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Abelian SU(N)1 chiral spin liquids on the square lattice
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In the physics of the fractional quantum Hall (FQH) effect, a zoo of Abelian topological phases can be obtained
by varying the magnetic field. Aiming to reach the same phenomenology in spin like systems, we propose a
family of SU(N)-symmetric models in the fundamental representation, on the square lattice with short-range
interactions restricted to triangular units, a natural generalization for arbitrary N of an SU(3) model studied
previously where time-reversal symmetry is broken explicitly. Guided by the recent discovery of SU(2)1 and
SU(3)1 chiral spin liquids (CSL) on similar models we search for topological SU(N )1 CSL in some range of the
Hamiltonian parameters via a combination of complementary numerical methods such as exact diagonalizations
(ED), infinite density matrix renormalization group (iDMRG) and infinite Projected Entangled Pair State
(iPEPS). Extensive ED on small (periodic and open) clusters up to N = 10 and an innovative SU(N)-symmetric
version of iDMRG to compute entanglement spectra on (infinitely long) cylinders in all topological sectors
provide unambiguous signatures of the SU(N )1 character of the chiral liquids. An SU(4)-symmetric chiral
PEPS, constructed in a manner similar to its SU(2) and SU(3) analogs, is shown to give a good variational
ansatz of the N = 4 ground state, with chiral edge modes originating from the PEPS holographic bulk-edge
correspondence. Finally, we discuss the possible observation of such Abelian CSL in ultracold atom setups where
the possibility of varying N provides a tuning parameter similar to the magnetic field in the physics of the FQH
effect.
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I. INTRODUCTION

Quantum spin liquids are states of matter of two-
dimensional electronic spin systems not showing any sign of
spontaneous symmetry breaking down to zero temperature
[1–3]. Spin liquids with long-range entanglement may also
exhibit topological order [4] such as the spin-1/2 resonating
valence bond (RVB) state on the kagome lattice [5]. Among
the broad family of spin liquids, chiral spin liquids (CSL)
[6–10] form a very special and interesting class [11] ex-
hibiting broken time-reversal symmetry and chiral topological
order [4]. Intimately related to FQH states [12], CSL are
incompressible quantum fluids (i.e., with a bulk gap) and host
both (Abelian or non-Abelian) anyonic quasiparticles in the
bulk [13] and chiral gapless modes on the edge [14]. After
the original papers, the Kalmeyer-Laughlin CSL lay dormant
for many years until an explicit parent Hamiltonian was con-
structed [15,16] using Laughlin’s idea [8]. Later somewhat
simpler Hamiltonians were found using different methods
[17,18]. An important step towards the goal of finding a chiral
spin liquid in realistic systems was taken by examining a

physically motivated model for a Mott insulator (Hubbard
model) with broken time-reversal symmetry [19,20]. Then, an
Abelian CSL was identified in the (chiral) spin-1/2 Heisen-
berg model on the triangular lattice [21,22]. Note that CSL
hosting non-Abelian excitations (useful for topological quan-
tum computing [23]) have also been introduced in different
contexts [24–26].

It was early suggested that, in systems with enhanced
SU(N ) symmetry, realizable with ultracold alkaline earth
atoms loaded in optical lattices [27], CSL can naturally appear
[28], although this original proposal on the square lattice
remained controversial. Later on, an Abelian CSL was indeed
identified on the triangular lattice in SU(N) Heisenberg mod-
els with N > 2 [29]. The presence of a chiral spin interaction,
achievable experimentally via a synthetic gauge field, seems
to be a key feature to stabilize SU(N) CSL [30]. Neverthe-
less, the T and P violation required for a CSL could emerge
spontaneously in T-invariant models, as found for N = 2 in a
spin-1/2 Kagome Heisenberg model [31–33] or, for N = 3,
in the Mott phase of a Hubbard model on the triangular
lattice [34]. Note also that, using optical pumping, it is now
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possible to realize (so far in one dimension) strongly corre-
lated liquids of ultracold fermions with a tunable number N
of spin components and SU(N) symmetry [35]. This offers the
prospect to be able to experimentally tune the system through
various topological liquids, as it is realized in the physics of
the FQH effect via a tunable external magnetic field. Apart
from ultracold atom setups, condensed matter systems may
also host SU(N) CSL. For example, it has been proposed very
recently that an SU(4) CSL could be realized in double-layer
moiré superlattices [36].

In recent years, projected entangled pair states (PEPS)
[37] have progressively emerged as a powerful tool to study
quantum spin liquids providing variational ground states
competitive with other methods [38–40]. PEPS also offer a
powerful framework to encode topological order [41–43] and
construct chiral Abelian [44] and non-Abelian [45] SU(2) spin
liquids. Generically, SU(2) CSL described by PEPS exhibit
linearly dispersing chiral branches in the entanglement spec-
trum (ES) well described by Wess-Zumino-Witten (WZW)
SU(2)k (with the level of the WZW model k = 1 for Abelian
CSL) conformal field theory (CFT) for one-dimensional
edges [46].

Recently, on a square lattice with three-dimensional spin
degrees of freedom which transform as the fundamental rep-
resentation of SU(3) on every site, an Abelian CSL was found
as the ground state (GS) of a simple Hamiltonian involving
only nearest-neighbor and next-nearest-neighbor (color) per-
mutations and (imaginary) three-site cyclic permutations [47].
Exact diagonalizations (ED) of open finite-size clusters and
infinite-PEPS (iPEPS) in the thermodynamic limit (and en-
coding the full SU(3) symmetry) unambiguously showed the
existence of chiral edge modes following the SU(3)1 WZW
CFT. Interestingly, these results can be viewed as extending
previous results obtained for an SU(2) spin-1/2 (i.e., N = 2)
chiral Heisenberg model [20,48]. Exactly the same type of
Hamiltonian can be defined for N-dimensional spin degrees
of freedom transforming according to the fundamental rep-
resentation of SU(N), for arbitrary integer N � 2. It is then
natural to speculate that, if such SU(N) models also host CSLs
for N > 3, then the later should also be of the SU(N )1 type.
Note however that, although a chiral perturbation necessary
induces, from linear response theory, a finite response of the
quantum spin system, it, by no means, implies the existence
of topological order or the absence of conventional (lattice
or magnetic) symmetry breaking, which both characterize a
CSL. The emergence of a uniform CSL with protected edge
modes is therefore a subtle feature that needs to be inves-
tigated on a case by case basis. It is far from clear that the
findings for SU(3) generalize to SU(N > 3) bearing in mind
that N may be commensurate or incommensurate with the
fixed number of nearest neighbors on the square lattice. Then,
in this work, we have (i) generalized the chiral Hamiltonians
of Refs. [20,47,48] to arbitrary N , (ii) defined a subset of these
SU(N) models whose Hamiltonians can be written solely as a
sum of S3-symmetric operators acting on all triangles within
square plaquettes (as in Ref. [47]), and (iii) studied these
models up to N = 10 using a combination of complementary
numerical techniques such as ED, density matrix renormal-
ization group (DMRG) and iPEPS, supplemented by CFT
analytical predictions.

We then start by generalizing the SU(2) and SU(3) chiral
Hamiltonians by placing, on every site of a square lattice,
an N-dimensional spin degree of freedom, which transforms
as the fundamental representation of SU(N). As for N = 3,
we consider the most general SU(N)-symmetric short-range
three-site interaction:

H = J1

∑
〈i, j〉

Pi j + J2

∑
〈〈k,l〉〉

Pkl

+ JR

∑
�i jk

(
Pi jk + P−1

i jk

) + iJI

∑
�i jk

(
Pi jk − P−1

i jk

)
, (1)

where the first (second) term corresponds to two-site permu-
tations over all (next-)nearest-neighbor bonds, and the third
and fourth terms are three-site (clockwise) permutations on
all triangles of every plaquette. Pi j (Pi jk) is defined through
its action on the local basis states, Pi j |α〉i|β〉 j = |β〉i|α〉 j

(Pi jk|α〉i|β〉 j |γ 〉k = |γ 〉i|α〉 j |β〉k , for a fixed orientation of the
triangle i, j, k, let’s say anticlockwise). To restrict the number
of parameters, we have chosen J2 = J1/2. In that case, the
two-body part (J1 and J2) on the interacting triangular units
becomes S3 symmetric, hence mimicking the corresponding
Hamiltonian on the triangular lattice.1 We then use the same
parametrization as in Ref. [47]:

J1 = 2J2 = 4
3 cos θ sin φ, JR = cos θ cos φ,

JI = sin θ, (2)

and restrict ourselves to antiferromagnetic couplings J1, J2 >

0, i.e., 0 � θ � π/2 and 0 � φ � π . Note however that, for
φ > π/2, the amplitude of the (real) three-site permutation JR

becomes ferromagnetic (JR < 0). A detailed analysis of the
multiplet structure of a 2 × 2 plaquette of the Hamiltonian
above is given in Appendix A.

For N = 2, various forms of the Hamiltonian (1) can be
found in the literature [20,48]. In the original formulation
[20], a chiral interaction 4J3 Si · (S j × Sk ) on all triangular
units �(i jk) is introduced, corresponding to the three-site
cyclic permutations of (1) with amplitudes JR = 0 and JI = J3.
Also, the two-site exchange interactions are introduced here
as spin-1/2 Heisenberg couplings, which is equivalent from
the identity 2Si · S j = Pi j − 1

2 .2 A Hamiltonian including a
(pure-imaginary) cyclic permutation iλc(Pi jkl − P−1

i jkl ) on each
plaquette �(i jkl ) was also introduced [48]. In fact, the pla-
quette cyclic permutation i(Pi jkl − H.c.) can be rewritten as
i
2 (Pi jk + Pjkl + Pkli + Pli j − H.c.),3 so that this model corre-
sponds also to JR = 0 and we can identify JI = J3 = λc/2. An
optimum choice of parameters for the stability of the SU(2)
CSL phase is found to be (in our notations) J2/J1 � 0.47 and
JI/J1 � 0.21 [20]. Furthermore, evidence is provided that the

1The chiral spin liquid phase should also exist away from J2 =
J1/2, due to its gapped nature.

2This can be extended to all fundamental IRREPs of SU(N):
Pi j = Ji · J j + 1

N , where Jα are the generators defined in Eq. (C1)
of Appendix C. Note, the usual SU(2) spin operators are given by
S = (1/

√
2)J.

3This decomposition holds only for N = 2 (in the fundamental
representation).
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FIG. 1. We considered various system topologies: (a) periodic
cluster topologically equivalent to a torus; (b) open cluster topologi-
cally equivalent to a disk; (c) cylinder with left and right boundaries.
We used (a) and (b) in ED and the infinite-length version of (c) in
DMRG and iPEPS. The chiral modes of the CSL are schematically
shown on the system edges.

CSL survives in a rather extended zone of parameter space
around this point. Also, an SU(2)-symmetric PEPS ansatz [44]
provides an accurate representation of the GS at the optimum
values of the parameters [48], and of its edge modes [49]
following an SU(2)1 WZW CFT.

For N = 3, from ED, DMRG and iPEPS simulations, clear
evidence of a gapped CSL is found for J2 = J1/2 and angles
like θ = φ = π/4 corresponding to JR/J1 = 0.75 and JI/J1 �
1.06 [47], and around these values in a rather extended pa-
rameter range (see Supplemental Material of Ref. [47]). In
addition, edge modes are found to closely follow the predic-
tions of the SU(3)1 CFT.

In the following, we will investigate model (1) using
complementary ED and DMRG techniques, providing over-
whelming evidence of a stable topological CSL phase. Various
systems of different topology, as shown in Fig. 1, will be used.
A torus geometry enables to probe bulk properties while a disk
or a cylinder geometry, with one or two edges respectively,
provides information on the existence and on the nature of
edge modes. More precisely, the topological nature of a CSL
phase can be established from (i) the topological GS degener-
acy [4] on periodic clusters, (ii) the existence of chiral edge
modes [14] both in open systems like Fig. 1(b) and in the
entanglement spectra of (quasi)infinite cylinders, and (iii) the
content of the edge modes following closely the prediction
of some chiral CFT theory. The Abelian CSL expected here
should be revealed by exactly N quasidegenerate GS on a
closed manifold and by the exact SU(N )1 WZW CFT con-
tent of its edge modes. The second goal of the paper, beside
establishing the existence of the SU(N )1 CSL phase itself, is
to provide its faithful representation in terms of an SU(N)-
symmetric PEPS. Following the prescription for N = 2 and

TABLE I. List of periodic clusters used here in ED: number of
sites Ns, cluster size vectors t1 and t2, and point-group symmetry.
Eigenstates can be labeled according to discrete momenta in the BZ.
At high-symmetry points 	, X , or M of the BZ, eigenstates can be
further labeled by the C4-symmetry (C2-symmetry) IRREP labels, A,
B, Ea, and Eb (A and B)—see Fig. 4.

Ns t1 t2 point group

8 (2,2) (2,−2) C4v

11 (1,3) (3, −2) C2

12 (1,3) (4,0) C2

13 (2, −3) (3,2) C4

14 (1,4) (3, −2) C2

15 (1,4) (4,1) C2v

16 (4,0) (0,4) C4v

18 (3,3) (3, −3) C4v

19 (1,4) (4, −3) C2

20 (4,2) (−2, 4) C4

21 (1,4) (5, −1) C2

N = 3, we shall focus on the N = 4 case. Common features
observed for PEPS with these three values of N allow us to
draw heuristic rules and conclusions for general N .

II. EXACT DIAGONALIZATIONS

A. Exact diagonalizations in the U(1) basis and in the standard
Young tableaux (SYT) basis

We start this section by a brief review of the two distinct
and complementary exact diagonalization methods used in
this work.

First, for periodic clusters (see Table I), we can imple-
ment the spatial symmetries (and in particular the translations)
which allows us to both reduce the size of the matrix to diag-
onalize by a factor typically equal to Ns (where Ns is the size
of the cluster) and to directly obtain the momenta associated
to each eigenenergy.

However, as N increases, EDs performed this way are
severely limited by the size of the available clusters since the
dimension of the Hilbert space increases exponentially with
Ns. A way to overcome such limitations is to implement the
SU(N) symmetry and this is the second ED protocol that we
have employed here. In particular, when Ns is a multiple of
N , the ground state of Hamiltonian (1) is an SU(N) singlet
state for a wide range of parameters. The singlet sector has
a dimension much smaller than the one of the full Hilbert
space. The gain to implement the full SU(N) symmetry and
to look for the lowest energy states directly in the singlet
sector is huge and increases with N . For instance, for N = 10
and Ns = 20, the singlet sector has only dimension 16796,
while the dimension of the full Hilbert space is 1020. In
addition, to write the matrix representing the Hamiltonian
in the singlet subspace and in the sectors labeled by higher
dimensional SU(N) irreducible representation (IRREP), we
have employed the algorithms detailed in Refs. [50,51], which
is mainly based on the use of Standard Young Tableaux
and on the theory of the representation of the permutation
group.
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In particular, it allows one to bypass the need for the
Clebsch-Gordan coefficients, which can only be calculated
with an algorithm whose complexity also increases with N
(see Ref. [52]). Typically, for the present problem, through
this method, we can address clusters with Ns ∼ 20 sites for
N up to 10. Note that contrary to the first ED method based
on the implementation of spatial symmetries, the momenta
can only be accessed in a second stage: we first calculate the
eigenvectors and then the effect of translation or rotation on
them.

B. Periodic clusters: bulk gap and GS manifold

The results for N = 2 and N = 3 described above suggest
that the existence of an Abelian CSL may be generic for
arbitrary integer N . To investigate such an appealing scenario,
we start by examining, for larger N , the low-energy spectra
obtained on Ns-site periodic clusters (see Table I for details
about clusters used). For antiferromagnetic and frustrating
couplings J1 > 0, J2 > 0, we expect the lowest-energy to
belong to the antisymmetric IRREP aIRN (r0) defined by a
Young tableau of r0 vertical boxes, r0 = mod(Ns, N ). In par-
ticular, in the case where Ns is an integer multiple of N (r0 =
0), the low-energy states are expected to belong to the singlet
subspace. However, at, e.g., θ = π/4, when increasing φ be-
yond φ = π/2, JR changes sign and states belonging to the
antisymmetric IRREP are gradually destabilized with respect
to the completely symmetric (ferromagnetic) state of energy
Eferro/Ns = 3J1 + 8JR. In particular, we clearly see at θ = π/4
a macroscopic energy gain (penalty) of the lowest-energy
eigenstate of aIRN (r0) with respect to the ferromagnetic state
at φ = π/2 (φ = π ) (see Appendix D). This fact indicates a
transition at φ = φF (somewhere in the range π/2 < φF < π )
between one (or several) spin liquid phase(s) and a ferromag-
netic phase. Note also that a detailed analysis of the 2 × 2
plaquette Hamiltonian in Appendix A, shows that the antifer-
romagnetic states dominate the low energy regime, yet with
the ferromagnetic regime in close proximity.

We now focus on the prospective spin liquid region dis-
cussed above and consider the case of Ns = kN , k ∈ N, so
that no quasiparticle excitations would be populating the GS
of a CSL phase. To identify the exact nature(s) of the spin
liquid(s), one needs to examin in details the low-energy singlet
subspace (gap structure, degeneracies, etc.). A selection of the
singlet energy spectra for fixed θ = π/4, plotted versus φ (for
fixed φ = π/2, plotted versus θ ), is shown in Fig. 2 for N
ranging from 2 to 10 (for N = 4, 7, 8, 9). For all the values of
N studied here, in a broad interval of φ (φ < φF ) or θ values,
a clear gap is observed between a group of degenerate and
quasidegenerate states and the rest of the singlet spectrum.
Interestingly, for θ = π/4 and N > 3, we observe level cross-
ings occuring in the singlet subspace at some value of φlc <

π/2, suggesting the existence of two different gapped phases.
For 0 � φ < φlc, we observe a twofold quasidegenerate GS
manifold within the singlet subspace which are translationally
invariant but which break the lattice point group π/2-rotation
symmetry.4 This could correspond to a nematic valence clus-

4Both states are translationally invariant and have different ±1
characters under π/2-rotation, for C4-symmetric clusters.

ter state as also seen in SU(2) spin-1 models [53,54]. Note
that, as a finite-size effect, the ground state of the total spec-
trum for small φ and θ around π/4 is not necessarily a singlet
state when Ns < N2 (see Appendix D). A more careful investi-
gation of this phase, although interesting, is beyond the scope
of this work and left for a future study.

We now move to a closer inspection of the gapped spin
liquid phase seen for N = 2, 3 and φ < φF , and for N > 3
and φlc < φ < φF , and identify it as a CSL. Interestingly,
we note that φ = π/2—corresponding to a pure imaginary
three-site cyclic permutation—is always located within this
gapped phase (note, for N = 3, φ = π/4 instead was cho-
sen in Ref. [47]). This gapped phase is also stable within
a significant range of the parameter θ , around θ = π/4 and
φ = π/2, e.g. also at θ = π/6. Hence, in the following, we
shall mostly report results obtained at fixed φ = π/2 (i.e., for
a pure imaginary three-site permutation) and for θ = π/4 or,
occasionally, θ = π/6.

To identify the type of (singlet) gapped phase, we now
investigate the exact degeneracy and the quantum numbers
of the singlet GS manifold. Figure 3 shows a zoom of the
low-energy spectra at θ = π/4 and φ = π/2, with the exact
degeneracy of each level below the gap. A simple counting
shows that there are exactly N states below the gap. Note that
the first excitation defining the gap does not belong to the
singlet sector but most often belongs to the adjoint IRREP of
dimension N2 − 1, except for some of the largest values of N
(like N = 9) for which finite size effects are the strongest. This
is an extension of the SU(2) case where the first excitation in
antiferromagnetic spin liquids are typically spin-1 “magnons.”
In the thermodynamic limit, the gap in the singlet sector
should be bounded from above by twice the true “magnetic”
gap as two isolated “magnons” can fuse into a singlet. If a
singlet bound state occurs between two magnons, the singlet
gap is then strictly smaller than twice the magnon gap.

The above observation of the N-fold degeneracy of the GS
space suggests that the gapped phases indeed correspond to
Abelian SU(N )1 chiral spin liquids. As realized already for
N = 3 in Ref. [47], it is possible to obtain, for arbitrary N , the
exact momenta of the various states in the GS manifold ex-
pected for an Abelian SU(N )1 CSL. This can be inferred from
a simple generalized exclusion principle (GEP) [55,56] with
clustering rules (see Appendix B for details). As a final check
for periodic systems, we then focus on two distinct commen-
surability relations between the cluster size Ns and N ; either
(i) Ns = kN , k ∈ N, for which, as above, the GS contains no
quasiparticle or (ii) Ns = kN − 1, k ∈ N, for which, a single
quasihole populates the GS. Note that in case (ii), r0 = N − 1
so that the IRREP of the GS manifold is the N̄ antifundamen-
tal IRREP. The GEP implies a GS (quasi)degeneracy of N
and Ns for (i) and (ii), respectively. This is indeed observed
as shown in Fig. 4. The predictions of the GEP are even more
precise, providing all GS momenta expected for the (Abelian)
CSL on every periodic cluster (see Appendix B for details on
the way momenta are assigned). We have checked that—in
most cases—all GS momenta reported in Fig. 4 match
the ones predicted by the heuristic rules. In particular, for
Ns = kN − 1, the GS manifold is made of exactly one N̄ (anti-
fundamental) IRREP at each cluster momentum. Rare failures
of the GEP rules (which may be attributed to cluster shapes,
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FIG. 2. Low-energy spectra computed by ED in the SYT singlet basis on periodic clusters of Ns = kN sites, k ∈ N, and [(a)–(i)] for a fixed
value of θ = π/4 as a function of φ, for N ranging from 2 to 10, or [(k)–(n)] for a fixed value of φ = π/2 as a function of θ ∈ [0, π/2], for
N = 4, 7, 8, 9. Only 10 (40) lowest singlet levels are shown at small N in (a)–(e) and (k) [larger N in (f)–(i) and (l)–(n)). The φ and θ axes
being discretized, lines connecting the data points are used as guides to the eye (hence, levels crossings around φlc may look like anticrossings).
N degenerate or quasidegenerate singlets (see Figs. 3 and 4 and text) are separated from the higher energy states by a gap, in an extended (φ, θ )
region around (π/2, π/4). The energy of the (fully polarized) ferromagnetic state (Eferro = 2

√
2Ns(2 cos φ + sin φ)), crossing the singlet GS

at φ = φF , is shown as a dashed line in (a)–(i). The location of the CSL and ferromagnetic phases along the cuts (c)–(i) and (k)–(n) are
schematized in (j). Note that for N = 2 and 3 [(a) and (b)] the CSL is expected to extend all the way to φ = 0.

FIG. 3. Zoom of the singlet low-energy spectra at θ = π/4 and
φ = π/2, for N ranging from 2 to 10, and the same cluster sizes as in
Fig. 2. The GS energy is subtracted off for better comparison between
the various spectra. The exact degeneracy g of each level is indicated
on the plot as ×g. The first nonsinglet excitation belonging to the
adjoint IRREP above the N quasidegenerate low-energy singlets is
shown as a filled triangle (see text).

etc.) to predict the correct momenta will be discussed in
Appendix B.

Interestingly, the above features predicted and observed
in the case of a single quasihole can be understood using
a simple physical argument. If the single quasihole would
be static, it could be placed on each of the Ns sites of the
cluster, and this, for each of the N topological (singlet) sec-
tors, hence spanning a NsN-dimensional Hilbert space. The
effective hopping allows the quasihole states to form a weakly
dispersing band below the gap, hence with N states at every
momentum. From the SU(N)-symmetry, these N states should
form a single multiplet belonging to the N̄ (antifundamental)
IRREP, as predicted by the GEP and found numerically.

C. Open systems: edge physics and CFT content

The previous results give strong evidence of the CSL nature
of the GS of the model, for the parameters chosen, from its
bulk properties on periodic systems (topologically equivalent
to tori). We complete the identification of the CSL phase by
the investigation by ED of open clusters. The existence of a
chiral edge mode fulfilling the SU(N )1 WZW CFT should be
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FIG. 4. Low-energy spectra on periodic clusters at fixed φ = π/2 and for θ = π/4 [(a)–(d)] or θ = π/6 (e)–(h)]. Clusters with site
numbers Ns = kN (left) or Ns = kN − 1 (right), k ∈ N, are chosen to obtain 0 and 1 quasihole, respectively, in the putative CSL. The respective
BZ with the allowed discrete momenta is shown on each plot as a gray square—only nonequivalent momenta are labeled—and the number
of equivalent momenta appearing are listed as grayed squared numbers. For Ns = kN (left), the GS manifold is composed of N singlets (open
circles). For Ns = kN − 1 (right), it is composed of Ns quasidegenerate levels, one level at each cluster momentum. Each level is comprised of
N degenerate states forming a N̄ antifundamental IRREP (open triangles).

reflected in the precise content of its low-energy spectrum.
By choosing finite-size clusters with (i) open boundaries and
(ii) C4 point-group symmetry, we can investigate the low-
energy spectrum as a function of the angular momentum, l =
0,±1, 2 (mod[4]) and reveal a single chiral branch linearly
dispersing only in one direction, as expected. At a given N ,
changing the cluster size Ns—whenever such a C4-symmetric
cluster is available—enables to change the topological sector
defined by the integer r0 = mod(Ns, N ), r0 = 0, . . . , N − 1.
Indeed, each topological sector is characterized by the SU(N)
IRREP of its GS, corresponding to the antisymmetric IRREP
aIRN (r0) (defined by a Young tableau of r0 vertical boxes),
and can then be reached whenever Ns = kN + r0. Note that
the dimension of aIRN (r0) is given by N!

(N−r0 )!r0! .
The ED investigation of the chiral edge modes has been

carried out on two types of open systems, all exhibiting C4

symmetry with respect to the cluster center. The first type of
clusters is build around a central site by adding successive
shells of four sites at 90◦ angles. The second type of open
clusters are built in the same way but from a center 2 × 2
plaquette. The 13-site, 17-site, and 21-site (16-site) clusters

belongs to the first (second) category, as shown on the right-
hand side of Fig. 5. Note that the 17-site cluster is “chiral,”
i.e., it breaks reflection symmetry (parity), and spectra for
JI > 0 and JI < 0 are expected to be (slightly) different. Here,
JI > 0 and the Pi jk permutation is assumed counterclockwise.
ED spectra obtained on such clusters for N = 4, 5, 6, 7, 8
are shown in Fig. 5, for φ = π/2 and θ = π/4 or π/6 (as
specified in the caption). In all cases, we observed a rather
sharply defined low-energy chiral edge mode, i.e., a group of
levels (i) well-separated from higher-energy levels by a gap,
(ii) following a linear dispersion with respect to the angular
momentum, and (iii) with a very precise and nontrivial content
in terms of SU(N) multiplets. Each edge mode is character-
ized by its GS given by the antisymmetric IRREP aIRN (r0).
For each pair (N, r0) occurring in Fig. 5, we have computed
the expected “tower of states” (ToS) generated by aIRN (r0),
as predicted by the SU(N )1 WZW CFT—see Appendix C.
Numerically, one can use (N − 1) U(1) quantum numbers to
diagonalize the Hamiltonian and identify the IRREP content
for each group of exactly degenerate levels. A careful check
shows that, generically, the quantum numbers of the chiral
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FIG. 5. Low-energy spectra on open C4-symmetric clusters depicted on the right-hand side of the figure, as a function of the angular
momentum l (with respect to the GS angular momentum l0), at fixed φ = π/2 and for θ = π/4 (a)–(d)] or θ = π/6 [(e)–(h)]. Symbols
labeling the various SU(N) IRREPs entering the chiral mode are shown in the legends. The Young diagrams for the corresponding IRREPs
can be identified using the tables in Appendix C. The GS IRREPs are fully antisymmetric, and labeled by Young diagrams consisting of a
single column of r0 = mod(Ns, N ) boxes, with degeneracy N!

(N−r0 )!r0! . Identifying l − l0 with the Virasoro level L0, all low-energy ToS in (a)–(h)
for 0 � l − l0 � 3 follow exactly the WZW CFT predictions of Tables VIII, IX, XII, XIII, XVI, XV, XVII, and XXI, respectively. The only
exception is the SU(6) 15 (SU(8) 1) tower, for which two multiplets 15 and 21 (1 and 63) are missing in the L0 = 3 Virasoro level.

edge mode spectra match exactly the WZW CFT ToS predic-
tions (identifying the angular momentum with the Virasoro
level L0), providing a real hallmark of the CSL phase. For two
cases corresponding to the smallest Ns = 16 cluster, a small
number of multiplets in the CFT predictions are missing in
Fig. 5. We have explicitly checked that finite-size effects can
indeed lead to incomplete towers.

III. DMRG

For characterizing chiral topological states, the correspon-
dence between the entanglement spectrum and the conformal
tower of states is a fingerprint evidence. While DMRG is in
principle suited for this purpose, a technical difficulty is that
the characterization of topological order requires the full set of
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(quasi)degenerate ground states and, furthermore, these states
should be combined into the so-called minimally entangled
state (MES) basis [57]. In this section, we use a two-step
procedure to accomplish this task: (i) build Gutzwiller pro-
jected parton wave functions which describe the SU(N )1 CSL,
use them to construct the MES basis on the cylinder, and
convert them into MPS; ii) initialize DMRG with the parton-
constructed MES basis. This strategy allows us to find the full
set of N (quasi)degenerate ground states in the MES basis.
The parton picture also helps us to identify the correspondence
between the entanglement spectrum and the SU(N )1 confor-
mal towers.

A. Parton wave functions

In this section, we outline the parton approach to con-
struct trial wave functions for the SU(N ) CSL model. To
construct the minimally entangled states (MESs) [57], we
use a fermionic parton representation of the SU(N ) gener-
ators [58–60], Sμ

i = ∑
σσ ′ c†

iσ T μ

σσ ′ciσ ′ , where T μ

σσ ′ are matrix
representations of the SU(N ) generators in the fundamental
representation, and c†

iσ is the creation operator at site i. A local
constraint

∑
σ c†

iσ ciσ = 1 has to be imposed to ensure that
singly occupied fermions represent the N states in the SU(N )
fundamental representation, i.e., |σ 〉 = c†

σ |0〉 (site index sup-
pressed), with |0〉 being the vacuum of partons. The SU(N )
CSL with SU(N )1 topological order can be constructed by
Gutzwiller projecting a fully occupied C = 1 Chern band of
fermionic partons, where C is the Chern number. To have a
systematic construction for all N , we design the following
quadratic Hamiltonian for partons on a square lattice:

Hp = −
∑

m,n,σ

(txc†
m+1,n,σ cm,n,σ + tyeimϕc†

m,n+1,σ cm,n,σ )

−
∑

m,n,σ

(t2ei(mϕ±π/N )c†
m±1,n+1,σ cm,n,σ ) + H.c.

− μ
∑

m,n,σ

c†
m,n,σ cm,n,σ . (3)

The phase ϕ is chosen to be 2π/N , so that the flux through
each square plaquette is 2π/N and each triangular plaquette is
π/N . To minimize finite-size effects, we maximize the band
gap by choosing t2 = ty/2.

The design of the parton Hamiltonian (3) follows a lattice
discretization of the Landau level problem, i.e., 2D electrons
in a strong magnetic field (with the Landau gauge). Under
periodic boundary conditions (torus geometry), the fluxes in
the square/triangular plaquette are chosen such that there
are N bands with the lowest band having Chern number
C = 1 (see Fig. 6). The N = 2 case has been considered
previously in Refs. [57,61–63], which was used to construct
Gutzwiller projected wave functions representing the SU(2)
CSL of Kalmeyer-Laughlin type. For N > 2, the lowest band
becomes flat and indeed resembles the lowest Landau level.
The trial wave functions for describing the SU(N )1 CSL are
obtained by (i) tuning the chemical potential μ such that the
lowest band is completely filled and all others empty, yielding
a filling of 1/N on the lattice when also including the edge
mode (see Fig. 7) and (ii) Gutzwiller projecting the Fermi
sea with fully occupied lowest band. Strictly speaking, this

FIG. 6. Band structures of the parton Hamiltonian on the torus
along high symmetry directions for N = 2, 3 and 4. We set tx = ty

for N = 2 and 4, and tx = ty/2 for N = 3.

construction does not depend on the flatness of the C = 1
band. Here, our extra requirement of a nearly flat band serves
another purpose: the single-particle wave functions of a flat
band can be made more localized, which helps to suppress the
entanglement growth when converting Gutzwiller projected
wave functions into MPS [63]. Last but not the least, this
parton Hamiltonian is also designed to support exact zero
modes on the cylinder, which, as we shall see, are important
for constructing the MES basis.

For our purpose, we shall consider the cylinder geometry
(with circumference Ny) rather than the torus geometry, with
open boundaries in the x direction and a periodic (or twisted)
boundary condition in the y direction. This allows us to char-
acterize the MESs via the entanglement spectrum [61,64],
and to use these wave functions to initialize our DMRG
simulations [65].

FIG. 7. The parton single-particle levels including the edge states
on a wide cylinder for N = 2 to 9. Filling the Fermi sea up to zero
energy corresponds to a filling fraction 1/N . This fully occupies the
lowest parton band as well as the edge states up to the degenerate
zero modes at the single-particle momentum ky = π/N . These exact
zero modes, denoted by dLσ and dRσ , are localized at the left and right
boundaries of the cylinder, respectively.
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By diagonalizing the parton Hamiltonian (3) on the cylin-
der, we obtain a set of single-particle orbitals composed of
local operators, d†

kσ
= ∑

m,n Am,n(k)c†
m,n,σ . For N = 2, it is

known that the exact zero modes play an important role
in constructing the MESs [61,63]. These exact zero modes,
denoted by dLσ and dRσ , localize at the two boundaries
of the cylinder. Their occurrence at the single-particle mo-
mentum ky = π/2 requires that for mod(Ny, 4) = 0 (2), the
parton Hamiltonian has periodic (antiperiodic) boundary con-
dition in the y direction. The two MESs with Sz = 0 are
then written as Gutzwiller projected wave functions, |�1〉 =
PGd†

L↑d†
R↓|〉 and |�2〉 = PGd†

L↑d†
L↓|〉, where PG imposes

the single-occupancy constraint at each site and |〉 is the
state with all parton modes below the zero modes being fully
occupied. In this representation, it is transparent that the zero
mode d†

L(R)σ creates a semion carrying spin-1/2 (with spin
projection σ ) at the left (right) boundary of the cylinder. It was
found [63] that the entanglement spectra of |�1〉 and |�2〉 cor-
respond to the conformal towers of states of the chiral SU(2)1

WZW model in its spin-1/2 (semion) and spin-0 (identity)
sectors, respectively. To qualify as the (quasi) degenerate
ground states of chiral spin liquids, the wave functions should
be SU(2) spin singlets. While |�2〉 is manifestly a spin sin-
glet, |�1〉 needs to be combined with PGd†

L↓d†
R↑|〉 to form

a spin singlet |�̃1〉 = PG(d†
L↑d†

R↓ − d†
L↓d†

R↑)|〉. However, the
entanglement spectrum of |�̃1〉 would then correspond to two
copies of spin-1/2 conformal towers due to the entanglement
cut of an additional nonlocal singlet formed by a pair of two
spin-1/2 semions at the boundaries [66].

This parton construction of MESs for the SU(2) CSL can
be naturally generalized to the SU(N) CSL. To allow for exact
zero modes, the hopping parameters in Eq. (3) are chosen
as tx = ty if N is even, and tx = ty cos(π/N ) otherwise. This
ensures that the exact zero modes, d†

Lσ and d†
Rσ , appear at

ky = π/N (see Fig. 7), which is always allowed for a suitably
chosen boundary condition (i.e., periodic or twisted) in the y
direction. Occupying N of these boundary modes distributed
arbitrarily over left and right boundaries ensures that the total
momentum of the state in y direction is zero. As such this is
then consistent with a width-N cylinder with plain periodic
boundary conditions around the cylinder.

With that, MESs belonging to N different topological sec-
tors can be written in analogy to the SU(2) case as

|�p〉 = PG (d†
L1 . . . d†

Lpd†
R,p+1 . . . d†

RN |〉), (4)

p = 0, . . . , N . Here d†
L(R)σ creates an elementary anyon of the

chiral SU(N )1 theory and also transforms under the SU(N)
fundamental representation. Therefore p = 0 (N) corresponds
to all N anyons either located, equivalently and respectively, at
the left or right boundary. The entanglement spectra of these
states |�p〉 should be in one-to-one correspondence with the
N Kac-Moody conformal towers of the chiral SU(N )1 WZW
model, whose N primary fields are labeled by Young diagrams
with p vertical boxes, respectively. However, except for p = 0
or N, the states above do not yet describe proper SU(N) multi-
plets. For a more direct comparison with CFT, the N boundary
modes need to be antisymmetrized over all flavors into an
overall SU(N) singlet. The corresponding SU(N) singlets can

be written as

|�̃p〉 = PG
(
εσ1...σN d†

Lσ1
. . . d†

Lσp
d†

Rσp+1
. . . d†

RσN
|〉), (5)

where εσ1...σN is the totally antisymmetric Levi-Civita ten-
sor. Eq. (5) indicates that for nonidentity sectors, multiple
branches contribute to the entanglement spectrum. The num-
ber of branches is N!

(N−p)!p! , where N! comes from the
Levi-Civita tensor, and the factors (N − p)! and p! account
for the antisymmetrization of the anyons on the left or right
edge, represented by N − p or p vertical boxes in the corre-
sponding Young tableau, IRREPS p̄ and p, respectively. Note
that as such this precisely also corresponds to the dimensions
dim(aIRN (p)) = dim(aIRN (N − p)) [see Sec. II C above].

Using the matrix-product-operator matrix-product-state
(MPO–MPS) method of Ref. [63] to implement the parton
construction, we can express the filled Fermi sea of the above
parton wave function |�̃p〉 as an MPS. The principal idea for
that is as follows: (i) the vacuum state |0〉 is an MPS with
bond dimension D = 1; (ii) the nonlocal parton operator d†

kσ
,

subject to Wannier localization, can be written as an MPO
of bond dimension D = 2; (iii) the MPOs d†

kσ
are applied

sequentially onto the MPS with possible compression after
each step, resulting in an MPS with a finite bond dimension
that represents a filled Fermi sea; and (iv) the Gutzwiller
projector PG = ∏L

�=1 P� is applied to separately enforce the
local constraint,

∑
σ c†

m,n,σ cm,n,σ = 1, on each site to recover
the correct local physical subspace.

B. Infinite DMRG

For a cylinder geometry, the N different minimally entan-
gled states of the SU(N ) CSLs, each carrying distinct anyonic
flux threading through the hole in the annulus, form a com-
plete basis for the N-fold degenerate ground states. Finding
such a complete basis numerically for the Hamiltonian of
Eq. (1) would be a convincing validation for our short-range
CSL proposal.

Numerically the finite system width Ny lifts the N-fold
ground-state degeneracy, with an energy gap which decreases
with increasing width. If the cylinder is infinitely long, CFT
predicts that the energy splittings (with respect to the ground
state) are given by 2πv

Ny
(hp + h̄p), where v is the velocity of

the chiral edge states and hp, h̄p are conformal weights of the
primary fields (corresponding to the respective anyons at the
boundaries). Thus, we expect a power-law splitting O(1/Ny)
for chiral topological phases (rather than exponential, as in
the case of nonchiral topological phases with gapped edges
[5,23,67]).

This hampers the search for distinct topological sectors via
DMRG, a ground-state search algorithm when using cylin-
ders. Previous DMRG works [31,67–72] have shed some light
on this, showing that the presumably higher-energy states
can still be examined by adopting tailored boundaries, e.g.,
imposing ZN charges.5

5For SU(N )1 CSL, all topological sectors can be obtained in this
way. However, for some topological phases, other types of anyon
sectors can appear, such as a “defect line” cutting along the x direc-
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FIG. 8. The entanglement spectra on width-6 cylinders for SU(2)
CSLs. (a) Identity sector. (b) Semion sector (⊗ 1

2 ). Identifying Ky with
the Virasoro level L0, the content of the chiral branches agrees exactly
with the CFT predictions of Tables IV and II up to Ky = 4 (mod[6]).

Concretely, DMRG is used to optimize the bulk part of the
cylinder, while a small portion of spins at the boundaries are
engineered to mitigate finite-width effects, thereby favoring
different topological sectors if any exist. However, how to
engineer the boundary spins and choose suitable lattice ori-
entation remains an elusive undertaking.

Our work here is an extension of the above idea, and
the parton approach paves a systematic way to construct the
boundary spins for different MESs. For the identity sector,
we use typical infinite DMRG (iDMRG) to find the ground
state for Eq. (1) [73,74]. For other sectors that are higher in
energy, we use the parton approach outlined above to initialize
several possible MESs by occupying edge modes in different
ways, then use the infinite DMRG algorithm to minimize the
(bulk) ground-state energy with respect to the Hamiltonian
of Eq. (1) for each. The ED calculations in Sec. II suggest
a substantial region of a gapped CSL in the parameter space
of (θ, φ) = (sin−1(JI ), tan−1( 3

4 J1/JR)) for each N . Here we
focus on only one point within that phase, for N = 2 up to
4. While N = 2 and 3 have been investigated by ED and
iPEPS previously, a thorough DMRG study for them has
not been performed. We therefore include them here too, to
corroborate the consistency of the model as well as the method
for different N . We choose (θ, φ) = (π/12, π/2) for N = 2,
(θ, φ) = (π/6, π/2) for N = 3, and (θ, φ) = (π/4, π/2) for
N = 4. The widths of the cylinder are chosen to be a multiple
of N , so that if N different MESs do exist, all of them they can
be found for arbitrary cylinder lengths.

The entanglement spectrum, as the fingerprint of topo-
logical order, can be readily extracted from iDMRG wave
functions. To enable a comparison with CFT, we identify the
entanglement levels by their SU(N) irreps and the momentum
ky = 2πKy

Ny
, Ky ∈ N [67], as the converged states should be

tion. This is also very common and appears in, e.g., Z2 [5] and Ising
topological phases. Then, adopting tailored boundaries in DMRG is
not sufficient to detect such topological sectors.

TABLE II. SU(2)1 WZW model—The direct product of the
conformal tower of the spin-1/2 primary (left: see Table V in Ap-
pendix C) with a spin-1/2 gives a new tower (right) with a doubling
of the number of states in each Virasoro level indexed by L0.

translationally invariant along the y direction. They are thus
(approximate) eigenstates of the translation operator, with
phase factors as eigenvalues, from which we extract the as-
sociated momenta ky. From Fig. 8(a), we see that the identity
sector agrees with the SU(2)1 WZW CFT (see Table IV) for
the first few low-lying states. For the semion sector, the ES
[see Fig. 8(b)] consists of a new conformal tower containing
integer spin multiplets, and twice the number of states ex-
pected for the semionic conformal tower. This discrepancy
is rooted in the fact that semions carry spin-1/2 quantum
numbers and can be best understood from the parton con-
text [63]: the CFT content describes a single edge mode for
spin-1/2, while the state in our simulation is a spin-singlet,
corresponding to an antisymmetric combination of two spin-
1/2 edge modes. In other words, neither of the semion states
carrying spin-1/2 at the edges, i.e., |�1〉 = PGd†

L↑d†
R↓|〉 or

|�1′ 〉 = PGd†
R↑d†

L↓|〉, does have a definite total spin. A spin-
singlet can be formed, however, via a linear combination of
|�1〉 and |�1′ 〉, which leads to the doubling of the number of
states of the conformal towers [75]. This can be easily verified
by a direct product of the conformal towers of the spin-1/2
primary of Table V (Appendix C) with a spin-1/2, as shown
in Table II. This observation applies also for cases of N > 2
: for nonidentity sectors, the ESs contain, in each Virasoro
level, an integer multiplicity (�N) of the number of states of a
single CFT tower. In general, it is possible to account for such
a multiplicity by taking the direct product of each conformal
tower with the conjugate of its primary spin (see Tables XXVI,
XXVII, and XXVIII in Appendix F as examples). This brings
our simulations in overall agreement with CFT as shown in
Figs. 9 and 10 for N = 3 and N = 4, respectively, and a di-
rect comparison with Tables XXVI, XXVII and XXVIII (see
Appendix F). Conversely, one also could have “quenched” the
edge spins p and p̄ in the DMRG simulation by coupling them
to an artificial additional physical edge site with spin p̄ and
p at the left and right boundary, respectively. However, we
refrained from doing so.

To summarize: in this section we have shown that a DMRG
ground-state search for the Hamiltonian of Eq. (1), initialized
with an MPS obtained via Gutzwiller-projected parton con-
struction, yields entanglement spectra in excellent agreement
with the expectations for SU(N )1 CSLs. At a technical level,
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FIG. 9. The entanglement spectra on width-6 cylinders for SU(3) CSLs. (a) Identity sector. (b)
3

sector (⊗
3̄

). (c)

3̄

sector (⊗
3

).

Identifying Ky with the Virasoro level L0, the content of the chiral branches agrees exactly with the CFT predictions of tables VI and XXVI up
to Ky = 3 (mod[6]). Note that the towers of the 3 and 3̄ sectors are identical, apart from an overall conjugation of all IRREPs.

this required the following innovations: (i) the Gutzwiller pro-
jected wave functions for SU(N )1 CSLs, including the MES
basis on the cylinder, are systematically constructed; (ii) the
powerful tensor network library incorporating non-Abelian

symmetry efficiently converts the projected wave functions
into MPSs with high fidelity; and (iii) the iDMRG is initial-
ized with the MES basis and preserves the SU(N) symmetry.
The combination of these innovative techniques allows us to

FIG. 10. The entanglement spectra on width-8 cylinders for SU(4) CSLs. (a) Identity sector. (b)
4

sector (⊗

4̄

). (c)

6

sector (⊗
6

).

(d)

4̄

sector (⊗
4

). Note that the towers of the 4 and 4̄ sectors are identical, apart from an overall conjugation of all IRREPs. Identifying Ky

with the Virasoro level L0, the content of the chiral branches agrees exactly with the CFT predictions of tables VIII, XXVII and XXVIII up to
Ky = 3.
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FIG. 11. PEPS on the square lattice involving site A tensors
and bond B tensors. The bond dimension on the black links is D,
up to D∗ = 4 (D = 15), and the vertical red segments correspond
to the physical space F spanned by the d = N (d∗ = 1) physical
degrees of freedom. All indices (i.e., legs or lines) carry arrows which
indicate whether legs enter or leave a tensor in terms of state space
fusion. This can be translated into co- and contravariant tensor index
notation, respectively [76,77]. Note that reverting an arrow also flips
all affected IRREPS into their dual representations.

obtain all N degenerate ground states of the SU(N )1 CSL and
characterize them from the entanglement spectrum.

IV. IPEPS

The results obtained from ED and iDMRG have shown
affirmative evidences for SU(N )1 CSL in a wide range of
parameters with arbitrary N . On the other hand, a varia-
tional ansatz capturing properties of the CSL phase is also
highly desired, especially in terms of symmetric PEPS. Fol-
lowing the implementation of chiral PEPS for N = 2 (see
Refs. [44,48,49]) and N = 3 (see Ref. [47]), we will first
outline the general scheme of the construction, with focus
on how the relevant symmetries are realized on the local
tensors. We then proceed to a variational optimization of the
very few parameters. Finally, we investigate the entanglement
properties and bulk correlations of the optimized chiral PEPS,
confronting the results with general considerations.

A. Symmetric PEPS construction

Let us first extend the construction of chiral PEPS used
for N = 2 (see Refs. [44,48,49]) and N = 3 (see Ref. [47]
for more details). The PEPS is obtained by contracting the
network represented in Fig. 11, i.e., by summing all virtual
indices on the links connecting rank-(z + 1) site and rank-2
bond tensors, z being the lattice coordination number, z = 4
for the square lattice. The physical space F on every lattice
site is spanned by d = N states transforming according to the
fundamental IRREP of SU(N). The choice of the virtual space
on the z = 4 bonds around each site can be made following
heuristic rules valid for all N . In other words, we construct a
SU(N)-symmetric PEPS from site/bond tensors with virtual
(or bond state) space,

VN = • ⊕ ⊕ · · · ⊕

⎫⎪⎪⎬⎪⎪⎭N − 1, (6)

TABLE III. Number of symmetric site-tensors in each class char-
acterized by the IRREP of the C4v point group of the square lattice
(rows) and the occupation numbers {n6, n4, n4̄, n1} of the 6, 4, 4̄, and
1 multiplets on the 4 virtual bonds (columns).

{0, 0, {0, 1, {1, 0, {1, 3, {3, 0, {0, 2, {2, 1, {1, 1,

3, 1} 0, 3} 1, 2} 0, 0} 1, 0} 1, 1} 0, 1} 2, 0}
A1 1 2 1 2 3 3 4
A2 1 1 2 2 3 3 5
B1 1 2 1 2 3 3 4
B2 1 1 2 2 3 3 5

where the direct sum contains all N IRREPs defined by
single column Young diagrams of 0 up to N − 1 boxes, con-
sistently with the N = 2 and N = 3 cases, V2 = 1 ⊕ 2 and
V3 = 1 ⊕ 3 ⊕ 3̄.6 For the N = 4 case, we then assume V4 =
1 ⊕ 4 ⊕ 6 ⊕ 4̄ (with bond dimension D = 15). By construc-
tion, the bond state (or virtual) space remains the same when
the direction of arrow in Fig. 11 is reverted, as V maps into
itself when all IRREPs are flipped into their dual. Note that
the site tensor A can be seen as a linear map (or projection)
(VN )⊗z → F onto the physical state space, and the bond
tensor B as fusing bond state spaces into a fully entangled
pair singlet state, (VN )⊗2 → •. As such, the tensors A and B
explicitly correspond to the “P” and “EP” part in the acronym
PEPS, respectively. Up to normalization, the bond tensor B
corresponds to an orthogonal matrix inserted into each bond
within the tensor network [76,77]. It is real and defined as a
weighted sum of three elementary (reflection-symmetric) ten-
sors representing the three allowed fusion channels • ⊗ • →
•, 6 ⊗ 6 → • and 4 ⊗ 4̄ → •. As such, it does not add any

variational degrees of freedom.
As for N = 2 and 3, we classify the SU(4)-symmetric site-

tensors according to (i) the number nα of α-IRREPs appearing
on their z = 4 virtual bonds, nocc = {n6, n4, n4̄, n1} (

∑
nα =

z) and (ii) the (one-dimensional) IRREP of the C4v point group
of the square lattice [78] (see Table III). Since the chiral spin
liquid only breaks P (parity) and T (time-reversal) but does not
break the product PT, the PEPS complex site tensor A should
be invariant (up to a sign) under PT symmetry but acquires a
complex conjugation under P or T separately (up to a sign).
The simplest adequate ansatz has the following form:

A = AR + iAI =
NR∑

a=1

λR
aAa

R + i
NI∑

b=1

λI
bAb

I , (7)

where the real elementary tensors Aa
R and Ab

I either transform
according to the A1 and A2 IRREPs, respectively, or according
to the B1 and B2 IRREPs, respectively, giving rise to two
possible families, AA and AB. NR = 16 and NI = 17 are the
numbers of the elementary tensors in each class and λR

a and λI
a

are arbitrary real coefficients of these tensors to be optimized
variationally.

6To describe non-Abelian SU(N )k CSL, k > 1, we speculate that
one should include all IRREPS in V with up to k columns, consis-
tently with the SU(2)2 case [45].
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To contract the infinite (double layer) tensor network, we
have used the iPEPS method employing a corner transfer ma-
trix renormalization group (CTMRG) algorithm [79,80] and
obtain the fixed-point environment tensors used to compute
the variational energy (on a 2 × 2 plaquette) or the entangle-
ment spectra on infinite cylinders [47,48]. In order to cope
with the large bond dimension (D = 15), the tensor contrac-
tions at each CTMRG step have been performed using the
full SU(N)-symmetry, thanks to the QSpace library [76,77].
This changes the description of any vector space V from
state-based to multiplet-based. For numerical efficiency then,
importantly, the dimensionality is reduced from DV states to
an effective dimension of D∗

V multiplets, where for SU(N) it
typically holds D∗

V � DV . As an example, the bond dimen-
sion D2 = 225 of the double layer (rank-4) tensor AA∗ (used
in CTMRG) can be reduced to D2∗ = 26 which represents the
number of multiplets in the product space:

ν⊗2
4 = 4

1• ⊕ 4
4

⊕ 4

4̄

⊕ 4

6

⊕ 1
10

⊕ 1

10

⊕ 3

15

⊕ 2

20

⊕ 1

20′

⊕ 2

20

. (8)

By fully enforcing SU(N) symmetries on all tensors and in-
dices, this automatically implies that singular values within
any multiplet are degenerate. Therefore naturally, state space
truncation is also always performed based on entire multi-
plets. Degeneracies across different multiplets, however, can
be arbitrarily split depending on the algorithm and overall
convergence. For SU(4), we have increased the environment
dimension up to χ∗ = 221 multiplets (corresponding to χ =
1350 states) to control truncation errors. The optimization
of the PEPS (7) with respect to its variational parameters
is done within a variational optimization scheme [81]. For
θ = π/4 and φ = π/2, the best variational energy (per site)
e � −2.105 (close to the DMRG estimate −2.14) is obtained
for the AB ansatz that we shall consider hereafter.

B. Entanglement spectrum and edge physics

Both ED and DMRG computations have shown over-
whelming evidence of SU(N )1 edge modes, both on disk
and cylinder geometries, a fingerprint of the Abelian CSL
phase. We note that, apart from the trivial (identity) sector,
the conformal towers previously obtained using PEPS on
cylinders for N = 2 and 3 bear some differences with those
obtained in DMRG. For example, the spin-1/2 semionic
branch of the SU(2) spin-1/2 chiral PEPS corresponds exactly
to the SU(2)1 conformal tower—consisting of half-integer
spin multiplets—associated to the WZW spin-1/2 primary
field and its descendants, but with an exact twofold degen-

eracy [44,48,49]. For the SU(3) spin- chiral PEPS, in the

topological sectors defined by imposing Q = ±1 Z3 charges
at the boundaries (stricly speaking, infinitely far away), three
chiral branches—instead of a single one—separated in mo-
mentum by 2π/3 are observed in the ES, whose level contents
follow the prediction of the Virasoro levels of the SU(3)1

WZW CFT [47]. Interestingly, both DMRG and PEPS show
the same number of states in each Virasoro level, namely N
times the WZW CFT content. These particular features of the
PEPS ansatz are now further tested in the case of the SU(4)
model in order to draw more general (empirical) statements

for SU(N) spin- chiral PEPS.

The ES, revealing the topological properties of the PEPS,
is computed by placing the optimized D = 15 (D∗ = 4) PEPS
on a width-4 infinite cylinder partitioned in two halves. The
PEPS holographic bulk-edge correspondence [47,82] enables
to compute the ES simply from the (fixed-point) environment
tensors. The four topological sectors are selected by impos-
ing a well-defined total Z4 charge Q at both ends (strictly
speaking at infinity) on the virtual levels. Following the as-
signment q1 = 0, q4 = 1, q4̄ = −1, and q6 = 2, we have Q =∑

qα mod[4], where the sum runs over the virtual open bonds
along the circumference at the boundaries. In practice, this is
performed by filtering out the components of the environment
tensors used to approximate each halves of the cylinder.

A necessary ingredient for identifying the linear dispersing
modes in ES is the momentum quantum number associated
with each energy level, which originates from the translation
invariance along the circumference of the cylinder. For that
purpose, we consider the momentum projection operator Pky :

Pky = 1

Ny

Ny−1∑
r=0

e−ikyrT r, (9)

where ky = 2π
Ny

Ky, Ky = 0, 1, 2, . . . , Ny − 1, and T is the
one-site translation operator acting on the virtual degrees
of freedom. Since T commutes with ρ, we can diagonalize
PkyρPky , whose nonzero eigenvalues are also eigenvalues of
ρ, and corresponding eigenstates carry momentum quantum
number ky, to obtain ES and momentum quantum number
simultaneously. In this setup, the action of translation operator
on ρ can be implemented as a permutation of indices of ρ.

In Fig. 12, the ES in the four topological sectors are shown
as a function of the momentum ky along the circumference.
For Q = 2, 0 and ±1, we identify one, two or four linearly
dispersing chiral branches, respectively. When two or four
branches are seen, the later are equally spaced in momentum,
i.e., by 2π/2 = π and by 2π/4 = π/2, respectively. Despite
the very small circumference (Nv = 4), for Q = 2 and 0 the
expected SU(4)1 counting of the first Virasoro levels is satis-
fied. For Q = ±1, due to limited resolution in K-space, the
states of the second Virasoro level of each branch are not
clearly separated from the continuum above. Although it is
difficult to draw definite conclusions on such a thin cylinder,
it seems that the SU(4) chiral PEPS reveals, as for the SU(2)
and SU(3) cases, a duplication of the chiral branches for most
topological sectors. In the SU(2) PEPS this was attributed to
the so-called “dressed mirror symmetry” within the virtual
degrees of freedom [83]. Note however that there is no exact
degeneracy in the N = 3 and N = 4 cases, in contrast to
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FIG. 12. Entanglement spectra on an infinitely long width-4 cylinder obtained from an SU(4) (D = 15) PEPS wave function optimized for
θ = π/4, φ = π/2 and environment dimension χ = 1350. Spectra are plotted vs perimeter momentum ky and, to better evidence their chiral
nature, the ky = −π/2 spectrum is replicated at ky = 3π/2. Appropriate Z4 charge boundaries Q = 2, 0 and ±1 are set up to select the 6 (a),
1 (b), and 4/4̄ [(c) and (d)] topological sectors, showing one, two and four branches, respectively. Note that the 4 and 4̄ spectra are identical
apart from an overall charge conjugation of all IRREPs (and small finite-χ numerical errors).

N = 2, so that the duplication of the chiral modes may have
a different origin here. In any case, as for the DMRG wave
function, the duplication of the chiral states in the PEPS is
linked to the fact that the ansatz is not a MES but, rather,
carry an extra entanglement due to its global singlet nature.
However, the manifestation in the ES is different in the two
cases.

C. Correlation lengths

It was proven that any short-range quadratic parent Hamil-
tonian for chiral noninteracting PEPS is gapless [84]. This
suggests that a fundamental obstruction or “no-go theorem”
may prevent to describe a gapped CSL phase with a 2D PEPS
(of finite bond dimension D). In fact, the PEPS optimized
for the N = 2 and N = 3 chiral Heisenberg models [47,48]
reveal rather long-range correlations and growing correlation
lengths with environment dimension χ . It is therefore of much
interest to also test this important feature in our SU(4) PEPS.
For that purpose, we have computed the leading correlation
lengths (associated to the leading correlations in the bulk of
the PEPS) from the leading eigenvalues of the transfer matrix

(TM) [44] (with no gauge “vison” flux). These correlation
lengths, plotted in Fig. 13, show no sign of saturation with
χ∗/D2∗, or equivalently with χ/D2 (D = 15)—at least the
three largest ones. The latter (shown in orange color) have
been obtained from the singlet eigenvalues of the TM and,
probably, correspond to dimer correlations. The next two
(shown in blue color) correspond to spinon correlations. We
note that all correlation lengths remain rather short, even for
the largest χ value. However, the data for N = 2, 3 and 4
clearly show that all correlation lengths are comparable at
the same value of χ/D2. For example, the dimer correlation
length ranges between 3.5 and 6 for χ/D2 = 6, weakly depen-
dent on N and on the model parameters. Since the PEPS bond
dimension increases significantly with N (D = 3, 7, 15 for
N = 2, 3, 4, respectively) the maximum achievable value of
χ/D2, and hence of the correlation lengths, decreases strongly
with N .

Note that in the SU(2) case, the diverging nature of the
correlation lengths was shown to be associated, not to a
conventional critical behavior but, rather, to the existence of
“long-range tails” (of very small weight) in most correlation
functions [48]. We believe such a property also holds for any
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FIG. 13. Leading correlation lengths obtained from the transfer
matrix (in the absence of gauge flux) for the case of SU(4) plotted
versus the number of multiplets χ∗ kept in the environmental tensors,
normalized by D2∗ = 26 which represents the number of multiplets
in the product space of D × D states with D fixed. The SU(4) IRREPs
associated to these correlation lengths are indicated.

SU(N) CSL, although it could not be established here for
N = 4 due to the large value of the bond dimension D.

V. CONCLUSION AND OUTLOOK

In this work, the previous family of SU(3) chiral Heisen-
berg models on the square lattice has been generalized to any
SU(N) fundamental IRREP as physical degrees of freedom.
The construction follows two steps: the first one consists in
building up the most general fully translational, rotational
and SU(N)-symmetric model (possibly breaking time-reversal
symmetry) whose interactions extend at most to three-sites
within the square plaquettes. In a second step, one restricts
to a subset of this model family whose Hamiltonians can be
written solely as a sum of S3-symmetric operators defined on
all the triangles within the square plaquettes. By doing so, we
expect to mimic some of the physics of the triangular lattice
with three-site chiral interactions, although keeping the full
C4v point group symmetry of the square lattice. This procedure
defines a sub-family of chiral Heisenberg models spanned by
two independent parameters (angles) that we have explored in
details.

Extensive ED computations bring overwhelming evidence
of extended regions of stability of SU(N) CSL phases for all
N , up to N = 10. The Abelian SU(N )1 topological nature of
these phases has been clearly established from the many-body
low-energy spectra of periodic (tori) and open (disks) clusters.
When the system size Ns is commensurate with N (so that no
anyons is present in the GS) a N-fold GS degeneracy is ob-
served on small tori as expected. When the commensurability
between Ns and N is such that a single quasihole populates
the GS, Ns quasidegenerate GS are found, as expected. Fi-
nally, chiral many-body low-energy spectra on open clusters
following WZW CFT counting rules provide an even more
stringent test of the existence of the SU(N )1 Abelian CSL.

iDMRG computations by enabling to access much larger
systems—typically infinitely long broad cylinders—provide
most valuable and complementary results for N = 2, 3, 4.
Gutwiller-projected parton wave functions offer a guide to
construct iDMRG ansatze in each topological sector. Due to
their SU(N) global singlet nature, the iDMRG wave functions
carry larger entanglement than MES (they can be seen as
linear combinations of MES, except in the trivial sector) and,
hence, show ES with more structure whose complete under-
standing has been fully provided.

Following the prescriptions for N = 2 and N = 3, we have
constructed a family of chiral SU(4)-symmetric PEPS and, un-
der optimization, a good variational PEPS ansatz is obtained
for the chiral SU(4) Heisenberg model. The entanglement
spectra obtained in the N = 4 topological sectors of an in-
finitely long cylinder reveal chiral modes. The multiplicity
of the chiral modes is attributed to the non-MES nature of
the singlet PEPS ansatz in most topological sectors. Finally,
growing correlation lengths with environment dimension are
consistent with the existence of “long-range tails” (of very
small weight) in correlation functions (evidenced explicitly
for N = 2 [48]). We speculate that these long-range tails
would fade away (i.e., their weights would continuously van-
ish) for increasing D, providing a more and more faithful
representation of the GS. If correct, this implies that the no-go
theorem [84] does not practically prevent an accurate chiral
PEPS representation of the topological gapped CSL phase.

We note that the SU(N) CSL is stable in some regime
where the three-site interaction is purely imaginary (corre-
sponding to φ = π/2), mostly studied here. In fact, this case
is relevant in ultracold atom systems which can realize an
SU(N) fermionic Hubbard model [27]. In the presence of
an artificial gauge field (providing complex amplitudes to
the effective hoppings), at 1/N filling (one particle per site),
the large-U Mott insulating phase [19,29,30] can be approx-
imately described by our Hamiltonian, so that an Abelian
SU(N) phase on the square lattice may be seen experimentally
if low-enough temperatures could be reached. Experimental
setups of ultracold atoms at other fractional fillings like k/N
(k ∈ N particles/per site) could be also of great interest and
be described by new types of SU(N) spin Hamiltonians, like
the two-fermion SU(4) model [85] with additional chiral in-
teractions on triangular units, opening the way to observe
non-Abelian CSL.
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APPENDIX A: ANALYSIS OF 2 × 2 PLAQUETTE

The focus of the present paper is on chiral spin liquids
which have the SU(N) flavor symmetry intact both locally
and globally. In particular, the ground state remains an SU(N)
singlet in the thermodynamic limit. This suggests that also the
low-energy regime of smaller clusters should have a singlet
ground state. If that is not possible by finite size, at least, one
may expect to have a ground state that is closest to a singlet in
the sense that they tend to prefer to fill up full columns in the
corresponding Young tableau (YT).

In this spirit, this Appendix analyzes the 2 × 2 plaquette as
an elementary unit of the Hamiltonian. The Hamiltonian (1)
on the full 2D square lattice can be rewritten as

H =
∑

p

Hp, (A1)

where Hp is the Hamiltonian for a single square plaquette p of
2 × 2 sites that combines all terms i, j, k ∈ p (in order to avoid
overcounting along the edge of the plaquette, we set J1 →
1
2 J1 for Hp, whereas J2, JR, and JI remain the same). Now
with Hp the combined set of local operators that can be used
to tile the entire 2D Hamiltonian, it is natural to analyze its
multiplet structure. Multiplets in Hp that are low in energy are
expected to be important in the low energy physics on the 2D
lattice itself, whereas multiplets of Hp at higher energies will
likely play a minor role. Clearly, the ground state multiplet
of Hp also may change when tuning the coupling parameters
{J1, J2, JR, JI}. This then may signal a qualitative change of
the overall low-energy behavior of the 2D system, e.g., a low-
order phase transition for similar coupling parameters.

The eigenspectrum of the 2 × 2 plaquette Hamiltonian Hp

is analyzed in Fig. 14 for N = 2, 3, 4, 5 in panels (a)–(d),
respectively. The SU(N) multiplet structure is fully resolved
as indicated with the legend. For the sake of the discussion
here, we use Dynkin labels in compact notation to identify
symmetry sectors where q ≡ (q1 . . . qN−1) directly specifies
to corresponding SU(N) YT via differential length offsets of
the number of boxes in subsequent rows of the YT (e.g., see
also Appendix A in Ref. [86]). For example, (10 . . . 0)N−1 is
the fundamental or defining representation also labeled as N in
the main text, and (10 . . . 01)N−1 is the adjoint representation.
The reverse order (qN−1 . . . q1) ≡ q̄ specifies the dual IRREP

FIG. 14. Eigenspectrum of a 2 × 2 cluster described by the pla-
quette Hamiltonian Hp in Eq. (A1) vs φ using the parametrization
in Eq. (2), with θ = π/4 fixed as in the main text [e.g., see Fig. 2].
To focus on energy per site, the energies are divided by the number
of sites Ns = 4 as indicated. (a)–(d) refer to case of N = 2, 3, 4, 5
symmetric flavors, respectively. Colors indicate symmetry sectors as
indicated with the legend based on Dynkin labels. The small numbers
on top of each line in panel (a) indicate the degeneracy of multiplets
which shows that the green line only is twofold degenerate. This also
holds for all data in the other panels.

to any q = (q1 . . . qN−1). For the case of SU(2), having a
single number (q1) only, the integer q1 simply counts the
total number of boxes in the YT, and thus corresponds to a
spin S ≡ q1/2 multiplet. Its adjoint is given by S = 1, i.e.,
multiplet q = (2).

a. General aspects of SU(N) permutation Hamiltonian

The Hamiltonian (1) and therefore also Hp above is defined
via simple permutations of flavors over two or three sites. A
direct consequence of this is, that all eigenenergies appearing
for SU(N) exactly also must appear for SU(N ′ > N), as can
be clearly observed in Fig. 14. The simple reason is that
adding additional flavors N ′ − N > 0 on top of all sites, the
Hamiltonian will not make any reference to these when ap-
plying it to a state that only contains up to the first N flavors.
The multiplet label needs to adapt, though. By using Dynkin
labels, this simply concatenates additional trailing numbers
qi. Considering a four-site plaquette here, these extra trailing
numbers must all be zero for N ′ > 4, as largely already also
observed for SU(4) itself [see legend in Fig. 14(d)]. With this
clearly also the degeneracy in terms of states within these
multiplets changes as required by the increased Hilbert space.
However the eigenenergies themselves remain exactly the
same. Therefore given a Hamiltonian that solely consists of
permutations of otherwise symmetric flavors, the many-body
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eigenspectrum for a given SU(N) is exactly inherited also to
all cases SU(N ′ > N). This is made explicit across the panels
in Fig. 14 by choosing matching color coding. For example,
what was a singlet in SU(2), i.e., the green line for q = (0),
becomes q = (02) for SU(3), and then q = (020 . . .) for larger
N still.

When increasing the number of flavors N → N ′ > N ,
however, also new eigenenergies can emerge that were previ-
ously absent. For example, in Fig. 14, this is seen as additional
lines that appear when going from N = 2 → 3 (yellow lines)
or N = 3 → 4 (blue line). Given a four-site plaquette with the
fundamental IRREP on each site, the number of lines will no
longer change for N ′ > 4, as seen by going from N = 4 → 5,
since all YTs with four boxes are already present.

b. Low-energy regimes

Now the analysis in Fig. 14 tracks the eigenvalues vs. φ

for fixed θ = π/4 similar to Fig. 2 in the main text. The red
line in Fig. 14 corresponds to the fully symmetric IRREP
q = (40 . . .)N−1 that is present for all N � 2. This multi-
plet crosses over and becomes the ground state for φ > π

for N � 4, and already earlier for N = 2 and N = 3. This
shows that the 2 × 2 plaquette becomes ferromagnetic around
φ � π [note that based on Eq. (2), φ > π corresponds to
negative, and hence ferromagnetic J1 and J2]. As such, this
signals the onset of ferrogmagnetism on the full 2D system,
also consistent with the analysis of the larger clusters in
Fig. 2.

Finally, with focus on a singlet ground state, on the given
four-site plaquette this can only be achieved exactly for N = 2
and N = 4. Interestingly then, the singlet for SU(2) [green
line in Fig. 14(a)] becomes a nonsinglet for N > 2, i.e., (02)
for SU(3), and (020 . . .) thereafter. Instead, an entirely new
singlet shows up for SU(4) in the low-energy regime, and re-
mains an eigenenergy for N � 4 (blue line). Therefore, while
in the case of SU(2) the singlet is favored for small φ ∈ [0, π ],
it is favored for larger φ ∈ [0, π ] for SU(4) and onward. What
comes closest to a singlet for SU(3) on the 2 × 2 plaquette,
on the other hand, is the multiplet (10), i.e., the fundamental
IRREP. Based on the fusion of the four fundamental IRREPs
on the 2 × 2 plaquette to start with, this already fused three of
these into a singlet. As seen by the yellow line in Fig. 14(b),
the multiplet (10) is the ground state for a wide range φ ∈
[0, π ], including small but excluding large φ where the system
becomes ferromagnetic. This is perfectly consistent with the
analysis on the larger cluster in Fig. 2(a) in the main text
which for N = 3 also shows the chiral phase extending all the
way down to φ = 0.

The chiral phase was identified in Fig. 2 with the gapped
phase around φ � π/2. However, when reducing φ, as seen
in Fig. 2 for N > 3, this gapped phase closes at finite φ. Even
more, for certain N it appears to reopen before approach-
ing φ = 0. Hence based on Fig. 2 having the chiral phase
identified with the regime of larger φ � π/2, this is entirely
consistent with the regime in the present analysis of the 2 × 2
plaquette where the system is (or tends towards becoming)
a singlet for N � 4 in Figs. 14(c) and 14(d). Note that for
N > 4, the blue line in Fig. 14(d) corresponds to the fully

antisymmetric multiplet where four boxes are stacked on top
of each other into a single column in the corresponding YT.

In the chiral regime φ � π/2, also the coupling strength
of the real three-site permutation term HR

i jk ≡ JR(Pi jk + P−1
i jk )

turns negative, i.e., having JR < 0. Its effect is revealed by
looking at the eigenvalues in the three-site eigenbasis for
given triangle triangle (i jk). One finds for N � 3 that the
completely symmetric multiplet (30 . . .) and the completely
antisymmetric multiplet (001 . . .) [equivalent to (00) for
SU(3)] are eigenstates to the same eigenvalue +2JR, whereas
the twofold degenerate multiplets (110 . . .) have eigenvalue
−JR (which are eventually differentiated by the complex term
JI ). Hence negative JR equally favors both, the completely
symmetric multiplet (ferromagnetic) as well as the completely
antisymmetric multiplet (antiferromagnetic) on any triangle.
When considering all triangles within a 2 × 2 plaquette as
analyzed in Fig. 14, the antiferromagnetic states dominate the
low energy regime, yet with the ferromagnetic regime in close
proximity (both, the blue and red lines move downward with
increasing φ for N � 4). Eventually, for φ > π when also
the two-site exchange couplings J1 and J2 turn negative, the
ferromagnetic state takes over.

APPENDIX B: GENERALIZED EXCLUSION PRINCIPLE
FOR ABELIAN SU(N) CSL

We provide here complementary details about the heuris-
tics on the content (degeneracy, quantum numbers, etc.) of the
GS manifold within the CSL phase on small periodic clusters
(of torus geometry).

As realized already for N = 3 in Ref. [47], it is possible
to obtain, for arbitrary N , the exact momenta of the various
states in the GS manifold expected for an Abelian SU(N )1

CSL. This can be inferred from a simple generalized exclu-
sion principle (GEP) known for FQH states [55] or fractional
Chern insulators [56] with clustering properties.

For our SU(N) model in the fundamental representation,
there are N states per site which can be viewed as a color
degree of freedom. The mapping to a bosonic FQH requires
to treat them separately: one (arbitrarily chosen) color will
correspond to a hole while the remaining C = N − 1 will
correspond to spinful SU(C) bosons. Hence, Abelian bosonic
FQH states can be constructed at a filling νFQH = C/(C +
1) = (N − 1)/N , corresponding to Halperin states [87–89].
In this terminology, the ground states and quasihole states
is given by the number of dressed partitions (1, 2)C , see
Ref. [56]. Moreover, the respective momenta can be obtained
from the mapping between Ns orbitals obtained when folding
the Brillouin zone [90,91].

To be more specific, let us consider for instance N =
3 which maps onto C = 2 bosons, i.e., spin-1/2 particles.
Then, the generalized exclusion principle for the ground-
states (for Ns = kN) enforces the occupations (↓,↑, 0, . . .)
and its translations, i.e., 3 states. This (1, 2)2 exclusion rule
simply enforces that identical particles cannot be neighbors
but a ↓ particle can be followed by a ↑ particle. Such rules
can be rephrased in terms of follow-up rules in the string of
states, e.g., 0 → (0,↓,↑), ↑→ 0, ↓→ (0,↑), which defines
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a “transfer matrix,”

T (N=3) =
⎡⎣1 1 1

1 0 1
1 0 0

⎤⎦, (B1)

for N = 3.
The transfer matrix above is easy to generalize to any N ,

with 1’s in the first column and above the diagonal and zeros
otherwise. For example, one gets

T (N=5) =

⎡⎢⎢⎢⎣
1 1 1 1 1
1 0 1 1 1
1 0 0 1 1
1 0 0 0 1
1 0 0 0 0

⎤⎥⎥⎥⎦, (B2)

for N = 5. Note that, in addition to the rules encoded in the
transfer matrix (which alone produce a large number of irrele-
vant configurations), one should also simultaneously enforce a
global property relating the total appearance of all colors such
that the GS belong to the SU(N) IRREP of smallest possi-
ble dimension compatible with system size. More precisely,
defining the integer r0 = mod(Ns, N ), the smallest possible
IRREP corresponds to the antisymmetric IRREP with a Young
diagram of r0 vertical boxes (labeled in the text aIRN (r0)),
and, heuristically, is to be associated to the GS manifold. For
instance for Ns = kN , all colors should appear exactly k times,
i.e., c1 = c2 = · · · = cN = k, as the singlet character of the
GS manifold implies.

For Ns = kN − 1, k ∈ N, we expect the low-energy states
to represent the quasihole excitations, similar to the quasihole
Laughlin states when inserting a flux in a fractional quantum
Hall state on a torus. In particular, the quasihole counting on a
finite cluster should be the same as in the thermodynamic limit
and is given by a generalized Haldane exclusion principle
[90,91]. Moreover, the lattice momenta at which these (quasi)
degenerate states sit can be obtained using a heuristic rule
by folding the two-dimensional Brillouin zone into a one-
dimensional lattice of orbitals [90]. For instance, for all the
quasihole examples shown in Fig. 4, since GCD(N, Ns)=1,
we expect to find one low-energy SU(N) multiplet at each
momentum (i.e., a total number of quasihole states equal to
NNs), which is exactly what is found numerically.

When Ns = kN , we expect N-fold quasidegenerate ground
states on a torus. The momenta are given using a similar
heuristic rule and are nontrivial. For completeness, here are
the predictions corresponding to the values shown in Fig. 4
(see the Brillouin zones as insets for the momenta notations):
(i) N = 4 and Ns = 20: one state at momentum 	, M and
twofold degenerate X; (ii) N = 5 and Ns = 15: one state at
momentum 	, ±�0, ±�2; (iii) N = 6 and Ns = 12: one state
at momentum 	, Z1, ±�, Z0, �; and (iv) N = 7 and Ns = 14:
one state at momentum 	, ±0, ±2, ±5. All these predictions
are verified numerically, and the low-energy states are always
well separated from the higher excited ones as expected in this
topological incompressible gapped phase.

APPENDIX C: WZW SU(N)1 CHIRAL TOWERS OF STATES

We provide here an almost self-contained explanation of
the Hilbert-space structure of the SU(N) WZW CFT and

derive the SU(N )1 WZW towers of states for N = 2 to 8,
which are to be compared with the ED results for SU(N)
open clusters investigated and discussed in the main text.
This Appendix is organized as follow. In the first part, we
recall some basic facts on su(N ) Lie algebra and its repre-
sentation theory (see Ref. [92] for a readable introduction to
Lie algebras and their representation). In a second part, we
briefly present the affine extension of SU(N) and introduce the
primary states on which the Hilbert space is constructed. Most
of the equations presented in the first two parts are relevant to
any (affine) Lie algebras unless otherwise stated. In the last
part, we explain how WZW SU(N )1 chiral towers of states
for open clusters can be computed using this formalism. The
Appendix closes with the tables showing the explicit form
of the towers of states relevant for the present study, up to
SU(8). This Appendix in not intended to give a mathematical
presentation of the field but rather to introduce, without any
mathematical proof, the basic tools needed to identify the
expected representations in WZW SU(N )1 chiral towers of
states.

1. su(N) Lie algebra

Group, Generators. The special unitary group SU(N) is
the Lie group of N × N unitary matrices with determinant 1.
The Lie algebra su(N ) associated to the Lie group SU(N) is
determined by a set of N2 − 1 traceless hermitian generators
Jα satisfying the commutation relations,

[Jα, Jβ ] = i fαβγ Jγ , (C1)

where the real fully antisymmetric tensor f encodes the struc-
ture constants. Equation (C1) is a direct consequence of the
group structure of SU(N) and the fact that the Lie group and
the Lie algebra are related by the exponential map which
associate to any element J of su(N ) an element exp(itJ ) of
SU(N).

Cartan Weyl basis, Adjoint representation, roots. The
maximal subset {Hi}i=1,...,r of su(N ) composed of commut-
ing generators [Hi, H j] = 0 forms the Cartan subalgebra of
su(N ) and plays the role of Sz in su(2). Obviously, since all
Hi can be diagonalized simultaneously, the rank r of su(N )
is N − 1, which is equal to the maximal number of traceless
diagonal N × N matrices. As {Hi} can be simultaneously di-
agonalized, we can choose the basis vectors in any irreducible
representation to be the eigenstates |μ〉 of Hi:

Hi|μ〉 = μi|μ〉. (C2)

The (N − 1)-dimensional vector μ = (μ1, . . . , μN−1) is
called the weight. The remaining N (N − 1) off-diagonal gen-
erators will be denoted as Eα.

To each generator Jα , we can associate a linear map adJ

from su(N ) to itself defined as adJ (X ) = [J, X ] for any X in
su(N ). This defines the adjoint representation which can be
used to classify the generators Eα as eigenvectors of adHi :

adHi (Eα) = [Hi, Eα] = αiE
α (i = 1, . . . , N − 1). (C3)

The (N − 1)-dimensional vectors α = (α1, . . . , αN−1) are
called the roots and Eα, which play the role of S±, the lad-
der operators. The Cartan-Weyl basis is {Hi, Eα}i∈{ 1,...,r},α∈�

where � denotes the set of all N (N − 1) roots. Obviously,
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only r = N − 1 roots are linearly independent. An important
remark is the nondegeneracy of roots. Indeed, the existence of
a degenerate root would contradict the definition of the Cartan
subalgebra (maximal set of commuting generators).

It is clear from Eq. (C3) that there is some arbitrariness in
the determination of Eα and α as both depend on the choice
of a particular basis for the Cartan subalgebra. Nevertheless,
some general properties can be established. Once the basis of
r = N − 1 linearly independent roots is fixed, one can expand
any root in this basis. Roots with positive coefficients in this
expansion are called positive and form the set �+. A root α(i)

(i = 1, . . . , r) that cannot be expressed as an integer sum of
two positive roots is by definition a simple root.

The central role of such r = N − 1 simple roots not only
lies in the fact they provide a convenient basis for roots but
also because the (N − 1) × (N − 1) matrix A of the scalar
products of simple roots (the Cartan matrix) completely en-
code the Lie algebra:

Ai j = 2α(i).α( j)

α( j).α( j)
= α(i).α( j)∨, (C4)

with α(i)∨ = 2α(i)/|α(i)|2 (coroots). The entries of this matrix
are always integers and, in the su(N ) case, A is symmetric
and take the form Ai j = 2δi j − δ|i− j|,1. For su(N ) in which all
the N (N − 1) roots have equal length (i.e., simply laced), it
is convenient to choose |α(i)| = √

2 so that we do not need
to distinguish between the roots and the coroots. The lattice
spanned by the r = N − 1 basis vectors α(i) (α(i)∨) is called
the root lattice �r(su(N )) [the coroot lattice �∨

r (su(N ))].
Fundamental weights. From the set of simple roots {α(i)},

we can introduce its dual, i.e., the fundamental weights ω(i)

satisfying

α(i)∨·ω( j) = δi
j, (C5)

which can be used as the basis of the weights (Dynkin basis):

μ =
N−1∑
i=1

d (μ)i ω( j). (C6)

The coordinates d (μ)i in this basis is called Dynkin labels.
The lattice spanned by the basis {ω(i)} is called the weight
lattice�w(su(N )) (see Fig. 15). The relation between the co-
root lattice �∨

r (su(N )) and the weight lattice �w(su(N )) is
analogous to that between the lattices in the real space and the
reciprocal space. Any irreducible representation R of su(N )
is specified by its highest weight λR or its Dynkin labels
{d (R)i}

λR =
r∑

i=1

d (R)iω( j) (di ∈ Z, di � 0) (C7)

and, by applying the lowering operators E−α (α ∈ �+), we
can construct the corresponding irreducible representation
[see Fig. 16 for su(3) examples]. In su(N ), the representation
specified by (d1, d2, · · · , dN−1) has a Young diagram with
d1 columns with length 1, d2 columns with length 2, · · · ,
and dN−1 columns with length N − 1. For example, the fun-
damental representations are always specified by the Dynkin

FIG. 15. The (co)root lattice �r(g) (black circles) and and the
weight lattice �w(g) (red circles) of g = su(3). The root (weight)
lattice is an integer span of two simple (co)roots α(1) and α(2) (two
fundamental weights ω(1) and ω(2)). In su(3), ω(1) and ω(2) respec-
tively correspond to the highest weights of 3 and 3̄.

labels {d (R)i} in which only one of di is 1 and the others are
zero.

2. Affine Lie Algebras and Wess-Zumino-Witten model

The affine Lie algebras are characterized by the following
commutation relations which generalize (C1):[

Jα
n , Jβ

m

] = i fαβγ Jγ
n+m + k̃nδm+n,0δ

αβ (C8)

hws

hws

FIG. 16. Weights of 6 and 10-dimensional representations of
su(3). The representations 6 and 10 have highest weights (shown as
“hws”) with Dynkin labels (d1, d2) = (2, 0) and (3,0), respectively.
Red (blue) arrows show the action of the roots (“lowering operators”)
−α(1) (−α(2)) to the weights (see Fig. 15 for the definitions of α(1,2)).
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(see, e.g., Refs. [46,93] for physicist-friendly reviews of affine
Lie algebras). Physically, (C8) is the algebra of the Fourier
modes of the local SU(N) currents {Jα (x)} satisfying:

[Jα (x), Jβ (y)] = i f αβγ Jγ (y)δ(x − y) + i

2π
k̃ δαβ ∂xδ(x − y),

Jα (x) = 1

L

∑
n∈Z

e−i 2π
L nx Jα

n . (C9)

The above are anomalous in that the right-hand side contains
the central term [which is proportional to δ′(x)] on top of the
term expected from the Lie algebra. Obviously, the coefficient
k̃ of the central term depends on the normalization of Jα

n and
it is convenient to introduce the normalization-independent
integer k called the level of the affine Lie algebra by

k̃ = |θ|2
2

k,

where |θ| is the length of the highest root (the quantization
of k follows, e.g., from the consistency of the path-integral
representation of the WZW model). The |θ| depends on the
normalization of the generators and, in su(N ), a convenient
choice is to normalize the N-dimensional hermitian generators
{Jα} as Tr(JαJβ ) = δαβ which amounts to setting |θ| = √

2.
Then, we do not have to distinguish between the coefficient
k̃ of the central term and the level k (∈ Z). The special case
m = n = 0 of (C8) reduces to (C1), which means that the
zero modes {Jα

0 } form the usual su(N ) Lie algebra (called the
horizontal subalgebra).

As a class of CFT with Lie-algebra symmetry, the WZW
CFT has the Virasoro generators {Ln} which are bilinear in Jα

n
(Sugawara form) [93,94]:

Ln = 1

|θ|2(g∨ + k)

∑
α

∑
m∈Z

: Jα
mJα

n−m :, (C10)

where the normal-ordering : · · · : is defined by

:Jα
mJα

n : =
{

Jα
mJα

n when m < 0

Jα
n Jα

m when m � 0
.

The number g∨ (the dual Coxter number), which is peculiar
to a given Lie algebra, is given by the structure constants as
− f αβμ f αμγ = |θ|2g∨δβγ and is equal to N in su(N ). By a
direct calculation, we can show that the above {Ln} satisfy the
Virasoro algebra

[Lm, Ln] = (m − n)Lm+n + 1
12 c(g, k)m(m2 − 1)δm+n,0

(C11)
with the central charge given by

c(g, k) = k dim(g)

k + g∨ (k = 1, 2, . . .), (C12)

which, for su(N ), reads

c(su(N ), k) = k(N2 − 1)

N + k
. (C13)

On top of Eq. (C11), {Ln} satisfy the following commutation
relations with the generators {Jα

n }:[
Lm, Jα

n

] = −nJα
m+n. (C14)

In particular, [
L0, Jα

n

] = −nJα
n ,

[
L0, Jα

0

] = 0 (C15)

implies that not only L−n (n > 0) but also Jα
−n increase the

eigenvalue of L0 and that for each eigenvalue of L0 (i.e., for
each level of conformal towers) we have a reducible represen-
tation of su(N ) (formed by {Jα

0 }).
In CFTs with extended symmetries, it is convenient to

define the primary states |φ〉 as those annihilated by all Jα
n

with positive n:

Jα
n |φ〉 = 0 (n > 0). (C16)

Then, from (C10), |φ〉 automatically satisfy the primary con-
dition with respect to the Virasoro algebra [the converse is not
true; in that sense, (C16) is stronger than (C17)]:

Ln|φ〉 = 0 (n > 0),

L0|φ〉 = 1

|θ|2(g∨ + k)

∑
α

Jα
0 Jα

0 |φ〉

= 1

|θ|2(g∨ + k)
C2|φ〉 = hφ|φ〉, (C17)

where Jα
φ is a matrix representation of Jα and C2 is the

quadratic Casimir of su(N ). All these mean that the primary
states of the WZW model transform under the irreducible
representations R of the ordinary su(N ) spanned by the subset
{Jα

0 }:

|φ〉 = |R; μ(R)〉 (μ(R) : weights of R),

Jα
0 |R; μ(R)〉 = −Jα (R)|R; μ(R)〉

× [Jα (R) : Jα in representation R], (C18)

and that the conformal weights hφ are given essentially by the
quadratic Casimir C2 of R:

h(R) = C2(R)

|θ|2(g∨ + k)
(g∨ = N for su(N )). (C19)

As in other CFTs, these are the lowest states in a given R-
sector and the higher-lying states are generated by applying
Jα
−n (n > 0).

There is a selection rule about the allowed R for a given
level k, which, in terms of the Dynkin labels (d1, . . . , dr ) [see
Eq. (C7)], reads for su(N )

N−1∑
i=1

d (R)i � k. (C20)

In the level-1 (k = 1) SU(N) WZW model which is rel-
evant in this paper, only the vacuum [1; SU(N)-singlet
with d = (0, . . . , 0)] and the N − 1 antisymmetric repre-
sentations aIRN (r0) [rank-r0 antisymmetric tensor with d =
(0, . . . , 0, 1︸︷︷︸

r0

, 0, . . . , 0); r0 = 1, . . . , N − 1] in Sec. II C are
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allowed for primary states:

C2

⎛⎝r0

⎧⎨⎩
⎞⎠ = N + 1

2N
r0(N − r0)|θ|2,

h

⎛⎝r0

⎧⎨⎩
⎞⎠ = 1

2N
r0(N − r0) (r0 = 0, . . . , N − 1).

(C21)

These N different primary states (fields) correspond to N
topologically degenerate ground states of SU(N )1 CSL on a
torus. For the selection rule for general g, see, e.g., Sec. 3.4 of
Ref. [93].

3. Finite-size spectrum

For the clarity of the explanation, we assume g = su(N )
and normalize the generator as |θ| = √

2 in this section. In this
normalization, the coefficient k̃ of the central term is equal to
the level k, and C2 is given simply by

C2(R) =
N−1∑
i, j=1

(d(R) + e)i(A
−1)i j (d(R) + e) j − 1

12
N (N2− 1),

e ≡ (1, 1, . . . , 1)︸ ︷︷ ︸
N−1

, (C22)

where the matrix A is the Cartan matrix defined in (C4)
and d(R) is the Dynkin labels that characterizes the highest
weight λR of the representation R by Eq. (C7). When we
normalize the N-dimensional generators as Tr(JαJβ ) = κδαβ ,
we need to multiply the right-hand side by κ .

The Hamiltonian of the chiral CFT is given by [46,95]

Hchiral = 2π

l
v
(

L0 − c

24

)
(l : system size), (C23)

where v is the velocity parameter of the system. As L0 and c in
the level-k SU(N) WZW CFT are given respectively by (C10)
and (C13), we obtain

Hsu(N )
chiral = 2πv

l

1

2(N + k)

∑
α∈SU(N)

{
Jα

0 Jα
0 + 2

∞∑
n=1

Jα
−nJα

n

}

− πv

12l

(N2 − 1)k

N + k
. (C24)

The results in the previous section show that the Hilbert space
in the sector specified by an irreducible representation R
of su(N ) [R obeys the selection rule (C20)] consists of the
ground (lowest) states with energy

2πv

l

C2(R)

2(N + k)
− πv

12l

(N2 − 1)k

N + k

and the equally spaced excited states (with the level spacing
2π/l). All these states are labeled by the eigenvalues of L0

(energy) and {H1
0 , . . . , HN−1

0 } (weight μ of horizontal subal-
gebra {Jα

0 }). As the action of the su(N )-generators Jα
0 does

not change the value of L0 (i.e., energy) [see Eq. (C15)],
each excited level decomposes into a direct sum of several
irreducible representations of su(N ) (Tables IV–XXV shown
below give such decompositions).

TABLE IV. SU(2)1 WZW model-tower of states starting from
1•.

There is a compact way of encoding the information on
the structure (i..e., energy, degeneracy, and the Lie-algebraic
structure) of the Hilbert space of the WZW CFT. Consider the
finite-temperature (T ) partition function of the system:

Z = TrR e− 2π
T l v(L0− c

24 ) = q− c
24 TrR qL0 ≡ ZR(q)

× (q ≡ e− 2π
T l v ), (C25)

where the subscript R means that the trace is taken over all
the excited states within the R-sector. Since L0 takes values
h(R) + N (with N being non-negative integers), if we expand
ZR(q) in a power-series

ZR(q) = qh(R)− c
24

∞∑
N=0

D(N )qN , (C26)

it immediately gives the degeneracy D(N ) of the N th excited
state.

In order to know the Lie-algebraic structure, it is conve-
nient to introduce the “fugacities” {zi} for the weight and

TABLE V. SU(2)1 WZW model-tower of states starting from
2

.
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TABLE VI. SU(3)1 WZW model-tower of states starting from
1•.

consider the following generalized partition function:

Z̃R(q; {zi}) = q− c
24 TrR

{
qL0

N−1∏
i=1

z
Hi

0
i

}
, (C27)

where
∏

i is over all the N − 1 Cartan generators {Hi
0} of the

su(N ) subalgebra {Jα
0 }. Now the coefficient of qN+h(R)− c

24 is
a polynomial of zμ1

1 zμ2
2 · · · zμN−1

N−1 that gives the multiplicity of

TABLE VII. SU(3)1 WZW model—tower of states starting from
3

(respectively

3̄

by conjugation of all IRREPs).
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TABLE VIII. SU(4)1 WZW model—tower of states starting

from
1•.

the weight μ in the N th excited level. In fact, the generalized
partition function Z̃R(T, L) is nothing but the character of the
affine Lie algebra and its expression using the generalized
theta function is known explicitly (see, e.g., section 14.4 of
Ref. [46] for more details). Tables IV–XXV, which show
the contents of irreducible representations appearing at the
excited levels of a given R sector, are obtained in this manner.
For example, Tables V shows the structure of the Hilbert space
of the level-1 SU(2) WZW CFT in the sector of spin-1/2
representation [h( j = 1/2) = 1/4] and “Order” denotes qL0 .
The degeneracy 2 of the first entry (q1/4) is a direct conse-
quence of the doublet level (primary states) constitutes the
j = 1/2 representation of su(2). The third entry from the top
implies that the second excited level (q9/4 = q1/4+2) is sixfold

degenerate and decomposes into one j = 1/2 ( ) and one

TABLE IX. SU(4)1 WZW model—tower of states starting from

4

(respectively

4

by conjugation of all IRREPs).

TABLE X. SU(4)1 WZW model—tower of states starting from

6

.

TABLE XI. SU(5)1 WZW model—tower of states starting from
1•.

TABLE XII. SU(5)1 WZW model—tower of states starting from

5

(respectively

5

by conjugation of all IRREPs).
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TABLE XIII. SU(5)1 WZW model—tower of states starting

from

10

(respectively

10

by conjugation of all IRREPs).

j = 3/2 ( ) representations:

2( ) ⊕ 4( ).

For level-1 su(N ) WZW CFT (for level-1 simply laced g,
in general), there is a simple way of constructing the Hilbert
space in terms of N − 1 (i.e., rank-g) free bosons (Frenkel-
Kac construction). First we note that the central charge (C13)
of level-1 (k = 1) su(N ) WZW CFT is c = N − 1, which
clearly suggests its close relation to a system of N − 1 free
bosons. Below, we quickly sketch how we derive the partition
function of the SU(N )1 WZW CFT. To begin with, we prepare
a set of N − 1 bosons φi(z) (i = 1, . . . , N − 1) which are
normalized as

〈φi(z)φ j (w)〉 ∼ −δi j ln(z − w). (C28)

TABLE XIV. SU(6)1 WZW model—tower of states starting from
1•.

TABLE XV. SU(6)1 WZW model—tower of states starting from

6

(respectively

6

by conjugation of all IRREPs.

The key properties of these bosons are the following operator-
product expansions (OPE) [46,95]:

∂zφi(z)∂wφ j (w) ∼ −δi j

(z − w)2
,

∂zφi(z):eiv·φ(w): = ∂zφi(z):ei
∑

j v jφ j (w): ∼ −ivi

z − w
:eiv·φ(w):,

T (z):eiv·φ(w): = −1

2

N−1∑
i=1

: (∂zφi(z))2:eiv·φ(w):

TABLE XVI. SU(6)1 WZW model—tower of states starting

from

15

(respectively

15

by conjugation of all IRREPs).
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TABLE XVII. SU(7)1 WZW model—tower of states starting

from
1•.

∼ v2/2

(z − w)2
:eiv·φ(w):

+ 1

z − w
∂w:eiv·φ(w): + · · · , (C29)

where v = (v1, . . . , vN−1) and φ = (φ1, . . . , φN−1). There-
fore, if we identify

Hi(z) = i∂zφi(z), Eα(z) = :eiα·φ(w): (C30)

TABLE XVIII. SU(7)1 WZW model—tower of states starting

from
7

(respectively

7

by conjugation of all IRREPs).

TABLE XIX. SU(7)1 WZW model—tower of states starting

from

21

(respectively

21

by conjugation of all IRREPs).

(all the roots α have the length |α| = √
2), they satisfy the

OPEs expected for the generators of k = 1 su(N ) (with
scaling dimension 1) [46,93]:

Hi(z)H j (w) ∼ δi j

(z − w)2
,

Hi(z)Eα(w) ∼ αi

z − w
Eα(w),

Eα(z)Eβ(w) ∼ (z − w)α·βEα+β(w)

+ i(z − w)α·β+1α·∂wφ(w)Eα+β(w) (C31)

[in su(N ) with |α| = √
2, α·β = −1 when α + β is a root and

α �= −β, and α·β = −2 when α = −β]. This suggests that
we can construct the Hilbert space of the k = 1 SU(N) WZW
CFT by applying Hi(z) = i∂zφi(z) (i = 1, . . . , N − 1) repeat-
edly to the bosonic primary states |μ〉 ≡ |μ1, . . . , μN−1〉 =:
eiμ·φ(0) : |0〉 [with μ being the weights of su(N ) ], that has
the eigenvalue L0|μ〉 = μ2/2|μ〉. The summation over all the
possible excited states (with the mode En = (2π/l )n being
occupied with Nn bosons) of the ith linearly dispersive boson
above the primary state |μ〉 yields the partial partition function

e− 2πv
T l

1
2 μ2

i zμi
i

∞∏
n=1

{ ∞∑
Nn=0

e− 2πv
T l nNn

}
= q

1
2 μ2

i zμi
i /

∞∏
n=1

(1 − qn),

which is to be combined together for all N − 1 bosons yield-
ing q

1
2 μ2 ∏N−1

i=1 zμi
i

∏∞
n=1(1 − qn)N−1. As the application of the

other generators Eα(z) changes the “weight” of the primary
states as |μ〉 → |μ + α〉, all these bosonic conformal towers
specified by weights μ that are related to each other by trans-
lation by α must be regarded as belonging to the same WZW
conformal tower. In su(3), for instance, the weights μ on the
root lattice all together constitute a single WZW tower of the
identity representation 1 (see Fig. 15). Summing up the partial
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TABLE XX. SU(7)1 WZW model—tower of states starting from

35

(respectively

35

by conjugation of all IRREPs).

partition functions for those “equivalent” μ, we obtain the
partition function of k = 1 SU(N) WZW CFT (see Sec. 15.6
of Ref. [46] for more details):

Z̃R(q; {zi}) ≡ q− N−1
24∏∞

n=1(1 − qn)N−1

TABLE XXI. SU(8)1 WZW model—tower of states starting

from
1•.

×
{ ∑

μ∈λR+�r

q
1
2 μ2

(
N−1∏
i=1

zμi
i

)}
, (C32)

where λR is the highest weight of the representation R and
the summation is taken over all the points μ of the weight
lattice �w which are equivalent to λR modulo the root lattice

TABLE XXII. SU(8)1 WZW model—tower of states starting

from
8

(respectively

8̄

by conjugation of all IRREPs).
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TABLE XXIII. SU(8)1 WZW model—tower of states starting

from

28

(respectively

28

by conjugation of all IRREPs).

�r spanned by the simple roots {α(i)}. Since such μ are given
explicitly as

μ = λR +
N−1∑
i=1

niα
(i), (C33)

we can trade the sum over μ ∈ λR + �r with that over the
N − 1 integers {ni}. By construction, the representations R
allowed as primary in the SU(N )1 WZW CFT, which is

TABLE XXIV. SU(8)1 WZW model—tower of states starting

from

56

(respectively

56

by conjugation of all IRREPs).

TABLE XXV. SU(8)1 WZW model—tower of states starting

from

70

.

relevant in this paper, are restricted to the points of �w within
the unit cell of �r. As all those R have the Dynkin labels∑N−1

i=1 d (R)i = 0, 1, this selection rule is consistent with the
general one (C20). For instance, in order to obtain the partition

function for R = 3 ( ) of su(3), we sum over all the red
points in Fig. 15 connected to the point ω(1) (i.e., the highest
weight of 3) by the translation generated by two simple roots
α(1) and α(2) (red and blue arrows, respectively); the three
inequivalent points in the hatched “unit cell” correspond to the
three primary fields φ1 (singlet vacuum), φ3, and φ3 allowed
in level-1 su(3).

APPENDIX D: NOTES ON FINITE SIZE EFFECTS
IN ED OF PERIODIC CLUSTERS

1. Antisymmetric vs completely symmetric IRREPS

In the range φ ∈ [0, π ], both J1 and J2 couplings are
antiferromagnetic but the amplitude JR of the (real) three-
site permutation changes sign, from positive to negative,
at φ = π/2. Although a negative JR equally favors both,
the completely symmetric multiplet (ferromagnetic) as well
as the completely antisymmetric multiplet on any triangle
(see Appendix A), on finite (periodic) clusters (with Ns >

N), it strongly favors the ferromagnetic state with respect
to the antisymmetric (antiferromagnetic) states of aIRN (r0).
In fact, a three-site permutation on a triangle with JR < 0
cannot accommodate the complicated sign structure of an-
tiferromagnetic states. Note also that the energy difference
is macroscopic, in the sense that it scales with the number
of sites Ns. At φ = π/2 where JR vanishes and the antifer-
romagnetic couplings J1 and J2 are finite, we observe the
reverse, namely, a macroscopic energy penalty for the fer-
romagnetic state with respect to the antiferromagnetic states.
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TABLE XXVI. SU(3)1 WZW model—the direct product of the conformal tower of the
3

primary (left: see Table VII in Appendix C)

with

3̄

gives a new tower (right) with a tripling of the number of states in each Virasoro level indexed by L0.

This is clearly evidenced in Fig. 17, showing the energy dif-
ference Ea(Ns) − EF (Ns) versus Ns, for θ = π/4, and N =
4 and N = 8. Then, one can argue that a transition from
a spin liquid phase (or several spin liquid phases) and the
ferromagnetic phase should occur between φ = π/2 and
φ = π .

2. Finite size effects in low-energy spectra

As seen in Appendix A, for a given system size Ns (mul-
tiple of N), the spectrum of the SU(N) model includes all
SU(N ′) spectra, N ′ < N . In the frustrated antiferromagnetic
regime where a SU(N) chiral spin liquid (or a singlet cluster
state) is expected, SU(M) singlets (forming a higher quadratic

TABLE XXVII. SU(4)1 WZW model—the direct product of the conformal tower of the
4

primary (left: see Table IX in Appendix C)

with

4̄

gives a new tower (right) with a quadrupling of the number of states in each Virasoro level indexed by L0.
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TABLE XXVIII. SU(4)1 WZW model—the direct product of the conformal tower of the

6

primary (left: see Table X in Appendix C)

with

6

gives a new tower (right) with a multiplicative factor 6 of the number of states in each Virasoro level indexed by m.

Casimir SU(N) IRREP), M < N also divider of Ns, may com-
pete with the expected SU(N) singlet GS of the SU(N) model.
We have observed this effect in Fig. 2 for N = 8, 9, 10 (with
Ns = 16, 18, 20 and M = 4, 6, 5, respectively) for θ = π/4
and small φ. For instance, for Ns = 16 and N = 8, the high
Casimir IRREP [44440000] has energy given by Fig. 2(c)
which is smaller at φ = 0 than the one of the SU(8) singlet
subspace in Fig. 2(g).

Here we argue that such a behavior is in fact a finite size
effect occuring when Ns < N2. To illustrate it we compare
in Fig. 18 the low-energy spectra of the N = 4 model at
θ = π/4, versus φ, on 8-site and 16-site clusters. For Ns = 8,
we observe that the lowest energies of the SU(4) singlets
and those of the higher Casimir IRREP [4400] (also SU(2)
singlets) are comparable. In contrast, for Ns = 16, a clear

FIG. 17. Energy difference between the ground state of the
antisymmetric IRREP aIRN (r0) and the completely symmetric (fer-
romagnetic) state for θ = π/4, N = 4 (red) and N = 8 (blue), φ =
π/2 (filled symbols) and φ = π (open symbols). In all cases, the
energy difference scales approximately linearly with Ns, revealing a
macroscopic energy difference.

energy separation is seen between the lowest energy states of
the higher Casimir [8800] IRREP (also SU(2) singlets) and
the lowest SU(4) singlets.

APPENDIX E: DETAILS ON MPO-MPS
IMPLEMENTATION

This section describes how to cast a Slater determinant,
|�〉 = ∏

k,σ d†
kσ

|0〉, into an MPS with conserved spin sym-
metry. We elaborate our implementation for N = 2; the
generalization to larger N is straightforward. For spin-1/2
fermions, the standard approach to express a single-particle

FIG. 18. Low-energy spectra of the SU(4) model computed on
8-site (a) and 16-site (b) periodic clusters at θ = π/4, plotted vs φ.
A few of the lowest energies of the SU(4) singlet subspace are shown
(in blue) on both panels as well as the lowest energy (in red) within
the subspace of the higher Casimir [4400] (or 105) (a) and [8800] (or
825’) (b) IRREPs, which can also be viewed as SU(2) singlets. Other
lowest-energy excitations are also shown for completeness.
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(-1/2,0,1/2)

(-1/2,0,1/2)

(0)(0)

(-1/2,0,1/2)

(-1/2,0,1/2)

(1/2,-1/2)(1/2,-1/2)

(1/2)

(0)

(0)(-1/2)

(-1/2)

(0)

(0)(1/2)

FIG. 19. Graphical representation of MPO matrix elements with
U(1) spin symmetry for spin-1/2 fermions. Numbers in brackets
indicate the possible values of Sz quantum numbers, 0, −1/2 and
1/2 representing the |〉, |↓〉 and |↑〉 at each physical site, respectively.
Double occupancy, |↑↓〉, is excluded.

operator d†
kσ

is to map the L-site spinful fermions onto a
2L-site pseudospin-1/2 chain using the Jordan–Wigner trans-
formation [63,96,97], namely,

c†
�,↑ → σ z

1 · · · σ z
2�−2σ

+
2�−1,

c†
�,↓ → σ z

1 · · · σ z
2�−2σ

z
2�−1σ

+
2�. (E1)

And, d†
kσ

= ∑
m,n Am,n(k)c†

m,n,σ = ∑
� Ãkσ,�c†

�σ can be read as
an MPO acting on the spin-1/2 chain

d†
kσ

= (0 1)

[
2L∏
�=1

(
1� 0

Ãkσ,�σ
+
� σ z

�

)](
1
0

)
. (E2)

For our purpose, we would like to block 2� − 1 and 2� sites
together, which leads to

d†
kσ

= (0 1)

[
L∏

j=1

(
12 j−1 ⊗ 12 j 0

Ãkσ,2 j−1σ
+
2 j−1 ⊗ 12 j + Ãkσ,2 jσ

z
2 j−1 ⊗ σ+

2 j σ z
2 j−1 ⊗ σ z

2 j

)](
1
0

)
. (E3)

We can identify σ+
2 j−1 ⊗ 12 j with c†

j,↑, σ z
2 j−1 ⊗ σ+

2 j with c†
j,↓,

and Fj = σ z
2 j−1 ⊗ σ z

2 j with the parity operator to account for
anticommutation of different sites. In fact, we can always
write the MPO in this spinful fermion basis, regardless of the
number of fermion species, i.e.,

d†
kσ

= (0 1)

[
L∏

j=1

(
I 0

Ãkσ, jc†
σ F

)](
1
0

)
. (E4)

This facilitates working with U(1) or SU(N ) spin symmetry as
each tensor index can be associated with a specific quantum
number (see Fig. 19). With U(1) spin symmetry, one can
fuse the virtual indices at boundaries of each pair of MPOs
to be Sz = 0 (see Fig. 20), the resulting MPS |�〉 also has
Sz = 0. In the same way, one can easily impose SU(2) spin
symmetry to target spin-singlet states, provided an efficient
tensor network implementation to handle Clebsch-Gordan
coefficients [76,98–100]. We use QSpace for this purpose
[76,77].

In Figs. 21(b) and 21(c), we plot the ESs obtained from
the parton construction on a 4 × 12 cylinder. This demon-
strates the efficacy of our parton approach, as we are able
to prepare trial states in distinct topological sectors for
iDMRG using a relatively small size cylinder. Additionally,

(0)

(0)

(1/2)

(-1/2)

(0)(0)

FIG. 20. Graphical representation of fusing edge virtual indices
of two MPOs, d†

k↑ and d†
k↓.

imposing SU(2) symmetry constraint leads to an intriguing
consequence: if the state is in the topologically nontrivial
sector, there are multiple degenerate branches in the ES [see
Fig. 21(c)]. This has also been observed in the SU(2) iPEPS
simulations previously [44,49,83], and was attributed to the

FIG. 21. (a) Illustration of the parton Hamiltonian of the SU(2)
CSL. The phase of nearest neighbor hopping is 0 (π ) along the solid
(dashed) edges. The phase of next-nearest-neighbor hopping is π/2
(−π/2) along the green (red) arrows. [(b) and (c)] The entanglement
spectra on a 4 × 12 cylinder for the parton wave function.
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so-called “dressed mirror symmetry” within the virtual de-
grees of freedom [83]. The parton approach offers a more
direct understanding—the degeneracy equals to the number
of parton states required to form a singlet superposition
state.

APPENDIX F: MODIFIED WZW SU(N)1 CHIRAL
TOWERS OF STATES

We list here, for N = 3 and 4, the predicted ToS cor-
responding to the SU(N) DMRG cylinders investigated and
discussed in the main text.
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