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We develop a theory of electron transport in a double quantum dot device recently proppée@rieg and
D. Goldhaber-Gordon, Phys. Rev. Le®0, 136602(2003] for the observation of the two-channel Kondo
effect. Our theory provides a strategy for tuning the device to the non-Fermi-liquid fixed point, which is a
quantum critical point in the space of device parameters. We explore the corresponding quantum phase tran-
sition, and make explicit predictions for behavior of the differential conductance in the vicinity of the quantum

critical point.
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[. INTRODUCTION with an atomic defect which occupies two equivalent lattice

sites, thus forming a pseudospiowever, the equivalence

The magnetic screening of a localized spin by spins obf sites is not a protected symmetry; its violatfSrequiva-
itinerant electronsleads to the Kondo effect—an anomaly in lent to a “Zeeman splitting” of the pseudospin states, de-
low-temperature conduction properties. This screening bestroys the Kondo effect.
comes effective below some characteristic temperature, the Another object which under certain conditions can be de-
Kondo temperatur@&y . Above Ty electrons are weakly scat- scribed by the two-channel Kondo mod2ICK) model, is a
tered by the magnetic impurity, but beloli the scattering large quantum dot, or a metallic island connected by a
becomes strong. In the simplest Kondo systems, only onsingle-mode channel to a conducting electrbdé.one ne-
electron mode(the sswave mode, sgyparticipates in the glects the finite level spacing in the island, then a pseudospin
screening of a localized spin witB=1/2. In this case, the labeling of the charge states of the island may be introduced,
low-temperature electronic properties are adequately dewhile real spin again plays the part of the channel index. In
scribed by Fermi liquid theoryand the thermodynamic and this setup the degeneracy with respect to the pseudospin ori-
transport characteristics are analytical function3b6F,. In  entation is easily achieved by tuning the gate voltage to the
more complicated systengsuch as, e.g., paramagnetic met- vicinity of the Coulomb blockade degeneracy point. At tem-
als) many electron modes may participate in screening of aperatures higher than the level spacirgE in the island, the
S=1/2 localized momeritThe peculiarities of such a “mul- system is then described by the 2CK motteSince Ty for
tichannel” Kondo model were long recogniz&d.At the this system can be of the ordéof the charging energg,
same time it was understood that even a small deviation frorwhile typically SE<E., the NFL regime is easily realized.
symmetry between channels leads at low temperatures to th¥hen an additional electrode is attached to the island, one
Kondo screening by just one channel, the one for which thean study the transport properties of the resulting device. The
exchange integral with the impurity is the larg@st. disadvantage of such realization of a 2CK system is that

The peculiarity of asymmetrianultichannel Kondo prob- there is no mapping between the conductance across the
lem is in its non-Fermi-liquid (NFL) behavior at low island® and the electron scattering cross-section in the ge-
temperature$.The low-temperature asymptotes of the ther-neric two-channel Kondo modéf
modynamic and transport characteristics display power-law Small quantum dots with large level spacing have proved
behavior with fractional values of the exponents. A completeto be suitable for the observation of the Kondo effécin
temperature dependence of the thermodynamic characteriie usual geometry consisting of a dot with two attached
tics (such as the local spin susceptibijiig known now from  electrodes, however, only the conventional Fermi-ligid)
the exact Bethe-ansatz solution of the Kondo probiéme-  behavior is observable at low temperatures. The reason lies
tails of the low-temperature electron scattering problem werén the structure of the matrix of exchange constants that
also understood in the framework of conformal field couple the dot’s spin to the spins of itinerant electrbhS.
theory’8 Typically, the eigenvalues of this matrix are vastly

Experimental observation of the non-Fermi-liquid behav-different!® and their ratio is not tunable by conventional
ior in a Kondo system, however, is difficult because themeans.
channel symmetry is not “protected”—in general, there are A device that circumvents this problem was proposed re-
no conservation laws prescribing such a symmetry. This hasently in Ref. 17, and involves several dots. A two-dot device
led to various propositions to observe such a behavior ins sufficient for the realization of the 2CK model. The key
systems where the role of spin is taken over by another dedea of Ref. 17 is to replace one of the electrodes in the
gree of freedom, while the “real” spin labels the channels,standard configuration by a very large quantum dot 2, see
making the channel symmetry robust. One such idea dealsig. 1, characterized by a level spacidg, and a charging
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He=> t.cl dst+H.c. (4)
aks

In Eq. (2) the smaller dofdot 1) is described by a single-
level system equivalent to the Anderson impurity model. The
parameterE; represents charging energy, while the param-
eter N is adjustable by tuning the potential on the capaci-

FIG. 1. Device proposed in Ref. 17. Level spacing in the largertively coupled gate electrode. We neglect the finite level
dot (2) must be negligibly small to allow for the NFL behavior of spacingdE; in the dot 2, but account for its finite charging
the device at low temperatures. energyE, (we do not write explicitly the gate potential ap-

plied to the dot 2, as it corresponds to a trivial shift of the

energyE,. At T> 8E,, particle-hole excitations within this chemical potential
dot are allowed, and electrons of dot 2 participate in the Since the relevant energiee£T) for the Kondo effect
screening of the smaller dot’s spin. At the same time, as long@re negligibly small compared to the Fermi energy, the elec-
asT<E,, the number of electrons in the dot 2 is fixed. As atronic dispersion relatiog in Egs.(2), (3) can be linearized:
result, the electrons in dot 2 provide for a separate channék=vek, wherek is measured from the Fermi momentum
which does not mix with the channels provided by the eleckg . The linearization leads to an energy-independent density
trodesL andR. In this case, the exchange constants for twoof statesv, which will be assumed throughout this paper.
channels may be tuned to become eddahe asymmetry Finally, we treat the tunneling amplitudes,tg,t, as real
between the channels is controlled by the ratio of the conaumbers and neglect their dependenceskoithis is well
ductances of the dot leads and dot-dot junctions. justified for relevant values d, |k|<T/ve.

In principle, a setup having just one lead and two dots Instead of working with the operatocg | , it is conve-
would allow one to study thermodynamic properties, such asient to introduce their linear combinatiows ,,
magnetic susceptibility, in the 2CK regime. The existing
technology** however, enables one to measure transport P1ks costy  sinfp | [ Crks
rather than thermodynamic properties. Therefore, two Iead§ Yoks —sinf, cosf, '
are needed to perform conductance measurements. In this
paper, we assume that one of the electrodes is coupleshere the angl®, is determined by the equation
weakly to the small dot and serves as a probe of the 2CK
system formed by the two dots and the remaining electrode. tanfo=t /tg. (6)
We propose a detailed strategy for tuning the device to th?So far there are no restrictions on the valud,oftg.) The

NFL regime, and discuss various manlfestatlons of NFL'HamiItonian (1)~(4) then assumes the “block-diagonal”
related physics in the transport properties of the system. form

L R

©)

CiLks

Il. THE MODEL H=Ho{¢o} +Hi{¢1,¢7.d}, (0

According to the discussion above, the device we con-
sider consists of two quantum dots coupled to two conduct- Ho= >, &tbbistboks, (8
ing leads via single-mode junctions. The model Hamiltonian ks
of such a device can be written as a sum of three parts

H1:Hd{‘/’21d}+% fkﬂks‘/’lk#% (g ds+H.c),
©)

H:Hd+H|+Ht. (1)

The first term herelH,, describes an isolated system of two
quantum dots, 1 and 2, connected via a single mode junctiowhereHq{#,,d} is given by Eq.(2), andt; = yt{ +tg.
At low energies T<E, ;) the HamiltonianH; involving
2 the ¢/, and ¢, operators, see E@9), can be simplified fur-
+ X Ethhestbors ther. Indeed, aN~1 the small dot is occupied by a single
ks electron, and, therefore, carries a spin 1/2. The tunneling
2 terms in Egs(2) and(9) mix the states with a single electron
4+ (LghdstHe). (2 indot 1 with states having 0 or 2 electrons in that dot. Be-
ks cause of the high energy cost-E,), these transitions are
virtual, and, provided that the conductances of the corre-
sponding junctions are small, can be taken into account per-
turbatively in the second order in tunneling amplitudes. A
new!’ and important element here compared to the conven-
tional treatment of the Anderson impurity model is that at
lez fkclkscaks, a=R.L: 3) T<E, only those excitations that conserve the r_1umber _of
aks electrons in dot 2 are allowed. The resulting effective Hamil-

Hd=E1(E dids—N
S

+E; % Whisthoks

The last two terms in EJ1) represent the free electrons with
spins==*1 in leadsR andL, and the tunneling between the
leads and dot 1, see Fig. 1,
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tonian which acts within the strip of energiegw|  Pplitude is proportional to the small parametigr<1, see Eq.
=min{E; ,E,}, has the form of the 2CK modér?® (13), one can use perturbation theory to calculate the current
across the devic®.

+ , Similar to the representation d¢f, in the form of Eq.
Hack= YEKS gk'/’yks‘//ykerEy Jy(s,-9+BS.  (10) (14), the current operator

Here the channel index=1 andy=2 represents the leads N
(Ngr— NL)

and dot 2, respectivelys is the spin-1/2-operator describing
the doubly-degenerate ground state of dot 1,

-_—
I

2l e
N| @

also splits naturally into two contributions,

- 1 Jss S
SV kzs’ l/kaS 2 ’ﬂyk’s' | = |0+ ol. (15)
is the spin density in channel, ando=(0*,0”,0?) are the Here
Pauli matrices. The exchange amplitudgsin Eq. (10) are de

estimated as To:a 5 (N - No) = iezvaoé Wl st H.C., (16)

vd,=4vt’ [E;. 1) . .
is a current between the reservoirs of 0 and 1 particles and

In derivation of Eq.(10), we assumed that the gate volt- q
age is tuned precisely thl=1 (which corresponds to a ~ T
pgrticle-hole sﬁmmetriz situati()rgAs we discust) in Sec. V o= BLPT: % Yokstikst H-C. (17)
below, this assumption does not lead to qualitative changes
in the results. We also included in the Hamiltonian the effectt is easy to show that in the leadingsecond order in 6,
of an external magnetic fielthereinafter we omit the Bohr the operatorsi does not contribute to the average current

magnetonug; the field B is measured in the units of en- across the device. The remaining contributid) corre-
ergy). sponds to thé&-conserving tunneling between two bulk res-
ervoirs containing 0 and 1 particles, see Ed<l) and (16).
[Il. TUNNELING CONDUCTANCE Its evaluation yieldjsf’

In order to study the out-of-equilibrium transport across 1
the device we add to our Hamiltonian a term d—szoz ff do(—df/do)[—mvImTs(w+eV)]

ev . (18)

Hy=—(N_—Ng), N, =2 ¢! Coxe, 12 . . . .
) (Nu~Ne) “ % aks=aks (12 for the differential conductance. Her{w) is the Fermi

. ) . ) . function (w is the energy measured from the Fermi lgyel
which describes a finite bias voltageapplied between the

left («=L) and right @=R) electrodes. The differential 262 ge? t2
conductanceall/dV can be evaluated in a closed form for Goz—(29o)2%——;, (19)
arbitraryV when one of the leads, sy serves as a weakly h h

coupled probé®i.e., t, <tg. Under this condition the angle _ . .
Ao irF: Eqsp. (5) and (6) ‘s small 9€ and T, is the t-matrix for the particles of channel=1

[evaluated with the equilibrium Hamiltoniar(®) or (10)].
~ - The t-matrix is related to the exact retarded Green function
Oo~1t, Itg<1. (13 : _
Gisk's' = 0se Gis ks Of these particles according to
Application of the transformation E@5) to Eq.(12), yields,
to the linear order ird,, Grsis=GetGITYG,,, Gi=(w—§&+i0) L.

eV . . . Here we took into account the conservation of the total spin,
Hy=—(No— N1)+9Vi90; (doksthikstH.c), (14 which implies thalG,s '« is diagonal ins,s’. In our model
s with t; independent ok (and, consequentlyl; independent
where of k andk’), the t-matrix is also independent kfk’. Note
that the linear respons&/(~0) counterpart of Eq(18), the
linear conductance

No=2 ¥istbokss leé Plisthks-

ks

1
The first term on the right-hand side of E€l4) can be G:GOES: Ef do(—df/dw)[—mvImTi(w)], (20)

interpreted as a voltage bias between the reservoirs of 0 and
1 particles, cf. Eq(12), while the second term has an appear-remains valid® for an arbitrary relation betweey andtg,
ance of thek-conserving tunneling. Since the tunneling am-in which caseG,=(2e2/h)sir?(26y).
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IV. TRANSPORT AT FINITE TEMPERATURE AND BIAS

Equation(18) provides a direct link between the measur-
able quantity, the differential conductandé/dV, and the
properties of the 2CK model, Eq10). In the channel-
symmetric casd; =J,=J the NFL behavior manifests itself

in a nonanalytic dependence of the t-matrix on energy and

temperaturé,which leads to a rather unusual scaling of the

PHYSICAL REVIEW B 69, 115316 (2004

T T =T G
NFL F—_
/ AT xX \/T/TK
FL2 FL1 -
0 A 0 A

differential conductance at low bias and temperature g, 2. Quantum phase transition between two FL states. The

(leV],T<Ty):
1d 1 T leV]
GodV 2 1“\/T—KF26K(F) S

The functionF,ck(x) here is a universalparameter-free
scaling functiofi with the asymptotes

1+cx?, x<1,
Fock(X)= i\/; w1 (22
\/; 7

wherec is a numerical coefficient of the order of 1. The limit
eVIT—0 of Eq.(2)) yields

1
G=Go (1 nT/Ty)

for the linear conductancghis result is valid for arbitrary
value oft, /tg). The estimat¥ of the Kondo temperatury
introduced in Egs(21) and (23) reads

(23

Tk~Eo(vd)e ", Eo=min{E,,E,}. (24)
The validity of Egs.(21) and (23) is limited by the re-

qguirements that both the Zeeman eneljyand the level

spacingsE, are small compared td, and that the exchange

constants in Eq(10) are equal to each othet; =J,. When

the system is tuned away from this special point, at a finite

A:VJl_VJz, (25)

the conductance changes drastically. In the ideal case of

NFL behavior is preserved an\|#0, provided the temperature
exceeds the crossover scdlg, see Eq(31). The widthA; of step
in the conductanc&(A) scales with temperature aT, see Eq.
(34).

constants as the high-energy cut@ffis reduced from its
initial value Dy~ E,. We are interested in the case when the
bare value ofA is small,

|Al<J,
where

The evolution of the effective coupling constanf® ,A*
with the decrease dD is then described by the Poor Man’s
scaling equatiorts

dJg* *
d¢ d¢

with the initial conditions
J*(Dg)=J, A*(Dg)=A.

Equations(28) are valid as long ad* < 7* <1 and vyield
the relationA*/A = (7*/.7)?. By the time.J* has grown to
be of the order of 1 ab~ Ty, the value ofA* characteriz-
ing the channel asymmetry reaches

(T*)?, =2J*A%, ¢ (28)

A* (T )~Al T2 (29)

This can be viewed as the initight D~Ty) value of the
coupling constant of the relevdri channel-symmetry-

=0 anddE,=0, the conductance has a steplike dependencbreaking perturbation. The perturbation will eventually drive

onA,

G(A)=Gyh(A). (26)

The discontinuity in Eq(26) reflects aquantum phase tran-
sition between two different Fermi liquidFL) states, in
which the spin of the dot 1 forms a singlet with either the
collective spin of the electrons in the leadd.1, A>0) or
with that of the dot 2(FL2, A<0). At the critical pointA
=0, the system exhibits NFL behavior down T6=0. In

agreement with the general theory of quantum phase

transitions:® the T— 0 asymptotics afA|#0 corresponds to
the FL, whereas the NFL behavi@®3) is preserved at tem-
peratures well above certaid-dependent crossover scale
T,, see Fig. 2. By the same token, the step inshdepen-
dence ofG(A), Eq.(26), is smeared at finite temperatures.
In order to estimaté the energy scal&, we consider the
renormalization grougRG) flow of the effective exchange

the system away from the 2CK fixed point@t—0. How-
ever, if A*(Tx)<<1, then one expects the behavior of the
system in a broad range of energies to be still governed by
the vicinity of the 2CK fixed point. The channel anisotropy is
a relevant operator with scaling dimension 1/2, see Ref. 20.
Hence, the dependence of the corresponding coupling con-
stantA* on D is described by

A*(D)

A*(Ty) Oc(

The condition A*(T,)~1, together with Eq.(29), then
gives the estimate

Tk

) 1/2

D (30

TA~[A* (T PTe~ (A% TH T (31)

The RG flow stops ab~maxT,|leM}. Consequently, at
maxT, ,|eM}<T<Tg, the channel asymmetry yields a small
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G /Gy the form of a smeared step function, whose widiW
1 should scale with temperature &3, see Fig. 2.
A>0
V. LINEAR CONDUCTANCE AT A FINITE
1/2fA=0 MAGNETIC FIELD
A<O The magnetic field dependence of the linear conductance

N4 . across the device also reveals the critical behavior. In this
' ; section we study the depender@éB) at T=0 in the vicin-
In(Ta/Tic) 0 In(T/Tx) ity of the quantum critical poind =0. We consider only the
FIG. 3. Sketch of the temperature dependence of the linear cor¢€eman effect of the magnetic field, and dispense with its
ductance at fixed values af and Ty . For A<0 the dependence is Orbital effect(this is an adequate approximation for a field

nonmonotonic, with a maximum &~ T, Ty. At T>T, the con-  applied in the plane of a lateral quantum dot deyice
ductance scales &/Gy=[In(T/T,)] 2 see, e.g., Ref. 16. Similar to the effect of a finite temperature, see Fig. 2, the

application of a magnetic field at small results in a cross-
correction to the conductance E@3). The correction is first over from the limiting FL behavior @ — 0 to NFL interme-
order in the corresponding perturbation, hence proportionadiate regime at higher field8=B, . As before, the cross-
to A*(T)~(T,/T)¥2 and its sign is determined by the sign over scaleB, can be estimatél from RG arguments. The
of A: scaling dimensiof? of the operato&? in Eq. (10) at the 2CK

fixed point is 1/2. Accordingly, when the high energy cutoff

T\ M2 D is lowered, the effective splitting of the impurity leve3d
5G/G0“59“A)(T) : (32) evolves according to
On the other hand, fol,|eV|<T, the system is a Fermi B*(D)/ID |[Ty\¥? 3
liquid, see Fig. 2. Substitution of the t-matrix in the form m“ D (35
3w?+ 7°T? with the initial conditionB* (T)~B. The RG flow Eq(35)

—mvImTys=6(A)—sgn(A) 72 terminates onc®* has grown to become of the order Bf
a or when D reaches the valud&,, whichever occurs at a
(cf. Ref. 8 into Eq.(18) then yields higher value ofD. The first of the two conditions corre-
sponds to the limitation on the NFL behavior set by the Zee-
eV\? man splitting, while the second one is due to the channel
ﬁ) } (33 anisotropy. Therefore, the crossover scBlg can be esti-
mated as that fieldB~B*(Ty) in Eg. (35, at which
Again, the linear respons&/(~0) counterpart of E33) is  B*(D)~D andD~T, simultaneously. Using Eq$35) and
valid at any ratiat /tg. The temperature dependence of the(31), we find the relation between the crossover ffettie
linear conductance at fixed small valuesfofis sketched in  crossover temperaturg, , and the channel anisotropy pa-
Fig. 3. rameterA
According to Eq(33), corrections to the zero-temperature
limit of the linear conductance, the step functi26), are Ba~VTaTk~(|A|/T?)Tk. (36)
quadratic in temperature—a typical Fermi-liquid reSult )
a finite temperature, the step function is smeared, see Fig. dote the difference between tie-dependence of the cross-
The characteristic widt; of the smeared step at tempera- OVer temperaturd, [Eq. (31)] and the crossover fielB, .

1dl A A szl 3
G_Od_\/_e( ) —sgn( )-I-—A t3

ture T is estimated by solving the equatian,~T for A, Having found the crossover scalg , next we investigate
which results in the dependence of the conductazen the fieldB. First of
all, we note that a\ #0 the low-energy properties of the
Ay~ T2 TITk. (34) Hamiltonian Eq.(10) are those of a Fermi quuii‘J.The effect

) ) . of any local perturbation, such as the exchange interaction
This “sharpening” of theA dependence of the linear con- ith the spin of the dot 1 in EG10), on the ground state of
ductance with decreasing temperatufese Fig. 2 can be  the Fermi liquid is completely characterized by the scattering
regarded as a “smoking gun” for non-Fermi-liquid behavior. phase shiftss., at the Fermi level(Recall thats=+1 for
In fact, it might be easiest to first identify unambiguously thegpin-up/down andy=1,2 labels the two channelsThe

steplike dependence of the conductancedoand then use it t-matrix that enters Eq(20) is then given by the standard
to tune the device precisely to the symmetry point in order toscattering theory expression

observe the distinctive scaling of the differential conductance

Eq. (21). Experimentally, the value oA is controlled’ by 1 .

the asymmetry of the conductances of the corresponding tun- — 7T ,4(0)= E(emys_ 1). (37
neling junctions, which in turn are controlled by the poten-

tials V4 on the gates forming the junctions. In the vicinity of Obviously, the phase shifts are defined only modthat is,
the symmetry point, the dependence®bn V, should have 6, is equivalent tod,s+ 7). The ambiguity is removed by
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setting the values of the phase shifts corresponding,to
=0 in Eq.(10) to zero. With this convention, the invariance
of the Hamiltonian(10) with respect to the particle-hole
transformationy  s— '//;,«,75 translates into the relation
Oyt 8, =0 (38

for the phase shifts, which suggests a representation

0ys=S0,. (39
Substitution of Eqs(37) and(39) into Eq. (20) yields
1 . .
G/Go=3 > sir? §,=Ssirf &, (40)
S

for the linear conductance at=0. In the limitB/Tx— +0
and atA#0, the ground state of the Hamiltoni&hO) is a

PHYSICAL REVIEW B 69, 115316 (2004

0.5 =z=—==——_ 1
~ N
5 N\ N\ N\
\_‘: Y \\ — A =0
L L. e A= 0.0013
\ \\ ----- A=0.013
B
S
e , :
1 0—6 1 0‘4 10_2 100 102 104
B/ T,

FIG. 4. The phase shifts for the 2CK model at different values

. . . .. 2
singlet. Therefore, the total spin in a very large but finite©f the channel asymmetry paramefer A/ 7°. The upper(lowen
region of space surrounding the dot 1 is zero. By the Friedefurves representy(y).

sum rule, this implies relatiok ,S6,,s= 7. Taking, in addi-
tion, Eg. (39) into account, one obtains relation
51+ 52:’7T/2, (41)

valid at any value oB/B,, as long aB<Ty.
Below the crossoverB<B,, the values of the phase

shifts are determined by the vicinity of the stable Fermi-

liquid fixed points? 6,=/2, 6,=0 at A>0 and §,=0,
8,=ml2 at A<0. Substitution of these values into E40)

then yields Eq(26) for the conductance. The corrections to

the fixed point values of the phase shifts are lineaB/B, ,

S1=ml2— 5,=(ml2)O(A)—sgn(A)(B/B,), (42
yielding

G/Go=60(A)—sgr(A)(B/B,4)?,

[cf. Eq.(33)].
Above the crossover, i.e., f8,<B<Ty, the departure
of the phase shifts from the 2CK fixed point valuég,

B<B, (43

= /4 is controlled by the properties of the fixed point. To

account for a finite value d8/Ty, we generalize Eq41):
61+ d,=m[1/12+ M(B)].

The zero-temperature magnetizatidh(B) here is known
exactly from the Bethe-ansatz solutibh?’ Using the
asymptoté! M (B)o(B/Tx)In(T«/B), we find

_’7T BA B TK
51—Z+asgr(A)§—bT—KlnE. (44)

Tk
B

Gy 2 (45)

+ N2 2
The shape of5(B) is qualitatively similar to that of5(T),
see EQgs(23), (32), and(33), although the precise functional
form is rather different.

Interestingly, in the case of small channel anisotropy,
<Tg, there is an approximate symmetry with respect to the
change of sign ofA:

G(B,A)+G(B,—A)=2G(B,A—0). (46)

Note that this relation is valid at ang/Ty, provided that
TAlTe<1.

Strictly speaking, the consideration of this section is ap-
plicable only at zero temperature. However, the results Egs.
(43) and (45) remain valid as long as

T<B?Tg. (47)

At higher temperatures the conductance is described by the
corresponding expressions of Sec. IV. As follows from Eqgs.
(23) and(45), the limiting value of the linear conductance at
the 2CK fixed pointG=Gy/2, is independent of the order in
which the limits B—0, T—0 are takerf??® Hence, the
crossover between the field-dominated regime, see (Bgs.
and(45), and the temperature-dominated one, see &8,

(32), and(33), is expected to be smooth and featureless.

For arbitrary values of , /T« , the detailed magnetic field
dependence of the phase shifts at the Fermi level can be
studied using the numerical renormalization grdMRG).%*

In this approach one defines a sequence of discretized Hamil-
tonians and diagonalizes them iteratively to obtain the finite-

Herea andb are positive numerical coefficients of the order size spectrum of the model. In the Fermi liquid case (

of 1. The second term on the right-hand side of &) is

#0) knowledge of the finite-size spectrum is sufficient to

the first-order correction in the channel-symmetry-breakingdentify unambiguously the phase shifts.

perturbation. This correction is similar to E@2) with tem-
peratureT replaced by the energy scale* (B)~B?/Ty at
which the RG flow defined by E35) terminates. Equations
(44) and (40) yield the asymptote of the conductanceBat
<B<Ty,

In Fig. 4, we plotted the phase shiff , as a function of
B for different values of the parametér=A/7?>0 that
characterizes the asymmetry between the channels. We esti-
mate the crossover scattd, andB, as the two values @
in Fig. 4 at which the phase shif, equals#/8. In order to
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, . 107" . . intermediate fields confirms that in this regime the accuracy
u NRG = NRG, of our numerics is remarkably good. Based on the depen-
107 |2 0494] p R dence on the finite system size, we estimate the relative error
« JO I of the calculated phase shifts to be of the order of 2Phe
iy 107 ,' | iy worst case is the low field part of thee=0 curve, because of
@’ ! ot L ._/( | the extremely fragile nature of the intermediate NFL fixed
o A point,)
10° .‘)‘ o
L 10_ 1
10° 102 107 10° 10° 107 107 VI. EFFECT OF POTENTIAL SCATTERING
A A

So far we concentrated on the particle-hole symmetric
FIG. 5. Dependences of the crossover scalgandT, on the ~ Model. In general, however, such symmetry is absent. It is
asymmetry parameték=A/J2. violated by the presence of higher energy levels in dot 1, and
also by deviations of the dimensionless gate voltigeom
an integer value. In the absence of particle-hole symmetry,
the effective Hamiltonian(10) acquires additional terms
leading to potential scattering. Taking into account that the
g’nterchannel scattering is blocked at energies well below
we can write this additional perturbation as

verify the relationB, /Tx~A, see Eq(36), we plottedB, vs
A on the left panel in Fig. 5. The NRG data also allow us to
estimate the scal&é,, see Eq.31), as the energy scale at
which the first excited state of the NRG spectrum ha
reached the halfway mark of its crossover evolution betweetl1:'1'2'
the corresponding two fixed point values, see Fig. 5, right

panel. The NRG data are very well described By/Ty Ho= 2 V, 2 ¥hsthps. (48)
~0.5A, T,/Tx~4A?, in agreement with Eq$36) and(31) =12 kK's
above. Including H, into our considerations leads to a modification

Having extracted the phase shifts, we are able to calculaigf the limiting values of the conductance in the Fermi-liquid
the linear conductance from Eq@l0) and (46), see Fig. 6. g4 2CK fixed points. The dependencesddfdV on A, V,
As expected, the conductance develops a signature of a plg-ang B, however, remain the same apart from acquiring a
teau at intermediate values of the fild <B<Ty. Atvery  constant background contributi@®y, due to elastic cotunnel-
hlgf; fields, B>Ty, the conductance scales witB as  jng. Here we illustrate this for a specific example of the
U (BITy). _ _ zero-temperature magnetoconductance.
~ As usual in NRG calculations, we measured all energies The potential scattering yields finite spin-independent
in units of the bandwidtiD. In order to avoid the disturbing phase shiftﬁgz —arctanrV,) even if J., in Eq. (10) are

finite bandwidth effects, we used two different coupling con-ga+ t5 0. This can be accounted for by a proper modific&tion
stants for the high- and low-field regimes: one set of datay¢ Eq. (39)

that includes theB>B, regime, was obtained using

=0.075, while another set of data, which includes e 8ys= 5?/+ s3,,, (49)
<Tk regime, was obtained using=0.15. The two sets

were combined by rescaling the magnetic field in units of thevhere the dependence 6f on B andA is described by the
Kondo temperature, resulting in a set of continuous curves,particle-hole symmetric” expression@2) and(44). Substi-
as shown in the figures. The overlap of the two sets of data dution of the phase shifts in the form of Eg9) into Eq.(40)

results irf®
A Yoy 1 G(B,A)=Gg+GoF[B/B,,B/Ty,sgrA)],  (50)
\ N \\\ A 3-33;3 whereG, =G sir? 89, the functionF is a universal function
LR ——— A-0.13 with asymptotes given in Eq$43) and (45), and E;O=GO

—2G,. Note that the limiting value of the conductance at
the 2CK fixed point,Gg+ Go/2, lies preciselyhalfway be-

~ 05 ~
G tween the two Fermi-liquid limitsG andGg+ Gp, and that
Eqg. (46) remains valid even in the presence of the potential
scattering Eq(48).
0 VII. DISCUSSION
W0 100 107 10 10 10° The low-temperature properties of a quantum dot device

B/T, normally are well described by Fermi liquid theory. The spe-

cial two-dot structure proposed in Ref. 17 allows, however,

FIG. 6. Field dependence of the conductance at different valuefor NFL behavior at a special point in the space of param-

of the asymmetry parametér=A/.72. The upper(lowen curves eters of the device. In the context of the physics of quantum
correspond tAA>0 (A<0). phase transitions, this point can be viewed as a critical point
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separating two Fermi liquid states. In this paper, we develnot destroy the 2CK behavior, but merely renormalizes the
oped a detailed theory of the transport properties near suchraagnitude of the Kondo contribution to the conductance. A
quantum critical point. Our theory offers a strategy for tuningfinite level spacing in the larger déE,, however, is a haz-
the device parameters to the critical point characterized byrd. At temperatures belowE, the two-dot device inevita-

the two-channel Kondo effect physics, by monitoring theply enters into the conventional Fermi-liquid regime.
temperature dependence of the linear conductance, see Sec.

IV. Further confirmation of the 2CK behavior may come
from the measurements of the differential conductance,
which must display universal behavior, see Sec. IV. We also
investigated the effect of magnetic field and of potential scat- We are grateful to the Aspen Center for Physics, Max
tering on the conductance in the vicinity of the quantumPlanck Institute for the Physics of Complex Syste(Dses-
critical point, see Secs. V and VI. The Zeeman splitting al-den, and LMU Minchen for hospitality and thank N. An-
lows one to investigate the finite-field crossover between therei, A. Ludwig, Y. Oreg, A. Rosch, A. Tsvelik, and G.
Fermi liquid and NFL behavior of the conductance. In theZarand for discussions. The research at the University of
vicinity of the NFL point, the linear conductance of the de- Minnesota was supported by NSF Grants Nos. DMRO02-
vice depends on the magnetic field and temperature only vi87296 and EIA02-10736. L.B. acknowledges the financial
two dimensionless parametef$T, andB/B, ; the depen- support provided through the European Community’s Re-
dence ofT, andB, on the channel asymmettyis given in  search Training Networks Program under Contract No.
Egs. (31) and (36). Note also that potential scattering does HPRN-CT-2002-00302, Spintronics.
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