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Zusammenfassung

Thema der vorliegenden Arbeit ist die Beschreibung von Ladungstransport-
eigenschaften molekularer Systeme, wenn diese das Verbindungsstück zweier
Elektroden bilden. Einen technologischen Meilenstein setzte auf diesem Ge-
biet die Rastertunnelmikroskopie (Binnig et al., 1981), mit der die gezielte
Untersuchung von Transporteigenschaften einzelner, auf Oberflächen adsor-
bierter Moleküle möglich ist. Parallel dazu ermöglicht der immense Fort-
schritt in der Miniaturisierung klassischer elektronischer Bauteile die Her-
stellung von Zuleitungsstrukturen auf der Nanometerskala, die mit einzelnen
oder nur wenigen Molekülen überbrückt werden können (Reed et al., 1997).
Es besteht die Hoffnung, mit solchen Systemen Schaltungselemente zu rea-
lisieren, die heutigen elektronischen Bauteilen in Hinblick auf ihre Effizienz
und den Grad ihrer Miniaturisierung deutlich überlegen sein werden.

Experimente mit diesen molekularelektronischen Apparaten werfen die
Frage auf, wie sich die chemische Natur eines Moleküls sowie seine Kopplung
an die Oberfläche der Elektroden auf die Leitungseigenschaften auswirkt.
Eine theoretische Beantwortung dieser Frage erzwingt eine quantenmechani-
sche Beschreibung des Systems. Da trotz bedeutender Fortschritte bisher nur
beschränkt Übereinstimmung zwischen den Ergebnissen besteht, handelt es
sich hierbei um ein aktuelles Gebiet der Grundlagenforschung.

Diese Arbeit beginnt mit einem Überblick über die gängigen Methoden
zur theoretischen Beschreibung von Ladungstransport durch molekulare Sy-
steme. Anschließend werden Methoden der Quantenchemie behandelt, da
diese in nahezu allen Ansätzen zur Beschreibung von elektronischem Trans-
port durch molekulare Systeme Anwendung finden.

Auf diese allgemeinen Darstellungen folgt eine detaillierte Beschreibung
des numerischen Verfahrens, das im Rahmen dieser Dissertation implemen-
tiert worden ist. Mit der vorliegenden Arbeit wird eine Verallgemeinerung der
ursprünglichen Methode eingeführt, die vormalige Einschränkungen bezüglich
der betrachtbaren Systeme erfolgreich beseitigt.

Diese erweiterte Methode wird dann verwendet, um der durch Experimen-
te von Dupraz, Beierlein und Kotthaus (2003) aufgekommenen Frage nachzu-
gehen, welchen Einfluß verschiedene geometrische Anordnungen einer Gruppe
von identischen Molekülen auf die Leitfähigkeitseigenschaften eines moleku-
larelektronischen Apparats ausüben. Unsere Untersuchungen zeigen, daß sich
die Transporteigenschaften nur bei Bildung von Molekülgruppierungen mit
bedeutender intermolekularer Wechselwirkung wesentlich von denen einzel-
ner Moleküle unterscheiden. Damit können wir Konsequenzen für die Re-
produzierbarkeit gewonnener Meßdaten aus der Stabilität der Verbindung
zwischen Molekül und Elektroden ableiten.



x Zusammenfassung

Abschließend befassen wir uns mit der Berechnung von Rastertunnelmi-
kroskop-Bildern und präsentieren eigene Rechnungen, die im Rahmen einer
Kooperation mit Constable, Hermann et al. (2004) durchgeführt werden.
Durch einen Vergleich mit experimentellen Bildern sollen verschiedene Kon-
formationen eines auf Graphit adsorbierten Moleküls identifiziert werden. Die
enorme Größe des Moleküls führt zu einer Gesamtsystemgröße, die eine nu-
merische Durchführung der Algorithmen in der Praxis bisher scheitern ließ.
Durch eine von uns eingeführte neuartige Berechnung sind wir in der Lage,
erstmalig weitaus größere Systeme zu betrachten, als dies bisher möglich war.



Chapter 1

Introduction

The subject of this thesis is the description of charge transport properties of
molecular systems, bridging two electrodes. Although electrical phenomena
were already known to the Ancient Greeks, systematic studies regarding
stationary charge transport (i.e. electrical current) had not been possible until
the year 1800, when Alessandro Volta succeeded in building the prototype
of today’s batteries. Shortly after Thomson (1897) discovered the electron,
Drude (1900a,b) gave the first atomic model for electrical conduction by
describing the electrons in a metal according to the kinetic theory of gases.
Despite its success in explaining many observations, some properties of metals
measured at low temperatures, like the specific heat, drastically disagree
with the predictions of the model. The underlying classical concepts proved
to be causing the disagreement. Therefore, detailed descriptions of charge
transport need to be based on quantum mechanics. In particular, this is true
when transport through individual molecules is considered.

Experimentally, it has not been possible to measure the transport prop-
erties of single molecules until about 20 years ago. The major difficulty was –
and still is – the controlled attachment of an individual molecule to metallic
or semiconducting leads, which is however necessary to apply a bias voltage.
With the advent of scanning tunnelling microscopy, this type of measure-
ments became feasible for the first time. Originally developed for obtaining
topographic surface images with atomic resolution (Binnig et al., 1981), se-
lective studies of transport properties of individual molecules adsorbed on
surfaces can now be performed. Parallel to this development, the tremendous
advances in fabricating increasingly smaller semiconductor devices together
with experiments on self-assembling molecules, render it possible to build
lead contacts on the nanometer scale, which can be bridged by single or few
molecules (Reed et al., 1997). There is hope for the realisation of circuit
elements, built from such systems, which outclass today’s electronic circuits
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with respect to both efficiency and miniaturisation.
As of today, this is still a field of intense fundamental research, the reason

being twofold: at first, the fabricated devices still lack reproducibility mainly
because the deposition of molecules has to be performed in an uncontrollable
fashion. Secondly, the impact on the measured conductance properties due
to both the chemical nature of the molecule itself and its bonding to the lead
surface is not consistently understood.

Because of this lack of understanding, intense theoretical studies go along
with the experiments. The ultimate aim is to correlate the molecular elec-
tronic structure with the conduction properties in a predictive manner, which
would be a crucial step towards a directed design of molecular electronic de-
vices.

This thesis is organised in the following way. In Chap. 2 we start by
addressing the question of how one can describe current across a molecular
system, attached to a source and a drain lead. An overview of well-established
theoretical methods for dealing with this problem is given. We characterise
them in terms of underlying assumptions and applied approximations. In
particular, we distinguish between two types of approaches, perturbative
ones and those based on scattering theory. Among the perturbative meth-
ods, we discuss the Tersoff-Hamann formula which gave the first theoretical
explanation of scanning-tunnelling microscope images by relating them to
the local density of states of the substrate surface. We then motivate why it
is necessary to go beyond this approximation which leads us to the scatter-
ing approaches. They have in common that charge transport is attributed
to the scattering from incoming electron waves to outgoing ones. This inter-
pretation is known as the Landauer-Büttiker formalism which we describe in
detail.

Next, we are concerned with the methods of quantum chemistry, as they
provide means of describing molecular systems with respect to their atomic
composition. This is why they are involved in almost any description of elec-
tronic transport through molecular systems. In a sense they are the counter-
part to so-called model Hamiltonians, the usual starting points in mesoscopic
physics, which more or less completely ignore the material specific part of a
system and are simple enough to allow for a proper many-body treatment.
Quantum chemical methods, in contrast, take position and chemical nature
for each atom of the system into account, which results in complicated Hamil-
tonians and therefore require a trade-off regarding the many-body nature of
the problem to be made. One distinguishes ab-initio, density-functional and
semiempirical methods, each of which category is outlined in Chap. 3 with
special attention to the approximations involved.

Following this general part, a detailed presentation of the numerical
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method we have implemented for the study of charge transport through
molecular systems is given in Chap. 4. It is based on the so-called elastic-
scattering quantum-chemistry method, which was introduced by Sautet and
Joachim (1988a). Originally, the method was derived in a one-dimensional
context, and although it was later extended to three dimensions, an anomaly
of the one-dimensional case gave rise to a restriction of the systems which one
was able to study. With this thesis, a proper three-dimensional generalisa-
tion of the method is introduced. By a thorough treatment of the underlying
scattering problem, we are able to lift the former restriction. In addition to
that, our generalised method is numerically more stable.

The remainder of this thesis is then devoted to the application of theo-
retical methods to specific experimental situations. Content of Chap. 5 are
molecular electronic devices. We address the question raised by the experi-
ments of Dupraz et al. (2003), how the conductance properties of a molecular
electronic device are influenced by a change in the geometrical alignment of
the molecules bridging the electrodes. Our analysis reveals that the trans-
port properties of a group of identical molecules differ from those of a sin-
gle molecule only when inter-molecular interactions are considerably large.
In particular, for those inter-molecular distances which are to be expected
for typical self-assembled monolayers, such an effect does not occur. Only
for molecular clusters with distances almost as small as atomic distances, a
significant change in the conduction properties is observed. These clusters
represent defects in the monolayer and can be produced when the coupling
between molecules and lead surface is sufficiently weak. The strength of the
coupling mainly depends on the chemical type of the molecular group which
is responsible for the adsorption to the leads.

In Chap. 6 we consider scanning tunnelling microscope image calculations.
After an introduction to the working principle of the device, we review recent
numerical studies which proved to be necessary in order to interpret exper-
imental image data correctly. Then we present our own calculations from a
cooperation with Constable et al. (2004) to support the interpretation of re-
cent STM images. The goal of the experiment is to identify different possible
conformations for a molecule when adsorbed on graphite. As the system un-
der investigation is considerably large, we were able to produce the numerical
images only by introducing a special treatment for a large eigenvalue prob-
lem, which cannot be solved sufficiently accurately by conventional methods.
This is the first time that a method has been implemented that can perform
image calculations for a system of that size.
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Chapter 2

Description of charge transport

The problem which we address in this chapter can be stated as follows: how
to describe current across a molecular system, when it is attached to a source
and a drain lead both having different chemical potentials? To this end the
theoretical methods which are in use for modelling electron tunnelling in
molecular systems are surveyed. These methods can be divided into two
categories: the ones which are based on perturbation theory and the ones
which apply scattering theory.

Within the first category the solution for one part of the system is assumed
to be known. Charge transport is described as the transition between such
known states due to the influence of the rest of the system, which constitutes
the perturbing potential or enters via tunnelling matrix elements.

Scattering approaches take solutions to the entire system and distinguish
between incoming states which move in direction of the molecular region and
outgoing states which move away from it. Charge transport is attributed to
the scattering from in-states to out-states. This interpretation is known as
the Landauer-Büttiker formalism.

In this chapter we first deal with perturbative methods, among which we
distinguish two different approaches. Then we turn to scattering methods of
which we discuss the basic principles. A full explanation of the approach we
have implemented, which belongs to the latter type, is deferred to Chap. 4.

2.1 Perturbative approaches

The central element of perturbation theory is a so-called unperturbed system
Σ0, described by a HamiltonianH0, for which one is in principle able to obtain
the eigenfunctions and eigenenergies exactly. This system is then perturbed
by an interaction HamiltonianHint and this interaction is assumed to be small
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as compared to the energy scales of the unperturbed system, so that one can
expand its influence into a converging power series. We refer to schemes which
follow this classic form of perturbation theory as rate-equation approaches
(Sec. 2.1.1). Within those H0 describes the molecular region only while Hint

describes the coupling to the leads.

All subsequent perturbative methods take a different viewpoint. There
the unperturbed system consists not only of a single system but of two sys-
tems (called Σ1 and Σ2 corresponding to source and drain lead1) which do
not interact with each other. They are described by the Hamiltonians H1

and H2. The molecular region plays the role of the perturbing potential.
Ordinary perturbation theory can not be applied because the eigenfunctions
for both systems are not orthogonal. To overcome this problem one uses an
approach which relates back to Bardeen (1961) and is the content of Sec.
2.1.2. With only a few further assumptions the Tersoff-Hamann formula
(Sec. 2.1.3) can be derived, which historically constitutes the first theoretical
interpretation of STM images. Finally we remark on methods going beyond
the Tersoff-Hamann approximation.

2.1.1 Rate equations

As mentioned in the introduction this first approach to electron transport
differs from the following ones because the unperturbed system Σ0 consists
of a single molecule only, while the interaction part represents a connection to
the leads. It can therefore not be applied to STM image calculations, because
a molecular adsorbate can not be described without the substrate surface
and furthermore, as an adsorbed molecule is hardly ever weakly coupled to
the substrate, perturbation theory is not applicable. Therefore this method
has only been used to calculate conductance properties of single molecules,
assuming a situation of weak coupling to the leads (Hettler et al., 2002,
2003). Charge transport is related to the transition of electronic states from
the molecular system Σ0 to states within the leads, due to the action of the
coupling.

Since within this approach one first treats the molecular system as being
isolated from the leads, it has the advantage that it allows for a detailed
many-particle description. The presentation follows Hettler et al. (2002).

1We have chosen numerical subscripts (instead of e.g. L and R for left and right lead)
because they can easily be extended to more than two leads.
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The Hamiltonian

We think of the entire system as being divided into three parts, the molecular
system Σ0, as well as two leads. The total Hamiltonian reads

H = H0 +Hint, (2.1)

where the isolated molecular part is described by H0 and the interaction part
by Hint, which couples the molecule to the leads.

The molecular region is treated from a many-particle point of view and
therefore correlation effects can properly be accounted for by including two-
body operators in H0. One of the well established tools for diagonalising such
a Hamiltonian like direct numerical diagonalisation can be used to obtain
both its spectrum and the corresponding electronic eigenfunctions.

The coupling term Hint merely consists of hopping terms from the lead
to the molecule and vice versa. To be specific, the interaction Hamiltonian
is supposed to be of the form

Hint =
∑
l=1,2

(
Γ

2πρe

)1/2∑
kσi

(
tlic
†
iσalkσ + h.c.

)
, (2.2)

where the operators ciσ, c
†
iσ destroy and create electrons with spin σ in state

i of the molecule and the operators alkσ, a
†
lkσ act correspondingly in the leads

(l = 1, 2), with a dispersion relation E(lkσ) = El
k. The density of states

in the leads ρe is assumed to be constant. The parameters tli account for a
variable coupling between the individual states. The interaction Hamiltonian
can be extended to also include a coupling to bosonic degrees of freedom
(i.e. photons and/or phonons), which we do not consider here for simplicity
reasons (see Hettler et al., 2002).

Master equation

With the diagonalisation of H0 obtained, a master equation is set up for the
occupation probabilities Ps of the molecular many-body states. Transition
rates can then be calculated using perturbation theory with respect to the
coupling constant Γ.

The transition rate wss′ between two molecular states s, s′ is composed of
the tunnelling rates wl±

ss′ for electrons tunnelling from lead l to the molecule
(+) or in the other direction (−), respectively:

wss′ =
∑

l

(wl+
ss′ + wl−

ss′). (2.3)
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These tunnelling rates can be computed using the golden rule:

wl±
ss′ =

2π

~
|
∑
φl φ′

l

〈φ′l|〈s′|Hint|φl 〉|s〉δ(Eφl
+ Es − Eφ′

l
− Es′)|2, (2.4)

with |φl 〉 denoting states in lead l. If these lead states are assumed to
be occupied according to a Fermi function fl(E), then one can replace the
expression |

∑
φlφ

′
l
〈φ′l|a

†
lkσ|φl〉|2 by fl(E

l
k)ρe and |

∑
φlφ

′
l
〈φ′l|alkσ|φl〉|2 by [1 −

fl(E
l
k)]ρe. The in- and out-tunnelling rates thus become

wl+
ss′ =

Γ

~
fl(Es − Es′)

∑
σ

|
∑

i

tli〈s|c
†
iσ|s′〉|2, (2.5)

wl−
ss′ =

Γ

~
[1− fl(Es − Es′)]

∑
σ

|
∑

i

tli〈s|ciσ|s′〉|2. (2.6)

To obtain a stationary solution for the occupation probabilities Ps of the
molecular states, they have to fulfil the following master equation

Ṗs = 0 =
∑

s′

(wss′Ps′ − ws′sPs). (2.7)

Solving this system of equations yields the occupation probabilities Ps. Now
the current from the molecule into one of the leads (say l) is proportional to
the net transition of states:

Il = e
∑
ss′

(wl+
ss′Ps′ − wl−

s′sPs). (2.8)

In summary we note that this approach for calculating the current can
be used to treat the molecular system in great detail. This is achieved by
treating the surface of the leads, which are by themselves very complicated
objects, as a simple perturbation to the molecular Hamiltonian. Therefore
the method is limited to the condition of weak coupling.

2.1.2 Bardeen formula

Now we change the viewpoint and consider two isolated systems, which do
this time correspond to macroscopic bulk material, i.e. the leads. Bardeen
(1961) addressed this problem by considering two sets of states, which in the
case of STM correspond to states in the isolated substrate together with an
adsorbate and the isolated STM tip. These states each solve the Schrödinger
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equation in their part of the system only. The matrix element for the transi-
tion of a state Ψµ in the one region to a state Ψν in the other region is given
by

Mµν =

∫
Ψ∗µ[H − Eν ]Ψνd

3r. (2.9)

In ordinary perturbation theory (H −Eν)Ψν would reduce to the perturbing
potential VintΨν . Here the situation is different: there is no perturbing po-
tential and therefore the expression (H −Eν)Ψν vanishes in that part of the
system where Ψν solves the Schrödinger equation, but it is non-zero in the
other part of the system.

By partial integration, Bardeen was able to show that the expression in
Eq. (2.9) is proportional to the current operator applied to the states Ψµ and
Ψν :

Mµν = − ~2

2m

∫
S

[Ψ∗µ∇Ψν −Ψν∇Ψ∗µ]d2r, (2.10)

where S is an arbitrary surface lying entirely within the barrier region sepa-
rating the two systems. (The operator defined by the matrix elements Mµν

is referred to as the transfer Hamiltonian.)

Because the matrix element of the transition is proportional to the matrix
element of the current operator, it is justified to write the rate of tunnelling
from state µ to state ν as:

Γµν =
2π

~
|Mµν |2δ(Eµ − Eν). (2.11)

This is the so-called Bardeen formula.

Although the Bardeen formula was originally derived in the context of
superconducting tunnelling, it became of great importance for the first in-
terpretations of STM images, due to the work of Tersoff and Hamann.

2.1.3 Tersoff-Hamann formula

By applying the Bardeen formula to the case of STM imaging, Tersoff and
Hamann were able to show that the tunnelling current of an STM is pro-
portional to the surface local density of states (LDOS) at the position of the
tip evaluated at the Fermi energy (Tersoff and Hamann, 1983, 1985). This
famous result is obtained under the following assumptions: firstly perturba-
tion theory in the tip-sample interaction must be applicable, secondly the
applied bias voltage as well as the temperature must be low, and finally the
entire tip is considered to be merely a point probe.
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The derivation is straightforward. Starting from Eq. (2.11), the current
between tip and sample is related to the tunnelling matrix elements between
eigenstates of these two systems:

I =
2πe

~
∑
µ,ν

f(Eµ)[1− f(Eν + eV )]|Mµν |2δ(Eµ − Eν), (2.12)

with

Mµν = 〈Ψµ|Vtip|Ψν〉.

Assuming low temperature and low voltage Eq. (2.12) can be approximated
as

I =
2π

~
e2V

∑
µ,ν

|Mµν |2δ(Eµ − EF )δ(Eν − EF ). (2.13)

If the tip is simply taken to be a point probe located at r0, then the tunnelling
matrix element reduces to Ψµ(r0) and one arrives at the Tersoff-Hamann
formula:

I ∝
∑

µ

|Ψµ(r0)|2δ(Eµ − EF ). (2.14)

2.1.4 Beyond the Tersoff-Hamann approximation

The analytical expression (2.14) is appealing as it relates an STM image
directly to the surface electronic structure (note that it is not the electronic
density, as Eq. (2.14) is evaluated at the Fermi energy only). However there
are situations where the underlying assumptions are not justified.

First of all it may be too crude to entirely neglect the electronic structure
of the tip, for example when it has a substantial spatial modulation. Such
situations are not well described by the Tersoff-Hamann formula, which as-
sumes an s-state for the tip orbital. In these cases, the Bardeen formula (Eq.
2.11) has to be evaluated numerically. This has been done for example by
Tsukada et al. (1990), who performed separate electronic structure calcula-
tions for substrate and tip with an ab-initio method. Chen (1990a,b) has
studied the influence of STM tips, for which a d-type orbital dominates the
tunnelling process.

More severely, whenever a perturbative approach is questionable, the
Bardeen formula can not be applied at all. Perturbation theory most ob-
viously fails in describing situations where the STM tip is used to actively
manipulate the sample surface. For example, it is possible to remove individ-
ual molecules, adsorbed on the sample surface, by lowering the tip-surface
distance at the position of that molecule below a certain critical value. Apart
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from these extreme cases, perturbation theory is considered to become in-
accurate long before the onset of such irreversible effects, i.e. for distances
larger than those being involved in manipulation experiments.

Thus, there are relevant cases where perturbation theory itself breaks
down and alternative frameworks then have to be used which do not rely on
weak coupling between parts of the system but treat the system as a single
entity. This will be considered in the next section.

2.2 Scattering approaches

To go beyond perturbation theory, where the tip influence is viewed as per-
turbing the bulk potential and vice versa, it is necessary to treat the en-
tire system containing tip and sample (for STM calculations) or containing
molecule and leads (for conductance calculations of molecules) in a unified
way. One possible such framework is scattering theory (see e.g. Taylor, 1972).

To our knowledge, all non-perturbative theories for the STM imaging pro-
cess solve the scattering problem in the single-particle approximation (Lucas
et al., 1988; Sautet and Joachim, 1991; Doyen et al., 1993; Ness and Fisher,
1997). This is because one needs a description of the system which ac-
counts for small geometrical changes (i.e. movement of the tip). Explicit
many-particle formalisms are based on model Hamiltonians which contain
parameters that cannot be directly obtained from the spatial arrangement
of the system. They are therefore not suited for our purpose and we restrict
ourselves to the single-particle approximation, too.

2.2.1 Definition of the scattering matrix

For the purpose of scattering theory, it is useful to decompose the system
into a bulk region containing the leads (described by the Hamiltonian Hlead)
and a defect region, being described by an external potential V (x). This
defect region has to be spatially localised, and its external potential V (x)
(due to atomic cores and external fields if present) has to drop sufficiently
fast [V (x) ∼ O(|x|−p), for |x| → ∞ and p > 1].

Now consider a wave packet approaching the defect region, yet being far
away from it. Its wave function Ψ0(x, t0) can be expressed in terms of free
solutions φk, i.e. in eigenstates of Hlead (Bloch waves in our case). To be
specific, let its representation in terms of φk be

Ψ0(x, t0) =

∫
d3k akφk(x), (2.15)
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with ak peaked around some k0. In this representation, the time evolution of
Eq. (2.15) will assume a very complicated form once the wave packet enters
the scattering region. However, one can define scattering states, which are
eigenstates of the full Hamiltonian H = Hlead + V and therefore stationary
in time. The wave packet can also be expanded in terms of these scattering
states and it can be shown that there exists a special choice these scattering
states ψin

k (called in-states) for which the wave packet expansion coefficients
Ak are identical to those of the expansion in terms of free solutions (Ak = ak).
Therefore, as long as t0 is in the distinct past one has:

Ψ0(x, t0) =

∫
d3kakψ

in
k (x). (2.16)

A corresponding relation between free solutions and so-called out-states
(which are also eigenstates to H = Hlead + V ) can be established by consid-
ering a wave packet moving away from the defect region. In this sense, any
free solution to Hlead is asymptotically equal to a scattering state (solution
to H = Hlead + V ).

The scattering problem can be formulated in the following way: How do
eigenstates of Hlead evolve under the action of H = Hlead + V ? Put in other
words: what is the probability amplitude of an incoming wave packet peaked
around k to evolve into an outgoing one peaked around k′ due to the action
of V ? This information is contained in the scattering matrix. Any eigenstate
φk to Hlead is asymptotically equal to an in-state ψin

k . This in-state is an
eigenstate to the full Hamiltonian Hlead +V and can also be expressed in the
basis of out-states. This basis transformation is described by the scattering
matrix:

|ψout
k0
〉 = S · |Ψin〉. (2.17)

As each out-state is again asymptotically equal to a free solution of Hlead, the
scattering matrix describes in which way incoming free solutions are scattered
into outgoing ones due to the action of V . The details of the scattering
problem we are interested in together with a derivation of the scattering
matrix directly from the Schrödinger equation is presented in Chap. 4.

The remaining question is how to obtain transport properties once the
scattering matrix is known. This will be described in the next section.

2.2.2 Landauer-Büttiker formalism

Within the Landauer-Büttiker formalism (Büttiker et al., 1985), current is
described as a result of electron transmission through an impurity region in
a single electron picture. This concept is presented here. We first consider
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a single narrow conductor placed between two big contacts and derive the
quantisation of conductance. We then consider the case of a scatterer placed
between two narrow conductors and end up with the Landauer formula. Parts
of the presentation follow Datta (1995).

Quantisation of conductance

To determine the current carried by a single electron, we start from the
conservation of charge, which can be expressed via the equation of continuity:

∂t

∫
ρd3x = −

∮
ρv · dA. (2.18)

This equation must hold for any region in space. With the definition of
current density j := ρv and using Gauss’ theorem, Eq. (2.18) can be written
as

∂tρ+∇ · j = 0. (2.19)

The current dI through an infinitesimal small area dA is then defined as
dI := j · dA. The current Ie which is produced by a single electron moving
with velocity ve = ven within a conductor of length L and cross section
A = An (n being the unit normal) therefore is

Ie =
−eve

L
. (2.20)

Now what is the velocity ve of an electron? The electronic states within a
narrow conductor belong to different bands n. Each of these bands is charac-
terised by its dispersion relation En(k). For a narrow conductor along the z-
axis, all wave vectors are of the form k = kez. If we take the wave function for
an electron with wave vector k0 to be a Fourier composition of plane waves (all
within a single band n) ψ(x, y, z, t) =

∫
dkα(n, k)ψ(x, y) exp(ikz−iEn(k)t/~)

with coefficients α(n, k) peaked around k0, then the corresponding velocity
is given by the group velocity i.e. the velocity of the maximum position of
the wave package. The position of the maximum is located at the stationary
point of the phase factor:

z =
t

~
∂En(k)

∂k

∣∣∣∣
k=k0

(2.21)

and therefore

vn,k0 =
1

~
∂En(k)

∂k

∣∣∣∣
k=k0

. (2.22)

The total current (in one direction) is produced by all electrons moving
in that direction. Assuming the electronic states of the narrow conductor



14 2. Description of charge transport

with kz > 0 to be occupied according to a Fermi function f(E − µ>) with
chemical potential µ>, the total current adds up to

I> = −2
e

L

∑
n,k

1

~
∂En(k)

∂k
f(En(k)− µ>). (2.23)

The factor of two is included to account for spin degeneracy and the sum-
mation runs over all bands n and all k ∈ R : k = 2πj/L, j ∈ N. For large L,
the sum over k can be approximated by an integral

I> = −2e

h

∑
n

∫ ∞
0

dk
∂En(k)

∂k
f(En(k)− µ>)

= −2e

h

∑
n

∫ Emax
n

Emin
n

dEf(E − µ>)

= −2e

h

∫ ∞
−∞

dEM(E)f(E − µ>), (2.24)

where M(E) counts the number of bands with accessible states at energy E.
A few remarks about this result: for a system in equilibrium, where

µ< = µ>, the current obtained by Eq. (2.24) is compensated by an equal
current in the opposite direction. Only if the two chemical potentials differ,
a net current is present. At low temperature and with a relative shift in
the chemical potential µ> = µ< + eV due to a small applied voltage V , the
resulting current is

Itot = −M(EF )G0V, (2.25)

where the quantum of conductance

G0 :=
2e2

h
(2.26)

has been introduced. This is a remarkable result, as each band with accessible
states at the Fermi level contributes the same universal amount G0 to the
total conductance G := dItot/dV .

Current described by transmission – Landauer formula

Now we consider the case where there is a scatterer located in the middle
of two narrow conductors as depicted in Fig. 2.1. Within the region to the
left of the defect (called region 1), the electrons will produce the incoming
current

I>
1 = −2e

h

∫ ∞
−∞

dEM1(E)f(E − µ>) (2.27)
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Region 1 Region 2

Figure 2.1: Schematic representation of the system. To the left and right
there are wide contacts. The defect (in the middle) is coupled to them via
small leads with a finite number of modes.

as we have calculated in the previous section (Eq. 2.24). Analogously, the
incoming current from region 2 reads

I<
2 = −2e

h

∫ ∞
−∞

dEM2(E)f(E − µ<). (2.28)

At the defect each incoming wave is scattered in a different way, depending on
its energy and the band it belongs to. This scattering redistributes the wave
amplitude among all the accessible bands (numbered by M1(E) in region 1
and M2(E) in region 2) and results in reflected amplitudes (within conductor
1) and transmitted ones (within conductor 2). We introduce the scattering

coefficient sm←n(E ′, E) := am(E′)
an(E)

, as the ratio of the scattered amplitude

am(E ′) within band m at energy E ′ in region 2 and the incident amplitude
an(E) within band n at energy E in region 1. These scattering coefficients can
either be calculated by Green’s function techniques or by directly calculating
the scattering matrix (see Sec. 2.2.1 and Sec. 4.2.2).

The current density associated with a wave of amplitude an(Ek) is propor-
tional to |an(Ek)|2vn(k). This gives rise to the definition of the transmission
function T (E):

T (E) =
∑
n∈1

∑
m∈2

∫
Tm←n(E ′, E)dE ′,

Tm←n(E ′, E) = |sm←n(E ′, E)|2vm

vn

.

From now on, we will consider elastic scattering only. Therefore the integra-
tion over E ′ can be performed trivially as all transmission coefficients with
E ′ 6= E are zero. And because the scattering matrix is unitary for elastic
scattering, the transmission function for transmission from conductor 1 to 2
is identical to the one for transmission from conductor 2 to 1:

T (E) =
∑
n∈1

∑
m∈2

Tm←n(E) =
∑
m∈2

∑
n∈1

Tn←m(E). (2.29)
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Because of charge conservation reflection is described by the function

Ri(E) := Mi(E)− T (E), (2.30)

where i labels conductor 1 or 2 respectively.
When we replace M1(E) in Eq. (2.27) by T (E), then we obtain that

part of the outgoing current within conductor 2, which is produced by trans-
mission from conductor 1. There is a second part due to reflection of the
incoming current of conductor 2, which is obtained by replacing M2(E) in
Eq. (2.28) with R2(E). The outgoing current in conductor 2 is the sum of
both contributions:

I>
2 = −2e

h

∫
[(T (E)f(E − µ>) +R2(E)f(E − µ<)] dE. (2.31)

The total current within conductor 2 now is the difference between incoming
and outgoing currents I>

2 − I<
2 :

Itot
2 = −2e

h

∫
[T (E)f(E − µ>) +R2(E)f(E − µ<)−M2(E)f(E − µ<)] dE

(2.30)
= −2e

h

∫
T (E)[f(E − µ>)− f(E − µ<)] dE. (2.32)

This is the so called Landauer formula (Landauer, 1957). Again we see that in
equilibrium there will be no net current. Only if the two chemical potentials
are biased by an external voltage (see Fig. 2.2), a current can arise across
the scatterer.

E E

R T T

Figure 2.2: The occupation of energy levels within left and right contact at
zero temperature. Because of an applied bias there is a net current produced
by transmission across the defect.



Chapter 3

Quantum-chemical description
of nanoscale systems

Before we describe the basics of quantum-chemical methods for the descrip-
tion of systems on the nanometer scale, we answer the question why we do not
use one of the standard models in physics commonly used for small systems,
like the Hubbard or Anderson model.

When one deals with an electronic many-particle system, a complete so-
lution starting from first principles is typically not possible. The hardest
problem is to treat the electron-electron correlations correctly. In practice,
there are two possible approaches to this problem: either one applies ap-
proximations with respect to these correlations, or one concentrates on the
electronic correlations only, thereby dropping all system dependent informa-
tion, by discretising the Hilbert space and introducing free parameters de-
scribing the interaction between neighbouring electrons. The latter approach
provides insight into effects merely produced by interaction and allows for a
classification of the underlying model with respect to the parameters. When
compared to experimental results, the model parameters can be determined
and by this the system under investigation can be classified.

However, it is not always clear how the model parameters have to be ad-
justed (or if the model is applicable in the first place), when some of the exper-
imentally available parameters are varied. Therefore, the model-Hamiltonian
approaches are less suited for studying the influence of experimental details
like small variations in the atomic structure or a change in chemical type.
For example the scanning tunnelling microscope utilises the high sensitivity
of the tunnelling current with respect to tiny changes in the tip position to
obtain topographic surface information (see Chap. 6). A theoretical method
aiming to reproduce such images has to include the geometrical details of
the setup and this is in practice only feasible when approximations to the
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treatment of the electron-electron interactions are applied.
Methods which aim to describe systems on the atomic scale are referred

to as quantum-chemical. During the years, starting in the late 1920’s with
the rise of quantum mechanics, a vast number of such methods has been de-
veloped. As a first step one distinguishes between ab-initio and semiempirical
methods. The first do not take any input parameters besides fundamental
physical constants, while the semiempirical methods allow parameters to be
either taken from experiment or to be fit to best reproduce experimentally
accessible observables. We first consider the ab-initio methods before we turn
to the semiempirical ones.

3.1 Ab-initio quantum-chemical methods

As there is quite a number of so called ab-initio methods, it is helpful
to characterise them according to the underlying approximations to the
many-particle problem. Thereby we are following Zülicke (1985), Szabo and
Ostlund (1996) and also Pople (1977).

3.1.1 Separating nuclear and electronic problem

Starting from the non-relativistic Hamiltonian for N electrons and M nuclei

H = −
N∑

i=1

~2

2me

∇2
i −

M∑
n=1

~2

2Mn

∇2
n −

N∑
i=1

M∑
n=1

e2Zn

|ri −Rn|
(3.1)

+
N∑

i=1

N∑
j>i

e2

|ri − rj|
+

M∑
n=1

M∑
m>n

e2ZnZm

|Rn −Rm|
,

where Mn is the mass of nucleus n and Zn is its atomic number, the Born-
Oppenheimer or adiabatic approximation (relating back to Born and Oppen-
heimer, 1927) separates nuclear and electronic degrees of freedom. This is
motivated by the different time scales of their motion (see Tab. 3.1) and al-
lows to factorise the total wave function Ψtot(r, R) := Ψnuc(R)Ψe(r, σ, {R}),
where Ψnuc(R) is the nuclear wave function and Ψe(r, σ, {R}) the electronic
one, depending explicitly on coordinates r and spin σ of all the N electrons,
but where the nuclear positions R enter as fixed parameters only. One then
studies the remaining electronic Hamiltonian

He = −
N∑

i=1

~2

2me

∇2
i −

N∑
i=1

M∑
n=1

e2Zn

|ri −Rn|
+

N∑
i=1

N∑
j>i

e2

|ri − rj|
(3.2)



3.1 Ab-initio quantum-chemical methods 19

electronic nuclear
τe ≈ 10−15 · · · 10−16s τtrans ≈ 10−13 · · · 10−15s

Etrans ≈ 10−2 · · · 1eV
Ee ≈eV Evib ≈ 10−1 · · · 10−2eV

Erot ≈ 10−3eV

Table 3.1: Time and energy scales for electronic and nuclear dynamics

for a fixed set of nuclear coordinates {R}, and separately the nuclear Hamil-
tonian

Hnuc =
M∑

n=1

~2

2Mn

∇2
n + Eeff, (3.3)

where the effective nuclear potential energy Eeff := Ee+
∑M

n=1

∑M
m>n

e2ZnZm

|Rn−Rm| is
the sum of the nuclear potential energy and the electronic energy Ee obtained
from the solution of the Schrödinger equation using the Hamiltonian He

[Eq. (3.2)]. The Hamiltonian Hnuc [Eq. (3.3)] is used in the Schrödinger
equation for the nuclear wave function to calculate vibrational, rotational,
and translational modes of the nuclei.

In a typical quantum-chemical calculation a structure optimisation is per-
formed as a first step by iteratively solving the Schrödinger equation for
the electronic and the nuclear wave functions. As such an iteration is time
consuming, the electronic problem is not attacked in full detail. With the
resulting coordinates for the atomic positions a detailed calculation of the
electronic properties follows, using Eq. (3.2) only, and we restrict ourselves
to this latter problem from now on, thereby dropping the electronic subscript
e and the nuclear position vector R.

3.1.2 Approximations to the electronic problem

A complete solution to the Schrödinger equation together with the electronic
Hamiltonian of Eq. (3.2) results in eigenfunctions and the corresponding
eigenenergies. Usually one is interested in ground state properties of the
system, which require the calculation of the ground state wave function only.
But still, the general problem is of course too hard to be solved exactly,
and an approximate ansatz for the form of the wave function Ψ(r, σ) has to
be made, which includes some special assumptions regarding the dynamical
behaviour of the electrons.

In Hartree-Fock theory the Pauli principle is taken into account by using
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an anti-symmetrised product of orbital wave functions φ:

Ψ(r, σ) =
1√
N !

∣∣∣∣∣∣∣
φ1(1) · · · φ1(N)

...
. . .

...
φN(1) · · · φN(N)

∣∣∣∣∣∣∣ , (3.4)

where φi(k) abbreviates φi(rkσk). This determinant contains the N lowest
lying occupied orbitals.

With this ansatz for the wave function, the expectation value for the
Hamilton operator can be written as

〈H〉HF =
∑

i

hi +
1

2

∑
ij

Jij −
∑
ij

1

2
Kij (3.5)

hi = −
∫
φ∗i (1)

(
~2

2me

∇2 +
∑

n

e2Zn

|r1 −Rn|

)
φi(1) d1 (3.6)

Jij =

∫ ∫
|φ∗i (1)|2 · |φj(2)|2

|r1 − r2|
d1d2 (3.7)

Kij =

∫ ∫
φ∗i (1)φj(1)φ

∗
j(2)φi(2)

|r1 − r2|
d1d2, (3.8)

with J the Coulomb integral and K the exchange correlation integral.
Configuration interaction (CI) methods release the restriction to a single

determinant wave function. They take sums of determinant wave functions
which also include orbitals belonging to excited states. This results in more
accurate but also very expensive calculations (Foresman and Frisch, 1996).

For spherically symmetric problems, such as determining the electronic
configuration of isolated atoms, the Hartree-Fock method can be used to nu-
merically generate atomic orbital wave functions, which are referred to as
Hartree-Fock atomic orbitals. The resulting N -particle wave function consti-
tutes the best possible anti-symmetrised product of atomic orbitals for the
Hartree-Fock Hamiltonian, i.e. it minimises

E = min
|Ψ〉

{
〈H〉HF

〈Ψ|Ψ〉

}
. (3.9)

For molecular systems, it is unfortunately out of question to determine
the best molecular orbital functions (as opposed to the atomic orbital func-
tions), because the spherical symmetry is lost (Roothaan, 1951), and thus the
Hilbert space of possible functions is just too big. Therefore one additionally
has to approximate the molecular orbitals.
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3.1.3 Approximations to the molecular orbitals

One possible basis set for molecular orbital wave functions is a set of atomic
orbitals. As one then deals with a linear combination of atomic orbitals, such
a choice is called LCAO. Atomic orbitals are of the following form:

φnlm(r, θ, φ) =
∑

j

Cj,nlχj,nlm(r, θ, φ) (3.10)

χnlm = Rnl(r)Ylm(θ, φ)

Ylm(θ, φ) =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos(θ)) eimφ.

The Ylm are spherical harmonics and Pm
l (x) denotes the associated Legendre

polynomials, the ones corresponding to the s(l = 0) and p(l = 1) orbitals
being:

P 0
0 (x) = 1,

P 0
1 (x) = x, P 1

1 (x) =
√

1− x2.

Within an LCAO treatment, the exact form of the radial wave function
Rnl(r) is of great importance and commonly one of the following three choices
is being made:

• Slater type orbitals (STO): the radial part of the atomic orbital is taken
to have the same asymptotic decay as the hydrogen atomic wave func-
tion (Slater, 1930), i.e.

Rnl(r) = Nrn−1e−ξlr, (3.11)

where N = 1√
(2n)!

(2ξl)
n+1/2 is a normalisation factor, chosen to let the

radial function fulfil
∫
r2RnlRnldr = 1.

• Gaussian functions : computationally more efficient than a STO is an
exponential decay with a quadratic argument:

Rnl(r) = Nrn−1e−αlr
2

, (3.12)

N =

(
2n+1(2αl)

n+1/2

(2n− 1)!!
√
π

) 1
2

. (3.13)

Quite often STOs are being expanded into K Gaussian functions of
the form (3.12) and then being termed Slater type orbitals at the K-
Gaussian level: STO-KG (Pople, 1977).
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• Hartree-Fock atomic orbitals : this choice is a LCAO approach in a
strict sense, because these orbitals are optimised for the Hartree-Fock
atomic problem. However, they generally result in less accurate values
for molecular problems as compared to STOs.

With an atomic orbital basis set chosen, a single molecular orbital ψ is
now a linear combination of all the atomic orbitals belonging to all the atoms
of the molecule. If the latter are located at the spatial positions Ri, then
such a combination assumes the form

ψ(r) =
∑

i∈atoms

∑
nlm

αi
nlmφ

i
nlm(r −Ri). (3.14)

The form of the total molecular wave function again depends on the level
of theory. For Hartree-Fock studies it is a single determinant as in Eq. (3.4).
The expansion coefficients for the ground state wave function αi

nlm are finally
obtained by minimising the total energy according to Eq. (3.9).

3.2 Density functional theory

An approach alternative to the theory of electronic structure outlined above is
the so called density functional theory (DFT), ‘in which the electron density
distribution n(r), rather than the many-electron wave function’ (Kohn, 1999,
p. 1253) is the central quantity that one aims for. Its development began in
1964 and 1965 with the two publications by Hohenberg and Kohn (1964), and
by Kohn and Sham (1965) and was recognised by a Nobel Prize in Chemistry
in 1998.

From the point of view of the Schrödinger equation, an electronic system
is uniquely specified by its external potential V . A complete solution to the
associated Hamiltonian

H = −
N∑

i=1

~2

2m
∇2

i +
N∑

i=1

N∑
j>i

e2

|ri − rj|
+ V, (3.15)

where

V =
N∑

i=1

V (ri) (3.16)

(together with appropriate boundary conditions) consists of its energy spec-
trum and the corresponding N -particle eigenfunctions. The latter are in
general very complex quantities.
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Now DFT is based on the fact (see below) that there exists a one-to-one
correspondence between the external potential V and the ground-state elec-
tronic density n(r) of the electronic Hamiltonian for that potential. Because
many ground-state properties of the system can be obtained directly from
this ground-state density, one tries to solve for it.

We will only give a short introduction which is mainly intended to clarify
some of the naming conventions associated with the method.

3.2.1 Hohenberg-Kohn formulation of DFT

‘The ground-state density n(r) of a bound system of interacting electrons in
some external potential V determines this potential uniquely’ (Kohn, 1999,
p. 1259). The proof of this statement is quite simple and goes back to
Hohenberg and Kohn (1964).

From the correspondence between ground-state density and external po-
tential it follows that the ground state energy of an interacting electronic
system can be obtained by a variational principle, where the variation is
with respect to the density n(r), which is a simple function of just one spa-
tial coordinate (Hohenberg and Kohn, 1964):

E0 = min
n(r)

{EV [n(r)]}, (3.17)

where

EV [n(r)] =

∫
V (r)n(r)dr + F [n(r)]. (3.18)

The latter functional F [n(r)] does not depend on V but contains the kinetic
energy of the non-interacting electrons T [n(r)] and a second term specific
to the electronic Coulomb interaction, which is not known exactly. The
so-called exchange-correlation energy functional Exc[n(r)] is now defined as
the difference between the unknown functional F and the kinetic energy
functional T together with the Coulomb self-interaction:

F [n(r)] = T [n(r)] +
1

2

∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)]. (3.19)

Writing the density for a given number of N electrons as

n(r) =
N∑

i=1

|φi(r)|2, (3.20)
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where each φi(r) is normalised to unity, the Euler-Lagrange equations to Eq.
(3.17) with Eqs. (3.18) and (3.19) take the form of N effective Schrödinger-
like equations, which are named after Kohn and Sham (1965):(

− ~2

2m
∇2 + Veff(r)

)
φi(r) = εiφi(r), (3.21)

with an effective potential Veff and the exchange correlation potential Vxc

given as

Veff(r) = V (r) +

∫
n(r′)

|r − r′|
dr′ + Vxc(r), (3.22)

Vxc(r) =
δ

δñ(r)
Exc[ñ(r)]

∣∣
ñ(r)=n(r)

. (3.23)

The functions φi constituting the density n(r) are sometimes called Kohn-
Sham orbitals. As Exc is now the only functional which remains unknown,
one approximates it, most frequently by using the so-called local-density
approximation.

3.2.2 Local density approximation

When introducing Eq. (3.21) Kohn and Sham (1965) already came up with a
simple approximation for the exchange-correlation energy that is surprisingly
useful. Let us denote the exchange-correlation energy density per electron of
a uniform electron gas by εxc(n). Within the local density approximation, the
exchange-correlation energy density of a non-uniform electron distribution
n(r) is taken to be a local function εxc(r), its value being identical to that of
a uniform electron gas with constant charge density n = n(r):

εxc(r) = εxc(n)
∣∣
n=n(r)

. (3.24)

Therefore, the explicit form of Exc is

ELDA
xc [n(r)] =

∫
n(r)εxc(n)

∣∣
n=n(r)

d3r. (3.25)

The corresponding LDA exchange-correlation potential reads

V LDA
xc (r) = εxc(n)

∣∣
n=n(r)

+
dεxc

dn
. (3.26)

Although the approximation appears to be poor, it generally yields very ac-
curate results. A commonly used parameterisation of εxc(n) based on Monte-
Carlo simulations was given by Perdew and Zunger (1981).
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3.2.3 Basis set

With an explicit formula for the exchange-correlation potential, one finally
has to choose a basis set for the Kohn-Sham orbitals. Analogously to the
Hartree-Fock method, they can be expanded in atomic wave functions. More
often one uses a plane waves basis set for the interstitial region between the
atoms, while a separate solution of Eq. (3.21) is performed for the core region
around each atom. Both types of wave functions then have to be matched at
the boundary of the atomic and the interstitial regions. This latter approach
is known as the augmented plane wave (APW) method.

As the exact form of the wave function within the core region of each
atom is more or less irrelevant to the chemically interesting valence orbital
region, it is more efficient to replace the exact core potential by approximate
pseudopotentials. These pseudopotentials are more slowly varying and also
much weaker than the core potentials, and allow for an expansion of the wave
functions into plane waves only.

With a basis set chosen, the Kohn-Sham equations (3.21) can be solved
self consistently, in close analogy to the Hartree-Fock method. Finally, we
want to note that the type of basis set resulting in the most accurate solutions
strongly depends on the system under consideration. Therefore, a lot of
experience is needed if one is interested in quantitative results. This does of
course hold for all ab-initio methods for electronic structure calculations.

3.3 Semiempirical methods

In contrast to both of the methods outlined above, which are extremely de-
manding with respect to computational effort, semiempirical methods have
been developed. The name semiempirical indicates that these methods have
been parameterised to reproduce experimental results. They typically use
the same LCAO theory as ab-initio methods. However, many of the more
complex integrals are removed or replaced using simple approximations. Em-
pirical parameters and functions are used to compensate for the errors intro-
duced by removing integrals.

We first name the most popular ones and characterise them according
to their approximations and then give a detailed outline of one of them,
namely the extended-Hückel method, which is the one we have implemented.
Beside the references given in the text, a more detailed (but slightly outdated)
description can be found in Scholz and Köhler (1981) and Zülicke (1985).
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3.3.1 Overview of methods in use

The most famous examples of semiempirical methods are the extended Hückel
method (which will be discussed in detail in Sec. 3.3.2) and the molecular
orbital (MO) theory. The basic approximations of the latter method which
allow to neglect less important integrals of the Hartree-Fock method were
developed by Pople et al. in the 1950s and 1960s. A couple of methods arose
from this period, the most restrictive being the CNDO-approximation (Com-
plete Neglect of Differential Overlap, Pople and Segal, 1966) which completely
neglects two-electron interaction integrals. By maintaining the differential
overlap between different orbitals for all integrals at a single atomic centre
the INDO-approximation is obtained (Intermediate Neglect of Differential
Overlap, Pople et al., 1967), which improves upon the CNDO-approximation
while still considerably reducing the computational effort as compared to
ab-initio methods. The least restrictive methods stemming from that era
apply the so called NDDO-approximation (Neglect of Diatomic Differential
Overlap, Pople et al., 1965; Pople and Segal, 1965). Here the differential over-
lap for orbitals of the same atom in two centre integrals is kept explicitly.
Methods applying these approximations are still in use, although usually in
modifications intended for interpreting molecular spectra.

More suitable methods for the evaluation of energetic data and also for
the prediction of molecular geometries have been developed in the 1970s.
The general idea was to not only apply an approximation simple enough
for the desired calculation to be feasible but also to upgrade the accuracy
of the results by introducing parameters that can be adjusted to fit exper-
imental data. For the MINDO/3-method (Modified Intermediate Neglect of
Differential Overlap/Version 3, Bingham et al., 1975a,b,c,d) the basic ap-
proximations are similar to the INDO-approximation, but the atomic-orbital
exponents ξ are treated as free parameters which are being optimised dur-
ing the course of minimisation. Despite the additional effort to determine
these parameters, the accuracy for quantities like the heat of formation and
geometry parameters for molecules containing heteroatoms (i.e. non-carbon
atoms in organic molecules) is sometimes still quite low. These drawbacks
were overcome by the MNDO-method (Modified Neglect of Differential Over-
lap, Dewar and Thiel, 1977). It is based on the NDDO-approximation and
additionally improves upon the MINDO/3-method by freezing some of the
parameters to values that were optimised using a least-square fit to a set of
experimental values known to be otherwise represented poorly. But still, the
method fails to reproduce hydrogen bonds and activation energies tend to be
too large.

It took several years until a next generation of semiempirical methods
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was developed. To avoid terminology confusion with previous semiempirical
methods (many of which we have not mentioned), entirely different names
were adopted. These are AM1 (Austin Model 1, Dewar et al., 1985) and
PM3 (MNDO Parametric Model no. 3, Stewart, 1989a,b). The new idea
was, instead of first identifying and then modifying the faulty approximation
which causes the poor results, to rather add a new term with new parameters
to the corresponding energy expression and fitting these to experimental
values. This approach has proven useful and AM1 or PM3 are nowadays the
methods of choice if there is the need for a semiempirical quantum-chemical
method capable of producing results that are in quantitative agreement with
experiments.

3.3.2 Extended-Hückel method

The Hückel method was originally introduced to treat π-bonding in planar
organic molecules (Hückel, 1931a,b, 1932, 1933, 1937a,b). Given a molecule
in the xy-plane, the idea was to use a 2pz basis set for each double bonded
carbon atom. This treatment has then been extended to non-π electron
systems with inclusion of all valence orbitals and is now being called the
extended-Hückel method. It was originally developed by Hoffmann (1963).

LCAO ansatz

Making the ansatz that a wave function can be written as a linear combina-
tion of atomic orbitals (LCAO), it assumes the general form

|Ψ〉 =
∑

i

∑
l

γi
l |φi

l〉, (3.27)

where i runs over all atoms (with spatial position Ri) of the system to be
described and l labels the orbitals of that atom. Expressed in this basis the
one-particle Schrödinger equation reads∑

j,k

Hil,jkγ
j
k = E

∑
jk

Sil,jkγ
j
k. (3.28)

Here we have introduced the overlap matrix Sil,jk := 〈φi
l|φ

j
k〉 and the coeffi-

cients of the Hamiltonian are Hil,jk := 〈φi
l|H|φ

j
l 〉.

Basis set

For an actual calculation it is necessary to represent the wave function in a
well-suited analytic form. There is the obvious requirement that this basis set
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should well represent the atomic orbitals, labelled by the principal quantum
number n and the orbital quantum number l. But as there is a great number
of overlap integrals that have to be calculated, the basis set should also allow
a fast calculation of these integrals. Therefore Slater type orbitals (STO)
are commonly used, because they have the same asymptotic radial decay as
the atomic wave functions (Slater, 1930) and any overlap integral 〈φi|φj〉 can
be reduced to an analytic expression. Their explicit form was already given
in Eqs. (3.10) and (3.11). Expansion coefficients Cj,nl, ξl for various atomic
types can be found in the literature. We use parameters optimised for the
description of valence orbitals (Hoffmann, 1963; Komiya et al., 1977).

Hamiltonian

The electronic Hamiltonian (3.2) can be split into two parts:

Hsingle =
∑

n∈atoms

∑
i∈n

− ~2

2me

∇2
i −

e2Zn

|ri −Rn|
+
∑
j∈n

j 6=i

e2

|ri − rj|

 (3.29)

Hneglect =
∑

n∈atoms

∑
i∈n

−∑
m6=n

e2Zm

|ri −Rm|
+
∑
j /∈n

e2

|ri − rj|

 (3.30)

+
∑

n∈atoms

∑
m>n

e2ZnZm

|Rn −Rm|
.

Here i ∈ n denotes all electrons i belonging to atom n. The Hamiltonian
Hsingle contains intra-atomic contributions only, while all contributions from
different atoms are included in Hneglect. A one-electron method does ac-
count for the energetic contributions contained in Hsingle but neglects the
ones corresponding to Hneglect. In the extended-Hückel method Hsingle can be
represented as a sum of one-electron operators:

Hsingle =
∑

i

αic
†
ici +

∑
i

∑
j 6=i

βijc
†
icj . (3.31)

The coefficients αi and βij are called Coulomb integrals and resonance inte-
grals, respectively.

The Coulomb integrals are usually parameterised using ionisation energies
taken from experiments and for the resonance integrals a number of formulas
have been suggested. For example Wheland (1941) and also Mulliken et al.
(1941) took βij = K ·Sij, whereas the choice βij = K ′ ·Sij(hii+hjj), K

′ = 1.75
goes back to Hoffmann (1962, 1963); Wolfsberg and Helmholtz (1952). We
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use the latter one but with a different weighting: K ′ = k/2+a/2+a2 1−k
2
, k =

1.75, a = (
hii−hjj

hii+hjj
).

With a STO basis set the overlap matrix elements

Sij =

∫
d3xφiφj (3.32)

can be reduced to analytic expressions which can be evaluated very efficiently.

Schrödinger equation

For a given molecular structure, described by the positions of all atoms,
each atom is equipped with an atomic orbital function for all its valence
orbitals. These atomic orbitals are taken as a basis of the Hilbert space.
The Hamiltonian matrix elements can then explicitly be calculated in this
representation and the Schrödinger equation assumes the matrix form

Hγ = E · Sγ, (3.33)

where the vector γ contains the coefficients of the atomic orbitals. S is the
overlap matrix, which takes into account that orbitals at different atoms are
non-orthogonal in general. Equation (3.33) constitutes a generalised eigen-
value problem which can be solved using standard methods of linear algebra.
Instead of simply inverting S it is however advisable to compute S−1/2, which
exists uniquely for positive definite overlap matrices. Then Eq. (3.33) can be
transformed to

S−1/2HS−1/2γ′ = Eγ′. (3.34)

Thus one obtains an eigenvalue problem for eigenvectors γ′ = S1/2γ. Fur-
thermore this eigenvalue problem is symmetric, because S and also H are
symmetric matrices.

3.3.3 Concluding remarks

The previous section dealt with the extended-Hückel method, which we have
chosen to implement although it is less accurate as compared to AM1 and
PM3. The reason for this choice, besides the lesser computational effort,
mainly is that we want to perform qualitative studies of considerably large
systems. To this end the extended-Hückel method is sufficient. However,
it should be noted that there is no restriction to this choice. Any of the
methods mentioned in this chapter could also be used, as they all provide an
effective single-particle Hamiltonian, which is the only input to the method
we use for calculating transport through molecular systems (see Chap. 4).
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Chapter 4

The Elastic-Scattering
Quantum-Chemistry Method

The original ESQC method ‘offers a means of studying the transmission of
electrons through a defect embedded in an infinite, periodic chain’ (Roshd,
1992, p. 8). It was first proposed by Sautet and Joachim (1988a,b,c) who
studied the transmission of electrons through a molecular switch. The infinite
and periodic chain in these studies was a conducting polymer, while the defect
was taken to be a benzene ring. The original, more or less one-dimensional
method, was then generalised in such a way that a defect could be embedded
in an infinite but periodic three-dimensional wire (Sautet and Joachim, 1991).
This improvement allowed for the study of the tunnelling of electrons in
a Scanning Tunnelling Microscope (STM), where the defect contains the
surface of the substrate together with a molecule adsorbed upon and the
apex of the STM tip. The infinite and periodic wire represents the bulk
region of tip and substrate. However, in the original presentation the method
is restricted to the case that the two bulk regions are identical, which is
typically not the case in real STM experiments.

In this chapter, we present a generalised version of ESQC (Dahlke and
Schollwöck, 2004), which overcomes the restriction to place the defect be-
tween identical leads. Furthermore, it generalises the original setup of two
leads to an arbitrary number. These improvements are the result of a thor-
ough treatment of the scattering problem as it is provided here.

4.1 Outline of the ESQC algorithm

The name already suggests that the method is based on the combination of
an exact solution to a scattering problem for a Hamiltonian which is obtained
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Figure 4.1: Partitioning of the system into individual parts, here for the case
of two leads (surrounded by boxes) being attached to the molecular region
which also contains the surface atoms of each lead.

from a quantum-chemical calculation. The basic principles of all scattering
approaches have already been outlined in Sec. 2.2 while an introduction to
quantum-chemical methods is provided in Chap. 3. The present chapter is
devoted to an in depth description of the ESQC method and also covers
details of the implementation.

The method involves quite a large number of steps to finally obtain the
conductance properties of a molecular system. Here we summarise these
steps; the calculational details are contained in Sec. 4.2.

4.1.1 Algorithm step by step

As already described in Sec. 2.2 within a scattering approach the solutions
to the Schrödinger equation far away from the molecular region are asymp-
totically equal to solutions of the isolated leads. To obtain these asymptotic
states the system is formally divided into several parts, one containing the
molecular region and an additional part for each lead. For the case of two
leads, this partitioning is sketched in Fig. 4.1.

First the asymptotic states are calculated for each of the leads separately.
Then the S-matrix for scattering of the incoming states into the outgoing ones
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is calculated. Finally the current is calculated using the Landauer formula.
Only the last two steps depend on the geometry of the molecular region.

1. The calculation of the scattering states for each isolated lead contains
the following steps which have to be performed only once:

• The periodic lead is split into identical layers.

• The spatial position and chemical nature of each atom within such
a layer has to be specified. Then the quantum-chemical calcula-
tion is performed for two adjacent layers with appropriate bound-
ary conditions (see below). This results in a layer-independent
Hamiltonian.

• With this Hamiltonian one performs a band-structure calculation
to determine the Fermi energy.

• For a discrete set of energy values around the Fermi energy an op-
erator describing the current properties is set up and transformed
into an eigenmode basis. The corresponding modes represent ei-
ther incoming or outgoing scattering solutions.

The results for each discrete energy value can now be stored for reusing
them in calculations for different molecular setups.

2. The calculation of the scattering matrix involves the following steps:

• Spatial position and chemical nature of each atom within the
molecular region enters the quantum-chemical calculation which
results in the Hamiltonian for this part.

• The energy dependent scattering matrix is obtained by connect-
ing the modes of each lead to the molecular region. This step is
performed for all the above chosen discrete energy values which
are within the energy window defined by the chemical potentials
of source and drain lead (see Fig. 4.2).

3. Finally the current is calculated in the following way:

• The value of the transmission function for each discrete energy
level is obtained by summing up the contribution to the scattering
matrix from each channel.

• With the Landauer formula one obtains the current across the
molecular region by an integration over these energies.
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drainsource

eV

E

Figure 4.2: Sketch of the set of discrete energy levels between the two chem-
ical potentials of source and drain. At each of these energy levels the scat-
tering matrix has to be calculated. The rectangular boxes represent the
zero-temperature Fermi functions of source and drain lead.

It is noted here that the calculations can also be performed using Green’s
function techniques (see e.g. Datta, 1995) which is equivalent to the scat-
tering matrix approach (as shown by Fisher and Lee, 1981). We present the
details of the calculation within the latter framework as then the contribu-
tions from individual channels to the transmission function can be studied
easily.

Before we go into the details of the steps outlined above we first want
to make some remarks about the differences between calculations for STM
images and calculations for conductance properties of molecules in molecular
electronic devices.

4.1.2 Notes on calculations of conductance properties

To obtain the conductance properties of a molecular electronic device (see
Chap. 5), the current across the molecular region has to be calculated for
many different applied source-drain voltages. Conductance properties can
then be obtained by numerically calculating the derivative of the current
with respect to the applied voltage: G = dI

dV
.

The entire ESQC-algorithm has to be executed for each value of applied
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voltage. To gain a proper resolution in voltage space one has to consider
quite a large number of discrete energy levels between the chemical potentials
of source and drain electrode (see Fig. 4.2). And again for each of these
energy levels, step two of the algorithm has to be performed. To increase
the accuracy of a conductance calculation one therefore has to increase the
number of energy levels and the number of voltage steps. The limiting factor
is usually not the computational time but rather the size of available system
memory, because a matrix containing the current properties has to be kept
in memory for each energy level and each lead.

4.1.3 Notes on STM image calculations

As explained in Chap. 6, an STM image is produced by recording the current
or the height of the STM tip while scanning over the sample surface. But the
ESQC algorithm results in the current value for a fixed geometry which in the
STM context corresponds to a fixed tip position. To obtain an STM image
of an entire surface region numerically, one has to model the tip movement.
Then, for a finite number of tip positions the current calculation has to be
performed.

In order to obtain a reasonable image resolution the current calculation
has to be repeated a great many times. But because the calculations for each
fixed tip position do not dependent on each other this process can efficiently
be parallelised.

To keep the computational cost at a reasonable level, it is advisable to
take only a few energy levels around the Fermi energy into account. For large
molecules adsorbed flat on top of the substrate one even has to restrict to a
single such level because due to their size, the Hamiltonian matrices already
use up the entire system memory.

4.2 Detailed description of ESQC

As a first step of the ESQC-algorithm the system under consideration has
to be decomposed into distinct parts. These parts are described by the
same quantum-chemical method but several different calculations have to be
performed. The decomposition results in n+1-parts, where n is the number of
leads. Let us call them Σd, d ∈ {0, 1, . . . , n}. Σ0 contains the molecular region
and also the top most surface layers of each lead and Σd, d > 0 contains the
semi-infinite lead d (see Fig. 4.1 with n = 2). Periodic boundary conditions
in the directions perpendicular to the surface normal are used.

First we will restrict our attention to the semi-infinite leads, which in
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general will be different. In the outline of the ESQC-algorithm as given
above this corresponds to step one.

4.2.1 Isolated semi-infinite leads

A microscopic description for each lead is obtained from quantum chemistry,
which provides an effective one-particle Hamiltonian. By a tight-binding
approximation and using the periodicity of the system, the semi-infinite lead
Hamiltonian assumes block tridiagonal form with finite dimensional blocks

Hd =
∞∑

l=l0

∑
i∈l

∑
j<i

(
Hd

llijc
†
dlicdlj + h.c.

)
(4.1)

+
∞∑

l=l0

∑
i∈l

∑
j∈l+1

(Hd
l,l+1,ijc

†
dlicd,l+1,j + h.c.)

Layer by layer, starting with the first layer not included in the molecular
region (named l0), the first term accounts for intra-layer interactions, while
the second one describes the interaction between layers. The indices i and
j run over the orbital basis set within each layer. The size of each layer is
chosen such that only adjacent layers have non-zero interaction. It therefore
depends on the details of the tight-binding approximation. Figure 4.3 (a)
sketches the partitioning of a lead into identical layers.

The Hamiltonian in Eq. (4.1) for one lead d is layer independent, if one
assumes periodicity, i.e. Hd

ll = Hd
l0l0

and Hd
l,l+1 = Hd

l0,l0+1. Therefore, we
obtain the following infinite dimensional coupled system of equations:(

Md(E)γl + hd(E)γl+1 + h†d(E)γl−1

)
= 0, ∀l ≥ l0 + 1, (4.2)

with Md(E) := Hd
l0l0

− ESd
l0l0

, hd(E) := Hd
l0,l0+1 − ESd

l0,l0+1, and Sd
ll′ is the

overlap matrix between orbitals in layer l and layer l′ of lead d for cases when
one does not deal with an orthonormal basis set (otherwise Sd

ll′ = Id · δll′).

Band-structure calculation

Using Bloch’s theorem one can reduce the infinite dimensional system of
equations to an N×N -matrix equation (N being the number of orbital basis
functions in one layer)(

Md(E) + hd(E)eik∆d + h†d(E)e−ik∆d

)
γl(k,E) = 0, ∀l. (4.3)
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l

l + 1

l − 1

(a)

∆d

(b)

l

(c) (d)

Figure 4.3: (a) Part of the bulk region of a semi-infinite lead which is split
into identical layers. (b) Each layer contains identical unit cells and periodic
boundary conditions in the lateral direction are applied. (c) Zoom into the
unit cell of one layer. The position of the atoms is indicated. (d) Each atom
of the unit cell is equipped with a valence orbital basis set.
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With ∆d we denote the (lead dependent) lattice spacing and the layer coef-
ficients γl obey the relation γl+1 = eik∆dγl. (From here on we will drop the
energy- and k-dependency of γ.)

Fixing the value of k Eq. (4.3) can also be written in the form

H̃γl = E(k)S̃γl, (4.4)

which is a generalised eigenvalue problem for E(k) with

H̃ := Hd
l0l0

+ eik∆dHd
l0,l0+1 + e−ik∆dHd

l0+1,l0

S̃ := Sd
l0l0

+ eik∆dSd
l0,l0+1 + e−ik∆dSd

l0+1,l0
.

Whenever S̃ is positive definite (which typical overlap matrices happen to
be), this equation can be transformed into a normal eigenvalue problem:

S̃−1/2H̃S̃−1/2xl = E(k)xl, (4.5)

xl := S̃1/2γl.

Solving for various values of k one obtains the dispersion relation or projected
band structure E(k) of the isolated lead. It should be noted here, that for
efficiency (and also numerical accuracy) reasons it is advisable to reduce the
N × N dimensional Eq. (4.5) to m different N2 × N2 (with N = m · N2)
eigenvalue problems by again using Bloch’s theorem this time within the
lateral direction, i.e. for all m values of k|| which are in accordance with the
lateral periodic boundary conditions:

(
H̃0

)
ij

=
m∑

c=1

eik||·Rc

(
H̃c

)
ij
. (4.6)

Here c runs over all cells within one layer and Rc denotes the spatial distance
to an (arbitrarily chosen) first cell (therefore R1 = 0). By H̃0 we denote the
reduced N2×N2 dimensional Hamiltonian, and H̃c contains the Hamiltonian
elements for orbitals i in the first cell and orbitals j in cell c. An analogous
reduction for the overlap matrix results in S̃0. Figure 4.3 (b) sketches the
periodicity of a single layer in lateral direction.

With the knowledge of the band structure of a lead, we can determine the
Fermi energy by successively filling up the one-particle states starting with
the lowest energy state. The conductance properties of the isolated lead are
governed by states with energy values at the Fermi level, and these states
will be determined next.
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Layer-to-layer propagator

To obtain the wave function belonging to a specific energy value E we again
turn to Eq. (4.3). Defining λd := eik∆d one can easily see that it constitutes
an N ×N quadratic eigenvalue problem in λd. It can be transformed into a
2N × 2N linear eigenvalue problem:

Pd(E)

(
γl

γl+1

)
= λd

(
γl

γl+1

)
, (4.7)

Pd(E) :=

[
0 1

−h−1
d h†d −h−1

d Md

]
. (4.8)

The eigenvectors of this equation constitute Bloch waves for the semi-infinite
lead. We call Pd(E) the layer-to-layer propagator because it also connects
the coefficients of adjacent layers(

γl

γl+1

)
= Pd(E)

(
γl−1

γl

)
, (4.9)

where we have used Eq. (4.2).
At a given energy E, each eigenvector constitutes an independent channel

and the eigenvalue λd contains information about its propagation along the
lead. The eigenvalues come in pairs such that for each eigenvalue λ>, there
exists a corresponding eigenvalue λ< satisfying the relation λ> = 1/λ∗<, as
can be seen by transposing Eq. (4.3). Eigenvalues with |λ| 6= 1, i.e. complex
k, belong to exponentially diverging solutions (see Eq. 4.9 and 4.7). These
are of course non physical, as long as the lead is infinite. In semi-infinite leads
however (which we are dealing with), exponentially decaying coefficients at
the boundary will contribute to the surface wave function and must not be
neglected.

Current operator

We have already seen, that the modulus of an eigenvalue reveals information
about the propagation properties of the corresponding Bloch wave. However,
the contribution to the net current can not directly be seen from Eq. (4.5). It
depends on the current density associated with a solution to the Schrödinger
equation i~∂tSγ = Hγ and is obtained via the continuity equation. The
probability amplitude |γ|2 for a stationary solution is constant in time

∂

∂t
γ†Sγ =

i

~
(
γ†Hγ − γ†H†γ

)
= 0, (4.10)
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because H and S are hermitian. For the probability amplitude at all layers
between l1 and l2 one therefore has

0 =
∂

∂t

l2∑
l=l1

(γ†l γl )

=
i

~

l2∑
l=l1

γ†l (H −H)γl

=
i

~
(γ†l1−1h(E)γl1

+ γ†l1+1h
†(E)γl1

− h.c.) (4.11)

+
i

~
(γ†l2−1h(E)γl2

+ γ†l2+1h
†(E)γl2

− h.c.)

= 〈γ|l2, l2 + 1〉 i
~

[
0 −h
h† 0

]
〈l2, l2 + 1|γ〉

− 〈γ|l1 − 1, l1〉
i

~

[
0 −h
h† 0

]
〈l1 − 1, l1|γ〉,

with the projectors 〈l|γ〉 := γl . This gives rise to the definition of the current
operator Wl for layer l as

Wl := |l, l + 1〉 i
~

[
0 −h
h† 0

]
〈l, l + 1|. (4.12)

Now let both ϕ and ϑ be solutions at fixed energy E with the eigenvalues λ1

and λ2 respectively. Because the expectation value for Wl is layer indepen-
dent (Eq. 4.11) one has:

〈ϑ|Wl|ϕ〉 =〈ϑ|Wl+1|ϕ〉
=λ1λ

∗
2〈ϑ|Wl|ϕ〉. (4.13)

This equation describes the connection between the current properties of a
solution ϕ and its eigenvalue λ.

Connection between eigenvalues and current properties

The current properties of each channel can be related to the corresponding
eigenvalue. We start from Eq. (4.13):

〈ψ|Wj|φ〉 = λ∗1λ2〈ψ|Wj|φ〉.

Let us first consider |ψ〉 = |φ〉, i.e. λ1 = λ2, and therefore 〈ψ|Wj|φ〉 =
|λ|〈ψ|Wj|φ〉. For each channel with eigenvalue |λ| 6= 1 one then must have
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〈ψ|Wj|ψ〉 = 0, i.e. this channel does not carry any current itself. This is
consistent with our terminology of an evanescent wave. If, however, |λi| = 1,
then 〈ψ|Wj|ψ〉 is purely imaginary, because Wj is an anti-hermitian oper-
ator. We can therefore define the velocity of a propagating wave to be
vi := Im〈ψ|Wj|ψ〉.

Now we consider the case of two different solutions |ψ〉 6= |φ〉 and define
v1,2 := 〈ψ|Wj|φ〉. If their eigenvalues do not satisfy λ1λ

∗
2 = 1, then the

current between these two solutions is zero v1,2 = 0. So let us assume λ1 =
1/λ∗2. Because if |λ1| > 1 then |λ2| < 1, a current can flow between an
evanescent left going wave and an evanescent right going wave. But if we
restrict ourselves to solutions with finite amplitudes in a semi-infinite lead,
then either the left or right going wave amplitude must be zero. Therefore,
evanescent waves do neither carry a current themselves nor do they exchange
current with other channels, that is they do not at all contribute to the net
current.

Finally, we are left with the case λ1 = 1/λ∗2, with |λ1| = |λ2| = 1. This
is equivalent to λ1 = λ2, i.e. the case of degenerate eigenvalues. Therefore
propagating waves to degenerate eigenvalues do exchange current. That in
turn means that the current of a superposition of two such waves does not
necessarily equal the sum of the two individual currents, which is problematic
as we want to express the total current as a sum of independent channels.
However, the propagating and evanescent waves were obtained by diago-
nalising the propagator P . This transformation is unique up to rotations
in every degenerate eigenvalue subspace. Because W is anti-hermitian we
can diagonalise these subspaces and the resulting diagonal elements will be
purely imaginary. So the net current may be written as a summation over all
the individual contributions of propagating channels, only if these subspace
rotations are performed.

Summarising, we have shown that the transformation U diagonalising the
propagator P (i.e U−1PU) can be chosen in such a way that the transforma-
tion U †WU of the current operator is diagonal in the subspace of propagating
waves with purely imaginary diagonal elements. All the other diagonal entries
are zero and the only non-zero non-diagonal elements belong to evanescent
waves in opposite directions. The relations between eigenvalue, current value
and propagation properties are summarised in Table 4.1.

Solutions for an isolated lead are linear combinations of propagating waves
in opposite directions, with the same amount of current being transported
in each direction, thus carrying no net current, and resulting in a standing
wave.

We now define Λ> and Λ< as the two N ×N diagonal matrices composed
of all incoming and outgoing eigenvalues Λ≷ := diag(λi

≷). The 2N × 2N -
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|λ| v description
> 1 right
< 1

0 evanescent
left

going wave

> 0 right≡ 1
< 0

propagating
left

going wave

Table 4.1: Summary of the connection between eigenvalue, current value and
propagation properties

matrix U , which diagonalises P :

U−1PU =

[
Λ> 0
0 Λ<

]
, (4.14)

has the following quadratic block form:[
U> U<

U>Λ> U<Λ<

]
. (4.15)

After this transformation into the diagonal basis of the propagator, we can
easily obtain all physically relevant solutions of the infinite lead by specifying
the amplitudes of all propagating waves at one lattice site.

Now that we have obtained a complete description of the transport prop-
erties for all leads, we can turn our attention to the molecular region.

4.2.2 Connecting leads via a molecular region

Up to now, we have considered the isolated leads only. These are now as-
sumed to be each coupled to the molecular defect region and thereby in-
directly coupled to one another. We will use the same quantum-chemical
description for all three regions, the lead itself, the contact region, and the
molecular region. The Hamiltonian for the lead itself has already been set
up (Eq. 4.3). Thus, there are still two parts to be determined:

Hmol =
∑
i∈mol

(εi c
†
micmi +

∑
j 6=i

Hm
ij c
†
micmj) (4.16)

Hcontact =
∑

d∈leads

∑
i∈l0

∑
j∈mol

(Hdm
l0ijc

†
dl0icmj + h.c.) (4.17)

The first Hamiltonian Hmol describes the molecular region in absence of the
leads, while Hcontact describes the interaction between the top-most layers
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A
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D

Figure 4.4: Incoming and outgoing wave amplitudes

of each lead and the molecular region. Both Hamiltonians together with
the diagonalised layer-to-layer propagators for each lead will now be used to
calculate the transmission function.

Scattering matrix

We are interested in stationary solutions, which consist of an incoming prop-
agating wave in one lead, being scattered among all the accessible outgoing
channels (propagating and evanescent ones). This information is contained
in the scattering matrix S(

B
C

)
=

[
S11 S12

S21 s22

]
︸ ︷︷ ︸

=:S

(
A
D

)
, (4.18)

which determines the wave amplitudes of all outgoing waves B, C given the
incoming ones A,D.

It is important to notice that the scattering matrix is always quadratic,
because in each lead there are the same amount of incoming and outgoing
channels. This is opposed to the transfer matrix T , which connects the
amplitudes of in- and outgoing waves C,D in one lead to the in- and outgoing
waves A,B of a second lead:(

C
D

)
= T

(
A
B

)
. (4.19)

This matrix is quadratic only if both leads have the same number of channels.
It is then of the form (see Roshd, 1992)

T =

[
F G†

G F †

]
(4.20)

and the relation to the scattering matrix is (Roshd, 1992)

S =

[
−F †(−1)G F †(−1)

F−1 G†F †(−1)

]
. (4.21)
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Methods calculating the scattering matrix via the transfer matrix (based on
the work of Sautet and Joachim, 1988b) fail, if two types of leads are used,
because F then is no longer quadratic and can not be inverted. Therefore,
one commonly takes source and drain lead to be identically constituted. But
even in such cases, the method becomes numerically unstable, with increasing
distance between the molecular region and one lead, because the matrix
elements of F and G (in Eq. 4.20) diverge exponentially, with increasing
lead separation. Taking the inverse of F is therefore a numerically critical
procedure. Both these problems are avoided by the direct calculation of the
scattering matrix, which we will now present. This calculation is well defined
without any restrictions to the number of leads and their composition. That
means that it is not necessary to restrict to identical leads. Furthermore, it
allows a numerically stable determination of the scattering matrix, even for
weak coupling.

The part of the Hamiltonian containing the molecular region and its cou-
pling to the leads can be written as

(H − ES)|ψ〉 =

 h1 M1 0 0 τ †1
0 0 h2 M2 τ †2
0 τ1 0 τ2 M0

 |ψ〉 = 0. (4.22)

(Using this order for the coefficients it is straight forward to extend all for-
mulas to the general case of more than two leads.) The indices 1 and 2
indicate source and drain lead surface layers, while the index 0 is used for
the molecular region. τ1,2 are the coupling matrices from source/drain to the
molecules.

We now transform each lead into the basis of incoming and outgoing
channels (Eq. 4.14), i.e. we apply

U =

 U1 0 0
0 U2 0
0 0 1

 ,
with

U i =

[
U i

> U i
<

U i
>Λi

> U i
<Λi

<

]
from the right to Eq. (4.22):

(H − ES)U =

 A1
> A1

< 0 0 τ †1
0 0 A2

> A2
< τ †1

B1
> B1

< B2
> B2

< M0

 , (4.23)



4.2 Detailed description of ESQC 45

with

Ai
≷ = hiU

i
≷ +MiU

i
≷Λi

≷,

and

Bi
≷ = τiU

i
≷Λi

≷.

The first and third column act on the surface layer of the incoming channels,
the second and fourth act on outgoing ones, while the fifth column, acting
on the molecular region, remains unchanged.

The scattering matrix expresses the outgoing channel amplitudes in terms
of the incoming ones. Therefore, we split the matrix of Eq. (4.23) into two
parts, one containing the outgoing columns, the other one containing the
incoming ones as well as the molecular column:

Mout :=

 A1
< 0 τ †1
0 A2

< τ †2
B1

< B2
< M0

 , Min :=

 A1
> 0
0 A2

>

B1
> B2

>

 .
The first matrix Mout is a square matrix and by inverting it, we obtain the
scattering matrix

S = −M−1
out ·Min. (4.24)

4.2.3 Numerical implementation

Let us conclude this chapter with remarks about numerical efficiency. Within
the innermost loop of the algorithm for calculating the transmission function,
one has to calculate the scattering matrix. This is therefore the right place for
optimisation. The S-matrix as given in Eq. (4.24) is of the form X = A−1 ·B
and citing the Numerical Recipes one ‘should LU decompose A and then
back-substitute with the columns of B instead of with the unit vectors that
would give A’s inverse. This saves a whole matrix multiplication, and is also
more accurate’ (Press et al., 1999, p. 49). Thus we restate the problem as

A ·X = B, (4.25)

which we have to solve for X.
Now it should be noted that for calculating the transmission probability

we do not need the full scattering matrix (now called X), but only those
column vectors, which correspond to incoming propagating waves from the
source lead. Say that we have d1 orbitals in each layer of the source lead
and d2 in the drain lead. Then we have d1 + d2 incoming channels. The
number of propagating incoming channels p1 is always significantly smaller.
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Figure 4.5: The bulk graphite unit cell for one layer contains two atoms.
Two layers are needed to generate a periodic super layer. Therefore, the
super-layer unit cell contains four atoms.

And therefore, we do not need to substitute back all the d1 + d2 column
vectors of B, but only a small fraction, namely p1 � d1.

Let us consider an example: the primitive cell of graphite contains two
atoms, and two primitive layers are needed to build up a periodic super layer
(see Fig. 4.5). Each of the carbon atoms is equipped with one 2s and three
2p valence orbitals, i.e. the super-layer unit cell contains 16 orbitals. For
a 7 × 7 super layer of graphite (see Figs. 4.6 and 4.7) the total number of
orbitals amounts to d1 = 7 ·7 ·16 = 784. However, the number of propagating
channels is only of the order of ten: p1 ≈ 10 (the exact value depends on the
energy).
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Figure 4.6: When the unit cell is expanded to a 7× 7 super cell two graphite
layers are generated shown in side view.

Figure 4.7: Top view of the 7× 7 super cell containing 196 atoms.
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Chapter 5

Using molecules as electronic
devices

Within the last decade an increasing interest in molecular electronics has
developed, with the expectation of realising molecular diodes and transistors.
This is based on the progress in manipulation techniques, which now allow the
controlled attachment of atomic scale structures like molecules to mesoscopic
leads. With these new devices one is able to determine the conductance
properties of molecular structures. Explaining and predicting the electronic
behaviour of such devices is an essential step towards their design and use as
nanoscale electronic circuits.

This chapter starts with an historical overview, followed by a qualitative
explanation of the occurrence of conductance peaks in molecular electronic
devices. We then briefly review some recent experiments and finally turn
to our own numerical studies. We analyse possible answers to a question
raised in a recent experiment, using the elastic-scattering quantum-chemistry
method and give a detailed discussion of our findings (which are published
in Dahlke and Schollwöck, 2004).

5.1 Historical overview

5.1.1 Theoretical prediction

The idea of using molecules as building blocks for electronic devices relates
back to the year 1974, when Aviram and Ratner suggested the ‘construction
of a very simple electronic device, a rectifier, based on the use of a single
organic molecule’ (Aviram and Ratner, 1974, p. 277). Because common
solid-state rectifiers are based on p–n junctions they argued that an organic
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Figure 5.1: An example for a molecule which may act as a rectifier suggested
by (and taken from) Aviram and Ratner (1974). Mes on the right hand side
represent methoxy groups (−OCH3) which constitute the donor region. The
quino groups (=0) on the left hand side provide the acceptor state while the
methylene bridge (−CH2−) ensures insulation.

molecule, to show the properties of a rectifier, should consist of an electron-
poor subunit on one side (acceptor) and an electron-rich subunit on the
opposite side (donor). These subunits have to be effectively insulated from
one another to prevent a donor electron from occupying and thereby blocking
the acceptor state. As an example, they imagined a certain hemiquinone
molecule (shown in Fig. 5.1) to fulfil these requirements.

The energy versus distance diagram for a rectifying molecule is sketched
in Fig. 5.2. The acceptor state B on the left hand side of the molecule is
required to lie at or slightly above the Fermi level. The donor state C on the
right hand side has to lie below both the Fermi level and the acceptor state
B.

The energy diagram for the conducting direction is sketched in Fig. 5.3.
As soon as an applied voltage becomes large enough for the source levels to
overlap with the acceptor level B of the molecule, electron transfer onto the
molecule becomes possible. A similar situation on the opposite side enables
transfer from the donor level C to the drain lead. Finally, electron transfer
from the (now occupied) acceptor state B to the ionised donor state C con-
sists of a two step process: elastic tunnelling from state B to a vibrationally
excited Franck-Condon state of C is followed by a decay into the unexcited
state C.

With reverse-biasing the asymmetric energy offset of acceptor and donor
side prevents the above electron transfer process unless the Fermi level of
the source lead (now on the right hand side) is raised to level D (see Fig.
5.4). However, there is a second transfer process which consists of elastic
tunnelling from C to B and subsequent tunnelling from B into the drain
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Figure 5.2: Schematic energy versus distance diagram for a molecular rec-
tifier as suggested by Aviram and Ratner (1974). No bias voltage is applied.
The unoccupied molecular level on the left hand side is lower lying com-
pared to the one on the right hand side and therefore represents an electron
acceptor state. The state on the right hand side represents a donor state.

lead. The voltage threshold for this latter process is governed by the energy
difference between states B and C because elastic tunnelling can only occur
when level B has been lowered in energy to be in resonance with level C.

When the threshold value involved for tunnelling in the forward direction
is smaller than the one for tunnelling in the opposite direction, then the
molecule acts as a rectifier. These threshold values do of course depend on
the details of the coupling between molecule and both leads as well as the
electronic structure of the molecule itself.

5.1.2 Experimental realisation

Because the molecule suggested by Aviram and Ratner (1974) does not couple
to metallic leads sufficiently strong, it was never used in experiments aim-
ing to measure the conductance properties of molecules. It took more than
20 years before one of the first experimental realisations succeeded. Geddes
et al. (1990) were able to resolve a rectification effect in molecular films on
top of platinum surfaces. Later Metzger et al. (1997) were able to address
fewer molecules. They reported that ‘current-voltage measurements reveal
asymmetries in the DC electrical conductivity through Langmuir-Blodgett
multilayers and even monolayers of γ-(n-hexadecyl)quinolinum tricyanoquin-
odimethanide, C16H33Q− 3CNQ’ (Metzger et al., 1997, p. 10455).
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Figure 5.3: Shift of energy levels due to an applied bias in forward direction.

molecule metalmetal
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Figure 5.4: Shift of energy levels under reverse bias.
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Measurements with a single conducting molecule were first reported by
Reed et al. (1997), and since then a lot of experiments using single or few
molecules have been performed by various groups. Despite this experimental
success, a detailed understanding of the connection between the molecular
setup of a device and its conduction properties is still lacking, and a lot
of fundamental questions have not yet been answered. First of all, the ex-
perimental results seem to be extremely sensitive to the fabrication process.
Unfortunately the detailed structure of the molecular region is unknown, be-
cause it is experimentally not observable. Therefore, numerical studies have
to assume a certain geometrical structure. However, all calculations tend
to overestimate the observed magnitude of the current by up to one or two
orders of magnitude.

5.2 Qualitative model for transport

The model picture which was introduced by Aviram and Ratner to predict
a molecular rectifier (Sec. 5.1.1) views the molecule as consisting of two
spatially separated islands, each providing two relevant electronic levels. This
picture was motivated by an analogy to semiconductor p-n junctions where
one deals with structures on the scale of micrometers.

Although molecular-electronic levels do indeed correspond to separated
molecular orbitals, their spatial distance is on the atomic scale, i.e. of the
order of Ångstrøms. Furthermore, both leads are only a few nanometers
apart. In other words, the entire molecular junction is on the scale of (if not
below) the interface region of standard semiconductor devices. The idea of
spatially separated energy levels, which are stable under perturbations such
as a strong coupling to the leads, the transfer of charge, or an applied bias
voltage, is therefore at least questionable.

Because the coupling between molecule and lead surface is produced by
a chemical bond it will necessarily be strong. This invalidates the idea of a
separate island (let alone two islands) sitting between the contacts, as the
lifetime of an additional charge on the molecule scales inversely with the
coupling to the leads. We rather think of the molecular region as inducing a
modification of the potential gap between both leads. The molecular levels,
shifted and broadened by the coupling to the leads, then allow for resonant
tunnelling across the barrier region. The spatial location of the molecular
orbitals does not provide a stable island, but it does influence the strength
of the coupling to the left and the right lead and this results in different
couplings to each of them.
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5.3 Recent experiments

As the experiments that measure conductance properties of molecular struc-
tures vary not only in amount and chemical structure of the molecules in use
but also in the way these are attached to metallic or semiconducting leads,
we want to give a short overview of the different setups in use. There are
basically three different types of devices in use: single or few molecules are
accessible in mechanically controllable break junction (MCB) experiments
and with the scanning tunnelling microscope (STM), while many molecules
are involved in sandwiched self-assembled monolayer (SAM) experiments.

For an explanation of the working principle of the STM we refer to Chap.
6. MCB’s are produced by mechanically breaking a lithographically manu-
factured small bridge connecting two leads. The spatial gap between both
leads is then tunable by piezo-electric techniques. When specific molecules
are deposited onto the device, a small fraction will be adsorbed in the gap
region and there is the chance that a few of them even bridge the gap. By
applying a tunable voltage between both the leads, conductance properties
of this molecular-electronic device can be measured.

Self-assembled monolayer devices are manufactured in a three step pro-
cedure. First a single lead (typically having the form of a finger) is litho-
graphically produced. Then a solution containing the molecules which are
known to self-assemble on top of the lead surface is spilt over the device, and
within the time scale of hours a monolayer is built. In the final step, a second
lead is created on top of the molecular monolayer by beam epitaxy. Again
conductance properties of the resulting device can be measured by biasing
the leads with an external voltage.

The observed properties depend not only on the molecular species bridg-
ing the contacts but also on the exact geometry of the entire device. The
conductance measured with different setups can differ in orders of magnitude
and the qualitative voltage dependencies of the current ranges from simple
ohmic behaviour to asymmetric behaviour and negative differential resistance
(NDR).

Reed et al. (1997) have measured the conductance of a self-assembled
molecular monolayer bridging an MCB at room temperature, using molecules
of 1,4-benzene dithiol (i.e. having two thiol groups as can be seen in Fig. 5.5,
which are known to couple strongly to Au-atoms). The conductance-voltage
(CV ) characteristic was found to be symmetric with one peak in the voltage
range of 0−2V. They measured a current of the order of 50nA at a bias voltage
of 2V, which they claim is produced by transport through one single active
molecule. Reichert et al. (2002) also used an MCB with molecules having two
thiol groups, but being considerably longer. The measured current amplitude
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NCCN

Figure 5.5: Chemical structure of 1,4-benzene dithiol (top) and 1,4-phenylene
diisocyanide (bottom).

was about 500nA at 1V for a single molecule, i.e. although the molecule was
more than twice as long, the current was ten times larger.

With a different setup with an SAM sandwiched between two metallic
leads Chen et al. (1999) have found negative differential resistance, namely
one peak at 2V in the IV curve. The molecule under investigation had one
thiol group only and was attached to Au-leads at both ends. The measure-
ments were taken at room temperature, and the measured current maximum
was of the order of 1nA.

Only recently, sandwiched SAM devices were studied at 4.2K (Lee et al.,
2003; Dupraz et al., 2003), where 1,4-phenylene diisocyanide (PDI), a ben-
zene ring with two isocyanide instead of thiol groups was used (see Fig. 5.5).
The measurements exhibited currents of the order of 50 − 400nA. The CV
characteristic for this molecule revealed more structure, in form of three to
five peaks within a voltage range of 1V. Such a behaviour was not observed
with previous devices containing other molecules.

In the next section we want to address the question whether the occur-
rence of a large amount of conductance peaks within the SAM experiments is
contrary to the interpretation of such peaks being produced by resonant tun-
nelling of electrons through individual molecular orbitals. Before doing so we
first give an overview of other numerical studies which have been performed
recently.

5.4 Numerical calculations

Aiming to explain the various experimentally observed features of molecular-
electronic devices, a number of theoretical methods have been invoked. As
one deals with a complex system, quite a number of effects are believed to
influence the conductance properties. For example the external bias voltage,
an induced electric field, and equilibrium charge transfer between molecule
and surface are believed to play an important role to name some of the effects.
It has proven fruitful to analyse the influence of a single effect isolated from
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the others.

5.4.1 Short summary of recent theoretical studies

Ab-initio calculations for the system studied experimentally by Reed et al.
(1997) (see Sec. 5.3) were presented by DiVentra et al. (2000). Using a
jellium model representing the gold leads, they were able to reproduce the
current-voltage characteristics qualitatively. However, the absolute magni-
tude of the calculated current was about 2 orders of magnitude larger than
the experimental values. Although they were able to reduce the current
value significantly by introducing a single gold atom between lead surface
and molecule, the final current was still systematically too large. This in-
dicates that numerical calculations need to take the atomic structure of the
lead surface into account properly, in order to represent the geometry of the
device accurately. The overestimation of the absolute magnitude of the cur-
rent by most of the theoretical methods, is still an open problem (Emberly
and Kirczenow, 2001; Bauschlicher et al., 2003). An solution will also have to
explain the origin of the fairly large range of experimentally observed current
values (see Sec. 5.3).

Static charge transfer from the metal surface to the molecule was investi-
gated by Xue et al. (2001). They found that such a charge transfer is present
and takes influence in that the molecular levels get shifted towards the Fermi
energy compared to the position of the isolated molecule. This indicates
that static charge transfer processes have to be accounted for, whenever a
quantitative calculation of energy levels is aspired.

Along with an applied bias there will also be an electrostatic field across
the gap region. To be able to account for this external field, a self consistent
procedure together with a solution of the electrostatic problem was applied
by Brandbyge et al. (2002). Their results were in agreement with previous
calculations neglecting these effects. This indicates that approaches which are
less sophisticated with respect to the electrostatic field should be sufficient.

Another interesting question is how the molecular orbital structure takes
influence on the conductance properties. This has been studied by Seminario
et al. (2001); Darosa and Seminario (2001); Piccini et al. (2003). The aim is to
relate different kinds of molecular orbital structures to certain conductance
features, which may allow one day to engineer molecules with predefined
conductance properties systematically.

The occurrence of negative differential conductance (NDC) has been stud-
ied by Hettler et al. (2002, 2003). As already mentioned in Chapter 2 they
use a rate equation based approach which is valid for weak coupling only.
They argued that transitions between molecular levels around the Fermi en-
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ergy can be forbidden due to different symmetry properties. This can result
in an isolated level which, if once occupied (via a photon assisted process)
ends up blocking further transport. Negative differential conductance is then
caused by this blocking.

After this overview of the questions which have been investigated so far,
we now consider a problem that occurred when interpreting the findings of
a recent experiment. This is the subject of the next section.

5.4.2 Conduction properties of PDI devices

Low temperature experiments with 1,4-phenylene diisocyanide (PDI) SAM’s
sandwiched between two metallic leads have been performed by Lee et al.
(2003) and Dupraz et al. (2003). They show several peaks in the CV -diagram.
The typical voltage differences of these peaks are in the range of ∆U ≈ 0.2V
(i.e. there are about 5 peaks within U = 0V and U = 1V). The commonly
adopted explanation for the occurrence of such peaks is the following. Each
molecular orbital that enters the energy window, which is opened by the
applied voltage, enables resonant tunnelling. This increases the conductance
and therefore results in a peak within the CV -diagram.

Typically, the energy gap between molecular orbitals is in the range of
∆E ≈ 1eV. In other words, for applied voltages up to U = 1V there should be
only a single accessible orbital per molecule, giving rise to only a single peak
in the CV -diagram (assuming identical contributions from each molecule,
which is motivated below). Therefore the following question arises: are there
geometrical alignments of the molecules which allow the additional peaks in
the CV diagram to be explained by resonant tunnelling through molecular
orbitals as well?

Influence of changes in the molecular alignment to the transmission
spectrum

During the device fabrication, the step under least experimental control is the
adsorption of the molecules onto the leads. Therefore the exact geometrical
alignment of the molecular SAM is not exactly known. Furthermore, even
the shape of both metallic lead surfaces may well be anything but regular and
atomically flat. One therefore has to expect not only one specific but rather
quite a variety of molecular alignments to be produced within one device.
As one is interested in the conduction properties of the resulting device as a
whole, it is important to understand the influence of each type of geometrical
alignment to the transmission function.
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To this end, we have investigated three such possible alignments, which
will be discussed separately.

1. When metal atoms are added on top of the molecular monolayer in a
random way, there might occur metallic clusters on top of the mono-
layer. These affect the electronic configuration of the molecules in-
dividually, and might therefore have an influence to the transmission
function.

2. In a SAM experiment, there is not just one molecule, but rather a few
hundred molecules involved. If the contribution to the transmission
function was different for each molecule, then T (E) would change qual-
itatively, with a change in size of the mono-layer. We therefore analyse
how the transmission functions depends on the number of molecules
involved.

3. The molecular monolayer may not be strictly periodic, but contain sev-
eral defects. Within such a defect, the distance between two molecules
can be reduced, such that inter-molecular interactions are enhanced.
Each of these defects will have a specific electronic structure and will
therefore influence the transmission function.

Influence of metallic clusters In the sandwich geometry, first the bottom
metallic lead is created. Then the molecular mono-layer is adsorbed on top of
it by self-assembly. Finally the top metallic lead is build upon the molecular
mono-layer. The exact shape of neither metallic surface is known and may
be anything but flat and regular.

It is likely that the surface atoms of the top metallic lead build up clusters
on top of the molecular layer (as for example in Fig. 5.6 b). Which influence
do they have on the electronic configuration of the molecule they are in
contact with? And do the clusters act as small molecules with new electronic
levels? In principle, there are three different influences which an Au cluster
can have on the molecular-electronic structure: it introduces new electronic
levels, the existing molecular-electronic levels can be shifted, and the coupling
between molecule and lead is reduced due to a increase in spatial separation.

The effect of a reduced coupling to the lead can clearly be seen in Fig.
5.6 (c) where the amplitude of the transmission function is reduced with
the Au cluster added. This result is in full agreement with DiVentra et al.
(2000). However, the peak positions themselves are hardly affected. This
was observed for several types of clusters similar to the one shown in Fig.
5.6 and indicates that the shift of the molecular levels only slightly depends
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(a)

(b)

(c)

Figure 5.6: (a) Structure of a molecule without cluster. (b) Structure of a
molecule with a gold cluster on top. (c) Transmission function T (E) for both
structures. The energy scale is relative to the HOMO-LUMO gap, such that
E = 0 corresponds to the middle of the gap.

on the exact geometry of the neighbouring Au atoms. Finally, there are no
additional peaks, which one might have expected because of the additional
electronic levels of the cluster. The explanation of their absence is the fol-
lowing: an electronic level gives rise to a peak in the transmission function
only if the corresponding orbital wave function overlaps with both the top
and bottom electrode. The overlap with that electrode which the cluster
is attached to (say top electrode) is of course large. The overlap with the
bottom electrode consists of two parts. The direct overlap and the indirect
overlap via the molecule. The direct overlap is negligible due to the large
spatial separation. The indirect overlap is also negligible unless the energy
of the cluster level coincides with a molecular energy level (otherwise there
is no molecular level to overlap with). But in that case, there already exists
a transmission peak due to the molecule itself.

In summary, if transmission is already suppressed by the molecule (at all
off-resonant energies), it can either be further reduced by off-resonant tun-
nelling through the cluster, or it can (at best) be left unchanged by resonant
tunnelling through the cluster. Under no circumstances can transmission,
once suppressed by the molecule, be afterwards increased by the cluster. This
in turn means that metallic clusters cannot give rise to additional peaks in
the transmission spectrum.
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Figure 5.7: The structure of two, three, and four molecules adsorbed within
an Au-9× 3 super cell. This setup was used to test the sum rule, Eq. (5.1).
The results are shown in Fig. 5.8.

Mono-layer versus single molecule What do we expect the transmis-
sion function T i(E) for i periodically arranged molecules to look like? As long
as the inter-molecular interactions are small (compared to the intra-molecular
ones) the molecular levels of each molecule will not be significantly changed.
Furthermore as the mono-layer consists of only one kind of molecule, all
of them will have the same electronic structure. Therefore we expect each
molecule to contribute roughly the same amount to the transmission func-
tion:

T n(E) ≈
∑

i

T 1(E) = nT 1(E), (5.1)

where i runs over all n adsorbed molecules. We do not expect the equation
to be fulfilled exactly, because the electronic structure of each molecule will
always be a slightly affected by the presence of neighbouring molecules.

We calculated the transmission function for n=1 to 4 molecules within
an Au super cell of size 9× 3 (the structures are shown in Fig. 5.7). The dis-
tance between the molecules is chosen to be a multiple of the closest Au-Au
separation aAu (d = 5.76Å = 2aAu, with aAu = 2.88Å). To our knowledge,
the parameters of the PDI-SAM mono-layer have never been determined ex-
perimentally, which is why we have to assume the above values. However
STM studies (Zeng et al., 2002) and also theoretical calculations (Yourd-
shahyan and Rappe, 2002) have been performed for alkanethiol mono-layers,
and these parameters motivated our choice. According to structure optimi-
sations the hollow-site adsorption is stronger than the top-site adsorption.
The inter-molecular distance is taken from the observation of (Zeng et al.,
2002).

As we have expected according to Eq. (5.1), the transmission functions
have the same amount of peaks, independently from the number of molecules
present and at identical energetic positions (see Fig. 5.8 a). This result is also
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(a) (b)

Figure 5.8: (a) Transmission function for one, two, three, and four PDI
molecules (see Fig. 5.6 (a) and Fig. 5.8). (b) When plotted against each other,
the transmission functions reveal a linear relationship: T i(E) = a(i, 4)T 4(E),
where a(i, 4) ≈ i

4
.

obtained for all larger distances of the molecules, where the inter-molecular
interaction is even smaller. Furthermore, the sum rule (Eq. 5.1) is indeed
fulfilled, as shown in Fig. 5.8 (b), where each T i(E) is plotted against T 4(E)
for i ∈ {1, 2, 3}. The calculated transmission values (300 discrete values
each) clearly show a linear correlation. The straight lines are linear fits to
the data, and their slope does very well agree with the theoretically expected
value of a(n,m) = n/m. The deviation is below 6%, as can be seen in table
5.1, where we summarise all the fitted values for T n(E) = a(n,m) · Tm(E).

We conclude the following: a monolayer, in which the inter-molecular dis-
tance is large enough to not let inter-molecular interactions play a significant
role, has the same number of distinct electronic levels as a single molecule.
These levels are then highly degenerate. A CV -diagram will therefore have
the same number of peaks. Only the net current will be increased by a fac-
tor a(n,m) compared to the single molecule case. The mere fact that one
deals with a mono-layer instead of a single molecule does not imply that the
transmission function changes qualitatively.

Influence of molecular clusters We have seen that one does not observe
additional peaks in the transmission function as long as the inter-molecular
influence is small; this is the case for distances which occur in typical SAM
structures (Zeng et al., 2002; Yourdshahyan and Rappe, 2002). We now in-
vestigate cases, in which the molecular interactions are not negligible. This
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n m a(n,m) a
n/m

− 1 σ

1 2 0.5188 3.76% 0.014
1 3 0.3500 4.99% 0.018
1 4 0.2649 5.96% 0.021
2 3 0.6753 1.30% 0.008
2 4 0.5117 2.34% 0.015
3 4 0.7579 1.06% 0.011

Table 5.1: The fitted values for a(n,m) together with their deviation from
the theoretical value a(n,m) := n/m and a measure for the quality of the fit
σ, where σ2 := (N−1)−1

∑
(T n(Ei)− a(n,m)Tm(Ei))

2 for N = 300 discrete
energy values T (Ei).

occurs for example when the periodic structure of the mono-layer is per-
turbed by an additional molecule, such that a molecular cluster is formed.
It is sufficient to study the transmission function of an isolated cluster only,
because we have already seen that molecules in the periodic SAM arrange-
ment do not influence each other. The sum of the transmission function for
the periodic SAM and the transmission function for the molecular cluster is,
due to the sum rule, the total transmission function for defect and SAM.

We study the influence of a shorter distance between two, three, and four
molecules on the transmission spectrum and relate it to the discrete energies
of the isolated molecules. The molecules are now separated by d = 2.88Å
which corresponds to the Au-Au atom spacing aAu. The atomic structure for
this calculation is shown in Fig. 5.9 (a), the resulting transmission functions
in Fig. 5.9 (b) and (c).

Upon reducing the molecular separation from d1 = 2aAu to d2 = aAu, the
transmission function qualitatively changes: the number of peaks roughly
doubles, and the new peak positions are different from the ones we have ob-
tained in the previous calculations and do depend on the number of molecules
involved. This is an important point, because if there are several molecular
clusters with different molecular distances, then they all give rise to peaks
at different energy values. The resulting transmission function is the sum
of the individual functions and will thus contain far more peaks than the
transmission function for the non perturbed periodic layer.

We now show that the new peaks are a result of the increase in molecular
interaction due to the decrease in spatial separation. For non-interacting
molecules, the molecular energies are identical and therefore degenerate. An
interaction between molecules breaks this degeneracy, and therefore new en-
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(a)

(b) (c)

Figure 5.9: (a) Two, three, and four molecules with a short inter-molecular
distance of d = aAu = 2.88Å. (b) The transmission functions for two and
three molecules. (c) The transmission functions for three and four molecules.
In contrast to all previous cases, the peaks are shifted with respect to each
other and there are also additional peaks. These changes are due to the
increase in inter-molecular interaction, which alters the electronic levels.
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Figure 5.10: Magnification of the transmission functions for three and four
closely spaced molecules from Fig. 5.9 (c). Additionally the discrete energy
levels of the molecular region are plotted as points along the transmission
function. There corresponds at least one discrete energy level to each peak.
A detailed discussion is given in the main text. Inset: Transmission function
(original scale) for three and four closely spaced molecules (identical to Fig.
5.9 c).

ergy levels occur. By performing a diagonalisation of the molecular Hamilto-
nian (without leads), one can determine the levels of the molecular cluster.

In Fig. 5.10 we have again plotted the transmission function for three
and four molecules, this time together with the discrete energy levels of the
corresponding molecular cluster. The inset is identical to Fig. 5.9 (c), while
the plot itself is a magnification, to better resolve the discrete energy levels
(which are shown as points along the transmission function). Each of the
transmission peaks is related to at least one discrete energy value. But the
reverse statement is not true: not each energy value can be related to a peak
in the transmission function. Why is that? The discrete energies can only
give rise to new peaks in the transmission function if they are not suppressed
by a weak coupling to one of the leads. All levels which are not related to
any peak belong to this category. If the position of the peak is shifted away
from a corresponding energy level, then this is due to the coupling between
molecules and leads. This coupling is absent in the diagonalisation of the
molecular Hamiltonian, but is automatically included in the calculation of
the transmission function.

Finally we show that the additional peak structure in the transmission
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Figure 5.11: IV –calculation for a molecular region containing all three
molecular clusters shown in Fig. 5.9 (a). There are three distinct steps within
the voltage range of 1V.

function for a scenario with an increased inter-molecular interaction gives rise
to a number of steps in the IV -curve. Figure 5.11 contains an IV calculation
for a molecular structure containing all three molecular clusters shown in Fig.
5.9 (a). In this calculation, the bias voltage V enters as a shift of the Fermi
levels for source and drain lead: µ1 = µ2 + eV . The molecular energy has
been set to Em = µ1 − δEm − ηeV , where δEm is the zero bias displacement
of the molecular levels and η = 0.5, because of the symmetric coupling to
the leads.

Compared to the experiments by Lee et al. (2003) and Dupraz et al. (2003)
the number of steps in the IV –curve is well reproduced by our calculation.
The obtained current is at least one order of magnitude larger than the ex-
perimental values. This is a phenomenon common to all theoretical methods
based on the Landauer formula (Emberly and Kirczenow, 2001; Bauschlicher
et al., 2003). A satisfactory explanation for this discrepancy as well as for
the broad range of experimentally observed current values has not yet been
found.

5.4.3 Discussion

We have shown that the peak structure of the transmission function is ro-
bust against changes in the number of adsorbed molecules, as long as the
distance between molecules is considerably large (d & 6Å). And also does
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the exact shape of the top metallic lead not influence the qualitative struc-
ture of the transmission function. Only if the distance between molecules
becomes comparable to atomic length scales, inter-molecular interactions are
no longer negligible and the transmission function undergoes a qualitative
change. Namely an additional peak structure occurs.

How does this finding compare to the experimental data? As we have
pointed out in section 5.3, a more or less random peak structure was observed
in the CV characteristic only in devices using molecules with two isocyanide
groups (Lee et al., 2003; Dupraz et al., 2003). In other devices molecules
with at least one thiol group are typically used. These show significantly less
peak structure.

We therefore give the following interpretation: The thiol group is known
to bind strongly to Au atoms. It is therefore likely, that thiol-based mono-
layers stably adsorb to gold leads. Resulting periodic structures are then
robust against distortions. The conductance of such structures is propor-
tional to the corresponding single molecule conductance, i.e. the number of
molecules involved changes the absolute value of the current only, not the
peak structure.

The random like peak structure in devices made up of isocyanide based
molecules suggests that there are molecular clusters present in the mono-
layer. These clusters might occur because the binding of an isocyanide group
to Au is considerably weaker compared to that of a thiol group, and weaker
binding results in a less robust periodic structure.



Chapter 6

Understanding STM images

In this chapter we present another application of the numerical method which
we have implemented, namely the calculation of scanning tunnelling micro-
scope (STM) images. Starting with an historical overview and a short intro-
duction into the working principle of an STM, we consider experiments which
can only be understood in accordance with theoretical calculations beyond
the Tersoff-Hamann approximation. We also present our own calculations
from a cooperation with Constable et al. (2004) to support the interpreta-
tion of recent STM images. As the system under investigation is considerably
large, we were able to produce the numerical images only by introducing a
special treatment for a large eigenvalue problem, which cannot be solved
sufficiently accurately by conventional methods. This is the first time that
a method has been implemented that can perform image calculations for a
system of that size.

6.1 Introduction

This section provides an introduction to the STM with respect to its history,
its working principle, and some of its applications. We focus on experimental
aspects here, as the approaches in use to numerically calculate transport
through molecular systems have already been discussed (see Chap. 2 and 4).
Detailed reviews about theories specific to the STM can also be found in the
literature (Briggs and Fisher, 1999; Hofer and Foster, 2003).

6.1.1 Historical overview

The optical microscope can be used to obtain real-space images of structures
which are too small to be visible to the unaided eye. However, its resolution
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is restricted to objects larger than half the width of the wavelength of visible
light (i.e. larger than roughly 250nm). Even smaller objects can be viewed
using electron microscopy. The transmission electron microscope (invented
by Knoll and Ruska, 1932a,b) detects electrons from a beam that was trans-
mitted through the sample while the scanning electron microscope detects
secondary electrons which are emitted from the surface due to excitation by a
primary electron beam. Both methods are capable of resolving objects down
to the scale of several nanometers by using electron beams with a wavelength
considerably smaller than that of visible light. They are invasive methods,
because the highly energetic electron beam has to be directed onto and inter-
act with the sample. Furthermore, the samples have to be viewed in vacuum
to prevent the electrons from being scattered by air.

In 1981 the scanning tunnelling microscope was invented by Binnig et al.
(1981, 1982). It was the first tool that allowed real-space images of surfaces
to be obtained with atomic resolution and its inventors Gerd Binnig and
Heinrich Rohrer were jointly awarded half of the 1986 Noble Price in Physics1.
The STM is widely used in both industrial and fundamental research where
it serves as an instrument for analysing bare surfaces, adsorbates on top
of surfaces and also for manipulating these adsorbates on the nanometer
scale (Bartels et al., 1997). It can be operated at room temperature and
atmospheric pressure although higher resolution is obtained under ultra-high
vacuum conditions.

6.1.2 Working principle

Figure 6.1 shows a typical STM setup. An atomically sharp metallic tip is
approached to the surface under investigation. When the distance z between
surface and tip is small enough (z < 10Å) there is a measurable probability
for electrons to tunnel between tip and surface and vice versa. With an
applied voltage U the chemical potential of (say) the tip µ2 is lowered relative
to the chemical potential of the substrate µ1, and therefore each electron
that has tunnelled into the tip will equilibrate within the tip-bulk, thereby
contributing to a tunnelling current. This current depends

• on the exact position of the tip,

• on the applied voltage,

• on the type of tip, surface, and (if present) adsorbate material,

1The other half was awarded to Ernst Ruska for his invention of the electron microscope.
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Figure 6.1: The working principle of an STM device (taken from Aschauer,
1999). Tip and surface are biased via an applied voltage in order to record
a small tunnelling current which depends on the tip position.

• as well as on several laboratory conditions such as temperature, pres-
sure etc.

Because of the extreme sensitivity of the tunnelling current to the tip
position one can generate topographic surface images by scanning in lateral
direction over the sample. Thereby two different modes are possible. Surfaces
which are known to be atomically flat can be scanned in the constant-height
mode, where the tunnelling current is measured as a function of lateral po-
sition and fixed tip-surface distance z: I = I(x, y, z = const). The second
mode is the so-called constant-current mode, where during the scan across
the surface the tip-height is adjusted by a feedback loop, to fix the tunnelling
current at a chosen value. The different values for the tip height are recorded
and make up the STM image: z = z(x, y, I = const). This latter mode is
typically used when the surface structure is either not known or known to
not be entirely flat.

There is a third mode for STM operation which differs from the above
mentioned ones in that it is not only used to image the surface but also
to manipulate the position of adsorbed molecules. This can be achieved by
decreasing the tip-surface distance in the vicinity of the molecule below a
certain critical value at which the tip influence becomes irreversible. When
one deals with adsorbates building molecular monolayers, this can result in
the removal of a single molecule, i.e. it constitutes a controlled write opera-
tion. With the above mentioned reversible constant-current mode a read-only
operation can also be performed.

These capabilities of the STM motivated intensive research within the
last decade aiming to build memory storage devices on the molecular or even
atomic level (Miller et al., 1997; Bennewitz et al., 2002). Nevertheless we
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(a) (b)

(c)

Figure 6.2: A collection of images taken with an STM: (a) image of Rhodium
surface 103Rh(111) (taken from Ohtani et al., 1988) (b) same surface with ben-
zene molecules (C6H6) adsorbed (taken from Ohtani et al., 1988) (c) benzene
adsorbed on Platinum 195Pt(111) (taken from Weiss and Eigler, 1993).

restrict ourselves to reversible STM applications from now on.

6.1.3 Examples of STM images

A few representative images taken with an STM are shown in Fig. 6.2. By
scanning over clean surfaces, the orientation of the top layer can be deter-
mined. In Fig. 6.2 (a) a step in the surface layer of Rh(111) can be identified.
The image changes drastically when an adsorbate is present. In Fig. 6.2 (b)
the same surface is shown, this time with benzene molecules adsorbed on top.
They appear as hills with a dip in the middle. Another image of benzene,
but adsorbed on Pt(111) and with a much higher resolution, is shown in Fig.
6.2 (c).
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6.2 Numerical STM image calculations

As the STM technique was more and more established, it became obvious
that there are reproducible experimental effects which can not be explained
by the Tersoff-Hamann formula (see Sec. 2.1.3 and 2.1.4). In these cases,
the underlying assumption that any influence of the tip can be ignored is no
longer justified. This section is devoted to cases in which it was necessary to
perform numerical calculations beyond the Tersoff-Hamann approximation
in order to explain experimental observations.

6.2.1 Image contrast inversion

Doyen et al. (1993) were able to show that the experimentally observed effect
of image contrast inversion (Kopatzki and Behm, 1991; Schuster et al., 1991)
can be explained by the influence of the tip potential at short tip-surface
distances. They considered a bare metallic Palladium (Pd) surface.

First they calculated the local electronic density of states for the bare
surface using DFT. Thereby they confirmed that it takes a maximum value
on top of a Pd surface atom, independently of the distance z from the surface.
Above the hollow site the electronic density takes a minimum value.

In a second step, the STM tunnelling current was calculated. This was
done using scattering theory for a periodically repeated Pd slab. The tip
was modelled via a localised attractive potential. They found that the local
extrema of the tunnelling current coincide with the extrema of the density of
states only for tip-surface distances larger than 3 Å. For closer distances the
image contrast undergoes an inversion, and maxima of the tunnelling current
correspond to minima of the density of states. This image contrast inversion
is shown in Fig. 6.3.

This effect can be explained as follows. With decreasing tip-surface dis-
tance, the increasing interaction between the resonance state of the localised
tip potential and the delocalised surface states yields a splitting into bonding
and anti-bonding states. Because of the d-type orbital structure of Pd this
interaction is stronger for the hollow site than for the top site and so is the
splitting. The stronger bonding then results in a larger current for the hollow
site compared to the top site.

6.2.2 Negative differential resistance

Another example for the important influence of the tip electronic structure
is the occurrence of negative differential resistance (NDR) in scanning tun-
nelling spectroscopy experiments. In those experiments the bias voltage is
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Figure 6.3: Calculation of the tunnelling current for two different distances
of the STM tip. The image contrast undergoes an inversion (i.e. current
maxima become minima and vice versa) when the tip-surface distance is
decreased (taken from Doyen et al., 1993).
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tuned while the STM tip position is not changed. In this way the conduc-
tance properties G(V ) = dI/dV of specific points above the surface can be
measured.

Negative differential resistance cannot be explained within the Tersoff-
Hamann approximation because the tunnelling current is taken to be directly
proportional to the applied voltage, such that the conductance is always
positive and constant.

Tsukada et al. (1991) addressed the phenomenon of NDR by using the
Bardeen formula together with first-principles electronic structure calcula-
tions, which they performed for substrate and tip. Within their calculations
NDR occurred only when the STM current was dominantly produced by the
tunnelling between a single tip state and a single substrate state both close
to the Fermi energy.

The mechanism of NDR is the following: for increasing but still small
applied bias voltages, the broadening of the energy window which is being
integrated over in the Bardeen formula, results in an increase of the tunnelling
current. Thus the conductance must be positive. By further increasing the
bias voltage, the Fermi level offset between substrate and tip drives the two
states dominating the current off resonance. This leads to a decrease in the
tunnelling matrix element Mij, because it involves the product of the LDOS
of each of the two states, which is much reduced if the peak positions of the
two LDOSs are shifted apart. A decrease of the total current and therefore
a negative differential resistance is then obtained.

6.2.3 Electric field effects

The tip-induced electric field at the surface is, assuming a tip-sample sepa-
ration of 5 − 10Å and an applied voltage of 1V , of the order of 109Vm−1.
Such an electric field can be expected to have a considerable effect onto the
electronic structure of the surface when its polarisability changes with spatial
position. This is for example the case when hydrocarbons, which are only
slightly polarisable (εr ≈ 2), are adsorbed on silicon (εr ≈ 14) (Briggs and
Fisher, 1999).

When STM data from the bare silicon surface (Tromp et al., 1985) and
from hydrocarbons adsorbed on silicon (Mayne et al., 1993) were compared,
it was found that, although the molecules are adsorbed on top of the silicon
surface, they appear lower than the bare silicon surface dimers in the constant
current mode image. This can be explained by the influence of the tip induced
electric field, which effectively pulls the electrons out of the regions with a
higher polarisability.

Numerical simulations neglecting the tip-induced electric field result in
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Figure 6.4: Influence of the tip-induced electric field. The apparent height
of an adsorbed molecule can be changed. Hydrocarbons adsorbed on silicon
appear as bumps (top figure) in calculations neglecting the electric field. In
contrast, when accounting for the field the adsorbed molecules correspond to
lower regions of the STM image (bottom figure), in accordance with experi-
ment (Ness and Fisher, 1997).
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Figure 6.5: The two conformations of the molecule investigated by Constable
et al. (2004).

images where the adsorbed molecules appear to be higher than the bare
silicon dimers. Only when the electric field is taken into account do the
calculations agree with experiment (Ness and Fisher, 1997).

6.2.4 Conformational analysis of self-organised mono-
layers

The search for molecular structures which self-organise on substrate surfaces
in a controllable way is currently a hot topic in material science. It is research
which combines the work of both chemists and physicists. Chemists are
concerned with synthesising molecules with self-organising capabilities along
with special properties like the stable adsorption on surfaces. Physicists
then perform STM studies of the resulting structures, thereby confirming or
invalidating the properties of interest.

Experimental observations

Constable et al. (2004) are studying molecular systems that exhibit multiple
conformations on a graphite surface (see Fig. 6.5). This knowledge is taken
from STM studies which show multiple domains. There are two sets of these
domains with an angular relation of 6.5◦ (see Fig. 6.6). As there was used
only a single molecular type, the domains have to correspond to different
conformations of this molecule. Now the question arises how the domains
can be mapped to different conformations.

Because the STM images are obtained with sub-molecular resolution, dif-
ferent conformations can be tested with respect to a possible packing arrange-
ment matching the periodic structure present in the STM image. Thereby
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Figure 6.6: (a) Packing arrangement for trans-2 conformation. (b) STM
image of two domains differing in orientation by an angle of 6.5◦. (c) Ex-
panded image of the domain corresponding to the trans-2 configuration. (d)
Expanded image corresponding to the trans-1 configuration (images taken
from Constable et al., 2004).

Constable et al. (2004) were able to uniquely relate each domain to a single
conformation (see Fig. 6.6).

However, details of the conformation concerning the angular direction of
the bond between oxygen atom and the attached hydrocarbon chains (named
R in Fig. 6.5) remain unknown. Two different conformations are shown in
Fig. 6.7. Because the hydrocarbon chains do not show up in the STM images
explicitly, both conformations can be matched with the experiment. But it
is believed that they give rise to different sub-molecular structures in the
images. Calculations can be used to predict the sub-molecular structure and
by comparing the theoretical images with the ones obtained experimentally,
it may be possible to pin down the conformational structure more strictly.

However, the algorithms for calculating STM images are limited to small
systems, at least systems too small to contain the molecule of interest (Fig.
6.7) and to our knowledge, no calculations have ever been published for a
molecule of comparable size. This was also true for the ESQC method. Yet
we figured out the bottle neck of the calculation and by reformulating the
corresponding mathematical problem we succeeded in extending the method
to systems large enough for the molecule to fit into.
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Theoretical calculations

Because the molecule is wide spread on top of the graphite surface, a very
large super cell has to be used. The size of this super cell in turn determines
the dimension of the propagator matrix which enters the ESQC algorithm.
This non-symmetric matrix has to be diagonalised, in order to obtain the
propagating channels (see Chap. 4). A straight forward diagonalisation using
standard linear-algebra packages (LAPACK) proved to result in inaccurate
eigenvalues. This affects the algorithm in a dramatic way: a significant loss
in accuracy of the eigenvalues renders the entire method useless. This is
because each eigenvalue, depending on its modulus, corresponds to a prop-
agating or an evanescent incoming or outgoing solution. The method relies
on an identical amount of incoming and outgoing solutions. Below a certain
numerical accuracy such an equal partitioning is no longer possible, resulting
in the breakdown of the method.

By using the periodic nature in lateral direction of each lead explicitly,
we were able to transform the diagonalisation procedure from a single step
diagonalisation of a large quadratic 2NM matrix into N individual diagonal-
isation steps each involving a 2M dimensional quadratic matrix only. Here N
corresponds to the size of the super cell in units of the unit cell and M is the
number of (valence) electrons contained in the latter. As M is independent
of the system size (super cell size), so is the accuracy of the diagonalisation
step.

Only after the implementation of this exceedingly more accurate diag-
onalisation procedure was it possible to consider a super cell large enough
for the molecule to fit in. The remaining restriction is now imposed by the
available computer memory (RAM). This allows, for the first time, theoreti-
cal studies of such large molecules adsorbed on surfaces while still using an
atomic description of the entire system.

Currently we are considering several conformations (two of which are
shown in Fig. 6.7) of the molecules possibly involved in the above mentioned
experiments. Preliminary results are presented in Fig. 6.8. Each image is

obtained by scanning a region of size 30× 50Å
2

with a resolution of 60× 100
points. As the calculation for a single point takes roughly 4 minutes on a
present-date PC, the total computer time for an entire image amounts to
almost two and a half weeks.

These calculations have to be considered as work in progress. So far we
have merely proven that calculations of this type are possible from a technical
point of view. Whether at all and for which parameter range the calculations
are in accordance with experiments remains to be seen. Further studies
concerning the influence of parameters like molecule-substrate distance, tip-
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Figure 6.7: Two different conformations of the molecule investigated by Con-
stable et al. (2004). They enter as input to STM image calculations (see Fig.
6.8).
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Figure 6.8: Sample STM image calculations for two different conformations
of the same molecule (which are shown in Fig. 6.7). The projected atomic
positions are plotted as black pixels, irrespective of their chemical type. Fur-
ther studies are in order to finally perform calculations which can be related
directly to the experiments.
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surface separation and molecule-surface orientation are in order to finally
perform calculations which can be related directly to the experiments. This
is part of the future work which arises from the present thesis.
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berg. In German.



90 Bibliography



Danksagung
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verdanke ihm auch ungemein nützliche Kontakte, die er zu anderen Arbeits-
gruppen geknüpft hat.

Xavier Bouju und Christian Joachim danke ich für ihre Einladung nach
Toulouse und die freundliche Aufnahme in ihre Arbeitsgruppe während mei-
nes dortigen Aufenthalts.

Die Diskussionen mit Udo Beierlein und Christian Dupraz warfen wich-
tige Fragen auf, die zu beantworten Teil der vorliegenden Arbeit wurde.
Es hat sich gelohnt, die Kooperation über den Rand des Fussballfeldes auf
das Gebiet der Physik zu erweitern. Die Zusammenarbeit mit Prof. Bianca
Hermann, aus einem CeNS Workshop hervorgegangen, hat schließlich dazu
geführt, daß diese Arbeit auch einen Beitrag auf dem Gebiet leistet, das die
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