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We investigate a quasi-one-dimensional system of trapped cold bosonic atoms in an optical lattice by using
the density-matrix renormalization group to study the Bose-Hubbard model atT=0 for experimentally realistic
numbers of lattice sites. It is shown that a properly rescaled one-particle density matrix characterizes superfluid
versus insulating states just as in the homogeneous system. For typical parabolic traps we also confirm the
widely used local-density approach for describing correlations in the limit of weak interaction. Finally, we note
that the superfluid to Mott-insulating transition is seen most directly in the half-width of the interference peak.
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During the last years enormous progress was made in the
experimental manipulation of cold atoms in optical lattices.
Recently, Greineret al. [1] succeeded in driving a transition
between a superfluid(SF) and a Mott-insulating(MI ) state in
a system of ultracold bosonic atoms in an optical lattice as
predicted by Jakschet al. [2]. In contrast to solid-state real-
izations the experimental setup involves the application of an
additional parabolic trapping potential that causes a state in
which the two phases, though spatially separated, coexist[3].
Due to the inhomogeneity the usual characterization of the
SF to MI transition by the asymptotic behavior of the one-
particle density matrix does not apply. Motivated by this, we
use the density-matrix renormalization group(DMRG) [4] to
study how the parabolic confining potential influences the
one-particle density matrix and its Fourier transform, which
is related to the interference pattern observed in the experi-
ments[5]. We find that by a simple rescaling, the decay of
the correlations can be used to characterize the occurring
states, just as in the homogeneous case. We further confirm
the applicability of the standard local-density approximation
to the inhomogeneous system[6] for weak interactions by
comparing it to the DMRG results for the correlation func-
tions. Studying experimentally accessible quantities we find
that the half-width of the interference peak contains the es-
sential information about the state of the system.

(i) Model.Ultracold bosonic atoms in an optical lattice[2]
can be described by a Bose-Hubbard model

H = − Jo
j

sbj
†bj+1 + H.c.d +

U

2 o
j

n̂jsn̂j − 1d + o
j

« jn̂j ,

s1d

wherebj
† and bj are the creation and annihilation operators

on sitej andn̂j =bj
†bj is the number operatorf7g. This Hamil-

tonian describes the interplay between the kinetic energy due
to the next-neighbor hopping with amplitudeJ and the repul-
sive on-site interactionU of the atoms. By tuning the lattice
depth in the experiment, the parameteru=U /J can be varied

over several orders of magnitude. To investigate the proper-
ties of the one-dimensionals1Dd Bose-Hubbard model, we
apply the DMRG, a quasiexact numerical method, very well
suited to study strongly correlated quasi-1D quantum sys-
tems with a large number of sites at zero temperaturef8g. It
has been successfully applied to spin, fermionic, and bosonic
quantum systems including the homogeneousf9g and the dis-
orderedf10g Bose-Hubbard model. We used the finite-size
DMRG algorithmf8g which is better suited for an inhomo-
geneous system, since it gives the system the possibility to
evolve further after the final length of the system is reached.
Additionally some tricks are applied to circumvent problems
which arise due to the sparse filling at the boundaries. The
numerical results were tested to be convergent in the cutoffs
used for the length of the system, the number of states kept
for the Hilbert space, and the number of states allowed per
site. Uncertainties given below are determined by comparing
data of different parameter sets.

(ii) State diagram.The confining trap of the experiment
[1] which consists of a magnetic trap and the confining com-
ponent of the laser which generates the optical lattice can be
modeled by setting« j =Vtrap

0 fas j − j0dg2 in Eq. (1), wherea is
the lattice constant. We choose the strength of the trap pro-
portional to the on-site interaction, i.e.,Vtrap

0 =v0U, since this
guarantees that when the optical lattice depth, corresponding
to the parameteru in the Bose-Hubbard model, is changed,
the size of the system does not vary much for a fixed particle
number. This is consistent with the experimental realization,
in which the total size of the condensate is essentially inde-
pendent of the lattice depth. In the presence of a parabolic
trap at average filling of approximately one-particle per site,
one can distinguish three states of the system(see Ref.[2,3]):
(a) for u,uc1, the particle occupancy is incommensurate
over the whole system;(b) for uc1,u,uc2, regions with
incommensurate and commensurate occupancy coexist; and
(c) for u.uc2, the main part of the system is locked to com-
mensurate filling and only at the boundaries small incom-
mensurate regions exist. For small particle numbers, state(b)
does not occur. A sketch of the state diagram is presented in
Fig. 1(A). The insets show the characteristic shape of the
particle distribution for the three states. For state(b) the ex-
act locations of the interface between the commensurate and
the incommensurate regions are difficult to determine. This
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is due to the fact that these sites correspond in the homoge-
neous system to the critical parameter regimes at the phase
transition, where strong fluctuations and extreme sensitivity
to boundary conditions make a numerical investigation very
difficult.

(iii) Rescaled correlations.To get a better understanding
of the three states(a)–(c), we study the properties of the re-
scaled one-particle density matrix,

Cjsrd = kbj
†bj+rl/Înjnj+r , s2d

in which the leading density dependence ofbj ~Înj is di-
vided out. In the absence of density fluctuationsCjsrd is
just the pure phase correlation functionkeif je−if j+rl. At the
two-particle level, the equivalent step is going from the
two-particle densityrs2dsx1,x2d to the dimensionless two-
particle distribution function gs2dsx1,x2d=rs2dsx1,x2d /
rs1dsx1drs1dsx2d. Remarkably, we find that by this simple
rescaling, the signatures of the SF and MI phases in the
homogeneous system, namely, an algebraic or exponential
decay, Cjsrd~Aur u−K/2 and ~Be−ur u/j, respectively, can be
recovered approximately even in the presence of a para-
bolic confining potential. For weak interactions,uøuc1
fFig. 2sadg Cjsrd decays approximately algebraically with
r. In the intermediate regime,uc1,u,uc2 fFig. 2sbdg the
decay in the regions where the density is incommensurate
is still algebraic, whereas in the regions where the density
is locked, it shows an exponential behavior. Increasing the
interaction further,uùuc2 fFig. 2scdg the incommensurate
regions disappear and the correlations decay exponen-
tially.

(iv) Hydrodynamical approach.It is instructive to com-
pare the numerically exact DMRG results to a hydrodynami-
cal treatment of the interacting 1D Bose gas[11] combined
with a local-density approximation. In the hydrodynamical
approach the low-energy fluctuations of the system are de-
scribed by two conjugate fields, the phase fluctuationsfsxd
and the density fluctuationsusxd. This approach can be gen-
eralized to the case of inhomogeneous systems[6] by taking

the density fluctuations around a smooth, spatially dependent
density profilensxd. An equivalent procedure was used for
1D Fermionic gases by Recatiet al. [12]. The Hamiltonian
becomes

H =
"

2p
E dxhv jsxds]xfd2 + vNsxdf]xu − pnsxdg2j,

precisely as in the homogeneous case, except thatnsxd, and
thereforev jsxd=p"nsxd /m andvNsxd=sp"d−1us]m /]ndun=nsxd,
now depend onx. To account for the inhomogeneity, the
local-density approximationm fnsxdg+Vsxd=mfns0dg was
used to obtain the mean density profilef13g. Based on this
approximation Gangardt and Shlyapnikovf6g have shown
that the normalized matrix elements of the one-particle den-
sity matrix are given by

Csxd: =
kb†sxdbs− xdl
Însxdns− xd

= S u2xu
lcsxd

D−Ksxd/2

, s3d

whereK is the exponent andlc the longitudinal correlation
length. Equations3d is derived assumingu2xu@ lc. Specializ-
ing to weak interaction, i.e.,g;1/dn!1, the approxima-
tions lcsxd<Îd/nsxd and Ksxd<1/fpÎdnsxdg hold, where
d~ l'

2 /a3D is the characteristic length of the interaction.d
depends on the 3D scattering lengtha3D and the amplitude
l' of the transverse zero-point oscillation. The condition
u2xu@ lc breaks down at the boundaries, wherensxd van-
ishes causing a divergence inlcsxd. ComparingfEq. s3dg to
the quasiexact results of DMRG, it turns out that the local-

FIG. 1. (A) Sketch of the state diagram forv0=4/642. The in-
sets sketch the shape of the density distribution in the states.(B)
Sketch of the phase diagram of the homogeneous system: chemical
potentialm vs 1/u. The different symbols in(B) mark the locations
of the chemical potential values in the local-density approximation
that correspond to the locations in the density profiles marked in
(A).

FIG. 2. Scaled correlationsCjsrd [Eq. (2)] for different fixed
sitesj are plotted as a function ofr for different values ofu. For the
coexistence region(b) a shallower trapping potential is chosen, such
that the extents of both the incommensurate and the commensurate
regions are large enough to allow identification of the algebraic and
exponential behavior.
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density approach describes very well the rescaled correla-
tions in the inhomogeneous systems forgø2. To this end
we fitted the functionCsxd fEq. s3dg to the corresponding
DMRG results, using onlyd as a fitting parameterfFig.
3g. We find a very good agreement in the bulk of the SF
regions in both, the purely SF statefFig. 3sadg and the
coexistence statefFig. 3sbdg. The quality of the agreement
is somewhat surprising, because the pure statesg=0.6d
and the coexistence statesg=1.7d are in an intermediate
regime between the Thomas-Fermi limitsg!1d and the
Tonks gassg@1d, where the density profile is no longer
parabolicf13g.

(v) Interference pattern.We investigate how the informa-
tion contained in the interference pattern is influenced by the
confining potential. If the interaction between the atoms after
switching off the confining potentials is weak, i.e.,Epot
!Ekin, the measured absorption images reflect the momen-
tum distribution obtained from the Fourier transform of the
one-particle density matrix[5],

Iskd ~ rskd =
1

N
o

j ,j8=1

M

eis j−j8dakkbj
†bj8l, s4d

whereM is the number of sites in the chain andN the total
number of particles. For the parameters studied here, the ap-
proximation of a negligible contribution of the interaction
energy to the time of flight images is valid for all momenta
in the second or in higher Brillouin zones. Indeed, these
momenta are of order 2"ps/L, wheresPN ands.M. Thus
Epot/Ekin~ fn3Ds4p"2asd /mg / fsp"s/Ld2/ s2mdg~as/a~10−2

for n3D,1.5/a3 andas/a as in Ref.f1g. The functionrskd
has been studied for very small systems numericallyf14g,
with the hydrodynamical approachf15g for a 1D homoge-
neous system and for the confined system in 3Df5g and
1D f16g. In Fig. 4 we plot the DMRG resultsssymbolsd for
the function rskd for several values of the parameteru,
comparing the homogeneous systems«i =0d with open
boundary conditionssAd to the parabolic systemsBd. In
the homogeneous system with commensurate filling,n
=N/M =1 fFig. 4sAdg we find a very sharp peak at small
momenta foru,uc. If u is increased, the peak height de-

creases smoothly. The half-widthw fFig. 5sAdg, however,
shows a clear upturn. This upturn signifies a phase tran-
sition, since it stems from the behavior of the correlation
lengthjs~w−1d, which diverges in the SF phasesj~Ld and
becomes finite in the MI phasesj~D−1, where D is the
energy gapd. For the parabolic systemfFig. 4sBdg, the in-
terference pattern for small and largeu is similar to the
interference pattern in the homogeneous system. In the
intermediate regime, however, it shows a more complex
behavior, which is most clearly evident inw fFig. 5sBdg.
For small particle numberssN=40d, w is very small for
u&uc1 and rises continuously foru.uc1. In contrast, for
larger particle numberssN=50,60d three different regimes
corresponding to the three different states in Fig. 1 are
observed: sad for u,uc1, w is very small, sbd for
uc1,u,uc2, w rises slowly, until atu,uc2 it shows a
sudden jumplike increase,scd for u.uc2, it continues to
rise strongly. That means that in the SFsad and the MIscd
states the behavior ofw resembles that of the homoge-

FIG. 3. Quasiexact DMRG results forCs jd (symbols) are com-
pared to Eq.(3) obtained by the hydrodynamical approach[6]
(lines). We usednsxd=n0f1−sx/Rd2g, where n0 and R are deter-
mined by fitting to the DMRG results(see insets). The uncertainties
are obtained by varying the fit range in the sensible region away
from the boundaries.

FIG. 4. Interference pattern for the system with(A) open bound-
aries and with(B) parabolic trap for different values ofu. Symbols
are the results of the DMRG(maximal uncertainty 0.1) and lines the
results of the approximations explained in the text. The insets en-
large the scale of they axis. For a homogeneous systemucsn=1d
.3.37 is the critical value in the thermodynamic limit according to
Ref. [9].

FIG. 5. Half-width of the interference peak for the homoge-
neous(A) and the parabolic(B) system. Arrows in(A) mark the
critical value ofuc in the thermodynamic limit(solid and dashed for
n=1 andn=2, respectively) according to Ref.[9]. Arrows in (B)
mark the three different regimes described in the text. To relateu to
the corresponding lattice depthsVlat/Erd of experiments, we as-
sumed that the depths in the two perpendicular dimensions were
fixed to Vlat,' /Er =50.
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neous system. This is as expected, since the rescaled cor-
relations show the same decay as in the corresponding
homogeneous phases. In the intermediate regimesbd, how-
ever, it shows a new behavior, a slow increase, which is
due to the coexistence of the SF and the MI states. The SF
region determines mainly the height of the interference
peak, while its broadening is due to the presence of the MI
region. In the crossover region between the totally incom-
mensurate and the coexistence region, the interference
pattern shows additional oscillations with period 2p / l,
where l is the distance between the two outer SF regions,
due to the appearance of relatively strong correlations be-
tween the latter. Similar oscillations were seen in Ref.
f16g. In smaller systems such as in Ref.f5g the effect is
more pronounced causing well-separated satellite peaks.

Finally, let us investigate to what extent the properties of
the interference patterns in Fig. 4 can be understood in terms
of simple phenomenological approximations forkbj

†bj8l in
the homogeneous and the rescaled correlationsCjsrd in the
inhomogeneous system. Once the characteristic quantitiesK
andj have been identified(in this case by fitting to DMRG
results), our simple rescaling procedure captures most of the
essential observable physics. To illustrate this we show in
Fig. 4(A) in addition to the DMRG results results(lines)
obtained by approximatingkbj

†bj8l in Eq. (4) by Au j − j8u−K/2

andBe−u j−j8u/j for small and largeu, respectively. The values
of K andj are determined by fittingkbj

†bj8l to DMRG results
(not shown here). The constantsA andB are chosen such that
the value atk=0 agrees with the DMRG results. In Fig. 4(B)
the approximations(lines) are obtained analogously by tak-
ing the density scaling into account, i.e., replacingkbj

†bj8l by
the algebraically and the exponentially decaying functions
times the scaling factorÎnjnj8. We use the density distribu-
tion nj =n0s1−s j − j0d2/R2d for u=1, andnj =1 for u=9. The
parametersK and j are determined by fitting the rescaled

correlation functions. Comparing the DMRG data to the ap-
proximation we see in Fig. 4 that this simple approximation
works very well for small values ofka; in particular, it re-
produces the correct shape of the peak[even including the
small nonmonotonities which are due to the finite sum in Eq.
(4)]. This underlines thatrskd is mainly determined by the
decay of the(un)scaled correlations. Clearly our calculations
in 1D cannot be compared quantitatively with the experi-
ments in a 3D lattice[1]. Recently, however, an array of truly
1D Bose systems has been created[17]. With an additional
lattice potential our predictions can then be tested quantita-
tively [18]. In the experimental realization one typically has
several 1D systems next to each other with different particle
numbers, hence the location of the sharp upturn in the half-
width [Fig. 5(B)] will be smeared out, since the critical value
uc2 depends on the particle number. Nevertheless, we expect
in particular the strong, jumplike increase between the coex-
istence state and the MI state to remain observable.

In conclusion, we have found that the correlation func-
tions of a parabolically confined system, after a remarkably
simple rescaling, show approximately the familiar algebraic
and exponential behavior of the SF and MI phases in the
homogeneous system. We investigated as well the applicabil-
ity of the local-density approximation in a parabolic system
in the limit of weak interaction and find a good agreement
with the DMRG results. Moreover, if the experimental sys-
tem consists of 1D tubes with almost the same average fill-
ing, the half-width of the interference peak can be used to
distinguish the different types of states that occur experimen-
tally.
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