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With the growing efforts in isolating solid-state qubits from external decoherence sources, the origins of
noise inherent to the material start to play a relevant role. One representative example is charged impurities in
the device material or substrate, which typically produce telegraph noise and can hence be modeled as bistable
fluctuators. In order to demonstrate the possibility of the active suppression of the disturbance from asingle
fluctuator, we theoretically implement an elementary bang-bang control protocol, a protocol based on sudden
pulses. We numerically simulate the random walk of the qubit state on the Bloch sphere with and without
bang-bang compensation by means of a stochastic Schrödinger equation and compare it with an analytical
saddle-point solution of the corresponding Langevin equation in the long-time limit. We find that the deviation
with respect to the noiseless case is significantly reduced when bang-bang pulses are applied, being scaled
down approximately by the ratio of the bang-bang period to the typical flipping time of the bistable fluctuation.
Our analysis gives not only the effect of bang-bang control on the variance of these deviations, but also their
entire distribution. As a result, we expect that bang-bang control works as a high-pass filter on the spectrum of
noise sources. This indicates how the influence of 1/f noise ubiquitous to the solid-state world can be reduced.
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In order to implement solid-state quantum information
processing devices, the decoherence acting on the quantum
states has to be carefully understood, controlled, and elimi-
nated. So far, research has concentrated on decoupling from
external noise sourcesslike thermal heat baths and electro-
magnetic noised. With the success of this effort, noise
sources intrinsic to the material, such as defect states, in-
crease in importance and have to be controlled in order to
improve coherence even further.

Most external noise sources are composed of extended
modes in the thermodynamic limit close to equilibrium such
that their fluctuations are purely Gaussian. Thus, their influ-
ence can be modeled by an oscillator bath, see, e.g.,f1g.
However, there are physical situations when this assumption
fails f2–4g. In particular, this is true for localized noise
sources with bounded spectra as they occur in disordered
systems for hopping defect statesf5g. Physical examples for
this situation are background charges in charge qubitsf4,6,7g
or traps in the oxide layers of Josephson tunnel junctionsf8g.
Such localized noise sources are more realistically repre-
sented by a collection of bistable fluctuatorsf4,9g shence-
forth abbreviated bflsd, as their noise spectrum is consider-
ably non-Gaussian. If many of these noise sources with
different flipping times are appropriately superimposed, they
lead to 1/f noisef5,10,11g. With the progress of fabrication
technology and miniaturization of qubits, we expect, how-
ever, that there might only be a few fluctuators in a qubitf8g.

We analyze the impact of a single fluctuator in the semi-
classical limit, where it acts as a source of telegraph noise.

We apply an open loop quantum control technique, namely
quantum bang-bangf12–14g, which is designed suitably for
slowly fluctuating noise sources. We simulate the noise-
influenced qubit dynamics with and without bang-bang cor-
rection by integrating the time-dependent Schrödinger equa-
tion for each specific realization of the noise. We present the
resulting random walks around the unperturbed signal on the
Bloch sphere and analyze the quality of this suppression by a
comparison of the ensemble-averaged deviations of these
random walks with and without bang-bang correction.

We describe our system by the effective Hamiltonian

Hq
effstd = Hq + Hq,bfl

noisestd, s1d

Hq = "eqŝz
q + "Dqŝx

q Hq,bfl
noisestd = "ajbflstdŝz

q, s2d

wherea denotes the coupling strength between the fluctuator
and the qubit andjbflstd represents a symmetric telegraph
process that is flipping between ±1, whose switching events
are Poisson distributed with a mean separationtbfl between
two flips.

On a microscopic level, such noise is typically generated
by coupling the qubit to a two-state impurity, which is in turn
coupled to a heat bath causing the two-state system to flip
randomly and incoherently. Our model corresponds to the
semiclassical limit and should be accurate whenever the cou-
pling of the impurity to the bath is much stronger than its
coupling to the qubitf2,4g such that the qubit does not act
back on the noise source. The assumption of asymmetrical
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telegraph process corresponds to a high bath temperature
compared to the impurity level spacing. This restriction is
not essential for the following investigations, for an asym-
metric noise signal would only produce an additional con-
stant drift.

We describe the resulting evolution of the noise-
influenced qubit by a stochastic Schrödinger equation
f15,16g with the time-dependent Hamiltonians2d. For any
initial state and realization of the noise, we numerically in-
tegrate the Schrödinger equation. The result is a random
walk on the Bloch sphere, which is centered around the free
precession corresponding toeq andDq.

We implement the following idealized open loop quantum
control scheme: apply an infinite train ofp pulses on the
qubit with negligibly short pulse durations and a constant
separation timetbb between successive pulses.sThe assump-
tion of negligibly short, perfectly appliedp pulses is for
technical convenience onlyd. In doing so, we intend to aver-
age out theŝz parts of the effective Hamiltoniansand thereby
in particular the noise termd on time scales large compared to
tbb. This is accomplished by iteratively spin flipping the qu-
bit and thus effectively switching the sign of the noisy part of
the Hamiltonian. This mechanism thus works analogously to
the well-known spin-echo procedure, specifically the Carr-
Purcell procedure of NMRf17g. The suppression of the tele-
graph noise effects should qualitatively scale as follows: The
size of the random walk induced by the noise is determined
by the typical time separation of the fluctuator’s influence
between two flipstbfl and its coupling strengtha and scales
roughly with atbfl f4g. Using bang-bang, the bfls influence
remains uncompensated for at most a single bang-bang pe-
riod. Thus, we reduce the influence of the bfl by an average
factor of tbfl /tbb.

As generic conditions of the system dynamics we con-
sider for the numerical simulationseq=Dq;V0. Without loss
of generality, we assumekŝz

ql= +1 as an initial state. If there
were no noise, the spin would precess on the Bloch sphere
around the rotation axisŝx

q+ŝz
q. So we expect for not too

large an interaction strengthsa!1d a slight deviation of the
individual quantum trajectory from the free evolution case.
We takea=0.1 for our coupling strength. All the following
time and energy measures are given in units of the unper-
turbed system Hamiltonian: our time unit istSys=1/V0 and
our energy unit isDE=Îeq

2+Dq
2=Î2V0. Note that in these

units, a period lastsptsys/Î2. We have integrated the time-
dependent Schrödinger equation and averaged overN
=1000 realizations. The time-scale ratiotbfl /tbb=10 if not
denoted otherwise. We characterize our results by the root-
mean-squaresrmsd deviation from the unperturbed signal

DsW rmsstd =Î 1

N
o

j

„sW j
qstd − sW noisy,j

q std…2. s3d

In order to characterize the degree of noise suppression by
means of bang-bang control, we define the suppression fac-
tors for a given timet0

St0
stbfl/tbbd =

DsW rms
bfl st0d

DsW rms
bb st0d

. s4d

The deviation as a function of time is plotted in Fig. 1.
The total deviations at intermediate times are suppressed

by a ratio of.10. Detailed analysis shows that the tangential
sdephasingd and the orthogonalsrelaxationd deviation are of
the same size for the uncompensated case. In contrast, the
bang-bang modulation mostly compensates the dephasing-
type deviation, as shown in the inset of Fig. 1.

We now develop analytical random-walk models for our
system. The two-dimensional random walk on the Bloch
sphere is in general reduced to an effectively one-
dimensional model by bang-bang control, representing the
relevant perpendicular part. We restrict ourselves to the long-
time limit.

For simplicity, we replace the fluctuating number of
random-walk steps for a given timeDt of noisy evolution by
its expectation valueDt /tbfl f18g. This allows one to use the
number of random-walk steps as a time parameter. We en-
counter different one-step distributions, depending on
whether the number of steps is odd or even, corresponding to
an “up” or “down” state of the bfl.1 The step-size distribution
of the bfl model in our small deviation regime is given by
Poisson statistics

Fodd/even
bfl sxd =

e7x/bus±xd
b

, s5d

with b=sÎ5/2datbfl as a typical random-walk one-step de-
viation. The prefactor accounts for the geometrical situation.
tunit is a time unit, corresponding to a discrete step length
xunit=atunit of the random walk.usxd denotes the Heaviside
step function. We neglect the correlations between transverse

1We assume the bfl being initially in its “upper” state. This restric-
tion is of no relevance for the long-time limit.

FIG. 1. sColor onlined Time evolution of the mean deviations for
bfl-induced random walks with and without bang-bang control. The
straight lines are square-root fits of the analytical derived random-
walk model variancessplotted as trianglesd. Inset: Transverse and
perpendicular components of bang-bang suppressed noise.
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and perpendicular deviations as they average out in the long-
time limit.

For the bang-bang suppressed random walk, the flipping
positions of the bfl-noise sign in the bang-bang time slots are
essentially randomly distributed as long astbb!tbfl. We find
a homogenous step-size distribution between zero deviation
and a maximumg=a2tbb/Î2,

Fodd/even
bb sxd =

us±xduf±sg − xdg
g

. s6d

The factor of 1/Î2 occurs because the bang-bang sequence
also averages over the staticeq term and hence slows down
the free evolution.

By means of these one-step probability distributions, we
are able to calculate via convolution the distributions for
2N-step random walks. Specifically, they are the inverse
Fourier transforms of theN-fold products of the Fourier
transforms of the two-step distributionf18g. For the uncom-
pensated case, we find

F2N
bfl sxd =E

−p

p dk

2pb2Ne−ikxS 1

1 − 2 cosskde−1/b + e−2/bDN

,

s7d

whereas for the compensated case

F2N
bbsxd =E

−p

p dk

2pg2Ne−ikxS f1 − cos„sg + 1dk…g
f1 − cosskdg DN

. s8d

Already for random-walk step numbers on the order of ten,
the resulting distributions are almost Gaussian. Their stan-
dard deviations give the rms deviations of the random-walk
models plotted in Fig. 1. As expected, they grow as a square
root of the number of steps.

The above integrals can be evaluated analytically using
the saddle-point approximation. We find variances of

sbflsNd = Î2Nb =
Î5N

2
atbfl s9d

for the pure bfl random walk and

sbbsNd =ÎN

2
g =ÎN

2
atbb s10d

for the compensated one. In the large-N limit, these results
show excellent agreement with numerics.

Beyond predicting the variance, our analysis also allows
evaluation of the full distribution. We compared evolution
with and without bang-bang compensation via simulations
with 104 realizations and calculated the full distribution func-
tion for an evolution timet0=tSys. The numerical histograms
of the deviation with their respective one- and two-
dimensional Gaussian fits are shown in Fig. 2.

We observe that not only the bang-bang compensated dis-
tribution is much narrower than the uncompensated distribu-
tion, but also that its shape is qualitatively different: its maxi-
mum is at zero error, whereas the uncompensated
distribution has its maximum at a finite erroruDsu<0.01 and
zero probability of zero error.

We have systematically studied suppression factors for
different ratios between times,tbfl /tbb, at a constant fluctua-
tor flipping ratetbfl =10−2tsysand evolution timet0=tsys. The
numerical data in Fig. 3 show that the suppression efficiency
is linear in the bang-bang repetition rate,S=mtbfl /tbb. The
numerically derived value of the coefficient,mnumerical
<1.679, is in good agreement with our analytical result
manalytical=sbflsNd /sbbsNd=Î5/2.1.581 from the saddle-
point approximation, Eqs.s9d and s10d. This small discrep-

FIG. 2. sColor onlined Histograms of the deviation from free
evolution with and without bang-bang control and respective fits to
the expected two-dimensionalspure bfl cased and one-dimensional
sbang-bang correctedd random-walk statistics. Numerical data con-
sists of 104 realizations at a fixed timet0=tSys. With tbfl =0.01tSys

the random-walk distributions are calculated forN=tSys/tbfl =100
steps.sNB: The x-axis scale of the right graph is 15 times smaller
than that of the left graph.d

FIG. 3. sColor onlined The suppression factorSt0
stbfl /tbbd

=DsW rms
bfl st0d /DsW rms

bb st0d evaluated fort0=tSys as a function of the ra-
tio of the flipping timetbfl and the bang-bang pulse separationtbb.
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ancy reflects the correlations between the transverse and lon-
gitudinal random walk in the uncompensated casessee
Fig. 2d.

We have demonstrated the ability of a bang-bang protocol
to compensate environmental fluctuations with frequencies
v!1/tbb. Thus, bang-bang control acts as a high pass filter
for noise with a roll-off frequency of 1/tbb. Evidently, the
bang-bang correction is suitable for suppressing the impact
of telegraph noise on qubits and can enhance the coherence
by orders of magnitude. The application of the scheme which
we outlined requires a relatively strict separation of time
scales: One has to be able to flip the spin very rapidly, typi-
cally two orders of magnitude faster thantbfl. The stability of
the bang-bang suppression efficiency regarding finite pulse
lengthssinstead of infinitesimal, as assumed here for techni-
cal convenienced as well as nonperfectsi.e., erroneousd
pulses will be examined in another more explicit paper.
Moreover, we have assumed that the environment produces
symmetric telegraph noise regardless of the qubit dynamics.
Clearly, the issue of when one may neglect feedback effects
between the qubit and bfl must be critically revisited in the
low-temperature limit. We conjecture that the set up is prom-
ising for 1/f noise, as in particular the most harmful and
predominantly low-frequency fraction of a corresponding en-
semble of fluctuators would be compensated most strongly.
Finally, one has to be aware that also the static term of the
Hamiltonian is averaged out. This does reduce the number of
control options. However, by a combination ofsid slow
pulses which commute with the bang-bang sequence andsii d
fast pulses on the time scale of the bang-bang sequence. One
can still achieve full control and universal computation as
shown in Ref.f14g.

Another approach for decoupling from slow noise is to
choose an appropriate working point with a dominant term
Vsx in the static Hamiltonian. The action of this term can be
understood as a rapid flipping of the spin, similar to our
bang-bang protocol. Using a Gaussian approximation of the
noise from the bfl with standard rate expressionsse.g.,f19gd,
it can be shown that the dephasing rate readsGf

=sa /tbfldV2 with compensation, instead ofGf=atbfl with-
out. This corresponds to the same amount of reduction as in
our case. This scheme has been implemented in supercon-
ducting qubitsf20g. In that case, it turned out that because
thesx term was limited by fabrication, this consideration led
to a major redesign. Our compensation scheme purely relies
on external control and thus keeps the hardware design flex-
ible.

A related problem has been addressed in Ref.f21g, which
deals with bang-bang suppression of Gaussian 1/f noise, i.e.,
a bosonic bath with an appropriate sub-Ohmic spectrum.
That system is treated in the weak-coupling approximation,
i.e., it assumesSsvd /v!1 at low frequencies whereSsvd is
the noise spectral function. Both assumptions are serious
constraints in the 1/f casef4,5g. Our work is not constrained
to weak coupling, takes the full non-Gaussian statistics of
telegraph noise into account, and gives the full resulting dis-
tribution of errors.

In summary, we examined the decoherence of a single
qubit from a single symmetric telegraph noise source and
proposed an adequate open quantum control compensation
protocol for suppressing its impact. We simulated the qubits
dynamics using a stochastic Schrödinger equation and ana-
lyzed its deviation from free evolution. We formulated ana-
lytically solvable one- and two-dimensional random-walk
models, which are in excellent agreement with the simula-
tions in the long-time limit. Specifically, we showed quanti-
tatively, how the degree of noise compensation is controlled
by the ratio between bfl flipping time scale and bang-bang
pulse length. We gave the full statistics of deviations in both
cases.
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