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We study, using numerical renormalization-group methods, the generalization of the Anderson impurity
model where the hopping depends on the filling of the impurity. We show that the model, for sufficiently large
values of the assisted hopping term, shows a regime where local pairing correlations are enhanced. These
correlations involve pairs fluctuating between on-site and nearest-neighbor positions.
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I. INTRODUCTION

The formation of local moments is the simplest and most
extensively studied manifestation of strong electron-electron
repulsion in impurities in metals.1–3 This phenomenon can
also be observed in mesoscopic systems coupled to metallic
leads.4,5 In the opposite limit, when the “impurity” becomes
a metallic grain whose electronic structure needs to be de-
scribed by many narrowly spaced levels, the electron-
electron repulsion leads to Coulomb blockade.6 The interme-
diate regime when the energy scales of interest(the
temperature, the strength of the Coulomb repulsion, and the
level spacing) are not too different in magnitude is not so
well understood. A similar situation arises in the study of
strongly correlated systems. Analogous to the Anderson im-
purity model is the Hubbard model7,8 for extended systems,
which leads to a Mott transition and the formation of local
moments at half filling. The opposite limit, when many lev-
els within the unit cell have to be included, leads, generi-
cally, to ordinary Fermi-liquid behavior.

The simplest modifications of the extended Hubbard
model taking into account the multiplicity of levels in the
ions in the unit cell lead to assisted hopping terms,9,10 which
modify substantially the phase diagram and tend to favor
superconductivity. Analogously, if the internal degrees of
freedom of the metallic grain are included, beyond the con-
stant interaction term which leads to Coulomb blockade, one
finds nonequilibrium effects11,12 which suppress the Cou-
lomb blockade. These effects are similar to the formation of
an excitonic resonance found in the excitation of core
electrons.13 One can also extend the Anderson impurity
model to include the effects associated to the existence of
many orbitals. When the influence of these orbitals is de-
scribed in terms of effective interactions within the restricted
Hilbert space of the usual Anderson model, one indeed finds
assisted hopping terms.14 The resulting model has been ana-
lyzed using a mean field, BCS-like decoupling of the inter-
action term14 and by the flow equation method15 (for a de-
scription of the method, see Refs. 16 and 17), which is well
suited to the analysis of impurity models.18–22 These works
show a tendency towards local pairing away from half fill-
ing, in agreement with the studies of bulk systems.9,10 We
present here more accurate calculations, using the numerical
renormalization-group method,23 which characterize the low-
energy properties of the model in a numerically exact way.

We examine the effect of the assisted hopping term on the
local density of states and find that with increasing assisted
hopping amplitude the peak characteristic to the mixed va-
lence regime of the Anderson model gets broadened and
shifted to negative frequencies. This result is consistent with
the fact that the assisted term enhances the occupation of the
local level, also found in the calculations. To demonstrate the
effect of the new term on the formation of the local moment,
we compute the local spin spectral function and find that the
spin susceptibility gets suppressed as the assisted hopping
term is turned on. This suppression might be interpreted as
the trace of the pairing. We also check the pairing correla-
tions in a more direct way and calculate the related spectral
functions. Our main result is that although the effect of the
assisted term on the pairing correlations on the local level
could be explained qualitatively by just considering the
renormalization of the level, the so-called off-diagonal cor-
relations(pairing between thed electron and the conduction
electrons located at the impurity position) are also enhanced.

The paper is organized as follows. The model and the
method of calculation are described in the following section.
Then, the main results are presented. Section IV gives the
main conclusions of our work.

II. THE MODEL AND METHOD OF CALCULATION

A. The model

We describe the effects of the internal degrees of freedom
of the impurity in terms of effective interactions defined
within the restricted Hilbert space of the standard Anderson
impurity.14 Using perturbation theory, this approach is justi-
fied when the typical level spacing within the impurity,D, is
much smaller than value of the Coulomb interactionU.
Then, it is easy to show that the Anderson model is recov-
ered in the limitD /U→`. We will study the Hamiltonian

H = HK + Himp + Hhyb+ Hassisted,

HK = o
k,s

ekck,s
† ck,s,

Himp = ednd + Und,+nd,−,
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Hhyb= o
k,s

Vsck,s
† ds + ds

†ck,sd,

Hassisted= o
k,s

dVnd,ssck,−s
† d−s + d−s

† ck,−sd, s1d

where HA=HK+Himp+Hhyb is the Anderson Hamiltonian,
and the assisted hopping terms are included inHassisted. We
have also definednd,s=ds

†ds and nd=nd,++nd,−. The param-
eter dV determines the strength of the assisted hopping ef-
fects. For the sake of simplicity we consider a flat band with
constant density of states for the conduction electrons, with
half bandwidthD. In the following we useD as the energy
unit.

B. The numerical renormalization-group method

To compute different quantities numerically we use Wil-
son’s numerical renormalization-group(NRG) method.23,24

In this method, after the logarithmic discretization of the
conduction band, one maps the original impurity Hamil-
tonian onto a semi-infinite chain with the impurity at the end.
One can show that as a consequence of the logarithmic dis-
cretization the hopping along the chain decreases exponen-
tially, tn,L−n/2, whereL is the discretization parameter and
n is the index of the site in the chain. The separation of the
energy scales due to the decreasing hopping provides the
possibility to diagonalize the chain Hamiltonian iteratively
and keep the states with the lowest lying energy eigenvalues
as most relevant ones. Since we know the energy eigenstates
and eigenvalues, we can calculate thermodynamical and dy-
namical quantities directly(e.g., spectral functions using
their Lehman representation).

Since NRG is a well-established numerical method with a
quite extended literature, we do not give the details of the
calculation here but refer to some important papers.

The numerical renormalization-group method is described
in details in Refs. 23 and 25, Krishnamurty80 where it was
used to obtain thermodynamical quantities. For the details of
calculation of dynamical quantities such as different spectral
functions we refer to the paper by Costiet al.26 Further de-
tails concerning the procedure how to put the discrete infor-
mation on the spectral density in order to arrive at continu-
ous functions can be found in Ref. 27. The method of
calculating dynamical quantities was extended to handle the
case of finite magnetic field in a proper way in Ref. 28.

We have performed the calculation usingL=2 and keep-
ing N=1024 states.

III. RESULTS

The model has four parameters,ed,U ,V, anddV. Previous
studies14,15 suggest that the most significant deviations from
the standard Anderson impurity model take place when the
filling of the d orbital is such that 1.2ø kndlø1.8. We focus
our attention to that regime as well. The filling is determined
by ed, U, and also bydV. The mean-field decoupling of the
assisted hopping term shows that the latter term contributes
to the renormalization of the position of the level. The value

of nd as function ofdV is given in Fig. 1. Since the assisted
hopping term renormalizes the impurity level downwards,
that term favors the occupancy of the impurity level.

The fact that the assisted hopping termdV and the
electron-electron repulsionU have opposite effects can be
appreciated in Fig. 2 where the influence of the value ofU on
nd, for a fixed value ofdV, is shown.

Figure 3 shows the imaginary part of the one-particle
Green’s function associated to the localized level, defined as

1

p
Gdsvd = o

m,s
uk0uds

†umlu2dsv − emd

+ o
m,s

uk0udsumlu2dsv + emd, s2d

where u0l sumld is the ground(mth excited) state of the full
Hamiltonian with energye0=0 semd.

In presence of no assisted hopping, the local density of
states exhibits a broad peak at the Fermi level which is char-
acteristic to the mixed valence regime of the Anderson im-
purity model. AsdV is increased from zero, the results show
a broadening of the resonance, also consistent with the fact
that, at the mean-field level, the assisted hopping term modi-

FIG. 1. (Color online) Value of nd as function ofdV for V
=0.2, ed=−0.025 andU=0.05.

FIG. 2. (Color online) Value of nd as function ofU for V=0.2,
«d=−0.025, anddV=0.15.
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fies the effective one-particle hopping. As one can see in Fig.
3, the resonance gets not only broadened but also shifted
down to negative energies. This fact could already be fore-
seen from the result for the occupation, since the occupation
(at T=0) is just the integral of the density of states for nega-
tive frequencies. This enhancement of the occupation must
leave its trace on the local-moment formation as well.

The influence of the assisted hopping term on the forma-
tion of a local moment can be inferred from Fig. 4, which
displays the spin-spin correlation function:

Im %S
zsvd =

1

2o
n

uk0und↑ − nd↓unlu2dsv − «nd. s3d

This function for dV=0 shows a pronounced peak at low
energies, which tends to the Kondo temperature below which
the local moment is quenched asU increases. At higher en-
ergies, Im%S

zsvd,v−1, which corresponds to a Curie suscep-
tibility as function of temperature. This behavior crosses
over to a Im%S

zsvd,v regime, which is characteristic to the

compensation of the moment.[Alternatively, one could say
that for very high frequencies Im%S

zsvd,v−1 as a conse-
quence of the constant time correlator of the spin for very
short times, while for small frequencies Im%S

zsvd shows a
linear dependence onv corresponding to the,t−2 asymptot-
ics of the correlation. AsdV is turned on, this peak becomes
broader and it is shifted towards higher energies indicating
the suppression of the local moment. This suppression is also
consistent with the previous results and might be considered
as a fingerprint of the local pairing.

To get a more direct insight to the relation of the assisted
hopping and the pairing, we now analyze the possible exis-
tence of pairing correlations in the model. Within the reduced
Hilbert space of the Anderson’s impurity model, we can de-
fine two types of such correlations:

Fsvd = o
n

uk0ud↑
†d↓

†unlu2dsv − end + uk0ud↑d↓unlu2dsv + end,

F8svd = o
n

k0ud↑
†d↓

†unlknusd↑c↓ − d↓c↑du0ldsv − end

+ k0ud↑d↓unlknusd↑
†c↓

† − d↓
†c↑

†du0ldsv + end, s4d

wherecs
† =okcks

† , representing the metal orbital closest to the
impurity. The functionFsvd in Eq. (4) gives the magnitude
of the on-site pairing, as present, for instance, in the
negative-U Anderson’s impurity model. The functionF8svd
describes off-diagonal pairing. Virtual Cooper pairs resonate
between the on-site position and that in which one compo-
nent of the pair is at the impurity and the other is in the
metal.

We first analyze the functionFsvd, which is a measure of
the on-site pairing. The functionFsvd is shown in Fig. 5 as a
function of the value ofdV. For comparison, we plot the
same function fordV=0 for different values ofe in Fig. 6.
The two functions show similar behavior, suggesting that the
main effect of the assisted hopping term on theon-site pair-
ing correlations is the renormalization of the level, since its
effect is difficult to be distinguished from the effect of a
change in the impurity electron level.

FIG. 3. (Color online) Imaginary part of the impurity one-
electron Green’s function, 1/pGdsvd, for V=0.2, «d=−0.025, and
U=0.05.

FIG. 4. (Color online) Spin-spin correlation function forV
=0.2, ed=−0.025, andU=0.05 and different values ofdV.

FIG. 5. (Color online) Local pair correlation,Fsvd, in Eq. (4) as
function of dV for e=−0.025,U=0.05, andV=0.2.
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We estimate the tendency towards pairing by using Eq.
(4) to define generalized susceptibilities:

F =E
0

`

dv
Fsvd + Fs− vd

v
,

F8 =E
0

`

dv
F8svd + F8s− vd

v
. s5d

These functions measure the tendency towards the different
types of pairing. Figure 7 givesF as function ofe for dV
=0, and as function ofdV for e=−0.025. As it can be appre-
ciated, the inclusion of the assisted hopping termdV does not
change significantly the value of this susceptibility. More-
over, its magnitude is not too different from the value ob-

tained for dV=0. On the other hand, Fig. 8 givesF8 as
function of e for dV=0, and as function ofdV for e=
−0.025. In this case, the effects ofdV are quite significant.
While of dV=0 this susceptibility remains close to zero for
the whole range of values ose studied, it raises swiftly as
soon asdV is finite. Hence, the assisted hopping term in-
duces an off-diagonal pairing term of the type described by
F8 given in Eq.(4).

This is our main result. In contrast to thelocal pairing on
thed level—which can be understood as the consequence of
the primary effect, the renormalization of the level—the off-
diagonal pairing correlations are increased by the enhanced
hopping rate which allows stronger fluctuations if the spin of
the d electron and the local conduction electron have oppo-
site orientations. There is another interesting feature of this
result. Though the formation of the local moment is strongly
suppressed and the impurity has no well-defined spin state,
the off-diagonal correlations are still enhanced. This would
indicate that this type of pairing manifests itself in a dynami-
cal way. The spin state of both the local level and the
conduction-electron state fluctuate, but in a correlated way.

IV. CONCLUSIONS

We have studied, using the numerical renormalization-
group method, the Anderson impurity model with a hopping,
which depends on the charge state of the impurity. This is the
simplest model which includes information about the internal
structure of the impurity, beyond a single, rigid, electronic
state.

Our results indicate that, when the assisted hopping is
sufficiently strong, the model shows a crossover to a phase
with off-diagonal pairing correlations. It would be interesting
to know if this regime could be realized in mesoscopic de-
vices, where the internal structure of a quantum dot can be
important.

FIG. 6. (Color online) Local pair correlation,Fsvd, in Eq. (4) as
function of e for dV=0, U=0.05, andV=0.2.

FIG. 7. (Color online) On-site pair susceptibilityF as defined in
Eq. (5) as a function ofe for dV=0 (top), and as a function ofdV
for e=−0.025(bottom).

FIG. 8. (Color online) Off-diagonal pair susceptibilityF8 as
defined in Eq.(5) as function ofe for dV=0 (top), and as a function
of dV for e=−0.025(bottom).
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