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Abstract

We discuss the dynamics of a spin coupled to a damped harmonic oscillator. This system can be mapped to a spin-boson
model with a structured bath, i.e. the spectral function of the bath has a resonance peak. We diagonalize the model by means
of infinitesimal unitary transformations ( flow equations), thereby decoupling the small quantum system from its environment,

and calculate spin—spin correlation functions.
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1. Introduction—model

Recently, a new strategy for performing measurements on
solid-state (Josephson) qubits was proposed which uses the
entanglement of the qubit with states of a damped oscillator
[1], with this oscillator representing the plasma resonance of
the Josephson junction. This system of a spin coupled to a
damped harmonic oscillator (see Fig. 1) can be mapped to a
standard model for dissipative quantum systems, namely the
spin-boson model [2]. Here the spectral function governing
the dynamics of the spin has a resonance peak. Such struc-
tured baths were also discussed in connection with electron
transfer processes [2]. We use the flow equation method
introduced by Wegner [3] to analyze the system shown in
Fig. 1, consisting of a two-level system coupled to a har-
monic oscillator €2, which is coupled to a bath of harmonic
oscillators:
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with the spectral function J(w) = >, K2(w — o) =T
This system can be mapped to a spin-boson model [2]
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where the dynamics of the spin depends only on the spectral
function J(w) = ), J28(w — wy) given by
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2. Method—results

Using the flow equation technique we approximately diag-
onalize the Hamiltonian # [Eq. (1)] by means of infinites-
imal unitary transformations. The continuous sequence of
unitary transformations U(/) is labelled by a flow parame-
ter /. Applying such a transformation to a given Hamilto-
nian, this Hamiltonian becomes a function of / : J# (/)=
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Fig. 1. A two-level system is coupled to a damped harmonic
oscillator with frequency €.

U U (]). Here #(1=0)= 4 is the initial Hamiltonian
and # (I = 00) is the final diagonal Hamiltonian. Usually,
it is more convenient to work with a differential formulation
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Using the flow equation approach one can decouple system
and bath by diagonalizing 5 (/ = 0) [4]:
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Here A is the renormalized tunnelling frequency. For the
generator of the flow we choose the Ansatz [4]
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The flow equations for the effective Hamiltonian [Eq. (4)]
then take the following form:
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The unitary flow diagonalizing the Hamiltonian generates a
flow for ¢.(/) which takes the structure
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Fig. 2. (a) Different effective spectral functions J(w,! = 0)
and (b) the corresponding C(w) for QI' = 0.06 and « = 0.15.
The inset shows the term scheme of a two-level system cou-
pled to a harmonic oscillator for the two limits 49 <Q and
Ao> Q.

where A(1) and y(]) obey the differential equations
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One can show that the function /(/) decays to zero as
| — oo. Therefore, the observable o. decays completely
into bath operators [4].

We integrated the flow equations numerically in order
to calculate the Fourier transform, C(w), of the spin—spin
correlation function

C) = %(az(t)az(O) + 0:(0)0-(2)). (11)

C(¢) can be used to calculate dephasing and relaxation times
for measurements on qubits [1]. Fig. 2(a) shows J(w, [ =0)
and Fig. 2(b) C(w) for different values of Q. C(w) dis-
plays a double-peak structure, which can be understood
from the term scheme shown in the inset. The arrows in-
dicate the transitions responsible for the peaks in C(w).
Additional structure of C(w) due to higher-order transi-
tions in the term scheme is not seen in Fig. 2. This is due
to our Ansatz for ¢.(/) [see Eq. (8)], which does not in-
clude the corresponding higher-order terms. However, we
do not expect the additional peaks to have much weight,
as the sum rule [4] for the total spectral weight is fulfilled
with an error of less than 5% for all the plots in Fig. 2(b).
We leave the extension of the Ansatz for ¢.(/) for future
work.
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