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Abstract. – We discuss the properties of layered Anderson/Kondo lattices with metallic
electrons confined in 2D xy planes and local spins in insulating layers forming chains in the z
direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozières’ ex-
haustion problem does not occur. The high-temperature perturbational description is matched
to exact low-T Bethe-ansatz solution. The excitation spectrum of the model is gapless both in
charge and spin sectors. The disordered phases and possible experimental realizations of the
model are briefly discussed.

The famous exhaustion problem formulated by Nozières [1] states that the number of
electrons eligible to participate in Kondo screening is not enough to screen magnetic moments
localized in each site of periodic Anderson lattice (AL) or Kondo lattice (KL). In spite of his
latest revision [2] based on mean-field 1/N expansion, this exhaustion is a stumbling stone
on the way from exactly solvable Anderson or Kondo impurity model [3] to the 3D AL/KL
models, which are believed to be the generic models for heavy-fermion materials [4]. The
problem arises already for concentrated Kondo alloys, where the number or localized spins Ni

is comparable with the number of sites N = Ln in the n-dimensional lattice. In this case the
number of spin degrees of freedom provided by conduction electrons in a KL is not enough for
screening Ni localized spins. As an option a scenario of dynamical screening was proposed [5,6],
where only part of spins screened by Kondo clouds form magnetically inert singlets. The low-
temperature state of such KL is a quantum liquid, where Ns singlets are mixed with N −Ns

“bachelor” spins, which hop around and exchange with singlets thereby behaving as effective
fermions. Nozières’ exhaustion is measured by a parameter pN = Ni/(ρ0TK) (the number
of spins per screening electron). Here TK ∼ ρ−1

0 exp[−1/(ρ0J)] is the energy scale of Kondo
effect, J is the exchange coupling constant in the single-impurity Kondo Hamiltonian, ρ0 is
the density of states on the Fermi level of metallic reservoir.

Second obstacle, which does not allow the extrapolation of Kondo impurity scenario to
KL is the indirect RKKY exchange Ijj′ between the localized spins, which arises in the 2nd
order in J or in the 4th order in V (hybridization parameter in the generic AL Hamiltonian).
The corresponding energy scale is

I = J2χc
jj′ ∼ ρ0J

2, (1)
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where χc
jj′ = N−1

∑
q χc(q) exp[iq · Rjj′ ] and χc(q) is the spin susceptibility of the electron

gas. The Fourier transform of χc(q) is an oscillating function, which strongly depends on the
distance Rjj′ . If I < 0 at an average inter-impurity distance, and |I| ∼ TK , then the trend to
inter-site antiferromagnetic coupling competes with the trend to the one-site Kondo singlet
formation (Doniach’s dichotomy [7]).

This competition prompted several possibilities to bypass the exhaustion limitations. Ac-
cording to a scenario offered in [8,9], in the critical region |I| ∼ TK of Doniach’s phase diagram,
where the magnetic correlations are nearly suppressed by the on-site Kondo coupling, the spin
liquid phase enters the game. This phase is characterized by the energy scale

I(T ) = J2χs
jj′(T ), (2)

where χs
jj′ is the spinon susceptibility and I(T ) is renormalized due to Kondo processes

exchange integral. The condition I(TK)>TK is easily achieved both in the 3D and 2D case.
The Kondo screening is then quenched in the weak-coupling regime at T > TK , so that the
spin degrees of freedom remain decoupled from the electron Fermi-liquid excitations both
at high temperatures T � TK and at low temperatures T � TK (Curie and Pauli limit
for magnetic response, respectively). At T→0 the KL behaves as a two-component Fermi
liquid with strongly interacting charged electrons and neutral spinons [10]. This scenario
develops on the background of strong AF correlation. It includes the possibility of ordered
magnetic phases with nearly screened magnetic moments and, in particular, the quantum
phase transitions. Due to separation of spin and electron degrees of freedom, Luttinger’s
theorem in its conventional Fermi-liquid form is invalid in this state: f -electrons represented
by their spin degrees of freedom give no contribution in the formation of the electron Fermi
surface. Such state is referred as a “small Fermi surface regime” in the current literature.

Another scenario for small Fermi surface regime was proposed in [11]. This scenario
appeals to systems where the magnetic order is either fragile or entirely absent due to magnetic
frustrations (e.g., to triangular lattices). A spinon gap carrying unit flux of Z2 gauge field
is expected to arise in spin subsystem, and this gap prevents formation of Kondo singlets for
a finite range of TK . As a result, Nozières’ exhaustion does not occur, and fractionalization
of excitations into spin-fermions and electrons exists as in the previous case. A possibility of
forming the spin liquid with U(1) gauge group and spin density wave ground state has also
been pointed out in [11].

In the present paper, we propose an alternative paradigm for fermion fractionalization in
Kondo lattices, which possesses the generic properties of KL but is not subject to the ex-
haustion limitations. Namely, we consider the structures, where the number of reservoirs for
Kondo screening is the same as the number of spins in a KL. This paradigm may be realized
in strongly anisotropic Kondo lattices, where the metallic electrons are confined in 2D planes
interlaid by insulating layers containing magnetic ions. Then the 3D reservoir of screening
electrons is defragmented into L planar reservoirs. Each plane still possesses the macroscopic
number of spin degrees of freedom ∼ L2 enough for Kondo screening, provided the concen-
tration of magnetic centers per metallic plane remains small. The spin liquid features may be
observed in these systems if the distribution of magnetic centers is also anisotropic, namely, if
they form chains oriented in the z direction, and the inter-chain interaction is negligibly small.

We postpone the discussion of experimental realization of such systems to the concluding
section and begin with the theoretical description of an ideal configuration, where all chains
penetrate the stack in z direction (fig. 1a). The AL Hamiltonian for the quasiperiodic model
of conduction electrons confined in metallic layers (xy plane), and magnetic ions localized in
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Fig. 1 – (a) Layered lattice of spatially separated charges in planes and spins in chains. (b) A fragment
of a chain with Kondo clouds formed as “shadows” in metallic layers.

insulating layers between metallic planes is

H =
∑
lkσ

εkc
†
lkσclkσ +

∑
jσ

(
εdn

d
jσ +

1
2
Und

jσn
d
jσ̄

)
+

+
∑
jl

∑
kσ

(
Vkc

†
l+1kσ(djσ + dj+1,σ) + H.c.

)
. (3)

Here k is a 2D wave vector, the discrete indices numerate metallic layers l with a lattice
constant a‖ and magnetic sites j along the chains with a spacing az. The coupling constant
Vk characterizes hybridization between itinerant 2D electrons in a plane l + 1 and localized
states in two adjacent sites j, and j + 1 of the chain (fig. 1b). We treat the electrons in
metallic planes in terms of Bloch waves clkσ, while the localized electrons are characterized
by Wannier functions djσ. The periodicity of magnetic sites in the xy plane is not demanded,
but the average distance λ between the impurities within a layer exceeds the radius of Kondo
cloud, i.e. satisfies the condition λ � �vF /TK (vF and TK are Fermi velocity of 2D electrons
and Kondo temperature, respectively). There is no interaction between the chains under this
condition, and a single chain represents the z component of excitation spectrum. Besides, all
chains contribute to the xy-component of the spin and charge response of the AL. The effects
associated with the inter-chain exchange will be discussed in the concluding part.

We came to a situation where L two-dimensional Fermi reservoirs, each with capacity
L2, screen Ni magnetic moments arranged in such a way that the effective concentration of
these moments per metallic layer is ni = Ni/L

2 and satisfies the condition nia
2
‖ � 1. This

capacity is enough to form a screening Kondo cloud for each magnetic site within a given
layer l + 1 independently of all other sites belonging to the same layer. On the other hand,
two magnetic ions localized one above another in neighboring insulating layers j, j + 1 share
the same metallic screen (see fig. 1b). Replicating these dimers along the z-axis, one comes
to a system of spin chains, interacting with a system of metallic layers stacked up in the xy
plane. Elimination of the hybridization term V in the Hamiltonian (3) in accordance with the
standard Schrieffer-Wolff procedure, results in effective exchange Hamiltonian for each chain,

Hcd
int =

Ni∑
m=1,k,k′

Jkk′!s m
kk′ !Sm (4)

(see fig. 1b with 2m→j, 2m−1→l). Here we use notations: !Sm= 1
2d

†
2m,σ !σσσ′d2m,σ′ , !s m

kk′ =
1
2 [c†2m−1,kσ+c†2m+1,kσ]!σσσ′ [c2m−1,k′σ′+c2m+1,k′σ′ ]. The exchange integral is Jkk′∼V ∗

k Vk′/U .
We assumed the periodic boundary conditions, namely !SN = !S1 and !sN = !s1, which imply
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equal number of spins and planes. The open and twisted boundary conditions may be also
imposed. Subtle effects modifying the ground state in these cases will be considered elsewhere.

Thus, the original model is reduced to the anisotropic KL formed by the system of 1D
spin chains penetrating the stack of 2D metallic layers. Each spin creates two Kondo clouds
in adjacent planes, and two neighboring spins see each other through a metallic screen by
means of indirect RKKY-like exchange. This exchange may be either ferromagnetic (FM) or
antiferromagnetic (AFM). The latter case is considered in terms of Doniach’s dichotomy [7].
In our model this dichotomy should be reformulated. Since the long-range AFM ordering is
impossible in 1D chain, two competing phases are Kondo singlet and spin liquid. Complete
Kondo screening is not forbidden by Nozières’ exhaustion principle, since the 2D screening
layer is available for each spin in the chain. The Kondo screening is characterized by the
energy scale TK . Thus, the competing phases in the anisotropic KL are the Kondo singlet
phase and the homogeneous spin liquid of RVB type with the energy scale given by eq. (2).

In order to describe the Doniach-like phase diagram we adopt the method of [9]. Namely,
we derive an effective action functional by integrating out all “fast” fermionic degrees of free-
dom with the energies ∼ D0, where 2D0 is the conduction bandwidth. The “slow” modes give
us a hydrodynamic action. Due to strong quasi-1D anisotropy there is no need in appealing
to the mean-field approximation. After elimination of conduction electrons with the energies
D0 > ε > T in metallic layers, the coupling J is enhanced, J → J̃ = 1/(ρ0 ln(T/TK)) and the
indirect RKKY-like spin-spin interaction mediated by the in-plane electrons [12] arises along
the chains:

Hdd
int = −I

∑
j,σσ′

d†jσdj+1,σd
†
j+1,σ′djσ′ . (5)

Here I is defined in eq. (1) with χc
j,j+1(R) = N−1

∑
q‖ χc(q‖) exp i(q‖R), R characterizes the

relative distance between two spin projections on a plane. If R = 0, the chains are straight
and the interaction between spins is ferromagnetic. A model of single spin chain penetrating
the stack of 2D metallic planes may be mapped on that of FM spin chain interacting with an
array of 1D metallic wires [13]. The Kondo screening develops similarly to a two-site Kondo
model [14]. Behavior of dilute system of FM coupled spin chains interacting with arrays of
1D fermions deviates from the two-site Kondo scenario. It will be discussed elsewhere. For
R ∼ a‖ the chains have a zigzag shape, with AFM interaction. Leaving the FM case for
further studies, we concentrate here on the array of AFM coupled chains. Since V/U � 1, we
adopt the nearest-neighbor approximation for RKKY interaction.

Up to this moment we treated the spin chains in a single-site approximation. This approx-
imation is legitimate until T � TK ∼ I. To move further, we decouple the Euclidean action
of the model (4), (5),

A =
∫ β

0

dτ


∑

j

(
c̄G−1

0 c + d̄D−1
0 d

) −Hcd
int −Hdd

int


 (6)

by means of the Hubbard-Stratonovich scheme [15] in terms of the fields [9, 16]

∆j,j±1 →
∑

σ

(
d†jσdj±1,σ + c.c.

)
, φl →

∑
kσ

(
c†l−1,kσ(dj,σ + dj+1,σ) + c.c.

)
.

Here G−1
0 = ∂τ − ε(−i∇) + µ and D−1

loc = ∂τ − iπ/(2β) are bare inverse single-particle Green’s
functions (GF) for conduction electrons and local spins, respectively, β = 1/T . The field φ de-
scribes the single-site Kondo screening and the field ∆ stands for the spinon propagation along
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Fig. 2 – Loop expansion for non-local action (7). Solid and dashed lines in Π2 and Π4 stand for
electron and spinon propagators, respectively.

the 1D spin chain with AFM coupling. The single occupancy constraint d†j↑dj↑+d†j↓dj↓=1 is
preserved at each site in the chain by the semi-fermionic transformation [17]. These two fields
resolve Doniach’s dichotomy, because the long-range AFM order is absent in 1D.

We appeal to the uniform resonance valence bond (RVB) spin liquid state [16] and treat
the spinon modes as fluctuations around the homogeneous solution in a nn- approximation,
∆j,j±1 → = ∆u

j,j±1−∆̄ with ∆̄2(β)=β−1
∫ β

0
∆(τ)∆(−τ)dτ . For this sake, we add and subtract

∆̄ in the inverse GF. The non-local inverse spinon GF D−1 = ∂τ − ∆j,j±1 − iπT/2 has to be
expanded in terms of ∆− ∆̄. Now the two interacting components of bose-like modes in two-
sublattice chain are spinons and Kondo clouds represented in effective action by ∆j,j+1∆j+1,j

and φl,l+mφl+m,l (m = 0, 1), respectively. The charged φ-mode acquires dispersion due to
the non-locality of J̃lj , while the in-plane dispersion of conduction electrons in Kondo clouds
is integrated out. The neutral spinon mode is dispersive by its origin. Then we come to an
effective action with separated charge and spin sectors:

Aeff =
∑
jl,ωn

(
|φl,l(ωn)|2

J̃lj

+
|∆j,j+1(ωn)|2

I

)
+ (7)

+Tr log(G−1
0 ) + Tr log

(D−1(∆j,j+1) + G0φ
∗
l,lφl,l±1 + c.c.

)
.

The last term in (7) may be represented as a loop expansion. The two first diagrams are shown
in fig. 2. To calculate the diagrams, we use the non-local spinon GF D0

j,j+r(ωn) = (D−1
loc−∆̄)−1

with cosine-like dispersion

D0
j,j+r(ωn) =

exp
[
−|r|

[
ln

(
∆̄

ωn−
√

ω2
n+∆̄2

)
− iπ

2

]]
i
√

ω2
n + ∆̄2

.

Here r numerates sites in the chain, ωn = 2πT (n + 1/4) on the imaginary axis [17]. D0

is characterized by a branch cut at [−∆̄, ∆̄]. In the limit ∆̄ � πT it rapidly falls down
with growing |r| as D0

j,j+r(ωn) ∼ ∆̄|r|/(iωn)|r|+1. Thus the main contribution comes from
D0

j,j(ωn) = 1/i
√

ω2
n + ∆̄2 and D0

j,j±1(ωn) = (ωn/
√

ω2
n + ∆̄2 − 1)/∆̄.

The polynomial effective action after the loop expansion acquires the form

Aeff =
∑

〈jj′〉ωn

[ |∆jj′(ωn)|2
I

− Πsl
2 |∆jj′(ωn) − ∆̄|2

]
+

+
∑

jj′l,ωn

(
1
J̃jl

−ΠK
2 +ΠK

4 |∆jj′(ωn)|2
)
|φlj(ωn)|2+Tr log(G−1

0 )+Tr log[(D0)−1]+O(|φ|4). (8)
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(a) (b)

Fig. 3 – (a) Disordered anisotropic Kondo lattices. (b) Formation of spin ladder from interacting
chains.

The polarization loops Π2 and Π4 are shown in fig. 2. The action (8) is gauge invariant in
accordance with Elitzur theorem [16], and spin and charge modes are separated both in the
3D lattice and in the Fock space.

To estimate ∆̄, we refer to the properties of spin chains with AFM coupling [18]. The quasi–
long-range order in these chains may be treated in terms of boson excitations in Luttinger
liquid (LL) or fermion pairs in spin liquid. The spin susceptibility of a chain, 〈∆+∆−〉ω=0∼∆̄2,
acquires Pauli form at T ∗ ∼ 8J2/EF [19], so we assume ∆̄ ∼ T ∗ in our estimates. This means
that even in the critical region of Doniach’s diagram, TK ≈ J̃2/EF , the spins are “molten” into
spin liquid at T ∼ TK , and there is no crossover to a strong Kondo coupling regime at low T .

Evaluation of Π2,Π4 in the limit πT � ∆̄ gives ΠK
2 ∼ ρ0 ln(∆̄/T ) and ΠK

4 ∼ ρ0/∆̄2. This
leads to reduction of indirect exchange, Ĩ = I[1+I/(∆̄ ln(∆̄/TK))]−1. The main manifestation
of weak Kondo screening in the LL limit at T→0 is the reduction of LL sound velocity,
�v = Ĩaz. As to the in-plane charge excitations, the formation of Kondo clouds is quenched
at T � TK , so instead of coherent Fermi liquid regime, 〈φ+φ−〉ω→0 behaves as a relaxation
mode ∼ [−iω/Γ + αq2 + ln(∆̄/TK)]−1, where Γ, α are numerical constants.

These features of two-component electron/spin liquid manifest themselves in thermody-
namics. The logarithmic corrections ∼ln−1(T ∗/T ) are expected in low-T Pauli-like suscepti-
bility of isotropic spin chains, whereas the log-corrections to the susceptibility of charged layers
are quenched as ln(∆̄/TK). The overdamped relaxation mode should be seen as a quasielastic
peak in χ0. The 1D spinons contribute to the linear-T term in specific heat thus mimicking
the heavy-fermion behavior, while the contribution of Kondo clouds is frozen at low T .

In real anisotropic crystals one may expect formation of distorted and dangling chains
(fig. 3a) instead of an “ideal” lattice (fig. 1). Distortion means shift of two neighboring Kondo
“shadows” in a stack. This effect may be modelled by a random overlap factor wj in RKKY
integrals, Ij = wjI. The dangling bond effect means wj = 0. Bond disorder may be treated in
terms of random AFM chains [20]. According to this theory, the disorder results in transforma-
tion of singlet RVB liquid into a random-singlet RVB phase with arbitrarily long singlet bonds.
More interesting effects associated with quantum criticality appear for S = 3/2 [21] where
disorder-driven transition occurs between two different random singlet realizations. In the
systems with integer spins of magnetic atoms the interplay between Haldane gap formation,
effects of disorder and underscreened Kondo effect takes place. In chains with broken bonds
the gaps arise due to the finite-length effect, so the short chain segments do not contribute to
the low-T thermodynamics. With increasing impurity concentration, the Kondo clouds begin
to overlap and two-leg ladders with diagonal bonds arise along with isolated chains (fig. 3b).
Nozières’ exhaustion is still not actual for these clusters. With further increase of the concen-
tration of magnetic sites, Doniach’s problem restores in its full glory. In case of FM coupling
I, true long-range order emerges in spin chains, but Nozières’ exhaustion is still quenched.
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One may point out the class of layered conducting/magnetic hybrid molecular solids, where
the possible candidates for the application of the above theory should be looked for. These
crystals are formed by alternating metallic cationic layers and insulating magnetic anionic
layers with various molecular groups as building blocks containing transition metal ions as
carriers of localized spins [22]. Organic cations with magnetic ions in such systems form
ordered stacks. The problem is in finding systems with metallic layers where the Kondo
screening length �vF /TK is less than the distance between magnetic ions. It is worth noting,
however, that the crystals containing dicyanamide radicals with Mn ions may form planar
Kagome sublattice [22], thus being a promising object for the realization of the fractionalized
Fermi liquid scenario proposed in [11].
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