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Chapter 1

Introduction

1.1 Where is computational physics used?

March 4 issue of Physical Review Letters

26 out of 47 publications exclusively or essentially rely on large scale computations!
In every single section:

• General Physics: Statistical, Quantum Mechanics, Quantum Information, etc.

• Gravitation and Astrophysics

• Elementary Particles and Fields

• Atomic, Molecular, and Optical Physics

• Nonlinear Dynamics, Fluid Dynamics, Classical Optics, etc.

• Plasma and Beam Physics

• Condensed Matter: Structure, etc.

• Condensed Matter: Electronic Properties, etc.

• Soft Matter, Biological, and Interdisciplinary Physics
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1.2 How are computers used?

Rather incomplete list

• Fluid dynamics, plasma simulations: particle-in-cell (PIC) codes

• Precision calculations of atomic and molecular properties: Hartree Fock (HF), Configuration
Interaction (CI)

• Solid state electronic structure: density functional theory (DFT), dynamical mean field theory
(DMF)

• “Soft matter”: molecular dynamics (MD), multi-scale techniques

• Solution of model systems: e.g. Gross-Pitaevsky (GP), Ising problem, Fermi liquid

• Transport in solids and nano-structures: Greens-function techniques

• Large statistical systems: Monte-Carlo techniques

• Qauntum Chromo Dynamics (QCD): e.g. lattice gauge theory

• etc. . . .

1.3 Analytical and computational physics

1.3.1 Skills and techniques

Sorted by importance:

• The best possible intuitive understanding of the physics.

• Clear physical modelling.

• Mathematical understanding of the equations: existence of solutions, operators, eigenvalues,
stability, well-posedness, conserved quantities( norm, energy, currents, symmetries).

• Visualization

• Knowledge of numerical techniques: eigenproblems, linear algebra, random numbers, approx-
imation techniques, integration, differentiation, matrix structure, computational complexity,
complex calculus, iterative methods, random numbers.

• Programming: data-structures, object oriented programming, re-usable code, documentation,
code management.

• Awareness of existing software: LAPACK, FFTW, integration routines, special functions

• Understanding of computer architecture (for large-scale problems): data-locality, communica-
tion overhead, CPU vs. memory, parallelism
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1.3.2 Computational and analytical techniques

• Computational and analytical work are closely entangled: large part of modern theory is for
computational evaluation.

• Computational physics continues where analytical techniques reach their limits.

• Computational techniques can bridge gaps, i.e. we return to analysis after we have explored
using computational means.

• We cannot just “solve” and equation on the computer in the same sense as we solve it analyt-
ically.

• Instead of wondering how large a given effect might be, we can often very quickly get compu-
tational estimates that save us a lot of handwaving and fruitless discussions.

• Solving a physics problem on the computer is hardly ever simple.

• Understanding compuational results often is not much easier than understanding experimental
results.

• “The Schrödinger equation is useless” (. . . but is is beautiful and it is true).

• Certain systems (e.g. plasmas) can essentially only be “simulated”

• (Good) computational methods are exact: we can get solutions to a given mathematical prob-
lem to in principle any pre-set accurcy. Computational physics is not “fuzzy”.

• The best computation is the one that takes maximal advantage of all analytic theory in reach.

• Good computation requires good programming.

1.3.3 Python

• Easy to use

• Object oriented

• Many packages available — graphics, linear algebra, . . .

• Free and open source

• Platform independent

Problems

• not fast

• hides important technical issues

For real programming, need to use C++ in addition.
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Chapter 2

Single-particle stationary Schrödinger
equation

2.1 The 1-d Harmonic oscillator on a grid

[−1

2
∂2x +

1

2
x2]Ψn(x) = EnΨn(x) (2.1)

Energies: En = n+ 0.5, n = 0, 1, 2, 3, . . .
Eigenfunctions: Ψn(x) = Hn(x)e

−x2/2/Nn, Nn = π−1/4(2nN !)−1

2.1.1 Finite difference schemes

Want to know Ψ(xi) := Ψi, i = 0, 1, . . . , N−1 on an equidistant grid of points x0 = −L/2, xN−1 = L/2
with distance between grid points h = L/(N − 1).

(First) derivative

Ψ′(xi) = lim
h↓0

Ψ(xi)−Ψ(xi − h)
h

≈ Ψ(xi)−Ψ(xi − h)
h

(2.2)

How accurate: Taylor series Ψ(x) =
∑∞

n=0 Ψ
(n)(xi)

(x−xi)
n

n!

Ψ(xi)−Ψ(xi − h)
h

= Ψ(1) +
∞∑

n=2

Ψ(n)(xi)
(−h)n−1

n!
(2.3)

Assume Ψ(n) do not grow too much: Ψ(n) ≤ Cn!:

⇒ E(h) :=
∣∣∣∣
Ψ(xi)−Ψ(xi − h)

h
− ∂xΨ(xi)

∣∣∣∣ < C
h

1− h ≈ Ch for small h. (2.4)

Problem 1.1: Compute the error E(h) of the first order finite difference scheme

∂xΨ(x) =
Ψ(x+ h)−Ψ(x)

h
+ E(h) (2.5)
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for the Gaussian function exp(−x2) and for 1/x at x = 0, 1.
In matrix-vector notation:




Ψ′
0

Ψ′
1

Ψ′
2
...

Ψ′
N−2

Ψ′
N−1




=
1

h




1 0 0 0 . . . 0
−1 1 0 0 . . . 0

0 −1 1 0 . . .
...

...
. . . . . . . . . 0

0 · · · −1 1 0
0 · · · −1 1







Ψ0

Ψ1

Ψ2
...

ΨN−2

ΨN−1




(2.6)

~Ψ′ = D̂1
~Ψ (2.7)

Note: “Inaccuracy” at the beginning of the intervals implies boundary condition Ψ−1 = 0
Note: Matrix D̂ is not anti-symmetric (but ∂x is anti-hermitian)

Alternative:

Ψ′
i =

1

h
(Ψi+1 −Ψi) (2.8)

equivalent in the limit h ↓ 0.



Ψ′
0

Ψ′
1

Ψ′
2
...

Ψ′
N−2

Ψ′
N−1




=
1

h




−1 1 0 0 . . . 0
0 −1 1 0 . . . 0

0 0 −1 1 . . .
...

...
. . . . . . . . . 0

0 · · · 0 −1 1
0 · · · 0 −1







Ψ0

Ψ1

Ψ2
...

ΨN−2

ΨN−1




(2.9)

~Ψ′ = −D̂T
1
~Ψ (2.10)

Note: “Inaccuracy” at the end of the intervals Implies boundary condition ΨN = 0

Problem 1.2: The finite difference scheme

Ψ′
i =

Ψi+1 −Ψi−1

2h
+ E(h) (2.11)

is an anti-hermitian approximation of the derivative. Give the error estimate E(h) of the finite-

difference scheme. Write the scheme as a matrix D̂2.
We can construct the second derivative as

∂2x ≈ −D̂T
1 D̂1 = −

1

h2




2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0 −1 2 −1 . . .
...

...
. . . . . . . . . 0

0 · · · −1 2 −1
0 · · · −1 2




(2.12)
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or

(−∂2xΨ)i =
2Ψi −Ψi−1 −Ψi+1

h2
(2.13)

Note: Is hermitian by construction: (ATA)T = AT (AT )T ) = ATA
Note: One verifies the error E(h) = O(h3) . The error is in third order, although we started from
second order error in the first derivative. we are lucky in this particular case, it is not a general
procedure: with approximations ∂x ≈ D̂, the approximation −∂2x ≈ D̂T D̂ is in general not higher

order than D̂.
Approximate Schrödinger equation

1

2
[D̂T

1 D̂1 + V̂ ]~Ψ(n) = ~Ψ(n)Ẽ(n) (2.14)

with

V̂ =




x20 0 0 0 . . . 0
0 x21 0 0 . . . 0

0 0 x22 0 . . .
...

...
. . . . . . . . . 0

0 · · · 0 x2N−2 0
0 · · · 0 x2N−1




(2.15)

This finite matrix eigenvalue problem can be solved by standard software. One obtains approximate
eigenvalues Ẽ(n) and the corresponding eigenvectors ~Ψ(n).

2.1.2 Mathematics

Remember some facts from linear algebra (or check the Golub/vanLoan for it):

Unitary matrix

Û †Û = Û Û † = 1 ⇒ U † = U−1

Spectral representation of a matrix

Let A be a hermitian N ×N matrix

Â† = Â : (Âij)
∗ = Âji (2.16)

Then there exists a unitary matrix Û and a diagonal matrix

(dA)mn := δmnan (2.17)

such that

ÂÛ = ÛdA. (2.18)
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In index notation ∑
ÂijÛjn = Ûjnan (2.19)

The columns ~U (n) : (~U (n))j = Ûjn are the eigenvectors of Â to the eigenvalue an.

It follows, that Â can be represented using its eigenvalues and eigenvectors

Â = ÛdAÛ
† =

N−1∑

n=0

~U (n)an(~U
(n))† =

N−1∑

n=0

|n〉an〈n| (2.20)

The last form is the common quantum-mechanical form of writing the spectral representation.

Problem 1.3: Show the anti-hermiticity of the derivative operator

∫
dxχ∗(x)∂xψ(x). (2.21)

What are the conditions for this to hold?

Problem 1.4: Give the argument why a hermitian matrix has strictly real eigenvalues.

Problem 1.5: A hermitian matrix is called “positive” if its lowest eigenvalue is > 0. We define
the N×N “overlap matrix” Ŝ for a set of square-integrable functions B = {φ0(x), φ1(x), . . . φN−1(x)}
as

Ŝij =

∫
dxφ∗

i (x)φj(x) (2.22)

Prove that the overlap matrix is positive, when B is linearly independent. Show that Ŝ is singular,
when B is linearly dependent.
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#! /usr/bin/env python

# an elementary finite difference solver

import numpy as np # standard module for array handling

import scipy.linalg as la # standard module for linear algebra

# (1) choose number of grid points, volume...

ng=330 # number of grid points

L=10. # size of simulation box

# (2) select the system specifications

def potential(x): return x*x/2. # potential

# (3) set up derived quantities

h=L/float(ng) # grid spacing

qh=0.5/(h*h)

# (4) set up operators

kin=np.zeros((ng,ng)) # kinetic energy matrix

for i in range(ng):

kin[i,i]=2.*qh

if i>0:

kin[i,i-1]=-qh

kin[i-1,i]=-qh

if i<ng-1:

kin[i+1,i]=-qh

kin[i,i+1]=-qh

pot=np.zeros((ng,ng)) # potential energy matrix

for i in range(ng): pot[i,i]=potential(-L/2+float(i)*h)

# (5) solve eigenproblem

(val,vec)=la.eig(kin+pot)

# (6) show results

print np.sort(val.real)[:10]
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Problem 1.6: Download and install Python. Write a program that prints “hello world!”. Down-
load the “numpy” and “scipy” packages. Write a finite difference code for the harmonic oscillator
(copy from lecture). Plot the errors of the lowest three eigenvalues as a function of number of grid
points at fixed box-size L and as a function of box size L. Make sure to disentangle the two errors.

2.1.3 Higher order finite difference schemes

The explicitly symmetric forms of the FD 2nd derivative (accurate to order 2n) can be given by

writing the coefficients to starting from the diagonal to the right D̂
(2)
ij , i ≤ j and using (D̂(2))T = D̂(2).

Here the schemes up to order 8:

’d2_o2’: (-2.,1.),

’d2_o4’: (-5./2.,4./3.,-1./12.),

’d2_o6’: (-49./18.,3./2.,-3./20.,1./90.),

’d2_o8’: (-205./72.,8./5.,-1./5.,8./315.,-1./560.)

Problem 1.7: Construct general finite-difference schemes for the first derivative of arbitrary
order p − 1. By “order = p − 1” one means that the scheme returns the exact first derivative for
polynomials of degree up to p− 1, i.e. E(h) = O(hp).
Hint: It is sufficient to construct a scheme d0, d1, . . . , dp−1 that is exact for the monomials xi, i =
0, 1, . . . , p− 1.

p−1∑

j=0

xijdj = ixi−1
j0
, i = 0, 1, . . . , p− 1, j0 ∈ 0, 1, . . . , p− 1 (2.23)

which is a system of linear equations of the form

X̂ ~d = ~r, (~d)j = dj, (~r)i = ixi−1
j0
. (2.24)

You will obtain different schemes, depending on the choice of j0, e.g. in the center or nearer to the
edges of the range of xj.

Use python linear solvers to solve this, try to convert the resulting floating numbers di to fractions.
Verify the numbers for p− 1 = 2, 4 analytically.

2.2 Basis set representations

2.2.1 Taylor series expansion

Assume the solution is analytic

Ψ(x) =
∑

j

ajx
j on interval [−L/2, L/2] (2.25)
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Insert into Schrödinger equation and solve for ai and eigenvalues.

1

2

N−1∑

j=0

(−j(j − 1)xj−2 + xj+2)aj =
N−1∑

j=0

xjajẼ = 0 (2.26)

Multiply from the left by xi and integrate over [−L/2, L/2]:
∑

j

[T̂ij + V̂ij ]aj =
∑

j

ŜijajẼ (2.27)

with

Ŝij :=

∫ L/2

−L/2

dxxi+j (2.28)

T̂ij := −1

2
j(j − 1)

∫ L/2

−L/2

dxxi+j−2 (2.29)

V̂ij :=
1

2

∫ L/2

−L/2

dxxi+j+2 (2.30)

(2.31)

Note: Kinetic energy term is badly asymmetric: We will obtain complex eigenvalues. Replace by
a symmetric form (partial integration, ignore surface terms)

T̂ij :=
1

2
ji

∫ L/2

−L/2

dxxi+j−2 (2.32)

Solve finite (generalized) matrix eigenvalue problem

(T̂ + V̂ )~a = Ŝ~aẼ (2.33)

How? — Use standard software. The problem can be immediately transformed to a standard
eigenvalue problem:

Ŝ−1(T̂ + V̂ )~a = ~aẼ (2.34)

Note: Ŝ is invertible as the monomials xj are linearly independent However, the matrix Ŝ−1(T̂+V̂ ) is
not symmetric, which has important numerical drawbacks. A better way is to construct an explicitly
symmetric form as follows: write

Ŝ = R̂T R̂ (2.35)

with real, invertible matrices R̂ and re-write the eigenvalue problem as

R̂−1T (T̂ + V̂ )R̂−1~b = ~bẼ, ~b = R̂~a. (2.36)
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The lhs. matrix is explicitly symmetric (if T̂ + V̂ is symmetric). This path is standard, where the

so-called Cholesky-decomposition is used for constructing triangular R̂. The exact working of this is
not of concern for us here. A different (although not as numerically efficient) way of decomposing Ŝ
shown in the following problem:

Problem 2.8: Use the spectral representation of the overlap matrix Ŝ and the fact that it is
positive (i.e. all eigenvalues are > 0) to construct R̂ : Ŝ = R̂T R̂.

With ~b := R̂~a:

(R̂T )−1(T̂ + V̂ )R̂−1~b(n) = ~b(n)Ẽ(n) (2.37)

Note: All eigenvalues Ẽ(n) will be real as (R̂T )−1(T̂ + V̂ )R̂ is hermitian

2.2.2 Expansion into general polynomials

The Taylor series ansatz is the most straight forward but numerically very instable method of pa-
rameterizing a continuous wave function by a finite set of discrete numbers.

For very short expansions (N . 10) , the Taylor series does give improvements compared to the
FD scheme with the same number of points, but at larger N it quickly breaks down.

We have not discussed boundary conditions for the ansatz (we will see soon that this needs more
attention), but this is not the problem. The true problem is that mathematically the the overlap

matrix Ŝ is invertible, however, numerically this inversion is extremely unstable.

Condition number

A formal derivation of the importance of the condition number can be found in Golub/vanLoan,
chap. 2.7. Here some discussion to give you a feeling for what happens:

Errors in the representation of matrices and vectors:

(Â+ ǫF̂ )x(ǫ) = ~b+ ǫ ~f (2.38)

Approximate spectral representation (1st order perturbation theory of quantum mechanics)

Â+ ǫF̂ ≈ ÛAdǫÛ
†
A (2.39)

For notational simplicity, assume ÛA is real.

(dǫ)mn = δmn(an + ǫfn), fn := ~U (n) · F ~U (n)) (2.40)

Solution of the linear system

x(ǫ) =
∑

n

~U (n) 1

an + ǫfn
(~U (n) ·~b+ ǫ~U (n) · ~f) (2.41)
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Clearly, if an + ǫfn ≈ 0, very large errors will result. In general, if the matrix F̂ is random, i.e. not
related to Â, the fn will all be of comparable magnitude fn ≈ f . The error in the largest eigenvalue
an is necessarily given by machine precision, typically

ǫf

maxn(an)
& 10−14 (2.42)

That means that the relative error for the smallest an will be

ǫf

minn(|an|)
& 10−14maxn(|an|)

minn(|an|)
(2.43)

Clearly, when the “condition number” κ(A) is large

κ(A) :=
maxn(|an|)
minn(|an|)

∼ 1014, (2.44)

1/(an + ǫf) can become singular and matrix inversion breaks down completely, at smaller ratios
severe errors occur. Note that the matrix norm ||A|| := maxn(|an|) we can also write

κ(A) := ||A||||A−1|| (2.45)

Problem 2.9: Numerically compute the condition number for the overlap matrix Ŝ of the mono-
mials {1, x, x2, . . . xN−1} in the interval [−1, 1]. At which N is condition number ∼ 1014 reached?

This problem of “near linear dependency” or “ill-conditioning” of the overlap can be avoided
by not expanding the solution in the monomials 1, x, x2 . . . xN−1, but rather in some different set of
polynomials P0(x), P1(x), . . . , PN−1(x) of maximal order N − 1. Mathematically, these polynomials
span the same space of solutions.

All polynomials are alike

Any set of N linearly independent polynomials pn(x) of maximal degree N−1 is related to any other
set of linearly independent polynomials qn(x) of maximal degree N−1 by an invertible (non-singular)

linear N ×N transformation M̂ : qn(x) =
∑N−1

m=0 pm(x)M̂mn and pm(x) =
∑N−1

n=0 qn(x)(M̂
−1)nm. We

can also write this in the form of a row-vector with a matrix:

~q(x) = ~p(x)M̂, ~p(x) = ~q(x)M̂−1 (2.46)

~q(x) :=




q0(x)
q1(x)
q2(x)
...

qN−2(x)
qN−1(x)




T

~p(x) :=




p0(x)
p1(x)
p2(x)
...

pN−2(x)
pN−1(x)




T

(2.47)
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Let ~a be the solution to the eigenproblem using a expansion in pm(x) as:

(T̂ (p) + V̂ (p))~a = Ŝ(p)~aẼ, (2.48)

where (Ŝ(p))mn = 〈pm|pn〉 and (Ŝ(q))mn = 〈qm|qn〉 with the wave function:

Ψ(x) =
∑

n

pn(x)an := ~p(x) · ~a. (2.49)

Then the eigenproblem in expansion qn(x) has the matrices:

T̂ (q) = M̂T T̂ (p)M̂, V̂ (q) = M̂T V̂ (p)M̂, Ŝ(q) = M̂T Ŝ(p)M̂. (2.50)

and takes the form
(T̂ (q) + V̂ (q))~b = Ŝ(q)~bẼ. (2.51)

One immediately sees that:
~a = M̂~b, ~b = M̂−1~a (2.52)

and the resulting approximation to the exact eigensolution should be identical in both expansions:

Ψ(q) =
∑

m

qm(x)bm = ~q(x) ·~b = (~pM̂) · (M̂−1~a) = ~p · M̂M̂−1~a = ~p(x) · ~a. (2.53)

Any difference when using different polynomials in expansions lies only in numerical stability and
computational convenience. Mathematically all such expansions are exactly equivalent.

2.2.3 Orthogonal polynomials, special case: Legendre polynomials

(see Gradshteyn/Ryzhik: Tables of Integrals, Series, and Products)
We will choose polynomials such that the overlap matrix is easily invertible. In the ideal case the

overlap matrix is diagonal. A prominent example of such orthogonal polynomials are the Legendre
polynomials with the following recurrence formulas:

P0(x) = 1 (2.54)

P1(x) = x (2.55)

Pn+1(x) =
1

n+ 1
[(2n+ 1)xPn(x)− nPn−1(x)] . (2.56)

Pn+1(x) can be evaluated efficiently with P0(x) and P1(x).
The Legendre polynomials obey the orthogonal relation:

∫ 1

−1

dxPn(x)Pm(x) = δmn
2

2n+ 1
. (2.57)

We can readily also obtain a recurrence formula for the derivatives of these polynomials:

∂xP0 = 0 (2.58)

∂xP1 = 1 (2.59)

∂xPn+1(x) =
1

n+ 1
[(2n+ 1)(x∂xPn(x) + Pn(x))− n∂xPn−1(x)] (2.60)
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With Legendre polynomials one has not much more effort than with monomials and the advantage
is that one gets no errors when inverting matrices.

Example:

Ŝ =



1 0 0
0 1

3
0

0 0 1
5


 , Ŝ−1 =



1 0 0
0 3 0
0 0 5


⇒ no errors! (2.61)

Problem 2.10: The Chebyshev polynomials Tn(x) of degrees n = 0, 1, . . . , N − 1 are defined by
the orthogonality relations

∫ 1

−1

dx
Tm(x)Tm(x)√

1− x2
=





0 : m 6= n
π : m = n = 0
π/2 : else

(2.62)

Write a code for evaluating Tm(x) (find the 2-point recurrence relations in the literature or —
probably much more quickly — on the web). Verify the correctness of the code by computing the
integrals.
Note: For crude integration, you can use

∫ b

a
f(x)dx ≈ h

∑N−1
n=0 f(a + nh), h = (b − a)/N . Much

more accurate and efficient is Gauss quadrature. Gauss-Legendre will give reasonable results, but
far from exact (see problem below). Try using “Gauss-Chebyshev” quadrature instead.

Gauss-Legendre quadrature

We need to compute the integrals:

T̂mn =
1

2
〈∂xQm|∂xQn〉 =

1

2

∫ L
2

−L
2

dxQ′
m(x)Q

′
n(x) (2.63)

V̂mn =
1

2
〈Qm|x2|Qn〉 =

1

2

∫ L
2

−L
2

dxQm(x)x
2Qn(x) (2.64)

The Legendre polynomials are orthogonal on the interval [−1, 1]. But we are interested in the interval
[−L/2, L/2]. That is why we scale to the interval [−L/2, L/2]:

Qn(x) =: Pn(
2x

L
), x ∈ [−L

2
,
L

2
] (2.65)

⇒
∫ L

2

−L
2

dxQm(x)Qn(x) =

∫ L
2

−L
2

dxPm(
2x

L
)Pn(

2x

L
) =

∫ 1

−1

dy
L

2
Pm(y)Pn(y) =

L

2
δmn

2

2n+ 1
. (2.66)

Although T̂mn, V̂mn and similar integrals can be evaluated in closed form, it is simpler, usually faster,
usually more stable, and more versatile to use Gauss-Legendre quadrature for the evaluation.

The following is exact for any polynomial R2n−1 of degree 2n− 1

∫ 1

−1

dxR2n−1(x) =
N−1∑

i=0

R2n−1(xi)wi, for anyn ≤ N, (2.67)
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where xi and wi are nodes and weight of the n-point Gauss-Legendre quadrature formula respectively.
The weights wi can be calculated numerically. For an adequate method see Module M4: Numerical
Methods, SS2009, M. Kerscher. The Gauss-Legendre quadrature is more efficient because we need
to evaluate only half of the points. For one-dimensional integration, that seems a minor difference.
However in, say, 3 dimensions, the reduction is 23 = 8, i.e. almost a factor of 10!

Problem 2.11: Use Gauss-Legendre quadrature to compute the integral

∫ 1

0

e−xdx. (2.68)

For this particular example, which kind of convergence do you expect? Plot the error of the numerical
integral vs. the number of quadrature points to verify your expectations. Now try to compute the
integral ∫ 1

0

√
xdx. (2.69)

How does the error change with the number of quadrature points? Point out the reason for the two
different convergence behaviors in the two cases.

Hint: As Gauss-Legendre quadrature is for integration over the interval [-1,1], map into that interval
by a change of variables. However, an N -point quadrature is exact only up to polynomial degree
2N − 1. Compare the error of the numerical approximation with the error when truncating the
Taylor series at degrees 2N − 1.

Note: G auss-Legendre quadrature points xi and weights wi, i = 0, 1, . . . , N − 1 are returned by the
function “p roots(N)” from the scipy-module “scipy.special.orthogonal”.

2.2.4 General properties of orthogonal polynomials

Metric, weight function v(x)

Two polynomials Φ and χ are orthogonal with respect to some Hilbert space (over an interval [a, b]):

〈Φ|χ〉 =
∫ b

a

dxΦ(x)χ(x) · v(x), (2.70)

where v(x) is the weight function. Because of the positivity of the norm (||Φ|| > 0∀Φ 6= 0) v(x) > 0
almost everywhere.
Example: Polar coordinates: ∫ ∞

0

dr r2Φ(r)χ(r), (2.71)

where a = 0, b =∞ and r2 can be associated with the weight function v(x).
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So far we had the case: v(x) = 1, a = −1, b = 1. Now we can construct a set of orthogonal
polynomials for any v(x):

〈Qm|Qn〉 =
∫ b

a

dx v(x)Qm(x)Qn(x) = Nnδmn (2.72)

provided ∫ b

a

dx xnv(x) <∞ ∀n (2.73)

Explicit construction (Schmidt orthonormalization):

Q
(v)
0 (x) := 1 (2.74)

Q̃
(v)
1 (x) := a1x+ b1 (2.75)

|Q(v)
1 〉 = |Q̃(v)

1 〉 − |Q
(v)
0 〉〈Q

(v)
0 |Q̃

(v)
1 〉 = a1x+ b1 −

∫ b

a

dx (a1x+ b1)v(x) (2.76)

|Q(v)
n+1〉 = x|Q(v)

n 〉 −
n∑

m=0

|Q(v)
m 〉〈Q(v)

m |x|Q(v)
n 〉

〈Q(v)
m |Q(v)

m 〉
:= x|Q(v)

n 〉 −P(v)
n x|Q(v)

n 〉, (2.77)

where P
(v)
n is the projection operator.

Recurrence relations

For any set of orthogonal polynomials there exists a (unique) three terms recurrence relation:

Qn(x) = (anx+ bn)Qn−1(x) + cnQn−2(x) an, bn and cn depend on n and v(x) (2.78)

Orthogonal polynomials and Gauss quadrature

For any set of ON polynomials on interval [a, b] with weight function v(x) we have a quadrature

rule {x(v,n)i , w
(v,n)
i , i = 0, 1, . . . , n − 1} such that the integral for any polynomial Pm(x) with degree

m ≤ 2n− 1 is exact:

∫ b

a

dx v(x)Pm(x) =
n−1∑

i=0

P (x
(v,n)
i )w

(v,n)
i ∀m ≤ 2n− 1 (2.79)

The base points are the zeros of the orthogonal polynomial of degree n. Proof and construction of
weights in “LMU — Numerik für Physiker”.

Note: Quadrature rules for singular functions, if character and position of singularity is known.
Note: Quadratures for a weight function v(x) converge rapidly for

∫
v(x)f(x), if the higher deriva-

tives of f(x) are well bounded, e.g. f (n)(x) < C, C independent of n

Note: It is important to stress the fact that only n points are needed to compute the integral of a
polynomial whose order can be as high as 2n− 1.
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2.2.5 Object oriented programming

We will consider Legendre, Laguerre, and other polynomials as “objects”. To define the object we will
make use of the concept of class. Quoting Wikipedia:Object-oriented programming (OOP) is a pro-
gramming paradigm using ”objects” — data structures consisting of data fields and methods together
with their interactions — to design applications and computer programs. Programming techniques
may include features such as data abstraction, encapsulation, messaging, modularity, polymorphism,
and inheritance. Many modern programming languages now support OOP.

Some of the most important concepts about Object oriented programming are listed in what
follows:

• modularity: our “foo.py” files should contain well-defined units of functionality with well-
defined and limited input and output. In each “module” only few functions and data should
be accessible from outside the module (by calls to methods and classes of the module).

Note: “foo” is often used as a placeholder for “some name”. Its etymology is confusing.

• inheritance: e.g. LegendrePolynomial inherits the methods “test()” and “val()” from Or-
thogonolPolynomial, i.e. any OrthogonalPolynomial has those methods; similarly Orthogo-
nalPolynomial inherits “plot()” from MyFunction, i.e. any MyFunction can be plotted.

• encapsulation: is closely related to modularity and the “class”: keep tight control of what
goes in and out of a module

• “Polymorphism” and “messaging” are not manifestly at work in these first examples.

Computational Style

Here there are some useful tips needed for programming in a professional way:

• Document! Write the documentation first, then the code!

• Introduce test for (almost) everything;

• Do type conversion explicitly where it can be critical;

• Keep input in a single place in the code

• Never duplicate code or other information — write modules or subroutines instead, use tem-
plates

• Never duplicate code, except possibly for speed.

• Never ever put any constants into the body of the code: physical constants like ~, speed of light,
units conversions or numerical control parameters like threshold “epsilons”, maximum number
of iterations, maximally allowed problem sizes, etc. physical constants can be put into a single
module, algorithm parameters can be in the header of the module containing the algorithm.
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• In case constructs, never leave default cases undefined.

• Never assume that inputs can only be certain form or range of values — always check!

• Never use smart tricks (unless they are absolutely needed for speed or similar reasons): they
are difficult to understand later, they may be compiler dependent. If you do, DOCUMENT in
great detail.

• Strictly adhere to standards.

2.2.6 Objects in Python: class for orthogonal polynomials

orthopol.py
#! /usr/bin/env python

import numpy as np

import matplotlib.pyplot as plt

import scipy.special.orthogonal as so

import myfunction as mf

class OrthogonalPolynomial(mf.MyFunction):

"""

values and derivatives of orthogonal polynomials

mf.MyFunction has method "plot()"

"""

def val(self,q,n=0):

"""values and derivatives up to order n

"""

# values and derivatives

# p(x,n) = [a(n)+b(n)*x] * p(x,n-1) + c(n)* p(x,n-2)

# p’(x,n) = [a(n)+b(n)*x] * p’(x,n-1) + b(n)*p(x,n-1) + c(n)*p’(x,n-2)

v=np.zeros((n+1))

d=np.zeros((n+1))

v[0]=1.

d[0]=0.

if n>0:

for i in range(1,n+1):

v[i]=(self.a(i)+self.b(i)*q)*v[i-1] +self.c(i)*v[i-2]

d[i]=(self.a(i)+self.b(i)*q)*d[i-1]+self.b(i)*v[i-1]+self.c(i)*d[i-2]

return v,d

def test(self,n):

"""check orthogonality up to order n

"""

# get the quadrature rule

x,w=self.quadrature(n+1)

# print it - should be diagonal

np.set_printoptions(precision=5,suppress=True)

# compute the overlap matrix

o=np.zeros((n+1,n+1))

for j in range(len(x)):

v=self.val(x[j],n)[0]

for i in range(n+1):

o[i,:]=o[i,:]+v[i]*v[:]*w[j]

print o

# plot the functions

self.plot(-1.,1.,n+1)

plt.show()

class LegendrePolynomial(OrthogonalPolynomial):

"""recurrence coefficients and quadrature

inherits from OrthogonalPolynomial:

val()... return values and derivatives

plot().. plot on reasonable interval

"""

def a(self,i): return 0.

def b(self,i): return (2.*float(i)-1.)/float(i)

def c(self,i): return (-float(i)+1.)/float(i)

def quadrature(self,n): return so.p_roots(n)

class LaguerrePolynomial(OrthogonalPolynomial):

"""recurrence coefficients and quadrature

"""

def a(self,i): return (2*float(i)-1.)/float(i)

def b(self,i): return -1./float(i)

25



def c(self,i): return (-float(i)+1.)/float(i)

def quadrature(self,n): return so.la_roots(n,0)

class ChebyshevPolynomial(OrthogonalPolynomial):

"""recurrence coefficients and quadrature

"""

def a(self,i): return 0.

def b(self,i):

if i==1: return 1. # Chebyshevs are normalized inconsistently

else: return 2.

def c(self,i): return -1.

def quadrature(self,n): return so.t_roots(n)

myfunction.py

“MyFunction” is a very simple class for now, but we will use it to set up other basis functions than
orthogonal polynomials:

import numpy as np

import matplotlib.pyplot as plt

class MyFunction:

# draw the functions on the interval

def plot(self,x0=None,x1=None,n=1,pts=100):

"""Plot all functions on element"""

if x0 is None: x0=self.x0

if x1 is None: x1=self.x1

if hasattr(self,’n’):

if self.n is not None: n=self.n

x=np.linspace(x0,x1,pts)

f=np.zeros((len(x),n))

for i in range(len(x)): f[i,:]=self.val(x[i],n-1)[0]

for i in range(n): plt.plot(x,f[:,i])

Problem 2.12: (Teamwork) Using orthopol.py as a model and also importing it, create a mod-
ule with the base class BasisFunction and the derived classes LaguerreExpon and LegendreScaled

with the following properties and structure:

• Document what you plan to do in the module using ””” . . . ””” and # comments

• BasisFunction refers to a fixed set of n basis functions Φ0,Φ1, . . . ,Φn−1.

• BasisFunction inherits all properties from MyFunction (download from web page or get it
from Git repository).

• it has a method, overlap(), which returns the overlap matrix Ŝ : Ŝij =
∫
dxΦi(x)Φj(x)

computed by a quadrature rule.

• LaguerreExpon specifies BasisFunction to be of the form Ln(2x/k) exp(−x/k)

• it has a method quadrature that returns the suitable quadrature rule for these functions

• it has a method val that evaluates values and derivatives of the functions.

• LegendreScaled performs the same functions for the scaled Legendre polynomials Pn(2
x−x0
x1−x0

−
1)
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2.3 Rayleigh-Ritz variational principle

Let A be a self-adjoint (i.e. hermitian) operator on a Hilbert space H with a domain D(A)
(i.e. functions on which A is defined) which is bounded from below (i.e. its lowest eigenvalue
a0 > −∞). Let a0 ≤ a1 ≤ . . . ≤ aN−1 denote the sorted sequence of the eigenvalues of A. Let

{φ0, φ1, . . . , φN−1} ⊂ D(A) be any set of (linearly independent) functions from D(A). Denote by Â

and Ŝ the operator and overlap matrices

(Â)ij = 〈φi|A|φj〉, (Ŝ)ij = 〈φi|φj〉. (2.80)

Then the sorted eigenvalues ã0 ≤ ã1 ≤ . . . ≤ ãN−1 of the matrix eigenvalue problem

Â~c(n) = Ŝ~c(n)ãn for n = 0, 1, . . . , N − 1. (2.81)

is a sequence of upper bounds of the exact eigenvalues:

an ≤ ãn for n = 0, 1, . . . , N − 1 (2.82)

Note that adding more functions will always lower the bound ãn, i.e.

an ≤ ã(∞)
n ≤ . . . ≤ ã(N+1)

n ≤ ã(N)
n . (2.83)

The proof of this is not very hard and should have been part of the “Mathematische Quanten-
mechanik”. It is a direct consequence of the “Minimax principle” for the eigenvalues of a semi-
bounded operator. For operators on infinite dimensional spaces it is more math than what I want to
bring in these lectures. The finite-dimensional version is essentially the same and shows the idea.

Minimax principle

(see Golub/vanLoan, chapter 8)
Let Sk be a k-dimensional subspace of SN . The minimax principle says that

ak−1 = min
dim(S)=k

max
φ∈S

〈φ|Â|φ〉
〈φ|φ〉 , S ⊂ H. (2.84)

where everything is defined as above.
Proof:(For finite dimensional Hilbert-space H: dim(H)= N )

• Pick S0 = span {φ0, φ1, . . . , φk−1} where φi is the eigenfunction belonging to the i-th eigenvalue.

Then we have maxφ∈S0

〈φ|Â|φ〉
〈φ|φ〉 = ak−1, from which it follows that ak−1 ≥ mindim(S)=k maxφ∈S

〈φ|Â|φ〉
〈φ|φ〉 .

• For the opposite inequality we consider T = span {φk−1, φk, . . . , φN−1} and we pick an arbitrary

S ⊂ D(Â) such that dim(S) = k. As T is N − k + 1-dimensional, it must intersect with S,
which means that there exists φ∗ =

∑N−1
l=k−1 clφl ∈ S ∩ T such that:

max
φ∈S

〈φ|Â|φ〉
〈φ|φ〉 ≥

〈φ∗|Â|φ∗〉
〈φ∗|φ∗〉

≥ ak−1 (2.85)
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The last inequality follows from the fact that Âφ∗ =
∑N−1

l=k−1 alclφl and therefore

〈φ∗|Â|φ∗〉 =
N−1∑

l=k−1

N−1∑

m=k−1

alclc
∗
m〈φl|φn〉 =

N−1∑

l=k−1

al|cl|2, (2.86)

assuming without loss of generality orthonormal eigenvectors φl. We see that 〈φ∗|Â|φ∗〉/〈φ∗|φ∗〉
is an average over all eigenvalues ak−1 ≤ ak ≤ . . ., which cannot be lower than its lowest value.

• Since the inequality

ak−1 ≤ max
φ∈S

〈φ|Â|φ〉
〈φ|φ〉 (2.87)

is valid for any S with dimS = k, we will also have

ak−1 ≤ min
dim(S)=k

max
φ∈S

〈φ|Â|φ〉
〈φ|φ〉 (2.88)

which completes the proof.

2.4 Boundary conditions

The Laplace operator is not well-defined on the functions we used so far: on the boundary, the func-
tions discontinuously (and non-differentiably) drop to 0. One consequence is that one is easily lead
to non-hermitian matrices. We need to define the set of expansion functions (or “basis functions”),
where the second derivative matrix can be properly defined.

Domain of an operator and a quadratic form

One of the key concepts for differential operators is the “domain”, i.e. a proper selection of functions
on which the differential operator can be defined. While this may appear a minor technical issue that
one is inclined to solve on the fly, it is in fact the core of any (linear) partial differential equation. It
is intimately related to questions like conservation of probability (in quantum mechanics) or energy
(in Maxwell’s equations). In particular when truncating space for computations, doing coordinate
transformations, using analyticity arguments, or using wild beasts like δ-”potentials” one needs to
check how these manipulations affect the definition of the domain of the operator. Here we essentially
by-pass these questions except for the most immediate issues.

A minimal requirement for the definition of an operator A on Hilbert space H is that the result
of applying it to a function from its domain must be in H:

Ψ ∈ D(A) : AΨ ∈ H : ||AΨ||2 = 〈AΨ|AΨ〉 <∞. (2.89)

If AΨ formally contains a δ-function, Ψ 6∈ D(A).
Luckily, the condition about the “domain” can be relaxed somewhat: it is sufficient, that

〈Ψ|AΨ〉 <∞, (2.90)
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which usually can be defined even if AΨ contains a δ-function. More generally, we can operate with
a set of functions φm such that 〈φn|A|φm〉 and 〈φn|φm〉 exist ∀m,n. This space is larger than D(A),

it is the “closure” of D(A) with the norm ||Ψ||1 = 〈Ψ|Â|Ψ〉+ 〈Ψ|Ψ〉. It is called the “domain of the
quadratic form” associated with A. For the Laplacian, it is the “first Sobolev space”.

In the numerical examples above we have fallen below the exact harmonic oscillator ground state
of 0.5, not because of numerical error, but because even this relaxed condition is violated. The scalar
product of the Hilbert space of the 1d-harmonic oscillator extends over the whole real axis:

〈Φi|∂2x|Φj〉 =
∫ ∞

−∞
dxΦ∗

i (x)∂
2
xΦj(x) (2.91)

Restricting the integration to finite intervals [−L/2, L/2] amounts to setting the Φi ≡ 0 outside,
creating a discontinuity at the boundaries. Then ∂2x ceases to give any well-defined result.

Problem 4.13: Let H be a semi-bounded self-adjoint operator with eigenvectors Ei ≤ Ej for i <
j in the Hilbert space H. Let SM = {φ0, φ1, . . . , φM−1} be a set of M linearly independent vectors

from H. Let Ĥij = 〈φi|H|φj〉 and Ŝij = 〈φi|φj〉 be the matrices in the generalized eigenproblem

Ĥ~qi = Ŝ~qiẼi. (2.92)

Show that the upper bounding property Ei < Ẽ
(M)
i , i = 0, 1, . . . ,M − 1 follows from the minimax

principle

Ek−1 = min
dim(S)=k

max
φ∈S

〈φ|H|φ〉
〈φ|φ〉 , S ⊂ H. (2.93)

Show that, as a direct consequence, the approximate energies always decrease when one adds
more functions: Let Ẽ

(N)
n , n ≤ N be the nth approximate eigenvalue obtained with SM ⊃

SN = {Φ0,Φ1, . . . ,ΦN−1} and Ẽ
(M)
n , M > N the nth eigenvalue obtained with an extended set

SN ⊂ SM = {Φ0,Φ1, . . . ,ΦM−1}. Then
Ẽ(M)

n ≤ Ẽ(N)
n (2.94)

Dirichlet boundary conditions

Note that if we require the functions Φi to satisfy the so-called Dirichlet boundary conditions, i.e.
Φi(−L/2) = Φi(L/2) = 0∀i, the integral can still be defined: even when the first derivative is not
differentiable, the second derivative just results in δ-like singularities at x = −L/2 and x = L/2.
The function Φ∗

i (x) will be zero at those points and there is no contribution to the integral. With

such a boundary condition, we are also guaranteed to obtain a hermitian kinetic energy matrix T̂ ,
as can be easily seen by partial integration.

Example: Apply ∂2x to functions with a discontinuous 1st derivative:
Let f(x) and its first two derivatives be as in figure 2.1. We have that f

′′

(x) = −2δ(x) + δ(x− 1) +
δ(x+ 1) makes sense in a distributional sense and can be integrated over. This example shows what
was expressed above: a function which vanishes at the boundaries has a second derivative that can
be integrated over, thanks to the special property of the δ function.
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(a) f(x) (b) f
′

(x) (c) f
′′

(x)

Figure 2.1: f(x) and its first two derivatives

2.4.1 Implementation of Dirichlet boundary conditions

A suitable set of functions for defining matrix elements of ∂2x with Dirichlet boundary conditions can
be implemented starting from nearly any set of differentiable functions.

The polynomials that we have previously chosen, the (scaled) Legendre polynomials, are such
that P2n(−1) = P2n(1) = 1 and P2n+1(−1) = P2n+1(1) = 1 with n = 0, 1, . . . , N −1, whereas we need
a function that goes to zero at the boundaries, i.e. we need to choose polynomials Bn(x) which are
such that Bn(−1) = Bn(1) = 0 ∀n. We will choose a new set of polynomials:

Bn(x) =

{
Pn+2(x)− P0(x) for n even
Pn+2(x)− P1(x) for n odd

n = 0, 1, . . . , N − 1 (2.95)

(This is even simpler than it appears, remember: P0(x) ≡ 1, P1(x) = x.)
Note: The choice of the polynomials is not unique. Clearly any non-singular transformation
~B′ = ~B ·M , with M non singular, has the same property.

Note: It is useful to know how to implement Dirichlet boundary conditions for Finite Difference
schemes (FD). To this end we can consider, without loss of generality, the first order FD, and we
introduce into this scheme two imaginary grid points ψ−1 and ψN and set their values to zero. We see
that this is equivalent to the truncation of the 2nd order FD matrices that we used in the previous
chapter.

Problem 4.14: (Teamwork) Given an (almost) arbitrary set of functions Φi(x) on the interval
[a, b]. Give an algorithm to construct a linear combination of these functions

~B(x) = ~Φ(x)M̂ (2.96)

with B0(a) = 1, B1(b) = 1, and Bm(a) = Bm(b) = 0 everywhere else. What are the minimal
requirements on the Φi’s for such a construction to be possible?

Hint: The construction is not unique. One possibility is to first construct two functions B0 and B1
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from any pair of functions Φi0 ,Φi1 . This requires invertibility of the matrix

C =

(
Φi0(a) Φi1(a)
Φi0(b) Φi1(b)

)
(2.97)

All other functions can then be constructed as

Bm = Φm +B0a0 + B1a1 (2.98)

with suitable a0, a1.

Problem 4.15: (Teamwork) Implement the above algorithm in Python: write a class FiniteElement
that is derived from class BasisFunction above. The constructor takes an arbitrary object of class
BasisFunction and creates a new object of transformed functions.

2.5 Managing your codes: Git

The idea of code management systems like “Git” is that somewhere there exists a repository, where
one can store and retrieve code. The system keeps track of every change that is applied to the code
(who does this change, when, etc,...) and it is also possible to access all the previous versions of your
code. Another feature that makes the system useful is that it gives you a warning in case that there
is a conflict. A practical example of conflict is that two developers try to fix the same bug in the
program at the same time: in this case they will receive a warning that will allow them to compare
the two versions and then choose which version to finally “commit” to the repository.

At present, Git is possibly the most advanced of such code management systems. An older system
that you may encounter is SVN (“subversion”), with similar, slightly less advanced functionality and
command structure.

Problem 5.16: (Teamwork) Learn how to use the Git version control system:

1. Development teams: sign up for one of the “teams”.

2. Together, decide for a name of the team.

3. Download and install git.

4. clone the computational physics repository

prompt>git clone ssh://User.Name@git.physik.uni-muenchen.de:/pub/scm/CompPhys2014.git

prompt>cd CompPhys2014

5. Create and checkout a new branch “team name”

prompt>git checkout -b team_name
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6. Modify the file readme.txt to include your team’s and members’ names and commit the changes
using

prompt>git add readme.txt

prompt>git commit readme.txt -m "Added team and member names to readme.txt"

7. Inspect the history of the branch by “git log”.

8. Inspect the difference between the original and the newly committed changes (“git diff master”).

9. Try to add your newly written module “finiteelement” (previous problem) to your team branch
(not to the master branch).

10. Push your team’s branch to the server using

prompt>git push origin team_name

Use git documentation (man git on linux) or online references to find out how to exactly do all this.
Example reference: http://git-scm.com/book/en/

2.6 How to solve the eigenvalue problem

(Golub, van Loan)
Let us go back to the harmonic oscillator (H.O.). We learned two different ways to implement it:

• Finite difference (FD) schemes

• Basis set representations.

The FD schemes are simple, but not very accurate for fixed N , while the basis set representations
can be very accurate. But do we get the ”better” performance of the basis set representations for
free? The answer is: not necessarily. In general it is ”expensive” to solve the eigenvalue problem
with the basis set representations, because T̂ and V̂ are full matrices. Yet, we can get very high
accuracies. In turn, the FD scheme is “cheaper”, but limited in the accuracy that can be reached.
To understand the performance criteria for both approaches, we have to look at the fundamental
problem of how the eigenvalue problem is solved for matrices.

The idea of the eigenvalue problem is to solve:

det(Â− λÎ) = 0, (Î)nm := δnm. (2.99)

det(Â−λÎ) is a polynomial in λ (the so-called characteristic polynomial) of degree N−1 for a N×N
matrix Â. We know that the zeros of a general real polynomial cannot be written in the form a finite
number of root-expressions (Abel-Ruffini theorem). It is therefore plausible that the eigenvalues of a
matrix cannot be computed in a finite number of algebraic operations — all eigensolvers are iterative.
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2.6.1 Power method

The basic idea of this method is extremely simple: assume we have a diagonal N ×N matrix

(dA)mn = δmnam (2.100)

and we choose the indices such that |a0| ≤ |a1| ≤ . . .. Then in (dA)
n, the largest in magnitude

eigenvalue aN−1 will dominate all others. If we apply (dA)
k to any vector ~c that has a non-vanishing

N − 1-component cN−1, then ~qk = (dA)
k~c will be a vector that is dominated by its component ~qkN−1,

i.e. nearly proportional to the eigenvector (0, 0, . . . , 1). With increasing power k, the error decreases
∼ (|aN−2|/|aN−1|)k. In case of degenerate largest eigenvalues, one at least knows that the vector is
from the degenerate subspace.

The same happens for general matrices Â, as one readily sees by using the spectral representation:

Â = Û d̂AÛ
† =

N−1∑

n=0

~Unan~U
†
n (2.101)

Assume that we pick some (almost arbitrary) initial vector ~q(0) =
∑N−1

i=0
~Uici and compute (note that

Û Û † = 1⇔ ~U †
n
~Um = δmn):

~q(k) := (Â)k~q(0) = (Û d̂AÛ
†) · (Û d̂AÛ †) · ...︸ ︷︷ ︸

k times

·~q0 = Û(d̂A)
kÛ †~q0 = Û(d̂A)

kÛ †
N−1∑

n=0

~Uncn (2.102)

=
∑

n,β,γ,α

Uαβδβγ(aγ)
kδγncn =

∑

n,α

Uαn(an)
kcn =

N−1∑

n=0

~Un(an)
kcn. (2.103)

With |a0| ≤ |a1| ≤ ... ≤ |aN−1| the eigenvector for largest eigenvalue dominates:

(~q(k))N−1

(~q(k))N−2

∼
(
aN−1

aN−2

)k
cN−1

cN−2

(2.104)

In practice we do not need to use the spectral representation. We compute (Â)k~v and obtain

(aN−1)
k ~UN−1 + O(

(
aN−1

aN−2

)k
). The advantages of the power method are that it is straightforward,

easy to exploit for sparse matrices, and that it can rapidly converge for the largest (few) |an|. The
disadvantage is that it works only for the eigenvalue(s) with largest |an|.

If we sort the eigenvalues of a matrix Â such that a0 ≤ a1 ≤ . . . ≤ aN−1 (not |an|!), we see we
can determine the lowest (few) a0, a1, . . . as well as the highest . . . , aN−2, aN−1 by the power method:
suppose |a0| < |aN−1|, then direct application of the power method will provide aN−1. We can then

apply the power method to Ã := Â− aN−1Î to obtain the value of ã0 = a0 − aN−1.

2.6.2 Operations count, scaling of an algorithm, sparse matrices

The computational cost of the power method depends the number of iterations needed for conver-
gence, which in turn somewhat depends on the choice of the starting vector, but mostly on the ratio
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|aN−1|/|aN−2|. For the choice of the starting vector we can exploit knowledge of the solution vector,
if we have any such knowledge. In many cases random choice will be the best we can do. The
eigenvalue structure cannot be changed. The actual number of operations needed — “operations
count” in addition depends on the number of non-zero matrix elements. For a “full” matrix Â,
i.e. all Âij 6= 0, performing a matrix-vector multiplication Â~c requires N2 multiplications (which is
the operation that takes the most CPU time). Clearly, each matrix element counts and must be
multiplied onto some component of the vector:

for m in range(N):

for n in range(N):

ac[m]=ac[m]+a[m,n]*c[n]

Operations count

The total number of floating point operations needed is the operations count of an algorithm. Usu-
ally, additions are much faster than multiplications which in turn are much faster than divisions.
One should avoid doing large number of division (which can be often achieved by pre-computing
the inverses outside a loop). Multiplications are at the core of most algorithms and their number
determines the performance.

The operations count is what ultimately determines how long your code will run until completion.
In this example, we see that the time grows unpleasantly quickly, namely quadratically, with N2.
One says, an algorithm scales ∼ O(N2). Even worse, many important algorithms in linear algebra
scale with the 3rd power O(N3): linear system solving, matrix inversion, eigenproblem solving, and,
most prominently, matrix-matrix multiplication.

One topic that we will discuss later in more detail is that apart from operations count, in present
computers the access to memory can be a second, important bottleneck for performance.

A rule of thumb

If you have composed an algorithm consisting of nested loops and you find in the innermost loop
more than a single multiplication, chances are that you can move that multiplication outside the
innermost loop and thus safe almost a factor 2 in computation time.

Sparse matrices

These scalings hold for full matrices. When a matrix is sparse, i.e. when it has many matrix elements
Âij = 0, the operations count can drop significantly. Most obviously, for matrix-vector multiplication:

for m in range(N):

for n in range(N):

if a[m,n]==0: continue # skip multiplication

ac[m]=ac[m]+a[m,n]*c[n]

The will be only as many multiplications as there are non-zero matrix elements. Even this primitive
implementation can give large gains, as the check “a[m,n]==0” is much faster than multiplication.
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Only when the fraction of zeros to non-zeros in the matrix becomes comparable to the ratio of CPU
times for multiplication to comparison, the algorithm must be improved.

In operations other than matrix-vector multiplications, taking advantage of sparsity can be more
difficult. This notably includes many linear system solving algorithms or eigensolvers. We will come
back to this later.

Banded matrices

A very important class of sparse matrices are banded matrices where

Âij = 0 for |i− j| > b (2.105)

with band width b. With this extra knowledge about matrix structure, we can (slightly) improve the
algorithm for matrix-vector multiplication

for m in range(N):

for n in range(max(0,m-b),min(m+b,N)):

ac[m]=ac[m]+a[m,n]*c[n]

A total number of ≤ (2b + 1)N multiplications are performed. The algorithm is O(bN) (small
multiplicative factors like ∼ 2 are omitted in describing the scaling of an algorithm.) We do not
need to check our matrix elements as we know ahead of time that they are zero and we save these
operations, which will result in only a minor gain in time. The gains can be much more significant
for the O(N3) linear algebra operations mentioned above, many O(b2N) algorithms are available
for banded matrices. It is good to remind oneself of the numbers: with, for example, N = 104 and
b = 100, an algorithm for a banded matrix may be N2/b2 = 10000 times faster than the algorithm
for full matrices, for example one second vs. 3 hours!

Tensor products

Suppose, a matrix Â is the tensor product of two matrices, Â = B̂⊗ Ĉ, with dimensions M ×M and
N ×N , respectively. The dimension of Â is then I × I with I =MN and the matrix elements are

(Â)ii′ = (B̂)mm′(Ĉ)nn′ , i = m+Mn, i′ = m′ +Mn′. (2.106)

Clearly, while Â has I2 elements, it really contains only the information of the M2 + N2 matrix
elements of B̂ and Ĉ. A closer look shows that this can be used to dramatically reduce the operations
count for the matrix-vector multiplication Â~x, by the sequence operations

yi = ymn =
M−1∑

m′=0

(B̂)mm′xm′n (2.107)

zi = zmn =
N−1∑

n′=0

(Ĉ)nn′ymn′ (2.108)

Problem 6.17:
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• What is the operations count of the procedure above? Compare it with the operations count
of the naive application Â~c.

• Write a Python class “Tensor” that implements the above procedure and compare the actual
timing to the naive implementation. Use sufficiently large matrices to see reasonable times.
On Linux, you can use the “time” command. Does it scale as expected?

• Try to cast this procedure into the form of a triple matrix product

Ẑ = B̂X̂ĈT . (2.109)

• Apart from writing loops, e.g. for m in range(M):..., one can also use the numpy matrix-
matrix multiplication. Find and use it, compare the performance to a loop implementation.

Problem 6.18: Frequently, there arise operators in tensor product form, e.g. the single-particle
operators in few- and many-particle systems. Upon discretization in appropriate bases, matrices
in the product space arise that are tensor products of matrices in the factor spaces. E.g. the
Hamiltonian matrix for a system of two non-interacting particles has the form

Ĥ = Ĥ1 ⊗ 1+ 1⊗ Ĥ2 (2.110)

(Ĥ1 and Ĥ2 will be identical, if the two particles are identical). For ~c from the (discretization of)
the tensor product space H1 ⊗ H2, let the size of the discretizations of H1 and H2 be N1 and N2,
respectively, and therefore the total size of the discretization N = N1N2. Show that the matrix-
vector multiplication Ĥ~c can be implemented with operations count ∼ N2

1N2 +N1N
2
2 (assuming full

matrices). Write a Python class “Tensor” that implements the tensor product algebra and tensor-
vector multiplication.

2.6.3 Krylov subspace

The power method for eigenvalues is the most primitive representative of an important class of
methods that use the “Krylov subspace”

K(N,~q0) = span(~qn := (A)n~q0, n = 0, 1, . . . , N − 1) (2.111)

For the power method, although all vector are computed, only the last one ~qN−1 is eventually used
for computing the eigenvalue. Many modern methods try to take maximal advantage of the of the
complete Krylov subspace and build an approximate solution ~x as a linear combination of all Krylov
vectors ~qn:

~x =
N−1∑

n=0

cn~qn (2.112)

The advantage of Krylov methods it that their computations count is dominated by matrix-vector
multiplications, which can be implemented efficiently for sparse matrices, i.e. matrices where many
matrix element are =0. We will encounter some examples below.
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Krylov subspace method are reminiscent of polynomial approximations, as any vector from the
Krylov space can be written as a polynomial of the matrix applied to some starting vector ~q0:

K(N,~q0) ∋ ~x =
N−1∑

n=0

cn~qn =

(
N−1∑

n=0

cnÂ
n

)
~q0 (2.113)

2.6.4 List of algorithms for eigenproblems

In general, for full matrices, the operations count is O(N3). For banded matrices

M̂ij = 0 for |i− j| > b (2.114)

the operations count is O(N(b + 1)2). Note that a banded matrix is a sparse matrix with non-zero
elements concentrated only along certain diagonal bands. The parameter b is defined as the number
of off-diagonal elements different from zero, therefore for a diagonal matrix we will have b = 0 and
for the second order finite difference method b will equal 1 (second order: with only one off-diagonal
one gets E(h) = O(h3)).

What follows is a list of the more common algorithms used to solve eigenvalue problems:

• QR: It reduces the matrix into a tridiagonal form and then apply the power method to this
modified matrix.
Properties: Universal and robust (LAPACK)
Cost: 4N3/3 for reduction, tri-diagonal eigenvalues O(N), eigenvectors O(N2)

• Inverse iteration: Iterate ~c(n+1) = (Â− λ01)−1~c(n) for guess value λ0
Properties: Get single or a few eigenvalues (and eigenvectors) near λ0
Cost: 2N3/3 for LU factorization (O(Nb2) for banded) + O(N2)/O(Nb) per eigenvector.

• Jacobi: Systematically reduce the off-diagonal matrix elements by Jacobi rotation.
Properties: Not based on the power method, iterative, quadratic convergence, can be fast on
certain matrices, nicely parallelizable.
Cost: O(I ×N3), where I can become large because of the slow convergence.

• Lanczos: Krylov subspace method , smart construction of an orthogonal Krylov space basis.
Properties: Iterative, numerically quite unstable→ needs careful coding and lots of “tricks”.
Cost: Best for sparse matrices or tensor products (e.g.ARPACK).

Problem 6.19: The symmetric Lanczos algorithm is a method for finding a basis of vectors
|i〉, i = 0, 1, . . . ,M − 1, with respect to which a symmetric N ×N matrix Â, N ≥M is tri-diagonal

T̂ij := 〈i|Â|j〉 = 0 for |i− j| > 1 (2.115)

One can get approximations to the eigenvalues of Â by diagonalizing the tri-diagonal M ×M matrix
T̂ .
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• Find the algorithm on the web.

• Explain why the Lanczos method for approximating eigenvalues can be considered a Krylov
subspace method.

• Set up a random matrix with random elements, but enforce symmetry: Âij = Âji for arbitrary
N . (Use function numpy.random.random.)

• Implement the Lanczos algorithm for Â in python.

• For small N , say N = 5, check whether your T̂ is indeed tri-diagonal by computing the matrix
elements 〈i|Â|j〉.

• Verify by using N = M = 8 and showing that the eigenvalues of Â and T̂ agree. (Use

linalg.eigvals for computing the eigenvalues of Â and T̂ .)

• Increase N and investigate at which point the Lanczos algorithm breaks down.

Problem 6.20: (Teamwork) Implement the inverse iteration algorithm for a single eigenvalue a
nearest to λ0:

(Â− λ01)−1~b(k) = ~c(k−1), ~c(k) = ~b(k)/||~b(k)||, ã(k) = (~c(k))†Â~c(k) (2.116)

Use “krylov.py” (see website) as a model. For easier identification, call your code “inversiter.py”.
The code should have the following features:

• It must be documented!

• Give a desired accuracy ǫ and iterate only until the accuracy is reached.

• The following parameters should be read from the command line: N=matrix dimension,
λ0=guess eigenvalue, ǫ=desired accuracy

• Use the LU algorithm (linalg.lu factor and linalg.lu solve) to solve the system of linear equa-
tions.

• The inverse iteration result should be compared to the linalg.eig(. . . ) result.

• Use the module mytimer.py to compare the execution times and trace which part of the code
uses how much time.
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Power method for several eigenvectors and values

Problem 6.21: Explore the “Krylov subspace” {~q(i) := Ai~q, i = 0, 1, . . . , K − 1}: K(K,M) =
span(~q(K−M), ~q(K−M+1), . . . , ~q(K−1)) will contain reasonable approximations to eigenvectors for theM
highest eigenvalues. Choose a random N ×N matrix (i.e. a symmetric matrix with random entries

Âij = Âji ∈ [−1, 1]) of size N = 100. Compute its eigenvalues and vectors. Compare to the M = 10
approximations to eigenvalues obtained by the generalized eigenproblem

Â(K)~p(m) = Ŝ(K)~p(m)ã(K)
m (2.117)

where
Â

(K)
ij = ~q(K−M+i) · Â~q(K−M+j) (2.118)

and analogously Ŝ(K). Plot the converges ã
(K)
m → am as a function of K. Explain the observed

behavior. What is the operations count for obtaining these? How does compute time compare to
the compute time needed for a direct solution by numpy.eig()?

We have a matrix Â, which can be written as Â = Û d̂AÛ
†. We want to find an approximation

for the eigenvalues of Â, which we denote by ai. To this end we consider the N × M matrix
Q̂(0) = (~q

(0)
0 , · · · , ~q(0)m−1), where the ~q

(0)
i are linearly independent and we also consider the following

iterative scheme:

T̂ (k) =ÂQ̂(k−1)

Q̂(k) ≡orthogonalize(T̂ (k))
(2.119)span

We observe that, since we obtained ~q applying a basis transformation to ~t, we remain in the same
space, i.e. span(~q

(k)
0 , · · · , ~q(k)M−1) = span(~t

(k)
0 , · · · ,~t(k)M−1). Given these definitions and this iterative

scheme it is possible to see that the deviation of ~q
(k)
m from a linear combination of eigenvectors of

Â (represented by ~Un, i.e. the columns of the matrix Û) is equal to (aN−m−1

aN−m
)k, i.e. it can be done

arbitrary small by increasing k. The eigenvalues are assumed to be sorted by |ak| ≤ |al| for k < l.
In fact we have:

~t(k)m = Âk~q(0)m = Û d̂kAÛ
†~q(0)m = Û d̂kAÛ

†
∑

n

~Uncnm

︸ ︷︷ ︸
=~q

(0)
m

= (Û d̂kAÛ
†Û ĉ)m = (Û d̂kAĉ)m (2.120)

the m highest vectors will be enhanced relative to the lower ones by the factor indicated above.

Note: In this form the procedure only illustrates the principle. It is not used in practice. It requires
a certain caution if the matrix contains degenerate eigenvalues, and in some cases, it may not work.

2.7 Linear system solving — the LU decomposition

A standard way of solving a system of linear equations of the form

Â~x = ~c (2.121)
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is by the so-called “LU-decomposition”. This is the fact that any M × N matrix Â can be written
as two matrices L̂ and Û , which are lower and upper triangular, respectively

Â = L̂Û . (2.122)

which allows writing the solution

~x = Û−1L̂−1 (2.123)

We solve twice but with triangular matrices

Û~x = ~y, L̂[Û~x] = L̂~y = ~c (2.124)

The gain is that solving a system of linear equations with triangular matrices is easy. Operations
count for the decomposition is O(N3) (full square matrices) and system solving requires 2 × N2/2

operations. The method is particularly useful if several systems with the same matrix Â but different
“right hand sides” (rhs) ~cr, r = 0, 1, . . . , R− 1 are to be solved.

The decomposition can be chosen such that all diagonal values of L̂ are ≡ 1 (or, alternatively, all

diagonal values of Û) and therefore need not to be stored. The LU decomposition can then stored

in the storage of the original matrix Â.

Pivoting

For numerical reasons, which we do not discuss here, it is important to sort the indices of the matrix
in such a way, that the “pivot” elements are as large as possible. This can be done on both sides of
matrix

P̂ ÂQ̂ = L̂f Ûf (2.125)

(“full pivoting”) with the “permutation matrices” P̂ and Q̂

(P̂ )i,j = δi,p(j), , (Q̂)k,l = δk,q(l), , (2.126)

where p and q are permutations of j = 0, 1, . . . ,M−1 and l = 0, 1, . . . , N−1, respectively. Somewhat
simpler is “partial pivoting”

P̂ Â = L̂pÛp. (2.127)

Note that the operations count for P̂ Â is near negligible as all entries of P̂ are either 1 or 0 and no
multiplications are required.

Pivoting greatly increases numerical stability of the LU-decomposition.

LU-decomposition for banded matrices

For banded matrices, the factors L̂ and Û can be made to be banded. Operations count for decom-
position is O(b2N), for system solving it is O(bN).
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2.7.1 Timing of your code: how bad is N 3?

We have seen that the operations count for the eigenvalues problem goes usually as O(N3). We
want to understand what does this mean and especially we would like to see how advantageous it
is to have a banded matrix, for which we have seen that the operations count ∼ O(Nb2). On the
SVN depository trunk “mytimer.py” it can be found a program that has been written exactly to this
scope. On this program one needs to define a static variable (we remind that a static variable is a
variable that is kept between function calls), but this concept does not (still?) exist in Python and
therefore one is obliged to use slightly alternative methods.

In any case this program is of particular importance because it contains some general ideas that
are worth to be stressed:

• The importance of timing inside a program.

• How to keep variables that are inside a function between function calls.

• How to properly use tables.

2.8 Local basis sets

2.8.1 Comparison basis sets vs. grid methods

The main features of grid methods are:

• Banded matrix ⇒∼ O(Nb2).

• Low accuracy, given by hp where p is the order of the method and h is the step-size.

• It works only because the Schrödinger equation is often formulated as a PDE (partial differential
equation), with all local operators: derivatives and multiplication operators.

The main features of the (global) basis set are:

• Full matrix ⇒∼ O(N3).

• High accuracy for smooth solutions.

• Space of approximate solutions is well-defined: the space spanned by the basis functions is a
subspace of the Hilbert space.

• (General) basis set methods do not make use of the locality of the SE!
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2.8.2 Local basis sets — finite elements

We will now construct local basis sets that exploit the locality of the operators. The main idea
behind this method is the splitting of the interval into small pieces (not necessarily of equal size).
Then one needs to take M functions h for each interval and to approximate the solution to the
differential equation as a linear combination of this M functions. Let ψ be the exact solution and ψ̃
an approximate solution. We will have:

ψ(x) ≃ ψ̃ =
N−1∑

n=0

M−1∑

m=0

hmn(x)amn (2.128)

where hmn is such that hmn(x) = 0 for x /∈ [xn, xn+1], m = 0...M − 1. The functions have their
support on the finite element [xn, xn+1] If, in particular, the functions hmn are polynomials, we will
have a piecewise polynomial approximation of ψ(x).

Since we usually only deal with multiplication operators (e.g. potentials) and differential opera-
tors, discretization in terms of the localized functions leads to N disconnected problems, each of the
size M ×M . With what we learned about operations counts, numerical handling such a system is
much more efficient with scalings like, e.g. for the eigenproblem, NM3 instead of N3M3.

The problem here is that Ψ̃(x) is not continuous at xn, n = 1, 2, ..., N−1 and therefore we cannot
consistently define matrix elements, e.g. of the Laplacian −∆, for them. It would be too easy after
all: we cannot approximate one large problem, where in course of time every point may impact on
every other point in the problem, into many smaller sets of problems on subsets of the total points,
that are group wise totally unaware of each other.

As discussed earlier, the minimal requirement is that the functions are everywhere continuous
and at least differentiable almost everywhere (form domain, 1st Sobolev space). That is why we need
to impose a continuity condition:

lim
ǫ→0

[Ψ̃(xn − ǫ)− Ψ̃(xn + ǫ)] = 0. (2.129)

We can easily see that

Ψ̃(xn + ǫ) =
N−1∑

n′=0

M−1∑

m=0

hmn′(xn + ǫ)amn′ =
M−1∑

m=0

hmn(xn + ǫ)amn (2.130)

because hmn′(xn + ǫ) ≡ 0 for xn + ǫ /∈ [xn′ , xn′+1], i.e. for n
′ 6= n. Similarly

Ψ̃(xn − ǫ) =
M−1∑

m=0

hmn−1(xn − ǫ)amn−1. (2.131)

The continuity condition becomes

lim
ǫ→0

[Ψ̃(xn − ǫ)− Ψ̃(xn + ǫ)] =
M−1∑

m=0

(hmn−1(xn)amn−1 − hmn(xn)amn) = 0. (2.132)
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The condition at xn can be now be written as

~cn · ~a = 0 (2.133)

with

~cn =




...
0
0

h0,n−1(xn)
h1,n−1(xn)

...
hM−1,n−1(xn)
−h0,n(xn)
−h1,n(xn)

...
−hM−1,n(xn)

0
0
...




, ~a =




...
aM−2,n−2

aM−1,n−2

a0,n−1

a1,n−1
...

aM−1,n−1

a0,n
a1,n
...

aM−1,n

a0,n+1

a1,n+1
...




, len(~a) = N ×M. (2.134)

This condition at the point xn is a “linear constraint” on ~a: we require, that the ~a are orthogonal to
all ~cn. For each xn we need one ~cn and the total space of allowed coefficient vectors is a the subspace
of CMN of the vectors that are orthogonal to all ~cn:

~a ∈
{
~x ∈ C

NM |~cn · ~x = 0, ∀n = 0, 1, . . . , N − 1.
}

(2.135)

The constraint onto a subspace can always be formulated as a projection, represented by the matrix
Q̂, such that

~a = Q̂~x (2.136)

is an allowed coefficient vector for any ~c ∈ C
NM . The explicit form of these projectors is left as an

exercise.

We will bring the constraint to a simple and numerically efficient form. We can make transfor-
mation T̂n of the basis within each element [xn, xn+1] (compare the corresponding problem above):

fmn(x) =
M−1∑

m′=0

T̂mm′hm′n(x) (2.137)

such that

f0n(xn) = 1 = fM−1,n(xn+1) (2.138)

fmn(xn) = 0 = fmn(xn+1) for all other cases (2.139)
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If T̂ is non-singular (invertible) we have span(fmn) = span(hmn). Let now ~c
(f)
n be the constraint

vector with respect to the basis f :

~c(f)n =




...
0
1
−1
0
...



. (2.140)

And then the continuity condition reads:

~c(f)n ~a = aM−1,n−1 − a0n = 0⇔ aM−1,n−1 ≡ a0n . (2.141)

With these conditions at each xn, Ψ̃(x) is a good ansatz for a variational calculation.

Let us now set up the matrices T̂ and V̂ with the local basis f :

(T̂ )mn,m′n′ = 0 for n 6= n′ (2.142)

(T̂n)mm′ = 〈fmn| −
1

2
∂2x|fm′n〉 = −

1

2

∫ L
2

−L
2

dx (∂xfmn(x))(∂xfm′n(x)) (2.143)

(V̂n)mm′ = 〈fmn|V (x)|fm′n〉 =
∫ L

2

−L
2

dx fmn(x)V (x)fm′n(x). (2.144)

0 0 . . . . . .

0 0 0 . . .

...
...

. . .
...

...

0 . . . . . . 0

0 0 . . . . . .







T̂N

0 0 . . . . . .

0 0 0 . . .

...
...

. . .
...

...

0 . . . . . . 0

0 0 . . . . . .







Figure 2.2: Block scheme of matrices in the fmn-basis: without constraints(left) and after imposing
continuity contstraints (right)

Without the continuity condition, one obtains a block scheme of the FEM matrices shown on the
left of Figure 2.2. As, with our special basis fmn the linear constraint for xn reduces to identifying
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the index i = Mn with the neighboring i′ = Mn + 1, we obtain the matrix in the constraint space
by identifying the corresponding rows and columns. The total matrix size shrinks by the number of
constraints N − 1 and the matrix blocks overlap at their corners (Figure 2.2, right side). We get a
sparse (i.e. lots of zeros in the matrix) and banded (with band width b) matrix which is divided into

blocks (the m×M matrices T̂n).
This is the basic idea of the finite element method (FEM). There are a few alternative local basis

sets, as we will see later, but we used FEM to show the key features of the local basis sets.
In practice, we can, just add the overlapping blocks into the same large matrix. The matrix

element of (local) operator A at the n’th corner are then

∫ xn

xn−1

dxfM−1,n−1(x)AfM−1,n−1 +

∫ xn+1

xn

dxf0,n(x)Af0,n = (2.145)

∫ xn+1

xn−1

dx[fM−1,n−1(x) + f0,n(x)]A[fM−1,n−1(x) + f0,n(x)]. (2.146)

(The cross-terms have no overlap). We see that the procedure can also be understood as replacing
the non-zero boundary functions at n = 1, . . . N − 1 by pair-wise by “bridge-functions”

bn(x) := fM−1,n−1(x) + f0,n(x). (2.147)

2.8.3 Technical remark: block-matrices

It is possible to split the I × J matrix Â whose elements are given by:

(Â)ij, i = 0, 1, . . . , I − 1, j = 0, 1, . . . , J − 1 (2.148)

into blocks

Â =

(
ÂKM ÂKN

ÂLM ÂLN

)
(2.149)

with K + L = I, M +N = J and

(ÂKM)ij = Âij , i = 0, 1, . . . , K − 1, j = 0, 1, . . . ,M − 1 (2.150)

(ÂKN)ij = Âij , i = 0, 1, . . . , K − 1, j =M + (0, 1, . . . , N − 1) (2.151)

(ÂLM)ij = Âij , i = K + (0, 1, . . . , L− 1), j = 0, 1, . . . ,M − 1 (2.152)

(ÂLN)ij = Âij , i = K + (0, 1, . . . , L− 1), j =M + (0, 1, . . . , N − 1) (2.153)

To see how multiplication rule works for block matrices let us introduce the J × R matrix B̂ . Let
the blocking of its left hand indices match the blocking of the right hand indices of Â: J =M +N .
Its right hand blocking R = P +Q does not need to match any blocking of Â:

B̂ =

(
B̂MP B̂MQ

B̂NP B̂NQ

)
(2.154)
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Multiplication rules (almost) like for a 2× 2 matrix.

Ĉ := ÂB̂ =

(
ÂKM B̂MP + ÂKN B̂NP ÂKM B̂MQ + ÂKN B̂NQ

ÂLM B̂MP + ÂLN B̂NP ÂLM B̂MQ + ÂLN B̂NQ

)
(2.155)

This can be easily verified by restricting the index ranges i, r to the subranges K,L and M,N ,
respectively, and by splitting the summations over j:

(Ĉ)ir =
J−1∑

j=0

(Â)ij(B̂)jr =
M−1∑

j=0

(Â)ij(B̂)jr +
M+N−1∑

j=M

(Â)ij(B̂)jr (2.156)

Formally we can write

ĈUV = ÂUM B̂MV + ÂUN B̂NV =
∑

W={M,N}
ÂUW B̂WV , U = K,L, V = P,Q (2.157)

Note: Difference to ordinary numbers: matrices do not commute ÂUW B̂WV 6= B̂WV ÂUW , matrices
have a transpose AT 6= A in general, so we can not (always) treat block matrices as ordinary numbers.

Note: Many algorithms that work for ordinary number matrices can be generalized to block-matrices
(e.g. LU decomposition). The block-algorithms are often more efficient computationally, sometimes
more stable and often better readable.

Transpose of a block matrix
(
Â B̂

Ĉ D̂

)T

=

(
ÂT ĈT

B̂T D̂T

)
(2.158)

All of this, of course, works for any blocking of a matrix. Only the summation index J =M +N
must be blocked in the same way for both matrices.

Transformation matrix to finite element functions

A nice application of the formalism developed for block matrices is given by the finite elements
method. Let’s suppose we have only two points x0 and x1 and M functions per interval. We will
have the functions hm(x0), hm(x1), m = 0..M − 1. Let’s now introduce the 2×M matrix B̂, whose

elements are given by (B̂)bm = hm(xb), b = 0, 1. We will now split this matrix into blocks and we
will show how to obtain a transformation for the finite element basis functions.

Now with I = 2 (no blocking on the first index) and blocking J =: M = 2 +K (here subscripts
indicate the sizes of the individual blocks) we can write:

B̂ =
(
(B̂0)22 (B̂1)2K

)
(2.159)

T̂ =

(
(B̂−1

0 )22 −(B̂−1
0 B̂1)2K

0K2 1KK

)
(2.160)
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where 0K2 denotes a K × 2 matrix of zeros, 1KK the K ×K identity matrix. For the transformation
to finite element basis functions :

B̂T̂ =
(
(B̂0B̂

−1
0 )22 + (B̂1)2K0K2, −(B̂0B̂

−1
0 )22B̂1 + (B̂1)2K1KK

)
=
(
122, 02K

)
(2.161)

Note: Matrix T̂ is not unique.

2.8.4 Implementation of the FEM

Now we are interested in how to put the FEM into code. As we said we can write the single blocks
(the M ×M matrices T̂n) of the matrix T̂ as:

(T̂n)mm′ = 〈fmn| −
1

2
∂2x|fm′n〉. (2.162)

In Python we get the matrix T̂ by the following code:

T̂ [i0 : i1, i0 : i1]+= T̂n, (2.163)

where the += operation is defined in the following way:

T̂ [...] = T̂ [...] + T̂n. (2.164)

We use this operation because, as said before, there is an overlap of the single blocks in the matrix
T̂ . i0 and i1 depend on n and give the position of the M ×M matrix T̂n (single block) in the big

matrix T̂ . For the Ŝ matrix we do the same:

(Ŝn)mm′ = 〈fmn|fm′n〉, Ŝ[i0 : i1, i0 : i1]+= Ŝn. (2.165)

Now we have to compute the matrices T̂n and Ŝn. We can do that by using the quadrature. If we
do this for the matrix Ŝn we get the following result:

(Ŝn)mm′ =
P−1∑

i=0

fmn(xi)fm′n(xi)wi =
∑

i

vimwivim′ = V̂ T d̂wV̂ , vim = fmn(xi), (2.166)

where P is the number of quadrature points, xi are the quadrature points and wi the quadrature
weights. It is now easy to do it for the matrix T̂ . The result is:

T̂ =
1

2
D̂T d̂wD̂, (D̂)im := ∂xfmn(xi). (2.167)

So we need to compute the matrices V̂ and D̂ defined as:

(V̂ )im = fmn(xi) (2.168)

(D̂)im =
∂

∂x
fmn(xi) (2.169)

(2.170)
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This calculation can be looked up in the file ”basisfunction.py”.

Note: We must stress the fact that specifying the Jacobian when a change of variable for an integral
is performed is not enough, also boundary conditions play an important role. To illustrate better
this concept let’s consider the integral

∫ +∞
−∞ f(x)g(x) dx: in polar coordinates the radial component

will be:
∫ +∞
0

r2φ(r)χ(r) dr =
∫∞
0
U(r)V (r) dr where we defined U and V such that: rφ(r) = U(r)

and rχ(r) = V (r). The last expression shows that if we use the functions U and V we will have a
Jacobian = 1 and boundary conditions U(0) = 0, V (0) = 0, whereas if we decide to work with the
functions φ and χ we will have a Jacobian equal to r2 and the boundary conditions φ(0) and χ(0)
can be finite.

2.8.5 The “BasisFunction” object

In addition to what was already introduced in the exercises, for every set of BasisFunction we can
compute the matrices

| ...int j(q)dq v^* v

d|d ...int j(q)dq dv^* dv

|1/q^2| ...int j(q)dq v^* 1/q^2 v

|1/q| ...int j(q)dq v^* 1/q v

etc.. Note that the object potential(q) is defined elsewhere.

Problem 8.22: Extend BasisFunction by an instance “FDGrid” to incorporated the 2nd order
finite difference scheme into the BasisFunction on the same level as LegendreScaled and LaguerreEx-
pon. Extend your own solution (preferred) or use the model solution provided on the SVN repository
trunk.

For assembling the overall matrices from the matrices on each interval (as a limiting case there
may also be just a single interval) we define the

“Axis” object

Problem 8.23: An axis is an array of elements, including the case of a single element. It contains
all information about the discretization of a single coordinate axis. Write this class with the basic
properties

name... x,r,etc. (determines boundary conditions, jacobian,

maximal lower and upper boundaries)

n ..... number of discretization coefficients

lb..... actual lower boundary of the axis

ub..... actual upper boundary of the axis

e ..... array of one or several finite elements or a single set of BasisFunction

and a method
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matrix(string) ...return a discretized matrix as a numpy matrix

where “string” defines which matrix elements are formed. It is advisable to use the same “string”
definitions as in basisfunction.py. Use the class to solve the Schrödinger equation of the (3d) harmonic
oscillator and the hydrogen atom in polar coordinates and for angular momentum L = 0. (All needed
codes, exept for axis.py, are available on the SVN repository.)

Later more will be added, like overlap inv(), and there will be a couple of auxiliary routines like
show() for plotting, read() for reading the axis definitions from file, and things like type(), which
returns the axis type ’fem’,’scaledlegendre’,’fdgrid’, etc.

Note: Avoid information doubling: i.e. we could just define a variable self.type, which just carries
the string that the method type() returns. However, we then always need to make sure that the
information there corresponds to the actual type. The method type() just looks at the actual type
of the data “self.e” and determines the type, so that no error is possible.

Note: This principle is violated, for convenience, by the variable self.n.

2.8.6 Locality vs. orthogonality

We have no problem with orthogonality when we do not require continuity. The Legendre polyno-
mials, for example, are orthogonal (but not continuous). But if we want to implement differential
operators, continuity is the minimum requirement that we need. What we can do to get continuity
is to construct a new function on which we impose the continuity condition a10 ≡ a01. Effectively we
have a single basis function that has both elements as a support:

h̃01,10 = h01 + h10. (2.171)

There are two points of view to look at this:

• We impose the continuity condition on ~a.

• We merge two functions, i.e. h01 and h10, into one single new basis function h̃01,10.

Without continuity condition the blocks are independent. We can make each block orthogonal by a
similarity transformation and end up with a nice diagonal matrix. Because of the continuity condition
we move the blocks up and thus the single blocks are not independent. This kind of overlap matrix
we can bring to an almost diagonal matrix. This diagonal matrix is orthogonal except for the � and
shown in Figure ??.

2.8.7 Other local basis functions: B-splines, wavelets

B-splines

A different method for obtaining piece-wise local approximations for a solution are B-splines. In
general, a piece-wise polynomial approximation can be written as a sum of po bn(x) of degree M − 1

Ψ(x) ≈
N−1∑

m=0

bm(x)am, (2.172)
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where each bm has support only on a finite interval. One needs to make sure that sufficient continuity
is guaranteed. In FEM we did this by imposing a constraint on the coefficients. In B-splines, one
uses for the bm(x) functions that go smoothly to zero at their interval boundaris and one makes sure
that the intervals overlap.

One constructs such bm(x) by starting from a single polynomial of degree M − 1 and shifting
(and optionally scaling) it across the x-axis. Let b0(x) be a polynomial on an interval [0, s] with
boundary conditions b0(0) = b0(s) = 0. Outside the interval the b0(x) is equal to zero. We now shift
the polynomial by intervals s/M :

bi(x) = b0

(
x− i s

M

)
, (2.173)

see Figurefig4.
The first M − 1 of these functions all share the interval [ s(M−1)

M
, s]. On that interval, the linear

combination

Ψ(x) ≈
M−1∑

m=0

bm(x)am, , x ∈ [
s(M − 1)

M
, s] (2.174)

is again a polynomial of degree M − 1, parametrized by M coefficients. It is easy to see that all bm
are linearly independent, therfore the parametrization of Ψ(x) is an arbitray polynomial. This holds
for any s/M -sized interval, where M of the bm overlap. The end of the simulations box requires
some speciat treatment. In the simplest case, say for an axis [−L/2, L/2] one may just slowly let
the approximation degrade to the point such that for the first and last sub-intervals only the single
b0(x) and bN−1(x), respectivly, are non-zero.

We see that B-splines are very similar to FEM. One difference is that the non analyticity occurs
at every point where one bm(x) reaches its interval boundary. In contrast, in FEM,M basis functions
share the interval and non-analyticities only occur at the boundaries of this joint interval.

The main technical difference to FEM is that the matrices become evenly banded with band-
widthM−1 in B-splines. FEM has also band-widthM−1, but the matrix has extra zeros within the
band (block-like structure). Both methods are largely used and there are minor, mostly technical
differences. FEM may be more flexible because the method is formulated for general functions and
not only for polynomials.

x
b0(x) b1(x)

bm(x)M

Figure 2.3: B-splines

Let us have a look at the overlap matrix of the B-splines. It holds that

〈bi|bj〉 = 0 for |i− j| ≥M. (2.175)

That means that the overlap matrix is a band matrix which is shown in Figure 2.4.

Problem 8.24: Implement simple 3rd and 5th order B-spline schemes as follows:
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• Choose B
(0)
n (x) = xn

Wavelets

The idea of the wavelets is that you take one wavelet (like B-splines). The wavelet can be chosen
local. Then you shift it (like B-splines) across the axis. Again we have one initial basis wavelet w0(x).
By shifting we get the other wavelets: wM = w0(x− s). But we do not only shift the wavelets (like
uniform B-splines), but also scale some initial basis function:

wsl(x) = 2sw00(2
sx− l), (2.176)

where l sets the wavelet and s tells us how large the wavelet is.

The advantage is that we get high local resolution where we need it because we can approximate
smooth parts by a few wavelets and oscillating parts by increasingly more scaled wavelets. Presently,
it is little used in practice for solving differential equations of physics. But it is very important in
signal analysis and data compression (”harmonic analysis”). We will discuss this later more in detail
when we discuss Fourier representations and signal analysis.

2.8.8 Comparison FEM (or other local basis functions) with FD

Problem 8.25: Show that any finite element basis fmn(x) can be transformed such that the
overlap matrix elements take the following shape (for the notation, see lecture notes):

(Sn)mm′ = 〈fmn|fm′n〉 = dmnδmm′ + onδm+M−1,m′ + onδm−M+1,m′ (2.177)

Ŝ =

0

6= 0

0







M − 1

M − 1

Figure 2.4: Overlap matrix with B-splines. Red square shows how the matrix S looks like for the
FEM.
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i.e. it is diagonal except for one off-diagonal element that connects the first function of the element
to the last. Find an algorithm to do this and implement it in python. Is this construction unique?
Or is there still freedom that could be used, e.g. to get get other matrices sparser?
Hint: Construct f0n and fM−1n such that they are orthogonal to all remaining f ’s. Then orthogo-
nalize the “inner functions” m = 1, . . .M − 2.

Problem 8.26: Show that overlap matrix can be written in the form

Ŝ = Q̂Ŝ0Q̂, (2.178)

where Q̂ = 1−P̂ projects any vector ~a onto a vector that obeys the all continuity conditions ~a ·~cn = 0
for n = 1, . . . N − 1. Give the explicit form of P̂ .

Problem 8.27: (This may be a tough one. . . ) The inverse Ŝ−1Ŝ = Q̂ on the space of vectors ~a

that obey the continuity conditions Q̂~a = ~a (from which follows P̂~a = 0) can be written as

Ŝ−1 = Q̂Ŝ−1
0 Q̂− Q̂Ŝ−1

0 P̂ (P̂ Ŝ−1
0 P̂ )−1P̂ Ŝ−1

0 Q̂. (2.179)

How large are the matrices that need to be inverted? Assuming N elements and the M functions on
each element chosen in the “almost diagonal” form discussed above, what is the operations count for
this algorithm? What is the cost of applying Q̂, P̂ and the inverses? Prove the identity. Implement
the procedure.
Hint: For the prove write Q̂ = 1−P̂ , then it is just matrix algebra to show that ŜŜ−1 = (1−P̂ ) = Q̂.

Note: As Q̂ is a projector, the matrix Ŝ = Q̂Ŝ0Q̂ does not have an inverse on the complete space of
~a’s. However, when restricted to the space of vectors that obey the continuum conditions Q̂~a (the

“range” of Q̂), an inverse can be defined as ”Ŝ−1Ŝ = Q̂” where Q̂ 6= 1 is the projector.

Note: I have never seen this identity in this particular form in literature, but it is closely related
to the “Woodbury” formula for updating inverses of matrices, which in turn is member of a whole
family of low-rank updates for large matrices.

There is no orthogonal FEM basis

Suppose we have transformed our basis set to the “almost diagonal” form discussed above. Now we
can try to proceed and construct a fully orthogonal basis with the boundary conditions as defined
above. Therefore we must not linearly combine f0n(x) with fM−1,n(x). We can combine either of them

with functions fim, i = 1,M−2, but that will introduce non-vanishing overlaps (Ŝn)01 = 〈f0n|fin〉. So,
up to orthogonal transformations between the “inner” fin(x) the “almost diagonal” representation
is unique.

Now let us assume we DO have a local orthogonal continuous basis. Then, by our standard
construction, we can transform it to the “almost diagonal” form. But we just showed above that no
invertible such transformation exists. Therefore there exists no local continuous orthogonal basis.

52



The only requirement for the construction is that the B0 matrix of boundary values of at least
two of the functions is invertible. However, that condition just means that the values on one element
boundary can parameterized independently of the values at the other boundary. This clearly is a
prerequisite for any local basis set: we must not have an a priori fixed relation between values at two
arbitrary points of our solution.

This does it for the FEM, similarly for the B-splines. I believe, it is general for any local basis,
but still hoping for confirmation from the mathematical side.

2.8.9 DVR - “Discrete Variable Representations”

Choose a grid on some interval [a, b] such that the xi’s are the quadrature points of some quadrature
rule (e.g. orthogonal polynomials). TheM th order polynomial is exactly defined if we know its values
at xi. The ansatz that we make is the following:

Ψ(x) ≈ PM−1(x), ai = PM−1(xi), (2.180)

where xi are the quadrature points of some Gauss-quadrature. This is the parameterization of our
wave function Ψ(x) and uniquely defines Ψ(x). The gain of the DVR is that we can easily do integrals:

∫
|Ψ|2 dx =

M−1∑

i=0

|ai|2wi. (2.181)

It is also easy to compute the overlap integral on an interval [a, b]:

∫ b

a

dx v(x)Ψ∗(x)Ψ(x) =
M−1∑

i=0

wi|Ψ(xi)|2, (2.182)

where v(x) is the weight belonging to the orthogonal polynomials. The integrals are exact if Ψ(x) is
a polynomial of degree M −1 (i.e. oder M). Suppose now that, for example, we compute a potential
x2 on an interval [a, b]:

∫ b

a

dx v(x)|Ψ(x)|2x2 ≈
M−1∑

i=0

wi|Ψ(xi)|2x2i . (2.183)

The polynomial Ψ(x) will be of degree M − 1, i.e. Ψ(x)2x2 is of degree 2(M − 1) + 2 = 2M . The
integral is not anymore exact and we make a (small) quadrature error. Suppose that we choose
M = 100. Loosing one point may not make a big difference if Ψ(x) is smooth. So the error is small
and can usually be neglected for practical purposes. However, we do lose rigorous upper bounding
property of our variational ansatz. Unfortunately the representation of differential operators will
in general be represented by full matrices.

Assume that we have a set of orthogonal polynomialsQn, n = 0, 1, . . . , N−1 and the corresponding
N -point quadrature rule (xi, wi), i = 0, 1, . . . , N − 1. Then our wave function can be represented by:

Ψ
(Q)
~b

(x) =
N−1∑

n=0

Qn(x)bn = ~Q(x) ·~b. (2.184)
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Then the corresponding DVR representation in terms of ~aT = (a0, a1, . . . , aM−1) simply is:

Ψ
(Q)
~b

(xi) =
N−1∑

n=0

Qn(xi)bn = ~Q(xi) ·~b = ai (2.185)

or
~a = Q̂~b, Q̂in = Qn(xi). (2.186)

It is easy to see that Q̂ is invertible and just generates a similarity transformation, i.e. a change of
basis.

Let us now define some new polynomials:

Pi(x) :=
N−1∑

n=0

wi(Q̂)inQn(x), or ~P (x) = d̂wQ̂ ~Q(x), (2.187)

where (d̂w)ij = δijwi.

Note: In general, the degree of Pi(x) is > i− 1, i.e. for example Pi is a polynomial of degree N − 1.
With these new polynomials the wave function can be written in the following way:

Ψ(x) =
N−1∑

n=0

Pi(x)ai =: ~P (x) · ~a. (2.188)

The overlap matrix of the Pi(x) on an interval [a, b] is given by:

∫ b

a

dx v(x)Pi(x)Pj(x) =
N−1∑

k=0

wkPi(xk)Pj(xk) =
N−1∑

k=0

wkδikδjk = wiδij. (2.189)

In the last step we used that Ψ(xj) = aj for xj being a quadrature point. This means that the poly-
nomials Pi are orthogonal and thus Pi(xj) = δij. The Lagrange polynomials obey these properties.
So the new basis are the Lagrange polynomials for the points xi.

FE-DVR

The idea is to pick for the FE polynomials the Lagrange polynomials on a quadrature grid where
two points are fixed at the interval boundaries (Lobatto quadrature). This is a FE basis with:

L0(x0) =LM−1(xM−1) = 1

Lm(x0) =Lm(xM−1) = 0 ∀m 6= 0,M − 1
(2.190)span

The overlap matrix will now look like:

M−1∑

i=0

wiLm(xi)Ln(xi) = δmnwn (2.191)

We have orthogonal polynomials for the FEM, but this contradicts all the things we said above about
the fact that continuity requirements destroy orthogonality. The catch is that if we specify M points
in the Lobatto quadrature we obtain an accuracy only up to degree (2M −3). This happens because
by fixing two points (those at the interval boundary) we lose two degrees of freedom.

54



2.9 Higher (two-)dimensional problems

The Hamiltonian of the harmonic oscillator in 2 dimensions is

H(x1, x2) =
2∑

i=1

−1

2
(∂2x)i +

1

2
x2i = H(1) +H(2) (2.192)

More precisely
H(2) = H(1) ⊗ 1+ 1⊗H(1) (2.193)

where ⊗ represents the tensor product.
The tensor product structure of the operator can be exploited computationally, if we choose the

discretization of the two-dimensional Hilbert space H in product form, i.e.:

b
(2)
i (x1, x2) = b(1)mi

(x1)b
(1)
ni
(x2) = b(1)mi

(x1)⊗ b(1)ni
(x2) (2.194)

In this basis, the Hamiltonian matrix has tensor product form

(Ĥ(2))ij = 〈b(2)i |H(2)|b(2)j 〉 = 〈bmi
⊗ bni

|H(1) ⊗ 1+ 1⊗H(1)|bmj
⊗ bnj

〉 (2.195)

= 〈bmi
|H(1)|bmj

〉〈bni
|bnj
〉+ 〈bmi

|bmj
〉〈bni
|H(1)|bnj

〉. (2.196)

In compact notation, Ĥ(2) can be written as the sum of two tensor products

Ĥ(2) = Ĥ(1) ⊗ Ŝ(1) + Ŝ(1) ⊗ Ĥ(1) (2.197)

with (Ĥ(1))km = 〈b(1)k |H(1)|b(1)m 〉. Similarly for Ŝ(2) = Ŝ(1) ⊗ Ŝ(1)

2.9.1 Tensor product

Tensor product space

As a brief reminder, the tensor product space H = H1 ⊗H2 of two Hilbert spaces H1 and H2 is the
space spanned by all linear combinations of tensor products of functions φi ∈ H1 and χj ∈ H2:

H ∋ Ψ =
∑

ij

cijφi ⊗ χj (2.198)

The scalar product for single tensor products in H

〈φi ⊗ χj|φk ⊗ χl〉 = 〈φi|φk〉〈χj|χl〉 (2.199)

and for general functions Ψ,Φ ∈ H by using the anti-bilinearity of the scalar product

〈Ψ|Φ〉 =
∑

ij,kl

c∗ijckl〈φi ⊗ χj|φk ⊗ χl〉 (2.200)
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Tensor product of operators

Let the operators be A1 : H1 → H1 and A2 : H2 → H2, then the tensor product of T = A1⊗A2 acts
on any tensor product φ⊗ χ as

(A1 ⊗ A2)(φ⊗ χ) = (A1φ)⊗ (A2χ) (2.201)

The action on general Ψ ∈ H is defined by linearity, similarly as in the case of the scalar product.

Tensor product of two matrices
(
Â⊗ B̂

)
kl,mn

= (Â)km(B̂)ln, i = 0, ..KL, j = 0..MN (2.202)

The new KL×MN matrix is very large, so we see that things get quite complicated in more dimen-
sions as problem size grows exponentially with the number of dimensions (curse of dimensionality).

Straightforward implementation

The tensor class in the program tensor.py represents a tensor operator as a list of tensor products of
factor matrices and scalar multiplicative factors:

T =
∑

i

ciÂi ⊗ B̂i (2.203)

In the python program we can use operator overloading for notational clarity use in general
algorithms. when defining __add__. If we let T, S be tensors then

T + S =
I−1∑

i=0

ciÂi ⊗ B̂i +
J−1∑

j=0

djĈj ⊗ D̂j =
I+J−1∑

k=0

ekÛk ⊗ V̂k (2.204)

and this operation is implemented by writing T+S wich is equivalent to the function T.__add__(S)

2.9.2 Polar coordinates in 2 dimensions

Problem 9.28: Plane waves and trigonometric functions are well-suited as basisfunction for
periodic problems. Let pn(x) = exp[2πix(n−N/2)/L], n = 0, 1, . . . , N − 1, N even, and let Ψ(x) be
a periodic function Ψ(x) = Ψ(x+ L). Then the basis set expansion

Ψ(x) ≈
N−1∑

n=0

pn(x)cn = ~p(x) · ~c, cn =
1

L

∫ L

0

dxp∗n(x)Ψ(x) (2.205)

is the (truncated) Fourier series.
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• Show that the points xj := jL/N, j = 0, 1, . . . , N − 1 and weights wj ≡ L/N provide a
quadrature rule ∫ L

0

dxf(x) ≈
N−1∑

j=0

wjf(xj) (2.206)

which is exact for the 2N − 1 dimensional space of functions

f~c(x) =
N−1∑

m=−N+1

e2iπxm/Lcm. (2.207)

Hint: It is sufficient to show that

∫ L

0

dxe2iπxm/L =
N−1∑

j=0

wje
2iπxjm/L = δ0mL. (2.208)

Note: This means in particular that all overlaps 〈pn|pm〉 can be evaluated exactly with N
points of this quadrature.

Note: Close analogy, but also difference to Gauss quadratures: an N -point Gauss quadrature
is exact on the polynomials up to degree 2N − 1, which is a 2N dimensional function space
(one more!).

• Give the matrix representation of −i∂x in this basis.

• Assume N even and construct a purely real basis of sines and cosines

qn(x) =

{
(pn/2(x) + pN−n/2(x))/2 for 0 < n even
(p(n+1)/2(x)− pN−(n+1)/2)(x))/2i for 0 < n odd

(2.209)

and q0 ≡ 1.

• Give the matrix representation of −i∂x in the sine-cosine basis.

Problem 9.29: Implement 2-dimensional polar coordinates, for which the kinetic energy term
has the form

− 1

2

1

ρ
∂ρρ∂ρ −

1

2

1

ρ2
∂2φ (2.210)

and solve the 2d harmonic oscillator in these coordinates. For the implementation, go through the
following steps:

1. In “axis.py”, introduce two new axis types “rho” on [0,∞) and “phi” on [0, 2π] with the
appropriate boundary conditions and Jacobians.

2. In “axis.py”, add an axis kind==’trigon’.
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3. In “basisfunction.py” introduce a new basis set “CosSin” defined as follows

bn(φ) =

{
cos(πnφ) for n even
sin(π(n+ 1)φ) for n odd

(2.211)

4. Use as the “quadrature rule” for the trigonometric functions the rule established above.

5. Extend “se2d.py”: define axes “arho” and “aphi”, set up the factors of the tensor product, and
put together the total Hamiltonian as

1

2
[(D̂(ρ) + P̂ (ρ))⊗ Ŝ(φ) + Q̂(ρ) ⊗ D̂(φ)] (2.212)

(D̂, P̂ , Q̂, Ŝ denoting derivative, potential, 1/ρ2, and overlap matrices, respectively.

How does sorting of the coordinates ρ, φ or φ, ρ affect the matrix band width?

2.9.3 An atom in external fields

We will now discuss the problem of an atom in external fields. It is a simple, but in general not
solvable problem. We will consider an static external electric field and thus have to discuss the linear
and quadratic Stark effect.

Static electric field

The Hamiltonian in the case of an atom in a static external field reads as follows:

H~E = −1

2

1

r
∂2rr +

1

2r2
L2 − 1

r
− ~E · ~r (2.213)

We want to calculate the eigenvalues of this problem. For simplicity we choose the coordinate
system in such a way that the direction of the field is the z-direction, i.e. ~E = (0, 0, E). Thus ~E · ~r
becomes Ez with z = cosΘr. The discretization of the Hamiltonian is:

Ĥ = T̂ + V̂ + ED̂, (2.214)

where D̂ is the dipole interaction. The kinetic energy term can be written in the following form:

T̂ = T̂ (r) ⊗ 1(Ω) + Q̂(r) ⊗ L̂2
(Ω)
. (2.215)

While the potential and the dipole interaction can be written as:

V̂ = V̂ (r) ⊗ 1(Ω), (2.216)

D̂ = D̂(r) ⊗ D̂(Ω). (2.217)
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We use the standard notation of the polar coordinates, where Ω = (Θ, ϕ). As the basis we choose
for the radial coordinate (r) the FE and for the angular coordinates (Ω) spherical harmonies Ylm.
As the spherical harmonics are eigenfunctions of Lz and L2, the Laplacian becomes diagonal with
respect to the discretization in l,m.

To get the matrix of the dipole interaction D̂ we compute:

〈i|z|j〉 = 〈bni
(r)|〈Ylimi

(Ω)|r cosΘ|bnj
(r)〉Yljmj

(Ω)〉 = 〈bni
(r)|r|bnj

(r)〉〈Ylimi
(Ω)| cosΘ|Yljmj

(Ω)〉.
(2.218)

We can compute the angular part by numerical integration, but there are relations for the spheri-
cal harmonies that make everything easier. It turns out that cosΘYlm is again a linear combination
of only two spherical harmonics

cosΘYlm(Θ, ϕ) =

[
(l + 1 +m)(l + 1−m)

(2l + 1)(2l + 3)

] 1
2

Yl+1,m +

[
(l +m)(l −m)

(2l + 1)(2l − 1)

] 1
2

Yl−1,m. (2.219)

Here we can see the dipole selection rule. The Ylm can change the azimuthal quantum number only
by one, the m-quantum number remains unchanged. This is good for our computation because we
will get a very sparse matrix. The elements of the angular part of the sparse matrix are given by the
following equations:

〈Yl−1,m| cosΘ|Yl,m〉 =
[
(l + 1 +m)(l + 1−m)

(2l + 1)(2l + 3)

] 1
2

〈Yl−1,m|Yl+1,m〉︸ ︷︷ ︸
0

+

[
(l +m)(l −m)

(2l + 1)(2l − 1)

] 1
2

〈Yl−1,m|Yl−1,m〉︸ ︷︷ ︸
1

(2.220)
and thus the angular part of the matrix for the dipole interaction reads:

(D̂(Ω))lm,l′m′ = 〈Ylm| cos θ|Yl′m′〉 = δmm′ [δl+1,l′ + δl,l′+1]dlm (2.221)

with

dlm =
(l +m)(l −m)

(2l + 1)(2l − 1)
. (2.222)

That is why we get a matrix with respect to l and l′:

D(Ω) =




0 d0 0 0 . . . 0
d∗0 0 d1 0 . . . 0

0 d∗1 0 d2 . . .
...

...
. . . . . . . . . 0

0 · · · . . . 0
. . .

0 · · · . . . 0




. (2.223)

Note: Fill in the lower diagonal using hermiticity.
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2.9.4 Soft skills: input and output

For studying the behavior of a physical system, for checking numerical stability and convergence, or
for debugging, one typically runs the same program with many different inputs. It is advisable to
keep track of the results of the many different runs.

Here there is one very practical way of doing this:

• Get the input parameters from a file, say “foo.inp”.

• For repeated runs, edit that file, i.e. keep it open in an editor.

• For running, save the file and run the program.

• For each run, the program creates a new subdirectory, say “foo/00xx/”, where the run-number
“00xx” is incremented automatically.

• The current input file is copied into “foo/00xx/inp”, all output is written to a single or several
files “foo/00xx/outfile1”, “foo/00xx/timing”, etc.etc.

• In addition, the subdirectory may contain information about which code version was run. If
you are connected to svn, you may just redirect the output of “svn info” and “svn diff” to a
file, say, “foo/00xx/version info”

− 1

r

ǫz

− 1

r
+ ǫz

Figure 2.5: The green line shows Coulomb potential + dipole interaction energy. In particular the
bigger is x, the lowest the energy. At large x, arbitrarily low potential energies and therefore also
arbitrarily low total energies can be realized: the system atom+static dipole field has not ground
state energy.
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Linear and quadratic Stark effect

A brief reminder about the Stark effect: In presence of an external electric field, the spectral lines of
atoms and molecules shift and split. The quadratic Stark effect appears in second order perturbation
theory as

E(E) = E0 −
α

2
E2. (2.224)

For the ground state, α always positive and the ground state energy is lowered by the external static
field.

The linear Stark effect of the hydrogen atom is a case of a degenerate perturbation theory. The
external field lifts the degeneracy of the angular momentum states. In the simplest case of the
degenerate n = 2, l = 0, 1 states one has

E2 ± βE (2.225)

where E2 = −1/8 is the unperturbed energy. It is important to note that the Hamiltonian for
the hydrogen atom in an external field does not have a lower bound and has a strictly continuous
spectrum.

Problem 9.30: Trace the Stark-shifts and splittings of the n = 1, 2 states of hydrogen as a
function of the electric field E . For small fields, you can just use the existing “hfield.py”. For larger
fields, bound states become increasingly embedded in the continuum states. One strategy to find
them is to increase the field in small steps and trace the evolution of the energies.

Identify the range of validity of the linear and quadratic regimes for the Stark effect.
Can we rigrously apply the minmax principle? What is the meaning of the discrete eigenvalues

that we obtain from our numerical approximation?

2.9.5 More general potentials - integrations in 1 and more dimensions

Let us consider the 1-d Morse potential (see figure 2.6)

V (r) = De[1− eα(r−re)]2 (2.226)

In order to compute the matrix element V̂ij =
∫∞
0
r2V (r)hi(r)hj(r) dr we have different possibil-

ities:

• Analytical integration: is possible only sometimes. Further this option has the disadvantages
that we must perform all the calculations again if a different potential is chosen and that the
numerical evaluation of the analytical expression can be numerically unstable. It can be a good
choice in higher dimensions.

• Recurrence relations: We will see more about that later, for the moment it is important to
know that they require a some caution concerning numerical stability.

• Quadratures: This method is exact for polynomials times the respective weight function.
It still gives a good approximation for smooth functions (functions with a convergent Taylor
series). Some problems may arise when the function V (r) we want to integrate is not smooth in
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re
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Figure 2.6: Morse Potential

certain regions: compare the problem in the section on orthogonal polynomials and quadratures.
In order to apply the method efficiently in cases with non-smooth integrands one can create a
specialized quadrature rule for a given positive definite weight function. For example, integrable
singularities like V (r) ∼ 1√

r
can be computed by Gauss-Jacobi quadrature. The integrals∫∞

0
dr√
r
Pn(r) exist and orthogonal (Jacobi) polynomials can be constructed. As a rule, Gauss

quadratures, when applicable, are very efficient.

• Adaptive integration: by the recursive algorithm below.

• Monte Carlo integration: Of great importance in some areas of physics. When little is
known about the integrand a good choice. In high dimensions, often the only viable method.
Good for obtaining low accuracy estimates, slow convergence∼ N−1/2 in the number of function
evaluations N . A seperate chapter will be devoted to such methods.

2.9.6 Recursive algorithms

Recursive integration in one dimension

We will now look at recursive integration in more details, also because it is a nice prototype for
recursive algorithms.

The idea behind recursive integration is to take a quadrature rule on an interval [a, b] and check
the accuracy of our result. Let’s suppose we choose to work with a Gauss-Legendre quadrature; we
will have:

f(x) =
2N−1∑

i=0

f (i)(x0)
(x− x0)i

i!
+O(

f (2N)(q)(b− a)2N
(2N)!

) (2.227)

where q ∈ [a, b]. In the next step we will have to check the accuracy of our result and in order to
do that we split the interval [a, b] into two parts: [a, a+b

2
] ∪ [a+b

2
, b] and we compare the results that
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we obtain on the full interval with those that we obtain on the split intervals. Then we repeat this
process until we reach the desired accuracy. If the functions we work with are smooth enough, we
will usually manage to keep the error under control. Especially we will have an error which shrinks
extremely fast with the interval size, and that is the reason why we halt the interval every time.

To sum up, the general strategy behind recursive integration is given by the following scheme:

• Get some quadrature rule with accuracy O((a− b)p) on interval [a, b].

• Check accuracy of the integral by comparing two integrals on split interval.

• If desired accuracy reached return result

• Iterate on sub-intervals: [a, (a+ b)/2] and [(a+ b)/2, b].

Failure of relative accuracy check

The natural stopping criterion for recursive integration is the comparison of the relative error with
the accuracy we want to work with. However there are certain pathological situations in which one
must take a certain caution, since this stopping criterion is never fulfilled and a typical example is
given by the case of cancellation error.

Example: Suppose we want to calculate the following integral:
∫ 2π

0

sin(x) dx. (2.228)

We know that the analytical result is zero, but a computer will give ǫ3 as an answer. If we split the
interval of integration in two parts we will have:

∫ π

0

sin(x) dx = 2 ≃ 2 + ǫ1

∫ 2π

π

sin(x) dx = −2 ≃ −2 + ǫ2. (2.229)

The relative error is ǫ1+ǫ2
ǫ3
≃ 1 if ǫi is machine precision. So in this case, the algorithm will not stop

base on relative error only. We need an additional stopping criterion, namely the absolute accuracy:
if the value of an integral changes by less than an some absolute error, we consider the calculation
converged. For giving meaning to this, we need some outside information which absolut error we will
consider as small.

Quadrature in higher dimensions

The general higher-dimensional integral over a rectangular volume can be defined by a recursion of
1-d integrations:

F0 =

∫

V0⊂Rn

d(n)xf(x0, x1, . . . , xn−1) =

∫ b0

a0

dx0

∫ b1

a1

dx1 . . .

∫ bn−1

an−1

dxn−1f(x0, x1, . . . , xn−1)(2.230)

=

∫ b0

a0

dx0F1(x0; a1, b1, . . . , an−1, bn−1) (2.231)
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where

F1(x0; a1, b1, . . . , an−1, bn−1) =

∫

V1⊂Rn−1

dx1 . . . dxn−1df(x0; x1, . . . , xn−1) (2.232)

The general recursion is defined as

Fi(x0 . . . xi−1; ai, bi, . . . , an−1, bn−1) =

∫ bi

ai

dxiFi+1(x0 . . . xi−1; xi; ai+1, bi+1, . . . , an−1, bn−1) (2.233)

with the truncation point

Fn(x0, x1, . . . , xn−1) = f(x0, x1, . . . , xn−1) (2.234)

Can be easily extended to general volumes.

Problem 9.31: Recursive algorithms: write a n-dimensional recursive integration algorithm
recursive_integral.py by extending recursive_integral_1d.py. Use integral_nd.py as the
basic integrator.

Hint: Describe the n-dimensional volume as in integral_nd.py by the interval boundaries in each
dimension. The only difficulty is to systematically split this volume into 2n subvolumes. An elegant
way of doing this is by using the binary representation of m ∈ 0, 1, . . . , 2n − 1 to indicate where the
lower corners of each sub-volume are located, e.g. for n = 2: m=0=(00) - lower left, m=1=(01) -
lower right, m=2=(10) - upper left, m=3=(11) - upper right. One way of obtaining all bit values of
an integer M < 2n is

m=M

for p in range(n):

bit[p] = m%2

m=m/2

2.9.7 1d “Helium” atom

Problem 9.32: The “1-d Helium” model has the following Hamiltonian

H(2)(x1, x2) = H(1)(x1) +H(1)(x2) +
1√

(x1 − x2)2 + 0.5
(2.235)

with the single particle Hamiltonian

H(1)(x) = −1

2
∂2x −

2√
x2 + 0.5

(2.236)

• Compute the ground and first few excited states of H(1) in a high order finite element basis.
Make sure the result is accurate. (Which remarkable number do you obtain for the ground
state energy?) For the integrals, use high order quadratures and make sure they are accurate.
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• Compute ground and first few excited states of H(2). For the integrals, use the (new) function
“interaction” in “basisfunction.py”. You can also use the current “potential.py”, which includes
“cou1d(Z,a)”: −Z/(x2 + a).

• Verify your code using harmonic oscillator potentials instead of the ‘’1-d Coulomb” potentials.

• Get an estimate of the accuracy of your calculation by looking at the convergence.

• Plot the particle density |Ψ(x1, x2)|2 of ground and first few excited states.
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Chapter 3

2-particle systems

3.1 Exponential growth of problem size

The size of the problem grows with increasing (spatial) dimensions. In an one dimensional problem
we have a wave function Ψ~a(x) where the ai’s are the expansion coefficients. The number of expansion
coefficients can be associated with poins of a grid (e.g. the quadrature points of a DVR method). If

we now suppose that we have ai, i = 0, 1, ..., 9 (i.e. discretized with ten discretization coefficients) Ĥ
is only a 10× 10 matrix, which, in for a one-dimensional problem, can give reasonable results.

If we have a problem that includes a single particle in three dimensions (e.g. hydrogen atom) we
have a discretization with ten points on each coordinate (e.g. x, y, z). That gives us 103 = 1000 grid
points and thus 1000 ai’s. The discretized operators will be 1000× 1000 matrices.

If we now have a two particles system in three dimensions (e.g. helium) we get 106 points and

Ĥ is a 106 × 106 m matrix. If full, its storage alone requires 1012 × 8 bytes, which is around ten
terabytes. The operations count is correspondingly high. Even with the rather poor discretization
of each coordinat, doing such a calculation is nearly ruled out. The exponantial scaling Nd for d
dimensions and N grid points per dimension is known in numerics as the curse of dimensions:
very clearly, a direct approach this must fail quickly. The curse of dimensions is nothing that is
specific to numerics. It simply reflects the enormous amount of information that can be contained
in a multi-dimensional system. We find it in all few- and many-body systems. It is fair to say that
a singificant part of physics is about handling this complexity: solid-state theory, statistical physics,
quantum theory in general, quantum chemistry, etc.

We have to be smart solving our problem. One general way of being smart is to reduce the
dimensionality of the problem by exploiting symmetries (rotational, translational, . . . ). An example
is the hydrogen atom (without field) mentioned above: the separation of angular symmetry reduces
the originally 3-dimensional problem to a one-dimensional one. Also using roational symmetry, the
helium atom can be reduced from a six dimensional to a three dimensional problem.
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3.2 2 interacting particles in a harmonic potential

As an example where dimensions can be reduced we will discuss two interacting particles in a har-
monic potential. The Hamiltonian of the problem can be written as:

H(2)(~r1, ~r2) = H(1)(~r1)⊗ 1+ 1⊗H(1)(~r2) + Vee(~r1, ~r2), (3.1)

where

H(1) := −1

2
∆ +

1

2
r2, (3.2)

where ∆ is the Laplace operator. The interaction does NOT have tensor product form and thus does
not factorize (i.e. cannot be written as

∑M
i=1 Ui(~r1)Wi(~r2)), but as an “interaction” it has some extra

properties, namely that it only depends on the distance between the particles:

Vee(~r1, ~r2) = V (|~r1 − ~r2|). (3.3)

This can be exploited by making a smart choice for the coordinates:

~r± =

√
1

2
(~r1 ± ~r2). (3.4)

The change of coordinates gives us a tensor product form of the potential and a complete factorization
of the six dimensional problem into two three dimensional problems which are both roatitionally
symmetric:

H(2)(~r+, ~r−) = H(+) ⊗ 1 + 1⊗H(−), (3.5)

where

H(+) = −1

2
∆+

1

2
r2+ (3.6)

and

H(−) = −1

2
∆− +

1

2
r2− + Vee(

√
2r−). (3.7)

H(+) is trivially solvable and H(−) is easily numerically solvable. Thus we solved the problem by a
chnage of coordinates. We see that it is important to choose a “good” coordinate system. But note
that it is not always clear what a good coordinate system is.

Note: We can also couple to a field an keep the separability, i.e. ~E · (~r1 + ~r2) =
√
2~E · ~r+

3.3 Helium

Let us now go back to the helium atom. We assume a fixed nucleus and an infinite nuclear mass.
Then the Hamiltonian has the same structure as the two interacting particles discussed above:

H(2)(~r1, ~r2) = H(1) ⊗ 1+ 1⊗H(1) + Vee(~r1, ~r2) (3.8)
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where

H(1) = −1

2
∆− 2

r
. (3.9)

The Coulomb repulsion of the electrons does NOT have tensor product form:

Vee(~r1, ~r2) =
1

|~r1 − ~r2|
. (3.10)

The transformation in an other coordinate system (as discussed above) does not work here (try it if
you have time). So it is not possible to do a factorization. To calculate the eigenstates of helium we
do not have a Hamiltonian H(2) which is just a product of three dimensional functions. It is a six
dimensional object. In this case things get difficult because we cannot cheat (by reducing dimensions)
anymore. But the choice of the coordinates does matter nevertheless. There is no “best” choice for
helium (or any other system), but several criteria (with decreasing importance):

• Suitability to the physical situation: Bound states, doubly excited states or ionization
processes, for example, can favour different coordinates. A poor choice here may exclude a
practical solution, even if “all coordinates are equal”. In a highly accurate bound state the
electrons will get close to each other a lot of times. Therefor the relative motion is very
important. The coordinates that we will choose here describe the distance between the
particles with the coordinates ~r1, ~r2, ~r3 = |~r1 − ~r2| and the Euler angles α, β, γ. Thus we shift
the problem to the question how the triangle shown in Figure 3.1 is set in space. If we want an

e1

r1

e2

r2

r3

Figure 3.1: Bound states

efficient representation of the ion and the free electron in an ionizing state of helium, a good
choice are independent particle coordinates as the particles are largely independent.

• Implementation of symmetries (rotations, reflections, particle exchange,...) and sparsity struc-
ture.

• Numerical efficiency: How many discretization points are needed? (Closely related to previous
point.)
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• Numerical stability: Which basis functions can be used? The choice r1, r2 and r3 is bad for a
scattering problem, for example. As shown in Figure 3.2 a tiny difference in r3 − r2 leads to a
large change in the angle θ in e2. So we need a lot of functions in the area where θ changes.
(Related to possible discretizations in a coordinate systems.)

e2e1 r3
r1

r2

Figure 3.2: Electron scattering

• Possibility to (efficiently) compute observables (How hard are the integrals to do?). Observables
are usually defined (and simple) in the coordinates (~r1, ~r2).

• Computational clarity and coding convenience.
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independent particle (cartesian) ~r1, ~r2 bound states Gaussian bases
independent particle (polar) ri, θi, φi bound and scattering Slater basis, grid methods

interparticle r1, r2, |~r1 − ~r2|, Euler angles bound states “explicitly correlated” bases
Jacobi ~r1 ± ~r2 certain doubly excited states

“perimetric” u,v,w (see below) bound easy integrals, sparse matrices!

hyperspherical
√
r21 + r22 + 5(!) “angles” states near threshold numerically difficult: singularities
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3.3.1 Symmetries

For rotationally symmetric situations, the original 3-dimensional 2-electron system can be reduced
to a set of independent 3-dimensional systems by exploiting angular symmetry. Further, minor,
reductions in problems size can be achieved by using parity and exchange symmetries.

Angular symmetry

Suppose that the Hamiltonian commutes with ~L2 and ~Lz. Then we can write any eigenstate Ψi as:

Ψi(~r1, ~r2) =
L∑

n=0

G(LM+)
n (α, β, γ)Φi,n(r1, r2, ~r1 · ~r2), (3.11)

where Φi,n(r1, r2, ~r1 · ~r2) is rotationally invariant. G
(LM+)
n are the angular factors with Euler angles

α, β, γ. The angular factors fulfill the follwoing relations:

L2G(LM+)
n = L(L+ 1)G(LM+)

n , (3.12)

LzG
(LM+)
n =MG(LM+)

n . (3.13)

If we choose L = 0, we can set G
(00+)
n=0 ≡ 1.

The space spanned by the G
(LM+)
n , M = −L, . . . , L, n = 0, . . . , L is invariant under rotations. In

addition, it gives an irreducible representation of the rotation group: any two functions in the space
are connected by a rotation. It has no invariant subspaces, except the space itself and the empty
space. This group theoretical argument shows that there are no further “tricks” to reduce the space
based solely on rotational symmetry.

Parity

In single particle problems the parity P often is neglected, as in that case parity implied by angular
momentum: P = (−1)L. In multiparticle problems this does not hold. We can use parity to further
reduce the size of our basis by fixing it to P = +1 or P = −1. In the representation of the rotations
by the G

(L,M+)
n this is already included: there are L + 1 factors with “natural parity” P = (−1)L,

and another set of L factors with “unnatural parity” P = −(−1)L.
Note that any irreducible representation of spatial rotations must have definite parity, as rotations

do not change parity. If there are two functions with different parity in the representation, they cannot
be transformed into each other by rotatations and therefore the representation cannot be irreducible.

Exchange symmetry

We can decompose any function into eigenfunctions of exchange:

Φ
(±)
i,n (r1, r2, ~r1 · ~r2) = ±Φ

(±)
i,n (r2, r1, ~r2 · ~r1) (3.14)

Electrons are fermions which are anti-symmetric under exchange. So can we choose, both, Φ
(+)
i,n

and Φ
(−)
i,n ? Yes, because of the spin of the particles. A spin state is anti-symmmetric (−) for a
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spin singlet (i.e. |S = 0, Sz = 0〉 = 1/
√
2(| ↑↓〉 − | ↓↑〉)) and symmetric (+) for a spin triplet (i.e.

|S = 1, Sz = 0,±1〉 = 1/
√
2(| ↑↓〉 + | ↓↑〉), | ↑↑〉, | ↓↓〉). The total singlet and triplet wave functions

including the spin factors

|S = 0, Sz = 0〉Φ(+)
i,n , |S = 1, Sz〉Φ(−)

i,n (3.15)

are anti-symmteric. As we neglect spin forces, we can solve separately for the spatial parts to obtaine
the spatial parts of the singlet (+) and triplet (-) eigenstates.

3.3.2 Implementation

Kinetic energy operator for L = 0

We express the operators in r1, r2 and r3 (no derivation given):

1

r1
,
1

r2
,

1

|~r1 − ~r2|
=

1

r3
(3.16)

(∆1 +∆2)L=0 =
4

r3
∂r3 + 2∂2r3 +

∑

i=1,2

2

ri
∂ri + ∂2ri +

r23 − (−1)i(r21 − r22)
rir3

∂ri∂r3 (3.17)

Cusp conditions

On general mathematical grounds, we know the form of the solution near the Coulomb singularities:

(
∂Φ

∂ri

)

ri=0

= µiqiΦ(ri = 0), (3.18)

where µi is the reduced mass and qi the product of the charges for the particles at the end of the
coordinate ri. It is difficult to approximate this by smooth functions. That is why for high accuracy,
the behavior easily representable by the basis or, for extremely accurate results, it may even be
explicitly built into the basis. This is the most important reason for using interparticle coordinates.

“Explicitly correlated basis”

Egyl Hylleraas performed the first quantum mechanical calculations of the Helium bound state
energies in the 1920’ies, using the follwing basis on the r1, r2, r3-coordinates:

|i〉 = |mi, ni, ki〉 = rmi

1 rni

2 r
ki
3 e

−αr1−βr2 (3.19)

This is a choice, but is a good one: it turns out to work well. One motivation for this choice is that
this basis simulates the exponential decay of the quantum mechanical wave function. We should
now guess/optimize α, β: the optimization criteria is to get the lowest possible energy (lowest upper
bound to the energy).

This basis is also called “explicitly correlated basis”, which means that r3 = |r2 − r1| explicitly
appears in the basis function. Further this basis can reproduce very well the cusp at r3 = 0.
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Note: The basis has one important problem: for larger basis sizes it develops near linear depen-
dencies (compare our initial example using monomials). Can be controlled by computing in higher
accuracy (16 byte ∼ 31 decimal digits), or by replacing the monomials rm by Laguerre polynomials
Lm(2αr)

Note: This is NOT a product basis: the integration boundaries of the functions are interconnected.
More abstractly, the Hilbert space defined by

H(3) := {Φ(r1, r2, r3)|
∫ ∞

0

dr1

∫ ∞

0

dr2

∫ r1+r2

|r1−r2|
dr3r1r2r3|Φ(r1, r2, r3)|2 <∞} (3.20)

is not just the product of 3 Hilbert spaces

H
(1)
i = {φ(ri)|

∫ ∞

0

driri|φ(ri)|2 <∞}, i = 1, 2, 3 : (3.21)

H(3) 6= H
(1)
1 ⊗H

(1)
1 ⊗H

(1)
1 (3.22)

As the scalar product on H(3) is not given by products of scalar products of the factor functions.
Therefore, in these coordinates, there exists no product basis and the Hamiltonian cannot be written
as (finite) sum of tensor products.

Integrations

All integrals will have the general form

Jm,n,k :=

∫ ∞

0

dr1

∫ ∞

0

dr2

∫ r1+r2

|r1−r2|
dr3r

m
1 r

n
2 r

k
3e

−2αr1−2βr2 (3.23)

The integration over r3 gives polynomials in r1, r2 times e−2αr1e−2βr2 and therefore this integral
has a closed form: a sum of rational functions in the variables α and β. The problem is that this
closed form has many positive and negative terms and its evaluation is numerically unstable due to
cancellation errors.

The solution to this problem is given by recursive integration.The general recurrence scheme is:

Jm,n,k =

∫ ∞

0

dr1

∫ ∞

0

dr2

∫ r1+r2

|r1−r2|
dr3r

m
1 r

n
2 r

k
3e

−2αr1−2βr2 (3.24)

Jm,n,k =
1

2α + 2β
(Am,n,k +mJm−1,n,k + nJm,n−1,k) (3.25)

and

Am,n,k =
1

2α + 2β
[mAm−1,n,k + nAm,n−1,k + 2kAm,n,k−1

+ 2(2α)−(m+k+1)δ0n(m+ k)! + 2(2β)−(n+k+1)δ0m(n+ k)!]

(3.26)
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This recurrence scheme contains only positive terms, i.e. there are no cancellation erros, which are
usually the main source of error.

Note: The integrations can also be done quite efficiently just numerically, as we have exact quadra-
tures. This is the method of choice when we replace the monomials rm1 by Laguerre polynomials
Lm(αr1)

Example: Let’s calculate some matrix elements:

〈i| 1
r1
|j〉 =

∫ ∞

0

dr1

∫ ∞

0

dr2

∫ r1+r2

|r1−r2|
dr3r1r2r3

1

r1
e−2αr1−2βr2r

mi+mj

1 r
ni+nj

2 r
ki+kj
3 (3.27)

〈i| 1
r3
∂r3|j〉 =

∫ ∞

0

dr1

∫ ∞

0

dr2

∫ r1+r2

|r1−r2|
dr3r1r2r3e

−αr1−βr2rmi

1 rni

2 r
ki
3

(
1

r3
∂r3

)
[r

mj

1 r
nj

2 r
kj
3 e

−αr1−βr2 ]

(3.28)

Implementation of exchange symmetry

We want to construct a basis function |i±〉 with the following symmetry property:

Px|i±〉 = ±|i±〉 (3.29)

where Px is the exchange operator:

Px|i〉 = Px

[
rmi

1 rni

2 r
ki
3 e

−αr1−βr2
]
=
[
rni

1 r
mi

2 rki3 e
−βr1−αr2

]
(3.30)

If we define the projector on (anti-)symmetric function:

P± =
1

2
[1± Px] (3.31)

the basis:

|i±〉 := P±|i〉 =
1

2
(1± Px)|i〉 (3.32)

will have the symmetry property that we want.

Note: This works for any basis coordinate system.
Let’s now compute some matrix element of this new basis. For the overlap matrix we will have:

〈i±|j±〉 = 〈i|P±P±|j〉 = 〈i|P±|j〉 =
1

2
[〈i|j〉 ± 〈i|Px|j〉] (3.33)

〈i−|j+〉 = 0 because P+P− = 0 (3.34)

For the Hamiltonian:

〈i±|H|j±〉 = 〈i|P±HP±|j〉 = 〈i|HP±P±|j〉 = 〈i|HP±|j〉 ==
1

2
[〈i|H|j〉 ± 〈i|HPx|j〉] (3.35)
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where we used the fact that [H,Px] = [H,P±] = 0

Problem 3.33: Does the hydrogen atom form a negative ion? It does, i.e. there is a bound state
consisting of a proton and two electrons. Proof this by using he_inter.py to determine an upper
bound for the system’s ground state energy. By studying the convergence of the upper bound, try
to give an accuracy estimate for your result. Can you find more than one bound state?
Hint: For finding the ionic bound state, it is important to choose good exponents in the basis. On
physics grounds, try to guess values for α and β: one electron may be considered bound like in the
neutral H atom, implying an exponent 1. Clearly, the extra electron will be very loosely bound, i.e.
the wave function should admit at least one electron to be very far. Translate this into a value for
one exponent and then manually search to improve the value.

Problem 3.34: Setting up the matrix in he_inter.py is slow. Use the timer routines mytimer.py
to locate the timing problem. Suggest ways how to speed up the code. Implement your solution.

Problem 3.35: When all masses must be considered finite, after splitting center-of-mass motion,
the three-body Coulomb Hamiltonian is

H = − 1

2µ1

∆13 −
1

2µ2

∆23 −
1

m3

~∇13 · ~∇23 +
Z1Z3

r13
+
Z1Z2

r12
+
Z2Z3

r23
, (3.36)

where ~rij = ~ri − ~rj and ∆ij, ~∇ij are Laplacian and Nabla w.r.t. to the corresponding ~rij . Zi is the
charge of the i’th particle. µ−1

i = m−1
i + m−1

3 are the standard reduced masses. The additional

mass-polarization ~∇13 · ~∇23 term must be taken into account, when m3 is no longer infinite relative
to the masses m1, m2.

Derive an expression for the mass-polarization term in terms of the inter-particle distances rij
and the partial derivates ∂rij if all angular dependencies can be neglected.

Hint: Calculate ~∇13 · ~∇13f(r13)g(r23)h(r12) and use ~r13 · ~r23 = r213 + r223 − r212
Implement the additional terms into he_inter.py and compute the effect of the finite mass of

the Helium-nucleus (=α-particle) on the ground state energy: mα ≈ 7294me.

What happens to the ground state energy as the mass ratio mα/me decreases? Assess the con-
vergence of your results. For which mass ratios is the system bound at all?

Solution: 3.35: For convenience, we change notation ~ri3 → ~ri, i = 1, 2, ~r12 = ~r2 − ~r1 =: ~r3. We
have

~∇iri =
~ri
ri
, i = 1, 2 (3.37)

~∇1|r3| = ~∇1[(~r1 − ~r2)2]1/2 =
(~r1 − ~r2)

r3
= −~r3

r3
(3.38)

~∇2|r3| =
(~r2 − ~r1)

r3
=
~r3
r3

(3.39)
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Now

~∇2f(r1)g(r2)h(r3) = f(r1)
~r2
r2
∂2g(r2)h(r3) + f(r1)g(r2)

~r3
r3
∂3h(r3) (3.40)

=

[
~r2
r2
∂2 +

~r3
r3
∂3

]
f(r1)g(r2)h(r3) (3.41)

~∇1f(r1)g(r2)h(r3) =

[
~r1
r1
∂1 −

~r3
r3
∂3

]
f(r1)g(r2)h(r3) (3.42)

Using this, one can compute the action of ~∇3 · ~∇1.

~∇1 · ~∇2 = (3.43)

= ~∇1 ·
(
~r2
r2
∂2 +

~r3
r3
∂3

)
(3.44)

=
~r2
r2
~∇1∂2 +

(
~∇1 · ~r3

) 1

r3
∂3 + ~r3 ·

(
~∇1

1

r3

)
∂3 + ~r3 ·

1

r3
~∇1∂3 (3.45)

=
~r2
r2

(
~r1
r1
∂1 −

~r3
r3
∂3

)
∂2 − 3

1

r3
∂3 + ~r3 ·

~r3
r3

1

r23
∂3 +

~r3
r3

(
~r1
r1
∂1 −

~r3
r3
∂3

)
∂3 (3.46)

=
~r2~r1
r2r1

∂2∂1 −
~r2~r3
r2r3

∂3∂2 − 2
1

r3
∂3 +

1

r3
∂3 +

~r3~r1
r3r1

∂1∂3 − ∂3∂3 (3.47)

(3.48)

Note that the above expression is invariant under exchange 1↔ 2, as ~r3 = ~r2−~r1 changes sign. Now
we use

~r1 · ~r2 =
1

2
[r21 + r22 − (~r2 − ~r1)2] =

1

2
[r21 + r22 − r23] (3.49)

~r1 · ~r3 = ~r1 · (~r2 − ~r1) = ~r1 · ~r2 − r21 =
1

2
[r22 − r21 − r23] (3.50)

~r2 · ~r3 = ~r2 · (~r2 − ~r1) = −
1

2
[r21 − r22 − r23] (3.51)

(3.52)

and procede to

=
r21 + r22 − r23

2r2r1
∂2∂1 +

r21 − r22 − r23
2r2r3

∂3∂2 −
2

r3
∂3 +

r22 − r21 − r23
2r1r3

∂1∂3 − ∂3∂3. (3.53)

We have obtained a total of 11 terms for the mass-polarization. Note that all of these terms except
for the ∂1∂2-term already appear in the (symmetric) Laplacian. The implementation only requires
changing a few factors and adding the ∂1∂2-term.
—————————–

Problem 3.36: To assess the convergence of the results, try (1) to optimize the coefficients
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α, β in the exponentials. At fixed powers, systematically try different α, β, starting from the default
values 1,1. In general, the best (=lowest energy) exponents will depend on the mass ratios and also
at the specific state (ground, excited) that you are looking at. Try to optimize for He : m3 = ∞
and the muonic molecular ion ppµ (consisting of two protons and a muon (mµ ≈ 207me, charge=-1).
What do the “optimal values” tell you about the geometry of the two systems?

Problem 3.37: To decide, whether a system is bound, you need to compare its energy to the
energy of a system combining two constitutents with two different charges, in case of He the He+

ion, in case of ppµ the muonic hydrogen atom pµ. Remember that the ground state energy of any
two-body Coulomb system is −0.5(Z1Z2)

2(1/m1 + 1/m2). You should find that ppµ is bound. Also,
the positronium ion e+e−e− is bound. Try to prove it using this code.

Problem 3.38: To obtain higher angular momentum states L > 0, we need to allow angular
dependence in the basis. The recipe is simple: just multiply the rotationally invariant basis functions
that we used so far by functions that have the correct transformation behavior under rotations. As
may be known, vectors (dipoles) rotate like L = 1 objects. In fact, we have two vectors available ~r1
and ~r2. We can define a new basis, twice as large as the L = 0 basis, by

|mi, ni, ni〉 = |i〉 → {~r1|i〉, ~r2|i〉}. (3.54)

Return to the case ofm3 =∞ to compute matrix elements for the kinetic energy with the L = 1-basis.
Use the same approach as for the mass-polarization terms to get the explict expressions in terms
of partial derivatives and powers. In addition you now have angles cos θ1 and cos θ2 and angular
integrations. These are all easy to perform. Compute the lowest L = 1 energy (for crosschecks:
−2.12384 in atomic units).
Solution: 3.38: We remember

∆~r = ~r∆+ [∆, ~r] = ~r∆+ ~∇ · [~∇, ~r] + [~∇, ~r]~∇ = ~r∆+ 2~∇ (3.55)

to find

〈~r1b|∆1~r1c〉 = 〈b|r21∆1 + 2~r1 · ~∇1|c〉 (3.56)

We use our previous results to get for functions c = f(r1)g(r2)h(r3):

~r1 · ~∇1 = r1∂1 −
~r1~r3
r3

∂3 (3.57)

~r2 · ~∇1 =
~r2 · ~r1
r1

∂1 −
~r1~r3
r3

∂3 (3.58)

and the corresponding 1 ↔ 2 terms. In more general notation, the kinetic energy matrix elements
become

〈~rca|∆c′′~rc′b〉 = 〈a|~rc · ~r′c
[
∆c′ +

2

r′c
∂c′

]
+ (−1)c′ 2~rc~r3

r3
∂3|b〉 (3.59)
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It is clear that we can compute all matrix elements in this way. One possibility of implementation is
to set up the matrices in blocks

Ĥ
(cc′)
ij = 〈~rcbi|H~rc′bj〉, c, c′ = 1, 2 (3.60)

and list the required re-definition of powers and exponents. Specifically, we have the blocks

Ĥ
(11)
ij = 〈bi|~r1 · ~r1ĤL=0 − r1∂1 +

~r1~r3
r3

∂3|bj〉 (3.61)

Ĥ
(22)
ij = 〈bi|~r2 · ~r2ĤL=0 − r2∂2 −

~r2~r3
r3

∂3|bj〉 (3.62)

Ĥ
(12)
ij = 〈bi|~r1 · ~r2ĤL=0 −

~r1~r2
r2

∂2 −
~r1~r3
r3

∂3|bj〉 (3.63)

Ĥ
(21)
ij = Ĥ

(12)
ij (3.64)

and for the overlap matrix

Ŝ
(cc′)
ij = 〈bi|~rc~rc′ |bj〉 (3.65)

Implementation is most convenient by first defining a few functions that allow multiplication and
addition of the ”InterOper” objects, then write the operators as given above (check the example code
for how to do this). You may verify your own solutions against this.

When setting up the matrices, one has to pay attention to the fact that 1 ↔ 2-exchange affects
also the vectors ~r1 ↔ ~r2. Present implementation of exchange cannot handle this (can be modified).
The solution is, not to impose exchange symmetry, which results in returning both, singlet and triplet
states in a single calculation (but diagonalizing an almost twice-as-large matrix).

Another pitfall when moving from the old code is that the ”matrix(...)”-method was assuming
symmetric matrices always. However, this is not the case for the off-diagonal blocks, which are
related by

Ĥ(12) = [Ĥ(21)]T , (3.66)

but Ĥ(12) 6= [Ĥ(12)]T .
A good way to implement exchange is to work with angular factors that have well-defined exchange

symmetry, i.e. ~r± := ~r2±~r1. There will be no matrix elements between the ~r± blocks and we compute
a smaller matrix to begin with (s = ±1)

Ĥ
(s)
ij = 〈bi|~rs · ~rsĤL=0 − (~r2 + s~r1)(~∇2 + s~∇1)|bj〉 (3.67)

= 〈bi|~rs · ~rsĤL=0 − ~r2~∇2 − ~r1~∇1 − s~r2~∇1 − s~r1~∇2)|bj〉 (3.68)

= 〈bi|~rs · ~rsĤL=0 − r2∂2 − r1∂1 − s~r1~r2(
1

r1
∂1 +

1

r2
∂2)− (1− s)r3∂3|bj〉 (3.69)

(3.70)

—————————–
Combine the L=0 and L=1 bases. Include the dipole coupling to the field into the Hamiltonian

H = H0 + E(z13 + z12), (3.71)
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where H0 consists of blocks of the Hamiltonians for L=0 and L=1. Note that the dipole operaror is
non-zero only for matrix elements between L = 0 and L = 1 states (dipole selection rules). For weak
fields E . 0.1, compute the energy shifts. Use complex scaling to estimate the decay-width of the
states.

Hint: For complex scaling you multiply the individual terms in the Hamiltonian matrix by complex
phases η = exp iθ as follows

Ĥη = η−2T̂ + η−1V̂ + ηD̂ (3.72)

Problem 3.39: Form an approximate picture of the various states you have obtained: compute
expectation values of r1, r2, r3, which tell you the approximate shape of the triangle formed by the
particles (if there were anything like an exact position in quantum mechanics). Also calculate their
square and then the variances (〈r2i 〉 − 〈ri〉2)1/2, which tells you to which extent one can speak of a
well-defined distance at all. You should find that with decreasing binding energy, the particles are
farther apart. In excited states, one constituent tends to wander away from the other two. Show this
for the He ground and excited states, for ppµ, and also for the L = 1 states, if you did obtain them.

Summary of the code

• The basis is generated as a list of singel basis funtions InterBas: this knows the powers and
exponents of the basis function. On this level, the desired exchange symmetry needs to be
taken into consideration: if the we will symmetrized our operator, only basis functions that
are not related to a basis function already in the list can be added to the list. Otherwise, the
basis would be linearly dependent after symmetrization (and the inverse of the overlap would
not exist).

• An operator in interparticle coordinates InterOper is a set of separate terms InterTerm. A
term consists of a factor, powers of ri , and derivatives ∂ri . E.g.

− 2
1

r2
∂2r1 . . . [−2., 0,−1, 0, 2, 0, 0] (3.73)

In operator setup, we can automatically supplement exchange symmetric terms. This reduces
the chance for errors by typos.

• A table of integrals is set up an extended as needed. We start from a zero-size table.

• Setting up the matrix is by (1) first applying the InterTerm to the basis, which results in a list
of basis functions and then adding all the integrals corresponding to the basis functions from
the list.
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3.3.3 Perimetric coordinates

We can introduce the so-called perimetric coordinates:

u = −r1 + r2 + r3 (3.74)

v = r1 − r2 + r3 (3.75)

w = r1 + r2 − r3. (3.76)

In this new coordinates the whole Hamiltonian can be written by tensor products:

H(3)(u, v, w) = H(1)
u ⊗H(1)

v ⊗H(1)
w , (3.77)

where H
(1)
q = {Φ(q)|

∫∞
0
dq f(q)|Φ(q)|2 <∞}. These coordinates are computationally great because

we can use a product basis, the integration is a product of three one dimensional integrations (i.e.∫∞
0
dr1
∫∞
0
dr2
∫ r1+r2
|r1−r2| dr3 r1r2r3 →

∫∞
0
du
∫∞
0
dv
∫∞
0
dw f(u, v, w)) and we get sparse matrices. BUT

unfortunately the cusps cannot be modelled accurately in perimetric coordinates. Let us, for example,
look at the following situation:

r3 = 0⇔ u+ v = 0. (3.78)

As shown in figure 3.3 it is difficult to locate the cusp in perimetric coordinates. Furthermore it is
difficult to model this area with a smooth function and thus to describe the asymptotic behaviour.
We get a slow convergence here.

x

y

Figure 3.3: This kind of cusp is particularly difficult to model with a smooth function.

3.3.4 He in ~r1, ~r2 coordinates (independent particle coordinates)

Now we will discuss coordinates which can be used as a basis for pretty much everything. We will
discuss it as a general procedure which is extendable to several particles.
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Hamiltonian

In this coordinates the Hamiltonian of a helium atom is:

H(2)(~r1, ~r2) = H(1)(~r1)⊗ 1+ 1⊗H(1)(~r2) + V (|~r1 − ~r2|) (3.79)

with

H(1)(~ri) = −
1

2

1

ri
∂2riri ⊗ 1(θi,ϕi) +

1

2

1

r2i
⊗ (L(1))2 − Z

ri
⊗ 1, (3.80)

where we use polar coordinates for each particle (i.e. (xi, yi, zi) → (ϕi, θi, ri)). We will discuss the
Coulomb potential later in detail. Now we concentrate on the other parts.

Basis

The two-particle space is the tensor product space of the one-particle spaces:

H(2)(~r1, ~r2) = H(1)(~r1)⊗H(1)(~r2), (3.81)

where the one-partile space is H(1)(~r) = {Φ(~r)|〈Φ|Φ〉 < ∞}. A basis in this two-particle space is a
tensor product of bases of one-particle spaces:

|i〉 = |l(1)i ,m
(1)
i , k

(1)
i 〉︸ ︷︷ ︸

first particle

⊗ |l(2)i ,m
(2)
i , k

(2)
i 〉︸ ︷︷ ︸

second particle

. (3.82)

We use the spherical harmonics basis:

|l,m, k〉 = Ylm(θ, ϕ)hk(r), (3.83)

where hk(r) is some basis on the radial coordinates. So our choice is some product basis.

Angular momentum

We know that:
[H(2), (~L(2))2] = [H(2), L(2)

z ] = 0, (3.84)

where ~L(2) = ~L(1) ⊗ 1 + 1 ⊗ ~L(1) is the two particles angular momentum. We can now expand into
the basis of the eigenfunctions of ~L and Lz:

|L,M, l1, l2, k, k
′〉 = |L,M, l1, l2〉 ⊗ hk(r1)hk′(r2). (3.85)

This total angular momentum eigenbasis is NOT a product basis. It requires the following linear
combinations of functions from the product basis (project onto a space with fixed total angular
momentum L,M):

|L,M, l1, l2〉 =
∑

l1,l2,m1,m2

[|l1,m1〉 ⊗ |l2,m2〉][〈l1,m1| ⊗ 〈l2,m2|]
︸ ︷︷ ︸

=1

|L,M = m1 +m2, l1, l2〉 (3.86)

=:
∑

m1,m2

|l1m1〉 ⊗ |l2m2〉 〈l1,m1, l2m2|L,M, l1, l2〉︸ ︷︷ ︸
Clebsch-Gordan

. (3.87)
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We can write the projector onto the L,M space:

PLM =
∑

l1,l2

|L,M, l1, l2〉〈L,M, l1, l2| (3.88)

and construct the new basis as for the exchange operator (above):

|i〉LM := PLM |i〉. (3.89)

Parity

If we think back to the coordinates r1, r2, r3 we know that parity is in the factor Gl0. Here we only
select |L,M, l1, l2〉 with:

• l1 + l2 + L even: “Natural parity”

• l1 + l2 + L odd: “Unnatural parity”.

For interparticle coordinates, the representation of the rotation group for a two-particle system by
the functions GLM±

n

Problem 3.40: One choice of the functions GLM±
n used in the inter-particle coordinate system

is

GLM±
n = |LMl1l2〉 (3.90)

with l1 = n and l2 = L − l1 or l2 = L − l1 + 1. Show that the two choices for l2 correspond to the
two different parities (−1)L and (−1)L+1 . Give explicit functional dependence of |LMl1l2〉 on the
polar angles θ1, φ1, θ2, φ2 in terms of spherical harmonics and Clebsch-Gordan coefficients.

Exchange symmetry

The exchange symmetry is the same as above:

|L,M, l1, l2, k, k
′〉± =

1

2
[|L,M, l1, l2, k, k

′〉 ± |L,M, l2, l1, k
′, k〉] = P±|L,M, l1, l2, k, k

′〉. (3.91)

Interaction integrals

It is not easy to do the interaction (e.g. 1/|~r1−~r2|) integrals. A convenient way is using the multipole
expansion:

1

|~r1 − ~r2|
=

∞∑

l=0

4π

2l + 1

l∑

m=−l

Y ∗
lm(θ1, ϕ1)Ylm(θ2, ϕ2)

rl<
rl+1
>

(3.92)

with

r< := min(r1, r2), r> := max(r1, r2). (3.93)
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This almost looks like an (infinite) sum of tensor products. The only thing that causes trouble is
rl</r

l+1
> . Acutally, for hk(r1) and hk′(r2) whose support do not overlap, it still has the form of a

(trensor) product, say r1 ⊗ 1
r2

if r1 < r2 If, for example, the supports of hk and hk′ do not overlap,
the integrals can be brought to tensor product form.

Problem 3.41: Multipole integrals(1): Write a code to compute the radial integrals arising in
the multipole expansion

Jl(i, j,m, n) =

∫
dr1r

2
1

∫
dr2r

2
2fi(r1)gj(r2)

rl<
rl+1
>

fm(r1)gn(r2) (3.94)

for two sets of finite element functions fi, i ∈ 0, 1, . . . , I − 1 and gj, j ∈ 0, 1, . . . , J − 1 that have no
overlap. Try to exploit symmetries to reduce the number of calculations. Think about possibilities
to test the correctness of your results.
Hint: Easy, for example the 2-dimensional recursive integration algorithm will do the work. Note
that the integrator can do all integrals in one shot, if the intgrand returns an array of values.

Problem 3.42: Multipole integrals(2): Do the same as above, but for identical elements on r1
and r2. The recursive algorithm will take long time at moderate accuracies (if it converges at all, try
it!). Find a better way of doing these integrals.
Hint: The coordinate transformation r1, r2 → (r1± r2)/

√
2 helps a lot. Write an integration routine

for these coordinates or (better) adapt integral_nd.py for non-rectangular integration volumes.

Matrix elements of the Coulomb interaction

A single term in the sum is (using Ωi = (θi, ϕi)):

Mlm,ij =
4π

2l + 1

∫
dΩ1

∫
dΩ2Y

∗
limi

(Ω1)Y
∗
l′im

′
i
(Ω2)Y

∗
lm(Ω1)Ylm(Ω2)Yljmj

(Ω1)Yl′jm′
j
(Ω2) (3.95)

×
∫ ∞

0

dr1r
2
1

∫ ∞

0

dr2r
2
2hki(r1)hk′i(r2)

rl<
rl+1
>

hkj(r1)hk′j(r2) (3.96)

=
4π

2l + 1

∫
dΩ1Y

∗
limi

(Ω1)Y
∗
lm(Ω1)Yljmj

(Ω1) (3.97)

×
∫
dΩ2Y

∗
l′im

′
i
(Ω2)Ylm(Ω2)Yl′jm′

j
(Ω2) (3.98)

×
∫ ∞

0

dr1r
2
1

∫ ∞

0

dr2r
2
2hki(r1)hk′i(r2)

rl<
rl+1
>

hkj(r1)hk′j(r2) (3.99)

The angular integrals factorize and can be easily calculated (analytically, by numerical integration,
or finding existing software subroutines). For the integration over the radial coordinates, there is a
variety of strategies. The simplest is to employ the two-dimensional recursive integration used before
in the one dimensional Helium model. In the present case convergence of this routine will not be
rapid, as there is a non-anlyticity at the line r1 = r2. Another strategy is to isolate the singularity
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and perform the integral as (see also figure 3.4 and 3.5):

∫ ∞

0

dr1

∫ ∞

0

dr2 =

∫ ∞

0

dr1

∫ r1

0

dr2 +

∫ ∞

0

dr1

∫ ∞

r1

dr2 (3.100)

which can be done rapidly using numerical quadratures.

r1 = r2

Figure 3.4: If we apply a quadrature to a function which is not smooth for r1 = r2 we will have to
iterate the quadrature many times in the vicinity of the singularity, until we will have intervals which
are so small that can be regareded as a zero measure set. In the other regions we will deal with huge
matrices that can be written in a nice form (see also figure 3.5).

= ⊗

dipole

+ ⊗

quadrupole

+ . . .

Figure 3.5: The huge matrix in figure 3.4 can be written in this nice form using the so called low-rank
approximation for a matrix.

3.3.5 Multipole expansions: tensor product approximations

Form is specific for the Coulomb potential, the general principle can be applied to most typical
interactions in physics: the interaction becomes smoother at large separations |~r1 − ~r2|. At these
distances, we need very few terms to approximate the “structure” of the interaction (e.g. monopole +
dipole + quadrupole ). In matrix language, this is a “tensor product approximation” to the operator.
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3.3.6 Low rank approximation

The tensor product approximation to multiplication operators is a generalization of a very funda-
mental technique for approximating matrices: the low rank approximation.

Rank of a matrix

The “rank” of a matrixM×N matrix Â is the dimension of the “range” of the matrix, i.e. dimension
of the the space spanned by all vectors obtained by applying the matrix:

range(Â) = span(Âv ∈ RM |v ∈ RN) (3.101)

Note that rankÂ ≤ min(M,N). The rank can be very small, including, trivally, rank 0 for the

zero-matrix, or rank 1 for the tensor product of two vectors Â = ~u⊗ ~vT = |u〉〈v|.

Singular value decomposition (SVD)

Any M ×N matrix can be written as

Â = ÛΣV̂ † (3.102)

where Û is M ×M and unitary and V̂ is N × N and unitary. Σ is M × N and “diagonal” in the
sense Σij = δijσmin(i,j), i ∈ 0, 1, . . . ,M − 1, j ∈ 0, 1, . . . ,M − 1.

The spectral decomposition is a special case of SVD that exist only for square matrices with
ÂÂ† = Â†Â (therefore also for hermitian matrices Â = Â†). For the spectral decomposition Û = V̂ ,
for hermitian matrices Σ is real.

Singular value decomposition algorithms are provided by standard linear algebra packages (e.g.
LAPACK). Sometimes, e.g. when comparing differnt algorithms for SVD, it is good to remember,

that the SVD is not unique: we can multiply the diagonal elements of Σ and correspondingly Û and
V̂ by arbitrary phases without changing the general SVD structure.

Approximating a matrix

Often, like in the multipole expansion of the Coulomb potential, there is very little structure in a
matrix, even though it appears as a full matrix. A trivial example is a 1-dimensional projector which
is a rank 1 matrix.

Pu = |u〉〈u|, 〈u|u〉 = 1 (3.103)

If written in an arbitrary basis, it will be represented by a full matrix

Pu =




u0u
∗
0 u0u

∗
1 . . . u0u

∗
N−1

u1u
∗
0 u1u

∗
1 . . . u1u

∗
N−1

...
...

. . .
...

uN−1u
∗
0 uN−1u

∗
1 . . . uN−1u

∗
N−1


 (3.104)

i.e. N2 numbers, although, actually, contains only N relevant different numbers u0, u1, . . . uN−1
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The singular value decomposition is the tool to detect such structures and exploit them for
physical insight or numerical efficiency. Assume rankA = K and the columns of Û and V̂ are sorted
such that Σii = 0 for i > K. Then, clearly

Â =
∑

i

ÛKΣK V̂
†
k (3.105)

where ΣK is K ×K, Û is M ×K with only the comlums up to K, and similarly V̂K .
Even when Â has full rank rank(Â) = min(M,N) mathematically, many Σii may be very small

and neglecting them will not cause significant error. E.g. no multipole term is excatly=0, but infinitly
many will be arbitrarily small. Now select the largest elements |Σii| > ǫ for i > K(ǫ) ≤ rank(Â).
Then one obtains a “low rank approximation”

Â ≈ Âǫ =
∑

i

ÛK(ǫ)ΣK(ǫ)V̂
†
K(ǫ) (3.106)

Example: SVD of interaction potentials

Suppose you have, on two grids xi and yj

V̂ij := V (|xi − yj|) (3.107)

then a low rank approximation is

V̂ ≈
M−1∑

k=0

Ûk ⊗ Ŵ T
k (3.108)

where Ûk are I × 1 matrices and Ŵk are J × 1 matrices and M ≤ rankV̂ . For M = rankV̂ the sum
becomes exact.

Problem 3.43: Study low rank approximations to multiplication operators.

Hierarchical matrices

Low rank approximation is not a useful strategy for all matrices: the unit matrix has full rank, at
best nothing is gained by attempting a low rank approximation.

In cases where all the trouble comes from some small region (e.g. near ~r1 = ~r2), on can split the
matrix into a small local part (e.g. the diagonal), which is trivial to apply, and the rest, where low
rank approximations are efficient. A systematic procedure for that are the “hierarchical” or H-matrix
approximations.

3.3.7 Implementation - managing the complexity

Representation of the wave function

• |i〉 — BasTwo

ψ(r1, r2) =
∑

l1,l2

∑

L,M

∑

i,j

Dl1l2
L,M(θ1, φ1; θ2, φ2)hi(r1)hj(r2)a

LMl1l2
ij (3.109)
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(L(2))2DL,M = L(L+ 1)DL,M (3.110)

L(2)
z DL,M =MDL,M (3.111)

Dl1l2
L,M =

∑

m1,m2

cLMl1m1l2m2
Yl1m1(θ1, φ1)Yl2m2(θ2, φ2) (3.112)

where cLMl1m1l2m2
are the Clebsch-Gordan coefficients.

1

|r1 − r2|
=
∑

l,m

4π

2l + 1
Y ∗
lm(θ1, φ1)Ylm(θ2, φ2)

rl<
rl+1
>

(3.113)

Representation of the wave function

• BasTwo

The class BasTwo is a list of operator momentum blocks associated with Dl1,l2
L,M .

• BasTwoAngle

In The class BasTwoAngle we define the Dl1,l2
L,M in terms of the Clebsch Gordan coefficients

cLMl1m1l2m2
.

• BasTwoRadial

This class is a pair of discretization axis for r1 and r2.

Setting up the matrix

• Gaunt factors:

G(li, l, lj ,mi,m,mj) =

∫
dΩY ∗

limi
YlmYljmj

(3.114)

and consequently ∫
dΩY ∗

limi
Y ∗
lmYljmj

= G∗(lj, l, li,mj ,m,mi). (3.115)

Problem 3.44: Using the definitions of the associated Legendre functions given in the script,
implement LegendreAssoc. Implement a quadrature rule that delivers exact overlap matrix elements
for (products of) associated Legendre functions with the sum of m’s an even number. Using this
quadrature, write a subroutine “GauntCoeff(l1,l2,l3,m1,m2,m3)” for computing the “Gaunt coeffi-
cients” arising in the multipole expansion:

∫
dΩY ∗

l1m1
(Ω)Yl2m2(Ω)Yl3m3(Ω) (3.116)

Hint: For LegendreAssoc, start from LegendrePolynomial and modify it. For the quadrature,
observe that all integrals where there appear odd powers of (1 − x2)1/2 give =0 because of the
φ-integration.
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Problem 3.45: Find python code for the Clebsch-Gordan coefficients from the web. Incorporate
a test routine into the software you found by verifying the following identies of the Clebsch-Gordan
coefficients for a sufficiently large range of angular momenta (say, L, l1, l2 ∼ 5).

∑

m1,m2

〈L,M |l1,m1, l2,m2〉〈l1,m1, l2,m2|L′,M ′〉 = δJJ ′δMM ′ (3.117)

∑

L,M

〈l1,m′
1, l2,m

′
2|L,M〉〈L,M |l1,m1, l2,m2〉 = δm1m′

1
δm2m′

2
(3.118)

3.4 Mathemagics: complex scaling

Sometimes, under the influence of some perturbation, bound states disolve into a continuum. Still
there is good reason to believe that they leave some trace and can be described as approximate bound
states that decay.

3.4.1 H atom in a static electric field

In presence of an (arbitrarily small) static electric field, there are no exact square integrable eigen-
functions and thus there are no rigorous bound state for a potential −1/r − ǫz: the physical reason
is that tunneling is always possible!

0
E

without the field

with the field

0
E

Figure 3.6: Eigenvalues for the hydrogen atom without an electric field (above) and with a static
electric dipole field (below). The empty circles mark the positions of previous eigenvalues.

The exact spectrum (wihout a field) of a hydrogen atom can be seen in Figure 3.6. But what
happens if we add a field? No matter how small the field is, the spectrum becomes all the real axis
(i.e. continuous, see Figure 3.6). Now the following question arises: What happens to our bound
states? Are there some traces of them in the continuous spectrum? One would expect that they
turn into ”resonances”, i.e. poles in the scattering (S-) matrix. But these resonances do not appear
at real images. They appear upon analytical continuation of the S-matrix to complex energies. So
we can also ask: What should be the properties of those S-matrices? But let us first look again at
the potential of the hydrogen atom in a field. We can see an oscillation of the wave function with
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decreasing amplitude which is a trace of our bound state. But the wave function is not normalizable
and thus it has not an isolated point in the spectrum.

As we saw in both examples a “perturbation” let a bound state decay into the continuum (external
field or Coulomb interaction). We can make them visible by “complex scaling”. As we said before,
the bound states do not completely disappear, they leave traces as poles of the S-matrix in the
complex plane (at complex values of the energy). We can also continue analytically the Hamiltonian
operator. The new operator has complex eigenvalues W = E − iΓ/2, exactly for the location where
the S-matrix has the poles.

Note: In this method, some rigorous mathematical proofs exist, mostly for the hydrogen atom and
some model potentials. Many results have no rigorous proof (yet), but there is ample numerical
evidence that they indeed hold.

3.4.2 Real scaling of the coordinates

The real scaling of the coordinates is like changing the units in which we measure our results. Thus
it clearly cannot change the physics. The scaling transformation can be made a unitary operator:

~r → α~r = eλ~r, α ∈ (0,∞). (3.119)

Define:
UλΨ(~r) := e−3λ/2Ψ(eλ~r). (3.120)

This definition conserves the norm:

||UλΨ||2 =
∫
d(3)re−3λ|Ψ(eλ~r)|2 ~reλ=:~q

=

∫
d(3)q|Ψ(~q)|2 = ||Ψ||2 (3.121)

and has a trivial inverse U−1
λ = U−λ. Thus U is unitary. Furthermore we define the real scaled

Hamiltonian:
Hλ := UλHU

∗
λ . (3.122)

What does this mean for the eigenvalues of Hλ? The answer is that the unitary transformations
leave the spectrum invariant (i.e. σ(Hλ) ≡ σ(Hλ=0)). All Hλ have the same spectrum, i.e. the same
bound state spectrum and the same continuous spectrum. The reasons for this are the following:

• A unitary transformation does not change the spectrum of any operator.

• The physics remains unchanged by scaling transformations.

Let us, for example, look at the hydrogen atom with a scaled operator:

Hλ = −1

2

(
1

r2
∂rr

2∂r

)
e−2λ − 1

eλr
+
l(l + 1)

2r2e2λ
(3.123)

= e−2λT + e−λV = −e−2λ1

2
∆− e−λ1

r
, (3.124)

where we just replaced ~r → eλ~r and thus ∂r → ∂
∂(eλr)

= 1
eλ

∂
∂r
.
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Eigenfunctions and eigenvalues (bound states)

Let ψi be an eigenfunction of the Hamiltonian Hλ=0. Then H0ψi = Eiψi. From this we get:

UλH0 U
∗
λUλ︸ ︷︷ ︸
1

ψi = UλH0ψi = EiUλψi =: Eiψi,λ. (3.125)

So we have:
Hλψi,λ = Eiψi,λ (3.126)

and see that Ei is independent of λ like for example in the hydrogen atom. In this case ψi is
proportional to the Laguerre polynomials ×e−kr, k = 1/n. The derivatives are purely algebraic
operations. Thus the eigenfunction property is conserved.

3.4.3 Complex scaling of the coordinates

Let us now take a bold step. We analytically continue Hλ to complex values of λ. For simplicity we
first only look at the imaginary values λ→ iθ, θ > 0. Therefor, as a minimum requirement, we must
be able to analytically continue the potential, i.e. define V (eiθ~r). The complex scaled Hamiltonian
reads:

Hθ := −e−2iθ 1

2
∆− e−iθ 1

r
. (3.127)

Hθ=0

Hθ

2θ

Figure 3.7: Comparison of the spectrum of Hθ=0 (above) with the spectrum of Hθ (below, red). The
blue dots represent the resonance states, which give the pole of the S-matrix.

Let’s now study the spectrum of Hθ. It is possible to distinguish between three different kinds of
eigenvalues (see also figure 3.7):

• For bound states the specturm of Hθ is the same as the spectrum of Hθ=0, i.e. the bound states
spectrum is independent of θ;

• In order to understand what happens at the continuous spectrum we will look at the free
particle:

∆→ ∆θ = e−2iθ∆0. (3.128)

The spectrum of Hθ=0 is given by [0,∞) whereas the spectrum of Hθ is given by e−2iθ[0,∞) and
is therefore complex (a complex spectrum was expected, since Hθ is not an hermitian operator).
Therefore we have that the continuous spectrum is rotated into the lower complex plane by an
angle 2θ;
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• in the shaded region in figure 3.7 there can be new true (normalizable) eigenstates with com-
plex eigenvalues W = E − iΓ

2
, Γ ≥ 0. These states are known as “resonance states” with

resonance energies E and resonance width Γ. Further the position of these complex eigenvalues
is independent of the angle θ.

These last eigenvalues are the most interesting because they give the poles of the S-matrix. If we
let |W 〉 be the state corresponding to W we will have that Hθ|W 〉 = W |W 〉 and:

i
d

dt
|W 〉 = W |W 〉; W = E − iΓ

2
. (3.129)

If we take for simplicity E = 0:

i
d

dt
|W 〉 = E − iΓ

2
|W 〉 ⇒ |W, t〉 = e−

tΓ
2 |W, 0〉 (3.130)

and therefore the probability of finding |W, t〉 in |W, 0〉 is |〈W, 0|W, t〉|2 ∼ e−Γt.

3.4.4 Doubly excited states of Helium

Imagine He+ ion in some excited state:
Suppose we have an electron e∗1 that is in the excited state n1 = 2. Then the energy is −Z2/2n2 =

−4/8 = −1/2. Suppose furthermore that another electron e∗2 is in some arbitrary excited state n2.
If e∗1 and e∗2 do not interact then we have a bound state because nothing will change. But if we now
”switch” on the Coulomb interaction, the electrons e∗1 and e∗2 will exchange energy. (Note that if
e∗2 is far away from e∗1 it will only ”see” a single charge.) In this case the electron e∗1 could deexite
and give its energy to e∗2. What is the total energy in this case? The total energy e∗1 + e∗2 for
e.g. n2 = 2 is −1/2 − 1/2 = −1. Then the total energy after the deexitation of e∗1 (now n1 = 1)
is −2 + E2 = −1 ⇒ E2 = 1 > 0. This is an unbound state! We can see this, for example, in
the Feschbach-resonance, core hole states and the Auger effect. So if it was not for the Coulomb
interaction we would have a bound state. The question also here is: What are the traces of the
doubly excited state in the continuum spectrum?

Problem 4.46: Doubly excited states of helium: the lowest three doubly excited states of Helium
with L=0 have energies ∼ -0.777, -0.621, and -0.589. Implement complex scaling for he_inter.py.
Find those states in the calculations. What are their widths Γ? How accurate are your results for
the widths and for the doubly excited state energies? Translate the widths into lifetimes 2π/Γ (1
atomic unit of time ≈ 24× 10−18s).
Hint: For implementing, split the definition ham of the Hamiltonian into kinetic energy and potential,
generate the matrices and add them with their correct complex scaling factors.
Hint: For choosing the exponents, remember that the doubly excited states will be more extended
than the ground state, i.e. they will be better approximated by choosing somewhat smaller exponents.

Hint: For estimating the accuracy of your results (1) vary the basis size, (2) vary the exponents,
and (3) vary the scaling angle. The result is at most accurate to the extend that it does not depend
on any of these changes (within “reasonable” ranges of variations).
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3.4.5 Energy shifts and decay of an atom in a static electric field

Complex scaling allows computing Stark-shifts and tunneling decay width without resorting to per-
turbation theory. Strictly speaking, complex scaling as laid out above lacks mathematical foundation
for the Stark effect (the dipole interaction is not “dilation analytic”). Remember, however, that also
perturbation theory for the Stark effect diverges. Still meaningfull results can be extracted from high
order perturbation theour using further mathematical tricks. Naive application of complex scaling
to the Stark effect gives correct answers, whose accuracy is only limited by the usual discretization
errors. “Correctness” is here defiend two-fold: it agrees with the results from 18th(!) order per-
turbation theory and with results from observing computing tunneling rates with time-dependent
perturbation theory.

Problem 4.47: Repeat the calculation of the Stark effect, now using complex scaling. Extend
hfield_simple.py to include complex scaling (use the example he_inter.py). If your basis is good
enough, you can identify the “true” eigensolutions by the fact that they are independent of the
scaling angles. Compare your results with the previous results without using complex scaling. In the
imaginary parts of the energies you have additional information about the decay width. Plot the life-
times 2π/Γ of the the first few states as a function of field strength (logarithmic axis recommended,
one atomic unit of time is ≈ 24 × 10−18s). How do life-times depend on field strength? Interprete
the result in terms of a Gamov factor for tunneling.
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Chapter 4

The time-dependent Schrödinger
equation

If we know the complete set of eigenfunctions of a Hamiltonian matrix, we can very easily construct
the resulting time-evolution using the spectral representation of the time-evolution operator

U(t0, t) = exp(−i(t− t0)H) = V exp[−i(t− t0)dH ]V †, (4.1)

where V is composed of the eigenfunctions of H and dH is the diagonal matrix of its eigenvalues.
In practice, this can rarely be done. If H(t) itself depends on time, the time-evolution operator

can still be formally written in closed form using the time-ordering symbol “T”:

U(t0, t) = T exp[−i
∫ t

t0

dτH(τ)], (4.2)

but this notation is highly symbolic, with T standing in for an infinite sum of nested integrals of
commutators. It can rarely be turned into a useful computational scheme, although such methods
exist and will be discussed later.

Usually, the explicit construction of the time-propagation operator is expensive (if feasible at all).
This reflects the fact that it is the answer to “everything”, i.e. the time-evolution of any conceivable
state of the system. Almost always, our ambition is much more modest: we want the time-evolution of
one specific initial state. This restraint in ambition results in much reduced computational challenge:
solving the ordinary differential equation:

i
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉, |Ψ(t0)〉 = |Ψ0〉. (4.3)

Problem 0.48: Setting an initial state: express an arbitrary function Ψ0(x) in a basis set

1.

Ψ(x) ≈ Ψ̃(x) =
∑

i

fi(x)ci. (4.4)
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Show that the coefficient vector ~c given by

~c = Ŝ−1~b, bj = 〈fj|Ψ〉 (4.5)

is the optimal approximation in the sense of a Galerkin criterion, i.e. the error is orthogonal
to the subspace spanned by the basis.

2. Implement the above for the finite element basis.

3. Plot the Ψ̃, Ψ and visualize the error in a meaningful way.

4.1 Discretization

Suppose we decide to discretize our wave function by a finite set of linear time-dependent parameters
ci(t), collected in a vector ~c(t):

|Φ~c(t)〉 ≈ |Ψ(t)〉. (4.6)

Now we look for a solution ~c(t) such that Φ~c(t) is “closest” to Ψ(t) on some time interval [to, t]. But
we still have to define what we mean by “closest”.

Time-global optimality

In time we may choose a time interval [t0, t] and choose a distance between Φ and Ψ, e.g. || · ||, the
norm in Hilbert space. We then search for the minimum:

min
~c(t)
〈||Φ~c(t) −Ψ(t)||〉[t0,t] (4.7)

in the space of all coefficient-functions ci(t), where 〈·〉[t0,t] is a measure of the distance between two
paths in time. This is probably what we would like best. Its practical use is limited for two reasons:
(1) It adds an extra dimension to the problem (→ curse of dimension → much bigger problem than,
e.g., just finding eigenstates) and (2) for time, there is no similarly simple principle of optimization
as we have with the minimax principle for space. Remember that the minimax principle is limited to
operators with a lowest eigenvalue, but time extends to the infinite past (e.g. i∂/∂t is not bounded).

Time-local optimality

We want to solve the Schrödinger equation “as good as we can” under the constraint that Φ~c(t) has
the form Φ =

∑
i |i〉ci, i.e.:

i
∂

∂t
|Φ~c(t)〉 −H(t)|Φ~c(t)〉 !

= 0. (4.8)

As we can represent only a subset of the full Hilbert space, the equation cannot usually be fulfilled
exactly. What we can get is

i
∂

∂t
|Φ~c(t)〉 −H(t)|Φ~c(t)〉 = |χε〉. (4.9)
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Then we demand that the error that we make by inserting our approximate solution into the TDSE
at each time t is the “unavoidable error” given a certain discretization, i.e. a certain basis |i〉 or a
certain subspace K ⊂ H. By unavoidable we mean that the error is nothing that we can represent
by our basis, so we can also not “bring it to the other side” to further reduce it: |χε〉 6∈ K ⊂ H. This
means that the error is orthogonal to K:

〈Φ~d|χε〉 = 〈Φ~d|i
d

dt
−H|Φ~c(t)〉 = 0 ∀~d. (4.10)

In mathematics, this kind of minimal principle is called a “Galerkin method”. In physics, we call it
the “Dirac-Frenkel” variational principle.

Problem 1.49: Show that the Dirac-Frenkel variational principle can also be formulated as a
minimum principle:

F := 〈Φ~c(t)|i
d

dt
−H(t)|Φ~c(t)〉. (4.11)

has its minimal for any time t. Show further that it implies the following equations for the time-
dependence of the coefficients ~c(t)

iŜ
d

dt
~c(t) = Ĥ~c(t), (4.12)

where Ŝ and Ĥ are overlap and Hamiltonian matrix, respectively.
Hint: A necessary condition at the minimum of the function F (~d) is ∂diF (

~d) = 0 ∀i.

4.2 Solving the discretized TDSE

4.2.1 Solving the ODE

Simplest case: linear, time independent equation. Orthonormal basis Ŝ = 1

i
d

dt
~c = Ĥ~c (4.13)

with initial condition ~c(0) = ~c0. Formal solution by matrix exponentiation

~c(t) = exp(−itĤ)~c0 (4.14)

4.2.2 Exponentiation of a matrix Â

Spectral representation

A matrix Ĥ has a spectral representation if it can be written as Ĥ = Ŵ d̂Ŵ † where Ŵ is a unitary
matrix and d̂ is diagonal.
If we use this spectral decomposition for Ĥ we will have:

(Ĥ)mn =
∑

k,l

Ŵmkd̂klŴ
†
ln =

∑

l

( ~Wl)mEl( ~W
†
l )n ∼

∑

l

|El〉El〈El| (4.15)

~c(t) = Ŵ exp(−itd̂)Ŵ †~c0; (e−id̂t)mn = δmne
−iEnt (4.16)
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Power series

Functions of Â:

eÂ =
∞∑

n=0

Ân

n!
≃

M−1∑

n=0

Ân

n!
; eÂ~c ≃

M−1∑

n=0

Ân

n!
~c (4.17)

A linear combination of the vectors is given by χn = ~c, Â~c, Â2~c, . . . which spans the Krylov subspace.
For large n we will obtain: ~An~c ≃ eigenvector associated to the largest eigenvalue. The vectors χn

become near linearly dependent for large value of n. We get a poor representation of the solution
due to numerical problems.

Chebyshev expansion

A valid alternative is given by an expansion of the exponential into orthogonal polynomials:

ex ≈
N−1∑

n=0

anTn(x) (4.18)

where Tn is some set of orthogonal polynomials, say, Chebyshev (as they are used in practice) and an
are the expansion coefficients. Like the power series, this is a Krylov method, but it is more stable
numerically: we construct specific linear combination of the Krylov vectors rather then Ân~c.

For applying the N -th order approximate exponential to a vector, we only need N − 1 matrix-
vector multiplications:

eÂ~c ≈
N−1∑

n=0

anTn(Â)~c (4.19)

Remember that any orthogonal polynomial of any algebraic object is given by three-point recurrence
relations, where each recurrence requires only a single multiplication:

Tn(Â) = (anÂ+ bn)Tn−1(Â) + Tn−2(Â). (4.20)

The coefficients an can be determined by:

∫ b

a

dxTm(x)exp(x) =

∫ b

a

∑

n

Tm(x)anTn(x)dx (4.21)

so that one gets the equations:

~b = Ŝ~a ~a = Ŝ−1~b bm =

∫ b

a

dxTm(x)e
x (4.22)

In order to evaluate Tn(Â)~χ one can use the recurrence relation for the orthogonal polynomials:

Tn(Â)~χ = (an + bnÂ)Tn−1(Â)~χ+ cnTn−1(Â)~χ (4.23)
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Therefore to determine Tn(Â)~χ only n matrix-vector multiplications are required, which is exactly
the same cost we had before, but now it is more stable.

Problem 2.50: Write a matrix-exponentiation using general orthogonal polynomials Tn in the
form

exp(Â)~c ≈
N−1∑

n=0

anTn(Â)~c (4.24)

Make the code independent of the specific choice of orthogonal polynomials, along the lines given
in orthopol.py. Compare the performance of these methods for given N with the classical Runge-
Kutta method implemented in odesolver.py.
Hint: The factors an are defined in the same way as for functions of real numbers:

exp(x) ≈
N−1∑

n=0

anTn(x) (4.25)

from which they can be determined by using the linear independence of the polynomials. In practice,
the factors an should be obtained using numerical quadratures during setup of the method. The vec-
tors ~cn := Tn(Â)~c by recurrence starting from ~c0. For recurrence, you may try to adapt orthopol.py.

Hint: You may take the class RungeKutta in odesolver.py as a model for your code.

4.2.3 Runge-Kutta methods

d

dt
y(t) = f(y(t), t) (4.26)

is the general ODE. Given ~y(t) =: y0, we want to obtain an approximation y1 ≃ y(t+h) for step size
h.

Here is the recipe for a general RK method:

• Compute s auxiliary vectors ~ki, i = 0, 1, . . . , s− 1:

~ki = ~f(~y0 + h
s−1∑

j=0

aij~kj, t+ hci) (4.27)

• Obtain the approximate solution y1 = y0 + h
∑

j bj
~kj

The numbers bi, cj, aij define a particular Runge-Kutta (RK) method. The common way to write all

these terms is a the Butcher tableau (see table 4.1). The number s of support vectors ~ki and for a
given RK method is called the stage of the method.
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c1 a11 a12 . . . a1s

c2 a21
. . .

...
...

...
. . .

...
cs as1 . . . . . . ass

b1 b2 . . . bs

Table 4.1: Butcher tableau for a RK method. If the method is explicit only the lower triangle is
unequal zero.

Example: Butcher tableau for the “classical” RK method (stage = 4)

0 0 0 0 0
1
2

1
2

0 0 0
1
2

0 1
2

0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Note, the the classical “RK4” method only requires storing a single auxiliary vector ~kj

4.2.4 Explicit vs. implicit RK methods

There is an important distinction between two classes of RK methods:

• Explicit RK method: the matrix if the aij is lower triangular with diagonal =0, i.e. aij = 0
for j ≥ i:

~ki = ~f(~y0 + h
i−1∑

j=0

aij~kj , t0 + hci). (4.28)

Explicit methods are very easy to apply: one can construct ~ki recursively as each ~ki depends
only on the ~kj that have been calculated previously. We need s evaluations the derivatives
only. For linear problems

~f(~y, t) = Ĥ~y (4.29)

the approximation is a linear combination of the Krylov vectors Ĥn~y0, n = 0, 1, . . . , s − 1:
explicit Runge-Kutta is a Krylov subspace method.

• Implicit RK method: ∃j ≥ i : aij 6= 0: requires solving the implicit equation for the ~ki

~ki = ~f(~y0 + h

s−1∑

j=0

aij~kj, t0 + hci) (4.30)

Implicit methods are usually much harder to implement than explicit methods, as the system
of equations needs to be solved. However, explicit methods in general suffer from instability
(see discussion below), which is why — depending on the problem at hand — one may decide
to use implicit methods.

100



Problem 2.51: Write a class RungeKutta that implements general explicit Runge-Kutta meth-
ods. Use a table of Butcher tableaus which contains the specifications for the different methods. As
a minimum, implement the “classical” 4th order Runge-Kutta, a second order RK scheme, and the
Euler forward step (or more, if you enjoy it). The class should have the following methods:

• The __init__ constructor to select and set up the method.

• The single time-step step: y(x)→ y(x+ h) using a function derivative(y,x).

• A test to test on the examples
∂x y = λy (4.31)

and on the classical pendulum equations

(ẋ, ṗ) = (p,−x) (4.32)

• A __str__ method to display the method (useful for debugging).

Make sure the class works for arbitrary objects, if only the derivatives form a vector space, i.e. can
be added and can be multiplied by a scalar.

Let M be some mapping that generates an approximation M [yn−1, yn, t, h] = yn ≈ y(t + nh) to
the solution of the ODE with initial condition yn = y(t+ (n− 1)h).

4.2.5 Existence of a solution, consistency, convergence

Lipschitz condition

There exists L such that and G some subset of R2

|f(y, t)− f(ỹ, t)| ≤ L|y − ỹ| ∀(y, t) ∈ G (4.33)

This holds in particular for functions that are differentiable on a compact and convex region. L is
then the maximum of the ∂y-derivative on that set

L = max
(y,t)∈G

|∂yf(y, t)| (4.34)

Consistency of a method

A method is consistent if, with decreasing step size, the error that we make in a single step goes to
zero faster than the step size, i.e.:

lim
h→0

1

h
[y(t+ h)−M(y(t), t, h)] = 0 (4.35)

This is a minimal requirement for a meaningful method: the error calculated to the step size must
decrease with the step size. If it does not, integrating over a fixed interval by performing many steps
one after the other will tend to add up to a constant overall error, no matter how small the individual
step size.
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Consistency order or just “order” of a method

A single step is accurate to order p in the step size h if:

[y(t+ h)−M(y(t), t, h)] = O(hp+1). (4.36)

Convergence of a method

Convergence requires that the accumulated error of the procedure over a finite interval [t0, t1] can be
made arbitrarily small.

To approximate the solution y(t) across [t0, t1] we compute solutions yn on a sufficiently dense
grid of tn = t0 + nh, h = (t1 − t0)/N in the interval, recursively by:

y(t+ nh) ≈ yn =M [yn−1, tn−1, h]. (4.37)

The procedure is called convergent if the deviation of the (y0, y1, . . . , yN) from (y(t0), y(t0 +
h), . . . , y(t0 +Nh︸ ︷︷ ︸

t1

)) goes to zero:

lim
h→0

max
j
|yj − y(t0 + jh)| = 0. (4.38)

Convergence order q

How quickly, i.e. to which order in the step size, does a convergent method approach the exact
result?

max
j
|yj − y(t0 + jh)| = O(hq+1) (4.39)

We say the (single step) method has convergence order q.
Because of the accumulation of errors, the convergence order is typically smaller than the consis-

tency order. Assuming random accumulation of errors, the errors can be expected to partially cancel
so that q ≈ p− r, where r ≈ 0.5.

Accumulation of errors and lower limit to step size

The errors discussed so far are method related and would occur also in infinite precision calculations.
However, mathematically, any method with consistency order p > 1 can be forced to convergence by
just choosing step size h small enough.

However, numerical error due to finite precision may bring the method to a halt: for a finite
interval, one needs

N =
tn − t0
h

(4.40)

steps. At one point, the numerical errors in a single step will exceed the error of M on the same step
and set a limit to the single step error: suppose the step h is so small, that the relative change of
the true solution y(t+ h)− y(t) ∼ 1014, i.e. approaches machine precision. Such a change cannot be
correctly represented with 14-digit accuracy and random errors of the same size as the true change
will increase: we cannot improve accuracy.
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sun

comet

Figure 4.1: Trajectory of a comet approaching the sun. The trajectory is nearly a straight line when
the comet is far from the sun, whereas it varies rapidly when the comet is close to the sun: a case
for step size control!

Further reduction of h leads to an increase of the error on a finite interval [t0, t1].
If you encounter this problem, likely reasons are (in this sequence)

• Over-ambitious discretization (see discussion of stability below)

• Bad ODE solver the demands too small step size h, you may need to use implicit solver.

4.2.6 Step size control

The motivation for step-size control can be understood by looking at a simple example from classical
mechanics. Let’s consider the trajectory of a comet that passes close by the sun. As can be also seen
from figure 4.1 we can have very large steps when it is far from the sun and it has an almost straight
trajectory, whereas we need a dense grid near the sun where it rapidly changes speed and direction.

Using step-size control we can obtain:

• gain in time;

• predictable/controllable accuracy.

A simple method for step size control is to compare larger and smaller steps and use the known
consistency error to estimate the actual error. (see figure 4.2).

Single/double step size control

If we assume that the used method M has consistency of order p we can estimate the error from the
difference of results y

(1)
2 − y

(2)
1 obtained with two different step-sizes:

The scheme works as follows:

• Error in first h-step: δ1 := y(h)− y(1)1 = y(h)−M [y(0), t, h] =: C1[h]h
p+1

(C1 also depends on y1, y(0), t, which we drop for notational simplicity).

• Error after 2nd h-step: δ2 := y(2h)− y(1)2 = δ1 + C2[h]h
p+1 = (C1[h] + C2[h])h

p+1
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Figure 4.2: In order to estimate the error in a step-size control method one can compare results
obtained with two different step sizes.

• Error in double-size 2h-step: δ3 := y(2h)− y(2)1 = y(2h)−M [y(0), t, 2h] = C3[h](2h)
p+1

• Assume the C’s constant: C := C1 ≈ C2 ≈ C3

• from the difference |δ3− δ2| = |y(2)1 −y
(1)
2 | = |2Chp+1−C(2h)p+1| = |δ2(2p−1)| we get the error

estimate: δ2 = |y(2h)− y(1)2 | = |y
(2)
1 − y

(1)
2 |/(2p − 1)

• estimate step size γh for desired error ǫ:

(γh)p+1

hp+1
=

ǫ

δ2
=

(2p − 1)ǫ

|y(2)1 − y
(1)
2 |

(4.41)

from which we obtain the correction factor γ:

γ =

[
(2p − 1)ǫ

|y(2)1 − y
(1)
2 |

]1/(p+1)

(4.42)

(γ is a factor which scales the original step-size).

• get a new step size h −→ γh.

• If γ > 1⇒ δ2 < ǫ: accept y
(1)
2 as good approximation to y(2h)

else: reject, start over from y0 = y(0) with new, reduced step size.

• Important: In practice one uses h −→ γhs where s is a safety factor < 1 introduced to avoid
rejecting too many steps.

Note: The overhead/extra cost is 50 % as the y
(2)
1 value is used only for estimate.

Problem 2.52: Solve the ODE

i
d

dt
~c = Ĥ~c (4.43)

where Ĥ is a N ×N random real symmetric matrix by exponentiating Ĥ to obtain

~c(t) = exp[−itĤ]~c(0) (4.44)
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in the spectral representation of Ĥ. Avoid using indices of matrices and eigenvectors as far as
possible, use matrix notation instead and numpy.dot for matrix-matrix multiplications.

Problem 2.53: Implement the double-step error control algorithm (see notes) in the class
OdeSolver. As the single step method, use any of the single-step ODE methods provided in
OdeSingle. Verify your control using the equation

i
d

dt
~c = Ĥ~c (4.45)

where Ĥ is a N × N random real symmetric matrix. As the comparison “exact” solution you may
use the matrix exponential in the previous example. You may use odesolver.py as a starting point
(see @classmethod test and def step for code stubs).

Problem 2.54: Set up a solver for the ODE resulting from a basis set discretization

d

dt
~c = −iŜ−1Ĥ~c. (4.46)

Implement this using odesolver.py. Use a model system of your choice (wave equation, harmonic
oscillator, classical Kepler problem) to verify the correctness of your ODE solve by comparing to
known solution.
Hint: The simple 1d wave equation translates the initial state by constant velocity, the average
postion of a quantum mechanical operator follow exactly the classical motion, closed orbitals of the
Kepler problem are ellipsis with known parameters.

Extrapolation methods

We have made the simplest assumption about the dependence of C on h, namely C ≡const across
the step size. If we assume that C is not constant, but some analytic function of h: C(h), we can
extrapolate results obtained with several step sizes to further improve the results. The simplest
of these methods is “Richardson extrapolation” another method based on the idea of analytical
continuation is Burlisch-Stoer.

Embedded methods

For reducing the overhead in step size control one can use so-called embedded RK methods. In these
methods one forms different linear combintations of the same set of support vectors ~kj to obtain two
different approximations to the solution, typically of different consistency order:

~y(p)n = h
∑

j

b
(p)
j
~kj and ~y(p−1)

n = h
∑

j

b
(p−1)
j

~kj (4.47)

Here as an example the Butcher tableau for a RK Fehlberg embedded method with orders p=4
and p=5 (RKF45):
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0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 —845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40
p=4 25/216 0 1408/2565 2197/4104 -1/5 0
p=5 16/135 0 6656/12825 28561/56430 -9/50 2/55
The only relevant overhead of the method is to form the two alternative linear combinations,

which is usually negligible compared to computing the derivative. However, the method is less
robust and only applicable in the particular context of a method. In contrast, double-step controle
only requires a well defined consitency order of the method.

Problem 2.55: Assume that the ratio of errors coefficients C(p)[h] in the two alternative results
of RKF45 is constant. Base a step-size control on this assumption.

4.2.7 Stability

Let us look at the simple linear equation

d

dt
y = λy. (4.48)

with the known exact solution y(t) = eλty(0).
Assume for now that the method depends linearly on the initial condition

M [yn−1, yn, t, h] = F (λh)yn−1 (4.49)

Then

yN = F (λh)Ny0. (4.50)

For λ > 0 we expect as a minimum requirement

|yN | < |y0|, (4.51)

which implies

|F (λh)| < 1. (4.52)

The stability region of a method is the set of those µ ∈ C such that F (µ) < 1.

Why and when stability matters

Let us assume d
dt
~y = Â~y with Â having the following spectral representation: Â = Ŵ d̂AŴ

†. We want

to solve the ODE in the basis of eigenvectors: let ~z = Ŵ †~y; then d
dt
~z = d̂A~z. This can be written as

a set of decoupled equations:
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Figure 4.3: Stability regions of explicit Runge-Kutta methods s=p=1,. . . 4.
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d

dt
z0 = a0z0 (4.53)

... (4.54)

d

dt
zM−1 = aM−1zM−1. (4.55)

If all an are in the stability region, none of the components will grow exponentially. Assume that the
initial vector is z0 = (1, 2, 3, 0, εn, 0)

T , where εn is some noise (numerical error). The ε-component
will never grow, if an is in the stability region. The error remains more or less constant. If not, the
component will grow exponentially and the solution will break down.

Stability has nothing to do with accuracy. A method that is perfectly stable can produce com-
pletely wrong results, if step-sizes are choosen too large. Stability just aserts that these wrong results
are not due to (exponential) growth of numerical noise. It assures that tiny numerical errors cannot
build up and explode exponentially.

Stability and discretization

In practice, the required stability region is closely linked to discretization. If discretized system has
very large eigenvalues, small step sizes are required in explicit methods. If those high eigenvalues
reflect rapid change of your actual system, there is probably little you can do about it on the
computational front (you may re-consider your modelling, though).

However, often, such high eigenvalues are not of physical interest and arise due to a over-ambitious
discretization. For example, very fine grid spacings ∆x allow the representations of very high mo-
menta pmax ∼ 2π/∆x and the corresponding high kinetic energies ∼ p2max/2. As a result, you pay a
double penalty for small ∆x: (1) you need ∝ 1/∆x more points and (2) you must make ∝ 1/∆x2

smaller time-steps, if you are using an explicit method, total third-power penalty. Clearly, you should
make your grid as fine as needed for representing the dynamics of your system, but absolutly avoid
too fine grids.

Avoiding unneeded high eigenvalues is a simple advice that can be hard to follow. In that case,
implicit, unconditionally stable methods are the remedy.

On the other hand, if high eigenvalues do play an actual role in the physics, then switching to a
more stable method will not help: while your solution will not explode, it will likely just be incorrect.
Stability is only about avoiding exponential growth: it allows you to keep high frequency noise at a
low level by “brushing over it”. If you are actually interested in some high frequency-structure, you
need to probe it with adequate sampling, i.e. whith evaluation of your derivative at small step sizes
h ∼ 2π/Emax.

Summing it up: stability is an important technical property. If you have problems with stability,
first check whether you can avoid them by a more careful discretization, before you resort to the
cumbersome implementation of an implicit method.

Problem 2.56: Investigate the stability range for different methods.
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Stability analysis for general ODEs

For linear ODEs and methods we have a linear connection between ~y0 and ~y1:

~y1 = M̂~y0 (4.56)

Then we only need to compute or estimate the largest (in magnitude) eigenvalues of M̂ . Clearly,
stability of the solution will depend on time, if the ODE is explicitly time-dependent.

For the general non-linear case one locally linearizes the method around some point ~y0

~y1 ≈ M̂ [~y0, t]~y0 for |~y1 − ~y0| small. (4.57)

Stability is then defined only locally for a given ~y0.

“(Absolute) stability region”

There is an entertaining multitude of names for different aspects of stability, see, e.g.
http://ode-math.com/StabiltyRegionDefinitions/StabilityRegionDefinitions.html

Here we remember to keep the problem in mind and that, if we have two methods that are comparably
easy to apply and have similar order, we will opt for the one with higher stability. Or, if stability is
our key problem, we will use the method with the largest possible stability range.

Note: Implict Runge-Kutta methods are absolutely stable, i.e. stable for all negative, real λ

4.2.8 Crank-Nicolson

The Crank Nicolson method is absolutely stable, i.e. it is stable for all µ ∈ (−∞, 0). Its consistency
and convergence order are 2 and 1, respectively and it is an implicit Runge-Kutta method with the
following tableau:
0 0 0
1 1

2
1
2

1
2

1
2

In the case of a linear, time-constant derivative function f(~y, t) = Â~y:

(1− h

2
Â)−1(1 +

h

2
Â)~yn−1 = ~yn. (4.58)

Expanding (1 − h
2
Â)−1 =

∑∞
n=0

(
h
2
Â
)n

, one sees that it approximates the exponential exp(hÂ) to

the order (hÂ)2. For using Crank-Nicolson, we need to solve the linear equation for ~yn:

(1− h

2
Â)~yn = ~z with z = (1 +

h

2
Â)~yn−1. (4.59)

The method is best applied when solving 1−hÂ/2 is “easy”, i.e. for example for banded, tridiagonal

(second order FD scheme) matrices Â. For time-constant Â with band-width b, the LU-factorization
O(Nb2) can be done during setup, solving is then O(Nb).
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Problem 2.57: Implement the Crank-Nicolson method for general linear ODEs

d

dt
~y = Â~y (4.60)

and investigate its consistency and convergence using d
dt
y = λy. Write your own code from scratch

or add it as a new single step method to odesingle.py.

Problem 2.58: Analyze the stability of several single step methods: classical Runge-Kutta,
midpoint-rule (see odesingle.py for the Butcher tableaus) and Crank-Nicolson by studying analyti-
cally F (µ) for the standard ODE d

dt
y = λy. Next implement a general numerical test in odesolver.py

modeled after the “convergence” and “consistency” tests. Confirm you analytical findings.

4.2.9 Split step (split operator) methods

We use this mostly in the linear case of the TDSE, i.e. id~y/dt = Ĥ~y. So we need:

U(t) = e−itĤ . (4.61)

Let Ĥ = Â + B̂, where we can easily form e−itÂ and e−itB̂. Suppose that we know the spectral
representations of Â and B̂:

Â = ŴAd̂AŴ
†
A, B̂ = ŴBd̂BŴ

†
B (4.62)

and therefore
e−iX̂ = ŴXe

−itd̂XŴ †
X , X̂ = Â, B̂. (4.63)

If [Â, B̂] 6= 0

e−itĤ 6= e−itÂe−itB̂ 6= e−itB̂e−itÂ. (4.64)

But
e−itĤ = e−itÂ/2e−itB̂e−itÂ/2 +O(t3), (4.65)

which has consistency order 2 and is unconditionally stable. With ~y → ~z = Ŵ †
A~y in the spectral

representation of Â:

~zn = e−itd̂A/2
︸ ︷︷ ︸

easy

ŴAB︸︷︷︸
hard

e−itd̂B︸ ︷︷ ︸
easy

Ŵ †
AB︸︷︷︸

hard

e−itd̂A/2
︸ ︷︷ ︸

easy

~zn−1, (4.66)

where ŴAB is a N ×N matrix.
In general, ŴAB is a huge matrix, with a cost of O(N2) operations to apply. In some cases,

it can be a much smaller matrix or some other efficient possibility to transform from the spectral
representation of Â to that of B̂.

Example: Suppose that Â = p2/2 and B̂ = V (x). Discretize the momentum and kinetic energy

on an equidistant grid in x-space. Then B̂ is diagonal and p2/2 is diagonal on the corresponding
k-grid. Then we do the transformation between position and momentum representation by FFT and
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get a order of O(N logN) instead of O(N2). Suppose that N = 1000 then log2N = 10. Instead of a
1000×1000 matrix-vector multiplication with operations count 10002 we get the 1000×10 operation
of FFT. This is a crucial difference (factor 100).

For time-dependent problems, i.e. f(~y, t) explicitly depends on t, the Runge-Kutta method is

formulated in full generality. The split step method assumes time-constant Â, B̂. For time-dependent
Â, taking Â(t0) of t0 = t+ h/2 (in the middle of the time-step interval) leads to consistency order 2
also for the time-dependent problem.

Problem 2.59: Grid methods: Discretize Ψ±(xi) on an equidistant grid xn = −L + n2L
N
, n =

0, 1, . . . , N − 1. Use periodic boundary conditions Ψ(xN) = Ψ(x0). Implement derivatives by 2nd
and 4th order finite difference schemes. Check convergence and accuracy. Compare performance to
the FE implementation.

Trotter-Suzuki expansion

Split step is unconditionally stable (if the exponentiations can be done exactly), but it has consistency
order of only 2. The basic idea of split step can be generalized to repeated exponentiations with the
goal of increasing consistency order. This type of expansions is called Trotter-Suzuki.

Magnus expansion

For time-dependent problems, often the so-called Magnus expansion can be useful. Approximate the
abstract time-ordered exponential T [exp

∫ t

t0
. . .] up to O(|t0 − t|n) by a simple exponential of a new

operator Ω(n):

U(t0, t) := T exp

[
−i
∫ t

t0

Ĥ(τ)dτ

]
= exp[−iΩ(n)(t0, t)] +O(|t− t0|n+1) (4.67)

One finds

Ω(2)(t, t0) =

∫ t

t0

dt1Ĥ(t1) (4.68)

Ω(4)(t, t0) = Ω(t0, t)
(2) +

1

2

∫ t

t0

dt1

∫ t1

t0

dt2

[
Ĥ(t1), Ĥ(t2)

]
(4.69)

Ω(6)(t, t0) = Ω(t0, t)
(4) +

1

2

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

[
Ĥ(t1),

[
Ĥ(t2), Ĥ(t3)

]]
+
[
Ĥ(t3),

[
Ĥ(t2), Ĥ(t1)

]]
(4.70)

... (4.71)

This is less scary than what it looks when the time-dependence has the simple form, as often in
physics:

Ĥ(t) = Â+ f(t)B̂ : (4.72)
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only integrals over f(t) will be needed. The commutator can applied explicitly

[Ĥ(t1), Ĥ(t2)]~c = [f(t1)− f(t2)][Â, B̂]~c = [f(t1)− f(t2)](ÂB̂ − B̂Â)~c. (4.73)

Often, the commutator takes very simple forms like when the time-dependent part of the Hamiltonian
is the dipole operator

[−1

2
∆ + V (~r), ~r] = −1

2
~∇. (4.74)

The same principle can also be applied in classicals dynamics (symplectic integrators, to be discussed
later). We see that Magnus Ω(2) slightly improves split-step for time-dependent problems, but Ω(4)

crucially increases consistencey order.

Non-linear problems

Non-linear equations can be tackled by a similiar strategy as time-dependent problems: do a piece-
wise linearization, i.e. assume that, on short time-intervals, only changes up to the first order matter.
An example for applying this stratege is given below, solving the “Non-linear Schrödinger equation”,
an equation that arrises in optics and also for the description of Bose-Einstein condensates. With
that strategy, e.g. the split-step method again gives consistency order 2.

4.2.10 A TDSE solver

(Implemented in 1d only)

• Read and set up your discretization (class Axis)

• Set up your operator (class QMOperator)

• Create your initial wave function ψ(t = 0) (class WaveFunction): e.g. lowest eigenstate (from
QMOperator), gaussian wave packet (method of class WaveFunction),. . .

• read your time-grid, i.e. the points in time where you want to see the solution.

• set up your solver (class OdeSolver): classical runge kutta, others...

• step through the time grid and store the solutions

• use the solutions ψ(t): e.g. display (should be a method of WaveFunction, not implemented
yet)

Improvements in 1d:

• Right now, the operator is converted to a full matrix and that matrix is multiplied on the
coefficient vector: operations count N ×N vs. N × b if band structure is exploited.

• Also, the inverse overlap matrix is computed explicitly (always a full matrix). Better is to store
its LU decomposition and apply: again N ×N vs. N × b
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Improvements for 2d:

• Extend QMOperator and WaveFunction must be extended to 2d by including 2 axes.

• If explicit solvers are used, matrix vector multiplication is crucial: exploit to the maximal
possible extend the tensor product form of the matrices: MUCH lower operations count.

Improve performance: multiplying vectors by tensor products

Let us use double indexing for the tensor product matrices: Â and B̂ are M × M and N × N ,
respectively.

T̂ = Â⊗ B̂ (4.75)

means
(T̂ )mn,m′n′ = Amm′Bnn′ (4.76)

Let ~c be a vector in the tensor product space RM ⊗RN with its components labelled by cm′n′ . Then

(T̂~c)mn =
∑

m′n′

(T̂ )mn,m′n′cm′n′ =
M−1∑

m′=0

N−1∑

n′=0

(T̂ )mn,m′n′cm′n′ (4.77)

requires (MN)2 floating multiplications and additions. However, the special shape of T̂ as a tensor
product allows the same operator with a much lower operations count:

M−1∑

m′=0

N−1∑

n′=0

(T̂ )mn,m′n′cm′n′ =
M−1∑

m′=0

N−1∑

n′=0

Âmm′B̂n,n′cm′n′ =
M−1∑

m′=0

Âmm′

N−1∑

n′=0

B̂n,n′cm′n′ (4.78)

which can be writen of two sets of small matrix-matrix mutliplications: re-arrange ~c as a M × N
matrix Ĉ : cm′n′ = (Ĉ)m′n′

X̂ = ĈB̂T (4.79)

with operations count MN2 and

Ŷ = ÂX̂, (Ŷ )mn = (T̂~c)mn (4.80)

with operations count M2N , giving at total operations count M2N +MN2 ≪ (MN)2 if M ≫ 1 and
N ≫ 1.

Except for conceptional clarity, this crucial advantage of tensor products is why we introduced
them in the first place.

4.2.11 The Finite-Difference Time-Domain (FDTD) method

A very large fraction of modern simulations of Maxwell’s equation is done using the so-called “Finite
Difference Time-Domain” method. Its key properties are

• Simple setup of the discretization of Maxwell’s equation
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• Consistency order 2 in space and time

• Stability of time-propagation

• Easy inclusion of material properties, like susceptibility

• Good parallelizability

Main drawback is a potentially rather small time-step and grid spacing needed for the representation
of high frequencies. Time-step and spatial resolution are linked by the so-called “Courant-condition”,
basically saying that in units where the speed of light is =1, ∆t ≤ ∆X: if we decrease grid spacing
for better spatial resolution, we need to correspondingly decrease the the time-step. For the Maxwell
equations in three spatial dimension, the computing time therefore grows as ∆X−4, the memory
grows as ∆X−3.

We will discuss here only the situation where symmetry allows to reduce the problem to a single
dimension, i.e. plane wave solution. We will excite these plane waves from a time-dependent current.
Maxwell’s equations are, in suitable units

~∇× ~E = − d

dt
~B, ~∇ · ~E = ρ (4.81)

~∇× ~B =
d

dt
~E +~j, ~∇ · ~B = 0, (4.82)

If we assume that our system is translationally invariant in y and z-directions, and if we are interested
in solutions that share this symmetry (remember that a symmetric system does allow asymmetric

solutions), we can decide for polarization direction of ~E = (0, E(x, t), 0) and correspondingly ~B =
(0, 0, B(x, t) and solve the equations

∂xE = −∂tB (4.83)

−∂xB = ∂tE + J(x, t). (4.84)

We will use a forced external current J(x, t) as an “antenna” emitting the radiation that propagates.
For now, we assume the propagation occurs in vacuum, without dispersion or other effects of matter.

As a side-remark, note that the equation can be written in the form
(
∂x 0
0 −∂x

)(
E
B

)
=

d

dt

(
0 −1
1 0

)(
E
B

)
+

(
J
0

)
(4.85)

or

D̂~Φ =
d

dt
Ŝ~Φ + ~J, (4.86)

essentially the same structure that we have been dealing with much of the time. The 3-dimensional
Maxwell equations can be written in the same form with 6-component vectors ~Φ = ( ~E, ~B). In
principle, we can use any combination of discretization (in space) and solvers (in time) to numerically
solve the equation.

Indeed, FDTD is a special discretization/solver pair. There is one peculiarity about the matrix

Ŝ: while so far we had it mostly positive definite, Ŝ is indefinite, but, of course, invertible. More
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Figure 4.4: Illustation of the FDTD “staggered” space-time grid. Triangles carry the magnetic field,
bullets the electric field. (from “Understanding the FDTD Method” by John B. Schneider, available
online at the time of writing).

precisely, it is a “symplectic” matrix that we will briefly encounter when discussing classical mechanics
simulations, see discussion there. Symplectic Ŝ allow a so-called symplectic time-integrators. The
simplest of these is the “leap-frog” algorithm, which serves as the time-integrator in FDTD. For the
spatial discretization, an equidistant grid with 2nd order FD is used. The only little extra trick is
the following: for computing the time-derivative ∂tB(xi, t) we need (in 2nd order FD) only E(xi−1, t)
and E(xi+1, t), for ∂tE(xi±1, t) we only need B(xi, t), B(xi+2, t) and B(xi, t), B(xi−2, t), respectively.
The even and the odd grid points never mix! It is just two completely separate problems, and we
need to solve only one of them, which reduces the number of grid points by a factor of 2. From now
on, we write E(x2i, t2n) = Ein and B(x2i+1, t2n+1) = Bin.

The “leap-frog” procedure for time-integration in this case reads

Bi,n+1 = Bi,n +∆t(Ei+1,n − Ei−1,n) + Ji,n (4.87)

Ei,n+1 = Ei,n +∆t(Bi+1,n+1 −Bi−1,n+1) (4.88)

In the original grid, each grid point xi carries E and B. After omission of all E(xi, tn) at, say, odd
i, and corresponding omission of all B(xi, tn) at the even i we have twice the spacing. The leap-frog
method can be interpreted in a similar way. As a resutlt, we have two space-time grids offset relative
to each other by 1/2 grid spacing and time-step: in FDTD jargon, “staggered” grids.

Problem 2.60: Set up a FDTD code. For the grid, choose periodic boundary conditions. Initially
all fields = 0. Use a time-dependent current a the origin Jin = δi0 sin

2 πn∆t/T sin(ωn∆t). Plot the
current and fields as functions of time. Verify your result by comparing to the analytical solution.
How are grid-spacing and frequency ω related. What happens for grid spacings ∆X & 2π/ω? What
happens when ∆t & ∆X? (Remember, our “speed of light” is =1).
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Chapter 5

Monte Carlo methods

5.1 Introduction

If a system is too complex to “solve” it, i.e. produce the complete desired information about it
with well-defined accuracy, we can try to map it partially, by systematically probing it. In order to
obtain unbiased information from such a probing, we take the probes “randomly”, i.e. without any
assumptions about the system. This is the most abstract description of Monte Carlo methods. The
name indeed refers to the city of Monte Carlo — synomymous with gambling — and the idea of
completely random sequencies of numbers that should occur in, e.g., roulette.

Provided we have a source of “random” numbers, sanity of results, accuracy estimates, and con-
vergence can be tested using the probability theory. The definition of randomness is a negative one:
as set of numbers in a certain interval without any structure. The number of conceivable “structures”
is unlimited, but actual random numbers are can only be tested for a finite set of structures: in its
general form, the concept remains logically incomplete. This is reflected in computational practice:
scrutinize numbers for a set of possible hidden structures until you are convinced that there are no
structures that would compromise your result.

The randomness needs to be adhered only to the extent that indeed we do not have a priori
knowledge of our system. Where we do have such knowledge, we must make all possible efforts
to take advantage of it. For example, we may approximately know where a funktion is large and
therefore will contribute most to an integral (even if we cannot give the exact form of the integral).
Or we may know a criterion for the regions in phase-space that are more important than others. We
then can introduce biased probing based on such additional knowledge and take the bias propertly
into account. Much of the art of Monte-Carlo methods is in the skillful use of knowledge about your
problem.

We will discuss two examples for the application of Monte-Carlo methods:

• Monte-Carlo integration

• The Metropolis algorithm and its derivatives to solve the Ising model: H =
∑N−1

i,j=0 Jijsisj +

B
∑N−1

i=0 si, si = ±1 . The Ising model describes a set of spins interacting with each other and
with an external magnetic field B. Loosely speaking it is the harmonic oscillator of thermody-
namics: there are several exact results known, against which we can test our numerics (or any
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other method). The Hilbert space H for such a system is H = S2 ⊗ . . .⊗ S2︸ ︷︷ ︸
N times

where S2 is the

Hilbert space for one particle. As si can only assume two different values the total space has
dimension dim(H) = 2N .

5.2 Monte Carlo (MC) integration

Figure 5.1: Graphical definition of a definite integral. The x-axis is divided into small parts of length
hi and all the boxes that are obtained using such a procedure are added up in the end.

The most basic (and intuitive) definition of integral is the Riemann integral (figure 5.1). The
step to follow in order to “obtain” an integral are:

• add up the areas of the boxes;

• take box width to zero;

• hope it converges.

This can be formalized saying that the value of the integral I is given by I =
∑

i hif(xi).
For a fixed width h we have:

I =
b− a
N

N−1∑

i=0

f(xi)
N→∞−→

∫ b

a

f(x)dx (5.1)

A Monte Carlo integral over the interval [a, b] is defined as:

lim
N→∞

b− a
N

N−1∑

i=0

f(xi) (5.2)

where xi are randomly chosen points. The fact that xi is chosen randomly is particular important:
if there is any structure in the choice of xi one risks to get irregular convergence.

The basic problem can be seen already when one applies the approach to the definite integral of
a simple function of a single variable, e.g.

∫ 100

0
dt sin 2πt: if we choose ti randomly, but only from a
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limited set of, say, integer numbers, we will get the correct result =0. If we happen to get it from
the set n+ 1/4, we obtain an incorrect result. This may appear to be a silly example, but we must
remember, that any number on the computer has a finite number of digits, the number on a computer
map uniquely onto the integer numbers: it is just a matter of resolution until we, at a finite number
digits, can run into accuracy problems of this kind.

Error of MC integration

Even with “true” random numbers, the error of any MC integration remains finite and decreases
comparatively slowly as ∼ N−1/2 with the number N of probes taken.

Let our desired integral be

I =

∫

V

dxf(x). (5.3)

To see what determines the error, let us assume that we probe a function by N points. The individual
function value at a random point xi is itself a random number fi. Similarly, the integral estimate
IN(x0, x1, . . . , xN−1) = V/N

∑N−1
i=0 f(xi) is a random variable. Although we have no easy access to

the distribution ρ(fi) of the f(xi), by the central limit theorem we know that the distribution of
ρ(IN) =

∏N−1
i=0 ρ(fi) approach a Gaussian with expectation value I. The variance of IN is

σ2(IN) =
1

V N

∫

V

dx0 . . .

∫

V

dxN−1

[(
V

N

N−1∑

i=0

f(xi)

)
− I
]2

=
V

N

∫

V

dx (f(x)− 〈f〉)2 = V

N
σ2(f),

(5.4)
where we have written

I =
V

N

N−1∑

i=0

I

V
=
V

N

N−1∑

i=0

〈f〉. (5.5)

As the distribution of the IN is approximately Gaussian, the ±σ(IN) define the 68.2% confidence
interval for our estimate. As one expects, the confidence interval narrows ∝ N−1/2. It is important
to observe that it is proportional to the variance σ(f) of the integrand f . Clearly, the error also
grows with the volume V that needs to be sampled.

If the variance σf is small, reasonably accurate values of the integral can be obtained quickly
(extreme case: constant function). Of course we do not know σf , but we can estimate it by approx-
imating

∫
V
f 2(x)dx within the same MC simulation.

Note that the rate of convergence is always the same 1/
√
N , i.e. rather slow: for 10 times better

accuracy, you need 100 times more function evaluations.

5.2.1 Reasons to use MC integration

The convergence ∼ N−1/2 appears rather miserable compared to, e.g., the exponential convergence
of Gauss quadratures with the number of quadrature points. However, there are no assumptions
about differntiability of the integrand, as in high order quadratures. Most importantly, convergence
of MC integration is independent of dimensions of the integral, only depending on its variance.
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Assume a quadrature that converges ∼ hk in one dimension. With a total of N points in d
dimension, we have ∼ N−d points for each coordinate and a convergence ∼ N−k/d for the quadrature.
So unless we can use very high order quadratures, the convergence of MC integration does not look
that bad. But high order quadratures are rarely applicable for irregular and poorly differentiable
integrands.

Another reason is its conceptual simplicity, at least when taken in its simplest form given here.

Comparison of MC integration with Gauss quadratures

This comparison can only be performed, when you make some assumptions about the structure of
your integrand.

Case 1 - “smooth” integral - extreme case: All higher derivatives are uniformly bounded, i.e.
there exists a constant C such that all higher partial derivatives are bounded by it:

[∏

i∈T
∂xi

]
f(x0, x1, . . . , xM−1) ≤ C (5.6)

where all possible partial derivatives T are an N -tuple:

T = (0, 0, . . . , 0︸ ︷︷ ︸
n0 times

, 1, 1, . . . , 1︸ ︷︷ ︸
n1 times

, . . .M − 1,M − 1, . . . ,M − 1︸ ︷︷ ︸
nM−1 times

),
M−1∑

i=0

ni = N. (5.7)

Note that, like in the 1-d case, sometimes we may succeed to extract non-analytic behavior (say,
∼ (x)α for α not a natural number) by choosing a proper weight function for the Gauss quadrature.

This is the case, where we can increase the order of a Gauss quadrature to (exponentially) increase
its accuracy. To see this, think of a Taylor series that breaks off at the N ’total order.

In this case, if any accuracy is needed at all and if the function has any variance, the exponential
convergence of the quadrature will be hard to beat.

Case 2: The higher derivatives of the integrand are not bounded. One can only use a fixed
order quadrature and obtains a convergence which is proportional to ∼ hp. But decreasing h in M
dimensions, means the number of function evaluations increases by N ∝ h−M . Comparing the two
errors, we find

δIMC ∝ N−1/2, δIquad ∝ hp ∝ N−p/M for p > 2M. (5.8)

For moderate dimensions M , depending on our integrand, we should always be able to improve the
convergence behavior for the quadrature to beat Monte Carlo

Case 3 - very irregular integration volume V : Doing multi-dimensional integrals by quadratures
becomes difficult, when the integral volume is not a rectangle. (To get a high order for the quadra-
ture you need high oder approximation for the integral boundaries. This can be very difficult for
highly irregular shapes.) One can try a coordinate transformation to map V onto a rectangle. For
example, when integrating over a sphere of radius R, the polar coordinates map it into the rectangle
(r, θ, φ) ∈ [0, R] × [−π/2, π/2] × [0, 2π]. But exactly that will not be possible in general. This is
where high order quadratures become difficult to construct and where Monte Carlo has the decisive
edge.
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Problem 2.61: Create a class for Monte-Carlo integration in one dimension. Include a test
routine to prove its correctness by comparison of the Monte-Carlo result with the exact integral.
Plot the MC value as N increases, show that the errors tend to decrease as N−1/2. Clearly, you will
not obtain exactly the a decrease by N−1/2. For the test routine, find a criterion to accept or reject
the decrease as correct or reject as incorrect.

Problem 2.62: Keeping the number of integration points N fixed, repeatedly compute the
integral and show how it scatters around the true value. Sort the results into a histogram, i.e. the
counts that you find in intervals around the true value. For large N (and sufficiently narrow bins of
the histogram), the distribution should resemble a Gaussian. Fit a Gaussian to the distribution that
you obtain by manually adjusting its width. Compare the width of your distribution to the variance
of your function with respect to the integral.

5.3 Random numbers

The use of probabilistic reasoning requires strictly random numbers. If there are some systematic
patterns in the xi we use, the error estimates and convergence patterns are not valid. A somewhat
silly example would be probing of a periodic function, say sin x with numbers that are spaced at
period 2π: clearly, the result can be anything between ±L, if L is the integration range.

5.3.1 What is random? — Test your random numbers!

Randomness is defined negatively: there is no pattern of any kind in the sequence of a set of random
numbers. To really obtain random number one must:

• use a physical process that we believe is random;

• do not use random numbers, but use numbers that are generated by an algorithm. The algo-
rithm is “the pattern”.

Suppose we want to have random numbers evenly distributed in [0,1]. Evenly distributed means
if we count how many numbers fall into any bin of fixed size [a, a + h] ∈ [0, 1], for sufficiently
many numbers, any such bin will contain the same number of numbers. Clearly, the numbers
i/N, i = 0, 1, . . . , N − 1 are evenly distributed, but have a very simple pattern. Next you need
to systematically exclude any possible pattern from your set of numbers to decide whether they are
“random”. As (probably) there is an infinite number of possible “patterns”, randomness in that
sense is not a operationally well-defined concept.

In particular, any set of numbers generated by an algorithm, is by definition NOT random: the
algorithm is its “pattern”. There are attempts to use physical processes that we believe are “random”,
to generated random numbers. That is fine (if the process really is “random”), but not practical: it
also means that two runs of a code will never produce the exactly same result which is a nightmare
for debugging!
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The solution are pseudo-random numbers that are generated by some algorithm and thus not
random by definition. But nevertheless in practice we prefer them over truly random numbers because
they give reproducible results. that must obey certain criteria, like, truly independent numbers,
when binned, must be Poisson-distributed, or, the difference between two subsequent numbers must
be random, or. . .

A suite of tests that the random numbers should pass, has been worked out by different places.
A good reference in such matters is NIST — the US “National Institute of Standards”. A test suit
including their and other tests is provided under Gnu Public Licence (GPL) as the “dieharder” test
suit (google it!).

Problem 3.63: Download the dieharder test suite for random generators. Select a few of the
tests and discuss their idea. Find critical discussion of the selected tests: where would a given test
fail to detect lack of “randomness”?

Here are some examples of the provided tests (see documentation, quotes from Wikipedia):

• Birthday spacing test: Choose a random number of points on a large interval. The spacings
between the points should be asymptotically exponentially distributed. The name is based on
the birthday paradox.

• Overlapping permutations: Analyze sequences of five consecutive random numbers. The
120 possible orderings should occur with statistically equal probability.

• Ranks of matrices: Select some number of bits from some number of random numbers to form
a matrix over {0,1}, then determine the rank of the matrix. Count the ranks.

• Count the 1s: Count the 1 bits in each of either successive or chosen bytes. Convert the counts
to ”letters”, and count the occurrences of five-letter ”words”.

• Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle overlaps an
existing one, try again. After 12,000 tries, the number of successfully ”parked” circles should
follow a certain normal distribution.

• Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 square, then find
the minimum distance between the pairs. The square of this distance should be exponentially
distributed with a certain mean.

• etc. . .

Note: If your “random” numbers produce a highly unlikely result, you should be suspicious of your
numbers generated.

5.3.2 Pseudo-random Number Generator (RNG)

LCG — Linear Congruence Generators

Although operating systems, compilers or languages, all provide random number generators, it is a
good idea to have your own, such that your algorithm works the same way under all circumstances.
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One way to get a linear pseudo-random number generator is to consider the following general se-
quence:

xn+1 = axn + c mod M (5.9)

with xn, a, c and M being integers. This produces uniformly distributed numbers in the interval
0, 1, . . . ,M − 1 and all numbers occur if and only if:

1. c and M do not have common factors (except for 1).

2. for any factor q of M , a mod q = 1.

3. if a mod 4 = 1, then M mod 4 = 0

These are minimal requirements, but they do not guarantee “good” random numbers.

Problem 3.64: Historically, a famous example for a bad random number generator was provided
by “randu” by IBM, where a sequence of xn was generated by the prescription:

xn+1 = 65539xn mod 231. (5.10)

Run this through the “dieharder” test suit to see how it performs.
Also, plot subsequent triples of the numbers (scaled into [0,1]) as dots in 3d into [0, 1]×[0, 1]×[0, 1],

and you will see a nice pattern. (Note that it violates condition 3.)
Run the numpy.random.rand generator through dieharder. Inteprete the results.

5.3.3 Multiple Recursive Generators

A decent class of algorithms are “Multiple Recursive Generators” (MRG) defined as:

xn =

(
K∑

i=1

aixn−i

)
mod M. (5.11)

Note: Note that you generate random numbers in the interval [0,M − 1] . To get random numbers
in the interval [0, 1) just perform: xn/M = yn ∈ [0, 1). Instead of just using one preceding value, the
pseudo random number is generated from the K pseudo random numbers preceding it.

Problem 3.65: Test the MRG:

xn = (177786xn−1 + 64654xn−5) mod (231− 1) (5.12)

using the “dieharder” test suit.

5.3.4 Speeding up convergence

While the fundamental convergence ∝ N−1/2 cannot be changed, we can make an effort to reduce
the proportionality factor, essentially the variance of the integrand.
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Variance reduction

Find a comparison function g(x) such that the variance σ2
f−g ≪ σ2

f and that the integral

∫ b

a

dxg(x) = J (5.13)

can be calculated efficiently.

Importance sampling

Find a (non-negative) function 0 < w(x) such that in

∫ b

a

dxw(x)
f(x)

w(x)
=:

∫ b

a

dxw(x)g(x). (5.14)

the integrand g(x) = f(x)/w(x) should have little variance (i.e. σg ≪ σf ). Then, rather than using
uniformly distributed points, generate random points x according to the “probability density” w(x).

Let x
(w)
i be random numbers distributed according to w(x), then

∫
dxw(x)g(x) ≈ W

N

N−1∑

j=0

g(x
(w)
j ). (5.15)

Note that the integration volume V must be re-normalized to W =
∫ b

a
dxw(x): this is easy to see,

assuming the case w(x) = f(x), g ≡ 1. As the random variables gj = g(x
(w)
j ) have small variance,

the sum will converge more rapidly. The fact that we have omitted w(x) from the summands is

compensated by the fact that x
(w)
j appear more frequently at values x where w(x) is large. In that

way, the function is probed, where it is important: for reducing variance, w(x) should have large
values where f(x) has large values.

5.3.5 Distributions according to a probability density function

Distribution by inversion

The example above of speeding up integration by importance sampling also tells us how to generate
random numbers in an interval [a, b] according to a preset (positive definite) probability density w(x).
We can simply change integration variable

∫ b

a

dxw(x)g(x) =

∫ W

0

dy(x)g(x(y)) (5.16)

with

dy(x) = w(x)dx, dy/dx = w(x), y(x) =

∫ x

a

w(x′)dx′, W = y(b). (5.17)
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As w(x) > 0, the function y(x) is invertible. In this new variable y, the MC approximation to the
integral is ∫ W

0

dyg(x(y)) ≈ W

N

N−1∑

j=0

g(x(yj)). (5.18)

We identify the random points according to a distribution w(x) as

x
(w)
j = x(yj), (5.19)

where the yj are equally distributed in [0, 1].

Problem 3.66: Let w(ξ) be a probability density on [a, b] and define W (x) :=
∫ x

a
dξw(ξ).

Express the graphical arguments given in the lecture in terms of calculus to show that the W−1(yi)
are distributed according to the probability density w(x), if yi are equally distributed on [0, 1].

Apart from this proof by simple calculus, it may be useful to also have a geometric picture of
why one obtains the desired distribution (see figure 5.2): Draw the function W (x). As 0 < w(x) =
∂xW (x), finite interval ∆y on the y-axis is mapped into a finite interval ∆x on the x-axis. The ratio
of the width of the intervals is

∆y ≈ ∂xW (x)∆x = w(x)∆x (5.20)

So, the interval ∆y is mapped onto an interval ∆x, which shrinks with increasing derivative ∂xW (x) =
w(x). If we have points yi with a constant density on the y-axis, the density on the intervals ∆x on
the x-axis is enhanced proportional to w(x).

Example: (piecewise) linear distribution function on [a, b] = [0, 1]:

w(ξ) = 8ξ/5 for ξ < 1/2, (16ξ − 4)/5 for ξ > 1/2 (5.21)

W (x) = 8x2/10 for x < 1/2, (8x2 − 4x+ 1)/5 for x > 1/2 (5.22)

The equation W (x) = y can be solved for any y in [0, 1].

von Neumann rejection

Suppose you have w(x) on [a, b]. You want to generate more points when the value of the function
is higher. Consider the following scheme (see also figure 5.3):

• put a box around w(x);

• randomly select points (xi,yi) from that box;

• use xi only if yi ≤ w(xi);

• xi will be distributed according to w(x).

The numbers of points in a given bin [x0, x0 +∆x] ∼ surface under w(x).
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Figure 5.2: Graphical representation of the inversion method. The red curve shows a (not normalized
distribution w(x) and the green curve represents its primitive W (x). It can easily be seen that the
points on the y-axis are mapped into a smaller interval into the x-axis.
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Figure 5.3: In the Von Neumann rejection method we put a box around a distribution (represented
by a red curve) and, after we randomly select some points, we throw away all the points that are in
the grey region. The remaining points will be distributed according to the desired distribution.
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Combination of von Neumann and inversion methods — importance sampling reloaded

Suppose you have some probablity distribution f(x), whose integral you can either not form or not
invert. But assume also, that you know another distribution function g(x) for which you can generate
a distribution easily (by inversion), and for which f(x) ≤ g(x). (Remark: for g(x) > f(x) is not a
probability distribution in the strict sense, as

∫
dxg(x) >

∫
dxf(x) = 1.)

Then you can generate a distribution according to f(x) as follows

• generate x according to distribution g.

• generate a random number y in [0, g(x)]

• if y ≤ f(x) accept x as your random point xi

• else reject

The thus generated xi will be distributed according to f(x).

Problem 3.67: Discuss the gain of combining importance sampling with von Neumann rejection.
Assign a cost (in terms of CPU time) of φ for the evaluation of f(x), a cost ρ for generating the
equally distributed random numbers y, and cost γ for evaluating the W−1(y) = x. Express the gain
in CPU time over direct von Neumann rejection in terms of φ, ρ, γ and the exact integrals over f(x)

and the importance sampling function g(x). As an example, compute the integral
∫ 1

0
dx 1√

1−x2 by

combining von Neumann rejection and importance sampling with the sampling function g(x) = 1√
1−x

.

5.3.6 Learning by doing

So far, we have used the function values that we evaluated solely to throw them into integral-pot and
then forget them. By this, we have been throwing away precious information! After all, as we probe
the function, we get it to know, we see where it tends to be large, we see where it has large variance.
This knowledge is all all in some statistical, approximate sense. One can use this experience to guide
the further MC process. For example, one can make one random run through the function. In the
process, one notes the areas where one obtains large values or intervals where the values add up to
large numbers. In the subsequent run, one probes these areas more accurately.

One can realize this with a recursive splitting of the integration volume (as we did with quadra-
tures), estimate the variances. Note that, if the function has any kind of smoothness, the variances
will drop with decreasing sample volumes. One can set up a histogram guess of the function and
do importance sampling based on the previous experience. There is much room for creativity. It is
important to always make sure that one ultimately converges to the correct limit. This is compara-
tivley easy to prove in many cases. It is much harder to get an algorithm to probe a system in finite
time. We will next discuss a wide-spread class of algorithms that “learns from experience” and tries
to do this with increasing efficiency.
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5.4 Ising model (1d)

The Ising model is a toy model for ferromagnetism (see figure 5.4). Its dynamics is defined by the

Hamiltonian energy for a given spin configuration ~S = (s0, s1, . . . , sN−1) is given by

H(~S) =
1

2

N−1∑

i=0

N−1∑

j=0

Jijsisj − B
N−1∑

i=0

si (5.23)

Figure 5.4: Chain of aligned spin in 1d. This would be the ground state of the Ising model for J < 0.

Jij. . . interaction, determines the topology of the model. Simplest case Jij = Jδ|i−j|,1 (only nearest
neighbors interaction) si = ±1. . . spin states.

Problem: dimension of the Hilbert space grows very rapidly ∼ 2N . In the limit N → ∞ there
are closed solutions.

“The harmonic oscillator of staticstical physics”

Ground state

For J < 0: all spins aligned with B: si = 1 (B > 0) For J > 0: alignement is energetically costly.

5.4.1 Finite temperatures kT > 0

For given temperature kT the occupation prabability for a spin configuration ~S is given by the
Boltzmann factor:

P (~S) ∼ exp[−H(~S)/kT ]. (5.24)

Average values of energy and magnetization

For the energy we have:

〈E〉 =
∑

~S

H(~S)P (~S) =

∑
~S H(~S)e−

H(~S)
kt

∑
~S e

−H(~S)
kt

(5.25)

The average magnetization s can be calculated in a similar way and for J = −ǫ, ǫ > 0 we have:

〈s〉 = sinh(B/kT )√
cosh2(B/kT )− (1− e−4ǫ/kT )

(5.26)

Correlation function

〈sisj〉 = exp(−|i− j|/ ln tanh J/kT ) (5.27)
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5.4.2 The naive approach: randomly probe the configuration space

In the end, what we want to know are high-dimensional discrete sums, say the average magnetization

〈s〉 =
∑

~S∈S

s0 exp[−H(~S)/kT ]/
∑

~S∈S

exp[−H(~S)/kT ] (5.28)

We have selected s0 as one representative of the spins. If we use periodic boundary conditions sN ≡ s0,
indeed any spin spin is representative for any other. For a smaller number of particles, we can proceed
by brute force and sum over all 2n configurations. For large numbers, this is out of question. At the
same time, we can expect many vectors ~S to be similar in the sense that they have about the same
energy H(~S) and similar contribution to the sums. Therefore, it will be sufficient to probe the space
by Monte-Carlo methods without actually probing every single state. The problem is that, depending
on temperature, certain configurations give the main contribution. Say, at very low temperatures, the
exponent will strongly favor ground state, with almost all spins aligned (paramagnetic case J < 0)
and just a few spins flipped. Most random states that we may generate will give no contribution
and/or would be rejected in a von Neumann rejection algorithm. A way out of this dilemma is to
start from some point in the integration volume and randomly move through it in such a way as
to visit all regions with probability proportional to the Boltzmann factor. This is achieved by the
so-called “Metropolis algorithm”.

5.4.3 The Metropolis algorithm

Here is a recipe how to construct a set of N spin configurations ~S(n), n = 0, 1, . . . , N − 1 such that
they are distrbuted with probability

P (~S) = exp[−H(~S)/kT ] (5.29)

where P (~S) is defined on all states ~S of configuration space.

Select some initial spin configuration ~S(0) = (s0, s1, . . . , sN−1), and compute its energy E0 =

H(~S(0)). Now iterate the Metropolis update M times

1. Randomly select one spin si of the configuration ~S(n).

2. Flip si → −si to obtain ~S(n) → ~S(∗)

3. Compute the energy E∗ = H(~S(∗)) for ~S(∗)

4. If E∗ ≤ En, accept new configuration: ~S(n+1) = ~S(∗), En+1 = E∗

5. Else accept new configuration with probability exp[−(E∗ − En)/kT ]

6. if finally recjected, duplicate old configuration: ~S(n+1) = ~S(n), En+1 = En

7. compute En+1 = H(~S(n+1))
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This procedure produces a sequence of ~S(n), where each configuration appears with probability ∝
e−

H(~Sn)
kT

Implementation of point 5: For E∗ > En we have that exp[−(E∗−En)/kT ] ∈ [0, 1]. Therefore
to implement 5 we should pick a random number r ∈ [0, 1] and if r < exp[−(E∗−En)/kT ] we accept
the move, else we reject it.

Why does it work?

[This reasoning is a minor reformulation of the original argument by Metropolis, Rosenbluth, Rosen-
bluth, Teller, and Teller, Journal of Chemical Physics 21, 1887 (1953).]

To follow the reasoning, it may help if you consider our spin flipping procedure a “radom walk”
through an N -dimensional space (configuration space).

First, it is easy to see, that in the limit where we take the number of Metropolis updatesM →∞
we will cover the whole space: by spin flipping, we can obviously reach any state in the space,
and there is a finite probability for any state ~S(∗) to be accepted into our sample. Therefore, for
sufficiently large M it becomes extremely unlikely for any state never to appear. That likelihood
goes to 0 for M →∞. In general this property is called ergodicity.

Second, we need to show that in the long run, the number of times that a state ~Sk is visited is
C exp(−Ek/kT ) (C being the proper normalization constant). This we will do by showing that, as
long as we have not visited all sites according to their Boltzmann factors, it is more likely to visit
the under-represented sites than the over-represented ones.

We label all possible configurations as ~Sk, k = 0, 1, . . . , 2N − 1. This is to be distinguished from
the seqence of configurations generated by the algorithm ~S(m), m = 0, 1, . . . ,M − 1, which will in
general not contain all configurations ~Sk and where a single ~Sk may appear repeatedly.

Let Pkl be the probability that a single spin flip takes a given configuration ~Sk into ~Sl. That
is understood after step 1 but before making any further selection of steps 2 and up. Then it is
easy to see that Pkl = Plk: if ~Sk and ~Sl are connected by flipping, say, spin si, as the chance of
randomly just selecting that si out of s0, s1, . . . , sN−1 is 1/N for both, ~Sk and ~Sl. For definiteness,
let Ek ≤ El. Let vk and vl be the number of times that the two configurations are visited. Then the
average number of times that we go from the vl visits of ~Sl to ~Sl is just jl→k = vlPlk (as Ek ≤ El

we will certainly accept the move). We have selected the notation “jl→k” to suggest an average
“flux” from l to k. On the other hand, the average number of times we proceed from the vk visits
at ~Sk to ~Sl is jk→l = vkPkl exp(−(El − Ek)/kT . Only for vx ∝ exp(−Ex/kT ), x = k, l there is no
net “flux” jk→l + jl→k = 0. In all other cases, our procedure will take us more often to the under-
represented sites: our prescription generates a random walk, whose stationary distribution is the
Boltzmann-distribution.

For this conclusion, Pkl = Plk is essential. The generalization of this property is called detailed
balance.

Problems and limitations

The above arguments only show that in the limit of infinitely many steps, we will arrive at the
equilibrium (Boltzmann) distribution. It does not say anything about how quickly the limit is
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reached.
If the space is covered very slowly, i.e. if the random walk remains in the vicinity of any initial

point for many steps, the algorithm will converge very slowly. This can be caused by too small steps
or too large space. It can also be caused by “barriers” separating one part of the configuration space
from the other.

Example: double-well potential with large barrier between the wells.
A way out of such situations can be the following generalization of the Metropolis algorithm,

which allows tuning the step size by selecting different step procedures, not just the single spin flip.

Problem 4.68: Use metropolis.py from the repository and speed it up by avoiding exponen-
tiations and full energy evaluations inside the metropolis loop. Also, think how integer random
numbers in a large integer range could be used for further speedup. (Unfortunately, this cannot be
implemented in Python as there seem to be no fast integer random numbers.)

Problem 4.69: Extend metropolis.py or your new faster version to compute the two-point
correlation function 〈sisi+n〉 for a range of n. Verify that for largeM the correct statistical reduction
∼ 1/

√
M of the error is found. Compare results for large N with the known limit N →∞.

5.4.4 Generalization: Metropolis-Hastings Algorithm

The idea can be generalized to any distribution p(~c) for a vector ~c in space K, if we use a “random
walk” prescription ~c(n) → ~c(n+1), where ~c(n+1) is selected according to some transition probability
Q(~c→ ~c′). The prescription should fulfill the two conditions:

• ergodicity: selecting ~c(m),m = 1, ...,∞ by the prescription Q(~c(n) → ~c(n+1)) covers the whole

space: limN→∞ minm |~c(m) − ~d| = 0 ∀~d ∈ K

• detailed balance: let p(~c) be the equilibrium distribution, then:

p(~c)Q(~c→ ~b) = p(~b)Q(~b→ ~c). (5.30)

The “detailed balance” condition is sufficient, but not necessary: it can be relaxed to a “balance”
condition: ∫

dbn p(~c)Q(~c→ ~b) =

∫
dbn p(~b)Q(~b→ ~c) (5.31)

i.e. in equilibrium, the “outgoing” probability flux away from a given state ~c to all other states
~b is equal to the “incoming” flux from all states into ~c. To understand the difference to “detailed
balance”, you can imagine an equilibrium situation of three equally occupied state vectors with a
probability “ring flux” ~c→ ~d→ ~e→ ~c: detailed balance is violiated for the pairs ~c, ~d and ~d,~e, as the
flux only goes one way, but balance obviously is fulfilled.

Example: Detailed balance for the Boltzmann distribution p(~c) and Q of the original Metropolis
algorithm fulfilled as:

e−En/kTQ(~S(n) → ~S(m)) = e−Em/kTQ(~S(m) → ~S(n)) (5.32)
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with Q:

for En < Em : Q(~S(n) → ~S(m)) =
1

q
e−(Em−En) and Q(~S(m) → ~S(n)) =

1

q
, (5.33)

where q is the number of neighbours just one spin-flip away and similarly for Em < En.

5.4.5 Wang-Landau sampling (WLS)

Ref: Fugao Wang and D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
Sample the density of states rather than the configurations. Again assuming a Boltzmann dis-

tribution and in addition that the quantities that we want to average over are smooth functions
energy, the density of states is a useful concept. For example, the internal energy as a function of
temperature for system depending continuously on its coordinate vector ~x = (x0, x1, . . . , xN−1) is

∫
dNxH(~x)e−H(~x)/kT/

∫
dNx e−H(~x)/kT . (5.34)

As the integrand does not explicitly depend on ~x, it is useful to write dNx = dEg(E)dΩ. In the simple

case of a N free particles H(~P ) = (~P · ~P )/2 =: |P |2/2, where ~P = (p
(0)
x , p

(0)
y , p

(0)
z , p

(1)
x , p

(1)
y , p

(1)
z , . . .)

the density of states g(E) is easily deduced from d(3N)p = d|P ||P |(3N−1)dΩ = dEE(3N−2)/2dΩ, i.e.
g(E) ∝ E(3N−2)/2. In more general cases, g(E) is exactly what we need to know to compute the
expectation value for a system’s energy at a given temperature. Interesting quantities like specific
heat can be deduced.

The Wang-Landau algorithm directly aims at computing g(E). The general idea is to divide the
total energy range into bins and randomly walk through these bins such that in the end one has
visited each bin equally often. In the process we will record how much the system “likes” to go to
each of these bins, i.e. the energies of how many states fall into each bin. Here is how it works step
by step (using the example of the Ising model):

1. Divide your total range of energies into bins [Ei, Ei+1] = [Ei, Ei +∆E]:

2. Set up two histograms Gi and Hi, where Gi will approximate g(Ei) and Hi will count how
many times the Ei-bin is visited.

3. Initialize ~S(0) to an arbitrary configuration, set all Gi ≡ 1 and Hi ≡ 0, calculate E0 = H(~S(0))

4. Pick some (empirical) factor f (f = 2.7 appears to be a good choice).

5. Random walk loop:

6. From the current configuration ~S(n) with energy En, get ~S
(∗) by a random spin flip as in the

Metropolis algorithm and calculate E∗ = H(~S(∗))

7. Accept the new configuration ~S(∗) with probability

P (En → E∗) = min

[
1,
Gn

G∗

]
(5.35)
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where G∗ is the Gi-value of the bin, into which E∗ falls. (Same type of rule as in the Metropolis
algorithm, but using Gi instead of the Boltzmann distribution).

8. For whichever state ~S(n+1) is accepted, increment the bin-count Hi → Hi + 1 and multiply the
Gi → fGi.

9. Every once in a while, check the flatness of Hi.

10. If histogram is “sufficiently flat”, e.g.

|Hmax −Hmin|
Hmax +Hmin

< 0.2 (5.36)

rescale the factor f →
√
f . Keep Gi but reset Hi ≡ 1. The factor 0.2 is an empirically

reasonable choice.

11. if f ∼ 1 stop, else start over.

After this procedure, Gi contains an approximation to the density of states, within tolerances deter-
mined by the choice of bins, limits on f , flatness-criterion.

Why does WLS work?

Assuming a random walk, in step (6) the probability for randomly selecting a state ~S(∗) with energy
E∗ in the energy interval Ei, Ei + δE is just ∼ g(Ei)∆E. We may assume that the rate for going
from En → En+1 by a random spin flip proportional to the density of states near En+1: R(En →
En+1) = g(En+1)∆E.

By the rejection in step (7), this probability is counter-acted by the probability penalty of the
selection criterion, which favors sites that have not been visted much so far.

In the beginning the penalty f for prior visits to a site is very high, ensuring that we quickly
cover the whole energy range.

A flat histogramm Hi indicates that we have visited all sites equally often. That means that we
have reached an approximate “detailed balance situation” for the energy bins, assume for definiteness
Gn < Gn+1 and denote by P (En → En+1) the acceptance probability,

R(En → En+1)P (En → En+1) = R(En → En+1)
Gn

Gn+1

= R(En+1 → En)P (En+1 → En)︸ ︷︷ ︸
=1

(5.37)

or

∆Eg(En+1)
Gn

Gn+1

= ∆Eg(En) (5.38)

or
Gn

Gn+1

=
g(En)

g(En+1)
. (5.39)

The initially high penalty f ensures fast coverage of all energies, but it also exagerates statistical
fluctuations. Its successive reduction allows fine-tuning of the rougher patterns established in earlier
rounds.
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Ultimately, one is driven to a situation, where one visits all energies equally often (flat histogram).
This makes sure that one does not miss important energy regions. In the process, one records how
much the system “likes” to go to certain energy regions, which is, assuming that all states are equally
likely (i.e. there is no additional bias for any configuration), proportional the density of states.

Note that, for purposes other than energy, states within an energy bin may be very different. So
if your observable is not just a function of energy, the density of states is not a useful quantity.

A technical note

Repeated multiplications by f will quickly lead to floating overflows. This can be avoided by working
with log(Gi) instead.

It values f ≈ 1 + 10−8 can be achieved and provide a usefull break-off level for the procedure.
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Chapter 6

Classical systems and chaos

6.1 The Kepler problem

6.1.1 Reduce to 1st order ODE / Hamiltonian formalism

Choose center-of-mass coordinates and reduced mass = 1 (use appropriate units) then the Kepler
problem is

~̈r = − ~r
r3
. (6.1)

With ~̇r = ~p
d

dt

(
~r
~p

)
=

(
~p

−~∇1
r

)
(6.2)

Introducing the phase space coordinates u := (~x, ~p), we can also write

d

dt
u = Ĵ∇u[

~p2

2
+ V (~r)] (6.3)

with

Ĵ :=

(
0 Î

−Î 0

)
and ∇u :=

(
~∇r

~∇p

)
(6.4)

and the 3× 3 identity matrix Î. For negative energies solutions are the Kepler orbits with period

T = 2πa3, (6.5)

where a = 1/(2|E|) is the major axis of the ellipsis. We can put any ODE solver to test by computing
|~r(t0)− ~r(t0 + nT )|.

Problem 1.70: Use the existing ODE solver routine to compute ~p(t0). Also, investigate the
stability of the ODE along the path, i.e. get the eigenvalues of the Jacobian matrix as the solution
evolves. Check the relation to the step size.
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We observe that although we can control the error, it grows severely for long-time propagation, it
grows by a power law or worse! In the present example, the main part of the error is due to incorrect
periodicity. This can be easily corrected, which strongly reduces the error. But still, the solution
drifts away from the exact one.

6.2 Symplectic integrators

If we want to study qualitative features of the long-time behavior of a system, we need methods
that maintain these qualitative features. In quantum mechanics, after discretizing the system, we
can construct methods that are strictly unitary: for example the split-step methods, but also Crank-
Nicolson. Note that unitary transformations leave the eigenvalue spectrum invariant and remember
that eigenvalues can be considered as the infinite time limit of the system - “states” of the system, be
they bound or scattering. Even if our discretized version of the TDSE only qualitatively reproduces
the spectrum of the operator, the long-time behavior will remain “qualitatively” close to the original
system.

6.2.1 Leap frog propagator

The simplest example of a symplectic integrator is the “leap frog” method. With step size xi ≈ x(ih)
and pi−1/2 ≈ p((i− 1/2)h) the method is

xi = xi−1 + hpi−1/2 (6.6)

pi+1/2 = pi−1/2 + hF (xi) (6.7)

(6.8)

where F (xi) is the force at point xi.
To see that this procedure is symplectic (and what exactly this means), we use a more general

formulation below, where we will write a whole class of operators (including leap frog) in fancy forms
like

ui = ehLT /2ehLHehLT /2ui−1 (6.9)

Problem 2.71: Implement the leap frog method and reconsider the evolution of the error at
long times.

6.2.2 Symplectic metric

Canonical transformations of a Hamiltonian system play the same role in classical mechanics as
unitary transformations do in quantum mechanics: they leave the dynamical equations formally
intact. More precisely, they leave the Poisson brackets invariant (quantum mechanics: the commu-
tators). As the Hamiltonian equations are given as Poisson brackets with the Hamiltonian function,
they also leave the Hamiltonian equations invariant. Classical time-evolution itself is a canonical
transformation (as quantum time-evolution is unitary).
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If you have been exposed to the concept, you know that canonical transformations leave the
canonical quadratic form

ω = dx ∧ dp (6.10)

invariant. These quadratic forms define the “symplectic metric” in phase-space (more precisely:

the tangent space of phase-space), which is exactly the metric given by our matrix Ĵ . Note that
this metric is not applied to points in phase space, but to gradients ∇u: the “tangent space” of
phase-space.

Let A(~x, ~p) = A(u) and B(~x, ~p) = B(u) be to functions on (many-particle) phase space. Then

the gradient ~∇uA(u) = ~XA(u) define vector fields, i.e. define a vector for each point in phase space.
The Poission brackets can be written as a (pseudo-)scalar product between the vectors XA(u)

adn XB(u) at each phase-space point u:

{A,B} = ∇uA · Ĵ∇uB = ~XA · Ĵ ~XB (6.11)

So if we have some (x,p)-coordinate transformation S : A→ S(A) such that

∇uA · Ĵ∇uB = ∇uS(A) · Ĵ∇uS(B), (6.12)

then we know that the dynamical structure, equations, energies are unaffected.
The poisson bracket between any two observables A(u) and B(u) is invariant under a map S, if

the poisson brackets for all phase space coordinates {ui, uj} are invariant. First, the transformation
for any observable A is induced by the transformation of the coordinates themselves

S(A)(u) := A(S(u)) (6.13)

where we define the transformation for each phase space point separately

S(u)l = S(ul), (6.14)

think of a time evolution
St(ul(0)) = ul(t). (6.15)

Then

{S(A), S(B)} = ∇uA(S(u)) · Ĵ∇uB(S(u))
∑

kl

(∂kA)∇uS(ul) · Ĵ∇uS(uk)(∂kB) (6.16)

The Poisson bracket is invariant when

∇uS(ul) · Ĵ∇uS(uk) = ∇uul · Ĵ∇uuk = (Ĵ)kl ∀k, l (6.17)

6.2.3 Split step propagators

A large class of symplectic integrators are split-step type. For that we assume that the Hamiltonian
and with it the corresponding Lie derivatives can be split into two parts

H = T + V, LH = LT + LV . (6.18)
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The most naive way to approximate the time-evolution is

ehLH ≈ ehLT ehLV (6.19)

As each factor on the right hand side is symplectic, the whole procedure is symplectic. However,
consistency order p = 1 only.

As in the split-step for quantum operators, the symmetrized form

ehLH ≈ ehLT /2ehLV ehLT /2 (6.20)

is consistency order p = 2.
With the Lie derivative, these expressions look somewhat formal. Clearly, we will use the lin-

earized version where the operation turns into a matrix exponentiation

ehLHu = ehLH(u)u, (6.21)

where the Lie matrix is evaluated at the phase space point to which the exponential is applied, for
example

ehLT ehLV u = ehLT (w)ehLV (u)u with w = ehLV (u)u. (6.22)

For generalization to higher consistency order one uses repeated piecewise linear approximations.
For p = 4, 6, . . . this leads to

ehLH =

p∏

n=1

eanhLT ebnhLV +O(hp + 1) (6.23)

The coefficients an and bn can be obtained by comparing the series expansions of left and right hand
sides up to a given order in h. For p = 4 we have

~a =
1

2(2− 21/3)
(1, 1− 21/3, 1− 21/3, 1), ~b =

1

2− 21/3
(1,−21/3, 1, 0) (6.24)

Generally speaking this could be not terribly useful for large phase space dimension, as we need
to do matrix exponentiations. If we assume that T , like ordinary kinetic energy, depends only on ~p
and V , like an ordinary potential, depends only on ~r, we see that

exp(hLT (w)) = 1 + hLT (w) (6.25)

as all higher powers Ln
T = 0, n > 1, and similarly for LV . With this, in leap-frog we recognize the

symmetric p = 2 split step symplectic integrator.

6.2.4 The merit of symplectic integrators

The key importance of symplectic integrators is that they preserve the general structure of classical
mechanics. One important result of general theory is that, if we have a differentiable symplectic
(=canonical) time evolution St there exists a Hamiltonian function HD that generates it:

u(t) = St(u(0))⇔ St = exp[tLHD
] (6.26)
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Hamilton’s equations are a consequence. Conversely, if the scheme is not symplectic, there is cannot
be any Hamiltonian that would generate it.

We try to construct our numerical scheme such that it produces a symplectic evolution St and
that the corresponding HD is not too different from the original H. In practice, HD can rarely be
determined. We may hope that the (unknown) HD is but a “slightly perturbed” version of H. This
is relevant for studying chaotic behavior, as the KAM (Kolmogorov, Arnol’d, Moser) theorem says,
that sufficiently small perturbations of the Hamiltonian leave the global (topological) properties of
the solution unchanged. In particular, quasis-periodic motions remain quasi-periodic. If we want to
investigate a given system for “stable orbits”, a symplectic numerical scheme has a chance to uncover
them.

Note the close analogy to quantum mechanics: if we have a differentiable unitary time-evolution
Ut, there exists a (selfadjoint) Hamiltonian operator that generates it:

Ψ(t) = UtΨ(0)⇔ Ut = exp[−itH] (6.27)

From this point of view, the TDSE is a trivial consequence. The difference between quantum and
classical mechanics is not in the dynamics, it is how measurements (“observables”) work.

6.2.5 Performance

Apart from general considerations, it is interesting to compare the performance of a symplectic
integrator with, for example, a simple Runge-Kutta 4. The 4th order symplectic integrator given
above requires 3 potential evaluations (the expensive part of the integrator).

In a comparison between the standard RK4 and the 4th order symplectic integrator for the Kepler
problem, RK4 clearly wins: at the same number of steps, the error with RK4 is lower by about a
factor 20. We may count into that that the symplectic solver requires only 3 potential evaluations.
As this is the time-crititcal part of the calculation, the comparision is somewhat improved, but still
RK4 outperforms the symplectic solver by a factor 10 in accuracy at comparable CPU times. In
terms of computation times this means about a factor of 2.

The use of the symplectic integrator lies in its respecting more fundamental properties of the
Hamiltonian system. An example that shows this is the Henon-Heiles Hamiltonian derived for the
motion of stars in a Galaxy disk of the form

H(q1, q2, p1, p2) =
1

2
(p21 + p22 + q21 + q22) + q1q

2
2 −

1

3
q22 (6.28)

For studying the long-time evolution of the system in 4-dimensional phase-space, we use the two-
dimensional “Poincare-map”, i.e. the points in the q2, p2-plane where q1 = 0. The p1 value is then
fixed by energy conservation.

6.2.6 Restricted 3-body problem

Hamiltonian

H =
1

2
~p2 − κ

(
m

~xm(t)− ~x
+

µ

~xµ(t)− ~x

)
(6.29)
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Here a large mass m and a second, smaller mass µ rotate around each other at constant angular
velocity. In this field a (very small) mass = 1 moves.

The motion if the light mass is instable for µ/m > 0.04, otherwise it may be stable. In the solar
system indeed the system sun-Jupiter-Trojans forms such an approximate triangle.

Jupiter mass = 0.00095 Solar mass

6.3 Classical trajectory Monte-Carlo

The differences between classical and quantum mechanics is smaller than what appears at first glance.
For example, the dynamics of the harmonic oscillator is the same in both regimes in the sense that
expectation values of position and momentum evolve in the same way. This somewhat more generally
holds for Hamiltonians that are polynomial up to degree 2 in both, position and momentum. In an
approximate sense, this holds for a much larger class of systems.

Classical trajectory Monte Carlo methods are based on the idea that we can approximate quantum
dynamics by their statistical aspects. This excludes “entanglement” effects, as they appear, e.g., in
Bell’s inequalities. We assume that quantum uncertainty is nothing but a lack of knowledge and
pretend to cover up this lack of knowledge by unbiased random probing of the system.

A typical situation is scattering from a quantum system, a simple example being proton scattering
from the hydrogen atom H+ + H(1s). Physical questions are final momenta, final atomic states,
possible transfer of the electron to the projectile. Considered as a classical system, this is a 3-body
Coulomb scattering problem. The dynamical equations are not difficult to solve (even in Python).
The key tasks are the choice of initial conditions and the interpretation of the final state.

For the initial conditions, the description of the incoming proton at a given momentum and a
statistical distribution of impact parameters is straight forward. In contrast, the Hydrogen ground
state is a truely quantum state and care is required when modelling the state into a distribution
in phase space. For the ground state, we might use the Wigner distribution, which happens to be
positive. Already for the first excited state, this approach breaks down in principle, as the Wigner
distribution becomes negative close to the nucleus and cannot be interpreted as a probability dis-
tribution. One may instead use approaches like the Husimi-distribution, which averages the Wigner
distribution over phase-space volumes of size ~ and is always positive. In this way, we replace quan-
tum uncertainty with a reasonable, but nontheless arbitrary statistical uncertainty. The choice of
initial conditions is one of the often secret ingredients of classical trajectory Monte Carlo simulations
and always involves sustantial approximations. Another problem is the Pauli exclusion principle,
which cannot be rigorously mapped into a classical model.

As the result of the classical propagation one obtains the phase-space distribution for all particles
at some large time. There may be two particles comparatively close at a relative energy that is
bound and one particle far away. The far away particle can be again easily associated with a click
in a detector at some momentum. The bound system should be mapped back onto the quantum
system. Different quantum states would correspond to different inelastic scattering “channels”. Such
a mapping can hardly be made unique and one must content oneself with recording the (continuous)
distributions of energies and angular momenta.

While the previous MC methods were all exact the limit N → ∞, classical trajectory MC is
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inaccurate by construction. There are two reasons to still use it: it allows the formation of imagination
of what “really” happens in the process, “which particles go where a which momentum”. Strictly,
such ideas are meaningless. However, many processes that appear quantum, are classical in essence
and the pictures are adequate. The second reason is more mondane: while quantum calculations
may be exact in principle, in practice achievable accuracies may be very bad and subjected to
methodological artefacts. MC may give a more plausible estimate of physical observables like cross
sections.

6.4 Parallelization

There is an advantage of many Monte-Carlo methods: it is just doing the same task over and over
again with different inputs and accumulating the results in the end. The individual tasks can be
accomplished without any coordination with the other tasks. This is ideal for parallelization and
contributes to the popularity of MC methods at an age, where computer speed is mostly increased
by building more rather than faster CPUs.
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Chapter 7

High performance and parallel computing

7.1 LAPACK — solving your linear algebra problems

From the manual:
“LAPACK is written in Fortran 90 and provides routines for solving systems of simultaneous linear
equations, least-squares solutions of linear systems of equations, eigenvalue problems, and singular
value problems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized
Schur) are also provided, as are related computations such as reordering of the Schur factorizations
and estimating condition numbers. Dense and banded matrices are handled, but not general sparse
matrices. In all areas, similar functionality is provided for real and complex matrices, in both single
and double precision.”

Mathematical background: Golub, van Loan: “Matrix Computations”

7.1.1 Structure of the LAPACK package

7.1.2 LAPACK subroutine names

The LAPACK subroutines used to solve an eigenvalue problem have a name which has the following
form:

tmacmp[x]:

• t: data type s,d,c,z for float (4 byte real, ∼ 7 decimal digits), double (8 byte real, ∼ 14
decimal digits), complex (8 byte, 2× ∼ 7 decimal digits), and double complex (16 byte, 2× ∼ 14
decimal digits)

• ma: matrix type ge,gb,gt,sy,po,pb,he,hb,. . . for general,general banded, general tri-diagonal,
symmetric, positive, positive banded, hermitian, hermitian banded etc.

• cmp (two or three letters): what to compute: ev,sv,svd,trf. . . for eigenproblem, linear solver,
singular value decomposition, LU factorization, etc.

• x: driver routines distinguish between “simple” and “expert” levels, x indicates expert level
with many more parameters.
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Figure 7.1

Example 1: zhbevx solves the 16-byte complex banded hermitian eigenvalue problem, expert version.
Example 2: The command lapack.dsbev()” solves a double symmetric banded eigenvalue problem.

BLAS

Lapack relies on BLAS — the Basic Linear Algebra Subroutines. This has three levels of operations:

• Level 1: vector-vector, e.g. “axpy”

~y ← α~x+ ~y; (7.1)

• Level 2: vector-matrix like

~y ← Â~x+ ~y; (7.2)

• Level 3: matrix-matrix:

Ĉ ← αÂB̂ + βĈ (7.3)

BLAS is where the main optimization happens. Some compiler-vendors offer their own imple-
mentations of BLAS.

ATLAS

“Automatically Tuned Linear Algebra Software”: during installation, the software explores your
machine — memory speeds, cache-sizes and cache-speeds, etc. — to produce optimal code for one
specific machine. Often outperforms even BLAS implementations provided by hardware and compiler
vendors. Somewhat tiresome to install, but may pay off, when you do big tasks on some specific
machine. Actually, should be installed by the system administrator.

Note: The cache is the fast part of the memory and it plays an important role in this optimization
procedure. The cache is the place of the computer where you store data you are working with. So
the CPU looks for data into the cache and if it doesn’t find them there, it goes to look for them into
the ordinary memory (see also figure 7.1) (this last search might be long). Not finding needed data
in the cache is called “cache miss”.
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Figure 7.2: How a full matrix is stored into the memory of a computer.

7.1.3 Why is LAPACK fast?

• Algorithms are specified for details of the problem (full, banded, positive,...);

• Access patterns to data are local (as many operations on the same set of data as possible);

• Blocking, adjustment to specific hardware.

7.1.4 LAPACK matrix storage

Standard ways of storage (incomplete list):

• Full: Full matrices are stored column-wise (Fortran tradition) as a long string (see figure 7.2).
This means that to make a move along a row is extremely long and therefore one should try
to remain as long as possible along the same column. The position in linear storage is given
by Aij : i+ LAj where LA is the leading dimension of storage for A (i.e. LA ≥ Nr where Nr is
the number of row of A);

• Upper packed: for full but symmetric or hermitian matrices: Only the upper triangle is
stored, the other half is inferred. In linear storage, Âij is at position i+ j(j + 1)/2

• Upper banded: for a symmetric or hermitian band matrix, only the diagonal and the super-
diagonals need to be stored. The sub-diagonals can be obtained by transposition (and conju-

gation, in case of hermitian). The matrix elements of a matrix Â are stored in a 2-dimensional

array B : Âi,j = B[LB+i−j, j]. In linear storage for the B array this is position LB+i−j+LBj,
with LB being the leading dimension of the array B. Clearly, LB ≥ 1+ (number of super-

diagonals of Â) (see figure 7.3).

Matrix interface: define an abstract object matrix:
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• where storage is (automatically) arranged according to structure;

• where linear algebra operations are implemented by some fast package (LAPACK).

Fourier Transform: FFTW.
Parallel linear algebra: PETSc.

Problem 1.72: Implement a method solve() into the module gmatrix.py that solves

Â~x = ~b (7.4)

for general full and for symmetric banded real matrices Â. Implement the method using the cor-
responding LAPACK routines from scipy.linalg.flapack. Test and compare performance of the
two routines.
Hint: The arguments of the LAPACK routines are poorly documented in scipy. You get a list of
functions and their arguments by python>>>> help(scipy.linalg.flapack). Compare the argu-
ments with the arguments documented on the LAPACK homepage to make the correct selections.

7.2 Some general advice

A hierarchy for solving physics problems on a computer:

1. Physics, not mathematics.

2. Mathematics, not algorithms.

3. Algorithms, not implementation.







∗ ∗ ∗
∗∗
∗

∗ ∗ ∗∗∗ ∗

Figure 7.3: How a banded matrix is stored into the memory of a computer. The shaded region is the
only part which is actually stored together with the ∗ which are some imaginary points which have
been introduced in order to make everything symmetric.
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4. Implementation clarity, not speed or elegancy.

5. Language independent implementation, not specific tricks.

6. Use standard language syntax and libraries.

7. General algorithms, not hardware-specific.

8. Solutions for specific types of computer architectures.

9. Isolate machine-specific algorithms or pieces of code in a single module with well defined inter-
faces.

7.3 Improve CPU performance

Moore’s law, statement published in ”Cramming more components onto integrated circuits”, in
“Electronics”, vol. 38 (1965): “The complexity for minimum component costs has increased at a
rate of roughly a factor of two per year... Certainly over the short term this rate can be expected
to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain,
although there is no reason to believe it will not remain nearly constant for at least 10 years. That
means by 1975, the number of components per integrated circuit for minimum cost will be 65,000. I
believe that such a large circuit can be built on a single wafer.

Key technologies: Conjugated Metal Oxide Semiconductors (CMOS), photolithography and ex-
cimer lasers. Still going on with rather basic physics research (junctionless transistors, inclusion of
quantum effects . . . ).

Limits for transistor density

• Structure size: photolithography wave length ∼ 200nm can produce structures as small as 30
nm.

• Heat-dissipation

• Granularity due to low electron numbers: statistical behavior rather than smooth “currents”
and “charges”. Finally, quantum effects.

How to convert number of transistors into speed?

Switch-times of transistors:

Performance: if density increases by a factor f , the linear distances between components decrease
by only

√
f . I.e. communication time / component increases.

For taking advantage of many transistors we need parallelism.
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Figure 7.4: Moore’s law: exponential growth of the number of components per chip at a rate of
doubling every two years during a period of 40 years (1971-2011): [2.6× 109/2300]1/20 ≈ 2
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7.4 Parallelism

Idea: We have an exponentially growing number of transistors — probably organized into an also
exponentially growing number of CPUs — let them all work on our problem.

Of little use, if our problem is a single hard problem requiring many steps one after the other.
(A group of people is firing a grill at the Flaucher: as fast as the single person who knows best how
to do it).

Can be fully exploited, if we actually have a large number of small problems. A perfect example
of transforming a big seemingly single problem — the computation of a high-dimensional integral —
into very many and almost independent small ones is Monte Carlo integration. (A group of people
is moving a pile of dirt: large speedup if they do not get into each other’s way and if the pile is not
too small.)

Types of parallel operations:

• SIMD — single instruction multiple data, e.g. multiply a set of numbers by a scalar.

• MIMD — multiple instructions multiple data: let independent processes run and synchronize,
e.g. Monte Carlo

Issues:

• synchronization: the CPUs’ actions will in general depend on each other

• communication: the amount of information that needs to be communicated between CPUs

• load balancing: to take full advantage of all CPUs, they must be kept equally busy

• algorithms and debugging: the logical interdependencies become complex and confusing sur-
prisingly quickly!

Comment on loadbalancing

When moving a pile of dirt, we can uses two strategies: (1) split the pile and alot a piece of the work
to everybody (2) Let everybody take from the pile until the pile is gone.

(1) looks like a bad strategy (except as an incentive for lazy individuals): work will be finished
only at the pace of the slower. However, if the workers were glued to the ground and could access
only a limited range of the pile, it would be the only way to go. This is a bit the situation with
distributed memory machines, where data cannot easily be moved to different CPUs. (2) balances
the load according to every individuals capabilities: if all CPUs have the same access to all the
memory, that is easy to do.

Still (1) may not be so bad, for example, when calculating all elements of a vector: IF each
element is equally hard to calculate and IF all tasks are hosted on equally strong hardware. If either
of these conditions is violated (2) is better (somewhat harder to implement).
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Granularity

The amount of data and the time for which a single CPU can operate independently without need
to communicate is the “granularity” of an algorithm:

“Coarse grain”: hardly any communication needed, simple final assembly of the results: put
all into a histogram, add them all up (MC), etc. Can be done over “slow” communication, e.g.
“SETI@home (Search for extraterrestrial intelligence at home)”

“Medium grain”: Large independent parts of the code, say subroutines doing different tasks.
“Fine grain”: time-propagation of a PDE: at each step, continuity conditions need to be commu-

nicated between processors or a matrix-vector multiplication needs to be performed.

7.4.1 Possible speed-ups: Amdahl’s law

Significant gain only, if serial parts of the code (setup, final processing of results), play a small role.
p-number of CPUs, T1-execution time on a single CPU, Tp-execution time of parallel code. The

speedup is

Sp =
T1
Tp

(7.5)

Let f be the fraction of time that the code spends in potentially parallelizable algorithms, and
the respective times are parallel parts Tp = fT1/p and sequential parts Ts = (1 − f)T1 Then the
there is a simple upper limit to the obtainable speedup (Amdahl’s law)

Sp =
T1

Ts + Tp
=

1

1− f + f/p
(7.6)

Further parallelization becomes inefficient once we reach p ∼ f
1−f

processors. As we may have 1000’s
of processors available, we better keep f very very close to 1.

“Scaling” of a parallel code

If Sp = a× p we speak of “linear scaling”, more or less the ideal case, in particular if a . 1.
Note that one sometimes can get “super-linear” scaling a > 1: One can get better than linear

scaling, if by splitting the problem into smaller pieces, memory access gets faster. For the expert:
cache-misses are reduced.

Communication time

Another obvious limit is the extra time needed for communication. Parameters going into that time:
Latency: how long it takes to initiate communication: Infiniband: & 1µs
Signaling-rate Bit/s of (useful) data transmitted: Infiniband: 10 ∼ 100GBit/s
Infiniband: currently wide spread technology for distributed memory machines (see below).
Number of connects needed, topology,
Suppose you have a perfectly parallel code and suppose you have a fixed amount of data that needs

to be transmitted at any time step between any two “neighboring” processors, say, the boundary
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values of two finite elements belonging to two different CPUs, then Tc = cp. Then the speedup will
be

Sp ∼
T1

T1/p+ c
(7.7)

Parallelization is efficient as long as T1 . pc. Very fine grain parallelism is doomed:
Intel Core7 (2011): 159,000 MIPS (Mega instructions per second): if you are communicating

with a latency of 1µs, you need to do quite a few instructions before communicating for gaining from
parallelism.

7.4.2 Shared vs. distributed memory

Much of communication is about accessing the same data by different CPUs. Therefore the physical
arrangement of memory is important.

SMP - symmetric multi-processor machine

several CPUs sharing memory, using the same (broad band) bus. All memory locations are equally
accessible to all CPUs

Multi-Core

“SMP on a single chip”

Distributed Computing

Distributed memory machines + fast network (e.g. Infiniband). Workhorses of present parallel
computing

Example: “Beowulf” cluster: connect commodity machines by decent (e.g. gigabit) network.

7.4.3 Parallel algorithm: examples

Vector scalar product

Matrix-matrix product

A good example for the difficulties and potential gains of parallel algorithm is N ×N matrix multi-
plication.

Ĉ = Â · B̂ (7.8)

Floating point operations count is O(N3). We first assume that the matrix elements are evenly
distributed across the P tasks, i.e. each task should produce N2/P result matrix elements.

The details about how the elements are distributed are important. Let us now assume column-
wise distribution of the matrix: a range of columns with N2/P matrix elements in total reside in

a given task τi. To produce any column of Ĉ, all columns from the other P − 1 tasks must be
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communicated to τi. This involves latency tl and data transfer time tt, total communication time for
task i

Tcolumn = (P − 1)(tl + ttN
2/P ) (7.9)

This is the communication time to compute the N2/P matrix elements of the result that reside in
one task.

It turns out we can save a lot of time by distributing the matrix not column-wise, but block-wise.
The main reason for advantage of this algorithm is that we can then broadcast pieces of matrix to all
tasks rather than individually copying them to each task. Broadcasting is a logN type of algorithm.

Label the tasks τij in the form of a
√
P ×
√
P matrix with indices. Split the matrices into equal

dimension blocks Âij, B̂ij, Ĉij, each residing in one τij.

Here is how the algorithm for computing one block Ĉmn works

1. Initialize Ĉmn = 0

2. loop k = 0,
√
P − 1

• Broadcast Âm,m+k to all tasks tm,j, j = 0, 1, . . . ,
√
P − 1 in row m. The index m+ k is to

be understood as m + k mod
√
P . Communication time is (log

√
P )(tl + ttN

2/P ). The
task can (ideally) be performed within each m-row independently.

• Copy B̂m+k,n to task τmn: communication time is tl+ ttN
2/P . Can (ideally) be performed

for all mn-blocks in parallel, without interference.

• In each task τmn add Ĉmn+= Âm,m+kB̂m+k,n (perfectly parallel, no communication needed).

The communication time to compute the matrix elements residing in task τmn is

T2d =
√
P (log(

√
P ) + 1)(tl + ttN

2/P ) ≈
√
P logP

2
(tl + ttN

2/P ) (7.10)

This is a very significant gain on a machine with, say, P = 1024 CPUs: total communication time
reduces by a factor [32× 10/2]/[1024− 1] ≈ 0.15 ≈ 1/7.

Note that is only communication time, not the time of actual floating operations. Communication
and floating operations have different scaling: communication is N2, floating is N3. The algorithm is
only relevant, when communication overheads are larger or comparable in size to matrix operations.
This may well be that case, when the individual blocks are just ∼ 100× 100.

Let us assume tl = 1µs, tt = 1 complex number/ns, 1012 FLOPS and N = 100. Then compute
time/block ∼ 1003/1012s = 1µs. Communication time per block 104 × 10−9 = 10µs.

Many such tricks are built into standard software like ScaLAPACK, the “scalable LAPACK”, ore
PETSc, wich is largely based on ScaLAPACK. Therefore, again, it is advisable to turn to standard
packages where possible.

7.5 OpenMP

API (Application Programmer Interface) defined for Fortran (1997) and C (1998).
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Controlled by compiler directives.
“Spontaneous” forking (creation of a multiple threads) and joining.
For shared memory machines: i.e. random access to all data of a coded is needed.
See codes openmp.cpp and omp_dot.cpp in “trunk/cpp” repository.
Compilers, as a rule, understand OpenMP directives. Compile with some flag, e.g.

linux>g++ -fopenmp openmp.cpp

linux>a.out

7.6 MPI - message passing interface

A demon in the background starts several jobs and controlles communication between them. The
jobs may be running on quite different machines. Freely available package “MPICH2”.

See codes mpi.cpp and mpi_dot.cpp in “trunk/cpp” repository.
Usage:

linux> mpic++ mpi_dot.cpp # compile and link script

linux> mpirun -np 2 a.out # run np=2 jobs

The compile / load scripts “mpic++”, “mpif90”, and the run script “mpirun” are created when
installing MPICH2

Note: There exists a python interface to MPI: mpi4py

Finite-element time-propagation

7.6.1 Existing software

Writing parallel software is hard work in general. Computational methods sometimes are designed
with the primary concern for the method to scale well upon parallelization (e.g. PIC - “Particle In
Cell” for plasma simulations). However, when you encounter the need to parallelize, check available
software first.

Unfortunately, unlike single processore linear algebra problems, there is no final software package
for solving all standard tasks. Yet, there is an increasing number of good candidates out there, for
example scaLAPACK, PETSc — “Portable, Extensible Toolkit for Scientific Computation”. If you
need to solve, e.g., a large eigenproblem in parallale, first turn to one of these packages.

FFT needs complicated communation patterns (“dont’t try this at home”): there exists an MPI
implementation of FFTW.

Note: There exists a python interface to PETSc: petsc4py
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Chapter 8

Group theory on the computer: Young
tableaus

As an exercise we will compute all irreducible representations of the permutation group on the space
of n spins. In rare cases, this is useful by itself. In passing, it illustrates the meaning of “irreducible
representation” in a direct way, teaches the correct use and interpretation of Young tableaus, and
gives an exercise in decomposing linear space into a direct sum of subspaces.

• Define a Young diagram by specifying the total number of spins n and the difference between
first and second row m.

• Get the dimension of the representation nr by the hook formula

• Fully define the Young tableau by specifying the number of unpaired spins s. Note: the z-
component of the total Spin will be Sz =s/2.

• Fill in the young tablau with 1’s for spin up and 0’s for spin down according to the rules and
parameters n,m,s. The sequence of zero’s and ones gives a binary number k.

• Initialize the component vector a[k]=1, i.e. a single vector

• Obtain the standard vector corresponding to the Young tableau: symmetrize with respect to
the rows, then anti-symmetrize for each column

• loop until nr orthogonal vectors are generated:

• permute to next permutation, orthogonalize vector relative to previous vectors

• if new vector is linearly independent (i.e. non-zero after orthogonalization) accept as new basis
vector of irrep.

As tests we will

• Check whether dimensions nr for all m,s add up to 2n, the complete spin space.
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• Whether the orthonormal basis vectors span the complete Hilbert space.

1 =
∑

m,s

∑

i

|b(m,s)
i 〉〈b(m,s)

i | (8.1)

• Check spin eigenvector property
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