-
otic mechanisms, which assumed a generic non-Fermi liquid
behavior introduced by impurities.13

The existence of energy exchange between electrons me-
diated by their interaction with a magnetic impurity indicates
the inelastic nature of the electron scattering off a magnetic
impurity. Indeed, using the Fermi Golden rule, we find

��E,�� 

J4

�2�
−�

�

dE�f�E���1 − f�E� + ��� 

J4

�
�2�

at ��T. So already in the simplest perturbation theory, it
becomes clear that there is an inelastic contribution to scat-
tering. As long as E ,��T, temperature does not affect the
inelastic cross section in this order. It is not clear, however,
what the relation is between the inelastic cross section
��E ,�� and the leading-logarithmic result Eq. �1�: On one

hand, ��E ,��
J4 is parametrically smaller than the scatter-
ing cross section following from Eq. �1�. On the other hand,
the total inelastic cross section obtained from Eq. �2�,
�tot�E�=�d���E ,��, diverges at �→0, indicating the inap-
plicability of the lowest-order perturbation results at small
energy transfers.

The lowest-order perturbation theory for K�� ,E ,E�� can
be controllably improved in two respects. First, at E ,E�
�TK and ���	E ,E� the four constants J, entering as a prod-
uct in the perturbative result, may be replaced8 by the prop-
erly renormalized4 quantities.14 Second, the divergence at
�→0 is cutoff due to the dynamics of localized spin. An
adequate theory may be developed for high temperatures,
T�TK, where the cutoff occurs due to the Korringa
relaxation.8 These improvements allow one to see that
�tot�E� is finite, but they are insufficient to investigate the
details of the ��E ,�� dependence.

In this paper, we concentrate on the differential cross sec-
tion, ��E ,��, of inelastic scattering of a highly excited elec-
tron with energy E�TK. Despite the many-body nature of
the Kondo effect, this quantity is well defined at �	E. We
show in Sec. II that in the limit E�TK, the differential cross
section is related to the dissipative part of the impurity spin
susceptibility, ��. From the low-frequency and high-
frequency asymptotes of ��, we extract in Secs. III and IV
the behavior of the differential cross section ��E ,�� in the
absence and presence of a Zeeman energy, respectively. The
analytical asymptotes thus obtained are complemented by
results of the numerical renormalization group17 �NRG�,
which allows us to access also the intermediate range of
frequencies and magnetic fields. The connection between the
result of Ref. 7 and the leading-logarithmic approximation
for the scattering amplitude �1� describing only elastic scat-
tering will be explained in detail. Finally, in Sec. V, we dis-
cuss possible hot-electron experiments in metallic mesos-
copic wires and in a semiconductor quantum-dot setup in
order to measure the differential scattering cross section
��E ,��.

II. RELATION BETWEEN INELASTIC SCATTERING
CROSS SECTION AND SUSCEPTIBILITY

The relation between the scattering cross section of a “for-
eign” spin-carrying particle and the spin-spin correlation
function of a magnetic medium is well known from the
theory of neutron scattering.18 Here, we derive a similar re-
lation for scattering off a magnetic impurity of a high-energy
electron belonging itself to the Fermi liquid hosting the mag-
netic impurity.

The exchange interaction between the impurity spin and
spins of electrons forming the Fermi liquid,

Hint = J	
k,k�

S · s�ck
† ck�� �3�

gives rise to the Kondo effect. Here, J is the constant of
exchange interaction between the impurity spin and itinerant
electrons with energies �k� �measured from the Fermi level�
confined to some energy band, ��k���D. Here, s� is 1

2
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times the vector of Pauli matrices. The Kondo problem al-
lows for a logarithmic renormalization: the low-energy prop-
erties of the system described by the Hamiltonian �3� coin-
cide with those for a Hamiltonian defined in a narrower
band, say ��k���E, upon the proper renormalization of the
exchange constant,

J�E� =
J�D�

1 − �J�D�ln�D/E�
, J�D� = J , �4�

where � is the density of states of itinerant electrons. The
perturbative renormalization Eq. �4� is valid as long as the
running energy �E in the case of Eq. �4�� significantly ex-
ceeds the Kondo temperature TK. An important property of
the logarithmic renormalization is that only exponentially
wide energy intervals ��1 ,�2�, such that �J�ln��1 /�2���1
contribute significantly to the renormalization. That allows
us to “skip” some relatively narrow strip of energies, say,
�E−�E, E+�E�, with �E	E, in the renormalization pro-
cess, yielding a Hamiltonian

Hint = J�D̃� 	
��k�,��k����D̃

S · s�ck
† ck��

+ J�E� 	
E−�E��k,�k���E+�E

S · s�ck
† ck��

+ J�E� 	
E−�E��k�E+�E,��k����D̃;

E−�E��k���E+�E,��k��D̃

S · s�ck
† ck��, �5�

with D̃�E−�E. The renormalized exchange constants here
may be expressed in terms of the Kondo temperature,
�J���=1/ ln�� /TK�. There is no need to distinguish between
J�E−�E�, J�E�, or J�E+�E� as long as E�TK.

If the scattering of an electron with initial energy E leaves
it in the energy domain �E−�E, E+�E�, then the corre-
sponding cross section, within the lowest-order perturbation
theory in J�E�, can be evaluated with the help of the Hamil-
tonian �5�. The first line of Eq. �5� plays the role of the
Hamiltonian of a magnetic medium in the neutron, scattering
problem, and the second line describes the interaction of the
energetic particle �we deal with an electron rather than with a
neutron, though� with the medium. The remaining part of the
Hamiltonian does not contribute to the scattering cross sec-
tion in the lowest-order calculation.

Consider such a scattering of an energetic electron with
energy E and spin � in the initial and E−� and ��, respec-
tively, in the final state with �	E such that E−�� �E
−�E ,E+�E�. The state of the remaining system before and
after scattering may be characterized by the wave functions
�i and � f, respectively. The initial and final state of the total
system is then given by the product states for the initial state,

�i
 = �E,�
 � ��i
 , �6�

for the final state,

�f
 = �E − �,��
 � �� f
 .

The differential cross section of inelastic scattering
�����E ,�� is determined by the probability P����E ,��d� of

scattering of an electron with initial energy E and spin � into
a state within interval of energies �E−�, E−�−d�� and spin
��,

P����E,��d� = vF�����E,��d� , �7�

where vF denotes the Fermi velocity. By energy conserva-
tion, �=� f −�i, where energies �i, � f are associated respec-
tively with the functions �i and � f involving the states in

the domain ��k��� D̃. In the absence of a magnetic field,
energy E is the orbital energy in the initial state, and � is the
change in the orbital energy resulting from scattering. In the
presence of Zeeman splitting, the initial energy and the en-
ergy transfer include the orbital and Zeeman parts, e.g., E
=�k+�ge�BB /2.

The standard application of the lowest-order perturbation
theory in the interaction of the energetic electron with the
remaining system yields for the scattering probability

wf←i = �J�E�s����� f�S��i
�22�����i − � f + �� ,

where � is the density of states for the energetic ���E�
electron. After the summation over the final states and proper
thermal averaging over the initial states, we are able to relate
wf←i with �����E ,�� and obtain the differential scattering
cross section

�����E,�� =
�

4vF
J2�E�

������Szz��� + s���
+ S+−��� + s���

− S−+���� ,

�8�

where s���
± =s���

x ± is���
y . As in the theory of neutron

scattering,18 the cross section involves a spin-spin correlation
function. Here, it is the correlation function of the local mag-
netic impurity spin,

Sab��� = �
−�

�

dtei�t�Sa�t�Sb�0�


= 	
���i
,��f


e−��i

Z
��i�Sa�� f
�� f�Sb��i
2����i − � f + �� .

�9�

We thus reduced the scattering cross section to an expression
where its dependence on the energy of the scattering hot
electron E separates from the dependence on the energy loss
�. The dependence on the energy loss is determined by the
dynamics of the impurity spin characterized by the correla-
tion function S. The spin correlator is related to the dissipa-
tive part of the impurity susceptibility via the fluctuation-
dissipation theorem,

�g�B�2Sab��� =
2

1 − e−���ab� ��� . �10�

Here, �B is the Bohr magneton, and g is the impurity g
factor. The behavior of �� in various limits will be discussed
in the following sections. The spin dynamics is thus included
in a nonperturbative fashion. It will allow us to investigate
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the behavior of the cross section at any energy transfer; at
�	TK, we apply effective Fermi liquid theory, and the re-
gion of intermediate energies, ��TK, is covered with the
help of NRG calculations.

However, it is important to note that the total scattering
cross section is fixed by the sum rule for the spin correlation
function, Sab���. Consider the total cross section obtained
after averaging over the initial electronic spin configurations
�, summing over the final ones ��, and integrating over the
energy transfer �,

�tot�E� =
1

2 	
�,��

�
−�

�

d������E,�� =
3�

8

1

�vF

1

ln2 E

TK

.

�11�

We substituted the explicit form for the energy dependent
exchange interaction, J�E�=1/ �� ln�E /TK��. The total scat-
tering cross section will be used throughout the rest of the
paper as a convenient basic unit of measurement for the dif-
ferential cross section discussed below.

As we are mainly interested in the dependence of the
scattering probability on the energy transfer �, we will con-
fine ourselves in the following to an analysis of the scattering
cross section averaged over the initial electronic spin con-
figurations � and summed over the final ones ��,

��E,�� = �tot�E�
2

3�
�Szz��� +

1

2
�S+−��� + S−+����� .

�12�

Note that a Zeeman energy of electrons forming the Fermi
sea was already incorporated in the definition of the energies
E and �. The generalization of our results to spin-resolved
scattering is straightforward.

III. INELASTIC ELECTRON SCATTERING IN THE
ABSENCE OF ZEEMAN SPLITTING

In the absence of a magnetic field, the expression for the
scattering cross section �12� simplifies considerably since the
impurity spin correlator is diagonal, S����Szz���
= 1

2S+−���,

��E,�� = �tot�E�
2

�
S��� . �13�

Let us first establish the relation between Eq. �13� and
the well-known result of the leading-logarithmic
approximation.3,4 For that, we need to substitute in Eq. �13�
the function S��� evaluated in the zeroth order in the ex-

change interaction J�D̃�. In this order, S�0����= �� /2�����,
which yields the well-known result3,4 for the cross section,

��0��E,�� = �tot�E����� , �14�

i.e., scattering is elastic in the leading-logarithmic approxi-
mation. The elasticity breaks down, however, if one accounts

for J�D̃��0. Indeed, the exchange interaction J�D̃� leads to
some dynamics of the impurity spin. The delta-function in

Eq. �14� gets broadened, and spectral weight is transfered to
finite energies ��0. The shape of the broadened peak is
related to the character of the spin dynamics, which is dif-
ferent in the limits of high, T�TK, and low, T	TK, tempera-
tures. We study the shape of the peak in these limits below.
However, note that the broadening does not affect the total
cross section, which is fixed by the sum rule and remains the
same as for the elastic scattering, Eq. �14�, evaluated in the
leading-logarithmic approximation.

A. Inelastic electron scattering at TšTK

At T�TK, the local spin exhibits relaxational dynamics.
The Bloch equations for the impurity spin in the absence of
a magnetic field,

�

�t
�Sa
 = −

1

�K
�Sa
 , �15�

imply the following form for the imaginary part of the
susceptibility,19 �ab� ���=�ab����� with

����� = �0�T�
�/�K

�2 + �1/�K�2 . �16�

It involves the static susceptibility, which is given by �0�T�
= �g�B�2 / �4T�. The decay time �K in the Bloch equations is
the Korringa relaxation time,20 1 /�K=���J�T��2T. Inserting
the scale dependent exchange interaction J�T�, the Korringa
relaxation rate reads explicitly,

1

�K
=

�T

ln2 T

TK

. �17�

It is parametrically smaller than T at temperatures T�TK.
Expression �16� adequately accounts for the behavior of

�� at low frequencies, ��T, but fails at higher frequencies.
For ��T, the susceptibility can be evaluated within the
lowest-order perturbation theory in the exchange constant,21

J�D̃�,

�g�B�−2����� =
�

4

1

� ln2 ���
TK

. �18�

The additional logarithmic frequency dependence arises
from the logarithmic enhancement of the exchange interac-
tion due to the perturbative RG, which is now cutoff at a

bandwidth D̃��.
The resulting differential cross section, ��E ,��, can be

found with the help of Eq. �10�. It is symmetric in � at small
energy transfers. It shows a narrow peak at �=0 and falls off
significantly within the region of energies ����T

��E,�� = �tot�E������ , �19�

where we introduced a “broadened delta function,” which is
a Lorentzian with linewidth �=1/�K,
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����� =
1

�

1/�K

�2 + �1/�K�2 . �20�

As 1/�K	T, see Eq. �17�, almost the full weight of the total
cross section is accounted for by Eqs. �19� and �20�, see
Fig. 1.

At higher energy transfers, ����T, the cross section is
asymmetric in �,

��E,�� = �tot�E�
1

1 − e−�/T

1

� ln2����/TK�
. �21�

The probability for the scattered electron to acquire energy
���0� is exponentially suppressed. Although the contribu-
tion of Eq. �21� to the total cross section is parametrically
small, 
1/ ln�T /TK�, it is worth noting that its decay with �
is remarkably slow.

The slow decay of ��E ,�� vs � is related to the depen-
dence on the transfered energy of the cross section for inelas-
tic electron-electron scattering mediated by a magnetic
impurity.8 The probability for such an inelastic scattering be-
tween two electrons with initial energies E and E� and final
energies E−� and E�+� was calculated in Ref. 8; all of
these four energies were assumed to be large compared to
TK. According to Ref. 8 �see also Eq. �9� of Ref. 9�, the
contribution K�� ;E ,E�� of a single magnetic impurity to this
probability in the limit of high energy, E� ���, reads

K��;E,E�� =
3�

8�

1

ln2 �E�
TK

4

�ln
�E��
TK

+ ln
�E� + ��

TK
�2

1

�2 .

�22�

The differential cross section �21� can be obtained by inte-
grating K�� ;E ,E�� over the available phase space volume of
one of the scattering electrons,

vF��E,�� =� dE�f�E���1 − f�E� + ���K��;E,E�� .

�23�

The Fermi functions in Eq. �23� confine the energy E� to an
interval −��E��0. This includes a regime where the argu-
ments of the E�-dependent logarithmic factors are not mean-
ingful anymore and should be replaced by temperature or the
Korringa relaxation rate. After such a cutoff, integration over
E� is easily performed, yielding ln−2��� /TK within logarith-
mic accuracy. This way, starting from the collision integral
kernel of Ref. 8, one recovers Eq. �21�.

B. Inelastic electron scattering at T™TK

When the temperature is below the Kondo temperature,
the picture differs drastically from the zeroth order result
�14�. For T	TK, the low-frequency behavior of the scatter-
ing cross section is beyond perturbation theory. Nevertheless,
the cross section for small energy transfers, ���	TK, may be
found with the help of the Shiba relation22 for the suscepti-
bility,

�g�B�2����� = 2����0�T = 0��2. �24�

The zero-temperature static susceptibility �0�0� is used
conventionally23 to define the pre-exponential factor of the
Kondo temperature, �0�0�= ��g�B�2W� / �4TK�; here W
=0.413. . . is Wilson’s number. �We present a convenient deri-
vation of the Shiba relation in Appendix A.� The corrections
to the Shiba relation are of order O��T2 /TK

2 ,�3 /TK
2 � and are

subleading. We, thus, obtain for the cross section at ���,
T	TK,

��E,�� = �tot�E�
W2

2

1

1 − e−�/T

�

TK
2 . �25�

The high-frequency limit, ����TK, of the scattering cross
section can still be obtained perturbatively and is given by
Eq. �21�.

Comparing the results of Eqs. �21� and �25�, we see that
for temperatures T	TK, the differential cross section,
��E ,��, peaks at energy transfers of the order of ��TK. It
then decreases linearly upon further decrease of �, until it
crosses over �at ����T� into the exponential tail for ��0,
see inset of Fig. 2. At zero temperature, the factor containing
exp�−� /T� in Eq. �25� becomes a step function which for-
bids any energy gain from the Kondo system,

��E,�� = �tot�E�
W2

2
����

�

TK
2 , �26�

here ��x�=1 if x�0 and 0 if x�0.
The region between the asymptotes given in Eqs. �21� and

�25� can be bridged by calculations performed with the NRG
method. In this method, after the logarithmic discretization
of the conduction band, one maps the Kondo Hamiltonian
onto a semi-infinite chain with the impurity at the end. As a
consequence of the logarithmic discretization, the hopping
along the chain decreases exponentially, tn��−n/2, where

FIG. 1. �Color online� Differential cross section, ��E ,��, at
large temperatures, T�TK, without Zeeman splitting, B=0, as
given by Eq. �19�. The Lorentzian peaks have a width given by the
Korringa relaxation rate 1 /�K, Eq. �17�.
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��1 is the discretization parameter and n is the site index.
�We have used �=2 throughout the calculations presented in
the paper.� The separation of energy scales provided by the
exponential decay of the hopping rate allows us to diagonal-
ize the Hamiltonian iteratively and keep the eigenstates with
the lowest energy as the most relevant ones. Since we know
the energy eigenvalues and eigenstates, we are able to calcu-
late the impurity spin correlation function directly �see Eq.
�9�� given that the Dirac delta function appearing in the Le-
hman representation must be broadened when performing a
numerical calculation.24,25 The result of the NRG calculation
is shown in Fig. 2.

To summarize this section, we demonstrated that the dy-
namics of the impurity spin leads to inelastic electron scat-
tering at all temperatures. The main contribution to the total
scattering cross section comes from ��TK or ����1/�K at
T	TK and T�TK, respectively. The total scattering cross
section is fixed by the sum rule for the impurity spin corre-
lation function, see Eq. �11�, and is thus determined by the
effective exchange constant J�E� evaluated within the
leading-logarithmic approximation.3

IV. ZEEMAN EFFECT IN THE ELECTRON SCATTERING

We now address the case when the degeneracy of the
impurity spin is lifted by a magnetic field. The Zeeman split-
ting of the impurity spin is described by the Hamiltonian

HZeeman = − g�BSzB . �27�

In the presence of the Zeeman splitting, the scattering elec-
tron has to pay Zeeman energy in order to transfer spin to the

Kondo system. The resonance structure for electron scatter-
ing involving a spin flip will, therefore, differ from the one
of non-spin-flip scattering. Evaluating the impurity spin cor-

relator in zeroth order in J�D̃�, we obtain for the scattering
cross section �12� in the leading-logarithmic approximation,

��0��E,�� = �tot�E�
2

1 + e−��

�
1

3
����� + ��� − �Z�B�� + ��� + �Z�B�� .

�28�

The single delta function for B=0, Eq. �14�, is now split into
three contributions. In addition to a delta function at zero
frequency, which is due to non-spin-flip scattering, there are
two Zeeman satellites at �= ±�Z�B�. In the limit of low
temperatures, T	B, the satellite at negative Zeeman energy
corresponding to an energy gain of the scattering electron is
exponentially small as it is clear from Eq. �28�.

The Zeeman energy �Z�B� depends on the renormalized g
factor, which is different from its bare value g appearing in
the Zeeman Hamiltonian �27�. When we derived the effective
interaction Hamiltonian �5�, we integrated out a finite band
of electronic degrees of freedom which lead to a renormal-
ization of the exchange interaction J. The Zeeman term �27�
is not invariant under this perturbative renormalization of the
Kondo model. Similar to the exchange interaction J, the g
factor is also renormalized when the band is reduced from D

to D̃. As explained in Appendix B, the scale-dependent g
factor in the leading-logarithmic order is given by

g�D̃�
g

= �1 −
1

2 ln D̃/TK
� . �29�

To find the observable value of the g factor, one needs to set

D̃=max�T ,g�BB. The position of the Zeeman resonances,
to the leading-logarithmic order, is given by26

�Z�B� = g�1 −
1

2 ln�max�T,g�BB/TK���BB . �30�

Beyond the leading-logarithmic approximation, the dy-
namics of the local spin is characterized by a further redis-
tribution of the spectral weight of the scattering cross section
�28�. However, a striking feature of the presence of a mag-
netic field is that a finite weight of the delta resonance at �
=0 will still survive after accounting for the coupling of the
impurity spin to the low-energy degrees of freedom of the
Fermi sea. In other words, at any ratio T /TK, a part of the
scattering becomes elastic if a magnetic field B�0 is turned
on. This can be best understood by considering the longitu-
dinal spin correlation function in time. For B�0, this corre-
lation function will not fully decay with time but rather satu-
rate at a value given by the finite expectation value of the
impurity spin, �Sz�t�Sz�0�
→ �Sz
2 for t→�. This finite satu-
ration value leads to a finite weight of the delta function ����
in its Fourier transform and in Eq. �8�. Let us decompose
��E ,�� into the elastic and inelastic parts,

FIG. 2. �Color online� NRG result for ��E ,�� �solid line� on a
logarithmic scale at T=0 without Zeeman splitting, B=0. A maxi-
mum at finite �=TK develops and scattering with small energy
transfer � is suppressed. Whereas, the high-frequency tail is pertur-
batively accessible, see Eq. �21� �short-dashed line�, the low-
frequency tail, Eq. �25� �long-dashed line�, is a property of the
strong coupling fixed point described by Nozières’ Fermi liquid
theory. �W=0.413. . .. is Wilson’s number.� The inset shows the tem-
perature correction according to Eq. �25�; the contribution for nega-
tive � is exponentially small for temperatures 0�T	TK.
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��E,�� = �el�E,�� + �inel�E,�� . �31�

The elastic part will be determined by the magnetization
of the impurity spin

�el�E,�� = �tot�E�
4

3
�Sz
2���� . �32�

Being a thermodynamic quantity, �Sz
 has a well-studied field
and temperature dependence.23,27 In the scaling regime,
f�t ,b�= �Sz
 is a function of t=T /TK and b=g�BB /TK. The
asymptote of f�t ,b� at max�t ,b��1 is with logarithmic ac-
curacy given by

f�t,b� =
1

2
�1 −

1

2 ln�max�t,b���
�tanh� b

2t
�1 −

1

2 ln�max�t,b���� . �33�

Note that in the limit t=0, b�1, Eq. �33� yields the ground-
state value of �Sz
 in the perturbative regime. In the opposite
limit of a weak field, b	1	 t, spin polarization is small
according to the Curie law, f �b /4t. In the developed Kondo
regime, max�t ,b�	1, the average spin is f�t ,b�= �W /4�b.

The weight of the elastic scattering, Eq. �32�, evaluated
with NRG is shown in Fig. 3. In the limit of small magnetic
fields, this weight increases as B2. The saturation of the
weight to its large-field limit, 1 /3, is remarkably slow due to
the logarithmic correction to the magnetization,27 see Eq.
�33�.

The inelastic part of the scattering cross section,
�inel�E ,��, accounts for the remaining spectral weight. Note,
however, that the total scattering cross section, i.e., the total
spectral weight, is independent of the magnetic field: its
value being fixed by the sum rule for the impurity spin cor-
relator.

A. Dissipative part of magnetic susceptibility

To analyze the inelastic scattering cross section in more
detail for the two limiting cases T�TK and T	TK, we start
from presenting the proper details regarding the frequency
dependence of the dissipative parts of longitudinal and trans-
versal impurity spin susceptibilities ��zz� and �+−� , respec-
tively�.

At T�TK, one may treat the exchange interaction J�D̃�
perturbatively at any field B. The effect of B on �� is negli-
gible as long as the Zeeman splitting, �Z�B�, is smaller than
the Korringa relaxation rate, 1 /�K, see Eq. �17�. At higher
fields, the susceptibility becomes anisotropic, �zz� � 1

2�+−� , and
its frequency dependence acquires a well-resolved structure.
The dissipative part of the susceptibility can be found from
the Bloch equations.18 The transversal part takes the form

�+−� ��� = 2�T
�/T2

�� − �Z�B��2 + �1/T2�2 , �34�

where the static transversal differential susceptibility can be
expressed with the help of Eq. �33� as �T= �g�B�f�t ,b� /B.
The longitudinal part reads

�zz� ��� = �L
D �/T1

�2 + �1/T1�2 , �35�

where �L
D is given by

�L
D =

�g�B�2�1 −
1

ln�max�T,g�BB/TK��
4T cosh2 �Z�B�

2T

. �36�

The factor �L
D can be understood as the contribution to the

static suceptibility which originates from the response of the
occupation factors of the two Zeeman levels to a varying
magnetic field, �L

D=geff�B��n+−n−
 /�B; here geff, see Eq.
�29�, is the appropriately renormalized g factor. Note that
only in the limit �Z�B��T, when the renormalized g factor
�29� is insensitive to the magnetic field, �L

D does coincide
with the full static longitudinal differential susceptibility �L
=g�B�f�t ,b� /�B.

In the case of a moderately high field, 1 /�K	�Z�B��T,
the relaxation times, T1 and T2, equal each other18 and are
given by Eq. �17�, T1=T2=�K.

At even higher fields, �Z�B��T, the peak structure in
�+−� ��� is still described by a Lorentzian form of Eq. �34�,
but the corresponding relaxation time is determined now by
the Zeeman splitting rather than by temperature,19

1

T2
=
�

4

�Z�B�

ln2 �Z�B�
TK

. �37�

The frequency dependence of the longitudinal susceptibility,
however, requires additional discussion.

Generally, the susceptibility, �ij���, describes the re-
sponse of the magnetic impurity to a local magnetic field that
oscillates with frequency �. At low frequencies, the variation
of the dissipative part of the longitudinal component �zz� ���

FIG. 3. �Color online� Weight of the elastic scattering cross
section, �el�E�=�d��el�E ,��, see Eq. �32�, determined by NRG.
The weight increases as B2 for small magnetic fields and saturates
logarithmically slowly to the limiting value for large B, see Eq.
�43�.
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given by Eq. �35� can be understood in the framework of the
Debye mechanism28 of relaxational losses: At �=0, relax-
ation caused by the exchange interaction between the local
magnetic moment and itinerant electrons establishes equilib-
rium Gibbs occupation factors for the two Zeeman-split lev-
els. At finite, but small frequency �, the Zeeman splitting,
which is caused by the sum of a constant and a slowly vary-
ing magnetic field, changes with time slowly, and the relax-
ation acts to adjust the occupation factors to the instant val-
ues of the Zeeman splitting. The adjustment occurs via the
emission �or absorption� of particle-hole pairs with energy
�ph��Z�B� by flips of the local spin. It is the time variation
of the occupation factors of the Zeeman-split levels that
leads to dissipation. In the limit �→0, the leading term in
�zz� ���, according to Eq. �35�, is

�zz� �����Debye = �L
DT1� . �38�

As was already mentioned, in the weak-field case, 1 /T1 is
given by Eq. �17�. In the limit, �Z�B��T, the time T1 was
found19 to be T1=T2 /2 with T2 of Eq. �37�. The contribution
�38� to �zz� from the Debye relaxational losses is valid at
arbitrary ratio, �Z�B� /T. Note, however, that despite the fact
that Eq. �38� describes dissipation at low frequency, the De-
bye mechanism is associated with the emission of particle-
hole pairs with a comparatively high energy �ph��Z�B�. In
the limit, �Z�B��T, the Debye mechanism thus yields only
an exponentially small contribution to dissipation,

�zz� �����Debye =
2

�

�g�B�2�

T

ln2 �Z�B�
TK

�Z�B�
exp�−

�Z�B�
T

� .

�39�

The exponential smallness of �L
D comes from the small prob-

ability of the thermal occupation of the highly excited state,
corresponding to the upper of the two Zeeman-split levels.
Temporal variations in this exponentially small quantity
leads to an exponentially small contribution to �zz� ���.

Under these conditions, a second contribution, originating
from the low-energy part of the spectrum, ����max�� ,T�,
becomes important. The processes contributing here do not
involve real impurity spin-flip processes �which are exponen-
tially suppressed�, but only virtual transitions. The starting
point is the observation that the impurity magnetization lo-
cally polarizes the Fermi sea. If the Zeeman splitting of the
impurity is slowly varied with a small frequency �, the mag-
netic polarization of the Fermi sea will adjust itself to the
instantaneous adiabatic value of the impurity magnetization.
Since the spectrum of the particle-hole pairs is continuous,
this adjustment results in dissipation via the emission of pairs
with small frequency �ph��, which is in contrast to the
Debye mechanism, where the emitted particle-hole pairs
carry a large energy of the order of Zeeman splitting. As
shown in Appendix A, this contribution to the susceptibility
can be obtained by applying Nozières’ Fermi liquid theory
and is adequately accounted for by the generalized Shiba

relation, Eq. �A6�. Evaluating d�Sz
 /dB with the help of Eq.
�33� at T	g�BB, we find for the dissipative part of the lon-
gitudinal susceptibility,

�zz� ��� =
�

8

�g�B�2�

�Z
2�B�

1

ln4 �Z�B�
TK

, �� �Z�B� . �40�

Comparing Eq. �40� with the result for the Debye mecha-
nism, we see that the strong-field asymptote Eq. �39� for the
latter mechanism is important only in a narrow interval of
temperatures �Z�B��T��Z�B� /6, as for all practical pur-
poses in lnln��Z /TK��1. Dispensing with that interval, we
will use for the dissipative part of the longitudinal suscepti-
bility, Eq. �35� with T1=�K in the case of �Z�B��T and Eq.
�40� in the case of �Z�B��T.

At low temperatures, T	TK, there is little effect of the
magnetic field on ����� for weak fields, g�BB	TK. In the
strong-field regime, �Z�B��TK�T, the main contribution to
the transversal part of the dissipative susceptibility is given
by Eq. �34� with the relaxation time T2 of Eq. �37�. The
longitudinal part is described by Eq. �40� at �	�Z�B�.
Equation �34� adequately describes the nonmonotonic behav-
ior of �+−� ���, but fails at higher frequencies; similarly, the
linear dependence in �zz� ��� does not stretch beyond ±�Z�B�.
In the limit, �����Z�B�, the magnetic field does not affect
significantly the dissipation, and Eq. �18� is applicable.

B. Elastic and inelastic components of electron scattering

The coupling of the impurity spin to the low-energy de-
grees of freedom of the Fermi seas will lead to a broadening
and redistribution of the spectral weight of the three delta
functions in Eq. �28�.

1. High temperatures: TšTK

At high temperature, T�TK, and weak magnetic field,
�Z�B�	T, the spin polarization is weak, and the elastic com-
ponent of the scattering is small. Using Eqs. �32� and �33�,
we find

�el�E,�� = �tot�E�
4

3
�1 −

2

ln�T/TK���g�BB

4T
�2

���� .

�41�

The major contribution to the scattering cross section comes
from the inelastic processes. At fields satisfying the condition
�Z�B��K�1, which still belongs to the domain of weak
fields, �Z�B�	T, the single maximum in the � dependence
of the cross section, see Eq. �19�, splits into three

�inel�E,�� � �tot�E�
1

3
������ + ���� − �Z�B��

+ ���� + �Z�B�� . �42�

The broadened delta function was defined in Eq. �20� with a
relaxation rate �, given by the inverse Korringa time, �
=1/�K. �We neglected a small part of the spectral weight
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which moved to the elastic component of the scattering cross
section�.

With the increase of the ratio �Z�B� /T, the intensity of the
elastic scattering increases, and in the strong-field limit, we
find

�el�E,�� = �tot�E�
1

3
�1 −

1

ln�g�BB/TK������ . �43�

Simultaneously, the maximum of �inel�E ,�� at negative �
gets suppressed, and the structure at ���	�Z�B� broadens
and becomes asymmetric. In the limit �Z�B� /T�1, only a
single maximum at positive � remains in the inelastic cross
section,

�inel�E,�� = �tot�E�
2

3�

1

1 − e−�/T

1

�Z�B�

�
�/T2

�� − �Z�B��2 + �1/T2�2 . �44�

Here the relaxation time T2 is defined by Eq. �37�. This main
contribution to the inelastic scattering is proportional to
�+−� ��� and comes from the spin-flip processes. The compari-
son of Eqs. �39� and �40� with Eq. �34� shows that at
�Z�B��TK, the effect of the dissipative part of longitudinal
susceptibility is small starting from �Z�B� /T�4. Under this
condition, �zz� ��� yields a contribution to ��E ,��, which is
small compared to Eq. �44�.

The high-frequency tail, ����max�TK ,g�BB ,T�, is unaf-
fected by the Zeeman splitting and is still given by Eq. �21�.

2. Low temperatures: T™TK

We turn now to the opposite limit of small temperature,
T	TK. At weak magnetic field, g�BB�TK, the low-
frequency behavior of the scattering cross section is beyond
perturbation theory. In this regime, the electron scatters from
a fully developed, many-body Kondo singlet. Here we can
use the Shiba relation, Eq. �25�, to access the low-frequency
tail of the cross section. In the presence of a magnetic field,
there are additional corrections to the Shiba relation of order
O���g�BB�2 /TK

2 � which are subleading and are neglected in
the following. We get for the low-frequency part ���	TK,

��E,�� = �tot�E�
W2

2

1

1 − e−�/T�1

6
�g�BB

TK
�2

���� +
�

TK
2 � ,

�45�

where W is again Wilson’s number.23 The scattering cross
section decreases linearly with frequency. At ��T, the lin-
ear decrease crosses over into an exponential tail which ex-
tends to negative frequencies. In Fig. 4, NRG results at T
=0 for the inelastic cross section at small magnetic fields are
compared with the NRG data at B=0. In finite field, the slope
in the linear low-frequency regime is reduced. The difference
in slope is of order O�g�BB /TK�2, a correction alluded to but
neglected in Eq. �45�. This difference, however, accounts for
the reduction of the inelastic scattering weight. The weight of
order O�g�BB /TK�2 is transfered from the inelastic to the
elastic scattering contribution leading to a delta peak at

�=0, as sketched in the inset of Fig. 4. In contrast to the case
of high temperatures �T�TK ,g�BB�, the elastic scattering
contribution now does not sit on top of a large Lorentzian
peak, but is rather located within the scattering pseudogap.
Although its weight is small, here it is easily distinguishable
from the background. The crossover from the linear depen-
dence on � to the high-frequency behavior occurs at
��TK, where the inelastic scattering cross section has a
maximum. The high-frequency tail is still given by the per-
turbative expression �21�.

When the magnetic field is increased above the Kondo
temperature, g�BB�TK, the elastic and inelastic components
of the scattering cross section are given by Eqs. �43� and
�44�, respectively. The elastic peak at �=0 now exhausts
almost the full spectral weight of the longitudinal correlator,
i.e., it accounts for approximately 1/3 of the total scattering
cross section, see Fig. 3. The remaining 2/3 of the total
spectral weight are to be found in the extended structure of
the Zeeman satellite �44� centered at �=�Z�B�. The effect of
Zeeman splitting on the cross section is confined to the re-
gion of energies �����Z�B�. At ����max�TK ,g�BB ,T�, the
behavior of ��E ,�� is again given by Eq. �21�.

In Fig. 5, the inelastic cross section is shown in the limit
of large magnetic fields, g�BB�TK, as given by Eq. �44�.
The inset compares the result with the NRG. The low-
frequency and high-frequency asymptotes are reproduced in
the numerical calculation fairly well. The deviation in the
width of the Zeeman peak, however, demonstrates the limi-
tation of the NRG method. Due to the logarithmic frequency
resolution, the NRG tends to overbroaden any peak in the
spectral function centered around a nonzero frequency.

V. POSSIBLE EXPERIMENTS

As we have shown above, the differential scattering cross
section of the magnetic impurity shows a rich structure in

FIG. 4. �Color online� NRG result for ��E ,�� at T=0 for mag-
netic fields g�BB�TK. The difference of the curves indicates the
scattering weight which for B�0 is transfered from the inelastic to
the elastic component leading to a delta-function peak at �=0, as
sketched in the inset.
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frequency space. In the following, we suggest two experi-
ments that are sensitive to the dynamics of a Kondo impurity
and from which, in principle, the energy-resolved scattering
cross section can be extracted.

A. Mesoscopic wires

Inelastic scattering off magnetic impurities has been iden-
tified to be at the origin of an anomalously large energy
relaxation in mesoscopic metallic wires.6 We propose a
modification of the original experiment performed by Pothier
et al.6 that allows us, in principle, to access the scattering
cross section considered in this paper. We assume that the
wire is connected to the reservoirs on one end by an open
contact and on the other via a tunnel junction, see Fig. 6. In
the limit of small transparency of the tunnel junction, the
wire is almost in equilibrium; only a small amount of ener-
getic quasiparticles tunnel into the wire and relax their en-
ergy during scattering processes on magnetic impurities. In
the lowest order in the transparency of the tunnel junction,

we can treat this relaxation mechanism in terms of the dif-
ferential scattering cross section, ��E ,��, of a test particle
coming with energy E in an otherwise equilibrium system.

Consider a mesoscopic wire of length L. The equilibrium
distribution in the right and left reservoir is given by a Fermi
function, fF�E� and fF�E−eU�, respectively, where the en-
ergy E is measured with respect to the chemical potential of
the right reservoir. The voltage drop across the wire is U.
Within the wire, the distribution function, f�E ;x ,U�, will de-
pend on the position across the wire, x� �0,L�. It is deter-
mined by the relaxation mechanisms and carries information
on the differential scattering cross section, ��E ,��. This dis-
tribution function is probed by an additional tunnel contact
that is attached to the wire at a certain position xT� �0,L�
and connects it to a conductor with a sharp feature in the
density of states. Measurement of a small tunneling current
through this auxiliary contact as a function of voltage V, see
Fig. 6, allows one6 to probe the electron energy distribution.
This way, the distribution function, f�E ;xT ,U�, in the wire at
some point xT in the presence of a bias U applied across the
wire was investigated.6,12 The sharp feature in the electron
density of states in the probe was due to its superconducting
state6 �the BCS anomaly� or due to the Coulomb interaction
in a low-dimensional diffusive electron system12 �zero-bias
anomaly�. In the following, we show that measurement of
the derivative �f�E ;xT ,U� /�U in a modified �compared to
Ref. 6� setup of Fig. 6 allows one to access the inelastic
scattering cross section, ��E ,��.

The distribution function within the wire is governed by
the diffusive Boltzmann equation29

− D
�2f�E;x,U�

�x2 = I�f� , �46�

where D is the diffusion coefficient of the wire. The collision
integral is local in space,

I�f� = cimpvF�
−�

�

d��f�E��1 − f�E − �����E,��

− �1 − f�E��f�E − ����E − �,− �� , �47�

where cimp is the impurity concentration within the wire, and
��E ,�� is the differential cross section of a single magnetic
impurity; for notational convenience, the dependence of the
distribution function f on x and U has been omitted. The
boundary condition at the open contact to the right reservoir
is simply f�E ;x=L ,U�= fF�E�. The boundary condition at the
tunnel contact, which connects the wire to the left reservoir,
is determined by current conservation

gT�fF�E − eU� − f�E;x = 0,U�� = − �D
�f�E;x = 0,U�

�x
,

�48�

where gT is the dimensionless conductance of the tunneling
contact and � is the density of states of the wire.

In zeroth order in the collision integral, we obtain the
solution

FIG. 5. �Color online� Inelastic scattering cross section for sev-
eral magnetic field values, B�TK, at T=0 according to Eq. �44�,
which is applicable unless ��B. Note that the position of the reso-
nance is shifted away from the Zeeman energy as described by Eq.
�30�. The inset shows the comparison of the analytical result �44�
�dotted lines� with NRG calculation �colored lines�. The low-
frequency tail matches nicely. However, the NRG overestimates the
width of the peak.

FIG. 6. �Color online� Experimental setup of Pothier et al.6 with
an additional tunnel barrier which limits the injection of hot elec-
trons into the wire. The voltage drop across the wire is denoted by
U. The voltage applied at the probing contact is V.
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f �0��E;x,U� = fF�E�
L0 + x

L0 + L
+ fF�E − eU�

L − x

L0 + L
, �49�

where we introduced the length L0; the relation of L0 to the
length of the wire L is determined by the ratio of conduc-
tances of the wire and the tunneling contact, L0 /L=gw /gT,
with gw=�D /L. In the limit of the large transparency of the
tunneling contact, L0 /L	1, the obtained solution reduces to
the well-known formula for the distribution function of a
diffusive wire with open contacts.29 However, we are focus-
ing on the other limit of a large tunneling barrier, L /L0	1,
where we get f �0��E ;x ,U�= fF�E�+�f �0��E ;x ,U� with

�f �0��E;x,U� = �fF�E − eU� − fF�E��
L − x

L0
+ O� L

L0
�2

.

�50�

The deviation of the energy distribution in the wire from the
one in the right reservoir is of first order in the small param-
eter L /L0.

In the following, we consider the correction to the distri-
bution function in the lowest order in the collision integral
and in the small parameter L /L0. We get in leading order in
L /L0

I�f �0�� = cimpvF
L − x

L0
�fF�E − eU� − fF�E��

��
−�

�

d���E,���1 − e−���

��fF�E − � − eU� − fF�E − ��� . �51�

Returning now to Eq. �46�, we are able to find the correction
to the distribution function. The energy dependence of
�f�E ;x ,U� /�U within the interval 0�E�eU is caused by
electron energy relaxation. At T=0 it is given by

�f�E;x,U�
��eU�

=
cimpvF

DL0
�−

x3

6
+

Lx2

2
−

L2x

3
���eU,eU − E� .

�52�

The structure of the distribution function in this energy in-
terval is directly related to the differential scattering cross
section, ��E ,��. The simple relation between �f�E ;x ,U� /�U
and the cross section holds as long as the events of scattering
off magnetic impurities occur rarely over the time limited by
the diffusion of an electron across the wire. Note, however,
that in addition to Eq. �52�, there is a sharp contribution at
the edge of the energy interval, E=eU, resulting from the
zeroth order contribution �50� to the nonequilibrium distribu-
tion function. At finite temperature, this limits the experi-
mental accessibility of ��E ,�� for ��T.

B. Quantum dot in the Kondo regime

A second experimental possibility is very similar in spirit
to the first one, but considers a quantum dot setup. The start-
ing point is a semiconductor-based ballistic wire that has on
its right-hand side contact with a large reservoir, see Fig. 7.
On the other end, the wire is connected to a quantum dot in

the Kondo regime. In this regime, the spin of the dot forms a
many-body ground state with the electrons in the wire. Elec-
trons injected at a bias U into the wire through the quantum
dot form a nonequilibrium distribution, which is probed via
an auxiliary weak contact having potential V. The auxiliary
contact consists of a second quantum dot, marked RL in Fig.
7, which is tuned to the resonant tunneling regime. In the
case of a sharp resonance, the setup of Fig. 7 allows one to
measure the electron energy distribution in the quantum
wire. This nonequilibrium distribution, in turn, is sensitive to
the inelastic transport through the Kondo dot and bears the
signatures of the differential scattering cross section of the
Kondo spin.

If the left reservoir is disconnected from the Kondo dot,
the electrons within the ballistic wire have a equilibrium
Fermi distribution, f �0��E�= fF�E�. The injection of hot elec-
trons from the left reservoir will lead to a nonequilibrium
correction to the distribution function of the right movers
within the wire, f�E�= fF�E�+�f�E�. We obtain in the lowest
order in the tunneling between the left lead and the dot,

vF�f�E� = vF� d����,� − E��fF�� − eU��1 − fF�E���

− e−���−E�fF�E��1 − fF�� − eU�� , �53�

where we used already the detailed balance relation,
��E ,��e−��=��E−� ,−��. After taking the derivative with
respect to U, the above equation simplifies considerably at
T=0, and we get

�f�E�
��eU�

= ��eU,eU − E� . �54�

The measurement of this quantity with help of the auxiliary
contact thus yields direct access to the differential inelastic
scattering cross section of a Kondo system.

VI. SUMMARY

We analyzed inelastic scattering of energetic electrons off
a magnetic impurity. For such scattering, the dependence of
the differential cross section, ��E ,��, on energy E of the
incoming electron is logarithmically weak at E�TK and
arises from the renormalization of the exchange coupling. In
the leading-logarithmic approximation, the total cross section
�tot=�d���E ,�� is proportional to 1/ ln2�E /TK�, in agree-

FIG. 7. Experimental quantum dot setup. A wire leads to a quan-
tum dot in the Kondo regime �indicated by the arrow�, which is in
addition weakly connected to another reservoir at a voltage U. The
resonance-level �RL� quantum dot acts as a probe.
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ment with Ref. 3. More interestingly, the electron scattering
is inelastic, and the dependence of ��E ,�� on the energy
transfer � is determined by the spin-spin correlation function
of the impurity or, equivalently, by the dissipative part of the
impurity spin susceptibility ��. In the absence of the mag-
netic field, the elastic component of scattering appears only
in the order 1 / ln4�E /TK�.

Our findings confirm and quantify the conclusion of Ref.
7 regarding the inelastic nature of Kondo scattering and also
provide a clear physical picture of the mechanism of inelastic
scattering. In the absence of the magnetic field, the inelastic
scattering cross section is parametrically larger than the elas-
tic one. The typical energy transfer ��� in an inelastic scat-
tering event is, however, small compared to E. At high tem-
peratures, T�TK, the characteristic energy transfer is
determined by the Korringa relaxation rate of the magnetic
impurity, and at low temperatures, it is defined by the value
of TK. In the high-temperature limit, the cross section is
maximal at �=0, and at T	TK, it reaches its maximum at
��TK. The decrease of the cross section in the domain
��TK is remarkably slow, ��E ,��
 �� ln2�� /TK��−1. The
domain of intermediate energy transfers, ��TK, is covered
by NRG calculations. The numerical results fit well with the
analytically evaluated asymptotes at �	TK and ��TK. In
the presence of an external magnetic field, the Zeeman split-
ting of the magnetic impurity levels results in the appearance
of an elastic component of electron scattering already in the
leading logarithmic order �in E /TK�.

Finally, we proposed possible hot-electron experiments
with a metallic mesoscopic wire and with a semiconductor
quantum-dot device which in principle allow one to access
the differential scattering cross section of a localized mag-
netic moment.
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APPENDIX A: DERIVATION OF SHIBA RELATION

Here, we provide a simple derivation of the Shiba
relation,22 using Nozières’ idea of a low-temperature Fermi
liquid description of the Kondo problem.

Within Nozières’ theory, at T	TK, the effect of a weak
�g�BB	TK� magnetic field applied to a Kondo impurity is
described by a local-field Hamiltonian,

HB =
2�0

g�B�
B 	

k,k�,�

s��
z �k�

† �k��. �A1�

Here, � is the density of states at the Fermi level, �0
= �W�g�B�2� / �4TK� is the linear susceptibility, summation
over k and k� occurs within a shell of states �k sufficiently

close to the Fermi level ��k�TK /vF with vF being the Fermi
velocity�, and field B is applied along the z axis. One may
easily check that the action of the field described by the
Hamiltonian �A1� indeed results in a local magnetization
M =�0B. For that, one starts with the evaluation of the spin-
dependent scattering phase �� off the local perturbation, Eq.
�A1�, using the Born approximation,

�� = ���
�0

g�B�
B, � = ± 1. �A2�

Having the phase difference �+−�−, we evaluate the magne-
tization using the Friedel sum rule,

M =
g�B

2

�+ − �−

�
= �0B . �A3�

Having the right form of the local perturbation, we now
allow for a slow variation of the field, B=B0 cos��t�, assum-
ing that the frequency �	TK. Next, we evaluate the energy
absorption rate w caused by such time-dependent perturba-
tion. Using the Fermi Golden rule, we arrive at

w = ��� �0B0

g�B�
�2

�2� d�f����f�� − �� − f�� + ���

= ��2��0B0

g�B
�2

. �A4�

In the last line, we discarded corrections of order O�e−TK/T�
arising from the boundaries of the energy integral. Recalling
finally that w= 1

2������B0
2, we arrive at the Shiba relation,

Eq. �24�.
Using the framework of the above derivation, it is

straightforward to generalize the Shiba relation to the case of
a weak, slowly varying field applied to the local moment on
top of a time-independent field B of arbitrary strength. In
the generalized relation, �0 is the static differential suscepti-
bility, and the relation is applicable in the regime � ,T
	max�B ,TK.

We assume that the basis of the effective low-energy
Hamiltonian has been chosen such that it incorporates al-
ready the effect of the time-independent local magnetic field
B. Consider now a small perturbation to this effective Hamil-
tonian induced by a small change in the applied local mag-
netic field B+�B,

H�B =
2

g�B�

�M

�B
�B 	

k,k�,�

s��
z ck�

† ck��. �A5�

The summation over k and k� is bounded by �k�, �k��
�max�g�BB ,TK /vF. The prefactor can be determined in the
same way as before. In contrast to the limit B=0, here
the resulting phase shift yields information about the
change in magnetization M�B+�B�−M�B�= ��M /�B��B,
where �M /�B is the differential susceptibility. The same ar-
guments as above will yield the generalized Shiba relation,
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�zz� ��� = 2��� ��Sz

�B

�2

. �A6�

Here, �Sz
 is the equilibrium average spin value in the pres-
ence of field B. In the perturbative regime, the average is
given in Eq. �33�.

In Fig. 8, the prediction of the generalized Shiba relation
�A6� is illustrated with the NRG result. The susceptibility,
�zz� , and the nonlinear static susceptibility, �0=g�B��Sz
 /�B,
have been independently evaluated with the NRG. The
dashed line in Fig. 8 is plotted with the help of Eq. �A6� and
compares well with the low-frequency asymptote of �zz� .

APPENDIX B: RG EQUATION FOR THE IMPURITY g
FACTOR

We present a derivation of the two-loop RG equation for
the impurity g factor of the Kondo model and, in particular,
explain the different roles played by the impurity and con-
duction electron g factor in the renormalization process. To
this end, we will use Abrikosov’s pseudofermion
representation3 for the impurity spin, S= f† 1

2�f , where f†

= �f↑
† , f↓

†� in a compact spinor notation and � is the vector of
Pauli matrices. We will need the action of the Kondo model,
which consists of three parts, S=Ss+Sd+SK. The quadratic
part of the Abrikosov pseudofermions reads

Sd = �
0

�

d�f†������ −  0 − g�B
1

2
�aBa� f��� , �B1�

where g is the impurity g factor and Ba is the magnetic field,
which is taken to point in the z direction, Ba=B�az. In order
to enforce the Hilbert space constraint, f†f =1, a chemical
potential,  0→�, is introduced.3 The Kondo interaction is
given by

SK = �
0

�

d���†���
1

2
�a�����Jab� f†���

1

2
�bf���� ,

�B2�

where the local electron operator at the impurity site is �†

=�dk /2�vF�ck↑
† ,ck↓

† �. We allow for different values of the
exchange interaction in the direction orthogonal and perpen-
dicular to the magnetic field, �Jab�=diag�J� ,J� ,J�. Finally,
the quadratic part of the s electrons reads

Ss = �
0

�

d��
−D

D dk

2�vF
ck�

† ������ + k�ck���� . �B3�

In the presence of a Zeeman energy for the s electrons, the
Fermi sea of the spin-up and spin-down electrons are shifted
with respect to each other giving rise to a finite Pauli mag-
netization. In Eq. �B3�, we assumed that the band has already
been symmetrized around the respective Fermi energies by
integrating out a finite number of electronic degrees of free-
dom. This process results in a perturbative renormalization
of the impurity g factor due to the so-called Knight shift. The
first-order Knight-shift diagram is shown in Fig. 9�a�. The g
factor g appearing in �B1� is, therefore, understood to be
already the Knight-shifted impurity g factor,

g = gi −
J��

2
ge + O�J���2, �B4�

where gi and ge are the bare impurity and electronic g fac-
tors, respectively, and the density of states is �=1/ �2�vF�.
As is clear from Eq. �B4�, the electronic ge can be absorbed
in an effective impurity g factor. The Knight shift is, thus,
only a perturbative phenomenon and, in particular, is not
enhanced by logarithmic renormalizations. This is expected
since the Pauli magnetization affects only electronic states
far away from the Fermi edge deep inside the Fermi sea.

The field theory can be renormalized30 with a wave func-
tion, impurity g factor, and Kondo-coupling renormalization
�in addition to a counterterm absorbing a shift in the un-
physical chemical potential  0�,

FIG. 8. �Color online� NRG comparison of the low-frequency
asymptote of �zz� with the prediction of the generalized Shiba rela-
tion, Eq. �A6� �dotted lines�. The inset shows the numerically evalu-
ated magnetization whose derivative enters Eq. �A6�.

FIG. 9. �a� First-order Knight-shift diagram; �b� two-loop self-energy correction; �c� one-loop vertex correction. The wiggled line
represents the propagator of the Abrikosov fermions and the solid line, the electron propagator. The dot signifies the Kondo interaction.
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f = �ZfR, g =
gR

Z
, Jab =

Jab
R

Z
. �B5�

We compute the renormalization of the Kondo coupling to
one-loop order and the renormalization of the wave function
and g factor to two-loop order. The corresponding diagrams
are shown in Figs. 9�b� and 9�c�. The resulting RG equations
for the Kondo vertex are the well-known poor man’s scaling
equations,4

d�J���
d ln D

= − �J����J���,
d�J���
d ln D

= − �J���2. �B6�

For the wave-function renormalization, we obtain

d ln Z

d ln D
=

1

8
��J���2 + 2�J���2� . �B7�

Finally, the main result is the RG equation for the g factor,

dg

d ln D
=

1

2
g�J���2. �B8�

Solving this equation in the isotropic case, J�=J� =J, and
expanding the result in leading-logarithmic order, we get

g�D� = gi�1 −
1

2 ln
D

TK

+ �1 −
ge

gi
� J�

2 � , �B9�

where we already substituted the Knight-shifted g factor
�B4�. In the scaling limit, J→0, while TK is held fixed, any
dependence on the electronic g factor ge vanishes, and we
obtain the result cited in the body of the paper, Eq. �29�. In
particular, note that in the absence of a Knight shift, ge=0,
the perturbative correction to the g factor starts only in the
second order in the exchange coupling J but, nevertheless,
after renormalization group improvement leads to a correc-
tion which is of leading-logarithmic order. At zero tempera-
ture, the RG equation for the g factor coincides with the RG
equation for the impurity magnetization, which was already
determined in Ref. 31.
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