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Abstract

In recent experiments, it has been shown that it is feasible to
measure the absorption and emission spectrum of a single InAs
quantum dot (QD) embedded in a GaAs semiconductor. In ab-
sorption measurements, excitons are generated inside the QD,
whereas the emission spectrum originates from the recombina-
tion of excitons inside the QD. The emission spectrum measure-
ments reveal that the QD has an atom-like electronic level struc-
ture. Motivated by these experiments, we study an extended
Anderson model, which describes a local conduction band level
coupled to a lead, but also takes account of a local valence band
level. We study the extented model both qualitatively, using
Anderson’s Poor Man Scaling method, and quantitatively, using
Wilson’s Numerical Renormalization Group (NRG). The latter
is used to calculate the zero-temperature absorption spectrum of
a QD that is initially in the strongly correlated Kondo ground
state.
In the unphysical limiting case of a vanishing exciton binding
energy, Uexc = 0, the absorption spectrum is determined by the
local density of states of the QD. We use this well-understood
limiting case as a consistency check for our numerical calcula-
tions of the absorption spectrum. For finite values of Uexc, we
predict two rather dramatic new features. Firstly, the thresh-
old energy below which no photons are absorbed, say ω0, shows
a marked, non-monotonic shift as a function of Uexc; a quali-
tative explanation of this behavior can be given by considering
the energy scales. Secondly, as Uexc is increased, the absorption
spectrum shows a tremendous increase in peak height. In fact,
the absorption spectrum diverges at the threshold energy ω0, in
close analogy to the well-known X-ray edge absorption spectrum.
Exploiting analogies to the latter, we propose and numerically
verify an analytical expression for the exponent that governs this
divergence, in terms of the absorption-induced change in the av-
erage occupation of the local conduction band level.
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Chapter 1

Introduction

In the 1930s measurements of the electrical resistance of certain metals revealed an effect
that went on to puzzle physicists for three decades: as the temperature is lowered, the re-
sistance reaches a minimum. Rather than decreasing or saturating, the resistance increases
as the temperature is lowered further, see Fig. 1.1. Later it was found that the effect only
occurs if the metal contains magnetic impurities, such as cobalt atoms.

The first explanation of this phenomenon was given by J. Kondo in 1964, see [2],
whereupon the effect was named after him: the ’Kondo effect’. Kondo’s explanation is
based on a model where the local moment of the magnetic impurities with spin S is coupled
via an exchange interaction with a coupling constant J to the spin of the conduction band
electrons of the metal. Kondo’s calculations show that a ln (TK/T ) contribution to the
resistance emerges in third order perturbation theory in the coupling J , where TK is a
constant called ’Kondo temperature’. If the temperature decreases below TK , this term
becomes large and finally dominates the other contributions to the resistance, as e. g.
phonon scattering, thus explaining the phenomenon of increasing resistance. However, as
the ln (TK/T ) term diverges as T → 0, it is clear that Kondo’s calculation can not be valid
at low temperatures and that a more comprehensive theory is needed to explain the low
temperature behaviour. This problem of finding a solution valid in the low temperature
regime T → 0 is known as the ’Kondo problem’.

One of the first questions to explore in looking for a more satisfactory theory in the low
temperature regime is whether the divergence arising from the logarithmic term can be
removed by summing the higher order terms in the perturbation expansion. Approaches
in this direction were made by Abrikosov, see [2], and several others, but they encountered
severe difficulties, which could not be solved satisfactorily. 1970 P. W. Anderson attacked
the problem with a scaling method which he termed ’Poor Man’s Scaling’ [3]. This approach
leads to a qualitative understanding of systems undergoing the Kondo effect and will be
explained in Chapter 4. In 1974 and 1975 K. G. Wilson developed a theory producing
quantative results, the ’numerical renormalization group’ method, called NRG [4]. It is
based on scaling and renormalization group ideas. NRG is the central method of this thesis
and will be introduced in Chapter 5.

The Kondo effect has experienced a revival in the 1990s when it became possible to
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10 CHAPTER 1. INTRODUCTION

Figure 1.1: Three different behaviours of metals as the temperature is lowered. Some
metals become super conducting at a critical temperature (green). For most metals, the
resistance decreases until it saturates at some residual value (blue). If the metal contains a
small fraction of magnetic impurities, for instance cobalt in copper, the resistance increases
at low temperature due to the Kondo effect (red). Picture taken from [1]

fabricate quantum dots with atom-like electronic structures, opening new possibilities to
study the Kondo effect experimentally, see [5]. Using these artificial atoms as magnetic
impurities, today it is possible to control important parameters in experiments. E.g., the
number and energy of electrons within the dot can be controlled by applying gate voltages
or the Coulomb repulsion energy of the electrons can be varied by changing the size of the
dot.

So far, most evidence about the Kondo effect was gained by indirect observation like
current-voltage or magnetic susceptibility measurements. The idea behind this thesis is to
investigate if there is any signature of the Kondo effect in optical absorption measurements
conducted with quantum dots in a semi-conductor. In particular, we will study the light
induced excitation of excitons in a quantum dot. The initial state of the quantum dot is
supposed to be the ’Kondo ground-state’, a many-body state involving strong correlations
between the electrons in the dot and the electrons in the conduction band. By light
absorption, an exciton can be excited inside the dot, thereby destroying the Kondo-state.
The central aim of this thesis is to calculate the absorption spectrum of a quantum dot in
the Kondo ground-state.

In Chapter 2 the experimental background, optical experiments with quantum dots [6],
will be introduced. In these experiments, excitons, i. e. electron-hole pairs, are trapped in
quantum dots, together with an experimentally controlled number of additional electrons.
After a certain time the hole recombines with an electron, whereby a photon is emitted.
Recently experimentalists have succeeded in measuring the photoluminescence of a single
quantum dot. These measurements can be compared with atomic spectroscopy measure-
ments. It turns out, that as in atomic spectroscopy the quantum dot emits characteristic
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light depending on the number of additional electrons trapped with the exciton, which
reveals a atom-like shell structure of the electronic energy levels of the dot. So far no ex-
periments were conducted in the Kondo regime, but in principle they are feasible. If such
experiments are made, it will be exciting if the results agree with the predictions made in
this thesis.

In Chapter 3 the model describing the quantum dot in a semiconductor will be put up. It
will be an extension of the Anderson Model, a model put forward by P. W. Anderson in 1961
[7], which describes physical systems where a local level interacts with lead electrons, e. g. a
magnetic impurity embedded in a metal. The Anderson Model can be reduced to the Kondo
model in the appropriate parameter regime by the Schrieffer-Wolf transformation. Thus
the physics of the Kondo effect can be described by the Anderson Model. Furthermore, in
the last section of the chapter, alternative theoretical approaches to solve the model will
be treated.

In Chapter 4, Anderson’s Poor Man Scaling approach will be explained and applied to
the extended Anderson Model.

In Chapter 5, Wilson’s NRG method will be introduced. In the second section of the
chapter, it will be shown how the method has been modified to solve the Hamiltonian
corresponding to the physical system studied in this thesis.

The results will be presented and discussed in Chapter 6 and finally, in Chapter 7, there
will be a conclusion.
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Chapter 2

Experimental Background

Photoluminescence measurements on semiconductor quantum dots, conducted by Karrai
et al., [6], are the experimental background of this thesis. The set-up consists primarily
of a GaAs substrate, which contains InAs quantum dots. In the experiment, excitons are
produced in the GaAs by laser excitation. The excitons migrate in the GaAs and finally
become trapped in the InAs quantum dots. Finally the excitons recombine, whereby a
photon is emitted. This photoluminescence is measured. The emitted photons have a
certain wavelength, characteristic for the level structure of the InAs quantum dots. The
experiment is described in this chapter.

2.1 Experimental set-up

The set-up of the experiment is shown in Fig. 2.1a. A substrate made of the semi-conductor
GaAs is covered with one and a half mono-layers of InAs, likewise a semi-conductor. Due
to the different lattice constants of GaAs and InAs, the InAs starts to migrate and there is
a strain-driven growth of rings. Thus the experiment strictly speaking deals with quantum
rings and not dots, but since the word ‘quantum dot’ is commonly used for a nano sized
object small enough to make quantum mechanical characteristics detectable and since for
present purposes rings and dots behave very similarly, I will use the words dot and ring
as synonyms. The quantum dots are covered with GaAs. They are separated by tunnel
barriers from a back contact on the one side and a gate contact on the other side. Due to
the barriers, no current will flow if a potential is applied between the contacts.

A band diagram for two different gate voltages Vg
a and Vg

b applied between the gate and
the back contact is shown in Fig. 2.1b. The energy of the lowest point of the conduction
band is plotted along the y-axis. Space is plotted along the x-axis, note that Fig. 2.1b is
aligned with Fig. 2.1a. Since the bandgap of InAs is smaller than the bandgap of GaAs,
the bottom of the InAs conduction band lies below the bottom of the GaAs conduction
band. Thus there is a dip at the location of the InAs quantum dots which leads to the
formation of local levels inside the quantum dots that lie below the GaAs conduction band.
Therefore electrons can be captured in the dots. By varying the applied voltage, the local
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14 CHAPTER 2. EXPERIMENTAL BACKGROUND

Figure 2.1: a) Layer structure of experimental set-up. b) Band diagram at two different
gate voltages Vg

a and Vg
b, where the energy of the lowest point of the conduction band

is plotted along the y-axis and the position is plotted along the x-axis. Note that b) is
aligned with a). Picture from [6].

levels of the dots can be shifted with respect to the Fermi energy of the back contact, as
shown in Fig. 2.1b. Therefore, by regulating the voltage, the number of electrons in the
dot can be set to a desired number, thus the name ’charge-tunable quantum dots’. Due
to the Coulomb repulsion of the electrons on the dot, there is a Coulomb blockade which
impedes other electrons to tunnel into the dots. As the dots are very small, the Coulomb
blockade of the considered InAs dots is high, typically about 20 meV ≈ kB 230 K, see [8],
thus the charge on the dot changes in discrete units of e as one electron after the other
enters. The situation in the valence band is analogous to the conduction band. This time
the top of the InAs valence band lies above the top of the GaAs band, building a trap for
holes.

The quantum dots form a two-dimensional structure, as they are about 6 nm thick yet
approximately 20 nm in diameter, see [8]. This results in vertical confinement energies
almost an order of magnitude larger than the lateral confinement energies, thus excitations
in the vertical dimension can be neglected. The dots feature radial symmetry, which leads
to an atom-like energy level structure for electrons trapped in the dot [6], shown in Fig.
2.2. Just like the Hydrogen atom, the dot possesses one s-level, but it has only two p-levels,
since it is two-dimensional. There are three d-levels, but they will not be considered in the
following. For understanding the underlying principles of the experiment it is enough to
consider just the s- and the p-levels, the d-levels do not yield any new physics. There is
also a level structure for holes, but we will consider at most one hole trapped in a dot, see
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Figure 2.2: Diagram of atom-like level structure of quantum dots due to radial symmetry.
Explanations see text.

below, so just the highest lying level, the s-level, is important here.

2.2 Photoluminescence measurements

The goal of the experiment is to measure the photoluminescence of exciton recombination
inside the quantum dots. In the experiment, excitons are produced inside the GaAs by
laser excitation with frequency resonant to the GaAs bandgap. The excitons migrate and
finally become trapped in the InAs dots. The number of excited excitons is proportional
to the intensity of the laser excitation which is always kept small enough to justify the
assumption that there is at most one exciton trapped in one dot. After a certain time,
the trapped excitons will recombine, thereby emitting photons which are detected. The
atom-like level structure of the dots described in the previous section will be visible in the
absorption spectrum. In fact, we will be able to explain the experimental results very well
by describing the states before and after recombination in terms of occupation of the s-
and the p-levels.

The shape of the emission spectrum depends on the applied gate voltage Vg. Before
the recombination of the exciton, there is at least one electron in the dot, belonging to
the electron-hole pair constituting the exciton. Depending on Vg, there can be additional
electrons in the dot. We distinguish between X0, X1−, X2−, etc., excitons, where the
superscript denotes the total charge, i. e. the figure in the superscript denotes the number
of additional electrons. E. g., X2− identifies the state where one hole and three electrons
are captured in the dot. Due to selection rules, the hole recombines always with an electron
in the s-level. Still the energy of the emitted photon depends on the number of electrons
in the dot because of Coulomb interactions between the electrons. Before interpreting the
experimental results, however, it is helpful to take a closer look at the time scales involved.
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Figure 2.3: Crucial processes of the exciton recombination. a) The figure shows an excitons,
which consists of an electron (filled circle) and a hole (empty circle). The excitons are
created by laser excitation inside the GaAs, where they wander around and finally become
trapped inside the InAs quantum dots. After the electron-hole pair is trapped, the electron
and the hole relax into the lowest lying states. b) In the recombination process, an electron
recombines with a hole, whereby a photon is emitted. c) The figure shows a spin-flip
process, where an electron hops from the dot into the conduction band and is replaced by
an electron with anti-parallel spin which tunnels from the conduction band into the hole.

The crucial processes of the exciton recombination are depicted in Fig. 2.3. After an
exciton migrating in the GaAs becomes trapped in an InAs dot, the electron and the hole
interact with phonon modes and relax to the lowest lying levels, Fig. 2.3a. The time
scale of the relaxation process is about τrelax ∼ 1ps. This is three orders of magnitude
smaller than the typical lifetime of an exciton trapped in the dot, the time scale of the
exciton recombination, Fig. 2.3b, which is approximately τrecomb ∼ 1ns. Finally there is
the possibility of a spin-flip process, where an electron hops from the dot into the lead and
is replaced by another electron in the lead with opposite spin. Thus altogether the spin
of the dot electron is flipped, Fig. 2.3c, which takes about τspinflip ∼ 1ns or longer. For
details about the time scales see [9], [10], [11], [12] and [13]. As the relaxation process is
the fastest process involved, it can be assumed that an exciton is in the lowest possible
state before recombining.

The experimental results of the optical emission measurements are shown in Fig. 2.4.
They are collected from measurements on one single quantum dot. This can be assured
in the following way. As mentioned in the previous section, the InAs quantum dots are
self-organized, they are formed by strain-driven growth. This gives rise to the fact that the
quantum dots are not all exactly alike, but there are minor differences in size and form.
Therefore, each quantum dot emits characteristic light. In the experiment, a quantum dot
was chosen whose emitted spectrum was unusual and a little aside the broad spectrum
caused by the majority of dots. Of course, the spectrum of the single dot is still considered
to be representative of that of a ’typical’ dot.
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The four emission spectra in Fig. 2.4 correspond to four different gate voltages. The
spectrum at the bottom was recorded with the gate voltage tuned such that X0 excitons
were trapped in the dots. In the spectrum above the recombination of X−1 excitons was
measured. The initial and the final state of the recombination process are shown on the
right hand side. Before recombination, two electrons and one hole are trapped in the dot.
After recombination, there are two different final states, the s-level is occupied by either one
spin-up or one spin-down electron. As no magnetic field was applied during the experiment,
these two final states are degenerate and just one of them is illustrated. The difference in
energy between the X and the X−1 emission peak is caused by the exchange energy of the
two electrons in the double occupied s-level of the X−1 exciton. The recombination of the
X−2 excitons results in two peaks, as shown in the second spectrum from top. The two
different peaks originate from two different final states illustrated on the right hand side.
Again, final states with different spin configurations that are degenerate to the states in
the picture are not illustrated. The two final states in the picture have different energies
as the exchange energy is different for parallel and anti-parallel spins. Furthermore, they
have a different lifetime, because the right final state can decay into a double occupied
s-level by spin relaxation. This is not possible for the left state, here a spin-flip is needed
before relaxation. As mentioned above, the time scale for spin-flips is about three orders
of magnitude larger than the time-scale for relaxation. Hence, the lifetime of the left final
state is much longer. If one applies the Heisenberg uncertainty principle ∆E · ∆t ∼ ~,
one sees that its energy is defined much sharper, resulting in a narrow peak. In contrast
to the left final state or the final states of the X and X−1 recombination, the right final
state has a comparably short lifetime, giving rise to the broad peak shown in the spectrum.
The same argument applies to the case of the X−3 recombination. The peaks on the right
hand side in the X−2 and X−3 recombination spectra stem from a second dot and can be
disregarded.

These experimental results confirm the assumption of an atom-like level structure of the
quantum dots. With the knowledge that the used level-structure describes the quantum
dots in a appropriate way and that the number of captured electrons can be controlled
in experiment, a theoretical model together with its Hamiltonian can be proposed. In
the next chapter this Model-Hamiltonian will be introduced by suitably generalizing the
Anderson Model.
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Figure 2.4: Photoluminescence from a single quantum dot for excitons with different charge.
The number of counts is plotted versus the energy of the detected photons. Spectra are
shown at gate voltages Vg = −0.76,−0.16,−0.10 and 0.40V , corresponding to emission
from the X,X1−, X2− and X3− excitons, respectively. On the right hand side the initial
states and the final states of the recombination processes are illustrated. In the emission
process of the X2− and X3− there are two different kinds of final states. In contrast to
the left final states, no spin-flip process is needed for the right final states in order for the
dot to relax to the ground state. Therefore the lifetime of the right final states is shorter,
leading to a broader emission peak. Picture from [6].



Chapter 3

Model

In the first section of this chapter the Anderson model will be introduced. It will be
shown that in a certain parameter regime it can be reduced to the Kondo model by the
Schrieffer-Wolff tranformation. Furthermore a short introduction to the Kondo effect will
be given.

In the second section a model will be proposed that describes the system of an InAs
quantum dot embedded in GaAs which was introduced in Chapter 2. This model will be
an extension of the Anderson model.

With the help of the model we will be able to attack the main subject studied in this
thesis, the absorption of light by the InAs quantum dots. This is the time inverse process
of emission studied in the experiment which was presented in Chapter 2. In the absorption
process, a photon is absorbed in the InAs dot, whereby an exciton is created. Before
absorption, the state of the quantum dot is assumed to be the Kondo-state, a many-body
state involving strong correlations between the electrons in the dot and the electrons in the
conduction band. The Kondo-state will be introduced in Section 3.1. The light absorption
excites an exciton in the dot which destroys the Kondo-state. The central prediction of
this thesis is that this transition from a Kondo- to a non-Kondo-state causes a distinct
feature in the absorption spectrum.

An ansatz for the calculation of the absorption spectra using Fermi’s Golden Rule will
be put forward in Section 3.3. The section will be concluded with a limiting case of the
absorption spectra which can be calculated by a short analytical calculation.

In the last section, I will shortly present other theoretical approaches to the issue.

3.1 Anderson model and Kondo effect

In this section the Anderson model will be introduced and a short introduction to the
Kondo effect will be given. The notation used in this section is unconventional, but it will
prove to be useful in the next section, where the Anderson model is extended to describe
the physical system studied in this thesis. The Anderson model describes physical systems
where a local level of an impurity is coupled to a band of conduction electrons, see [2]. It
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Figure 3.1: System described by Anderson model: local level coupled to lead. Explanations
see text.

is given by
HAnderson ≡ Hdot +Hlead +Hcoupling, (3.1)

with

Hdot =
∑

σ=↑,↓

εcc
†
σcσ + Ucn̂c,↑n̂c,↓ (3.2a)

Hlead =
∑

~k,σ

ε~kl
†
~kσ
l~kσ (3.2b)

Hcoupling =
∑

~k,σ

(

V~kcl
†
~kσ
cσ + V ∗~kcc

†
σl~kσ

)

, (3.2c)

see Fig. 3.1. The physics of the local level is contained in Hdot, where εc is the energy of
the level, to be measured from the Fermi level, and c†σ(cσ) creates (annihilates) an electron
in the level with spin σ. The subscript ’c’ stands for ’conduction band’, in the next section,
we will also need an index ’v’ for ’valence band’. If the level is doubly occupied, there is a
Coulomb repulsion of the two electrons, described by Ucn̂c,↑n̂c,↓, where n̂c,σ = c†σcσ is the
number operator and Uc is the energy cost for the double occupancy.

The local level is coupled to a lead, which is described by quasi-particles in the Anderson
model. The Hamiltonian of the lead is Hlead, where l

†
~kσ
(l~kσ) is the creation (annihilation)

operator of a particle with wavevector ~k, spin σ and energy ε~k, again to be measured from
the Fermi level. Here ’l’ stands for ’lead’.

The part Hcoupling of the Anderson Hamiltonian couples the local level to the lead. The
strength of the coupling is given by the hybridization matrix element V~kc = 〈φdot(~r)|HAnderson|ψ~k〉,
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where φdot(~r) is the wavefunction describing the dot and ψ~k is the wavefunction of a lead

electron with wavevector ~k. It is common to neglect all ~k-dependence of these matrix
elements, and to use V~kc = Vc.

Due to the coupling, the local level is broadened, it has a level width Γ ∝ |V |2. The
average occupation nc,σ = 〈n̂c,σ〉 of the dot depends on Uc, Γ and the position of εc with
respect to the Fermi energy, which will be set to zero in the following. Roughly speaking
the occupation will be two for εc + Uc < −Γ, around one for εc < −Γ, εc + Uc > Γ, or zero
for εc > Γ.

With the help of NRG, it is possible to solve the Anderson Hamiltonian numerically, see
Chapter 5. Yet it might be helpful to know, for a reader unfamiliar with the subject, how
the Anderson model is connected to the Kondo model and the Kondo effect. The Kondo
model was put forward by Kondo in 1964; it is treated in [2] under the name ’s-d model’.
It was the first explanation of an effect named after Kondo, the Kondo effect. Many
interesting experimental manifestations of the Kondo effect are described in [2] and [1].
Like the Anderson model, the Kondo model describes the interaction between a impurity
and a lead. In contrast to the Anderson model, the impurity in the Kondo model consists
just of a local moment with spin S and thus only the spin-spin exchange interaction between
the impurity and the lead are considered. The Anderson model and the Kondo model are
related by the Schrieffer-Wolff transformation, see section 1.7 of [2] for details.

The argument below is only intuitive. It is intended to visualize the physics behind the
Kondo effect. For a rigorous discussion see [2]. Considering the Anderson model, let us
study the following situation. If εc < 0 < εc + Uc and if the temperature T is sufficiently
low for neglecting thermal excitations, kBT << |εc|, εc + Uc, the local level will be single
occupied. Yet the spin of the electron can be flipped by two different virtual processes
described by second order perturbation theory in the coupling between dot and lead. In
the first process, see Fig. 3.2a, the electron tunnels from the local level to the lead where
due to the low temperature only states near the Fermi surface are available. Thereby
energy conservation is violated, which is allowable for a time ∆t ∼ ~/|εc| given by the
Heisenberg uncertainty principle. On this time scale an electron must tunnel back from
the lead to the local level. If this second electron has the opposite spin direction of the
first, the spin of the electron on the local level will be effectively flipped. Applying the
same argument, it is possible for the time ∆t ∼ ~/(εc+Uc) to doubly occupy the local level
which is the second virtual process, see Fig. 3.2b. If the electron which was originally on
the level tunnels out and the electron with anti-parallel spin is left on the local level, the
spin of the localized electron is flipped. We have argued that at low temperatures and in
the regime εc < 0 < εc + Uc the Anderson model can be transformed to an effective model
which considers only one electron on a local level which has the freedom of spin due to
virtual processes. This is the essence behind the Schrieffer-Wolff transformation.

In this case of single occupancy the local level can be described by its spin ~S. The
coupling between the local level and the lead is a spin-spin interaction proportional to
J ~S ·~s, where J is the coupling strength and ~s is the spin of the lead electrons proportional
to ~s ∼

∑

~k,~k′,σ,σ′(l
†
~kσ
~σσσ′l

′
~k′σ

). This is essentially the Kondo model.
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Figure 3.2: Important virtual processes of the Schieffer-Wolff transformation which flip
the spin of the localized electron. The localized level is singly occupied, since εc < εF =
0 < εc + Uc. a) The electron tunnels out of the localized level, thereby violating energy
conservation. An electron with opposite spin tunnels on the localized level on a time scale
∆t ∼ ~/|εc| given by the uncertainty principle. b) An electron tunnels onto the single
occupied localized level. On a time scale ∆t ∼ ~/(εc + Uc) the original electron tunnels
out.

By Poor Man’s Scaling, see Chapter 4, it can be shown that the coupling constant
J increases with decreasing temperature. Below a characteristic temperature TK , called
Kondo temperature, which can be determined by scaling, the coupling becomes so strong
that the localized electron builds a singlet with a cloud of lead electrons called the Kondo
cloud. This state of a single occupied localized level strongly coupled to the cloud of lead
electrons is called the Kondo-state. In this effect a new state, called the Kondo resonance,
is generated at the Fermi-energy in the local density of states of the local level, see Fig.
3.3. One can visualize that in this strong coupling limit in the low temperature regime
lead electrons at the Fermi-energy constantly tunnel in and out of the local level by virtual
processes, thus creating a quasi-particle state at the Fermi-energy. The Kondo resonance is
a many-body phenomenon, since strong correlations between the local electron and many
lead electrons develop.

The presence of a Kondo resonance explains the Kondo effect, i.e. the increase of
resistance at low temperature. In the low temperature regime, electrons close to the Fermi-
energy contribute decisively to the conductance. Yet these electrons are scattered very
effectively by the Kondo resonance, which leads to the increase in resistance.

3.2 Extension of Anderson model

In this section a model will be introduced that describes the InAs quantum dots discussed
in Chapter 2. This model will be constructed by generalizing the Anderson model. First
it will be explained which part of the Anderson Hamiltonian corresponds to which part of
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Figure 3.3: Development of the Kondo resonance. a) For temperatures T above the Kondo
temperature TK there is no Kondo effect. The local density of states Ac(ω) has two peaks
at εc and εc + Uc, respectively, where the width of the peaks is determined by |V |2, i. e.
by the strength of the coupling. b) For T < TK there is the Kondo resonance in the local
density of states at the Fermi energy. It can be interpreted as a quasi-particle state which
is created by lead electrons constantly tunnelling in and out the dot by virtual processes.
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Figure 3.4: Model of quantum dot. Two localized levels are considered, the local conduction
band level at energy εc and the local valence band level at εv. The local conduction band
level is coupled to the lead (blue). The lead consists of a two dimensional electron gas in a
mono-layer of InAs. The exciton binding energy between holes and electrons has strength
Uexc (red). The excitation of excitons by laser light (green) is viewed as a perturbation of
the system.

the InAs quantum dot. Then new terms will be added to the Hamiltonian to achieve a
full description of the dot and the absorption process. The Hamiltonian is depicted in Fig.
3.4.

The local level of the Anderson model will correspond to the s-level of the local con-
duction band levels of the dot. All other conduction band levels of the quantum dot will
be disregarded. The inclusion of other levels would be an interesting topic to study, but a
model containing only the s-level is sufficient to produce the effects desired to be studied
within the scope of this thesis. From now on the s-level will be referred to as the ’local
conduction band level’ to distinguish it from the ’local valence band level’ which will be
introduced below. All operators and parameters corresponding to the local conduction
band will carry the subscript ’c’ where ’c’ stands for ’conduction band’. In this context
‘charge-tunable quantum dot’ means that the energy εc of the local conduction band level
can be controlled experimentally, by changing an applied gate voltage.

To understand which part of the semiconductor quantum dot system will act as lead,
it is necessary to go into one more detail about the experimental setup. As mentioned in
Chapter 2, the InAs quantum dots are self-organized structures that form out of one and
a half layer of InAs on top of GaAs by strain driven growth. In fact, after the InAs has
migrated to form the quantum dots, there is still a mono-layer of InAs left. The InAs dots
are surrounded by this mono-layer, like islands in an ocean. Moreover, in the conduction
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band of the InAs mono-layer a two dimensional electron gas can be formed, provided that
the gate voltage is suitably tuned. This 2DEG will function as a lead and will be described
by Hlead of Eq. (3.2b).

So far, no signature of the Kondo effect has been detected in the experiments, wherefore
two presumption can be put forward. Firstly, if the local conduction band level of the dot is
single occupied, which is necessary for the Kondo effect, the 2DEG is not filled sufficiently
for the Kondo-state to build up. Just like the quantum dots are filled with electrons as the
gate voltage is increased, the 2DEG is filled up with electrons, too. To occupy the local
conduction band level with one electron, the gate voltage must be adjusted to a certain
value V1. The value of V1 can vary from dot to dot, depending on its size. Therefore the
amount of electrons in the 2DEG varies as one studies various different single occupied
dots because the Fermi-energy of the 2DEG varies with V1. However, in the experiments it
has been found that on average the dots are occupied with four electrons before the 2DEG
starts to be filled with electrons. Therefore the 2DEG will not be filled at all if there is
just one electron in the dot, even for a dot that is considerably different from the average.

Secondly, the coupling between the dot and the 2DEG is too small. It has been found
in the experiments that the coupling of the dots to the 2DEG becomes stronger with
increasing gate voltage. Studying the experimental data, one arrives at the assumption
that at V1 the coupling is too weak for the Kondo-state to build up, even if the 2DEG
would be sufficiently filled.

Experimentalists could overcome both obstacles by fabricating more ’shallow’ dots, i.e.
dots where the first localized level, the s-level, is very close or inside the continuum of
states of the 2DEG. Such ’shallow’ dots have indeed already been fabricated but they have
not yet been studied experimentally.

We want to examine the excitation of excitons in the dot, so to construct the new model
another local level is needed which originates from the InAs valence band that contains
the holes. This local level will be referred to as the ’local valence band level’. Thus we are
going to add a term

∑

σ εvv
†
σvσ, where εv is the energy of this level, again to be measured

from the Fermi level, and v†σ(vσ) creates (annihilates) an electron in the level with spin σ.
In the language of holes, a local valence band level occupied with an electron with spin σ
means that it contains a hole with opposite spin σ̄. There is also a coulomb repulsion of
two holes in the local level, thus we need to add a term with the repulsion energy Uv in the
case in which there are no electrons in the level: Uv(1− v†↑v↑)(1− v

†
↓v↓). Our new ’2-level’

dot-Hamiltonian reads

Hdot =
∑

σ

εcc
†
σcσ +

∑

σ

εvv
†
σvσ + Ucn̂c,↑n̂c,↓ + Uv(1− n̂v,↑)(1− n̂v,↓), (3.3)

where nc,σ and nv,σ are the number operators for the local conduction and valence band
level, respectively.

We will neglect the coupling between the local valence band level and the valence band
as the holes are very heavy and therefore couple only weakly to the valence band of the
GaAs.
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To describe the Coulomb attraction between holes and electrons of an excitons in the
quantum dot, we still need a coupling between the local valence band and local conduction
band level. As the energy of an exciton originates from the attractive Coulomb force
between an electron and a hole, for every hole in the local valence band level the energy
Uexc will be subtracted in the Hamiltonian for every electron in the local conduction band
level. For instance, if there is one hole in the local valence band level and two electrons in
the local conduction band level, the energy 2Uexc will be subtracted. Therefore the term

Hlevel−coupling = −
∑

σ,ν=↑,↓

Uexcn̂c,σ(1− n̂v,ν) (3.4)

will be added to the Hamiltonian.

Altogether, the model includes the following parameters: εc, Uc, εv, Uv, Uexc, V~kc and
ε~k. Thus the parameter space is rather large and several constraints and assumptions for
the parameters will be put forward. The dispersion relation ε~k is given by the InAs band
structure, whereby in this thesis the band will assumed to be flat. For more details about
ε~k and also the coupling strength V~kc, see Chapter 5. In the following we are only interested
in the case where at most one exciton is in the dot, which means that, after absorption,
there is at least one electron in the local valence band level. This is justified by considering
that the bandgap of order 1 eV is by far the largest energy scale of the problem, so a
state with two holes is a highly excited state. In [8], a model for the InAs quantum dot
is used which reduces to the model of this section in the case where only the s-level and
at most one exciton in the dot are considered. From experimental data, they estimate the
parameters Uc and Uexc to be approximately 50 meV and 35 meV, respectively, so they are
of the same order of magnitude.

The last term that needs to be added to the Hamiltonian to complete the model is the
term for exciton excitation by an incident photon. It is given by

H′ = γ
∑

σ

(
c†σvσ + h.c.

)
, (3.5)

where the first term creates an electron in the local conduction band level and annihilates
an electron in the local valence band level, i. e. it creates an exciton. The h. c. term
annihilates an exciton. This part of the Hamilton is considered as perturbation of the
system. In an absorption experiment, this perturbation is caused by a laser which exites
the excitons. So the strength γ of the perturbation is proportional to the intensity of the
laser. In the next section, the absorption spectrum of a quantum dot will be calculated
with the help of Fermi’s Golden Rule, with H′ as perturbation. To use perturbation theory,
we need γ ¿ 1, which can be fulfilled for a small laser intensity.

The unperturbed part of the Hamiltonian, i.e. the part without H′, will be referred to
as H0, so that H = H0 +H′. The complete Hamiltonian is given by

H = Hdot +Hlevel−coupling +Hlead +Hcoupling +H′, (3.6)
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with

Hdot =
∑

σ

εcc
†
σcσ +

∑

σ

εvv
†
σvσ + Ucn̂c,↑n̂c,↓ + Uv(1− n̂v,↑)(1− n̂v,↓),

Hlevel−coupling = −
∑

σ,ν

Uexcn̂c,σ(1− n̂v,ν),

Hlead =
∑

~k,σ

ε~kl
†
~kσ
l~kσ,

Hcoupling =
∑

~k,σ

(

V~kcl
†
~kσ
cσ + V ∗~kcc

†
σl~kσ

)

,

H′ = γ
∑

σ

(
c†σvσ + v†σcσ

)
. (3.7)

3.3 Ansatz for calculation of absorption spectra

Having constructed the model describing the semiconductor quantum dots in the last
section, it will be the task of this section to derive predictions for optical absorption
measurements from it. First an ansatz for calculating the absorption spectrum will be
put forward. In general we will need NRG to calculate the spectra. In the limiting case
Uexc = 0, however, it is possible, with a short calculation, to transcribe the ansatz to an
expression which is proportional to the density of states of the local conduction band level.
This short calculation will be presented and it will be shown that for the case Uexc = 0
there exists a simple interpretation for the absorption spectrum.

The absorption spectrum is calculated with help of Fermi’s Golden Rule,

Wĩ→f̃ =

(
2π

~

)∫

dẼf̃ρ(Ẽf̃ )
∣
∣
∣〈̃i|H′|f̃〉

∣
∣
∣

2

δ
(

Ẽf̃ − Ẽĩ

)

, (3.8)

which is derived, e.g., in [14]. It applies to the following situation: an unperturbed system is
initially in a stationary eigenstate |̃i〉 with eigenenergy Ẽĩ. After a perturbation is switched
on, there is a probability for the system to undergo a transition to |f̃〉, where |f̃〉 is another
eigenstate of the unperturbed system with eigenenergy Ẽf̃ . Wĩ→f̃ is the transition rate, i.e.

the transition probability per time unit. Here H′ is the perturbation Hamilton and ρ(Ẽf̃ )

is the unperturbed density of states at energy Ẽf̃ .
Due to the delta function, only transitions fulfilling energy conservation are possible.

Therefore, studying absorption, we have to consider the energy of the absorbed photon.
The state of the system can be decomposed into two parts: the state of the combined
system of dot and lead and the state of the photon field:

|Ψ̃〉 = |Ψ〉 ⊗ |Ψphoton−field〉, (3.9)

with |Ψ〉 denoting the state of the system ’dot + lead’. The energy of the state |Ψ̃〉 can be
decomposed in the same manner,

ẼΨ̃ = EΨ + EΨ,photon−field, (3.10)
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where EΨ is the energy of the system ’dot + lead’. Thus Ẽf̃−Ẽĩ = Ef−Ei+Ef,photon−field−
Ei,photon−field. If a photon of frequency ω is absorbed, Ef,photon−field − Ei,photon−field =
−~ω. We will now define ω by ~ω ≡ Ef,photon−field − Ei,photon−field and therefore allow
for negative ω. Thus the absorption spectra will be plotted along negative energies in
keeping with standard experimental conventions. Since the photon field is only important
while considering energy conservation, no term for the photon-field is explicitly listed in
the Hamiltonian and from now on the state of the photon field is neglected. Thus Fermi’s
Golden Rule becomes

Wi→f =

(
2π

~

)∫

ρ(Ef ) |〈i|H′|f〉|2 δ (Ef − Ei + ~ω) dEf , (3.11)

where now |i〉 and |f〉 refer to states of the combined ’dot + lead’ system and ρ(Ef ) is the
density of states of the combined system at energy Ef .

Eq. (3.11) already gives the desired absorption spectrum, apart from a constant factor.
The absorption spectrum, a function of frequency ω, gives the probability that a photon
with frequency ω is absorbed by the quantum dot in the ground state. Thus Wi→f is
proportional to the absorption spectrum. The constant of proportionality is not important
here, as the absorption spectrum is proportional to |γ|2, where γ is the strength of the
perturbation, see Section 3.2, and the value of γ depends on the intensity of the laser
perturbation, which can be set to arbitrary values.

No analytical method is known to calculate all the matrix elements H′fi exactly. In
Chapter 5 they will be calculated with NRG. To do the numerical calculation, the integral
has to be discretized into a sum, so

∫
dEfρ(Ef ) will be replaced by a sum over final states

∑

f . Therefore, to obtain a continuous function, one needs to ’broaden’ the delta-function,
see Section 5.2. On account of this, Eq. 3.11 can be written as

Wi→f =

(
2π

~

)
∑

f

∣
∣
∣H

′

fi

∣
∣
∣

2

δ (Ef − Ei + ~ω) . (3.12)

If the parameter Uexc = 0, it will now be shown that the function Wi→f (ω) can be
obtained by shifting the mirrored density of states function of the local conduction band
level, calculated for the unperturbed system at T = 0. The local density of states at T = 0
for an electron with spin σ in the local conduction band level is given by

Ac,σ(ω) =
∑

n

[∣
∣〈n|c†σ|0〉

∣
∣
2
δ (ω − (En − E0)) +

∣
∣〈0|c†σ|n〉

∣
∣
2
δ (ω + (En − E0))

]

. (3.13)

Here ~ has been set to one, ~ = 1, so frequency and energy have the same dimension.
The states |n〉 denote states of the unperturbed combined system of dot and lead, i. e. the
system described by H0, with energy En and |0〉 is the ground state with the ground state
energy E0. A derivation of Eq. 3.13 can be found in A.1.

If Uexc = 0, then the unperturbed Hamiltonian can be written as H0 = Hc+lead ⊗ � v +
� c+lead ⊗Hv, where the operators Ôc+lead act only on the local conduction band level and
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the lead and the operators Ôv act only on the local valence band level. In this case the
energy and the states can be decomposed into a part determined by the local conduction
band level and the lead, and into another part determined by the local valence band level:

Uexc = 0⇒ E = Ec+lead + Ev ; |Ψ〉 = |Ψc+lead〉 ⊗ |Ψv〉. (3.14)

Thus for Uexc = 0 the local density of states of the conduction band level for both spin up
and spin down electrons Ac(ω) can be written as

Ac(ω) = Ac,↑(ω) + Ac,↓(ω)

=
∑

n,σ






∣
∣〈nc+lead|c†σ|0c+lead〉

∣
∣
2 |〈nv|0v〉|2
︸ ︷︷ ︸

=δnv,0v

δ (ω − (En,c+lead − E0,c+lead)− (En,v − E0,v))

+
∣
∣〈0c+lead|c†σ|nc+lead〉

∣
∣
2 |〈0v|nv〉|2
︸ ︷︷ ︸

=δ0v,nv

δ (ω + (En,c+lead − E0,c+lead) + (En,v − E0,v))






=
∑

nc+lead,σ

[∣
∣〈nc+lead|c†σ|0c+lead〉

∣
∣
2
δ (ω − (En,c+lead − E0,c+lead))

+
∣
∣〈0c+lead|c†σ|nc+lead〉

∣
∣
2
δ (ω + (En,c+lead − E0,c+lead))

]

. (3.15)

To compare this result to the absorption spectrum, Eq. (3.12) needs to be reformulated
for the case Uexc = 0 and for ~ = 1:

Wi→f = 2π
∑

f

∣
∣
∣〈f |H ′|i〉

∣
∣
∣

2

︸ ︷︷ ︸

=|〈i|H′ |f〉|2
δ (Ef − Ei + ω)

= 2π|γ|2
∑

f,σ

[∣
∣〈ic+lead|c†σ|fc+lead〉

∣
∣
2 |〈iv|vσ|fv〉|2+

|〈ic+lead|cσ|fc+lead〉|2
∣
∣〈iv|v†σ|fv〉

∣
∣
2
]

·
δ (ω + Ef,c+lead − Ei,c+lead + Ef,v − Ei,v) . (3.16)

If we set the initial state to be the ground state, |i〉 = |0〉, change the notation from ’f’ to
’n’ and note that 〈0v|vσ = 0 because we define the ground state to have a doubly occupied
local valence band level, we obtain

W0→n = 2π|γ|2
∑

n,σ

|〈0c+lead|cσ|nc+lead〉|2
∣
∣〈0v|v†σ|nv〉

∣
∣
2 ·

δ (ω + (En,c+lead − E0,c+lead) + (En,v − E0,v)) . (3.17)
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Figure 3.5: Illustration of the absorption process for the limiting case Uexc = 0, where the
local valence band level is decoupled. In the absorption process, an incident photon excites
an electron from the local valence band level into the local conduction band level. For
T = 0, only states above the Fermi energy are unoccupied. Since, for the case Uexc = 0,
the absorption spectrum is proportional to the available density of states, the absorption
spectrum will be the mirrored positive energy half of the local density of states function,
shifted by εv.

As |0v〉 is doubly occupied, the matrix element
∣
∣〈0v|v†σ|nv〉

∣
∣ is 1 for a singly occupied local

v-level and 0 otherwise. Without a magnetic field, the singly occupied local valence band
states are degenerate, thus En,v−E0,v is a constant shift, ∆ω ≡ En,v−E0,v = 2εv−εv = εv.
Finally we see that

W0→n = 2π|γ|2
∑

nc+lead,σ

∣
∣〈nc+lead|c†σ|0c+lead〉

∣
∣
2
δ (ω + (En,c+lead − E0,c+lead) + ∆ω)) . (3.18)

We see that, apart from a constant factor, Eq. (3.18) is the shifted and mirrored
positive energy part of Eq. (3.15). This result can be understood by looking at Fig. 3.5.
The initial state, before the absorption, is the Kondo state, thus the local density of states
of the local c-level, given by Eq. (3.15), features the Kondo resonance at the Fermi-energy,
see Section 3.1. At T = 0, all states up to the Fermi-energy are occupied. The density of
states of the unoccupied states above the Fermi-energy is given by the positive energy part
of Eq. (3.15). If Uexc = 0, the local v-level is completely decoupled from the rest of the
system. In the absorption process, one electron is taken out of the v-level and is put into
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the c-level. Since all available, i. e. unoccupied, states of the c-level are at or above the
Fermi-energy, one needs at least the energy εv, which explains the shift ∆ω. Because the
v-level is completely decoupled, the absorption is proportional to the density of unoccupied
states, which explains the relation between the eqs. (3.15) and (3.18).

3.4 Other theoretical approaches

We know about two other approaches to calculate the absorption spectrum of a quantum
dot. In [15], the same model is used as in this thesis, expcept for the fact that it is more
general, since more than one p-level is considered, cf. Section 3.2. However, in [15] the
restriction is made that the Coulomb interactions in the dot are considered to be small
compared to the quantization energies. Therefore the Coulomb interactions in the dot
can be included with perturbation theory in the calculation. The presented results are
only qualitative. Our results, see Chapter 6, agree with the two main results in [15]:
In the Kondo regime, the width of the absortion spectrum is determined by the Kondo
temperature, and the position and shape of the absorption spectrum are strongly dependent
on the applied gate voltage, which shifts the energies of the local levels with respect to the
Fermi energy.

In [16], again a similar but more complicated model is used. As our model described
in this chapter, the model consists of two local levels coupled by an exciton binding en-
ergy. However, in [16], both the local valence band level and the local conduction band
level are coupled to two different leads. Four different rigimes are found for the model,
where both levels can either couple ’ferromagnetic’ or ’antiferromagnetic’ to the lead, see
Chapter 4 for a definition for ’ferromagnetic’ and ’antiferromagnetic’ coupling. No closed
expression is given for the absorption spectrum. The presented results are constricted to
proportionalities in the low energy regime.



32 CHAPTER 3. MODEL



Chapter 4

Poor Man’s Scaling

In Section 3.2 the Hamiltonian of the semi-conductor quantum dot system was introduced.
Furthermore an ansatz for the calculation of the absorption spectrum of the dots was
presented. As already mentioned, it is possible to calculate the absorption spectrum with
the help of NRG, aswill be discussed in Chapter 5. However, to interpret the results
it will be helpful to have a qualitative understanding of the system’s behaviour. Such a
qualitative understanding can be obtained by Anderson’s Poor Man’s Scaling approach [3].
To be more specific, using scaling one can see how the system behaves as the temperature
is lowered.

The Poor Man’s Scaling approach will be applied to the Kondo model in Section 4.1,
where the Kondo Model itself will also be explained. The same approach is applied to the
Anderson model in Section 4.2. We will see that the scaling for the Anderson model has to
stop when a certain temperature is reached. At this temperature, however, the Anderson
model can be transformed to the Kondo model by the Schrieffer-Wolff transformation, see
Section 3.1 and [2], and the scaling can be continued for the obtained Kondo model as
explained in Section 4.1. In Section 4.3, the scaling method will be used for the extended
Anderson model of Section 3.2, which will turn out to be an easy task if the results of Section
4.2 are used. It will be shown that two Kondo temperatures TK1 and TK2 determine the
behaviour of the system.

4.1 Scaling for the Kondo model

In this section the Poor Man’s Scaling Approach will be applied to the Kondo model.
First of all the Kondo model will be introduced, followed by the explanation of the idea of
scaling.

4.1.1 Kondo model

The Kondo model deals with a local moment with spin S which is coupled to a lead. In the
following we set S = 1/2. In this case we can employ the Kondo model for our quantum

33
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dot system, where the local moment corresponds to a singly occupied quantum dot level
interacting with a lead. The Hamiltonian describing the lead is the same as the one used
in Chapter 3, Hlead =

∑

~k,σ ε~kl
†
~kσ
l~kσ, where l

†
~kσ
(l~kσ) creates (destroys) a quasi-particle with

wavevector ~k, spin σ and energy ε~k. Potential scattering of the lead electrons on the dot
can be included into the lead Hamiltonian by redefining the energy of the quasi particles,
see [2]. Besides potential scattering, there is scattering due to a Heisenberg exchange
interaction between the local moment and the spin of the lead electrons. This interaction,
together with the description of the lead, is given by the Kondo Hamiltonian,

HKondo =
∑

~k,~k′

J~k,~k′
(

S+l†~k,↓l~k′,↑ + S−l†~k,↑l~k′,↓ + Sz
(

l†~k,↑l~k′,↑ − l
†
~k,↓
l~k′,↓

))

+Hlead. (4.1)

The first two terms describe the scattering of a lead electron on the local moment, whereby
the spins of the local moment and the lead electron are flipped. The last two terms relate
to scattering without spin-flip. For the case S = 1/2 the Hamiltonian (4.1) can be obtained
from the Anderson Hamiltonian (3.1) by the Schrieffer-Wolff transformation, see Section
3.1 or [2].

In the following we consider a localized, ~k-independent interaction and a slightly gen-
eralized model, where the couplings J± for spin-flip scattering can be different from the
coupling Jz for potential scattering,

HKondo =
∑

~k,~k′

(

J+S
+l†~k,↓l~k′,↑ + J−S

−l†~k,↑l~k′,↓ + JzS
z
(

l†~k,↑l~k′,↑ − l
†
~k,↓
l~k′,↓

))

+Hlead. (4.2)

4.1.2 Scaling

As mentioned in Chapter 1, perturbation theory in the coupling J~k,~k′ fails as the tem-
perature is decreased below a certain limit. Therefore we have to rely on other methods
to investigate the low temperature regime, as e. g. NRG. To obtain a qualitative under-
standing of the low temperature regime one can use Poor Man’s Scaling. The central idea
behind this approach is the following. Let’s consider the lead. We assume that it has
a constant density of states between two band edges with energies, say, -D and D and
that it is half-filled, i. e. the Fermi-energy is zero, see Fig. 4.1. At low temperatures the
highly excited states near the band edges with energy |D|− δD ≤ ε~k ≤ |D| are either com-
pletely occupied or completely empty, and we would like to neglect them. Unfortunately
it turns out, e. g. by pursuing perturbation theory, that the states close to the band edges
are important, e. g. for calculating the resistivity, and therefore cannot be disregarded,
see [2]. Thus the following procedure is employed. We eliminate the states with energy
D− δD ≤ |ε~k| ≤ D and introduce an effective Hamiltonian H′ with exactly the same form
as H, which describes a local moment coupled to a lead with a constant density of states
between the band edges −D + δD and D− δD. Of course the effective Hamiltonian must
produce the same results, for instance the scattering rate off the impurity for lead electrons
with energies −D + δD ≤ ε~k ≤ D − δD has to be the same for both Hamiltonians. This
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Figure 4.1: Idea of poor man’s scaling: Highly excited states at the band edges are removed
and absorbed in renormalized parameters of an effective HamiltonianH′ which has the same
form as the original Hamiltonian H.

can be achieved by absorbing the high energy excitations into renormalized parameters of
H′.

To eliminate the states at the band edges, we separate the total wavefunction into
three parts, ψ = ψ0 + ψ1 + ψ2. Here ψ1 is the component of the total wavefunction with
no conduction electrons at the upper band edge or no holes at the lower band edge and ψ0

and ψ2 are the parts in which there is at least one hole at the lower band edge or at least
one electron at the upper band edge, respectively. Here we have neglected highly excited
states which have both electrons at the upper band edge and holes at the lower band edge.
If we introduce the projection operators Pn which project the total wavefunction onto the
subspace of the components ψn and define Hnn′ ≡ PnHPn′ , we can write the Schrödinger
equation Hψ = Eψ as





H00 H01 H02

H10 H11 H12

H20 H21 H22









ψ0
ψ1
ψ2



 = E





ψ0
ψ1
ψ2



 . (4.3)

For instance the component H21 scatters an electron from state ~k with energy ε~k in the
range −D+ δD ≤ ε~k ≤ D− δD, into a state ~q in the unoccupied region at the upper band
edge, D − δD ≤ ε~q ≤ D,

H12 =
∑

~q,~k

J+S
+l†~q,↓l~k,↑ + J−S

−l†~q,↑l~k,↓ + JzS
z
(

l†~q,↑l~k,↑ − l
†
~q,↓l~k,↓

)

. (4.4)

To first order in δD, one can neglect the components H02 and H20. Thus, from Eq.
(4.3) for the effective Hamiltonian we obtain H′ψ1 = Eψ1,

[
H11 +H12 (E −H22)

−1H21 +H10 (E −H00)
−1H01

]
ψ1 = Eψ1. (4.5)
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The first part, H11, already has the form of the original Hamiltonian (4.2), but it does not
contain any contributions from states at the band edges, which are included in the second
and third term. These two terms will now be approximated by lowest order perturbation
theory in the coupling. This will yield terms that can be added to H11 by renormalizing
the parameters.

In the lowest order in the coupling, i. e. zeroth order, H00 and H22 are given by the lead
Hamiltonian Hlead. In this order, the second and third term of Eq. (4.5) can be written
as H12 (E −Hlead)

−1H21 and H10 (E −Hlead)
−1H01, respectively. These terms correspond

to virtual scattering of conduction band electrons or conduction band holes, respectively,
to the band edges, which are second order processes in the coupling. In these processes
we start and finish with a state without excitations at the band edges, i. e. they can be
understood as corrections to the Hamiltonian H11 resulting from the band edges. The
processes are presented in Fig. 4.2. We will now take a closer look at diagrams a) and b)
and demonstrate, in which way they can be absorbed in renormalized parameters of H′.
The other diagrams can be interpreted along the same lines.

The diagram Fig. 4.2 a) illustrates two parts (black, red) of the contribution of the term
H12 (E −Hlead)

−1H21, whereby the contribution corresponding to the black illustration is
given by

J+J−
∑

~q,~k,~q′,~k′

S−l†~k′,↑l~q,↓
1

E −Hlead

S+l†~q′,↓l~k,↑. (4.6)

In the black part of the diagram, a conduction band electron, depicted by the curved line,
scatters twice on the localized electron, represented by the straight line at the bottom.
First, the conduction band electron is in a state ~k between the band edges, i. e. −D+δD <
ε~k < D− δD, with spin up and the localized electron has spin down. The interaction flips
both spins and scatters the conduction band electron into an intermediate state ~q at the
upper band edge, i. e. D − δD < ε~q < D. After the second interaction, both spins are

flipped again and the conduction band electron is scattered back into a state ~k′ between
the band edges.

After a short calculation, see Appendix A.2.1, Eq. (4.6) can be written as

J+J−
∑

~q,~k,~q′,~k′

S−S+l†~k′,↑l~k,↑l~q,↓l
†
~q′,↓

(

E −Hlead − ε~q′ + ε~k

)−1

. (4.7)

For small δD, ε~q′ = D can be used. If the energy E is measured relative to the ground state
of the conduction electron gas then Hlead can effectively be set equal to zero. Furthermore,
regarding that the upper band edge is unoccupied in the initial state, we have l~q,↓l

†
~q′
= δ~q,~q′ ,

thus we have
∑

~q,~q′ δ~q,~q′ =
∑

~q 1 = ρ0δD, where ρ0 is the density of states which we assumed

to be constant. For S = 1/2 we can use the relation S−S+ = 1/2−Sz. Collecting everything
we see that Eq. (4.7) is equal to

J+J−
∑

~k,~k′

(
1

2
− Sz

)

ρ0δDl
†
~k′,↑
l~k,↑
(
E −D + ε~k

)−1
. (4.8)
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Figure 4.2: Scattering between conduction band electrons (curved lines) and the localized
electron (straight lines) in second order in the coupling, which includes intermediate states
at the lower or upper band edges. In the scaling procedure the diagrams are summed up
and the contributions are absorbed in renormalized parameters of an effective Hamiltonian
H′. On the left hand side, a conduction band electron is scattered into an intermediate
state ~q at the upper band edge. On the right hand side, an electron at the lower band edge
in state ~q is scattered in a state ~k′ between the band edges. After the scattering a hole
with state ~q propagates until a conduction band electron with state ~k between the band
edges is scattered into state ~q.



38 CHAPTER 4. POOR MAN’S SCALING

Before we show how this correction can be added to H11 to build the effective Hamiltonian,
we first compute the other three contributions from the diagrams a) and b). The term
corresponding to the red illustration of a) can be evaluated in an analogous manner as the
term corresponding to the black part. Here S+S− = 1/2 + Sz is used and all spins have
opposite directions. The result is

J+J−
∑

~k,~k′

(
1

2
+ Sz

)

ρ0δDl
†
~k′,↓
l~k,↓
(
E −D + ε~k

)−1
. (4.9)

Calculating the contributions of diagram b), one has to regard that the excitation at the
lower band edge are holes. Here, in the initial state, all states at the lower band edge are
occupied, thus l†~q,↑↓l~q′,↑↓ = δ~q,~q′ . Furthermore we set ε~q′ = −D. Then

J+J−
∑

~k,~k′

(
1

2
+ Sz

)

ρ0δD
(

δ~k,~k′ − l
†
~k′,↑
l~k,↑

) (
E −D − ε~k′

)−1
(4.10)

is the correction corresponding to the black part and

J+J−
∑

~k,~k′

(
1

2
− Sz

)

ρ0δD
(

δ~k,~k′ − l
†
~k′,↓
l~k,↓

) (
E −D − ε~k′

)−1
(4.11)

is the contribution of the red part. The term δ~k,~k′ − l†~k′,↑↓l~k,↑↓ results from commuting

l~k,↑↓l
†
~k′,↑↓

.

Now we will add these four corrections to H11. In the terms 1/2± Sz we will omit the
constant terms and just keep the Sz terms, since the constant terms do not contain any
operators acting on the local moment and therefore describe potential scattering of the
lead electrons, which can be incorporated in Hlead. In the terms δ~k,~k′− l

†
~k′,↑↓

l~k,↑↓ we will not

consider the δ~k,~k′ part, because it represents a constant term, i. e. a change in the ground
state energy, which can be included in a redefinition of E. By defining

δJz ≡ −J+J−ρ0δD
(

1

E −D + ε~k
+

1

E −D − ε~k′

)

, (4.12)

all terms left can be included into H11 by replacing Jz by a renormalized parameter,
Jz → Jz + δJz.

All other contributions are listed in Section A.2.2 in the appendix. It turns out that
the corrections derived from diagrams c) and d) just contain operators acting on the lead
and thus can be incorporated as potential scattering in Hlead, or they are constant terms
which again can be accounted for by including them in a redefinition of E. The corrections
stemming from diagrams e), f), g) and h) can be absorbed in a renormalized parameter
J± → J± + δJ±, with

δJ± ≡ −J±Jzρ0δD
(

1

E −D + ε~k
+

1

E −D − ε~k′

)

. (4.13)
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Thus we have constructed a Hamiltonian of the form (4.2). The states at the band edges
have been removed, but their effect on the states between the band edges has been incor-
porated in renormalized parameters.

From eqns. (4.12) and (4.13) we can gain useful information about the system. For
low energy excitations relative to D the E dependence can be neglected. Similarly for
scattering of conduction electrons with energies near the Fermi energy, which are the
dominant processes at low temperature, ε~k and ε~k′ can also be neglected. Hence, we find

δJz = 2ρ0J+J−
δD

D
,

δJ± = 2ρ0JzJ±
δD

D
. (4.14)

This can be written as a set of coupled differential equations for Jz and J±,

∂Jz
∂D

= −2ρ0
J+J−
D

,

∂J±
∂D

= −2ρ0
J±Jz
D

. (4.15)

The minus signs appear due to the fact that D is decreased by δD in the scaling process.
The equations are called ’scaling equations’. We will first study the isotropic and then the
anisotropic case.

For isotropic coupling, Jz = J± = J , we can write Eq. (4.15) as

∂ (ρ0J)

∂D
= −2(ρ0J)

2

D
. (4.16)

Let’s consider J < 0 first. This case is called ’ferromagnetic coupling’, because for Jz =
J < 0 the Sz term of the Kondo Hamiltonian favours parallel spins of the conduction band
electrons and the local moment. Here, since the derivative in Eq. (4.16) is always negative,
J decreases as D increases, i. e. J is increased as D is decreased. Hence, J → 0 as D → 0,
since zero is a fix point. As Eq. (4.16) was derived by second order perturbation theory
in the coupling J , the scaling works better and better as J → 0. We scale towards a free
impurity spin.

For the anti-ferromagnetic case Jz = J > 0, J → ∞ as D → 0. Therefore the
perturbation theory will break down at some point of the scaling process, Eq. (4.16) only
holds for ρ0J ¿ 1. If we recall that the scaling process is performed to investigate the
low temperature regime, i. e. we actually would like to continue the scaling process until
D ∼ kBT , this can be reformulated into the statement that in the anti-ferromagnetic case,
the scaling is bound to fail at some temperature T . However, we are still able to gain
information from the scaling equation (4.16). If we write (4.16) as

∂ (1/J)

∂ (lnD)
= 2ρ0, (4.17)
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we see that

1

J
− 1

J̃
= 2ρ0

(

lnD − ln D̃
)

⇒ 1

J
− 2ρ0 lnD =

1

J̃
− 2ρ0 ln D̃

⇒ De−1/(2Jρ0) = D̃e−1/(2J̃ρ0) ≡ kBTK , (4.18)

where the Kondo temperature TK has been defined. We see that TK is a ’scaling invariant’,
which stays constant during the scaling process. Moreover, two materials with different J ,
ρ0, and D, but with the same Kondo temperature TK are equivalent below TK . For low
temperatures their Hamiltonians can be scaled towards the same effective Hamiltonian,
thus they have the same low temperature properties. One very important consequence
following from this argument is that TK is the only relevant energy scale. Therefore the
temperature dependence of all observables must be one universal function of T/TK . For
instance, just by following these scaling arguments, we know that the susceptibility must
be an universal function fχ of T/TK ,

χ = χ0fχ (T/TK) . (4.19)

Looking at Eq. (4.18), we see that J diverges at D/kB = TK , i. e. at T = TK . This
is an artifact of the second order perturbation theory. The scaling process can be carried
out by third order perturbation theory. As the calculation is lengthy and bears no new
illuminating facts, see [2], just the result for the Kondo temperature will be quoted here,

kBTK ∼ D |2Jρ0|1/2 e−1/(2Jρ0). (4.20)

We see that J diverges now at T = 0. This time, this is no artefact of the perturbation
theory. In fact, using the Numerical Renormalization Group, K. Wilson showed that
Jρ0 →∞, as D → 0 or T → 0 [4]. He also showed that TK remains the only energy scale
even for couplings ρ0J ≥ 1.

We now turn to the anisotropic case with the constraint J+ = J− = J±. If we divide
the first equation of (4.15) by the second and integrate by parts, we see that J 2

±−J2z stays
constant during the scaling process,

J2± − J2z = const. (4.21)

Therefore J±, understood as a function of Jz, will flow along curves with constant J 2
±−J2z .

This is shown in Fig. 4.3. As ∂Jz/∂D is always negative, cf. Eq. (4.15), Jz always increases
as the scaling is carried out. Therefore the flow is always in the direction of increasing Jz.

4.2 Scaling for Anderson model

In this section the scaling method will be applied to the Anderson Model, see Section
3.1 for a description of the model. It was first done by F. Haldane, see [17]. In contrast
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Figure 4.3: Scaling trajectories for the anisotropic Kondo model, calculated with second
order perturbation theory. As Jz always increases in the scaling process, the direction of
the flow is to the right. The line J± = 0 is a fix point. If it is reached or if the scaling starts
with J± = 0, it will always stay constant at J± = 0. However, if Jz > 0, this fix point is
unstable, since a slight perturbation away from J± = 0 will lead to trajectory which flows
to Jz = J± =∞.

to the Kondo model, where we have just the freedom of spin of the local moment, the
Anderson model includes hybridization between the lead and the local level. The charge
on the local level can change and one has charge fluctuations, too, in contrast to the Kondo
model which allows spin fluctuations only. In complete analogy to the previous section,
we will now remove the states at the band edges and absorb their effect on the system
into renormalized parameters of an effective Hamiltonian, which has the same form as the
Anderson Hamiltonian. To be more specific, will will calculate the effect of second order
processes, where lead electrons are scattered to the band edges and back, on the charge
fluctuations. Therefore, we will calculate the change in the energies E0, E1 and E2 which
correspond to an empty, a singly or a doubly occupied local level, respectively. For this
purpose, we separate the states and the Hamiltonian analogously to Eq. (4.3). The parts
H01 and H12 of the Hamiltonian can be written as

H01 =
∑

~q,σ

V~q (X1,σ:0 +X2:1,−σ) l~q,σ,

H12 =
∑

~q,σ

V ∗~q l
†
~q,σ (X0:1,σ +X1,σ:2) . (4.22)

Here the Hubbard X-operator notation is used, where Xp:q denotes |p〉〈q| and |p〉, |q〉 are
many body states. In (4.22), the subscripts 0, (1, σ), and 2 label the empty, singly, and
doubly occupied dot, respectively, where σ denotes the spin in the case of single occupation.
For instance,

X1,σ:0 = c†σ(1− n̂c,−σ) and X0:1,σ = cσ(1− n̂c,−σ). (4.23)
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Proceeding as in the previous section, we illustrate the second order processes, where
a conduction band electron or hole between the two band edges is scattered to one of the
band edges and subsequently is scattered back, in diagrams, see Fig. 4.4. Here the dashed
baseline depicts the conduction electron at the upper band edge (upper four panels) or the
conduction hole at the lower band edge (lower four panels), respectively. The solid lines
correspond to the local level.

Using lowest order perturbation theory in the coupling, where H00 and H22 can be
replaced by H0 = Hdot +Hlead, cf. Eq. (3.1), diagram a) yields the contribution

∑

~q

V~qX1,↑:0c~q,↑ (E −H0)
−1
∑

~q′

V ∗~q′c
†
~q′↑
X0:1,↑. (4.24)

With the help of Eq. (4.23) and applying the same simplifications following Eq. (4.6), where
[H0, X0:1,σ] = −εcX0:1,σ has to be used, this can be evaluated to

−ρ0δD|V |2
D − εc

X1,↑:1,↑. (4.25)

Here one also has to avail oneself of the contraction X1,↑:0X0:1,↑ = X1,↑:1,↑. Furthermore
the assumption has been made that the hybridization does not depend on the wavevector,
V~q = V . Diagram b) results in the same correction, but with the opposite spin direction,

−ρ0δD|V |2
D − εc

X1,↓:1,↓. (4.26)

The two terms (4.25) and (4.26) can be interpreted as a correction to the energy E1

of the singly occupied dot which results from second order virtual processes involving
excitations at the upper band edge. Thus it can be absorbed by renormalizing the energy
E1. Another contribution to E1 arises from processes illustrated in diagrams g) and h),
resulting from virtual excitations of holes at the lower band edge. The other diagrams
correspond to corrections which include the operators X0:0 and X2:2, i. e. they can be
absorbed by renormalizing the energies E0 or E2 respectively. All these contributions are
listed in Section A.2.3. Collecting all terms, we obtain for the renormalized energies

E ′0 = E0 −
2∆δD

π

1

D + εc
,

E ′1 = E1 −
∆δD

π

(
1

D − εc
+

1

D + εc + Uc

)

,

E ′2 = E2 −
2∆δD

π

1

D − εc − Uc
, (4.27)

with the level width ∆ ≡ πρ0|V |2. As εc = E1 − E0 and Uc = E2 − 2E1 + E0, we can
also express the renormalization by an effective Anderson Hamiltonian with renormalized
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Figure 4.4: Illustration for the second order processes used in Poor Man’s Scaling for the
Anderson model. In contrast to the Kondo model, the Anderson model allows for charge
fluctuations on the local level. Here fluctuations are depicted, which involve intermediate
states with excitations at the upper or lower band edge. In contrast to the diagrams in
Section 4.1, cf. Fig. 4.2, the dashed baseline illustrates the conduction electron at the
upper band edge (upper four panels) or the conduction hole at the lower band edge (lower
four panels), respectively. The solid lines depict the state of the local level, where ’c’ stands
for local conduction band level. The plain letter ’c’ without arrows represents the empty
local level. In the upper four panels an electron on the local level is scattered to the upper
band edge and back. In the lower four panels an electron from the lower band edge is
scattered into the local level and back, thereby creating an intermediate state with an hole
at the lower band edge.
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εc
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Figure 4.5: Three parameter regimes of the Anderson model. In the situation shown in
panel a), the Anderson model can be transformed to the Kondo model by the Schrieffer-
Wolff transformation and the scaling for the Kondo model can be applied. For the case
demonstrated in panel b), there is no significant renormalization of the parameters until D
is decreased to a size comparable with the order εc. In panel c), scaling can be applied until
D reaches the order ε̃c. Then the Schrieffer-Wolff transformation can be applied again.

parameters, εc → εc + δεc and Uc → U + δUc, with

δεc =
∆δD

π

(
2

D + εc
− 1

D − εc
− 1

D + εc + Uc

)

,

δUc =
2∆δD

π

(
1

D − εc
− 1

D + εc
+

1

D + εc + Uc
− 1

D − εc − Uc

)

. (4.28)

Obviously we have a large parameter space. We will now look closer at three special
cases, shown in Fig. 4.5. If εc ¿ −D and εc + Uc À D, see panel a), then the local level
will be exactly singly occupied. In this case, the second order scattering processes to the
band edges can only cause virtual charge fluctuations, since , they cannot cause real charge
fluctuations of the impurity. As explained in Section 3.1, in this regime we can transform
the Anderson model to the Kondo model by the Schrieffer-Wolff transformation. If the
transformation is carried out, one gets an expression for the coupling parameter J of the
Kondo model as a function of the parameters of the Anderson model, see [2],

J = |V |2
(

1

εc + Uc
− 1

εc

)

> 0, (4.29)

which gives the anti-ferromagnetic isotropic Kondo model. Thus the results of the previous
section can be used. If Eq. (4.29) is plugged in (4.20), one finds

kBTK ∼ D

(
∆Uc

|εc||εc + Uc|

)1/2

eπεc(εc+Uc)/2∆Uc . (4.30)
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Let us next consider the regime |εc|, |εc+Uc| ¿ D, see panel b) of Fig. 4.5. In this case
Eq. (4.28) gives δεc ∼ 0 and δUc ∼ 0, i. e. there is no significant renormalization. Thus
the scaling can be continued until D reaches a value D̃ ∼ max(|εc|, |εc +Uc|).

The situation εc + Uc À D À |εc| is depicted in panel c). In this case the scaling
equation (4.28) for εc is approximately given by

dεc
d lnD

= −∆

π
. (4.31)

Up to second order, there is no renormalization of the hybridization matrix element V~k. If
H00 and H22 are not approximated by H0 but expanded in powers of V , one can create
higher order terms leading to a renormalization of V . The lowest order corrections to V
are of order δV = O

(
∆
D2

)
, such that d∆

d lnD
= O

(
∆
D

)
. Hence, for ∆ ¿ D, ∆ is a scaling

invariant. Therefore, ∆ can be regarded as a constant in Eq. (4.31) and we can integrate
Eq. (4.31) leading to εc +

∆
π
lnD = const. which can be reformulated as

εc +
∆

π
ln

(
πD

2∆

)

≡ ε∗c . (4.32)

We have found two scaling invariants ε∗c and ∆. Following the same argumentation con-
ducted in the previous section, we can write all observables as universal function of T/∆ and
T/ε∗c . For instance, the impurity susceptibility can be written as χimp = χ0fχ (T/∆, T/ε

∗
c),

with a universal function fχ. More information about scaling for the Anderson model can
be found in [17].

4.3 Scaling for extended Anderson model

In this section the scaling method will be applied to the generalized Anderson Model of
Section 3.2. It will turn out that this is a rather easy task, because it is possible to map
the generalized model back to the Anderson model. After the mapping the results of the
previous section can be used. First, the mapping will be explained.

Inspecting the generalized Hamiltonian, see Section 3.2, we see that [H, n̂v,σ] = 0, i.
e. the number of electrons on the local valence band level is conserved. Therefore the
operators n̂v,σ can be replaced by the numbers nv,σ = 0, 1 and the Hamiltonian can be
written in the following way,

H =
∑

σ

ε̃cn̂c,σ + Ucn̂c,↑n̂c,↓

+
∑

σ

εvnv,σ + Uv (1− nv,↑) (1− nv,↓)

+Hlead +Hcoupling. (4.33)

If we disregard the second line, since it just represents a constant term, we see that we
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recovered the Anderson model, yet with a shifted local level with energy

ε̃c ≡
∑

σ

(

εc − Uexc

∑

ν

(1− nv,ν)
)

. (4.34)

For this Hamiltonian, the scaling method of the previous section can be applied. For the
Kondo temperature we obtain from Eq. (4.30),

kBTK ∼ D

(
∆Uc

|ε̃c||ε̃c + Uc|

)1/2

eπε̃c(ε̃c+Uc)/2∆Uc , (4.35)

where we have just replaced εc by ε̃c.
The commutator [H, n̂v,σ] = 0 follows from the fact that the Hamiltonian is diagonal

in the states of the local valence band level, i. e. it can be written as

|0〉v | ↑〉v | ↓〉v | ↑↓〉v






−∑σ 2Uexcn̂c,σ + Uv 0 0 0
0 −

∑

σ Uexcn̂c,σ + εv 0 0
0 0 −

∑

σ Uexcn̂c,σ + εv 0
0 0 0 2εv







|0〉v
| ↑〉v
| ↓〉v
| ↑↓〉v

, (4.36)

where
∑

σ εcn̂c,σ+Ucn̂c,↑n̂c,↓+Hlead+Hcoupling has been left out at each one of the diagonal
elements. Essentially each diagonal element represents one Hamiltonian of the form (4.33),
with different ε̃c. The bandgap is by far the largest energy scale involved (order of 1 eV)
and therefore the ground-state of the system will always be a state with no holes, which
can be found in the block at the lower right, let’s call it the fourth block. In the case of
absorption the initial state will be the ground state, and we will look at transitions from
the fourth block to the second or third block, as one hole is created. Thus we see that
two different Kondo temperatures are involved in this process. The first one is the Kondo
temperature of the fourth block, which is independent of Uexc and is given by Eq. (4.35)
with ε̃c = εc. The second one is the Kondo temperature of the second and third block,
which is again given by Eq. (4.35), but with ε̃c = εc − Uexc.



Chapter 5

The Numerical Renormalization
Group

In this chapter the central method of this thesis, the numerical renormalization group
(NRG), will be introduced. The NRG has been applied to the extended Anderson Model
of Section 3.2 to calculate the absorption spectrum via the ansatz presented in Section
3.3. The intention of this chapter is to explain how the NRG works in principle (Section
5.1), and to give a rough idea of how the usual NRG method was adopted to the extended
Anderson model to calculate the absorption function (Section 5.2). Extensive information
about the NRG can be found in [4], where the NRG is applied to the Kondo model.

5.1 The idea behind the NRG

This section is closely related to [18], where the NRG is applied to the Anderson model, cf.
Eq. (3.1). The aim of this section is to introduce a renormalization group transformation of
Hamiltonians HN , where the Anderson Hamiltonian is given by HAnderson = limN→∞ cHN .
The prefactor c will be derived at the end of the section. This renormalization group trans-
formation will lead to a recursion relation which can be solved numerically by iteration.

We will start by rewriting the Anderson Hamiltonian, Eq. (3.1). It can be written as

HAnderson = −1

2
Uc +

∑

σ=↑,↓

(

εc +
1

2
Uc

)

c†σcσ +
1

2
Uc (n̂c,↑ + n̂c,↓ − 1)2

+
∑

~k,σ

ε~kl
†
~kσ
l~kσ

+
∑

~k,σ

(

V~kcl
†
~kσ
cσ + V ∗~kcc

†
σl~kσ

)

, (5.1)

which can easily be verified by expanding the last term in the first line of (5.1). We will
now simplify the Hamiltonian (5.1) by making several assumptions. We will again set the
Fermi energy equal to zero, εF = 0. As in the previous chapters, we will assume that the

47
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density of states of the conduction band is equal to a constant ρ0 between two band edges
−D and D and zero otherwise. As before, we will assume that V~kc is independent of ~k,
V~kc = Vc. This implies that the impurity couples only to s-waves, if the conduction band
states are expanded in a basis of spherical waves around the impurity. We can therefore
neglect higher angular momentum states since they are not affected by the presence of
the impurity. Furthermore we will assume the conduction band to be isotropic, i. e. the
dispersion relation depends only on |~k|, ε~k = ε|~k|. To simplify the Hamiltonian further,

the energies are measured relative to the band edge D. Therefore the variable k ≡ ε/D is
defined, which has the advantage of being dimensionless. One should not confuse k with
the wavevector ~k. A detailed calculation in [18], with Eq. (5.1) as starting point, shows
that with the help of these simplifications the Hamiltonian can be written in a continuous
manner as

HAnderson = D

(
∫ 1

−1

k
∑

σ=↑,↓

a†kσakσdk

+
1

D

(

εc +
1

2
Uc

)
∑

σ=↑,↓

c†σcσ +
1

2

Uc
D

(
∑

σ=↑,↓

c†σcσ − 1

)2

+

(
Γ

πD

)1/2 ∫ 1

−1

dk
∑

σ=↑,↓

(

a†kσcσ + c†σakσ

)
)

. (5.2)

Here Γ ≡ πρ0V
2
c . The operator akσ is defined by akσ ≡

√
Daεσ (ε = kD), where a†εσ(aεσ)

creates (destroys) a s-wave electron with energy ε and spin σ. The operators akσ fulfill the

anticommutation relation
[

a†kσ, ak′µ

]

+
= δσ,µδ(k − k′). The advantage of the form (5.2)

is that the Hamiltonian only contains the dimensionless parameters (εc/D), (Uc/D) and
(Γ/D), i. e. all parameters are given in units of the bandwidth D.

The difficulties in solving the Anderson Hamiltonian, i. e. finding its eigenstates and
eigenenergies, result from the conduction band rather than from the impurity. What lies at
the heart of the problem is the fact that the Anderson model represents a true many-body
problem for the following reason. The conduction band by itself can be described by quasi
particles. However, if the impurity is present, the conduction band electron can scatter
on it. The Kondo regime, εc < 0 < εc + Uc, is particular important here. In this case the
impurity contains one electron and thus has a spin. Suppose that it is in the spin down
state. Then spin-flip scattering can take place, where an conduction electron with spin
up is scattered on the impurity and thereby the spins of both the impurity electron and
the conduction band electron are flipped. Afterwards the impurity is in the spin up state.
Consequently, no other spin-flip process featuring a conduction electron with spin up can
take place. Therefore, the conduction band electrons cannot be treated independently of
the impurity.

Another central aspect of the problem is that all energy scales are important, which is
already visible in the Poor Man’s Scaling method, see Chapter 4. We have seen there that
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Figure 5.1: Logarithmic discretization of the conduction band. The Fermi energy is at zero
and the band edges are at k ≡ ε/D = −1 and 1, respectively.

scattering processes including electrons of the entire energy range of the conduction band
are important, i. e. we have correlations over many orders of wavelength. The key to the
solution of the problem lies in a logarithmic discretization of the conduction band, see Fig.
5.1. This procedure will first be explained and motivated afterwards. In the discretization
a parameter Λ > 1 is introduced and the band width [−1,+1] is divided into intervals
with successive exponentially decreasing lengths and upper bound, where the nth interval
extends from Λ−(n+1) to Λ−n for positive energies and accordingly from −Λ−n to −Λ−(n+1)
for negative energies. Now a set of functions can be defined by setting up a Fourier series
in each of the intervals,

ψ±np(k) ≡
{

Λn/2

(1−Λ−1)1/2
e±iωnpk if Λ−(n+1) < ±k < Λ−n,

0 if ± k is outside the interval
[
Λ−(n+1),Λ−n

]
.

(5.3)

Here n ∈ N0 labels the interval and p is the Fourier harmonic index, where p ∈ Z. The
superscript indicates if the function is defined for positive energies (+) or negative energies
(-). The Fourier frequency ωn for the nth interval is given by

ωn ≡
2π

Λ−n − Λ−(n+1)
=

2πΛn

1− Λ−n
. (5.4)

Since the functions ψ±np define a complete set of orthonormal functions, we can expand the
operators akσ in this basis,

akσ =
∑

np

[
anpσψ

+
np(k) + bnpσψ

−
np(k)

]
, (5.5)

where

anpσ =

∫ +1

−1

dk
[
ψ+
np(k)

]∗
akσ; bnpσ =

∫ +1

−1

dk
[
ψ−np(k)

]∗
akσ. (5.6)

The operators anpσ and bnpσ form a complete set of independent and discrete electron

operators obeying standard anti-commutation rules,
[

anpσ, a
†
n′p′σ′

]

+
= δn,n′δp,p′δσ,σ′ . The

Hamiltonian (5.2) can thus be written in the basis of the operators anpσ and bnpσ using the
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relations
∫ +1

−1

k
∑

σ=↑,↓

a†kσakσdk =
1

2

(
1 + Λ−1

)∑

n,p,σ

Λ−n
(
a†npσanpσ − b†npσbnpσ

)

+
1− Λ−1

2πi

∑

n,p 6=p′,σ

(
a†npσanp′σ − b†npσbnp′σ

)
exp

(
2πi(p′ − p)
1− Λ−1

)

,

∫ 1

−1

∑

σ=↑,↓

akσdk =
(
1− Λ−1

)1/2
∑

n,σ

Λ−n/2 (an0σ + bn0σ) , (5.7)

which can be verified by a lengthy but straightforward calculation. Inserting Eq. (5.7) into
Eq. (5.2), we see that the impurity couples directly only to the operators an0σ and bn0σ.
The operators anpσ and bnpσ couple only indirectly to the impurity, via the second term
in Eq. (5.7). Since the factor (1 − Λ−1)/2π in this term is small for Λ close to one, we
will neglect all terms containing operators anpσ and bnpσ for p 6= 0. This is a surprisingly
good approximation even for Λ as large as 3, see [4]. If we drop the subscript ’0’ from the
operators an0σ and bn0σ and define the operator

f0σ ≡
[
1

2

(
1− Λ−1

)
]1/2 ∞∑

n=0

Λ−n/2
∑

σ

(anσ + bnσ) =
1√
2

∫ 1

−1

dk
∑

σ

akσ, (5.8)

with
[

f0σ, f
†
0µ

]

= δσ,µ, we can write the Hamiltonian (5.2) as

HAnderson

D
=

1

2

(
1 + Λ−1

)
∞∑

n=0

Λ−n
∑

σ

(
a†nσanσ − b†nσbnσ

)

+
1

D

(

εc +
1

2
Uc

)
∑

σ

c†σcσ +
1

2

Uc
D

(
∑

σ

c†σcσ − 1

)2

+

(
2Γ

πD

)1/2∑

σ

(

f †0σcσ + c†σf0σ

)

. (5.9)

The motivation for the logarithmic discretization is the following. Let’s consider an
instructive example, see [4]. Suppose one has a Hamiltonian H = H0 + H1, where the
level spacings of H0 and of H1 are of order ∼ 1 and ∼ 0.01, respectively, i. e. H1 can be
understood as a perturbation to H0. Furthermore we assume that the Hamiltonian H0 is
nontrivial and can only be solved numerically with an accuracy of 5%, say. Finally, suppose
that H0 has two degenerate ground states consisting of the states |Ψ0〉 and |Ψ1〉. We know
that the perturbation will split up the degeneracy. One way to attack the problem is to
first diagonalize H0 and then calculate the contribution of H1. The matrix elements in
the perturbation theory, 〈Ψ0|H1|Ψ0〉, 〈Ψ0|H1|Ψ1〉, etc., then can be calculated with the
accuracy of 5%. Therefore, as the eigenenergies of H1 are of order 0.01, the splitting can
be calculated with an accuracy of about 0.0005. Another way of attacking the problem
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is to diagonalize H0 +H1 directly. However, this is obviously a bad choice, since in this
case all energies are calculated with an accuracy of about 0.05 and hence one does not
get reasonable results for the energy splitting which is of order 0.01. The same argument
holds if another term H2 is added to the Hamiltonian, where the level spacing of H2 is of
order ∼ 0.0001. Given this case, one just gets reasonable results if one first diagonalizes
H0, then treats H1 as a perturbation to H0 and finally treats H2 as a perturbation to H1.

The problem we are facing is even more challenging. Considering the conduction band,
we have operators ak,σ with all energies k ≤ 1 of all orders of magnitude, e. g. we have
energies k ∼ 1, k ∼ 0.01, k ∼ 0.0001, k ∼ 0.000001, etc. The operators ak,σ with k ∼ 1
create states with level splitting of the order ∼ 1. As in the abovementioned example,
these states can be split, for instance, by operators ak,σ with k ∼ 0.01, etc. We are in-
terested in level spacings down to the order of kBT . Since we are interested in the limit
T → 0, kBT would be arbitrary small. Fortunately it turns out that the renormalization
group transformation we are going to derive, which will start by considering large energies
and then going successively to smaller energies, will reach a fixed point when the energy
decreases below a certain crossover scale, the Kondo scale. However, we see that we have
to consider energies of several orders of magnitude. As the scaling method, Chapter 4,
teaches us, we have to take all these energies into account properly at the same time. The
analogy between our problem and the example is certainly imperfect. In our case there is
no obvious separation into parts H0, H1, etc. The logarithmic discretization separates the
conduction band and thereby the Hamiltonian in parts with different energies, depending
on the value of the parameter Λ. There is no obvious choice for Λ, such as Λ = 2 or
Λ = 3, neither doet there exist a strict justification for the logarithmic discretization pro-
cedure. The ultimate justification is that it successfully solves the problem. Furthermore
we can not use perturbation theory to calculate the contribution of the different parts.
The renormalization group transformation will be set up to overcome this problem.

To finally derive the renormalization group transformation, another transformation is
necessary. Looking at the Hamiltonian (5.9), we see that the impurity couples directly
only to the operator f0σ, which reflects the fact that the impurity is localized, see [18].
We will now again follow [18] and make a unitary transformation from the set of operators
{anσ, bn,σ} to a new orthonormal set {fnσ}, with the constraint that f0σ is still given by Eq.
(5.8). Since the first term in the Hamiltonian (5.9), which represents the conduction band,
is diagonal in the operators {anσ, bn,σ}, the transformation will necessarily lead to operators
{fnσ} that are coupled to each other. We will deliberately choose a transformation which
leads to nearest neighbor coupling, i. e. the operator fn,σ will couple directly only to the
operators fn−1,σ and fn+1,σ. A geometric interpretation of these operators will be given
further below. The transformation is carried out in [4], here we will just quote the result
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2ξ1 Λ−1/2ξ0(  /D)Γ 1/2

ε c
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Figure 5.2: Illustration of the Hamiltonian (5.10) as a semi-infinite chain with nearest
neighbor hopping. At the end of the chain is the local level with energy εc of the impurity.
It is coupled to the first site, the f0-site, with a coupling strength proportional to (Γ/D)1/2.
The f0-site represents the state created by f †0σ. It is coupled to the f1-site, the f1-site is
coupled to the f2-site, etc. The strength of the coupling between the neighbor n and n+1
falls of exponentially with Λ−n/2ξn. The energies εn = 0, see [18].

for the Hamiltonian stated in [18],

HAnderson =
1

2

(
1− Λ−1

)
∞∑

n=0

Λ−n/2ξn
∑

σ

[

f †nσf(n+1)σ + f †(n+1)σfnσ

]

+
1

D

(

εc +
1

2
Uc

)
∑

σ

c†σcσ +
1

2

Uc
D

(
∑

σ

c†σcσ − 1

)2

+

(
2Γ

πD

)1/2∑

σ

(

f †0σcσ + c†σf0σ

)

, (5.10)

where

ξn =
(
1− Λ−n−1

) (
1− Λ−2n−1

)−1/2 (
1− Λ−2n−3

)−1/2
. (5.11)

For n → ∞, ξn → 1. The Hamiltonian can be visualized by a semi-infinite chain, see
Fig. 5.2. At the one end of the chain there is the local impurity level with energy εc. It
is coupled to the first site of the chain, representing the state created by f †0σ, through a
coupling with a strength proportional to (Γ/D)1/2. The nearest neighbor coupling connects
the f0-site with the f1-site, the f1-site with the f2-site, etc. The coupling strength between
the sites n and n + 1 is proportional to Λ−n/2ξn. For large n it decreases as Λ−n/2, since
ξn → 1. The energies εn = 0, see [18].

The geometrical interpretation of the operators fnσ is depicted in Fig. 5.3, see [18].
Since the mean energies εn = 0, which is the Fermi energy, one can conclude that the
operators fnσ contain equal amounts of positive and negative energy electron operators.
The single-particle states |fn〉 created by f †nσ are all peaked at the impurity site and have
a spread in energy ∼ Λ−n/2, which is the strength of the coupling in (5.10), cf. [18]. Thus
|f0〉 has the biggest spread in energy and consequently is the most localized wavefunction,
Fig. 5.3.

To derive the renormalization group transformation, one now defines a set of Hamilto-
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f2
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Λ
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Figure 5.3: The local extent of the single-particle wavefunctions |fn〉, which are created by
the operators f †nσ, can be depicted as spherical shells around the impurity. Since the mean
energy of the wavefunctions is the Fermi energy, their mean wavenumber is ∼ kF . The
wavefunction |f0〉 is the most localized wavefunction, because it has the biggest spread in
energy ∼ 1. It has an extend of ζ0 ∼ 1/kF . The extend of |fn〉 is ∼ ζ0Λ

n/2. The impurity
is coupled directly only to |f0〉.
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nians, HN , as follows,

HN ≡ Λ(N−1)/2

[
N−1∑

n=0

Λ−n/2ξn
∑

σ

(

f †nσf(n+1)σ + f †(n+1)σfnσ

)

+δ̃c
∑

σ

c†σcσ + Ũc

(
∑

σ

c†σcσ − 1

)2

+Γ̃1/2
∑

σ

(

f †0σcσ + c†σf0σ

)
]

, (5.12)

where the constants

δ̃c ≡
(

2

1 + Λ−1

)
1

D

(

εc +
1

2
Uc

)

≡ ε̃c + Ũc,

Ũc ≡
(

2

1 + Λ−1

)
Uc
2D

,

Γ̃ ≡
(

2

1 + Λ−1

)2
2Γ

πD
=

(
2

1 + Λ−1

)2
2ρ0|Vc|2
D

(5.13)

have been defined for convenience. The originally Hamiltonian can be recovered by

HAnderson = lim
N→∞

1

2

(
1 + Λ−1

)
DΛ−(N−1)/2HN . (5.14)

Here the factor Λ(N−1)/2 in Eq. (5.12) has been introduced in order to make the lowest
energy scale in HN , which is the coefficient of f †N−1σfNσ + f †NσfN−1σ, of order ∼ 1. From
the definition of HN , the central recursion relation of the NRG method can be defined,

HN+1 = Λ1/2HN + ξN
∑

σ

(

f †NσfN+1σ + f †N+1σfNσ

)

. (5.15)

With the help of this relation, a renormalization group transformation HN+1 = T [HN ] can
be defined. The introduction of the setHN and the recursion relation can be motivated with
the example at the beginning of the section. There, we have seen that given a Hamiltonian
H = H0 + H1 + H2 (there is no relation between the HN in the example and in the
recursion relation), where the level spacing of Hn is by two orders of magnitude smaller
than the level spacing of Hn−1, see above, the best strategy is the following. We first
diagonalize H0, then add the contribution of H1 by perturbation theory, then diagonalize
H = H0 + H1 and finally add H2 in the same way as H1. The purpose of defining the
set HN is that one can now make use of the same strategy to solve the Hamiltonian (5.9),
except that one applies the recursion relation (5.15) instead of perturbation theory and
that one has infinetly many contributions. One starts by diagonalizing H1, which contains
the contributions of the impurity and the f0-site, representing the largest energy scale of
the problem. To obtain the subsequent Hamiltonians HN+1, one adds the successively
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smaller terms ξN

(

f †NσfN+1σ + f †N+1σfNσ

)

of the fN+1-site, where first the Hamiltonian

HN is diagonalized and then the fN+1-terms are added in the basis of HN .
Except for special cases, e. g. Λ = 1, no analytical method is known to diagonalize

the Hamiltonians HN . Thus numerically methods are used. To conclude this section,
a rough idea will be given of how the algorithm works. As a starting point, one sets
up the Hamiltonian H1. It is a 16x16 matrix, where the 16 basis states are product
states of the f0-site and the the local impurity level, |Ψn〉N=1 = {|0〉0, | ↑〉0, | ↓〉0, | ↑↓〉0} ⊗
{|0〉c, | ↑〉c, | ↓〉c, | ↑↓〉c}, n = 1, 2, 3, .., 16, where ’0’ denotes the f0-site states and ’c’ the
local impurity states. Then one numerically diagonalizes the Hamiltonian by a unitary
transformation U , UTH1U = Hdiag

1 , where Hdiag
1 has only entries at the principal axis,

which are the eigenenergies.. All physical observables that one would like to compute are
first set up in the basis |Ψn〉N=1 and then are transformed into the new bases with the help
of U . In the step N = 2, a new basis is set up by defining

|1,Ψn〉N=2 ≡ |0〉1 ⊗ |Ψn〉N=1,

|2,Ψn〉N=2 ≡ | ↑〉1 ⊗ |Ψn〉N=1,

|3,Ψn〉N=2 ≡ | ↓〉1 ⊗ |Ψn〉N=1,

|4,Ψn〉N=2 ≡ | ↑↓〉1 ⊗ |Ψn〉N=1, (5.16)

where ’1’ denotes the f1-site states. In this new basis, the contributions of the f1-site are
added to build the Hamiltonian H2,

H2 =








Λ1/2Hdiag
1 ξ1f

†
1,↑ ξ1f

†
1,↓ 0

ξ1f
†
1,↑ Λ1/2Hdiag

1 0 ξ1f
†
1,↓

ξ1f
†
1,↓ 0 Λ1/2Hdiag

1 −ξ1f †1,↑
0 ξ1f

†
1,↓ −ξ1f †1,↑ Λ1/2Hdiag

1 .








(5.17)

The whole procedure can now be repeated. We see that for each iteration the basis has the
4-fold size of the basis of the iteration before. Soon a matrix size is reached that cannot
be handled anymore by even large computer memories. Therefore, after a certain size is
reached, the states are truncated after the diagonaliation procedure and one just keeps the
lowest lying states, typically a number about 1000.

Further information can be found in [4], [18], [19], [20].

5.2 The NRG applied to the extended model

The intention of this section is to give a rough idea of how the NRG method was applied
to the extended model of Section 3.2.

As explained in the previous section, the difficulties in solving the model result from
the fact that that the local level with the conduction band is a many-body problem where
all energy scales in the conduction band are important. Since we can make the same
assumptions about the conduction band as above, we can closely follow the procedure
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Figure 5.4: By following the transformations of Section 5.1, we can analogously map
the extended Anderson Hamiltonian to a semi-infinite chain, cf. Fig. 5.2. However, the
impurity, i. e. in our case the quantum dot, has a more complicated structure. As described
in Section 3.2, here also a local valence band level is considered, which couples to the local
conduction band level via an exciton binding energy with a strength proportional to Uexc.

of the usual NRG method. After the logarithmic discretization of the conduction band
and the unitary transformation described above, we can map the extended model to a
Hamiltonian which once again can be illustrated by a semi-infinite chain, Fig. 5.4, which
should be compared to Fig. 5.2. As described in Section 3.2, the local valence band level
with energy εv has been added to the quantum dot. It is coupled to the local conduction
band level by the exciton binding energy where the strength of the coupling is proportional
to Uexc. Essentially just the starting point, i. e. the Hamiltonian H1 of the usual NRG
method has to be changed. It is now a 64x64 matrix, where the 64 basis states are
product states of the two local levels and the f0-site, |Ψn〉N=1 = {|0〉0, | ↑〉0, | ↓〉0, | ↑↓〉0}⊗
{|0〉c, | ↑〉c, | ↓〉c, | ↑↓〉c}⊗ {|0〉v, | ↑〉v, | ↓〉v, | ↑↓〉v}, n = 1, 2, 3, .., 64. If the basis states have
the following order,

|1〉 = |0〉0|0〉c|0〉v,
|2〉 = | ↑〉0|0〉c|0〉v,
|3〉 = | ↓〉0|0〉c|0〉v,
|4〉 = | ↑↓〉0|0〉c|0〉v,
|5〉 = |0〉0| ↑〉c|0〉v,
|6〉 = | ↑〉0| ↑〉c|0〉v,

...

|16〉 = | ↑↓〉0| ↑↓〉c|0〉v,
|17〉 = |0〉0|0〉c| ↑〉v,
|18〉 = | ↑〉0|0〉c| ↑〉v,

...

|64〉 = | ↑↓〉0| ↑↓〉c| ↑↓〉v,
(5.18)
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then H1 has the following block-diagonal form, cf. Eq. (4.36),

|0〉v | ↑〉v | ↓〉v | ↑↓〉v

H1 =







H|0〉,v 0 0 0
0 H|↑〉,v 0 0
0 0 H|↓〉,v 0
0 0 0 H|↑↓〉v






, (5.19)

where

H|0〉,v = H′1 −
∑

σ

2Uexcn̂c,σ + Uv

H|↑〉,v = H′1 −
∑

σ

Uexcn̂c,σ + εv

H|↓〉,v = H′1 −
∑

σ

Uexcn̂c,σ + εv

H|↑↓〉v = H′1 + 2εv. (5.20)

The matrix H′1 is the starting point of the usual NRG process, which is explicitly given by
the matrix

|0〉c | ↑〉c | ↓〉c | ↑↓〉c
|0〉0 |↑〉0 |↓〉0 |↑↓〉0 |0〉0 |↑〉0 |↓〉0 |↑↓〉0 |0〉0 |↑〉0 |↓〉0 |↑↓〉0 |0〉0 |↑〉0 |↓〉0 |↑↓〉0
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Here ε̃c, Ũc and Γ̃ are given by Eq. (5.13). We see that the starting point Hamiltonian
(5.19) has the same block structure which was already mentioned in Section 4.3. As before
we will enumerate them from 1 to 4, where the block at the upper left corner is 1 and the
block at the lower right corner is 4.
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To determine the absorption spectrum, cf. Eq. (3.12), we need to calculate the ma-
trix elements and the δ-functions. The perturbation H′ can be set up as a matrix anal-
ogously to the unperturbed Hamiltonian (5.19), using the same basis. After as many
iterations have passed as needed for a certain desired resolution, the matrix elements of
H′ can be computed. Besides the matrix elements, we also need to compute the functions
δ (Ef − Ei + ~ω). The energies Ef and Ei are computed by the NRG process, but we are
facing a problem of principle of how to treat the δ-function numerically. Eq. (3.12) would
just yield a continuous function for an infinite sum, which naturally cannot be obtained
numerically. Thus a procedure is used which is called the ’broadening’ of δ-functions,
where the δ-functions are approximated by other distributions with finite width, as e. g.
Gaussians, which leads to a continuous function for a finite sum. In fact, the procedure
contains some elaborate details, which can be found in [20].

One main obstacle had to be overcome to successfully apply the NRG method to the
extended model. Since the NRG was designed to resolve the ground state, it computes
the properties of excited states with less accuracy. The reason for this lies in the loga-
rithmic discretization of the conduction band. The discretization has the finest resolution
around the Fermi energy. With increasing energy, each discretized state represents larger
and larger energy intervals. Therefore physical quantities depending on the properties of
highly excited states are computed qualitatively rather than quantitatively by the NRG.
At first sight, the absorption spectrum looks like such a quantity. It depends on matrix
elements involving transitions from the ground state, which contains no holes, to states
containing one hole, which are highly excited, i. e. which have energies E À εF . In terms
of the block structure which was mentioned above, we would like to compute a quantity
involving transitions from block 4 (H|↑↓〉v) to block 2 (H|↑〉v) or 3 (H|↓〉v), respectively. One
solution to the problem would be to employ two usual NRG procedures. The first solves
the Hamiltonian H|↑↓〉v and the second one the Hamiltonian H|↓〉v , where the ground states
of both H|↑↓〉v and H|↓〉v) would be resolved with a high precision. Since no magnetic fields
are considered, H|↑〉v equals H|↓〉v and does not have to be considered separately. In prin-
ciple, the matrix elements could the be determined, but there is one severe difficulty. As
the unitary transformations diagonalizing the Hamiltonian HN at each iteration will be
different for the two NRG procedures, the final states will be computed in two different
basises. To overcome this problem, one would need to keep track of all the unitary trans-
formations of all iterations and to convert one of the results to the other basis, which is a
quite tedious and lengthy task. Thus we chose a slightly different method. By modifying
the procedure of truncation, we essentially carry out the two NRG procedures, which have
just been described, at the same time. Instead of keeping the K lowest lying states, the
used procedure keeps K/2 of the lowest lying states of each block 4 (H|↑↓〉v) and block 3
(H|↓〉v). Thereby the ground states of H|↑↓〉v and H|↓〉v are resolved with a high precision,
which produces the same results as making two runs.

Since significant changes have been made in the NRG process, one has to check that
the method is still working. One possibility to examine the results so produced is to com-
pare them with established results or analytical calculations which can be done for limiting
cases. For the limiting case Uexc = 0 we have shown, see Section 3.3, that the absorption
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spectrum is proportional to the local density of states, which can be calculated with the
usual NRG method. We will find a cut-off energy for the absorption function. Photons
with energies below this cut-off will not be absorbed. For energies close to the cut-off, the
absorption function has a power-law divergence, and it is possible to calculate the corre-
sponding exponent analytically, which yields another test for the numerical calculations.
The modified method has passed several of these tests, as will be shown in Chapter 6.
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Chapter 6

Results

In this chapter the results will be presented that have been produced with the modified
NRG procedure introduced in Chapter 5.

In Section 6.1, it will be demonstrated that the numerical method passes several checks.
Firstly, we will look at the density of states of the local conduction band level, where the
Kondo resonance should be visible in the Kondo regime. Secondly, the height of the
resonance has to fulfill the Friedel sum rule, which will be shown to be the case. Thirdly,
the relation between the local density of states function and the absorption spectrum will
be checked, which was derived in Section 3.3 for the limiting case Uexc = 0. Furthermore it
will be shown that the density of states of the local conduction band level does not depend
on Uexc. Thus Section 6.1 deals with cases where the local valence band level is either
decoupled, Uexc = 0, or of no importance at all. Therefore we essentially only study the
properties of the local conduction band coupled to the lead. In this situation it is rather
easy to interpret the results, which in principle could be produced with the usual NRG
method. We will turn to the more interesting case Uexc 6= 0 in Section 6.2. It will be shown
that if Uexc is gradually increased, the absorption function yields two interesting features.
The first one is a shift of the threshold energy, below which no photons are absorbed.
In general the threshold energy decreases if Uexc is increased. However, depending on
the parameters there is a certain interval of Uexc where the threshold energy increases
with increasing Uexc. This behavior can be understood by looking closer at the involved
charging energies. Secondly, there is a tremendous increase in height of about three orders
of magnitude, which results from the fact that the absorption function becomes divergent
at the threshold energy. The exponent of the divergence close to the threshold energy can
be calculated analytically, yielding another test for the modified NRG method. We will
see that there is a very good agreement between the numerical results and the analytical
predictions.

One general remark has to be made about the choice of the parameters. As already
mentioned in Chapter 5, it is convenient to measure all parameters in units of bandwidth.
In Chapter 4 an explanation was given that the physics and thus the obtained results of
two systems with different sets of parameters will be the same, as long as the parameters in
each set have the same relation to each other and as long as the modulus of all parameters
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is . 1 in units of the bandwidth. This argument only holds for the parameters εc, Uc
and Vc, since only the local conduction band level is coupled to a band and thus only
the parameters of the local conduction band level will be renormalized. Therefore we can
always choose the parameters εc, Uc and Vc such that |εc|, |εc+Uc|, |Vc| are smaller or about
the order of the bandwidth. However, since the local valence band is not coupled to a
band, the parameters εv and Uv are not subject to renormalization. They are only involved
indirectly by the coupling of the local conduction band level and the local valence band
level via the exciton binding energy. As we have seen in Section 4.3, the effect of a hole in
the local valence band level is to ’pull down’ the local conduction band level and that in
fact the energy ε̃c ≡

∑

σ (εc − Uexc

∑

ν (1− nv,ν)) is renormalized.

However, for the choice of the parameter εv we are facing a numerical problem. As
already mentioned several times, the bandgap is the largest energy scale involved. There-
fore the energy of the local valence band level εv, measured from the Fermi level of the
conduction band which we set equal to zero, εF = 0, is about three orders of magnitude
larger than the other parameters. This poses a problem for the numerical calculations,
which arises from the fact that all eigenenergies in the NRG process are stored with the
same limited number of digits. Thus one looses precision if one has energies which differ
by several order of magnitude. We therefore are going to neglect the bandgap to enhance
the precision, which does not change the results. In case of the absorption spectrum one
just has to bear in mind that the function is shifted by a constant offset, i. e. the bandgap.
In general we will thus also set |εv| < 1. Since we do not want to consider states with
two holes, see Chapter 3, we always set the parameter Uv À 1 to supress these states.
However, if the energy of the local valence band level is set below the energy of the local
conduction band level, εv < εc, states with two holes are highly excited states anyway, even
if the bandgap is neglected. Thus the parameter Uv has very little influence on the system.
In fact, for a reasonable choice of parameters, the calculations show that the results vary
by less than one percent if Uv is varied between 0 and 10 (regard Uv > 0 always). In the
following, we will set Uv = 10.

For a physical choice of parameters one has to note the following. In the experiments
studied in Chapter 2, Uexc is of order Uexc ∼ Uc, see [8]. The parameter εc is experimentally
controllable and can be set to any desired value in the experiments by adjusting the gate
voltage, see Chapter 2. The choice |εv| < 1 is of course unphysical, but as mentioned above
one obtains the physical result for the absorption function by shifting it by an appropriate
value. As explained above, any positive value of Uv leads to physical results since the choice
of Uv does not influence the calculations. For the current generation of experiments, the
choice |εc|, |εc + Uc| about the order of 1, i. e. ’deeplying levels’, is not physical. However,
as mentioned in Chapter 3, it is possible to build more shallow dots.

6.1 Checking the modified NRG procedure

In the first part of this section we will show that the density of states function of the local
conduction band level Ac,σ fulfills the Friedel sum rule, which will be introduced below.
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Figure 6.1: The local density of states Ac(ω) summed over both spin directions in the
Kondo regime, with εc = −Uc/2. The Kondo resonance is at the Fermi energy εF = 0. The
local level at the energy −Uc/2 is broadened by the coupling to the lead and has a level
width Γ = 2∆. If two electrons are in the dot, the second electron has to pay the charging
energy Uc to enter, thus we see another side peak at Uc/2, also with level width 2∆. The
inset shows that the Kondo resonance fulfills the Friedel-sum-rule to within 3% accuracy.

In the second part we will demonstrate that the modified method passes the test put
forward in Section 3.3, where for the limiting case Uexc = 0 a relation between Ac,σ and
the absorption function was derived.

The density of states Ac,σ(ω) of the local conduction band level can be computed with
the help of Eq. (3.13), where the matrix elements and the eigenenergies are determined
by NRG. The function Ac,σ does not depend on the parameters Uexc and εv, since only
states with no holes, i. e. states of block 4 in terms of the block structure, are involved in
Eq. (3.13): The ground state |0〉 does not contain holes and as only transitions mediated
by the operator c†σ are considered, the states |n〉 do not contain any holes, either. If we
study a system with the set of parameters εc = −0.05, Uc = 0.10 and ∆ ≡ πρ0|Vc|2 = 0.01,
then we expect to find the Kondo resonance, as the local level will be singly occupied, see
Section 3.1. This is indeed the case, see Fig. 6.1, where the density of states for both spin
directions is plotted, Ac(ω) = Ac,↑(ω)+Ac,↓(ω). We see the Kondo resonance at the Fermi
energy εF = 0 and the side peaks of the singly and doubly occupied local level with width
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Γ = 2∆ ∝ |Vc|2 at the energies ±Uc/2. From the Friedel sum rule, the height of the Kondo
resonance should fulfill the relation

Ac(εF = 0) = 2
sin2(π〈nc〉)

π∆
(6.1)

where 〈nc〉 is the average occupation of the local conduction band level. See [2] for a
derivation. The case εc = −Uc/2 is called ’symmetric’, where one knows that the occupa-
tion of the local conduction band level is exactly one, which agrees with the occupation
determined with NRG. Thus Eq. (6.1) can be written as Ac(εF = 0) = 2/π∆, which is
shown to be the case to within 3% accuracy in the inset of Fig. 6.1. There we also see
that the Kondo resonance has a width of roughly 2TK , where TK is given by Eq. (4.30).
Since the occupation of the local level is one, the integral of the density of states function
from minus infinity until zero should be one, and since the local level can be occupied
by maximally two electrons, the integral from minus infinity until infinity should be two.
These results are found with an accuracy of one percent, if Ac(ω) is numerically integrated.

Let us now look at the absorption spectrum,

α(ω) ≡ Wi→f

|γ|2 = 2π
∑

f

∣
∣H

′

fi

∣
∣
2

|γ|2 δ (Ef − Ei + ω) , (6.2)

cf. Eq. (3.12), where we have set ~ = 1. As mentioned in Chapter 3, the height of the
absorption spectrum is proportional to |γ|2, because |H ′

fi|2 ∝ |γ|2. Since the value of γ
depends on the laser intensity in the absorption measurements, we devide by |γ|2 to make
our results independent of the actual value of γ. For the same set of parameters as in Fig.
6.1, we get the result shown in Fig. 6.2. The absorption spectrum is plotted along negative
energies. We see that no photons are absorbed below a threshold energy ω0, where ω0 = εv
in the case Uexc = 0. As mentioned above, here the bandgap has been neglected, which
should actually be subtracted from εv, i. e. be added to the threshold energy ω0. If we
compare Fig. 6.1 with Fig. 6.2, we see, that it is the mirrored positive energy half of the
density of states of function, shifted by εv, which we expected, cf. Eq. (3.18).

One could object that it is not a rigorous test to compare Fig. 6.2 with Fig. 6.1, since
both results have been received with the modified NRG method and that Fig. 6.2 should
be compared with a result produced with the usual NRG method. This has been done in
Fig. 6.3, where the local density of states has been calculated with the usual NRG method
for a single level coupled to a conduction band. For the local level and the coupling to the
lead the same parameters as above were chosen, εc = −0.05, Uc = 0.10 and ∆ = 0.01. Of
course, the parameters Uexc, εv and Uv do not occur in this calculation. In Fig. 6.3, just
the mirrored positive half of the local density of states has been plotted, shifted by εv. We
see that there is an excellent agreement between the result produced with the usual NRG
method and the absorption spectrum calculated with the modified NRG, where the same
parameters were taken as in Fig. 6.1. The local density of states function calculated with
the usual NRG method is a well established result. It has first been calculated in [19], and
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Figure 6.2: Absorption function for the case of a decoupled local valence band level, i. e.
Uexc = 0. We see that it is the mirrored positive energy half of the density of states of
function of the local conduction band level, shifted by |εv|, cf. Eq. (3.18).

confirmed many times. Thus we can regard the comparison in Fig. 6.3 as a rigorous test
for the modified method.

Having well understood the results produced for Uexc = 0, i. e. a decoupled local valence
band level, we turn to the case Uexc 6= 0 in the next section.

6.2 Results

The local valence band level interacts with its enviroment only via the exciton binding
energy with coupling strength ∝ Uexc. The case Uexc = 0, where the local valence band
level is completely decoupled, was studied in the previous section.

Let us explore how the absorption spectrum changes if Uexc is increased. In Fig. 6.4,
the absorption spectrum is plotted for the parameters εc = −0.05, Uc = 0.10, εv = −0.5
and ∆ = 0.01, where Uexc is increased from 0.00 to 0.14. For this set of parameters, the
quantum dot is in the Kondo state before absorption. Using the modified NRG method,
it is possible to calculate the absorption spectrum for an arbitrary choice of parameters,
including initial states which are not strong correlated Kondo states. In fact, in the second
part of this section, where the height of the absorption spectrum is investigated, see below,
we study results gained for a variety of different choices of parameters. However, we are
especially interested in the case where the initial state is the Kondo state. In this regime,
NRG is the only known method which can be used to obtain the produced results. Thus
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shifted by εv. The numerical results show an excellent agreement between the two functions
which, according to Eq. (3.18), should be the same.
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Figure 6.4: Absorption spectra for gradually increasing Uexc. The threshold energy is first
shifted to the right, until Uexc = 0.04 (light green) is reached, then it is shifted back to
the left until Uexc = 0.08 (brown), and finally moves to the right again. There is also a
tremendous increase in height: the maximum of the absorption spectrum for Uexc = 0.06
(blue) is about three orders of magnitude larger than the maximum for Uexc = 0.00 (black).

we consider fig. 6.4 as our main result.

Before we look at the absorption spectrum more closely, one last remark is made con-
cerning the choice of parameters. For a physical choice of Uexc, we have Uexc ∼ Uc. In this
case the Kondo state is destroyed by the absorption. To see why, note that the average
occupation of the local conduction band level of the final state increases as Uexc increases,
as will be explained below. For Uexc & 0.05, the average occupation is & 1.5, thus the final
state has been shifted out of the Kondo regime.

We notice two relevant behaviors of the absorption spectrum as Uexc is increased.
Firstly, the modulus of the threshold energy |ω0| first decreases, then increases and fi-
nally decreases again. We will give an explanation for this behavior and show what is
happening at the turning points. Secondly, there is a tremendous increase in height of the
absorption spectrum (note that a logarithmic scale is used!). The increase in height is due
to the fact that the absorption spectrum diverges at the threshold energy ω0, as will be
explained below.

To understand the shift of the threshold energy ω0, let us look at the absorption process
again, Fig. 6.5. The final state has one hole, therefore one gains the energy Uexc for every
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Figure 6.5: The absorption process in the quantum dot. Since in the final there is one
hole, the energy Uexc is gained for every electron in the local conduction band level. Thus
it becomes more favorable to doubly occupy the local conduction band level. However, if
the average occupation is larger than one, the exciton binding energy competes with the
Coulomb repulsion with strength Uc.

electron in the local conduction band level. Thus, for the final state, the Coulomb repulsion
energy with strength Uc and the exciton binding energy with strength Uexc are competing
against each other as soon as the occupation becomes larger than one. For increasing
Uexc, one can predict the occupation of the local conduction band level quite well if one
thinks in terms of Section 4.3. There the extended Anderson model is transformed to the
Anderson model, where the local conduction band level is ’pulled down’ by Uexc if one hole
is present. Thus one can predict that a second electron starts to enter the dot, i. e. the
average occupation starts to become larger than one, as soon as εc−Uexc+Uc ∼ ∆, where
Γ = 2∆ is the level width. If Uexc is increased further, the occupation will reach a value
close to two if εc−Uexc+Uc ∼ −∆. We now roughly estimate the energy of the dot before
and after absorption. We neglect the lead, except for considering the average occupation
of the local conduction band level. The dot in the initial and final state has the energy

Einitial = 2εv + εc〈nc〉initial + UcΘ(〈nc〉initial − 1) (〈nc〉initial − 1) ,

Efinal = εv + εc〈nc〉final + UcΘ(〈nc〉final − 1) (〈nc〉final − 1)− Uexc〈nc〉final. (6.3)

To get a rough estimate for the threshold energy ω0, we calculate the energy difference
between the dot in the initial and final state,

ω0 ≈ Einitial − Efinal

= εv + εc (〈nc〉initial − 〈nc〉final) + Uexc〈nc〉final
+Uc [Θ (〈nc〉initial − 1) (〈nc〉initial − 1)−Θ(〈nc〉final − 1) (〈nc〉final − 1)] . (6.4)
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Figure 6.6: Behaviour of the threshold energy for different values of Uc. In the lower panel
the moduls of the threshold energy |ω0|, which has been determined with NRG, has been
plotted versus Uexc. The upper panel shows the average occupation of the local conduction
band level in the final state, i. e. in the state with one hole. For explanations see text.

To extract the meaning of the formula, we simplify it by assuming that the parameters are
chosen such that the average occupation of the initial state is one, 〈nc〉initial = 1. Thus also
〈nc〉final ≥ 1. Then

ω0 ≈ εv − εc (〈nc〉final − 1) + Uexc〈nc〉final − Uc (〈nc〉final − 1) . (6.5)

We see that the two last terms compete against each other. As Uexc is increased, initially
〈nc〉final ≈ 1 remains constant, until εc−Uexc+Uc ∼ ∆. Thus the modulus of the threshold,
|ω0|, decreases linearly with Uexc. If Uexc is increased further, such that εc−Uexc+Uc drops
below ∆, the average occupation will go roughly from one to two. At εc − Uexc + Uc ∼ ∆,
Uexc is significantly smaller than Uc, therefore the Uc-term in Eq. (6.5) dominates as 〈nc〉final
increases, causing |ω0| to increase again. Finally, when 〈nc〉final reaches a value close to two,
the Uc-term will become constant, and the Uexc will dominate again, thus |ω0| decreases
again.

This explanation is confirmed by the results shown in Fig. 6.6 and Fig. 6.7, where
the threshold energy is plotted versus increasing Uexc. In Fig. 6.6, the behavior of the
threshold energy has been plotted for three different values of Uc, 0.08, 0.10 and 0.12. For
increasing Uc, the point εc − Uexc + Uc ∼ ∆, where the second electron starts to enter the
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dot, is reached for higher values of Uexc. Since the Uc-term in Eq. (6.5) starts to dominate
for higher values of Uexc, the first turning point is shifted to the right, which is reached
at values of the average occupation about 〈nc〉final ∼ 1.5. Furthermore the second turning
point is also shifted to the right, as 〈nc〉final ∼ 2 is reached for higher values of Uexc.

In Fig. 6.7, the parameter Uc = 0.10 is kept fixed and ∆ is varied instead. We see
that the first turning point stays constant at Uexc = 0.05, since there 〈nc〉final ∼ 1.5 is
reached. However, the value |ω0| at the first turning point decreases as ∆ decreases, since
the occupation starts to change at larger values of Uexc. As 〈nc〉final ∼ 2 is reached at
smaller values of Uexc as ∆ decreases, the second turning point is shifted to the left.

Let us now study the height of the absorption spectrum. For energies ω near the
threshold energy ω0 we find a power-law divergence,

α(ω) ∼
(

1

|ω − ω0|

)β

, ω ∼ ω0. (6.6)

This result is also found in [21], where the absorption spectrum is studied for the X-ray
edge problem. There, only a local valence band level is considered which can either be
empty or singly occupied, where the empty local level is considered as a hole. The local
level interacts with the conduction band only via potential scattering if it is empty, due to
the Coulomb attraction of the hole. In the absorption process, the electron from the local
valence band level is excited directly into the conduction band. It is shown in [21] that the
exponent β is given by

β = 1−
∑

σ

N2
σ , (6.7)

where Nσ is the ’effective number of electrons’ (not necessarily an integer), with spin σ,
which flow away from the local level in the absorption process. There are more contributions
to Nσ than just the electron which is excited from the localized level into the conduction
band. After the electron is excited out of the local level, there is a hole left. The potential
of the hole will be screened by a change in the charge density of the conduction band,
whereby a certain amount of negative charge, say nscreenσ , is drawn towards the local level.
This amount has to be subtracted, as it is charge flowing towards the local level. Thus,
if an electron with spin σ, say, is excited, Nσ = 1 − nscreenσ and N−σ − nscreenσ . For Fermi
liquids, nscreenσ can be determined from the Friedel sum rule, which relates it to the change
in scattering phase shift.

We can use the result (6.7) to analyze our case, too, because at T = 0, which we are
considering, the system is always in a Fermi liquid ground state, so that arguments based
on the relation between phase shifts and screening charges do apply. In the absorption
process which we are considering, the electron is excited from the local valence band level
to the local conduction band level. In our model, there is hybridization between the
local conduction band level and the conduction band. In the following argument, we thus
consider the local conduction band level and the conduction band to be a single entity,
and the local valence band level to correspond to the local level considered in [21]. To
determine Nσ, we have to sum up the charges with spin σ, which flow away from the
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local valence band level in the absorption process. The actual sign of Nσ does not matter,
since (6.7) depends on N 2

σ . For definiteness, we shall take Nσ to be positive if a all in
all positive electron number, i. e. negative charge, flows away from the local level. In the
absorption process, an electron with spin σ, say, is excited from the local valence band
level into the local conduction band level. However, the electron hops immediately into
the conduction band and hence flows away from the local valence band level, thus making
a contribution +1 to Nσ and 0 to N−σ. As to nscreenσ , its value is determined by the value
of Uexc, which pulls down the local conduction band level, causing its charge to change
by ∆n ≡ 〈nc〉final − 〈nc〉initial. This charge ∆n screens the Coulomb attraction of the hole
in the local valence band level. Since the charge ∆n, i. e. ∆n/2 per spin direction, is
brought towards the local valence band level, we have to take nscreenσ = ∆n/2, implying
Nσ = 1−∆n/2 and N−σ = −∆n/2. Therefore, in our case, Eq. (6.7) can be written as

β = ∆n− (∆n)2

2
. (6.8)

A similar argument has been used in [22], [23], where the local spectral function of the
Anderson was studied.

We have extracted the exponent of the absorption spectrum in the limit ω → ω0 from
our numerical NRG results. To check this formula, we have varied ∆n in two independent
ways, namely by varying the value of εc between −0.05 and 0.05 in steps of 0.02, and by
varying the value of Uexc between 0.00 and 0.10 in steps of 0.01. The other parameters are
constant, εv = −0.20, Uc = 0.10 and ∆ = 0.030 or ∆ = 0.015 for the cases εc = −0.01, 0.01
or εc = −0.05,−0.03, 0.03, 0.05, respectively. For one choice of parameters, the mirrored
absorption spectra, shifted by |ω0|, are shown in Fig. 6.8. We find the power law behavior
for energies |ω − ω0| < 10−4D. The number of iterations of the NRG process sets a lower
bound for |ω − ω0|. For energies below this lower bound, the absorption spectrum is not
calculated accurately, see Chapter 5. The number of NRG iterations for the result shown
in Fig. 6.8 is 50, which gives a lower bound of ω − ω0| ≈ 10−6D.

The results are shown in Fig. 6.9. We see that the numerical results agree well with the
prediction (6.8): all data points collapse onto a single curve, given by (6.8). Note that Eq.
(6.8) holds for arbitrary values of εc, including initial states that lie either in the Kondo
or the non-Kondo regime. We see that for ∆n = 0, which corresponds to Uexc = 0, the
exponent is zero. With increasing height, the exponent also increases and the absorption
function thus diverges at the threshold energy ω0, which explains the dramatic increase in
peak heights in Fig. 6.4.
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Figure 6.8: Mirrored absorption spectra shifted by the threshold energy ω0. For energies
|ω − ω0| < 10−4D, we find the power-law behavior predicted by Eq. (6.6). Since the
functions have been mirrored, a negative slope corresponds to a positive Exponent. We
see that the exponent increases as Uexc increases.
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Figure 6.9: The exponent of the power-law divergence, see Eq. (6.6), extracted from the
numerical NRG results, cf. Fig. 6.8, for different values of εc and Uexc, where Uexc is varied
between 0.00 and 0.10 in steps of 0.01 for each value of εc.



Chapter 7

Conclusions

The aim of this thesis was to calculate the absorption spectrum of a quantum dot in the
Kondo ground-state. Motivated by experimental results [6], a model was set up describing
InAs quantum dots in a GaAs semiconductor, see Chapter 3.

The Poor Man’s Scaling method was used to study the model qualitatively in Chapter
4. It was shown that the model can be transformed to the Anderson model, whereby the
exciton binding energy is absorbed by redefining the energy of the local level, which is
’pulled down’ by the exciton binding energy. We determined the Kondo temperature for
the model, which depends on the exciton binding energy.

By modifying the numerical renormalization method (NRG), we solved the model in a
numerically exact manner and calculated the absorption spectrum, see Chapter 5.

The academic limiting case of a vanishing exciton binding energy was studied and well
understood, see Chapters 3 and 6. In Chapter 3, it was shown that in this limiting case
it is possible to find a relation between the absorption spectrum and the density of states
function of the local level in the quantum dot. This result was used in Chapter 6 to check
whether the modified NRG method is working correctly.

Finally, we used the modified NRG method to calculate our main result, Fig. 6.4,
the absorption spectrum of a quantum dot in the strongly correlated Kondo ground-state.
Starting from the well-understood limiting case of vanishing exciton binding energy, the
absorption spectrum was studied for increasing exciton binding energy. Two rather dra-
matic features are predicted. Firstly, there is a marked shift of the threshold energy, below
which no photons are observed. By considering the involved energy scales, we gave an
explanation for the behavior of the threshold energy as a function of the exciton binding
energy. Secondly, we noticed a tremendous increase in height of the absorption spectrum
as the exciton binding energy increases. In fact, the absorption spectrum diverges at the
threshold energy. We gave an expression for the exponent of the divergence, which depends
on the difference of the average occupation of the local level of the quantum dot before
and after absorption.

In principle, experiments measuring the absorption spectrum are feasible and will hope-
fully be done in the near future. It will be exciting to see if the experimental results agree
with our predictions. In the future, it would be interesting to calculate the emission spec-
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trum of the quantum dot, which is easier to measure in experiments than the absorption
spectrum.



Appendix A

Further Details

A.1 Local density of States

The local density of states for spin σ at T = 0 can be calculated with help of the retarded
Green function,

Ac,σ(ω) = −
1

π
=
(

GR

cσ ,c
†
σ
(ω)
)

, (A.1)

with

GR

cσ ,c
†
σ
(t) = −iΘ(t)

〈[
cσ(t), c

†
σ(0)

]〉
, (A.2)

see, e. g., [24]. Here ~ = 1 and 〈〉 denotes an thermal average which reduces to 〈0| |0〉
for T = 0, where |0〉 is the ground state. To obtain the result 3.13, we first evaluate the
Fourier-Transform of eq. (A.2):

GR

cσ ,c
†
σ
(ω) =

∫ ∞

−∞

GR

cσ ,c
†
σ
(t)eiωtdt

= −i
∫ ∞

0

eiωt
〈[
cσ(t), c

†
σ(0)

]

+

〉

dt

= −i
∑

n

∫ ∞

0

eiωt
(
〈0|eiHtcσe−iHt|n〉〈n|c†σ|0〉

+〈0|c†σ|n〉〈n|eiHtcσe−iHt|0〉
)
dt

= −i lim
δ→0

∑

n

∫ ∞

0

e−δteiωt
(

eiE0t−iEnt
∣
∣〈n|c†σ|0〉

∣
∣
2

+eiEnt−iE0t |〈n|cσ|0〉|2
)
dt. (A.3)

If eq. (A.3) is inserted in eq. (A.1), and if we use limδ→0
1

ω+iδ
= P (1/ω) − iπδ(ω), we

get
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Ac,σ(ω) =
∑

n

[∣
∣〈n|c†σ|0〉

∣
∣
2
δ (ω − (En − E0)) +

∣
∣〈0|c†σ|n〉

∣
∣
2
δ (ω + (En − E0))

]

(A.4)

This is eq. (3.13) of Chapter 2.

A.2 Details of Poor Man’s Scaling calculation

In this section, lengthy but straightforward derivations of results are presented, which have
been used in Chapter 4.

A.2.1 Explicit calculation of a contribution to the effective Hamil-
tonian

We start with eq. (4.6) of Section 4.1,

J+J−
∑

~q,~k,~q′,~k′

S−l†~k′,↑l~q,↓
1

E −Hlead

S+l†~q′,↓l~k,↑. (A.5)

Let’s rewrite the following exprissions, (E −Hlead)
−1 l†~q′ and (E −Hlead)

−1 l~k. If we expand

the first term, (E −Hlead)
−1 =

(

E −∑~j ε~jl
†
~j
l~j

)−1

=
∑

i,~j ci

(

ε~jl
†
~j
l~j

)i

, where the coefficiants

ci are unknown, and use
[

l†~j l~j, l
†
~q′

]

−
= l†~q′δ~j,~q′ , we receive

(E −Hlead)
−1 l†~q′ =

∑

i,~j

ci

(

ε~jl
†
~j
l~j

)i

l†~q′ =
∑

i,~j

ci

(

ε~j

)i

l†~j l~jl
†
~q′

= l†~q′




∑

i,~j

ci

(

ε~jl
†
~j
l~j

)i

+
∑

i

ci

(

ε~q′
)i



 = l†~q′

(

E −Hlead − ε~q′
)−1

(A.6)

and, using
[

l†~j l~j, l~k

]

−
= −l~kδ~j,~k,

(E −Hlead)
−1 l~k = l~k

(
E −Hlead + ε~k

)−1
. (A.7)

With the help of eqns. (A.6) and (A.7), we see that eq. (A.5) can be rewritten as

J+J−
∑

~q,~k,~q′,~k′

S−S+l†~k′,↑l~k,↑l~q,↓l
†
~q′,↓

(

E −Hlead − ε~q′ + ε~k

)−1

, (A.8)

which is eq. (4.7) of Section 4.1.
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A.2.2 List of contributions (Kondo model)

In this subsection the contributions corresponing to the panels c) to h) of fig. 4.2 to the
effective Hamiltonian will be listed. The following contributions result from diagram c),

∑

~k,~k′

∑

~q

JzS
zl†~k′,↑(↓)l~q,↑(↓) (E −Hlead)

−1
∑

~q′

JzS
zl†~q′,↑(↓)l~k,↑(↓)

=
∑

~k,~k′

J2z ρ0δDS
2
z l
†
~k′,↑(↓)

l~k,↑(↓)
(
E −D + ε~k

)−1
, (A.9)

where the spin up (spin down) term corresponds to the black (red) part. As S2
z can be

replaced by S2
z = 1/4, these terms describe potential scattering and can be included in

Hlead. This is also true for the terms originating from diagram d),
∑

~k,~k′

∑

~q

JzS
zl†~q,↑(↓)l~k,↑(↓) (E −Hlead)

−1
∑

~q′
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zl†~k′,↑(↓)l~.q
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2
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(

δ~k,~k′ − l
†
~k′,↑(↓)

l~k,↑(↓)

) (
E −D + ε~k

)−1
. (A.10)

Here additionally a δ~k,~k′ term appears by commuting the operators, which represents a
constant term that can be incorporated in a redefenition of E, see Section 4.1. The terms
corresponding to the black (red) parts of the panels e), f), g) and h) are, using the notation
σ = (↑, ↓) = (+,−),

∓
∑

~k,~k′

J±Jz
∑
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±
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1

2
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±
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∑
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±
(
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†
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) (
E −D − ε~k′

)−1
, (A.11)

respectively. Here the relations SzS± = ±S±/2 and S±Sz = ∓S± were used. These
terms can be collected and incorporated into the effective Hamiltonian by renormalizing
the parameters J±, see eq. (4.13).
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A.2.3 List of contributions (Anderson model)

Evaluating the contributions resulting from the panels c) to h), one needs the contractions
X2:1,σX1,σ:2 = X2:2, X0:1,σX1,σ:0 = X0:0 and X1,σ:2X2:1,σ = X1,σ:1,σ. Furthermore one has to
make use of [H0, X1,σ:2] = −UcX1,σ:2. We then receive the following contributions resulting
from panels c (d), e (f) and g (h),

∑

~q,~q′

V~qX2:1,↓(↑)l~q,↑(↓) (E −H0)
−1 V ∗~q′ l

†
~q′,↑(↓)

X1,↓(↑):2 = −
ρ0δD|V |2
D − εc − Uc

X2:2,

∑

~q,~q′

V ∗~q l
†
~q,↑(↓)X0:1,↑(↓) (E −H0)

−1 V~q′X1,↑(↓):0l~q′,↑(↓) = −
ρ0δD|V |2
D + εc

X0:0,

∑

~q,~q′

V ∗~q l
†
~q,↑(↓)X1,↓(↑):2 (E −H0)

−1 V~q′X2:1,↓(↑)l~q′,↑(↓) = −
ρ0δD|V |2
D + εc + Uc

X1,↓(↑):1,↓(↑) (A.12)

respectively, where the assumption V~q = V has been made.
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Group Study of Pseudo-Fermion and Slave-Boson Spectral Functions in the Single
Impurity Anderson Model, Phys. Rev. 73, 1275 (1994).
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