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With the growing efforts in isolating solid-state qubits from external decoherence sources, the origins of
noise inherent to the material start to play a relevant role. One representative example is charged impurities in
the device material or substrate, which typically produce telegraph noise and can hence be modeled as bistable
fluctuators. In order to demonstrate the possibility of the active suppression of the disturbancesirayte a
fluctuator, we theoretically implement an elementary bang-bang control protocol, a protocol based on sudden
pulses. We numerically simulate the random walk of the qubit state on the Bloch sphere with and without
bang-bang compensation by means of a stochastic Schrédinger equation and compare it with an analytical
saddle-point solution of the corresponding Langevin equation in the long-time limit. We find that the deviation
with respect to the noiseless case is significantly reduced when bang-bang pulses are applied, being scaled
down approximately by the ratio of the bang-bang period to the typical flipping time of the bistable fluctuation.
Our analysis gives not only the effect of bang-bang control on the variance of these deviations, but also their
entire distribution. As a result, we expect that bang-bang control works as a high-pass filter on the spectrum of
noise sources. This indicates how the influence dfridise ubiquitous to the solid-state world can be reduced.
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In order to implement solid-state quantum informationWe apply an open loop quantum control technique, namely
processing devices, the decoherence acting on the quantwpantum bang-bangl2—-14], which is designed suitably for
states has to be carefully understood, controlled, and elimislowly fluctuating noise sources. We simulate the noise-
nated. So far, research has concentrated on decoupling fromfluenced qubit dynamics with and without bang-bang cor-
external noise sourcd$ike thermal heat baths and electro- rection by integrating the time-dependent Schrodinger equa-
magnetic noise With the success of this effort, noise tion for each specific realization of the noise. We present the
sources intrinsic to the material, such as defect states, imesulting random walks around the unperturbed signal on the
crease in importance and have to be controlled in order t®loch sphere and analyze the quality of this suppression by a
improve coherence even further. comparison of the ensemble-averaged deviations of these

Most external noise sources are composed of extende@ndom walks with and without bang-bang correction.
modes in the thermodynamic limit close to equilibrium such  We describe our system by the effective Hamiltonian
that their fluctuations are purely Gaussian. Thus, their influ-

ence can be modeled by an oscillator bath, see, Elj., HE(t) = Hg + Hi%aD), (1)
However, there are physical situations when this assumption
fails [2—4]. In particular, this is true for localized noise Ho=fieg0d+ 1008 HIMD) = hakn(t) 62, 2

sources with bounded spectra as they occur in disordered
systems for hopping defect staféd. Physical examples for wherea denotes the coupling strength between the fluctuator
this situation are background charges in charge qiij&s7]  and the qubit andy(t) represents a symmetric telegraph
or traps in the oxide layers of Josephson tunnel juncti8hs process that is flipping between +1, whose switching events
Such localized noise sources are more realistically repreare Poisson distributed with a mean separatignbetween
sented by a collection of bistable fluctuatds9] (hence-  two flips.
forth abbreviated bfls as their noise spectrum is consider-  On a microscopic level, such noise is typically generated
ably non-Gaussian. If many of these noise sources witlby coupling the qubit to a two-state impurity, which is in turn
different flipping times are appropriately superimposed, theycoupled to a heat bath causing the two-state system to flip
lead to 1f noise[5,10,11. With the progress of fabrication randomly and incoherently. Our model corresponds to the
technology and miniaturization of qubits, we expect, how-semiclassical limit and should be accurate whenever the cou-
ever, that there might only be a few fluctuators in a q(#®jt  pling of the impurity to the bath is much stronger than its
We analyze the impact of a single fluctuator in the semi-coupling to the qubif2,4] such that the qubit does not act
classical limit, where it acts as a source of telegraph noiseback on the noise source. The assumption sfmmetrical
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telegraph process corresponds to a high bath temperatur  1x10°

compared to the impurity level spacing. This restriction is A 23;?;35:11
not essential for the following investigations, for an asym- + bang-bang numerical
metric noise signal would only produce an additional con- v _bang-bang analytical i

2

stant drift. 1x10
We describe the resulting evolution of the noise- —

influenced qubit by a stochastic Schrodinger equation‘é’]

[15,16 with the time-dependent Hamiltoniaf®). For any  — 1x10™}f X
initial state and realization of the noise, we numerically in- y + LE
tegrate the Schrodinger equation. The result is a randon + a0
walk on the Bloch sphere, which is centered around the free f x T SE .

. . x10 + 1x10° G—Qrelaxatgon
precession corresponding & and A + [ i | OO dephasing

We implement the following idealized open loop quantum * Lo Lo pad® | pagh

control scheme: apply an infinite train of pulses on the 1x10°” 110 1x10°
qubit with negligibly short pulse durations and a constant t/155ys
separation timer,, between successive puls€Ehe assump-
tion of negligibly short, perfectly appliedr pulses is for FIG. 1. (Color onling Time evolution of the mean deviations for

technical convenience onlyln doing so, we intend to aver- bfl-induced random walks with and without bang-bang control. The
age out ther, parts of the effective Hamiltonia@and thereby  straight lines are square-root fits of the analytical derived random-
in particular the noise terhon time scales large compared to Walk model variancegplotted as trianglgs Inset: Transverse and
o This is accomplished by iteratively spin flipping the qu- Perpendicular components of bang-bang suppressed noise.

bit and thus effectively switching the sign of the noisy part of

the Hamiltonian. This mechanism thus works analogously to A(;?r?]s(to)
the well-known spin-echo procedure, specifically the Carr- StO(beI/ Tpb) = AghP (to) (4)
rms

Purcell procedure of NMR17]. The suppression of the tele-
graph noise effects should qualitatively scale as follows: ThéThe deviation as a function of time is plotted in Fig. 1.
size of the random walk induced by the noise is determined The total deviations at intermediate times are suppressed
by the typical time separation of the fluctuator’s influenceby a ratio of=10. Detailed analysis shows that the tangential
between two flipsr,s and its coupling strengtlr and scales  (dephasingand the orthogonairelaxation deviation are of
roughly with anyy [4]. Using bang-bang, the bfls influence the same size for the uncompensated case. In contrast, the
remains uncompensated for at most a single bang-bang pbang-bang modulation mostly compensates the dephasing-
riod. Thus, we reduce the influence of the bfl by an averageéype deviation, as shown in the inset of Fig. 1.
factor of 7,q/ 7y We now develop analytical random-walk models for our
As generic conditions of the system dynamics we consystem. The two-dimensional random walk on the Bloch
sider for the numerical simulatiorg=A,=()o. Without loss  sphere is in general reduced to an effectively one-
of generality, we assum@3)=+1 as an initial state. If there dimensional model by bang-bang control, representing the
were no noise, the spin would precess on the Bloch sphemelevant perpendicular part. We restrict ourselves to the long-
around the rotation axig{+a5. So we expect for not too time limit.
large an interaction strengtlax<<1) a slight deviation of the For simplicity, we replace the fluctuating number of
individual quantum trajectory from the free evolution case.random-walk steps for a given time of noisy evolution by
We takea=0.1 for our coupling strength. All the following its expectation valuét/ 7,4 [18]. This allows one to use the
time and energy measures are given in units of the unpepumber of random-walk steps as a time parameter. We en-
turbed system Hamiltonian: our ti_me unit ig,<=1/Q and counter different one-step _ distributions, depending_ on
our energy unit iSAE=\£'ezqi-A§=\s‘“2(lo. Note that in these wh?th?r th‘(‘e num"ber of steps is odd or even, corr_espondmg to
units, a period lastsrry/ \2. We have integrated the time- an “up” or “down” state of the bft. The step-size distribution

dependent Schrodinger equation and averaged dver of 'the bfl qugl in our small deviation regime is given by
=1000 realizations. The time-scale ratig/n,,=10 if not  F0ISSon statistics

denoted otherwise. We .characterize our results b){ the root- e*¥Bg(x)
mean-squarérms) deviation from the unperturbed signal DO eelX) = T

with B:(\@/Z)arbﬂ as a typical random-walk one-step de-
1 viation. The prefactor accounts for the geometrical situation.
- - - —»q _ - 2
Agmdt) = \/NE (07(t) = Tngisy (1) 3 Tunit IS @ time unit, corresponding to a discrete step length
) Xunit= a7unit Of the random walk#(x) denotes the Heaviside
step function. We neglect the correlations between transverse

, (5

In order to characterize the degree of noise suppression by
means of bang-bang control, we define the suppression factwe assume the bfl being initially in its “upper” state. This restric-
tors for a given timeg tion is of no relevance for the long-time limit.
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and perpendicular deviations as they average out in the long- ©
time limit. B P
For the bang-bang suppressed random walk, the flipping o " Ifli‘tntlg)eﬁllfr‘;lerreig‘;lt
positions of the bfl-noise sign in the bang-bang time slots are = — analytical result| |
essentially randomly distributed as long@g< 7. We find Do
a homogenous step-size distribution between zero deviation W % g
and a maximumy=a2mn,,/2, SN‘\'_
z 2L i
O(£X) 0| £(y—X X
q)ggd/ever(x) = M (6) —l
y o 1 1 &
The factor of 142 occurs because the bang-bang sequence @ 9 1x10” 2xA10'3 3x10°  4x10”
also averages over the statigterm and hence slows down o o
the free evolution. § —— : :
By means of these one-step probability distributions, we RINV/Y x numerical result
are able to calculate via convolution the distributions for wol TN - fit to numerics |
2N-step random walks. Specifically, they are the inverse g& J ) [z analytical result
Fourier transforms of théN-fold products of the Fourier 2o | )
transforms of the two-step distributi¢t8]. For the uncom- = g’ ,.‘ 3 T
pensated case, we find S [ 35
Z.2 X 1
oo [T dK 1 N = ‘&«
o) = J . 277,82Ne 1-2cogke P+ 2B) P %
0 1x10” 2x107 3x10” 4x10” 5x10~ 6x10”
(7 (b) [Ac |

whereas for the compensated case . . o
FIG. 2. (Color online Histograms of the deviation from free

oo, [ dk . [[1-cog(y+1Kk)] N evolution with and without bang-bang control and respective fits to
Don(x) = 277_72Ne [1-cogk)] (8) the expected two-dimensiongiure bfl caseand one-dimensional
o (bang-bang correctgdandom-walk statistics. Numerical data con-
Already for random-walk step numbers on the order of tengists of 18 realizations at a fixed timg=rgys With 7,4=0.01rgys
the resulting distributions are almost Gaussian. Their stanthe random-walk distributions are calculated o+ 7sy¢/ 7,1 =100
dard deviations give the rms deviations of the random-walléteps.(NB: The x-axis scale of the right graph is 15 times smaller
models plotted in Fig. 1. As expected, they grow as a squarian that of the left graph.
root of the number of steps.

The above integrals can be evaluated analytically using We have systematically studied suppression factors for

the saddle-point approximation. We find variances of different ratios between timesy/ 7, at a constant fluctua-
tor flipping rateq-bﬂzl(TeryS and evolution timé,= 75,5 The

[

— __\5N numerical data in Fig. 3 show that the suppression efficienc
apn(N) = V2NS = Ty il ©  is linear in the bang?—bang repetition ra@lyo;zrbﬂ/rbb. The /
numerically derived value of the coefficientu,umerical
for the pure bfl random walk and ~1.679, is in good agreement with our analytical result
N N /‘LanalyticaI:Ube(N)lo'bb(N):VJS/ZZ1-581 from the saddle-
op(N) = \/;'y: \/;aTbb (10 point approximation, Eqg9) and (10). This small discrep-
for the compensated one. In the lafgdimit, these results L
show excellent agreement with numerics. L X il.umeri.cal result
e . . E inear fit of numerics
Beyond predicting the variance, our analysis also allows ~ -— analytical result
evaluation of the full distribution. We compared evolution 210’ 7
with and without bang-bang compensation via simulations T
with 10* realizations and calculated the full distribution func- :
tion for an evolution timety= 75,5 The numerical histograms o 10° §
of the deviation with their respective one- and two-
dimensional Gaussian fits are shown in Fig. 2. ]
We observe that not only the bang-bang compensated dis- 10‘1’0, - ‘-‘”1‘(‘)2 = ](‘f i ‘*”‘1‘(‘)4 E—
tribution is much narrower than the uncompensated distribu- LE

tion, but also that its shape is qualitatively different: its maxi-

mum is at zero error, whereas the uncompensated FIG. 3. (Color onlin@ The suppression factos (7on/ Top)
distribution has its maximum at a finite erfdro|~0.01 and  =AG5"(t))/ Adhagto) evaluated forty= 5,5 as a function of the ra-
zero probability of zero error. tio of the flipping timer,; and the bang-bang pulse separatigp
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ancy reflects the correlations between the transverse and lor{a/ 7,4)(2?> with compensation, instead af,= amyy with-

gitudinal random walk in the uncompensated cdsee out. This corresponds to the same amount of reduction as in

Fig. 2. our case. This scheme has been implemented in supercon-
We have demonstrated the ability of a bang-bang protocadlucting qubits[20]. In that case, it turned out that because

to compensate environmental fluctuations with frequencieshe o, term was limited by fabrication, this consideration led

w<<1/m7,, Thus, bang-bang control acts as a high pass filteto a major redesign. Our compensation scheme purely relies

for noise with a roll-off frequency of la,, Evidently, the on external control and thus keeps the hardware design flex-

bang-bang correction is suitable for suppressing the impadble.

of telegraph noise on qubits and can enhance the coherence A related problem has been addressed in R&ff], which

by orders of magnitude. The application of the scheme whiclgjeals with bang-bang suppression of Gaussidmbise, i.e.,

we outlined requires a relatively strict separation of timeg hosonic bath with an appropriate sub-Ohmic spectrum.

scales: One has to be able to flip the spin very rapidly, typiThat system is treated in the weak-coupling approximation,

cally two orders of magnitude faster thag. The stability of o it assumeS(w)/w<1 at low frequencies wher®(w) is

the bang-bang suppression efficiency regarding finite pulsgye noise spectral function. Both assumptions are serious

lengths(instead of infinitesimal, as assumed here for technixnstraints in the 1f/casd4,5]. Our work is not constrained

cal convenience as well as nonperfecti.e., ermoneous 4 weak coupling, takes the full non-Gaussian statistics of

pulses will be examined in another more explicit papergjegraph noise into account, and gives the full resulting dis-
Moreover, we have assumed that the environment producggy tion of errors.

symmetric tglegraph noise regardless of the qubit dynamics. |, summary, we examined the decoherence of a single
Clearly, the issue of when one may neglect feedback effectgypit from a single symmetric telegraph noise source and
between the qubl_t and bf must be critically reV|5|tepI in theproposed an adequate open quantum control compensation
low-temperature limit. We conjecture that the set up is ProMyrotocol for suppressing its impact. We simulated the qubits

ising for 1/f noise, as in particular the most harmful and gynamics using a stochastic Schrédinger equation and ana-
predominantly low-frequency fraction of a corresponding en+y ;e jts deviation from free evolution. We formulated ana-

semble of fluctuators would be compensated most stronglyytically solvable one- and two-dimensional random-walk
Finally, one has to be aware that also the static term of thgyggels, which are in excellent agreement with the simula-
Hamiltonian is averaged out. This does reduce the number Qfyns in the long-time limit. Specifically, we showed quanti-

control options. However, by a combination G slow  ¢atively, how the degree of noise compensation is controlled
pulses which commute with the bang-bang sequenceiand p, ihe ratio between bfl flipping time scale and bang-bang

fast pulses on the time scale of the bang-bang sequence. OBfjse length. We gave the full statistics of deviations in both
can still achieve full control and universal computation as;ggeg.

shown in Ref[14].
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