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Ohmic and Step Noise from a Single Trapping Center Hybridized with a Fermi Sea
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We show that single electron tunneling devices such as the Cooper-pair box or double quantum dot can
be sensitive to the zero-point fluctuation of a single trapping center hybridized with a Fermi sea. If the trap
energy level is close to the Fermi sea and has linewidth � > kBT, its noise spectrum has an Ohmic
Johnson-Nyquist form, whereas for � < kBT the noise has a Lorentzian form expected from the
semiclassical limit. Trap levels above the Fermi level are shown to lead to steps in the noise spectrum
that can be used to probe their energetics, allowing the identification of individual trapping centers
coupled to the device.
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Currently vigorous efforts are underway to achieve ro-
bust coherent control over artificial two-level systems
(TLS) based on single charge tunneling in superconducting
[1] or quantized semiconductor [2] islands. While the main
motivation is to build a prototype for future quantum
information technologies, the associated need for unprece-
dented isolation from external noise also makes TLS struc-
tures sensitive probes of fundamental fluctuations in the
solid state [3]. An interesting example is the recent charge
echo experiment by Nakamura and collaborators [4], for
which it has been claimed in [5] that a single background
charge trapping center, henceforth called ‘‘local level,’’ is
responsible for most of the coherence decay, rather than
1=f noise originating from several charge traps [4,6].
Although 1=f noise is usually predominant in macroscopic
samples, the signature of its individual fluctuators is often
identified in sensitive mesoscopic devices [7,8]. The stan-
dard phenomenological description of random telegraph
noise (RTN) of a fluctuating variable � arising from a
single local level assumes a noise spectrum given by
[5,9,10]
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where the trap fluctuation time scale �c can in principle be
computed microscopically. The phenomenological Eq. (1)
should be contrasted with the universal Johnson-Nyquist
(JN) voltage noise of a circuit with impedance Z arising
from particle-hole excitations in a conductor, ~SV�!� �
Re�Z�@! coth�@!=2kBT� [11,12]. At high frequencies
(@!� kBT) the linear dispersion (Ohmic, or more gen-
erally f-noise) regime resulting from JN noise was mea-
sured long ago with the help of the Josephson effect [13].
Here we show how a microscopic model that in the semi-
classical limit, whose regime of applicability will be clari-
fied later, leads to RTN [Eq. (1)], crosses over to f noise at
low temperatures. Monitoring the excited state population
of a single charge tunneling device allows the detection of
the crossover from semiclassical to quantum fluctuations.
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We focus on the noise generated by a local trapping
center (TC), e.g., a dangling bond, located in the dielectric
barrier close to one of the electrodes [6,14]. When the trap
energy level ~� is close to the Fermi level and the tempera-
ture is lower than its linewidth �� @=�c, we find that the
zero-point fluctuation of the trap generated by coupling to
the Fermi sea becomes evident through the appearance of
universal linear dispersion in the noise spectrum, which
reflects the Ohmic spectrum of electron-hole excitations in
the underlying Fermi sea. At high temperatures we recover
Eq. (1). Furthermore, we show that trap levels above the
Fermi level (~� > �F) reveal themselves as steps in the noise
spectrum, so that multiple levels may give rise to a stair-
case spectrum. We discuss the relevance of these results for
recent measurements of noise by fast single-shot detection
of the excited state population of a Cooper-pair box [15].

The model.—The Hamiltonian describing electrostatic
coupling between a single electron tunneling device in the
TLS regime and a TC is given by
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where �i are Pauli operators acting on the states j#i and j"i,
corresponding, respectively, to zero and one excess Cooper
pair in the superconducting island [1,4]. The model also
applies to an electron localized in the left or right dot of a
double quantum dot structure [2]. The last two terms of
Eq. (2) describe the tunneling of an electron in one of the
metallic gates controlling the TLS to a TC located in the
dielectric interface [6,14]. dy is a creation operator for an
electron in the TC, whose energy can assume the values
�d � � depending on the state of the TLS. The matrix
element Vdk � V0dk models the tunneling amplitude be-
tween TC and an electron in the metallic gate (cyk ) with
energy �k (cyk anticommutes with dy). The coupling be-
tween TLS and TC arises due to the modulation of TC
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parameters modeled by the electrostatic coupling constants
� and V 0dk. Previous work [6] did not contain the V 0dk term
in Eq. (2), which arises due to the sensitivity of the TC
wave function to the TLS state (see estimates below). For
simplicity we study a model of spinless electrons, as is
appropriate if TC double occupation is impossible due to
Coulomb repulsion in Eq. (2). The last three terms of
Eq. (2) compose the spinless Fano-Anderson Hamil-
tonian [16], which can be diagonalized exactly in the
case � � V 0dk � 0. This is achieved by the transformation

dy �
X
k

	k

y
k ; cyk �

X
k0
�k;k0


y
k0 ; (3)

where 
k are dressed electron operators. In the thermody-
namic limit

P
k !
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d�g���, with the bare electron density
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. Here

��k is the mean energy spacing between nondegenerate
levels of the electron gas and ��;�k is the Kronecker delta.
The continuous description of 	k is then given by the

spectral function A��� �
P
k
	2
k

��k
��;�k , which is interpreted

as the mean density in energy of the admixture of the TC
with the electron bath. The energy density for the electrons
that do not participate in the admixture with the TC is given

by g0��� �
P
k;k0
j�k0 ;kj

2

��k
��;�k . Below we show that the re-

sponse of the TLS to a TC depends only on the densities
A��� and g0���. The exact solution for A��� in the thermo-
dynamic limit has the Lorentzian form [16]
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normalized to unity by virtue of the commutation relation
fd; dyg � 1. The energy densities are related by
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d lng���
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Here the dressed trap energy ~� differs from �d to second
order in Vdk. The linewidth � � �V2

~�g�~�� is essentially the
Fermi golden rule for the decay of a localized state (TC)
into the continuum (Fermi sea), with V2

~� 	 hV
2
dki�k�~�.

Finally, we perform a rotation on the Pauli operators to
get the transformed Eq. (2),
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with tan� � EJ=�EC and @! �
���������������������
E2
J � �E

2
C

q
. Equation (6)

has the structure of a TLS coupling to electron-hole ex-
citations in a new, effective Fermi sea, characterized by
coupling constants �	k	k0 .

Ohmic JN noise.—The decay rate for a TLS initially
prepared in the excited state j"i gives a measure of the noise
spectral density at frequency ! through the golden-rule
24700
result [3]

1

T1
�
�sin2�

2@2

�
~S��!� � ~SV0 �!� � ~S���!� � ~SV0 ��!�

�
:

(7)

Note that the weak coupling between the detector (TLS)
and the noise source (TC) implies the TC remains in
thermal equilibrium with the Fermi sea [12]. Here ~S are
Fourier transforms of the time-ordered correlation func-
tions as in Eq. (1). ~S� occurs due to the charging and
discharging of the TC, where �n � hdydi �

R
A���f���d�

is the average TC occupation and f��� � 1=
1�
e����F�=kBT� the Fermi function. The noise densities are
calculated by Eqs. (3) and (6),
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Here, the d, dy are taken in the interaction represen-
tation and h iFS denotes averaging over the free Fermi
sea. A similar expression applies for ~SV0 , with the op-
erator dyd in Eq. (8) substituted by

P
kV
0
dkd
yck � H:c:

Because we assume the TC is in thermal equilibrium,
Eq. (8) satisfies the detailed balance condition ~S��!� �
exp��@!=kBT�~S�!�. Moreover, the total noise

R
~S��!�d!

is equal to the mean square fluctuation S��0� � 4�2� �n�
�n2�, which is appreciable only if �n is not close to zero or
one. This happens only if j~�� �Fj & maxfkBT; �g, so
Eq. (8) is only of appreciable size if ~� is close enough to
the Fermi energy. For ~� � �F we have �n � 1=2 and
S��0� � �2 is maximum. Consider the noise spectrum at
high temperature, kBT � �. Because the integral in
Eq. (8) is appreciable only within the range of A���, the
Fermi functions can be approximated by 1=2 and the
resulting integral easily integrated by the residue method.
Therefore the high-temperature noise is determined solely
by the pole structure of A���. Using Eq. (4), we recognize
the spectrum for random telegraph noise [Eq. (1)] with
correlation time �c � @=�2��.

Now consider the opposite limit of kBT � �. For high
frequencies (@!� maxfj~�� �Fj; �g) we have the asymp-
totic behavior ~S��!�  A��F � @!��1� �n� � 1=!2. For
positive low frequencies (0 � @!� �) but arbitrary
@!=kBT, we may approximate Eq. (8) by

~S ��!�  4@�2A��F�
2
Z
d�f��� @!�
1� f����

� 4@2�2A��F�
2!
n�!� � 1�; (9)

where n�!� � 1=
e@!=kBT � 1� is the Bose function. Using
detailed balance we get
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which makes evident the universal behavior of low fre-
quency noise arising due to a TC interacting with a Fermi
sea; i.e., ~S has the Johnson-Nyquist form for small !,
independent of the functional form of A���, provided that
this is analytic at �F. The transition between Eqs. (1) and
(9) is shown in Fig. 1. This behavior is a signature of the
crossover from zero-point quantum to classical fluctuations
for the electron-hole excitations whose energy @! lies
within the hybridization bandwidth �. In other words, the
TC acts as a filter of bandwidth �, allowing only electron-
hole excitations of energy j@!j & � to affect the TLS.
When kBT < �, the environment behaves effectively
like a flat band Fermi gas, with bosonic electron-hole
pair excitations leading to Johnson-Nyquist noise. How-
ever, when kBT > � the frequency of fluctuations with
j@!j & � are always within the semiclassical regime
(@!< kBT), which leads to incoherent hopping of the
TC charge into and out of the Fermi sea, giving rise to
random telegraph noise.

Staircase noise.—We now turn to the effects of the V 0dk
interaction. In the original Eq. (2) this term changes the
hybridization coupling of the TC and Fermi sea, which
transforms into a TLS-dependent modification in the
dressed trap energy ~�. A calculation similar to Eq. (8)
yields

~SV0 �!� � 4@
Z
d�
V 02��@!g

0��� @!�A��� � V 02� g0���

� A��� @!��f��� @!�
1� f����: (11)

In contrast to the � processes, this rate is finite for trap
energies ~� far from the Fermi level, i.e., j~�� �Fj �
f�; kBTg: The first term dominates if ~� > �F, while the
second dominates if ~� < �F. For realistic parameters
g0���  g��F� (since @!� �F), we may approximate
Eq. (11) by
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FIG. 1. Noise spectral density describing energy transfer from
a TLS to a single trap level close to the Fermi sea for kBT=� �
0; 0:1; 0:2; 0:5; 1; 2;1. At high temperatures we have the stan-
dard random telegraph noise spectrum. As the temperature is
lowered below the trapping center linewidth �, Ohmic dispersion
can be observed in the low frequency regime. This behavior is
very similar to the Johnson-Nyquist spectrum (inset).
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where �0 � �V 02�F
g��F� is a linewidth associated with V 0dk.

~SV0 �!� has a step at! � j~�� �Fj=@, with step-width given
approximately by maxf�; kBTg. For low temperatures
(kBT � �) Eq. (12) is controlled through the phases of
electrons scattering off the local level and reads
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� arctan
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At high frequencies (!� j~�� �Fj=@) the noise spectrum
saturates at ’ @�0 for all temperatures, as long as ! is less
than a cutoff frequency, arising due to either a cutoff in the
matrix element V 0 or the bandwidth.

It is straightforward to generalize Eq. (2) to the case of
several TC’s tunneling to different gate electrodes [6,14],
each with energy ~�i and linewidth �i. If more than one TC
is located in the same gate, their correlation energy Eij
(arising due to Coulomb interaction or to intertrap tunnel-
ing) can be neglected provided Eij � j~�i � ~�jj. In this
case V0 noise allows spectroscopy of the energy levels ~�i
with efficiency proportional to �0i. The resulting spectrum
will be a staircase with each step located at ~�i [see
Fig. 2(b)]. This can be used for experimental determination
of the number of trap levels within a specified range from
the island. If the separation between levels is approxi-
mately equal, and the experiment does not have enough
resolution to resolve the steps, the noise spectrum will look
Ohmic. In contrast to the previous case of just V coupling,
approximate Ohmic behavior due to the V 0 couplings now
arises even when the high-temperature condition is satis-
fied (kBT � �i).
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FIG. 2. (a) Noise spectrum from a single trapping center away
from the Fermi sea. The step feature occurs at ! � j~�� �Fj=@
with step-width given by maxf�; kBTg. (b) Staircase noise arising
from several traps with energy levels equally spaced. Here as the
temperature increases (with respect to the level separation), the
noise appears to be linear in frequency.
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Estimated parameters.—To obtain order of magnitude
estimates of �, �, and �0, consider a hydrogenic model for
the trapping center wave function, �d�r� � exp��r=aB�=���������
�a3

B

q
, with Bohr radius aB � 15 �A. The linewidth � is

calculated from the overlap integral with conduction elec-
trons in the gate electrode, leading to �  96�2�Fna

3
B=

�kFaB�
8. Using an electron density n � 1022 cm�3 and

�F � 1 eV, we obtain �� 10  eV� kB � 100 mK�
h� 3 GHz. � is given by the dipolar coupling between
the TLS (dipole er12 with r12 � 0:1 m) and the TC
(dipole eaB due to the image charge produced in the
gate), leading to �� 0:03 eV when the TLS-trap dis-
tance is r� 0:5 m. This gives a contribution to TLS
relaxation of the order of 1

T1
� 105 s�1 at low frequencies.

The step amplitude �0 [Eq. (12)] derives from the distortion
of the TC wave function (and, consequently, the overlap
integral), by the electric field E produced by the TLS,
V 0dk=Vdk � ��d=�d � eEaB=�e

2=aB�. If r� 1 m, this
effect is very small, �0=�� a4

Br
2
12=��

2r6� � 10�13 (here
the dielectric constant � � 10). However, TC’s close to the
TLS (r� 0:01 m) are affected by a monopolar electric
field, and hence are given by �0=�� �aB=r�4=�2 � 10�5.
This leads to a step amplitude of the order of 1

T1
� 105 s�1

at high frequencies, which is high enough for the number
of TC’s to be determined. Note that �; �0; � are strongly
dependent on the TC Bohr radius.

The above results are valid in the weak-coupling regime,
when �� � and �0 � �F. For � > � the TLS dynamics
acts back on the TC; for example, Eq. (4) splits into two
peaks at energies ~��  ~�� � (zero-frequency noise was
studied recently at the strong coupling regime; see [17]).
n this regime backaction effects are important, and assum-
ing the TC is in thermal equilibrium may not be
appropriate.

Remarkably, the ultraviolet cutoff of the Ohmic spec-
trum, as mentioned above, is a power law, similar to the
Drude cutoff of the standard Ohmic model [12]. On the
other hand, the high-temperature regime of the Ohmic bath
leads to a Lorentzian power spectrum as in Eq. (1).

Relevance to experiments.—Our theoretical result that
even a single TC hybridized with a Fermi sea can give rise
to Ohmic noise contrasts with previous studies that have
assumed a distribution of two-level fluctuators [18]. The
current study was motivated by measurements of f noise in
a Cooper-pair box [15] over the frequency range ! �
3–100 GHz at T � 50 mK. Depending on the value of
the TC Bohr radius, we find that at low temperatures we
will have either Ohmic noise deriving from a TC with
energy close to the Fermi energy or a step noise spectrum
for a TC well above or below the Fermi energy. The latter
becomes a staircase function for multiple traps. A more
detailed experimental analysis with greater resolution than
[15] is required to differentiate between these two behav-
iors. One additional possibility for measuring the predicted
24700
signature of individual fluctuators is to vary the gate volt-
age configurations as in Ref. [8].

Conclusions.—We describe a scenario for f noise that is
based on the interaction of a single electron tunneling
device with one or only a few trapping centers. At the
lowest temperatures (T < �=kB & 100 mK) we find that
the low frequency noise can be surprisingly different from
the standard random telegraph spectrum. At high frequen-
cies, we predict that multiple traps can give rise to a stair-
case signal arising from traps that are located nearby the
device but have energies far away from the Fermi level.
These could be a source of f noise even at high tempera-
tures and can be used to measure the number of traps
within a certain distance from the device.
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