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We analyze the nonlinear dynamics of a high-finesse optical cavity in which one mirror is mounted on a
flexible mechanical element. We find that this system is governed by an array of dynamical attractors,
which arise from phase locking between the mechanical oscillations of the mirror and the ringing of the
light intensity in the cavity. We develop an analytical theory to map out the diagram of attractors in
parameter space, derive the slow amplitude dynamics of the system, including thermal fluctuations, and
suggest a scheme for exploiting the dynamical multistability in the measurement of small displacements.
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FIG. 1 (color online). The setup analyzed in the text.
Introduction.—The radiation pressure exerted by light
stored in an optical cavity couples the cavity mirrors’
mechanical degrees of freedom to the optical field. The
resulting dynamics offer novel means for manipulating
both the light and the mirrors, for example, by generating
squeezed [1,2] or entangled states of light [3] or matter [4],
or by tailoring the mechanical properties of the mirrors [5–
10]. The radiation pressure also sets limits on the sensitiv-
ity of a range of experiments, e.g., by enforcing the stan-
dard quantum limit for displacement measurements [11–
15] or introducing mechanical instabilities [2,16–18].

To date the theoretical description of these systems has
been mostly developed for small mirror oscillations. As
advances in fabrication [19–24] produce devices with
stronger optomechanical coupling and weaker damping,
nonlinearities become increasingly important. This has
been illustrated by recent micromechanical experiments
that have observed the dynamical instability [9,25,26]
which is the starting point for our analysis. Here we
develop a description of this regime that is equally appli-
cable to the Caltech whispering-gallery cavity experiment
and a setup currently being prepared at Yale [25,26]. In
both, the rescaled radiation pressure (P , defined below)
can be more than 15 orders of magnitude larger than in
previous experiments. For setups operating in this novel
regime, we predict a new kind of ‘‘dynamical multistabil-
ity,’’ where the system develops an array of stable dynami-
cal attractors. We interpret this as phase locking between
the mirror motion and the ringing in the cavity optical field.
We develop an analytical theory that is much more efficient
than numerical simulations of the microscopic equations of
motion for the parameter regime of interest here, and
which includes the effects of fluctuations.

The model.—We consider the setup of Fig. 1. The
Hamiltonian of a given cavity mode is Ĥcav � @!L�1�
x̂CL=l�âyâ. The cavity of length l is resonant with the laser
frequency!L when the cantilever (CL) position xCLis zero,
and we assume the excursions in xCL to be small enough to
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avoid the other optical resonances (we also neglect the
finite travel time of the light between the mirrors). The
radiation pressure force is F̂ � �@!L=l�â

yâ. In the follow-
ing we will consider the purely classical nonlinear dynam-
ics, where â�t� is replaced by the coherent light amplitude
~��t�. We use the ring-down time of the cavity ��1, the
resonance width �x � l�=!L, and the cantilever mass m
as convenient new units, and rescale � such that it be-
comes 1 at resonance: � � ~�ei!Lt=

����������
nmax
p

, where the maxi-
mum photon number nmax � 4Pin=��@!L� is linear in the
input power Pin. Then the coupled equations of motion for
� and x � xCL=�x read [2]

_� � �ix� 1
2���

1
2 ; (1)

�x � P j�j2 �!2
0�x� x0� � � _x: (2)

Additional nonlinear terms in Eq. (2) (e.g., due to strain
nonlinearity) will not play any role for the amplitudes
considered here. The oscillator frequency!0 and mechani-
cal damping rate � are fixed, while the detuning from
resonance x0 may be controlled, either by changing the
laser frequency or applying a static force to the cantilever.
All the other constants are combined into the dimension-
less input power P � 4Pin!L=m�4l2 � @nmax=m�x2�.
We emphasize that the scale of the radiation pressure, set
by P , grows with the fourth power of the cavity finesse
[P / ��4 with � � �c=2l�T , where T is the mirror trans-
mission]. The nonlinear effects we investigate become
important for �� P .

The fabrication process described in [21,22] may be
used to integrate cantilevers with high-reflectivity dielec-
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FIG. 2 (color online). Left: Oscillations of the light energy
stored inside the cavity, @!Lnmaxj�j

2, and the output light
intensity Pout � Pinj1� 2�j2, for given sinusoidal cantilever
motion (with !0 � 1, �x � x0 � 5, A � 20). See text for real
units. Right: Dynamical potential U�A�, for P � 1 and � �
10�4; 10�3; 10�2; 10�1 (bottom to top curve). Insets show the
time evolution of the cavity intensity j�j2 (thick line) and the
output intensity j1� 2�j2 (thin line, scaled down by a factor
0.1), obtained for oscillations corresponding to the dynamical
attractors a,b,c,d [minima in U�A�]. Note the additional oscil-
lation in j�j2 for each subsequent attractor.
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tric mirrors as part of a high-finesse optical cavity at low
temperatures. With modest adjustments to the dimensions
of [22], it should be possible to realize cantilevers with
spring constant �1 N=m, mass m� 10�10 kg, and me-
chanical Q� 105 supporting a mirror capable of achieving
a cavity finesse of �=T � 105 (with l� 10 cm), and use
them at an input power of Pin � 20 nW at T � 0:3 K. For
the Yale (Caltech [25,26]) setups, our dimensionless units
are scaled by �x � 3 pm (3.5 pm), �t � ��1 � 10 �s
(19 ns), and we have � � 10�5 (5:4	 10�4) and !0 �
1�0:65�. For Pin � 20 nW (5 mW), we find P � 1�9:5�,
and j�j2 � 1 corresponds to an energy of 0.8 pJ (0.4 nJ) or
2	 106 (3	 109) photons inside the cavity. An energy
U � 1 or ~T � 1 (see below) equals 0.6 K (105 K). Note
that in the Munich experiment [9] the optical resonances
overlap and P � 10�18 � � precludes the multistability.

The cavity resonance peak ��x� � 1=�1� 2ix� gives
rise to a barrier in the effective static cantilever potential
obtained by integrating the right-hand-side (rhs) of Eq. (2),
Veff�x� �

!2
0

2 �x� x0�
2 � P

2 arctan�2x�. There can be two
local minima of Veff , leading to static bistability [6,7].
However, it is known [5] that the time lag generated by
the finite cavity ring-down time ��1 introduces additional
damping or antidamping when x is to the left or right of the
barrier, respectively. Here we will focus on the regime
where the antidamping leads to an instability discovered
previously [2,16,17,27], which destroys the stable solution
_x � 0. Then the system settles into self-sustained oscilla-
tions, whose full nonlinear dynamics we explore here.

Dynamics in the unstable regime.—For the parameters
from above, the effects of radiation during one cycle are
weak, such that x�t� carries out approximately sinusoidal
oscillations at the unperturbed frequency: x�t�� �x�
Acos�!0t�. This fact is the basis of our analytical theory.
For very high P this approximation breaks down and
chaotic motion may result (as was observed in [25] for
P � 6000), which will not be analyzed here. The dynam-
ics of the light amplitude ��t� resembles that of a driven
damped oscillator which is swept through resonance non-
adiabatically (see Fig. 2). The exact solution for a given
sinusoidal x�t� can be written as a Fourier series, ��t� �
ei’�t�

P
n�ne

in!0t, with

�n �
1

2

Jn��
A
!0
�

in!0 �
1
2� i �x

; (3)

and a global phase ’�t� � �A=!0� sin�!0t�, where Jn is the
Bessel function of the first kind. The output light intensity
is [28] given by Pinj1� 2�j2, and the Fourier transform of
��t� directly yields the sideband spectrum.

Dynamical multistability.—The possible attractors ( �x; A)
have to fulfill two conditions resulting from Eq. (2) for any
periodic motion. The total time-averaged force h �xi has to
vanish, and the net power input via the radiation pressure
force (due to the Doppler shift caused by the moving
mirror) must equal the power dissipated through friction,
h �x _xi � 0:
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P hj��t�j2i � !2
0� �x� x0�; (4)

Prad � P hj��t�j2 _xi � Pfric � �h _x2i: (5)

The dependence on �x; A, and !0 follows from the coeffi-
cients of Eq. (3):

hj�j2i �
X
n

j�nj2; (6)

~P rad � hj�j2 _xi � A!0 Im
X
n

�
n�n�1: (7)

We note that a force following the light intensity with a
time lag � (e.g., photothermal forces [9]) would enter
Eq. (2) in the form P��1

R
t
�1 dt

0j�j2�t0� exp���t�
t0�=��, and leads to a factor �1� i!0���1, inside the
imaginary part on the rhs of Eq. (7).

The power balance equation can be recast into the form

~Prad� �x; A�
~Pfric�A�

�
�

P
; (8)

with ~Pfric�A� � !2
0A

2=2. Stable attractors are those where
the ratio decreases for increasing A.

After solving the force balance Eq. (4) for �x � �x�x0; A�,
we can plot the contour lines of the left-hand side of Eq. (8)
in the �x0; A� plane. These yield the possible equilibrium
values of the oscillation amplitude A as a function of x0,
see Fig. 3. The red dots show the results of a simulation of
the initial equations of motion, Eqs. (1) and (2).

This diagram may be observed experimentally by
sweeping x0, either via tuning the laser frequency or by
applying some force to the cantilever. After initial tran-
sients, the system settles into one of the attractors (specific
amplitude A), which may be identified either via its distinct
pattern of light emission from the cavity (see Fig. 2) or by
the total power loss due to friction, Pin � �Pout �
Pin�A2!2

0=2, or by obtaining x�t� from interferometry
1-2



FIG. 4 (color). Boltzmann distribution w�A� of the cantilever
oscillation amplitude A, as a function of detuning x0, for a
reduced temperature ~T � 10. Other parameters: P � !0 � 1,
� � 10�3. Note the narrowing (cooling) of the distribution for
x0 < 0 (dashed blue line), the onset of instability at x
0, and the
transition(s) above x0 � 20, back to the distribution of a free
oscillator. Inset: Effective potential U�A� (top truncated), with
bare oscillator potential !2

0A
2=2 indicated in red.

FIG. 3 (color). Density plot of the ratio of reduced radiation
power input and frictional power loss, ~Prad� �x�x0; A�; A�= ~Pfric�A�,
in the �x0; A� plane. The contour lines indicate possible cantile-
ver oscillation amplitudes A, according to Eq. (8). White contour
lines display the approximation �x � x0. Contours are drawn for
�=P � 10�4; 10�3; 10�2; 10�1 (with P � !0 � 1). Red dots
show the long-time limit (tsim � 2	 104) of the amplitude A �
xmax � xmin in the numerically exact solution of the original
equations of motion, obtained for the same values of �=P and a
set of random initial conditions.
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with a detuned beam. Sweeping back nonadiabatically to
smaller x0 allows one to reach attractors with higher A,
even those that persist at negative x0, where the system
would not start oscillating spontaneously.

Near the onset of instability at x
0 � �P=!
2
0 we find

A � ��1� 4!2
0��1�!

2
0x0=P �=2�1=2 (for �� P ), and

j �xj � x0. However, for the rest of parameter space, �x �
x0 is a good approximation (white lines in Fig. 3), which
we will adopt in the following. Then the equilibrium values
of A, at a given x0, depend only on the ratio �=P .

At large A=!0, the asymptotics of the Bessel function in
Eq. (3) leads to an oscillatory decay of ~Prad= ~Pfric (see
Fig. 3), with periods of �!0 and 2!0 in A and x0, respec-
tively. Physically, an increase in A enlarges the time-
dependent detuning x�t� which is equal to the frequency
of the ringing in the light intensity j�j2�t� (Fig. 2). The
appearance of the array of attractors is thus due to a phase
locking phenomenon, where the oscillations of the light
intensity (depending on A) seek to be commensurate with
the fundamental cantilever period.

Amplitude equation of motion.—We can determine the
slow dynamics of the cantilever oscillation amplitude A by
equating the change in total energy E � �!2

0=2�A2 to the
net power input:

dE
dt
� Ptotal � Prad � Pfric: (9)

This can be used to obtain the overdamped motion of A,
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dA
dt
�

1

A!2
0

Ptotal � �
�

2!2
0

U0�A�; (10)

where we have introduced the effective potential for A,

U�A� �
!2

0

2
A2 �

2P

�

Z A

A0

~Prad�A0�
dA0

A0
: (11)

The integral produces a decaying oscillating component,
such that U�A� in general displays several local minima,
corresponding to the dynamical attractors (see Fig. 2,
right). Solving Eq. (10) and comparing to simulations of
the full dynamics yields a good agreement, which can be
improved at small jx0j by using �x � �x�x0; A� from Eq. (4)
instead of �x � x0. This was also used for Fig. 4.

Stochastic dynamics and Boltzmann distribution.—The
heat bath responsible for the mechanical damping � also
produces a fluctuating force, which enters the rhs of Eq. (2)
as �x�t�, where h�x�t��x�0�i � 2� ~T��t�, with a reduced
temperature ~T � kBT=�m�x2�2�. This gives rise to a fluc-
tuating power �E � _x�x in Eq. (9), which produces a
stochastic force �A�t� � �E�t�=�A!2

0� on the rhs of (10),
with h�A�t��A�0�i � �� ~T=!2

0���t�. The cantilever settles
into a driven equilibrium described by the Boltzmann
distribution w�A� / A exp��U�A�= ~T� (Fig. 4). The prefac-
tor A accounts for the phase space associated with the two
quadratures of motion. Formally, it is produced by an
additional deterministic term � ~T=�2!2

0A� on the rhs of
Eq. (10), which stems from rewriting the Langevin version
of (9) in Ito form. Comparison with a Langevin-Runge-
Kutta [29] simulation of the original Langevin equations
for x and � shows good agreement (shot noise may be
neglected as nmax � 106  1). At jx0j  1, the global
minimum of U�A� is at A � 0, and w�A� returns to the
distribution of the unperturbed oscillator.

The potential barriers in U�A� scale with P=�, see
Eq. (11), and can become much larger than those in
Veff�x�, which scale with P . For the Yale (Caltech) setups,
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FIG. 5 (color online). Left: Two trajectories �x0�t�; A�t�� in a
latching measurement, reaching a different attractor depending
on a small initial displacement �x0 (parameters as in Fig. 4).
Middle: Time evolution A�t� for several different values of
x0�t � 0� (with/without thermal fluctuations). Right: Proba-
bility to end up in the upper attractor, vs x0�t � 0�, for two
different temperatures. A sharper rise enables a more precise
measurement of �x0.
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they are roughly 103 K (107 K), making thermal effects
practically unobservable. However, a value of �� 10�3

could yield barriers around 10 K.
Hysteresis and ‘‘latching’’ measurements.—Multista-

bility leads to hysteresis during parameter sweeps. Further-
more, the sensitivity to parameter perturbations is greatly
enhanced near transitions between attractors. This could be
used to measure small displacements �x0: Sweeping back
and forth in x0 leaves the cantilever in either of two
attractors, depending on whether �x0 was large enough.
Afterwards, the stable final amplitude is measured. The
resolution limit due to thermal fluctuations is in the sub-
picometer range already for �� 10�3 (see Fig. 5), and
becomes a few femtometers for �� 10�5 (Yale setup;
similar for Caltech). A similar latching scheme has been
implemented in the context of a strongly driven Josephson
junction [30–33].

Conclusions.—We have discovered a form of dynamical
multistability that can arise in high-finesse cavities with a
large mechanical quality factor of the oscillating mirror.
The amplitude of self-sustained oscillations settles into one
of several attractors, which we have mapped out in pa-
rameter space. We have derived an effective dynamical
potential for the slow amplitude dynamics and incorpo-
rated the effects of thermal noise. Finally, we have pointed
out a latching scheme for detecting small displacements.
The effects described here are measurable in cavities
within the reach of current technology.
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