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Momentum-resolved tunneling into fractional quantum Hall edges
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Tunneling from a two-dimensional contact into quantum-Hall edges is considered theoretically for a case
where the barrier is extended, uniform, and parallel to the edge. In contrast to previously realized tunneling
geometries, details of the microscopic edge structure are exhibited directly in the voltage and magnetic-field
dependence of the differential tunneling conductance. In particular, it is possible to measure the dispersion of
the edge-magnetoplasmon mode, and the existence of additional, sometimes counterpropagating, edge-
excitation branches could be detected.
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The quantum-Hall~QH! effect1 arises due to incompress
ibilities developing in two-dimensional electron system
~2DES! at special values of the electronic sheet densityn0
and perpendicular magnetic fieldB for which thefilling fac-
tor n52p\cn0 /ueBu is equal to an integer or certain frac
tions. The microscopic origin of incompressibilities at fra
tional n is electron-electron interaction. Laughlin’s tria
wave-function approach2 successfully explains the QH effec
at n5n1,p[1/(p11) wherep is a positive even integer. Ou
current microscopic understanding of why incompressib
ties develop at many other fractional values of the filli
factor, e.g., nm,p[m/(mp11) with nonzero integerm
Þ61, is based on hierarchical theories.3–5

The underlying microscopic mechanism responsible
creating charge gaps at fractionaln implies peculiar proper-
ties of low-energy excitation in a finite quantum-Hall samp
which are localized at the boundary.6 For n5nm,p , m
branches of such edge excitations7–10 are predicted to exis
which are realizations of strongly correlated chiral on
dimensional electron systems calledchiral Luttinger liquids
(xLL). Extensive experimental efforts were undertaken
cently to observexLL behavior because this would yield a
independent confirmation of our basic understanding of
fractional QH effect. In all of these studies,11–16 current-
voltage characteristics yielded a direct measure of the en
dependence of thetunneling density of statesfor the QH
edge. This quantity generally contains information on glo
dynamic properties as, e.g., excitation gaps and the orth
nality catastrophe, but lacks any momentum resoluti
Power-law behavior consistent with predictions fromxLL
theory was found11,12,15 for the edge of QH systems at th
Laughlin series of filling factors, i.e., forn5n1,p . However,
at hierarchical filling factors, i.e., whenn5nm,p with umu
.1, predictions ofxLL theory are, at present, not supporte
by experiment.13,14 This discrepancy inspired theoretic
works, too numerous to cite here, from which, however,
generally accepted resolution emerged. Curr
experiments16 suggest that details of the edge potential m
play a crucial roˆle. New experiments are needed to test
present microscopic picture of fractional-QH edge exc
tions.

Here we consider a tunneling geometry that is particula
well suited for that purpose, see Fig. 1, and which has b
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realized recently for studying the integer QH effect
cleaved-edge overgrown semiconductor heterostructure17

In contrast to previous experiments, it provides amomentum
resolvedspectral probe of QH edge excitations.33 With both
the components of canonical momentum parallel to the b
rier and energy being conserved in a single tunneling ev
strong resonances appear in the differential tunneling c
ductancedI/dV as a function of the transport voltage an
applied magnetic field. Similar resonant behavior for tunn
ing via extended uniform barriers has been used recently18–21

to study the electronic properties of low-dimensional ele
tron systems. It has also been suggested as a tool to obs
spin-charge separation in Luttinger liquids22 and the
interaction-induced broadening of electronic spectral fu
tions at single-branch QH edges.23 Here we find that the
number of resonant features indI/dV corresponds directly to
the number of chiral edge excitations present. Ed
magnetoplasmon dispersion curves can be measured
power laws related to xLL behavior be observed
Momentum-resolved tunneling spectroscopy in the prese
considered geometry thus constitutes a powerful probe

FIG. 1. Schematic picture of tunneling geometry. Two mutua
perpendicular two-dimensional electron systems are realized,
in a semiconductor heterostructure. An external magnetic field
applied such that it is perpendicular to one of them (2DES') but in
plane for the other one (2DESi). When 2DES' is in the quantum-
Hall regime, chiral edge channels form along its boundary~indi-
cated by broken lines with arrows!. Where they run parallel to
2DESi , electrons tunnel between edge states in 2DES' and plane-
wave states in 2DESi with the samequantum numberpy of mo-
mentum component parallel to the barrier. Experimentally, the
ferential tunneling conductancedI/dV is measured.
©2002 The American Physical Society15-1
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characterize the QH edge microscopically.
To compute the tunneling conductances, we apply

general expression for the current obtained to lowest orde
a perturbative treatment of tunneling,27

I ~V!5
e

\2 (
kW i ,n,X

utkW i ,n,Xu2E d«

2p
$nF~«!2nF~«1eV!%

3Ai~kW i ,«!A'~n,X,«1eV!. ~1!

HereAi andA' denote single-electron spectral functions f
2DESi and 2DES' , respectively.~See Fig. 1!. We use a
representation where electron states in the first are labele
a two-dimensional wave vector34 ki5(ky ,kz), while the
quantum numbers of electrons in 2DES' are the Landau-
level indexn and guiding-center coordinateX in x direction.
We assume that 2DESi is located atx50. The simplest form
of the tunneling matrix elementtkW i ,n,X reflecting translationa
invariance iny direction is

tkW i ,n,X5tn~X!d~ky2k!, ~2!

wherek[X/ l 2 with the magnetic lengthl 5A\c/ueBu. The
dependence oftn(X) on X results from the fact that an elec
tron from 2DES' occupying the state with quantum numb
X is spatially localized on the scale ofl aroundx5X. The
overlap of its tail in the barrier with that of states fro
2DESi will drop precipitously asX/ l gets large. Finally,
nF(«)5@exp(«/kBT)11#21 is the Fermi function. In the fol-
lowing, we use the expressionAi(kW i ,«)52pd(«2EkW i

)
which is valid for a clean system of noninteractin
electrons.35 Here EkW i

denotes the electron dispersion

2DESi .
The spectral function of electrons in 2DES' depends cru-

cially on the type of QH state in this layer. At integern,
when single-particle properties dominate and disorder bro
ening is neglected, it has the form

A'~n,X,«![An~k,«!52pd~«2Enk!, ~3!

whereEnk is the Landau-level dispersion. Strong correlatio
present at fractionaln alter the spectral properties of edg
excitations. In the low-energy limit, it is possible to lineari
the lowest-Landau-level dispersion around the Fermi po
kF . At the Laughlin seriesn51/(p11) and for short-range
interactions present at the edge, the spectral function
found9,28 to be

A 1
p11

~q,«!5
z

p! S q

2p/Ly
D p

d~«2r\veq!. ~4!

Here q[k2kF , r 56 distinguishes the two chiralities o
edge excitations,Ly is the edge perimeter,ve the edge-
magnetoplasmon velocity, andz an unknown normalization
constant. The power-law prefactor of thed function in Eq.
~4! is a manifestation ofxLL behavior.

The main focus of our work is the sharp QH edge
hierarchical filling factors. Here we provide explicitly th
momentum-resolved spectral functions forn5n62,p . Micro-
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scopic theories7,9 predict the existence of two Fermi poin
kFo and kFi which correspond to outer and inner singl
branch chiral edges of QH fluids at Laughlin-series fillin
factors no

651/(p61) and n i
6561/@(2p61)(p61)#, re-

spectively. The negative sign ofn i2 indicates that the inne
edge mode is counterpropagating. We have used thexLL
bosonization ansatz9 and standard methods29 routinely ap-
plied in the study of one-dimensional electron systems
compute the spectral functions. As these have not been
tained before, we briefly discuss their main features here

According to xLL theory, the existence of two Ferm
points gives rise to a discrete infinite set of possible elect
tunneling operators at the edge. This is because an arbi
numberN of fractional-QH quasiparticles with charge equ
to eno

6 can be transferred to the inner edge after an elec
has tunneled into the outer one.9 Each of these processe
gives rise to a separate contribution to the electronic spec
function at the edge which is of the general form

An62,p

(N) ~q,«!5
2pz

G~h1
(N)!G~h2

(N)!
S Ly/2p\

uv17v2u D
h1

(N)
1h2

(N)
21

3u«2r\v1quh2
(N)

21u«7r\v2quh1
(N)

21

3$Q~r\v1q2«!Q~6«2r\v2q!

1Q~«2r\v1q!Q~r\v2q7«!%. ~5!

Hereq[k2kF
(N) , wherekF

(N)5kFo2Nno
6(kFo2kFi). The ve-

locitiesv1.v2.0 of normal-mode edge-density fluctuation
and the exponentsh1,2

(N) depend strongly on microscopic de
tails of the edge, e.g., the self-consistent edge potential
interedge interactions. We focus here on the experiment
realistic case when inner and outer edges are stron
coupled and the normal modes correspond to the famili30

charged and neutral edge-density waves. In this limit,
have30,31 v15vc;O(ln@Ly /l#), v25vn;O(1) ~wherec and
n denote charged and neutral, respectively!, and the expo-
nents assume universal values:h1

(N)5hc[p61/2, h2
(N)

5hn
(N)[(2N61)2/2. Note that exponents are genera

larger than unity except forN50,71 whereh2
(N)51/2. In

the latter case, an algebraic singularity appears in the spe
function. This is illustrated in Fig. 2. Such divergences w
be visible as strong features in the differential tunneling c
ductance; see below. Contributions to the spectral func
for all other values ofN do not show such divergences an
will give rise only to a featureless background in the cond
tance.

With spectral functions for 2DES' at hand, we are now
able to calculate tunneling transport. We focus first on
case when 2DES' is in the QH state atn51. For realistic
situations, the differential tunneling conductancedI/dV as a
function of voltageV and magnetic fieldB will exhibit two
lines of strong maxima whose positions inV-B space are
given by the equations

E0kV
5«F' , ~6a!

E0kFi
5«F'1eV. ~6b!
5-2
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HerekV5A2m(«Fi2eV)/\2 andkFi , the Fermi wave vec-
tor in 2DESi , are the extremal wave vectors for whic
momentum-resolved tunneling occurs. Fermi energies
2DES',i are denoted by«F',i . Equations~6! can be used to
extract the lowest-Landau-level dispersionE0k from maxima
in the experimentally obtaineddI/dV, thus enabling micro-
scopic characterization of real QH edges.

When 2DES' is in a QH state at a Laughlin-series fillin
factor n1,p , it supports a single branch of edge excitatio
just like atn51, and the calculation of the differential tun
neling conductance proceeds the same way. The major
ference is, however, the vanishing of spectral weight at
Fermi point of the edge; compare Eqs.~3! and ~4!. This
results in the suppression of maxima described by Eq.~6a!,
while those given by Eq.~6b! remain. The intensity of the
latter rises along the curve as a power law with exponenp.

Finally, we discuss the case of hierarchical filling facto
n62,p which are expected to support two branches of e
excitations. To be specific, we consider filling factors 2/3 a
2/5. In both cases, there are many contributions to the s
tral function and, hence, the differential tunneling condu
tance. However, only two of these exhibit algebraic sing
larities. It turns out that these singularities give rise to eit
a strong maximum or a finite step in the differential tunn
ing conductance, depending on the sign of voltage.~See Fig.
3.! The strong maximum results from a logarithmic dive
gence that occurs wheneV5\vc(kF

(N)2kFi). Both the maxi-
mum and the step edge follow the dispersion of the char
edge-magnetoplasmon mode and would therefore enabl

FIG. 2. Spectral functions for two-branch hierarchic
fractional-QH edges at bulk filling factor 2/3@a!# and 2/5 @b!#,
where the charged~edge-magnetoplasmon! mode is assumed to b
left-moving.~a! We showA2/3

(0)(q,«)[A2/3
(1)(q,«) for a fixed value of

q. Note the similarity with the spectral function of a spinless Lu
tinger liquid.24,25The only difference is that, in our case, velociti
of right-moving and left-moving plasmon modes are not equal.~b!
A2/5

(0)(q,«)[A2/5
(21)(q,«) at fixedq. It is reminiscent of the spectra

function for a spinfulxLL exhibiting spin-charge separation25,26but
differs due to the absence of any algebraic divergence at2vnq.
24131
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experimental investigation. Most importantly, however, t
two spectral functions with singularities exhibit them slight
shifted in guiding-center, i.e.,k direction by an amount
no

6(kFo2kFi). Hence, two maxima and a double-step featu
should appear in the differential tunneling conductan
whose distance in magnetic-field direction will be a meas
of the separation of inner and outer edges. Observation
this doubling would yield an irrefutable confirmation of th
expected multiplicity of excitation branches at hierarchic
QH edges.

Experimental observation of our predictions requires s
ficient momentum resolution for tunneling in real sample
Deviations from perfect momentum conservation can
quantified by a length scaleL rel<Ly associated with the
dominant source of momentum relaxation. To resolve str
ture in guiding-center space such as distinct integer QH e
branches with Fermi points having a distancel 2DkF requires
L rel.2p/DkF . Edge-dispersion spectroscopy performed
the integer QH regime17 indicates that this requirement ca
be fulfilled in real samples wherel 2DkF of the order of a few
l is expected. Multiple edge-excitation branches due
reconstruction32 at a smooth edge could be observed in
similar fashion. Verification of the two-branch structure
edges atn5n62,p requiresL rel.2p/(no

6ukFo2kFiu) and re-
alization of a sharp edge in the fractional QH regime.

In conclusion, we have calculated the differential condu
tance for momentum-resolved tunneling from a 2DES int
QH edge. Maxima exhibited atn51 follow two curves in
V-B parameter space whose expression we give in term
the lowest-Landau-level dispersion. Their explicit form e
ables edge-dispersion spectroscopy. At Laughlin-series fil
factors,xLL behavior results in the suppression of one
these maxima and characteristic power-law behavior ex

FIG. 3. Gray-scale plot of singular contributions to the differe
tial conductance for tunneling into the two-branch QH edge at
ing factor 2/3. A qualitatively similar plot is obtained for filling
factor 2/5. Note the strong maximum rising as a power law
negative bias, which is continued as a step edge for positive bias
position in theeV-dN plane follows a line whose slope correspon
to the edge-magnetoplasmon velocityvc . To obtain the plot, we
have linearized the spectrum in 2DESi and absorbed the magnetic
field dependence into the parameterdN5kF

(N)2kFi . As there are
two such singular contributions todI/dV with N50,1 which have
different dN , a doubling of resonant features shown in this p
would be observed experimentally.
5-3



a
lti-
e.

ul
was
of

at

RAPID COMMUNICATIONS
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ited by the other one. The multiplicity of edge modes
hierarchical filling factors corresponds directly to the mu
plicity of maxima in the differential tunneling conductanc
Their observation would constitute an important test ofxLL
theory.
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