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DISCLAIMER

Theses are not lecture notes, but rather scribbles.
They need severe revision

There are inconsistencies, errors, some false claims
all things that were put there to be corrected

at one point
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I reserve the right not to answer questions related to these notes
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Notation

E electric field
E0 ground state energy
ωl laser fundamental (circular) frequency
Tl laser period = laser optical cycle
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Chapter 1

Introduction

In the early years of 2000, extremely short, controlled light pulses could be produced for
the first time. Typical duration of these pulses is 0.1 fs = 10−16 s = 100× 10−18 s = 100
as with 1 as (attosecond) = 10−18 s.

Except for being short, the timing of these pulses can be controlled on a scale of about
10 as, 1/10 of their typical duration. These are the time scale on which electronic changes
in ordinary matter happen. One or two decades earlier, the shortest pulses were in the
& 10fs regime, the time scale on wich nuclei move during chemical reactions. This had
given us the possibilty to directly observe what happens during chemical reactions.

• Atoms

• Molecules

• Solids

7
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Chapter 2

Time scales, key experiments, units

2.1 What happens in an attosecond?

2.1.1 Electronic motion in an atom

Velocity of an electron in the atom

The quantum mechanical virial theorem for the Coulomb potential establishes a relation
between the kinetic and the potential energy of an electron in an atom. It is strictly valid
for any bound state of any Coulombic system:

〈Tkin〉 = −1

2
〈Vpot〉 = Ebind. (2.1)

For any hydrogen-like ion one can relate the binding energy to the kinetic energy of a
single electron. As Ebind is easily determined experimentally.

The average velocity v0 of the electron in the ground state of the atom is

Tkin =
mev

2
0

2
= Ebind = 13.6 eV (hydrogen). (2.2)

The Rydberg energy is defined as the binding energy of the hydrogen atom:

1Ry := 13.6058 eV. (2.3)

Thus we find for the velocity

v0 =

√

2Ry

me

=

√

27.2116 eV

0.511MeV/c2
= αc, (2.4)

α ≈ 1/137. . .fine structure constant,
c. . .velocity of light.

The typical speed of an electron in an atom is given by

v0 = c/137 = αc. (2.5)

9
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It is easy to see that α is indeed exactly the fine-structure constant: expressing everything
in terms of proton charge e, electron mass me and ~, e.g. table 2.1.

For non-hydrogen like systems, we cannot associate 〈Tkin〉 with a single electron. Nev-
ertheless, the order of magnitude estimate for the kinetic energy of any valence electron
by its ionization potential is valid.

The motion of the electrons in an atom is sub-relativistic on the scale αZ∗, where Z∗

is some effective screened charge. For the valence electrons of a neutral Z∗ ∼ 1. For larger
atoms only outer electrons can be treated non-relativistically.

Distance of the electron to the nucleus

In order to estimate the radius of the electron orbit, we again use the virial theorem for
the Coulomb potential:

〈Vpot〉 = −2Ry = − e2

4πǫ0a0
, (2.6)

where a0 is the searched for radius. ǫ0 is the dielectric constant in the vacuum, ǫ0 =
8.85 · 10−12As/V m. Hence we get

a0 =
e2

8πǫ0 Ry
≈ 0.529× 10−10m ≈ 0.05 nm. (2.7)

a0 is called Bohr’s atomic radius.

The classical orbit time of a valence electron

Figure 2.1: An electron as it travels around a nucleus. . .

If the atom moves with velocity v0 on a circular orbit with radius a0 around the
nucleus, the orbit time is

τorbit =
2πa0
v0

= 2π
0.529× 10−10

3× 108
× 137s ≈ 2π · 24.188× 10−18s ≈ 150 as. (2.8)

as stands for attosecond = 10−18s.
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2.1.2 Transition energies — time scales

Electron density of a superposition state

Starting from the Schrödinger equation (with ~ = 1, atomic units)

(

− ~
2∆

2m
+ V (r)

)

Ψ(r, t) = i
∂

∂t
Ψ(r, t), (2.9)

we can make an ansatz for quasi-stationary solutions

Ψ(r, t) := e−iEtφ(r), (2.10)

with φ(r) fulfilling the time independent Schrödinger equation

(

− ~
2∆

2m
+ V (r)

)

φ(t) = Eφ(t). (2.11)

Quasi-stationary means that the electron density is time independent,

ρ(r) = |Ψ(r, t)|2 = |φ(r)|2. (2.12)

If we have a superposition of two such solutions of different energy,

Ψ(r, t) = e−iE1tφ1(r) + e−iE2tφ2(r), (2.13)

we find for the electron density

ρ(r, t) = |Ψ(r, t)|2 = |φ1|2 + |φ2|2 + φ∗
1φ2e

−i(E2−E1)t + h.c. (2.14)

Notation: h.c. . . . “hermitian conjugate” (which is here just the complex conjugate).
Notice that the electron density of the superposition of two quasi-stationary states is time
dependent. The time dependent part is periodic with a period

τ =
2π

|E2 − E1|
. (2.15)

Characteristic times of quantum systems

τ ∼ 2π

∆E
(~ = 1) (2.16)

∆E. . . characteristic energy differences

∆E τ
vibrational motion of nuclei in molecules ∼ 100 meV ∼ 20 fs

valence electrons in atoms/molecules 13 eV 150 as
inner shell electrons ∼ 1 keV ∼ 2 as

nuclear fusion d + t → He++ + n 17 MeV ∼ 10−7 as.
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Other time scales

Solids:
thermalization
relaxation of defects

Clusters:
ionization, electron detachment
Coulomb explosion of the positively charged cluster ∼ 100 fs

Attosecond physics is the physics of the dynamics of valence electrons

2.2 Photoionization

Multi-photon ionization

Wave length 800 nm, laser photon energy ∼ 1.5 eV
Ionization potential (hydrogen) 13.6 eV
An electron needs to absorb at least 9 photons to leave the atom and reach the continuum.

Above threshold ionization

The electron absorbs many more photons than needed for escaping (and thus escapes with
considerably larger velocity)!
“Above threshold ionization — ATI”

,

Figure 2.2: Multiphoton-ionization and above threshold ionization
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Figure 2.3: Early experimental results on multi-photon ionization and ATI electrons.
Photoelectrons from the lower ~ω and higher intensity appear at higher energies - “above
threshold”. From Agostini et al., (1997) [1]
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Figure 2.4: Measured at MPQ, Paulus et al. 1993 [13]. Depending on intensity, cuttoffs
and plateaus are visible.

Why and how? → to be explained later

Photo-ionization at extreme intensities

Some phenomenology: The 2 Up and the 10 Up cutoff.
Note: 2 Up is the maximum kinetic energy of a free electron in a laser field (see below)
Where do the 10 Up come from?

The ponderomotive potential Up

We want to determine the mean energy of a (classical) electron in a plane wave electro-
magnetic field:

Continuous wave (cw) laser field

The electric field of a continuous, monochromatic wave with frequency ω is given by

E(t) = E0 cosωt. (2.17)

Here dipole approximation is used, i.e. the field does not depend on space coordinates
(which is a reasonable assumption as long as the wave length of the laser field is large
compared to the atom).
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Kinetic energy

With ve(0) = 0 we find for the velocity of an electron in such a field

F = v̇(t)me = −eE(t) ⇒ v(t) = −
∫ t

0

eE(t)
me

dt = − e

me

E0
ω

sinωt. (2.18)

With e := 1, me := 1 the kinetic energy of the electron at a time t is given by

T (t) =
|ve(t)|2

2
=

E2
0

2ω2
sin2 ωt. (2.19)

This describes the “quiver motion” of the electron. The time averaged kinetic energy is

〈T 〉 = 〈 |ve(t)|
2

2
〉 = E2

0

4ω2
=: Up . (2.20)

From (2.19) we conclude that the maximum kinetic energy of an electron in a cw laser
field is given by 2Up.

2.3 HHG — high harmonic generation

Traditional harmonic generation

Simple, instantaneous non-linear response of a medium to the laser:

P(E) = χ(1)E + χ(2)EE + χ(3)EEE + . . . (2.21)

For an isotropic medium we have: χ(2n) = 0. This follows from P(E) = −P(−E).
Since the ’secondary’ field generated by the medium is proportional to P̈ and E ∼
cosωt, E2 ∼ cos2 ωt ∼ 1 + cos 2ωt, E3 ∼ cos3 ωt ∼ 3 cosωt + cos 3ωt . . . , we see that
only odd multiples are generated. We speak of frequency tripling, quintupling, hepta-
pling. . . Only odd multiples of the fundamental frequency can arise.
BUT: usually, there is a rapid decrease of intensity with harmonic order

Microscopic reason: expect ∼ exponential decrease from perturbation theory

Measurements at high intensities:

NOTE: the “plateau” indicates that there may be a sudden short-time process hidden
in the spectrum. For example, compare the Fourier transform of a rectangular series of
spikes (assuming a flat phase).

Cutoff energy: Ip + 3.17Up

Ip . . . ionization potential of the (gas) medium
Why Up again? Why 3.17? — see below
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Figure 2.5: An early measurement of high harmonics [8]
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2.4 Units and scaling

2.4.1 The time dependent Schrödinger equation

For a the hydrogen atom or a hydrogen-like ion (i.e. H, He+, Li++,. . . ) in an external
electric field the time dependent Schrödinger equation is

i~
d

dt
Ψ(~r, t) =

[

−~
2∆

2me

− e2

4πǫ0

Z

r
− e~E(t) · ~r

]

Ψ(~r, t), (2.22)

where Ze is the charge of the nucleus.

2.4.2 Atomic units

Set ~ = me = e = 1
4πǫ0

= 1, where e is the (positive) charge of the proton.

Unit definition numerical value

Length a0 =
(4πǫ0)~2

mee2
0.052917 nm

Energy 2Ry = e2

(4πǫ0)a0
27.211 eV

Velocity v0 =
e2

(4πǫ0)~c
c/137.035

Time τ0 =
a0
v0

24.188× 10−18s

Field strength E0 = e2

(4πǫ0)a20
5.1422× 1011V/m

Intensity I0 = cǫ0E2
0/2 3.50944× 1016W/cm2

Wave-length @ 2Ry 2πa0
α

45.563 nm
Optical cycle @ 800 nm 800nm

c
110.32 au

Table 2.1: A few important quantities of laser-atom interactions and their relation to
atomic units (au): me = ~ = e = 1. Vacuum permittivity and speed of light are denoted
by ǫ0 and c, respectively.

2.4.3 Scaling of the Schrödinger equation

All hydrogen-like atoms are alike

Let us perform a substitution in the Schrödinger equation:

~r = ~u/Z t = τ/Z2. (2.23)

In atomic units the equation becomes:

iZ2 d

dτ
ΨZ(~u/Z, τ/Z

2) = Z2

[

−∆u

2
− 1

u
− 1

Z3
~E(τ/Z2) · ~u

]

ΨZ(~u/Z, τ/Z
2). (2.24)

Canceling Z2 on both sides we recover the TDSE for hydrogen, but of course for a different
electric field. (Ψold is the one in equation (2.22)),

ΨZ(~u/Z, τ/Z
2) := Ψold(~r, t) ⇒ ΨZ(~r, t) = Ψold(Z~r, Z

2t). (2.25)
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The wave function corresponding to a nuclear charge Z is smaller (factor 1/Z) and faster
evolving (factor Z2) than a wave function corresponding to a nuclear charge Z = 1. It
follows immediately, that the momentum/velocity increases with Z and the energy with
Z2. In order to get the same effects as for Z = 1, one must increase the field amplitude
with a factor Z3 (leading to an intensity growth of Z6). Summary:

Scaling with nuclear charge Z

size of the wave function shrinks ∼ 1/Z

momentum / velocity ∼ ~∇ grows ∼ Z
time processes accelerate ∼ Z2

energies grow ∼ Z2

electric fields increase for same effect ∼ Z3

laser intensities increase for same effect ∼ Z6
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Chapter 3

Static field ionization

Given a constant external electric field ~E0, the potential energy of the electron in the field
is V (~r) = −~r · ~E0. The total Hamiltonian of an electron in a hydrogen atom with an
applied external electric field is thus given by (e = 1):

H = −1

2
∆− 1

r
− ~r · ~E0. (3.1)

3.1 A quick estimate

Gamov factor for a tunneling transition

Γtunnel ∼ exp

[

−23/2
∫ r0

0

√

V (r)− E0 dr

]

, (3.2)

r0 : V (r0)− E0 = 0. (3.3)

For a square well with a static field

V (r) = −~r · ~E0, (3.4)

∫ r0

0

(~r · ~E0 − E0)
1/2dr =

2

3

(−E0)
3/2

E0
, (3.5)

⇒ Γtunnel ∝ exp

[

−2

3

(−2E0)
3/2

E0

]

.

Key features:

• exponential decrease with the binding potential E0

• exponential decrease with 1/E0, i.e. dramatic increase with E0.

19
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3.2 A more accurate treatment

[This summary follows Landau-Lifshits, Quantum Mechanics, chap. X]
Construction of the model:

• use the exact field-free atomic wave function “inside” the atom

• use a quasi-classical solution “outside” the atom

• connect both solutions smoothly at some point under the tunneling barrier

Problem: There is a smooth connection needed in 3 dimensions. However, the radius
where the potential barrier is highest or the radius at the “exit of the tunnel” depend on
the spatal direction. Matching would be very difficult. Solution: use parabolic coordi-
nates:

η = r + z, ξ = r − z, ξ, η ∈ [0,∞). (3.6)

Ground state eigenvalue equations in parabolic coordinates with an external field in z-
direction V (~r) = −~r · ~E0 = −zE0 = (ξ − η)E0/2, with E0 ≪ 1.

Ψ(x, y, z) =
1√
ξη
φ(ξ)χ(η) ⇒

0 =

[

− ∂2

∂ξ2
− E0

2
− 1

2ξ
− 1

4ξ2
+

E0
4
ξ

]

φ(ξ),

0 =

[

− ∂2

∂η2
− E0

2
− 1

2η
− 1

4η2
− E0

4
η

]

χ(η).

• Since the potential barrier arises in the negative z-direction (thus in the direction
of η), tunneling occurs mainly for large η and small ξ (i.e. x ≈ 0 ≈ y). Thus φ is
little affected by the field (for E0 > 0) and may be assumed the same as in the field
free case.

• χ as a function of only one variable can be pieced together easily.

For the field free case, the ground state hydrogen wave function in parabolic coordinates
is given by

ψ =
1√
π
e−

ξ+η
2 . (3.7)

If we assume, in the case of an external field, that the exponential decaying shape of the
wave function remains unchanged at some point η0 well inside the potential barrier, with
1 ≪ η0 ≪ 1/E0. For χ(η) for some η outside the well we find

χ =

(
η0|p0|
πp

)1/2

exp

(

−ξ + η0
2

+ i

∫ η

η0

p(η)dη +
iπ

4

)

, (3.8)
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with

p(η) =

√

−1

4
+

1

2η
+

1

4η2
+

E0η
4

(3.9)

(for p0 see below). The phase factor iπ/4 results from the patching of wave functions at
the returning point η1 (the point where the kinetic energy of the electron is zero at the
outer ’margin’ of the barrier). Since we are interested only in |χ|2, we may neglect the
imaginary parts in the exponential functions. As the momentum p is imaginary inside
the potential barrier, we remain with (p(η1) = 0)

|χ|2 = η0|p0|
πp

exp

(

−ξ − 2

∫ η1

η0

|p|dη − η0

)

. (3.10)

With η ≫ 1, which is under the barrier if E0 is small, we may simplify the momenta in
the pre-factor:

|p0| ≈
1

2
, p ≈ 1

2

√

E0η − 1.

In the exponent we expand the momentum one term further and obtain

|χ|2 = η0
π
√E0η − 1

exp

(

−ξ −
∫ η1

η0

√

1− E0ηdη +
∫ η1

η0

dη√
1− E0η − η0

)

. (3.11)

where we approximated η1 = 1/E0, After integration and neglecting η0E0 with respect to
1 we obtain

|χ|2 = 4

πE0
√E0η − 1

exp

(

−ξ − 2

3E0

)

. (3.12)

Calculating the rate

We calculate the ionization rate as the current through a surface perpendicular to the
field direction z (ionization happens only along the direction parallel to the field).
The electron density at a surface z = z0 is: |Ψ(x, y, z0)|2.
We estimate the electron velocity at z0 from the (classical) energy:

−0.5 a.u. = E = ~v2/2− z0E0 ≈ v2z/2− z0E0.⇒ vz ≈
√

2z0E0 − 1 ≈
√

ηE0 − 1,

since z = 1
2
(ξ−η), ξ ≈ 0 (r ≈ z, x2+y2 ≈ 0). The perpendicular components vx = vy ≈ 0

for reasons of cylindrical symmetry. The total current is given by the integration of the
“current density” = “(charge) density × velocity”,

Γtunnel =

∫

dx dy |Ψ(x, y, z0)|2vz =
∫ ∞

0

|ψ|2vz2πρdρ
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For large η ands small σ we have

dρ = d
√

ξη ≈ 1

2

√
η

ξ
dξ.

Thus the integral is

Γtunnel =

∫ ∞

0

|ξ|2π
√

E0 − 1 dξ.

For the hydrogen atom we find

Γtunnel =
4

E0
exp

(

− 2

3E0

)

.

Scaling with nuclear charge

With the proper transformation of units we have The rate increases ∼ Z2, but the effect
of the field decreases ∼ Z−3, (see discussion of the scaling above):

[rate] = [1/time] ∼ Z2,

E0 ∼ Z3,

Γtunnel(E0, Z)Z2Γ(E0/Z3, 1) = Z5 4

E0
exp

(

−2Z3

3E0

)

.

Note: Since the exponential function ’kills’ the polynomial, for E0=const, there is a dra-
matic decrease of the ionization rate with increasing Z.

3.3 Numerical confirmations of the tunnel formula

There exist several methods:

1 Solve the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
Ψ(~r, t) =

[

−1

2
∆− 1

r
− zE0

]

Ψ(~r, t)

Problem:
- there is no strictly exponential decay in quantum mechanics (at start time, because of
time reversal symmetry;
For the mathematically inclined: for semi-bounded Hamiltonians there is also not expo-
nential decay at time→ ∞. However, our Hamiltonian is not semi-bounded.
- hard to do numerically
Advantage:
+ well defined procedure on the foundations of quantum mechanics
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2 High order perturbation theory

Problem: it diverges! (Make convergent using obscure tricks: Pade or Borel-summation)
Advantage: for hydrogen, it can be done analytically to very high (e.g. 18!) orders of
perturbation theory.

3 Complex scaling

Analytically continue the Hamiltonian to complex coordinates!

~r → eiθ~r

Find complex eigenvalues of
[

−e−2iθ 1

2
∆− e−iθ 1

r
− eiθzE0

]

Ψ(~r) = (E − i

2
Γtunnel)Ψ(~r)

The imaginary part of a given eigenvalue is half the tunnel rate for the corresponding
state: 1

2
Γtunnel.

Figure 3.1: ADK vs. numerically accurate static field ionization rates.

At present, there are no strong static field ionization rates available for other system.
A numerical check of the CW ionization rates at 800 nm for other systems shows very
severe discrepancies [16].

3.4 The Ammosov-Delone-Krainov (ADK) formula

Based on the same ideas of stitching together the field-free atomic state with WKB-
like solutions at some point “under the tunnel barrier”, a more general formula for field
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ionization of atoms was derived in 1966 by Perelomov, Popov and Terentev [14] and later
in by Ammosov, Delone, Krainov [2]. These formula come in many variants and promise
to be applicable to all kinds of atoms in all kinds of states. In most cases, a verification
is not available to the present day. The formulae are deliberately not quoted here. They
all are accurate “to exponential accuracy”, i.e. the exponential dependence on field and
binding energy is reproduced correctly (but near trivially). This is the use that is made
of them in practice.

3.4.1 Molecular ADK

The ADK formula was further generalized by X.M.Tong et al. [Phys. Rev. A 66, 033402
(2002)] using an intriguingly simple idea: assume that the tunnel barrier reaches its
maximum at somewhat larger distances from the molecule (moderate fields). Again, we
would like to smoothly connect a WKB solution to the wave function under the barrier,
which is assumed to coincide with the field-free solution. Expand the field-free solution
(known from some quantum chemistry calculation) into atom-like expansion functions
and use the only the dominant ones to to the WKB solution.
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Above threshold ionization (ATI)

4.1 Initial velocity after tunneling

At the end of the tunnel, we have total energy = potential energy

E0 = V (r0) = − 1

r0
− r0E0,

therefore we expect the kinetic energy to be ∼ 0.

Figure 4.1: Potential of a Coulomb-system with an external static field.

Velocity perpendicular to the field

v⊥ ∼ 0 because of symmetry reasons.

Quantum version of this idea

Energy in perpendicular direction:

− ∂2

∂x2
Ψ(x, y, z) = − ∂2

∂y2
Ψ(x, y, z) ∼ 0,

25



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

26 CHAPTER 4. ABOVE THRESHOLD IONIZATION (ATI)

1

2

∂2

∂z2
Ψ(x, y, z) ∼ 1

2
∆Ψ|r0 =

(

−1

r
− rE0 − E0

)

Ψ|r0 = 0. (4.1)

The electron emerges from tunneling with velocity = 0

4.1.1 Remark

There is some cheating: due to the uncertainty relation,

∆pz∆z ≥
~

2
, ∆E∆t ≥ ~

2
,

there is no such thing as a “velocity vz at a point z0. Similarly, there is no such thing as
a “time when the electron leaves the barrier”.

The idea is difficult to make precise, but seems to be qualitatively correct.

4.2 ATI - above threshold ionization

Figure 4.2: Photoelectron spectrum generated by a 5fs laser pulse. A large number of
photons is absorbed, maximal electron energies widely exceed the photon energy. The
distinct structure is characterized by two the values of 2Up and 10Up. (From Ref. [12])
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4.2.1 Quasi-static, classical picture

Acceleration of an electron in a laser field (after tunneling)

(remember atomic units, e2/4πε0 = 1, electron charge e is negative, me = 1 ⇒ ~p = ~̇r )

~̈r(t) = −~E(t),

~̇r(t) = ~p(t) = −
∫ t

t0

~E(t′)dt′ =: ~A(t)− ~A(t0) + v(t0).

Here we have defined the

Vector potential ~A(t)

~A(t) = −
∫ t

−∞

E(t′) dt′. (4.2)

Note: Compared to the usual definition of the vector potential (in Coulomb gauge) we

have absorbed a factor e
c
into ~A.

As a laser pulse cannot have a dc component in its spectrum we see that

0 = −
∫ ∞

−∞

dteiωtE(t)
∣
∣
∣
∣
ω=0

= ~A(∞)− ~A(−∞). (4.3)

The value of ~A at infinity can be set ≡ 0 without loss of generality

A(t = ∞) = A(t = −∞) := 0 (4.4)

Note: any (laser-)pulse shape must fulfill this condition

Initial and final electron momenta

Initial (at the end of the tunnel): v(t0) = 0 ⇒ p(t0) = 0.
With an electron release time t0:

~p(t = ∞) = − ~A(t0).

The vector potential gives the acceleration of an electron in the field

4.2.2 Crossection σ(p) for electrons with final momentum p

Since there exists a clear relation between the release time of an electron and its momen-
tum, we may assume:

σ(p)dp = σ(p)
dp

dt
dt = σ(p)E(t)dt := w(t)dt



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

28 CHAPTER 4. ABOVE THRESHOLD IONIZATION (ATI)

Quasi-static ionization rate

w(t) =
4

E(t)e
− 2

3E(t) (4.5)

σ(p)E(t)dt = w(t)dt

σ(p) =
4

E(t)2 e
− 2

3
1

E(t)

In spite of the singularity, because of the exponential, this functions rapidly drops to zero
where E(t) = 0.

E(t) = E0 cos(ωt), p(t) = −
∫ ∞

t

E(t′)dt′ ⇒

p(t) = E0/ω sin(ωt), t(p) = arcsin

(
pω

E0

)

,

E(p) = E0
√

1− p2/A2
0

σ(p) =
4

E0(1− (p/A0)2)
e
−2

3
1

E0[1−(p/A0)
2]

(4.6)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1

I =0.2e13
I = 0.9e14
I = 3.5e14

Figure 4.3: The classical ionization according to Eq. 4.6
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Maximal acceleration from times where E(t) = 0

For a cw laser field we find

pmax = E0/ω := A0, (4.7)

p2max

2
=

E2
0

2ω2
:=

A2
0

2
= 2Up. (4.8)

4.3 The 10 Up cutoff

Re-scattered ATI electrons

Figure 4.4: An electron is removed from an atom, returns to the atom and re-collides.

The electron must return to its initial position

Ionization at t0, rescattering at t1

z(t1)− z(t0) =

∫ t1

t0

(

−
∫ t

t0

E(t′)dt′
)

︸ ︷︷ ︸

v(t)

dt = 0. (4.9)

For a cw laser field E(t) = E0 cos(ωt) we find

v(t) = −E0
ω
(sin(ωt)− sin(ωt0)). (4.10)

With this, condition (4.9) becomes

0 =
E0
ω2

[cos(ωt1)− cos(ωt0)] +
E0
ω

sin(ωt0)(t1 − t0). (4.11)

This is a transcendental equation, which can be solved graphically or numerically.

The graphical solution is represented as follows:
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Figure 4.5: Graphical solution of Eq. (4.11). The red (wavy) line represents the first term
in (4.11), the blue (straight) line the second term. The slope of the straight line is equal
to the derivative of the wave at t0, i.e. the straight line is the tangent at to the wave at
t0. Where it intersects the wave, the offsets produced by the two terms are equal with
opposite sign and therefore cancel

Total acceleration

From t0 to t1 = momentum at t1: p(t0, t1) :=
∫ t1
t0
[−E(t)]dt = A(t1)− A(t0).

From t1 to the end of the pulse: p(t1,∞) =
∫∞

t1
[−E(t)]dt = −A(t1).

If the electron does NOT scatter at t1, the final momentum is simply A(t0):

pfinal(t0) = p(t0, t1) + p(t1, t∞) = −A(t0)
If the electron DOES scatter elastically at t1, the momentum may change direction at
time t0. E.g., the momentum acquired between t0 and t1 may reverse sign: p(t0, t1) →
−p(t0, t1).
In that case the final momentum is

pfinal(t0) = −p(t0, t1) + p(t1, t∞) = −2A(t1) + A(t0) .

Depending on the release time t0, the maximal final momentum with rescattering is thus

pmax = max(t0)| − 2A(t1) + A(t0)| , (4.12)

where t0 and t1 are related by the condition (4.9).

Numerical solution

p2max

2
= 10Up .

NOTE: the numerical result very nearly 10 (∼ 5 digits). This, however, seems to be a
coincidence, as there remains a deviation after the 4th digit.
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Quantum mechanical description

5.1 Length- and velocity gauge

The Schrödinger equation in “length gauge”

i
d

dt
ΨL(~r, t) =

[

−1

2
∆− 1

r
− ~r · ~E(t)

]

ΨL(~r, t) (5.1)

can be brought to a different form by a gauge transformation

ΨL(~r, t) = e−i ~A·~rΨV (~r, t), (5.2)

with the vector potential

~A(t) = −
∫ t

−∞

~E(t′)dt′, ~E(t) = − d

dt
~A(t) (5.3)

Inserting the ansatz (5.2) into (5.1) we find the TDSE in the “velocity gauge”

i
d

dt
ΨV (~r) =

[
1

2

(

−i~∇− ~A(t)
)2

− 1

r

]

ΨV (~r). (5.4)

Note 1

the physical meaning of −i~∇ differs in the two gauges:
length gauge: −i~∇/me ∼ velocity ~̇r

velocity gauge: −i~∇/me ∼ ~̇r + ~A(t)/me

Note 2

the field free hydrogen ground state function Φ takes different forms in the two gauges:
length gauge: ΦL(~r) ∼ e−r, i.e. unchanged

velocity gauge: ΦV (~r) = ei
~A·~rΦL(~r) i.e. multiplied by a ~r-dependent phase = shifted in

Fourier-space

31
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Note 3

The term ∼ ~A(t)2 in Eq. (5.4) is often omitted, as it only leads to an additional time-

dependent, but space-independent phase exp
[

−i
∫ t

−∞
~A2(t′)dt′

/

2] on the wave function

with no effect on observables.

5.2 Volkov solutions

We determine the solution of the TDSE of a free electron in presence of a dipole (laser)
field. For this we use the velocity gauge form of the TDSE:

i
d

dt
χ(~r, t) =

1

2

[

−i~∇− ~A(t)
]2

χ(~r, t). (5.5)

We perform a spatial Fourier transform

χ(~r, t) =
1

(2π)3/2

∫

d~kei
~k·~rχ̃(~k, t), (5.6)

i
d

dt
χ̃(~k) =

1

2

[

~k − ~A(t)
]2

χ̃(~k), (5.7)

χ̃(~k, t) = χ̃(~k, 0) e−i
∫ t
0

1
2
[~k− ~A(τ)]2dτ . (5.8)

Inverse Fourier transform

χ(~r, t) =
1

(2π)3/2

∫

d~kei
~k·~rχ̃(~k, t) (5.9)

=
1

(2π)3/2

∫

d~k ei
~k·~re−i

∫ t
0

1
2
[~k− ~A(τ)]2dτ

︸ ︷︷ ︸
χ̃(~k, 0). (5.10)

The underbraced term part (up to an unimportant time-independent phase Φ(~k, 0)) is the

Volkov solution in velocity gauge

|~k〉V :=
1

(2π)3/2
ei
~k·~re−iΦ(~k,t), (5.11)

where we have defined the

Volkov phase Φ(~k, t)

Φ(~k, t) =

∫ t

0

1

2
[~k − ~A(τ)]2dτ. (5.12)
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Volkov solution in length gauge

|~k〉L := e−i ~A·~r|~k〉V =
1

(2π)3/2
ei(

~k− ~A)·~re−iΦ(~k,t). (5.13)

5.3 Quantum mechanics of laser-atom interaction

Our physical picture so far

- “inside” the atom the electrons are little affected by the laser field and remain close
to the field free ground state

- “outside” the atom the electrons are nearly free

Ansatz for the solution of the TDSE

|Ψ(~r, t)〉 = c(t) |0, t〉
︸︷︷︸

inside

+

∫

d~k b(~k, t) |~k, t〉L
︸ ︷︷ ︸

outside

, (5.14)

where |0, t〉 solves the TDSE without a laser field,

i
d

dt
|0, t〉 =

[

−∆

2
+ V (~r)

]

|0, t〉, (5.15)

and |~k, t〉 are Volkov solutions. Here a general atomic binding potential is assumed. In
case of hydrogen V (~r) = −1

r
.

Is the ansatz complete?

Yes! The Volkov solutions form a complete set of functions (this is related to the fact
that the Fourier transform is complete in L2)

Why do we need c(t)|0, t〉 ?

We want to describe the electrons “inside” by the field free ground state.

Problem

The ansatz is over-complete, i.e. we can express |0, t〉 as a linear combination of |~k, t〉.

Additional condition

needed to obtain a unique solution for c(t) and b(~k, t):

〈0, t|
[∫

d~kb(~k, t)|~k, t〉
]

= 0, (5.16)

i.e. we want no content of the ground state in the part of the free wave packet.
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5.3.1 Equations for c(t) and b(~k, t)

We have the ansatz

Ψ = c(t)|0〉+ bk(t)|k〉 (5.17)

with the constraint

〈0|k〉bk = 0. (5.18)

For convenience we use the short hand notation bk = b(~k, t) and we employ the “sum-
menkonvention” with respect to k, which means that integrations over k are assumed
where it appears twice in a product. The full Hamiltonian operator of our system can be
split in two different ways as

H = H0 + F = HF + V. (5.19)

The expansion vectors are defined by the properties

i∂t|0〉 = H0|0〉 = E0|0〉 (5.20)

i∂t|k〉 = HF |k〉. (5.21)

We now use a variational principle to derive the Schrödinger equation in terms of the
expansion coefficients c(t) and bk(t). We write the Dirac-Frenkel variational principle

0 = 〈δΨ∗|i∂t −H|Ψ〉 (5.22)

in terms of variations of the expansion coefficients

〈δΨ| = δc∗〈0|+ δb∗k′〈k′|.

The orthogonality constraint b∗k′〈k′|0〉 is taken into account by a Lagrange multiplier λ,
which leads to the variational equation

0 = δc∗〈0| [i∂t −H|Ψ〉] + δb∗k′〈k′| [i∂t −H|Ψ〉] + λδb∗k′〈k′|0〉. (5.23)

We next separate the equations for the individual variations. For the δc∗ variation we
have

0 = 〈0| [i∂t −H|Ψ〉]
= 〈0| [i∂t −H0 − F |0〉c(t)] + 〈0| [i∂t −HF − V |k〉bk(t)]
= −〈0|F |0〉c(t) + 〈0|0〉i∂tc(t)− 〈0|V |k〉bk(t) + 〈0|k〉i∂tbk(t)
= i∂tc(t)− 〈0|V |k〉bk(t) + 〈0|k〉i∂tbk(t)

where we have used (5.20) and (5.21). For simplicity, we further assumed that |0〉 has no
expectation value for the field. This is the case, e.g., if the interaction is dipole and the
ground state has no dipole moment 〈0|F |0〉 = 0.
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For the δb∗k′ variation we obtain

0 = 〈k′| [i∂t −H|Ψ〉] + 〈k′|0〉λ
= 〈k′| [i∂t −H0 − F |0〉c(t)] + 〈k′| [i∂t −HF − V |k〉bk(t)] + 〈k′|0〉λ
= −〈k′|F |0〉c(t) + 〈k′|0〉i∂tc(t)− 〈k′|V |k〉bk(t) + 〈k′|k〉i∂tbk(t) + 〈k′|0〉λ

With this we obtain the equations for the coefficients

i∂tc = 〈0|V |k〉bk − 〈0|k〉i∂tbk (5.24)

i∂tbk = 〈k|F |0〉c+ 〈k|V |k′〉bk′ − 〈k|0〉i∂tc− λ〈k|0〉+ 〈k′|0〉λ, (5.25)

where we have assumed a δ-normalization of the Volkov functions 〈k′|k〉 = δ(k−k′). Now
we use the derivative form of the constraint

0 = i∂t〈0|k〉bk = −E0 〈0|k〉bk
︸ ︷︷ ︸

=0

+〈0|HF |k〉bk + 〈0|k〉i∂tbk (5.26)

to replace the derivative of bk in (5.24) and substitute (5.27) into (5.25):

i∂tc = 〈0|V |k〉bk + 〈0|HF |k〉bk = E0 〈0|k′〉bk′
︸ ︷︷ ︸

=0

+〈0|F |k′〉bk′ (5.27)

i∂tbk = 〈k|F |0〉c+ 〈k|V |k′〉bk′ − 〈k|0〉〈0|F |k′〉bk′ − 〈k|0〉λ (5.28)

The Lagrange multiplier λ is determined from substituting (5.28) into (5.26) which gives

λ = 〈0|HF |k′〉bk′ + 〈0|V |k′〉bk′ − 〈0|F |k′〉bk′
where we have used the completeness of the Volkov functions |k′〉〈k| = 1 and 〈0|F |0〉 = 0.
Further one finds

λ = 〈0|HF + V |k′〉bk′ − 〈0|F |k′〉bk′
= 〈0|H0 + F |k′〉bk′ − 〈0|F |k′〉bk′
= 〈0|E0 + F |k′〉bk′ − 〈0|F |k′〉bk′
= E0 〈0|k′〉bk′

︸ ︷︷ ︸

=0

+〈0|F |k′〉bk′ − 〈0|F |k′〉bk′ = 0

With λ = 0 in (5.28) we obtain the final form of the Schrödinger equation in terms of c(t)
and bk(t):

i∂tc = 〈0|F |k′〉bk′ (5.29)

i∂tbk = 〈k|F |0〉c+ 〈k|0〉〈0|HF |k′〉b′k + 〈k|V⊥|k′〉bk′ , (5.30)

where we have defined
V⊥ := [1− |0〉〈0|]V [1− |0〉〈0|]. (5.31)

Note: NO approximations have been made, only the TDSE has been written in terms of
c(t) and |b).

The individual terms in (5.29) and (5.30) have simple physical interpretations and can
be given more explicitly for the hydrogen atom with the dipole approximation for the
external field:
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V⊥ is the restriction of the atomic potential to the space orthogonal to |0〉: 〈a|V⊥|0〉 =
0 ∀|a〉.

〈k|0〉 is the initial state expressed in terms of Volkov functions. In case of Hydrogen with
|0, t〉 ∝ e−iE0te−r:

〈k|0〉 =
√
8

π
eiΦ(~k,t)−itE0

1

[1 + (~k − ~A(t))2]2
. (5.32)

〈0|F |k′〉 is the interaction with the field, which moves amplitude between the bound state

|0〉 and the continuum Volkov functions |k〉. For a dipole field F = −~r · ~E(t)

− ~E(t) ·〈~k, t|~r|0, t〉
︸ ︷︷ ︸

dipolematrixelement

. (5.33)

In the case of hydrogen this is given by

〈~k, t|~r|0, t〉 = 4i
~E · (~k − ~A)

[1 + (~k − ~A(t))2]
〈~k, t|0, t〉. (5.34)

〈0|HF |k〉bk appears, because |k〉 and |0〉 are not solutions of the same Schrödinger equation. It
can be rewritten as

〈0|HF |k〉bk = 〈0|F − V |k〉bk. (5.35)

In the usual derivation of the Lewenstein model this is referred to as the “Volkov
functions are not orthogonal to the atomic ground state”.

“But the Schrödinger equation is useless”

(famous quote by Vladimir Pavlovich Krainov)

Approximations

(1) The ground state is not depleted much c(t) ≈ 1, ċ(t) ≈ 0.

(2) neglect the fact, that Volkov functions are not orthogonal to the ground state
⇔ 〈0|HF |k〉bk ≈ 0.

(3) set V⊥ ≈ 0: serious approximation!!

Mostly approximation (3) is responsible for incorrect (tunnel-) ionization rates by the
approximate theory. Rates are usually too low by roughly 1 order of magnitude (at low
laser frequencies). The situation is better at higher frequencies.
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Simplified form of the equation

i
∂

∂t
b(~k, t) = 〈~k, t|F |0, t〉

This can be easily integrated

“Strong field approximation (SFA)”, “Lewenstein model”

b(~k, t) =

∫ t

−∞
dt′eiΦ(

~k,t′)−iE0t
′ ~E(t′) · ~d[~k − ~A(t′)].

(5.36)

Here ~d[~k − ~A(t′)] is given by

~d[~k − ~A(t′)] = 〈~k, t = 0| ~r | 0, t = 0〉, (5.37)

and the phase factors in (5.36) stem from the time propagation of 〈~k, t| and |0, t〉, respec-
tively.

It is useful to think about the meaning of this integral. At any time t′ electron am-
plitudes in a range of momenta is put into the continuum according to the distribution
given by ~d[~k− ~A(t′)]. They then time-evolve like free electrons. The coherent! superposi-
tion of the electron amplitudes emitted at all times is what determines the final electron
amplitude as a function and observed electron spectrum.

5.3.2 Computation of the dipole matrix element

Given the hydrogen ground state

|0〉 =
√

1

π
e−r (5.38)

and δ-normalized plane waves

|~k〉 = 1

(2π)3/2
ei
~k·~r (5.39)

we want to calculate

~d(~k) = 〈~k|~r|0〉 = 1

23/2π2

∫

d(3)r e−i~k·~r~re−r (5.40)

We can obtain the dipole by an inner derivative with respect to ~k:

~d(~k) = i~∇k〈~k|0〉 = i~∇k

(
1

23/2π2

∫

d(3)re−i~k·~re−r

)

(5.41)
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Using the expansion into spherical Bessel functions

e−i~k·~r =
∑

l

(−i)l(2l + 1)jl(kr)Pl(cos γ), (5.42)

where γ is the angle between ~r and ~k: rk cos γ = ~k · ~r, and transforming to spherical
coordinates we obtain

〈~k|0〉 = 1

23/2π2

∫ 2π

0

dϕ

∫ 1

−1

d cos γ

∫ ∞

0

drr2
∑

l

(−i)l(2l + 1)Pl(cos γ)jl(kr)e
−r. (5.43)

The spherical symmetry of the initial state is reflected in the fact that all terms in the
sum except l = 0 vanish upon integration over cos γ, leading to

=
21/2

π

∫ ∞

0

drr2j0(kr)e
−r. (5.44)

Observing that j0(kr) = sin(kr)/(kr) this integral can easily be evaluated leading to

〈~k|0〉 =
√
8

π

1

(1 + k2)2
(5.45)

and by differentiating with respect to ~k one obtains the dipole matrix element

i~∇k〈~k|0〉 = i
4~k

1 + k2
〈~k|0〉 = i

√
8

π

4~k

(1 + k2)3
(5.46)

5.4 A crash course in variational calculus

A functional F (Ψ) maps a function Φ belonging to some linear space of functions H (e.g.
the Hilbert space) into the (complex) numbers. In that sense, the energy of quantum
mechanics is a functional of the wave function Ψ:

E(Ψ) = 〈Ψ|H|Ψ〉. (5.47)

Variational calculus is analogous to multi-dimensional calculus, but for “infinitely
many” dimensions. Roughly speaking, if the gradient ∇ is a finite-length vector of deriva-
tives, e.g. ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3, ∂/∂x4) in 4 dimensions, then the “functional deriva-
tive” produces the infinitely dimensional gradient of a functional.

The functional derivative is — in close analogy to the ordinary derivative —

δ

δχ
F (Ψ) = lim

ǫ→0

F (Ψ + ǫχ)− F (Ψ)

ǫ
. (5.48)

In general, the “variation” must be chosen such that F (Ψ + ǫχ) is defined. E.g. for the
quantum mechanical energy, it must be possible to apply the Laplace operator ∆χ, i.e.
χ should be twice differentiable.
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Finite-dimensional calculus is a limiting case of the variational calculus: functionals
on a n-dimensional space H can be simply written as functions of n variables F (Ψ) =
f(b1, b2, . . . , bn) for Ψ =

∑n
i=1 bi|i〉 with some finite-dimensional basis {|i〉, i = 1, . . . , n}.

All functions χ = c1|1〉+ c2|2〉, . . . , cn|n〉. With that Eq. (5.48) turns into

δ

δχ
F (Ψ) = lim

ǫ→0

f(b1 + ǫc1, b2 + ǫc2, . . . , bn + ǫcn)− f(b1, b2, . . . , bn)

ǫ
= ~c·∇f(b1, b2, . . . , bn).

(5.49)
A condition like

δ

δχ
F (Ψ) = 0 ∀χ ∈ H (5.50)

in finite dimensions corresponds to

~c · ∇f = 0 ∀~c. (5.51)

One often uses the notation “δF (Ψ)” for δ
δχ
F (Ψ) = 0 ∀χ and uses the notation

χ := δΨ.
These are all formal considerations, the important mathematical questions have to do

with existence of the limits and the possible choices for χ, but this does not concern us
here.

5.4.1 Variations of the energy functional

Eigenenergies are associated with stationary points of the energy functional, i.e.

0 = ǫδ〈Ψ|H|Ψ〉 = 〈Ψ+ ǫδΨ|H|Ψ+ ǫδΨ〉 − 〈Ψ|H|Ψ〉 = 〈ǫδΨ|H|Ψ〉 − 〈Ψ|H|ǫδΨ〉, (5.52)

where we have dropped the term of order ǫ2. Dividing by ǫ, we find the condition

0 = 〈δΨ|H|Ψ〉+ 〈Ψ|H|δΨ〉 ∀δΨ. (5.53)

For selfadjoint (≈ hermitian) H, condition (5.53) is equivalent to

0 = 〈δΨ|H|Ψ〉 ∀δΨ. (5.54)

This can be seen as follows:

0 = 〈δΨ|H|Ψ〉+ 〈Ψ|H|δΨ〉 = 〈δΨ|H|Ψ〉+ 〈δΨ|H|Ψ〉∗ = 2Re〈δΨ|H|Ψ〉 ∀Ψ. (5.55)

Assume Ψ fulfills (5.55), but there exists a δΨ1 such that Im〈δΨ1|H|Ψ〉 6= 0. Then we
can choose δΨ0 = iδΨ1 and we obtain

Re〈δΨ0|H|Ψ〉 = Re〈iδΨ1|H|Ψ〉 = Re(−i)〈δΨ1|H|Ψ〉 = Im〈δΨ1|H|Ψ〉 6= 0. (5.56)

which contradicts (5.55).
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5.4.2 TDSE: Dirac-Frenkel variational principle

In this approach, the action functional should have a stationary point

δ

∫ t1

t0

〈Ψ(t)|[id/dt−H(t)]Ψ(t)〉/〈Ψ(t)|Ψ(t)〉dt = 0. (5.57)

The explicit normalization of the wave function is needed to remove surface terms when
one moves d/dt to the left side by partial integration. A similar analysis as above leads
to

0 = 〈δΨ|Q(id/dt−H)Ψ〉+ 〈Q(id/dt−H)Ψ|δΨ〉 = 2Re〈δΨ|Q(id/dt−H)Ψ〉 (5.58)

where Q = 1 − |Ψ〉(〈Ψ|Ψ〉)−1〈Ψ| projects onto the space orthogonal to |Ψ〉. Using the
same reasoning as above, this is equivalent to

〈δΨ|Qid/dt−H(t)|Ψ〉 = 0. (5.59)

〈δΨ|id/dt−H(t)|Ψ〉 = 0. (5.60)

In practice, presentation of |Ψ〉 in some fixed basis, say,

|Ψ〉 =
∞∑

i=1

bi|i〉 (5.61)

we can represent all possible variations in the form

|δΨ〉 =
∞∑

i=1

δbi|i〉. (5.62)

The Dirac-Frenkel variational principle then reads

∑

i

δb∗i 〈i|id/dt−H(t)|Ψ〉 = 0. (5.63)

The meaning of the Dirac-Frenkel principle is as follows: assume you try to solve the
TDSE in some space spanned by the basis {|i〉}, which may be the space where the exact
solution is located, or some reduced space, say, a finite-dimensional approximation to the
Hilbert space. Let |e〉 be a possible error in fulfilling the equation

|e〉 = [id/dt−H(t)](|i〉bi) (5.64)

then the Dirac-Frenkel principle says, that this error should be outside the space of our
possible solutions

〈δΨ|e〉 = 0 ∀δΨ ∈ H. (5.65)



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

5.4. A CRASH COURSE IN VARIATIONAL CALCULUS 41

5.4.3 Constraints on the allowed variations

If, as in our case of the SFA ansatz, the bi are subjected to some constraint of the general
form f(~b) = 0, a variation under that constraint can be implemented by the method of
Lagrange multipliers, which means that

∑

k

δb∗k〈k|id/dt−H(t)|Ψ〉+ λδf(~b) = 0, (5.66)

for some Lagrange multiplier λ which is determined by substituting into the constraint.

5.4.4 Alternative derivation of the SFA

Time-dependent perturbation theory

Time-dependent perturbation theory relies on the simple mathematical identity

Dyson equation

U(t, t0)Ψ(t0) = U0(t, t0)Ψ(t0) + i

∫ t

t0

dt′U(t, t′)V (t′)U0(t
′, t0)Ψ(t0) (5.67)

with the (atomic) ground state as initial state Ψ(t0) with

d

dt′
U0(t, t

′) = iU0(t, t
′)H0

d

dt′
U(t′, t0) = −i[H0 + V (t)]U(t′, t0) (5.68)

Note that V (t), in general, does not commute with U0(t, t
′). For our problem, set Set

H0 = −∆/2− 1/r and V (t) = −~E(t) · ~r.
The strong field approximation results by replacing the full propagator under the

integral with the free propagator in the field (Volkov propagator)

U(t, t′) → UV (t, t
′) =

∫

d3k |~k, t〉〈~k, t′| (5.69)

=

∫

d3k ei[
~k− ~A(t)]·~re−i

∫ t
t′

1
2 [~k− ~A(τ)]

2
dτ

∫

d(3)r′ e−i[~k− ~A(t)]·~r′(·) (5.70)

which leads directly to the SFA.

5.4.5 A comment on gauges

The Dyson-type derivation is much more compact, but does not expose as clearly the
main physical idea of SFA: assume the main part of the wave remains in the field free
ground state. Anything that is not in the ground state, is in a free (Volkov) state, which
is more clearly exposed in the first, more complicated derivation.

The Dyson-type derivation of the SFA may be responsible for much of the confusion
concerning which gauge is the right gauge to use: we may write the Volkov propagator
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in either gauge. However, by doing so, we change our physical picture. In velocity gauge,
we do not assume that the system remains mostly in the field free ground state. Rather,
the also the bound electron experiences a time dependent boost (change of momentum).
However, this possibly quite violently shaken bound electron is quite unphysical. In
“reality”, it just would not remain bound. . .
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High harmonic generation

Idea: an electron is detached and accelerated by the field and recombines with the atom;
the resulting photon energy may be higher than the original one.

6.1 The classical model

recollision condition

0 = z(t0)− z(t1) =

∫ t1

t0

v(t)dt = −
∫ t1

t0

dt

∫ t

t0

E(t′)dt′. (6.1)

With the condition that ż(t0) = 0 we get:

A(t0)(t1 − t0) =

∫ t1

t0

dtA(t). (6.2)

This is the recollision condition.

Recollision energy

ż2

2
=

[A(t1)− A(t0)]
2

2
. (6.3)

The maximal difference is 2A0, but that cannot be reached, as it would require release at
maximum positive A and recollision at maximal negative A. For such points the recollision
condition cannot be met.

Numerically determine t0 and t1:

ωt0 ≈ −0.45× 2π, (6.4)

ωt1 ≈ 0.2× 2π. (6.5)

For these times, the recollision energy is

1

2
| cos(−0.9π)− cos(0.4π)|2A2

0 = 1.585
A2

0

2
= 3.17Up. (6.6)

43
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Figure 6.1: recollision condition, graphical solution of Eq. (6.2). The straight lines con-

necting release times t
(i)
i with recollision time tc have slopes A(ti). recollisions occur,

where the straight lines intersect with the integral over A(t). A given tc is reached from

several different t
(i)
i (dot-dashed and solid lines). The birth time t

(1)
i leads to maximum

recollision energy. Electrons released slightly before and after t
(1)
i re-collide later and ear-

lier, respectively, with lower recollision energies (“long” and “short” trajectories, dashed
lines).

Harmonic cutoff frequency ωcutoff

The maximal photon energy that can be released at recollision is the sum of kinetic
recollision energy and the binding energy of the atom

ωcutoff = |E0|+ 3.17Up.

Why only harmonics, i.e. multiples of the fundamental frequency? — arise in long
pulses, i.e. where the recollision process is periodically repeated at period 2π/ω (even and
odd harmonics), or, if positive and negative half-cycles have generate the same process,
at period π/ω (only odd harmonics).

Long and short trajectories

All energies, except for the maximal energy, are produced twice during a single half-cycles,
see Fig. 6.1. At the same energy, later release times lead to earlier recollision ⇒short
trajectory, earlier release times ⇒long trajectory. This matters for phase-matching (see
also Figure 7.1 ).

6.2 A quantum calculation

We need to know the response of an atom to the field. Dipole part of the polarization
of an atom = probability distribution of the electron × distance of the electron from the
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Figure 6.2: (Numerical simulation) The dipole response P (t) of an atom to a strong few-
cycle pulse. No clear structures are discernable. System parameters: hydrogen atom,
laser pulse intensity 4× 1014W/cm2, duration 5 fs FWHM, wave length 800 nm.

Figure 6.3: (Numerical simulation) Harmonic spectrum h(ω) derived from the dipole
response in figure 6.2 by Eq. (6.8). Plateau and cutoff can be well distinguished. The
cutoff is smooth, but in the plateau no regularities can be discerned.

nucleus:
~Pd(t) =

∫

d~r|Ψ(~r, t)|2~r = 〈Ψ(t)|~r|Ψ(t)〉 (6.7)

Harmonic spectrum

The acceleration of the polarization is the source of new radiation ∝ P̈ (t), the “harmonic”
radiation (if multiples of the fundamental).

Obtain Ψ(t) by numerically solving the TDSE. The harmonic response is proportional
to the Fourier transform

~h(ω) = (2π)−1/2

∫

dteiωt ~̈P (t) = −(2π)−1/2ω2

∫

dteiωt ~P (t) (6.8)

Time-frequency analysis of P̈ (t)

Slide a window function over the signal and Fourier transform. For a time-frequence
power spectrum, take the modulus squared:

H(ω, t) = |F [P̈ (t′)e−(t−t′)2/T 2

]| (6.9)
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Figure 6.4: Time-frequency analysis of the the dipole response Fig. 6.2. The lower panel
shows the numerically calculated dipole response. The time-frequency analysis of the
signal obtained by Fourier-transforming with a Gaussian window function is given in
the upper panel. Solid lines indicate the recombination energies obtained by the classical
model. Photons with energies∼ 120 eV are only emitted during a few hundred attoseconds
after t = 0. The total harmonic spectrum is shown to the right.

For desired resolution starting from ∼20th harmonic a good choice for the window
function T = 0.05× 2π/ωlaser

⇒ resolve only harmonics Nωlaser, N
<∼ 20

Looking at figure 6.4 we conclude
The recollision model captures all essential physical processes of HHG

6.3 The Lewenstein model

[Lewenstein et al., PRA 49, 2117 (1994)]

Ψ(~r, t) in Strong Field Approximation (SFA):

|Ψ〉 = |0〉+
∫

d~kb(~k, t)|~k, t〉, (6.10)

and the dipole moment

〈Ψ|~r|Ψ〉 = 〈0|~r|0〉
︸ ︷︷ ︸

=0: symmetry

+

∫

d~k〈0|~r|~k〉b(~k, t) + h.c.+

∫

d~k

∫

d~k′b∗b〈~k′|~r|~k〉
︸ ︷︷ ︸

neglect

, (6.11)

~P (t) ≈ +2Re
∫

d~k〈0|~r|~k〉b(~k, t).
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More explicitly (restrict field to z-direction ⇒ (~P ) is in z-direction only.

Pz = 2Re
∫

d~k

∫ t

−∞

dt′ eiE0td∗z[
~k − ~A(t)]

︸ ︷︷ ︸

(3) recombination

e
i
2

∫ t
t′
[~k− ~A(τ)]2dτ

︸ ︷︷ ︸

(2) free propagation

e−iE0t′Ez(t′)dz[~k − ~A(t′)]
︸ ︷︷ ︸

(1) ionization

. (6.12)

3-step model: (tunnel-)ionization, propagation, recombination

Integrals by the stationary phase method

(2) is a rapidly oscillating phase. ⇒ the dominant contributions come from the range of
minimal change of the phase

“stationary phase”

Math: the stationary phase method

Assume you have an integral of the general form

I[g, φ] =

∫ ∞

−∞

dtg(t)eiφ(t). (6.13)

In the case φ(t) = ωt we obtain just the value of the Fourier transform at the frequency
ω. Now let us assume that we have something like the usual separation like in a laser
pulse into an “envelope” g(t) and a “carrier” eωt, where the envelope is assumed to be
slowly varying compared to the oscillations of the carrier (cf. Fig. 6.5(a)). Let us further
assume that the oscillation period is not constant, but varies in time, and that there
is a time ts where it even reaches zero, i.e. φ′(t) = 0|t=ts (cf. Fig. 6.5(b)). The most
important contribution to the integral comes from area around the stationary point ts.
Let us expand the phase around the stationary point ts in the form

φ(t) = φ(ts) + φ′(ts)
︸ ︷︷ ︸

=0

(t− ts) +
φ′′(ts)

2
(t− ts)

2 +O(t− ts)
3 (6.14)

Keeping only the terms quadratic in ts and neglecting the t-dependence of the envelope
g(t) in the region around ts we obtain the approximate integral

I[g, φ] ≈= g(ts)e
iφ(ts)

∫ ∞

−∞

e
φ′′(ts)

2
(t−ts)2dt, (6.15)

which leads to

I[g, φ] ≈=

√
π

|t− ts|
eiπ/4g(ts)e

iφ(ts) (6.16)
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Figure 6.5: Stationary phase integration.

6.3.1 Stationary phase integration over ~k

~∇k

∫ t

t′
[~k − ~A(τ)]2dτ

!
= 0 = 2

∫ t

t′

~k − ~A(τ)dτ. (6.17)

For given t, t′ the dominant contribution to the integral comes from momentum

~k(t, t′) :=
1

t− t′

∫ t

t′

~A(τ)dτ ≃ ~A(τ)|τ∈[t, t′] . (6.18)

This is just the condition that an electron, which is released at time t′ from position 0 with
a canonical momentum ~k, returns to that position at time t. For that we remember that
the canonical momentum ~k is constant in velocity gauge, and that the physical momentum
is given by

~v(τ) = [~k − ~A(τ)]/m. (6.19)

The condition
∫ t

t′
~v(τ)dτ is equivalent to Eq. (6.18). In particular, with the initial condition

~v(t′) = 0 we have ~k = ~A(t′) and we recover our classical recollision condition
∫
~A(τ)dτ =

~A(t′)(t′ − t) = 0 (c.f. Fig. 6.1). However, we have not yet derived this initial condition
from our SFA Schrödinger equation.

Integrate near k(t, t′)

~k = ~k(t, t′) + ~q (6.20)
∫

dτ [~k − ~A(τ)]2 =

∫

dτ [~k(t, t′)− ~A(τ)]2 + 2~q

∫

dτ [~k(t, t′)− ~A(τ)]
︸ ︷︷ ︸

=0

+(t− t′)~q2 (6.21)

∫

d~kd∗z[k − A(t)]e−
i
2

∫ t
t′
[k+ ~A(τ)]2dτe−iE0t′dz[~k − ~A(t′)]

≈
∫

d~qd∗z[
~k − ~A(t)]e−

i
2

∫ t
t′
[~k(t,t′)+~q− ~A(τ)]2dτe−iE0t′dz[~k − ~A(t′)]

= d∗z[
~k − ~A(t)]e−

i
2

∫ t
t′
[~k(t,t′)− ~A(τ)]2dτe−iE0t′dz[~k − ~A(t′)]

∫

d~qe−
i
2
(t−t′)~q2
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For this derivation, at one point we have neglected the ~q dependence of the dipole matrix
elements

dz[k − A(t)] = dz[k(t, t
′) + q − A(t)] ≈ dz[k(t, t

′)− A(t)]. (6.22)

This implies that the element varies slowly in the surrounding of the recollision momentum
k(t, t′).

Performing the remaining integral over ~q, we obtain

A “diffusion” term
∫

d~qe−
i
2
(t−t′)~q2 =

(
2π

t− t′

)3/2

(6.23)

Using (6.23) we finally complete the saddle point integration over ~k:

=

∫

dt′
(

2π

t− t′

)3/2

e−i
∫ t
t′

1
2
[~k(t,t′)−A(τ)]2dτ−iE0(t−t′)E(t)d∗z[~k − ~A(t)]dz[~k − ~A(t′)] (6.24)

Up to an attenuation by diffusion only the
classical paths contribute to the integrals

6.3.2 Integration over t′

Again we can assume that the main contribution to the integral comes from the point
where the phase changes the least. The stationary phase condition with respect to t′ reads

∂

∂t′

∫ t

t′
− i

2
[~k(t, t′)− A(τ)]2dτ − iE0(t− t′) = 0 (6.25)

or
1

2
[~k(t, t′)− A(t′)]2 = E0 (6.26)

Note that this condition can never be fulfilled for real t′ as E0 < 0. However, it can be
fulfilled if we analytically continue our integrand into the complex plane of t. This is
possible, if A(τ) and d are “sufficiently” analytic.

Problem

Using the explicit form of the hydrogen dipole transition matrix element Eq. (5.46) with
the hydrogen ground state energy 2E0 = −1 we find

d(k − A) ∝
~k − ~A

[−2E0 + (~k − ~A)2]3
. (6.27)

Our dipole matrix elements are singular at the stationary phase point! The function
in our integrand does not have the form of (smooth)×(rapidly oscillation), but rather
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(singular)×(rapidly oscillation). Still it is fair to assume that the dominant contribution
comes from that point, but one must be careful when evaluating the integral.

The singularity is not a coincidence: it is connected to the fact that there is a bound
state in the field free case exactly at the (negative) energy that also shows up in the
exponent. It will therefore be there in any case.

One can, in principle, work around those problems by performing the integrals over
the function ’exponential × singularity’ and obtain a solution. However, let us look at
the meaning of the integral over t′: it is the same type of integral as (5.36), the amplitude
of ionization. As mentioned there, there is a serious approximation in this amplitude by
neglecting V⊥, which gives incorrect ionization yields.

A factorization

In [M.Yu. Ivanov, PRA 54, 742 (1996)] the following form of the integral is derived (using
saddle point integration)

P (t) =
∑

tb

1√
i
aion(tb)apr(tb, t)arec(t) + h.c. (6.28)

tb “birth time”, i.e. the moment when the electron is detached. If we want to recol-
lide an electron at time t, we get the corresponding birth time as solution of the
recollision condition (6.2):

A(tb) =
1

t− tb

∫ t

tb

dt′A(t′) =: k(t, tb). (6.29)

This equation may have several solutions, hence the sum in (6.28).

aion (square root) of the static field ionization rate at time tb

=

√

dn(t)

dt
(6.30)

for small depletion ≈
√

Γ(E(t))

apr the free propagation along classical trajectories (E0 = ground state energy)

=

(
2π

t− tb

)3/2
(−2E0)

1/4

E(tb)
exp

[

− i

2

(∫ t

tb

dt′[k(t, tb)− A(t′)]2
)

+ iE0(t− tb)

]

(6.31)

arec dipole transition to the ground state at t

= d∗[~k(t, tb)− ~A(t)] (6.32)

NOTE: From the saddle point analysis, one obtains dn/dt in strong field approxima-
tion. Due to the approximation V⊥ = 0, this rate is incorrect. An obvious correction of
the formula above is to use the exact (e.g. ADK or numerical) Γ(E(t)).
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6.3.3 Harmonic spectrum

[V.S. Yakovlev, PhD thesis]
aion and arec both are slowly varying functions of t. Rapid oscillations come from the

phase

exp

[

−i1
2

∫ t

tb

dt′[k(t, tb)− A(t′)]2 + iE0(t− tb)

]

≈ exp [−iω(tb, t)t] , (6.33)

where

ω(tb, t) =
d

dt

[
1

2

∫ t

tb

dt′[k(t, tb)− A(t′)]2 − E0(t− tb)

]

=
1

2
[k(t, tb)− A(t)]2 − E0 −

1

2
[k(t, tb)− A(tb)]

2

︸ ︷︷ ︸

=0:~v(tb)=0

dtb(t)

dt
(6.34)

+
1

2

∫ t

tb

dt′
d

dt
[k(t, tb)− A(t′)]2

︸ ︷︷ ︸

=0 stat phase k(t,tb)

(6.35)

−1

2

∫ t

tb

d

dtb
[k(t, tb)− A(t′)]2

︸ ︷︷ ︸

=0: stat phase k(t,tb)

dtb(t)

dt
+ E0

dtb(t)

dt
(6.36)

=
1

2
[k(t, tb)− A(t)]2 − E0 +

dtb
dt
E0. (6.37)

NOTE

(1) ∂tk(t, tb) does not contribute (because of the stationary phase condition)

(2) we also use k(t, tb)− A(tb) = 0, i.e. initial velocity = 0

tb(t):

A(tb)(t− tb) =

∫ t

tb

A(τ)dτ. (6.38)

∂/∂t:

∂A

∂tb

∂tb
∂t

(t− tb) + A(tb)(1−
∂tb
∂t

) = A(t)− ∂tb
∂t

+ A(tb), (6.39)

from which we obtain
∂tb
∂t

= −A(t)− A(tb)

E(tb)(t− tb)
, (6.40)

ω(tb, t) =
1

2
[k(t, tb)
︸ ︷︷ ︸

≈A(tb)

+A(t)]2 − E0[1 +
A(t)− A(tb)

E(tb)(t− tb)
︸ ︷︷ ︸

≈0.4

]. (6.41)
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The approximate value of 0.4 for the last term is a numerical finding that holds in the
typical range of λ = 800nm and for harmonic energies near and below 100 eV. Under
different conditions it needs to be re-calculated.

Harmonic energies as a function of time

ω(tb, t) =
[A(tb)− A(t)]2

2
− 1.4E0. (6.42)

Size of the quantum correction to tb

In the derivation above, we use our classical reasoning ~v(t
(cl)
b ) = 0 = k(t

(cl)
b , t) − A(tb),

from which we obtain a classical birth time . The correction shows, to which extend this
fails: if instead we were to use the saddle point birth time with the condition

1

2
[k(t

(sd)
b , t)− A(t

(sd)
b )]2 − E0 = 0, (6.43)

no correction term would appear, but t
(sd)
b 6= t

(cl)
b .
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Pulse propagation

7.0.4 Phase matching of long and short trajectories

The Gaussian beam

E(r, z) = E0
w0

w(z)
exp

( −r2
w2(z)

)

exp

(

−ikz − ik
r2

2R(z)
+ iζ(z)

)

. (7.1)

Here we have use the beam waist

w(z) = w0

√

1 +

(
z

z0

)2

(7.2)

and the Rayleigh range (of depth of focus)

z0 =
πw2

0

λ
(7.3)

Accross the focus, the phase of the driver pulse changes by the purely geometrical Guoy-
phase

ζ(z) = arctan

(
z

z0

)

(7.4)

with an overall phase change of π. This phase change corresponds to a flipover of the
electrical field and has its correspondence in wave-optics as the crossing of two optical
rays in the focus, where up and down is interchanged.

In turn, the phase of harmonic generation is determined by the time (more precise the
action integral accumulated) between electron emission an recollision. These times vary
with intensity: for fixed frequency, the short trajectories become shorter with increasing
pulse intensity, while the long trajectories become longer (cf. Fig. 7.1).

7.0.5 First order propagation equation

The following wave-equation is a direct consequence of Maxwell’s equations in a polariz-
able medium:

[

∂2z +∆⊥ − 1

c2
∂2t

]

E(~r, t) = 1

ǫ0c2
∂2t [PL(~r, t) + PNL(~r, t)] . (7.5)
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Figure 7.1: Variation of the long and short trajectories with laser intensity at a given
re-collision energy (vertical displacement of the arrows). Withincreasing intensity, long
trajectories start earlier and recollied later. For short trajectories it is the reverse

We denote the most general linear part of the polarization response as

PL(~r, t) =

∫ t

−∞

χ(1)(t′)E(t− t′)dt′ (7.6)

and separate it from the rest, the non-linear polarization PNL. Here ∆⊥ = ∂2x + ∂2y As
a simplifying assumption we assumed that the response does not change polariation and
we have dropped the vector signs over ~E and ~P . Fourier transform with respect to time
leads to the full (2nd order) propagation equation in frequency space:

[
∂2z +∆⊥ + k2(ω)

]
E(~r, ω) = ω2

ǫ0c2
F [PNL(~r, t)] (7.7)

For notational simplicity, we distingush E(~r, t) and its Fourier transform only E(~r, ω) only
the different arguments t and ω. By k(ω) we denote the linear dispersion.

Note: scalar equations for E ; i.e. we assume no change of polarization. This is OK for a
gently focussed beam in a (nearly) isotropic medium as a gas jet

Defining E = e−ik·zŨ and inserting this in the above propagation equation, we obtain
the following equation for the envelope Ũ :

[
∂2z + 2ik∂z +∆⊥

]
Ũ =

ω2

ǫ0c2
exp[−ik(ω)z]F [PNL(~r, t)] (7.8)

7.0.6 Slowly evolving wave approximation

Neglect ∂2z Ũ : admissible when the pulse changes little during propagation over one wave
length.
This condition can be reformulated as follows:
Change coordinates to a moving frame of reference

(t, z) −→ (τ, ξ) = (t− z/v0, z) (7.9)
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∂ξE ≪ kE (7.10)

Back to the field E(ω):
[

∂z − ik(ω)− i

2k(ω)
∆⊥

]

E(ω) = −i ω

2ǫ0n(ω)c
F [PNL] (7.11)

n(ω) = k(ω)× (c/ω)

7.0.7 Non-linear polarization PNL

High frequency response =⇒ high harmonic generation
Low frequency response: dominated by ionization and free electrons

Total free electrons

ne(t) = natoms

(

1− exp

[

−
∫ t

−∞

Γ(E(t′))dt′
])

(7.12)

Polarization

~PNL(t, ~r) = ne(t, ~r)~r (7.13)

Time-derivative

d

dt
~PNL = ne(t, ~r)~̇r + ∂tne(t, ~r)~r ≈ ne(t, ~r)~̇r + ∂tne(t, ~r)z0~ez (7.14)

(Classical) point of electron release ~r0:

z0 = − E0

E(t) , x0 = y0 = 0.

First term is the usual free electron response, second term is the change of electron density
due to ionization; the second term becomes important, when there is significant ionization
during a single laser cycle.
Note: It is assumed the the change of the electron denstity is strongly dominated by the
release of electrons at the point (0, 0, z0).

Second derivative:

d2

dt2
~PNL = ne(t, ~r)~̈r + ∂tne(t, ~r)~̇r − E0

d

dt
[
∂tne(t, ~r)

E(t) ]~ez (7.15)

Note: ∂tn is 6= 0 only at the point of electron release, but at that point ~̇r ≈ 0 ⇒
∂tne(t, ~r)~̇r ≈ 0, since the initial velocity of a released electron is ≈ 0.
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Back to first derivative (~̈r = −E):

d/dtPNL = −
∫ t

dt′ne(t
′, ~r)E(t′)− E0

∂tne(t, ~r)

E(t) (7.16)

Approximation:
n(ω) ≈ 1, k(ω) ≈ ω/c (7.17)

[

∂z − i
ω

c
− ic

2ω
∆⊥

]

E(ω) = i
1

2ǫ0c
F [d/dtPNL] (7.18)

Back-fourier transform:
[

∂z +
1

c
∂t

]

E =
c

2
∇2

⊥

∫ t

−∞

dt′E − e2

2ǫ0c

∫ t

−∞

dt′neE − E0

2ǫ0c

∂tne

E (7.19)

i

ω
→

∫ t

−∞

dt′

−iω → ∂t

7.0.8 Separation of fundamental and harmonic field

When the harmonic intensity remains a small fraction of the original laser intensity, the
propagation equation can be separated into two parts, one describing the propagation of
the laser pulse with the strongly non–linear response of the medium and a second one,
where the non–linear laser pulse acts as a source of harmonic radiation, which by itself
does not interact non–linearly with the medium. The total electric field is split as follows

E = El + Eh (7.20)

What results are the two coupled equations

∂ξEl(ξ, τ) = (c/2)∇2
⊥

∫ t

−∞

dτ ′El(ξ, τ ′)−
e2

2ǫ0c

∫ τ

−∞

neEl(ξ, τ ′)dτ ′

− E0

2ǫ0c

∂τne(ξ, τ)

El(ξ, τ)
− ζ(1)

c
∂τ (1− ne(ξ, τ)) El(ξ, τ), (7.21)

where the nonlinear polarization is written in the simple form derived above and for the
harmonic electric field Eh,

(∂ξ + αh) Eh(ξ, τ)− (c/2)∇2
⊥

∫ t

−∞

dτ ′Eh(ξ, τ ′) =
−1

2ǫ0c
∂τPh[El(ξ, τ)] + c.c.. (7.22)

For computational convenience we have written the equations in a moving frame of ref-
erence (z, t) → (ξ = z, τ = t − z/c). Absorption of the harmonics by the medium is
described by the absorption coefficient αh. The term containing ζ(1) is a linear response
term of the neutral atoms that was neglected in the derivation above.
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Photoionization in a laser pulse

For longer pulses and a range of characteristic parameters the integral (5.36) can be
performed explicitly with the help of expansions into Bessel functions. This will allow
us to derive the basic properties of photoelectron spectra in an alternative quantum
mechanical context. It shows where and under which conditions peaks in the electron
spectra appear separated by multiples of the fundamental laser frequency. This peak
structure is popularly attributed to the discrete nature of “photons”. However, it has no
relation to the particle nature of light, it only reflects the periodicity of the field. Peaks
in the electrons spectra are due to interferences due to the wave nature of electrons.

The scheme also allows to give a precise definition of the Keldysh parameter γ, which
separates the regime where ionization is by multiphoton transitions from the regime of
tunnel ionization.

8.1 Expansion into Bessel functions

We start from

b(~k, t) =

∫ t

−∞

dt′eiΦ(~k,t′)e−iE0t′ ~E · ~d[~k − ~A(t′)] (8.1)

with the Volkov phase

Φ(~k, t′) =

∫ t′

0

1

2
[~k − ~A(τ)]2 =

1

2
k2t′ − ~k ·

∫ t′

0

dτ ~A(τ) +
1

2

∫ t′

0

dτ ~A(τ)2. (8.2)

We characterize a long pulse by the property

Slowly varying envelope

~A(t) = ~A0(t) sinωt, |∂t ~A0/ω| ≪ | ~A0|, (8.3)

i.e. the envelope varies slowly on the scale of a single field oscillation. Under this condition
the following approximations hold:

~E(t) ≈ −∂t ~A(t) ≈ ~E0(t) cosωt, ~E0(t) := − ~A0(t)ω (8.4)

57



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

58 CHAPTER 8. PHOTOIONIZATION IN A LASER PULSE

∫ t′

0

dτ ~A(τ) ≈ −
~A0(t

′)

ω
cosωt′ (8.5)

For the moment let us further assume that we are only interested in larger momenta

|~k| ≫ | ~A| (8.6)

which allow the simplifying approximation

1

2
[~k − ~A]2 ≈ 1

2
k2 − ~k · ~A. (8.7)

This approximation is only technical and will be removed below. Further we assume that
the dipole matrix element is nearly constant over the momentum ranges covered by ~A(t)

~d(~k − ~A(t)) ≈ ~d(~k). (8.8)

We obtain

b(~k, t) ≈
∫ t

−∞

dt′ei
1
2
k2t′+~k·

∫ t′

0 dτ ~A(τ)e−iE0t′ ~E · ~d(~k) (8.9)

The integral over τ gives approximately, using (8.3)

∫ t′

0

dτ
[

k2/2 + ~k · ~A(τ)
]

≈ k2

2
t′ +

~k · ~A0(t
′)

ω
cosωt′, (8.10)

which leads to

=

∫ t

−∞

dt′ei
1
2
k2t′+i

~k· ~A0(t
′)

ω
cosωt′e−iE0t′

1

2

[

eiωt
′

+ e−iωt′
]

~E0(t′) · ~d(~k) (8.11)

Now we use the expansion into Bessel functions

eiz cosωt =
∞∑

n=−∞

inJn(z)e
inωt (8.12)

to write (8.9) as a sum over Bessel functions

=
∑

s=±1

∞∑

n=−∞

∫ t

−∞

dt′eit
′[ 12k2−E0−(n+s)ω]inJn

(
~k · ~A0(t

′)

ω

)

1

2
~E0(t′) · ~d(~k) (8.13)

8.1.1 Single photon ionization
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For single photon ionization we need rather high photon energies on the scale ω ∼ 1.
Even at large laser intensities (e.g. 3 × 1014W/cm2 ∼ 10−2a.u.) this leads to very small
arguments of the Bessel function

~k · ~A0(t
′)

ω
≪ 1. (8.14)

The Bessel functions for small arguments behave like

Jn(z) ≈
zn

2n
1

n!
. (8.15)

Figure 8.1: The Bessel functions (from Wikipedia).

At small arguments only J0 ≈ 1 contributes to the sum (8.13)

≈
∑

s=±1

∫ t

−∞

dt′ eit
′[ 12k2−E0−sω]

︸ ︷︷ ︸

rapidly oscill.

J0

(
~k · ~A0(t

′)

ω

)

︸ ︷︷ ︸

≈1

1

2
~E0(t′) · ~d(~k)
︸ ︷︷ ︸

slow

(8.16)

The t′-dependence of ~E0(t′) is much weaker than the oscillations of the phases exp[it′(k2/2−
E0 − sω)] everywhere except near

1

2
k2−E0
︸︷︷︸

>0

−sω = 0. (8.17)
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What means “near” here depends on the variations of E(t′). Condition (8.17) can only
be fulfilled for s = 1 and we can drop the term s = −1, which leads to

≈
∫ t

−∞

dt′eit
′[ 12k2−E0−ω] 1

2
~E0(t′) · ~d(~k) (8.18)

and finally to the single photon photoionization amplitude

b(k, t = ∞) =
1

2
~̃E(1

2
k2 − E0 − ω) · ~d(~k). (8.19)

The distribution of the electron energies is given as
the Fourier transform of the pulse envelope E0

This is what is the meaning of the frequently heard statement of the kind “the photo
electron pulse is a replica of the XUV pulse”.

8.1.2 Hydrogen

The plane-wave dipole matrix element for the hydrogen ground state is according to
Eq. (5.46).

d(~k) ∝ k

[1 + k2]3
(8.20)

Integrating over 4pi angles and assuming k0 =
√

2(ω − E0) >> 1 one obtains the total
single-photon photoionization yield for Hydrogen as

∫

dϕd cos θk2b2(~k) ∼ k20 × (k−5
0 )2 ∼ ω−4 (8.21)

Ionization rapidly decreases with increasing photon energy

As a rule, inner shell electrons are easier to XUV ionize than valence electrons, as
their photo electron energy k2/2 =

√
ω − Ip is lower.

The physical reason for this behavior is that the photon cannot give momentum to the
electron, it must pick eletrons that already have the momentum. Fast moving electrons,
however, occur only close to the nucleus where their higher kinetic energy is compensated
by a large negative potential energy. The region shrinks with increasing momentum
requirements.

For the same reason, XUV pulses directly probe only what happens very near to the
nucleus. They are blind to what happens in the reginons, where, e.g., chemical binding
happens.

Note:

Near threshold the plane wave dipole matrix element is incorrect. In the limit of k → 0
the correct Coulomb matrix element remains finite, while the plane wave dipole goes to
0. The approximation remains rather poor in the range of k ∼ 1 − 2, which happens to
be the photoelectron momentum range in XUV photoionization with ω = 3.
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Figure 8.2: Plane wave (red) vs. correct Coulomb scattering wave (green) dipole matrix
element squared. Lower and asymptotic energies.

8.2 Laser dressed photo-ionization

(go to RABITT section)

Typical values of ~k · ~A/ω

Krypton

8.2.1 Multi-photon emission, weak fields

The integral is dominated by the rapidly oscillating phases exp{it[k2
2
− E0 − nω]}. Only

momenta ~k contribute, where

k2/2− E0 ≈ nω (8.22)

“n-photon electron emission”
As the left hand side is > 0 and ω is assumed to positive only positive n can fulfill this
condition.

Suppose ω << |E0| and ~k · ~A0/ω << 1. In that case, the strongest contribution comes
from the lowest n that can fulfill the condition (8.22), i.e. n0 > |E0|/ω. The dependence
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on the field strength is

bn0(
~k) ∼

(
~k · ~E0
ω2

)n0

(8.23)

Larger n contribute less by factors (~k · ~A/ω)(n−n0)

Note: near to threshold the approximation of weakly ~k-dependent ~d(~k) usually fails.

The statement above therefore only holds in an approximate sense. In general, the ~k-
dependence of ~d further enhances the lowest energy photons. In addition, for low energy
electrons the approximation of neglecting V⊥ is particularly serious, therefore the formula
above is only qualitatively correct. This can be largely corrected by using more accurate
dipole matrix elements.

8.2.2 Multi-photon emission, strong fields

Suppose the field is strong: ~k · ~A/ω ∼ N . The condition ω < |E0| is not necessary, but
it is usually fulfilled, as otherwise the first condition is hard to meet. Here we cannot
neglect the A2

0-term in the exponent, as A0 may become of the same size or larger than
the k that we look at.

The Volkov phase can be calculated in the approximation of a slowly varying A0 as
above to

1

2

∫ 0

t

dτk2 + 2~k · ~A0 cosωτ + A2
0 cos

2 ωτ ≈ −1

2
t

[

k2 +
1

2
A2

0

]

+
~k · ~A0

ω
sinωt− A2

0

8ω
sin 2ωt,

(8.24)
where we used cos2 ωτ = 1

2
[1 + cos 2ωτ ].

After expansion into Bessel functions we obtain a double sum over integrals with
rapidly oscillating terms

∼
∑

nm

e−it[ 12k2+
1
4
A2

0−ωn−2ωm]Jn(
~k · ~A0

ω
)Jm(

A2
0

8ω
) (8.25)

this does not work !
Now all |n| ≤ |~k· ~A0|

ω
and |m| ≤ A2

0

8ω
contribute comparably much. For larger n and m,

the value of JnJm rapidly drops off. The energy spectrum extends to

1

2
k2 +

1

4
A2

0 − |E0| = ~k · ~A0 +
1

4
A2

0 (8.26)
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When E0 is small compared to ~k · ~A0 this reduces to (~k− ~A)2 ≈ 0 or k = A. The maximal
kinetic energy we see in the spectrum is

k2max

2
=
A2

max

2
= 2Up (8.27)

We have recovered the 2Up cutoff of the classical model !

8.3 Tunneling vs.multi-photon regime

Suppose the field is weak and |E0| > ~k · ~A0. We have the conditions

ωn < ~k · ~A0 (8.28)

and
k2

2
− E0 ≈ nω. (8.29)

From that it follows that

k ≈ A0 ±
√

A2
0 + 2E0 (8.30)

For

A0 < |2E0| (8.31)

there are no real solutions for k. This defines the boundary between “tunneling” and
“multi-photon” regime of photoionization. In the multi-photon regime A0 < |E0| the
arguments of the Bessel functions ~k · ~A0 are in the exponentially decaying part. In the
tunneling regime, the values of the Bessel functions oscillate and are of order O(1).

8.3.1 Keldysh parameter γ

The condition (8.31) can be written in the form

γ =

√

2|E0|
A2

0

=

√

|E0|
2Up

=
ω
√

2|E0|
E0

(8.32)

γ < 1 . . . “tunneling”
γ > 1 . . . “multiphoton”

8.3.2 A popular interpretation of γ

γ ∼ tunneling time τ

optical periodT
(8.33)
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Tunneling time

— figure tunneling length —
Length of the tunnel:

l|E| = |E0|, l =
|E0|
|E| (8.34)

Velocity in the tunnel (?): = velocity in the bound state as obtained by the virial
theorem

v0 =
√

2|E0| (8.35)

Tunnel time:

τ =
l

v0
=

√

|E0|
2

1

E0
(8.36)

Optical period:

T =
2π

ω
(8.37)

It does not quite fit:
τ

T
=

1

4π
γ (8.38)

8.3.3 A closer look at the Keldysh parameter

[L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)]
Computes stationary photo-ionization rates in a CW field. The technique is what we

know today as “strong field approximation”.
We know our amplitudes at some time b(~k, T ) by SFA. The unbound part at T is

Y (T ) =

∫

d(3)k|b(~k, T )|2 (8.39)

If ever a stationary situation is reached, the yield will increase linearly in time. Obviously
that cannot go on forever in reality because of depletion, but remember that we dropped
depletion from our original version of the SFA. If there is any reasionable period of time
where one sees a near linear increase of the yield, we can define a rate

w0 := lim
T→∞

1

T
Y (T ) = lim

T→∞

1

T

∫

dk(3)
∣
∣
∣
∣

∫ T

−∞

dt′e−iΦ(~k,T,t′)−iE0t′ ~E(t′) · ~d[~k − ~A(t′)]

∣
∣
∣
∣

2

. (8.40)

By construction, we have a time-periodic situation (CW field), therefore we can make
a discrete Fourier expansion in the limit T → ∞:

b(~k, T ) =
∞∑

n=−∞

∫ T

0

dtei(
~k2+ ~A2

0/4)t/2−iE0t+inωtLn(~k)
T→∞−→

∞∑

n=−∞

δ(
~k2 + ~A2

0

2
− E0 − nω)Ln(~k)

(8.41)
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The δ-functions are the infinite time limit of our ATI peaks. We also see that they are
almost located where we expect them by the naive photo-ionization diagrams, except for a
correction ~A2

0/2: This is the ponderomotive shift of the threshold, i.e. the photon-electron
energy is decreased by the ponderomotive potential. Do we violate energy conservation?
Is a non-integer number of photons absorbed?

Well, first of all, there are no “photons”, the field is not quantized at all, we have just
made a Fourier transformation. But secondly, no, we do not violate energy conservation
even if we want to think in terms of photons: the energy is by construction in a CW
field. If we gently switch it off, the photo-electron will be accelerated out of the field an
gain exactly the missing energy of the ponderomotive potential ~A2

0(~r, t)/2, where we must
indicat the space-time dependence of the switch-off.

The Fourier components are (for notational simplicity ~E0 = (0, 0, E0), d[. . .] := ~d[. . .]z):

Ln(~k) =
E0
2π

∫ π

−π

dt′ exp

[

i

(

−~k · ~A0

ω
cos(ωt′) +

~A2
0

8ω
sin(2ωt′)− nωt′

)]

cos(ωt′)~d[~k− ~A0 sin(ωt
′)]

(8.42)
We recognize our old friend the Bessel expansion in this integral, at least when we

neglect the term ∝ ~A2
0:

Ln(~k) ≈
E0
2π

∫ π

−π

dt′
∑

m

(−i)mJm(
~k · ~A0

ω
)ei(m−n)ωt′ cos(ωt′)~d[~k − ~A0 sin(ωt

′)] (8.43)

If we neglect the t′-dependence of ~d[. . .], we see that the integral is proportional Jn±1(~k ·
~A0/ω). Note that due to the behaviour Jn(z) ∼ zn starting from small ~k · ~A0/ω, the Bessel

functions vary exponentially with n starting from ~k · ~A0/ω ∼ n. What is the range where
the argument is “small”? We may guess this, as the osciallation period of the Bessels
appears to be approximately independent of n, the initial rise is ∝ n, i.e. the behavior
∝ zn breaks down near arguments z ∼ n.

Remember that k2/2 = nω − |E0|. The transition from the ossillatory, weakly n-

dependent behavior of Jn(~k · ~A0/ω) to a power-law dependence ∼ (~k · ~A0)
n occurs where

kA0 = n0ω and k2/2 = n0ω − |E0| (8.44)

n2ω2

2A2
0

= nω − |E0| (8.45)

0 =
n2ω2

2A2
0

− nω + |E0| (8.46)

(8.47)

Solve for n0; for γ = 1 the discriminant becomes 0; i.e. for γ > 1 all contributions come
from the osccilatore region of the Bessel functions.
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The core of the Keldysh paper is about evaluating that sum. This is not done directly,
but by going back to the original integral before expansion and doing a saddle point
integration. With a few more approximations (probably not serious), one arrives at

w0 = . . . (8.48)

with the Keldysh parameter γ.

γ =

√
−2E0

| ~A0|
=
ω
√
2Ip

E0
=

√

Ip
2Up

(8.49)

There are two limiting cases: for γ ≪ 1 many terms contribute to the sum over the Bessel
functions and a typical tunneling type behavior of the field arises with an exponential
dependence of the rate. In the converse case γ ≫ 1, a multi-photon like behavior ∝ In

arises.

8.3.4 ATI spectra

~k · ~A0(t
′)

ω

<∼ n0 − 1 (8.50)

b(~k, t) =

∫ t

−∞

dt′eiΦ(~k,t′)χ(~k, t′) (8.51)

∑

s=±1

eit
′[E0−sω]1

2
~E0(t′) · ~d(~k) (8.52)

≈
∞∑

n=−∞

Jn

(
~k · ~A0(t

′)

ω

)

χ̃(
1

2
k2 − nω) (8.53)

χ(t) = e−
1
2
Γte−iE0t (8.54)

∫ ∞

0

e−
1
2
Γte−iE0teiωt =

i

E0 − iΓ/2− ω
(8.55)

8.3.5 Angular streaking

Original proposal for the streaking measurements [Constant et al., PRA 1997]
Elliptic polarization: assuming peak emission at peak field (dominated by ellipticity),

assuming free propagation after emission the peak momentum distribution can be pre-
dicted. If peak emission does not occur at peak field, an offset between expected and
measure peak momentum would be observed. Needs correction for Coulomb field.

No serious delay observed.
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But what is measured? In terms of the wave function, the electron is already “outside”
the barrier, the field takes it from there “with no delay”.

Classically, the particle must be inside the barier. If this were the case, indeed it would
pass in “no time”, or, more precisely, in less than 34 as. This, by the way, is just time
time to proceed by 1.5 atomic units, indeed much shorter than the barrier thickness.

Conclusion (surprise): the particle does not travel through a long tunnel.
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Chapter 9

Attosecond measurements

For measuring processes with attosecond duration, we need to be have a measurement
instrument that we can control on an attosecond time scale and we need a process that
ensures an effect of the measurement instrument on the measured phenomenon. For
attosecond XUV pulses, a primary measurement tool would be the pulse itself — an
autocorrelation measurement. However, as discussed, the interaction of XUV pulses with
atoms is weak and higher order processes are difficult to detect. For the characterization
of XUV pulses, the generating IR pulse is the perfect measurement tool: it is rigidly timed
relative to the XUV time structure and delay lines allow precise control of the time delay.
An it can be very strong such that two-photon processes become easily detectable, even
if the XUV interaction is weak.

9.1 The attosecond streak camera

The RABITT method as described above is applicable only for pulse trains, as the spectral
width of the harmonic peak must be smaller than the distance between peaks in order
to be able to distinguish side-band from the original peaks. For single attosecond pulses
this is no longer the case: an isolated pulse of, say, 150 as has a continuous spectrum
throughout its whole spectral width of ∼ 10 eV , which is much larger than 2ωl ∼ 1.5 eV
(for 800 nm laser wave length). In this case, different methods are needed. The most
successful of these methods is the “attosecond streak camera”. Just like RABITT, the
attosecond streak camera uses the cross-correlation of the laser field with the XUV field
during XUV photo-ionization. Its basic physics is best understood in terms of classical
physics.

Suppose an electron, treated as a classical particle, is released from an atom at a time
t with an initial momentum ~pi in the presence of a laser pulse with electric field ~E(t).
Between its release and detection the electron experiences a boost of

∆~p = −
∫ ∞

t

~E(t′)dt′ = ~A(t), (9.1)

69
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where have used ~A(∞) = 0. The momentum observed at the detector is then

~p = ~pi + ~A(t). (9.2)

Incidentally, ~p is the canonical momentum of the electron in velocity gauge, which is
conserved during free propagation in the laser field. General wisdom has it, that a free
electron cannot be accelerated by a laser pulse. Here, the at first sight surprising fact
that a free electron is accelerated by a laser pulse arises, because the electron is set free
during the laser pulse, i.e. it is not free during the whole pulse. If the electron were set
free before the pulse, it would indeed not be accelerated as ~A(−∞) =

∫∞

−∞
~E(t)dt = 0 for

a freely propagating laser pulse.
If electrons are released during an extended period of time the time distribution of

the release process is mapped into a momentum distribution of the measured electrons, as
illustrated in Fig. 9.1 for a linearly polarized streak field with ~pi ‖ ~A(t). This is the basic
principle of the attosecond streaking measurement.

Figure 9.1: Mapping time-distributions into momentum distributions. Electrons are re-
leased between times t0 and t1 with a certain time-dependent intensity profile and constant
initial momentum ~pi. The laser field with vector potential ~A(t) shifts the momenta to

different final momenta ~p = ~pi + ~A(t), depending on the release time t. For clarity, it is

assumed ~p ‖ ~A(t) ∀t.

9.1.1 The experimental setup

9.1.2 Geometric effects in streaking measurements

The principle laid out above for the case ~p ‖ ~A can be readily generalized to other experi-
mental geometries. For example, in the first streaking measurements [5, 4] electrons were
detected perpendicular to the laser polarization direction. As in that case not only the
magnitude of the emitted electron momentum is changed, but also its direction, effects
of the measurement geometry are superimposed on the simple boosting picture explained
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Figure 9.2: Experimental setup for the attosecond streaking measurements. An IR laser
is focused into a gas jet, where it generates a harmonic pulse. IR and harmonic are
accurately time-locked. A filter blocks the laser in the central part of the beam. The
beam is focused by a mirror, whose inner part is movable and carries a multi-layer mirror
designed to filter the high harmonics. Time-delay between IR and XUV is controlled
by the variation of the path length of the two parts of the beam. In the focus of the
beams photoelectrons are produced and detected by time-of-flight (Figure from Drescher
et al.[4]).

above. If one assumes (as in photoionization), a rather well defined initial photoelectron
energy Ei, the momenta of all emitted electrons lie on a sphere in momentum space with
radius

√
2mEi. Streaking shifts this sphere as a whole by ~A(ti), leading to maximum

acceleration in forward direction and maximum deceleration in backward direction. In
the perpendicular direction the effect of the boost is minimal of the order ∼ | ~A(t)|2 if

Ei ≫ | ~A(t)|2. When, as in any experiment, electrons are collected from a finite opening
angle, a geometrical broadening of the detected electron spectrum occurs, even when the
unidirectional spectrum is not broadened. The effect is weakest parallel to the laser polar-
ization and maximal in perpendicular direction (c.f. Fig. 9.3). Provided the measurement
geometry is well known, these geometrical effects can be easily corrected for. We will
therefore disregard all geometrical effects in the further discussion and concentrate on the
case ~p ‖ ~A.
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Figure 9.3: Geometric effects in a streaking measurement. Streaking shifts the circle
corresponding to equal emission energies (light grey) in momentum space by ~A to a circle
of observed momenta (black). Parallel to the laser field polarization, the electron energies
are maximally boosted. In perpendicular direction the boost is much smaller, but when
collecting electrons over a finite angle θ, the momentum spectra experience a purely
geometrical broadening by ∆pg.

9.1.3 Separating laser-ATI from XUV-photoelectrons

The maximum streaking laser field is limited by the requirement that the unavoidable pho-
toionization by the laser (ATI electrons) remains energetically separate from the streaked
XUV photoelectrons. A simple estimate can be made in terms of classical mechanics.

Maximal ATI energy (direct electrons)

PATI =
√

2(2Up) = | ~Amax| (9.3)

Lower edge of the streaked XUV photo-electron spectrum

PX =
√

2(ωXUV − Ip)− | ~Amax| (9.4)

From
PATI < PX (9.5)

it follows

4Up < ωXUV

Note: The problem is smaller for observation direction ⊥ to laser polarization for two
reasons: the momentum shift due to streaking is smaller (cf. Fig. 9.3) and the ATI
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photo-electron momenta perpendicular to laser polarization are smaller.

9.1.4 Measuring the chirp

This simple classical picture of streaking also allows to see, how the chirp (linear) frequency
chirp of the attosecond pulse can be measured. Chirp means that the frequency, e.g.,
increases from red to blue during the pulse. This means that early photoelectrons will
have lower energies than later ones, i.e. the initial momentum becomes time-dependent
~pi(t). Depending on how the laser vector potential changes during the XUV pulse, the
variation of ~pi(t) over the XUV pulse can either be further enhanced or reduced by laser-
field acceleration. By comparing the broadening of the streaked photo-electron spectra
measured with two different IR-XUV time-delays one detects a possible chirp in the pulse.
Note that — as expected by theory — pulses from cutoff harmonics have very little chirp.

Figure 9.4: Detecting chirp in an XUV pulse by making measurements at two differ-
ent time-delays at two subsequent nodes of the vector potential (corresponding to two
subsequent peaks of the laser field). The time-dependence of the initial photo-electron
momentum due to the chirp is indicated by the shorter sloped line, which is equal for
both measurements. Acceleration by the IR field enhances or reduces the initial slope,
leading to smaller or narrower photo-electron spectra.

9.2 Trains of attosecond pulses

Trains of attosecond pulses are generated by long laser pulses. High harmonics are gen-
erated by recollision. In the case of a long laser pulse, the time structure of harmonic
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emission is (nearly) periodic with half the period of the laser field T/2. The period is
T/2, because harmonic emission is equal for negative and positive electric fields.

The power spectrum therefore has sharp (δ-like) peaks that are separated by 2ωl =
2π/(Tl/2). The first peak in this series is the peak at the fundamental frequency ωl, the
further peaks therefore are at odd multiples of ωl.

When harmonic emission is not strictly periodic with Tl/2, additional frequencies may
show up. When the medium is not inversion symmetric, positive and negative fields can
produce different harmonic response. In that case, the period of harmonic emission is Tl
and consequently peaks in the power spectrum are separated by ωl = 2π/Tl.

In anisotropic media even harmonics may be generated

Note: When pulses become very short, the pulse itself may no longer be reflection sym-
metric and therefore “even harmonics”, or, more accurately structures that are not at
multiples of the fundamental frequency may appear.

9.2.1 Relation between time structure and power spectrum

The higher harmonic electric field is

E(t) = Re
∞∑

m>1

eimωlt|a2m|1/2eiϕm (9.6)

The power spectrum |a2m| of the harmonics can be measured easily. For the time
structure we need to know the phases: the phases determine, how the individual terms
in the sum interfere, constructively or destructively (or anything in between). By time
structure we mean the average power in the field, where averaging is over at least one
optical cycle of the lowest frequency involved.

Note: An overall constant phase shift ϕm → ϕm+∆ϕ0 does not change the time structure.

Note: A time-shift t→ t+∆t changes the difference between ϕm and ϕm+1 by

∆ϕm = ϕm+1 − ϕm = ωl∆t (9.7)

That is, a constant phase-shift between harmonics which corresponds to a a phase that
changes linearly with the harmonic number n only shifts the pulse in time, but does not
change its time structure. We conclude:

For the determination of the time structure of the harmonic
radiation we need to know the change of phase differences of
subsequent harmonics, i.e. the second difference of the phase

∆(2)ϕm = ∆ϕm+1 −∆ϕm = ϕm+1 − 2ϕm + ϕm−1 (9.8)



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

9.2. TRAINS OF ATTOSECOND PULSES 75

9.2.2 RABITT — Measurement of ∆ϕm

The acronym “RABITT” stands for “Reconstruction of Attosecond Beating by Inter-
ference of Two-photon Transitions” this acronym was to my knowledge invented by
Harm Muller, but the method was actually proposed by Veniard et al. [17]. The two-
photon transitions in the acronym refer to two-color IR-XUV photoionization, where
an XUV pulse train produces a series of single photon peaks at photo-electron energies
(2m + 1)ωl − Ip and the simultaneously present laser pulse produces side-bands in the
center between the peaks at (2m+1)ωl−Ip±ωl. We will see below, that the amplitude of
the side-bands contains information about the relative phases of the harmonic frequencies.

Laser-dressed photoionization by high harmonics

Figure 9.5: Photo-electron spectrum generated by a high harmonic radiation plus the fun-
damental laser field. Between the photo-ionization peaks corresponding to odd multiples
of the laser frequency ωl extra peaks appear due to two-photon processes.

9.2.3 Laser dressed photoionization

For now, we assume infinite pulse trains of the harmonic radiation, which can be written
as the sum over their spectral components EXUV (t) =

∑

m E2m+1(t) with

E2m+1(t) = E2m+1 cos[(2m+ 1)ωlt+ ϕ2m+1] (9.9)

and a CW laser field

E1(t) = E1 cos[ωlt+ ωl∆t] = E1 cos[ωlt+ ϕ1], (9.10)

whose time delay ∆t relative to the harmonic pulse can be varied.
According to Eq. (5.36), the photo-electron amplitude generated by a train of pulses

composed of odd (q = 2m+ 1) harmonics in a dressing laser field is given by

b(~k) =

∫ ∞

−∞

dte
i
2

∫ t
−∞

{~k+~E1/ωl cos[ωl(τ+∆t)]}2dτ−iE0t
∞∑

m=0

~d · ~E2m+1 cos[(2m+ 1)ωlt+ ϕ2m+1]

(9.11)
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Figure 9.6: Scheme of the IR-XUV two-photon ionization that generates to photo-electron
energies (2m + 1)ωl − Ip. For each such peak, there are 4 alternate paths as indicated.
Interference between these paths makes the process sensitive to the relative phases.

Approximations

• neglect E1 in the dipole transition: We assume that the laser frequency is too low
to generate single-photon transitions and we assume that the laser field is too weak
to cause multi-photon transitions.

• neglect E2m+1/[(2m + 1)ω] in the Volkov phase: E2m+1 ≪ E1 and m >> 1. weaker
than the laser field and its impact is further reduced by the higher frequency that
appears in the denominator: the harmonic vector potential is much smaller . This is
the same approximation that we made when we kept only the Jn=0 terms for single
photon ionization.

Calculation steps

Expand the cos[ωl(t+∆t)]-term of the Volkov phase into Bessel functions
∫ ∞

−∞

dt
∑

m

ei
∫ t
0
~k2/2+~E1/ωl cos[ωl(t+∆t)]dτ−iE0t~d · ~E2m+1 cos[(2m+ 1)ωlt+ ϕ2m+1]

≈
∑

m

∫ ∞

−∞

dt e
i
2

∫ t
−∞

k2dτ−iE0t

∞∑

n=−∞

inJn

(
~k · ~E1
ω2
l

)

ein[ωl(t+∆t−π/2)] × ~d · ~E2m+1
i

2

∑

s=±1

sesi[(2m+1)ωlt+ϕ2m+1].(9.12)

Here we have neglected the terms containing ~E2
1 . We assume that the laser field is weak

after all, i.e. the argument in the Bessel function remains < 1. Then we may keep only
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the lowest contributions from the exponents n = 0,±1:

≈
∫ ∞

−∞

dt
∑

m

1∑

n=−1

∑

s=±1

i

2
Jn

(
~k · ~E1
ω2
l

)

~d · ~E2m+1

×s exp
{
i

2

∫ t

−∞

k2dτ − iE0t+ in[ωl(t+∆t)] + si[(2m+ 1)ωlt+ ϕ2m+1]

}

.

(9.13)

We see again the appearance of rapidly oscillating phases. For Jn=0 these have stationary
points only at the photo-electron energies k2/2 = (2m+1)ωl +E0. The terms Jn=±1 give
contributions to the side-band peaks at k2/2 = 2mωl − E0. To a given side-band peak
2m we have contributions from harmonic 2m + 1 in combination with the Bessel factor
Jn=−1 and from harmonic 2m − 1 with Jn=+1. Keeping only these terms and neglecting
the “counter-rotating” contribution s = 1, we obtain

≈ 1

2

∫ ∞

−∞

dt

[

~d · ~E2m+1

∫ ∞

−∞

dte
i
2

∫ t
−∞

k2dτJ−1

(
~k · ~E1
ω2
l

)

ei[2mωlt+ϕ2m+1−ωl∆t]

−~d · ~E2m−1

∫ ∞

−∞

dte
i
2

∫ t
−∞

k2dτJ1

(
~k · ~E1
ω2
l

)

ei[2mωlt+ϕ2m−1+ωl∆t]

]

(9.14)

Observing that J−1(x) = −J1(x) we obtain the side-band amplitude

b2m(~k) ∝
1

2
J1

(
~k · ~E1
ω2
l

)

[

~d(~k) · ~̃E2m+1(
~k2

2
− E0 − 2nωl)e

i(ϕ2m+1−ωl∆t)

+~d(~k) · ~̃E2m−1(
~k2

2
− E0 − 2nωl)e

i(ϕ2m−1+ωl∆t)
]

(9.15)

The modulus squared of this amplitude, i.e. the height of the side-band peak consists
of a constant term plus a term that oscillates with the delay time ∆t at twice the laser
period:

|b2m|2 ∝ cos(ϕ2m+1 − ϕ2m−1 + 2ωl∆t+ φa(~km)) + const.

Here φa is an “atomic” phase from the ~k-dependence of the dipole element ~d(~k). Its
variation with electron momentum can be determined reliably from theory. The phase-
offset of the beats of subsequent side-band peaks with the laser delay time, gives the
second differences
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Figure 9.7: Beats of the side-band peak amplitudes with the IR-XUV delay time ∆t.
From the offset of the beats of side-bands 2mωl and (2m + 2)ωl and the second phase
differences ∆(2)ϕm can be determined (Figure taken from Paul et al. [11]).

9.2.4 The quantum description of streaking

For low laser intensities we can use the exactly same derivation that has lead us to
Eq. (9.15). The difference is,

(1) we have only a single photoelectron line around the central frequency of the XUV
pulse (2m+ 1)ωl = ωX and

(2) that line is much broader that the laser photon, because the XUV pulse is short
compared to the laser period with a pulse envelope E2m+1 → EX(t).

This reduces the sum (9.13) to

≈
∫ ∞

−∞

dt
1∑

n=−1

i

2
Jn

(
~k · ~E1
ω2
l

)

~d · ~EX(t)

× exp

{
i

2

∫ t

−∞

k2dτ − iE0t+ inωl(t+∆t)− iωXt

}

, (9.16)
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where we have already made the rotating wave approximation for the XUV carrier. Now
taking the integral over time, we obtain as for Eq. (9.15)

b(~k) ∝ J0

(
~k·~E1
ω2
l

)

~d(~k) · ~̃EX(
~k2

2
− E0 − ωX)

+J1

(
~k·~E1
ω2
l

) [

~d(~k) · ~̃EX(
~k2

2
− E0 − ωX − ωl)e

−iωl∆t

+~d(~k) · ~̃EX(
~k2

2
− E0 − ωX + ωl)e

iωl∆t
]

(9.17)

For pulse shorter than the laser optical period, the three Jn-components (n=-1,0,1) that
dominate the effect at lower laser amplitudes overlap and interfere. Interference depends
on the relative phases of the contributions which vary with the time-delay ∆t. Assume we
have at time-delay ∆t = 0 constructive interference of the lower energy component with
the central component but destructive interference at the higher energy component. This
will shift the overall peak to lower energies. At a time-delay ωl∆t = π the situation re-
verses: now we have constructive interference at higher energies and a corresponding shift
of the overall photo-electron peak to higher energies: the streaking shift has happened.

9.2.5 A unified description of attosecond-infrared cross-correlation

Both, the streak-camera and RABITT are based on the same physical process, i.e. on
the modulation of XUV photo-electron spectra by a dressing laser field. They differ only
in the range parameters, where they are applied. In fact, the analysis of both types of
measurements is based on the same theoretical picture, viz. on the SFA (see section 5.3.1).
We have derived Eq. (5.3.1) for the electron spectral amplitude in SFA. The measured
spectra as a function of IR-XUV time delay ∆t are given by modulus squared of the
amplitude

σ(~k,∆t) = |b(~k, t = ∞)|2 =
∣
∣
∣
∣

∫ ∞

−∞

dt′eiΦ(~k,t′, ~AIR)−iE0t′ ~EXUV (t
′ −∆t) · ~d[~k − ~AIR(t

′)]

∣
∣
∣
∣

2

.

(9.18)
Here we have made the same approximations as in section (9.2.2): we have neglected the
influence of the XUV field on the Volkov phase Φ and we have neglected ionization by
the infrared field. In fact, both types of XUV pulse measurements discussed above are
correctly described by this formula.

For the streaking measurement, it is easy to believe that we can extract the IR vector
potential from a series of spectra without knowing much about the XUV pulse. Once we
know the IR field, we can extract XUV pulse duration and chirp from the same data, and
in an iterative procedure both fields can be reconstructed from the same measurement.
Less obviously, the same holds for RABITT. How does this work?

Let us pause for a moment and have a look at this equation: on the left hand side, we
have a function of a 3d continuous vector ~k and the continuous variable ∆t. In an ideal
measurement of the complete electron spectrum, we would have a dense set of data in a
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4-dimensional space. On the right hand side, we have essentially two unknown functions

of time ~EXUV (t) and ~AIR(t). For simplicity, we assume here that the dipole moment
~d(~k) is reliably known from other sources, theory or measurement. It looks like we are
measuring a lot more data than what we need! Imagine, for example, we had two vectors
for a dense set of sampling times ti of values of the XUV EXUV (ti) and infrared EIR(tj)
fields. But we measure a whole matrix of spectral values σ(~kn,∆tl), surely containing a
lot more information than just two vectors.

This redundancy can be exploited to reduce experimental errors. It was noticed in
Ref. [9] that Eq. (9.18) has the general shape of a phase-gate version of the Frequency
Resolved Optical Gating (FROG) technique for measuring short pulses 1. Elaborate codes

and algorithms for the optimal reconstruction of both, the phase gate function ~AIR and
the XUV field EXUV are available for FROG-type measurements [15]

This unites the streaking and RABITT type measurements as extreme cases of the
same single measurement method.

Literature

The basic idea for RABITT was published by Veniard et al. in 1996 [17], it was applied for
the first proof of attosecond time structure in pulse trains by Paul et al. [11]. The name
RABITT “Reconstruction Attosecond harmonica Beating by Interference of Two-photon
Transitions” was invented by H. Muller [10]

The original proposal for the attosecond streak camera was by Constant et al. (1997)
[3]. There it was suggested to use circularly polarized laser fields and observe the angular
distribution of the XUV photoelectrons. The quantum theory was published in 2002 by
Kitzler et al. [7] and Itatani et al. [6].

1Actually, there are two minor differences to the FROG phase gate: (1) the Volkov phase Φ depends

on ~k ·
∫
dt′ ~A(t′) and on

∫
dt′ ~A2(t′), but in most cases the influence of the second term can be neglected;

(2) ~A also appears in the dipole matrix element, again the influence of this can be neglected in the
applications discussed here.
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9.3 HHG from CO2

9.3.1 The physical idea

Lein, M. et al. Role of the intermolecular phase in high harmonic generation. Phys. Rev.
Lett. 88, 183903 (2002).

At fixed internuclear axis, the harmonic generation process at the different centers of
the may lead to interference.

Phase difference of the dipole matrix from two sources separated by ~a, assuming the
wave electronic wave function at both centers is identical.

〈~k|r|φ(~r + ~a)〉 = e−i~k~a〈~k|r|φ(~r)〉 (9.19)

For ~k~a = π destructive interference. Indeed, such a minimum was found!
The story, however, may not always be as simple as it looks here: a full numerical

simulation of H2 does not seem to reproduce the behavior that would be expected for
photo-electron spectra by a similar interference mechanism [Y.V.Vanne, A. Saenz PRA
82, 11404(R), (2010)].

9.3.2 Experimental findings

Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order harmonic
generation from aligned molecules. Nature 435, 470474 (2005).

Vozzi, C. et al. Controlling two-center interference in molecular high harmonic gener-
ation. Phys. Rev. Lett. 95, 153902 (2005).

Boutu, W. et al. Coherent control of attosecond emission from aligned molecules.
Nature Phys. 4, 545549 (2008).

Zhou, X. et al. Molecular recollision interferometry in high harmonic generation.
Phys. Rev. Lett. 100, 073902 (2008).

In hindsight: intensity dependence due to participation of different orbitals, not only
the “highest occupied orbital” (HOMO).

9.3.3 The model

[O. Smirnova et al., Nature 460, 972 (2009)]: the main idea is that not only the least
bound electron may contribute to HHG. As emission depends also on the symmetry of
the orbital, for certain orientations of the molecular axis relative to polarization direction,
deeper bound orbitals may contribute more to HHG then the least bound one.

The model is build basically from the pieces we have learnt: SFA, dipole matrix
elements, quasi-classical propagation. New additions are some quantum chemistry and a
correction for the propagation in the molecular potential.

For the purposes here, we assume the nuclei to be fixed at their positions, which is
OK for the rather heavy C and O nuclei. Even for protons, typical velocities are ∼ 11 fs,
the time-scales decrease linearly with increasing mass.
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In simplest (Hartree-Fock) approximation, we can consider the electronic wave func-
tion as the anti-symmtrized product of single-electron orbitals

Ψn(~r1, . . . ~rN) ≈ Aφ1(~r1) . . . φN−2(~rN−2)φN−1(~rN−1)φN(~rN) (9.20)

For simplicity we will drop in the anti-symmetrization operator A from here on. We
assume here the individual “orbitals” φj to be associated with a ionization potential Ej,
and let the numbering such that ionization potential decreases with j. We call φN the
“highest occupied orbital” (HOMO). Clearly, quasi-static tunneling ionization will prefer
to take the electron from the most weakly bound orbital EN . However, for directions of
the field in some nodal plane of the orbital φN , ionization may be strongly suppressed. In
that case, ionization from the “HOMO-1” φN−1 may compete with or exceed ionization
from φN .

A few notes of caution:

• Quantitatively we need at present to rely on molecular ADK for ionization form an
individual orbital. Compare for this the simple 2d study on molecular ADK and
limitations of its accurcacy.

• The Hartree-Fock picture of electronic structure is a brutal simplification of the
actual electronic structure. It discards all “correlation” of the electrons. The im-
portance correlation for ionization is inknown.

• Any HF wave function will be rather poor at larger distances from the nuclei, as it is
obtained by optimization the energy of the electrons, to which the tails of the wave
function contribute rather little. This holds more generally for wave functions from
quantum chemistry calculations. Technically, quantum chemistry wave fuctions are
based on Gaussians, which have the wrong long-range behavior exp[−ar2] rather
than exp[−br].

• The problems can be partially controlled by using the Dyson orbitals (see below).

A very naiv picture of ionization would be to remove one of the orbitals from the
determinant, thus obtaining the ionic wave functions

Φ(0) = Aφ1(~r1) . . . φN−2(~rN−2)φN−1(~rN−1 (9.21)

Φ(−1) = Aφ1(~r1) . . . φN−2(~rN−2)φN(~rN) (9.22)

Φ(−2) = Aφ1(~r1) . . . φN−1(~rN−1)φN(~rN) (9.23)
... (9.24)

Note that the use of product states for neutral and ion illustrates the idea, but is not
essential at this point.

The states of unbound system we approximate as products of the ionic states with
Volkov states as

Ψscatter ≈ |Φ(−j)〉|~k, t〉 (9.25)
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As before, the plane wave approximation for |~k, t〉 is a serious one. Also, as an additinional
approximation in the multi-particle case, correlation between the bound and scattering
electrons is neglected: the approximation in the multi-electron case is even cruder than
for a single electron.

In the spirit of the SFA and assuming that HOMO and HOMO-1 contribute, the
ansatz for the total wave function in field is

|Ψtotal(t)〉 = c(t)|Ψn〉N +

∫

d(3)k|Φ(0)〉|~k, t〉b(0)(~k, t) + |Φ(−1)〉|~k, t〉b(−1)(~k, t) (9.26)

and using the same reasoning as in the single-electron case we find

b−j(~k, t) =

∫ t

0

dt′ 〈Φ(−j)|〈~k, t|U(t, t′)~E(t′)~rU0(t
′, 0)|Ψn〉 (9.27)

The error that we have made so far is that we use the simple product states (9.25) instead
of the exact scattering states.

The field-free time-evolution is simply

U0(t
′, 0)|Ψn〉 = e−itEn|Ψn〉. (9.28)

We approximate the full time evolution as

U(t, t′) ≈ Ui(t, t
′)⊗ UV (t, t

′) (9.29)

with the ionic time-evolution further simplified as

Ui(t, t
′) ≈

∑

j

|Φ(−j)〉e−i(t−t′)Ej〈Φ(−j)| (9.30)

i.e. we assume that the field does not affect the ionic states and they just evolve according
to their eigenenergies. The unbound electron undergoes a Volkov evolution UV like in the
single electron case.

The important point about this particularly simple ansatz is that the ionic states do
not get mixed by the field. As a result, when we insert the approximations, we obtain

b−j(~k, t) =

∫ t

0

dt′ e−i(En−Ej)(t−t′)e−iΦ(~k,t,t′)〈Φ(−j)|〈~k, t|~r|Ψn〉 (9.31)

The integral of the ionic state with the neutral is

χj(~rN) :=

∫

dr
(3)
1 dr

(3)
N−1

[
Φ(−j)(r1, . . . , ~rN−1)

]
Ψ(~r1, . . . , ~rN−1, ~rN) (9.32)

is the “Dyson orbital”.
In terms of |χj〉 we write

b−j(~k, t) =

∫ t

0

dt′ e−i(∆Ej)(t−t′)e−iΦ(~k,t,t′)〈~k, t|~r|χj〉. (9.33)
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This has exactly the same form as the single-electron SFA!
With these rather severe approximations, our multi-electron dipole response is the sum

of independent responses form the relevant HOMO-j channels. If in zeroth approximation
we assume that this is what happens, then each orbital can be considered an independent
source of high harmonics, where only the few highest occupied orbitals contribute.

If we further use the factors φ instead of the Dyson orbitals χj, the cross-terms do not
contribute, as the φj can be made orthogonal without loss of generality.

9.3.4 Interferences

So we have several sources of high harmonic radiation in the same spot, each giving the
whole spectrum up to ∼ 3.17Up + |Ej|, and each radiating at its own particular phase!
Clearly, the three sources will interfere. Note that all three sources can be considered
point-like on the length scale of the harmonic radiation: the internuclear distance of CO2

is a few 〉A, while we are talking about harmonci wave length on the ∼ 30nm scale.
The phases determine whether the interference is constructive or destructive. If at least

two sources are comparable in strenght, destructive interference an lead to a reduction of
harmonic yield.

We need to compare phases for the same recombination energy

k2j/2− Ej = k2j′/2− Ej′ (9.34)

i.e. for different kj. What determines the relative phases between the contributions

• The phase of re-combination: like the “atomic phase” in RABITT, the continuum-
bound matrix element 〈kj|r|χj〉 has a kj-dependent phase.

• The phase upon ionization. That is tricky: it is not obvious that an electron leaves
from differnt χj with the same phase. Actually, we know from other sources, that
differnt states may have different delays in XUV ionization, so why not in IR ion-
ization? Nothing further is know about that.

• The Volkov phase accumulated: is also kj-dependent!

• The difference of ionic energies Ej −Ej′ , i.e. the relative beating of the ionic states
while they are waiting for the electron to come back.

In addition, phase corrections to the plane wave must be taken into account. In the
so-called eiconal approximation, these are the first corrections indicating deviation of the
scattering solution from the plane wave. A more detailed desription of this correction can
be found in O. Smirnova, M. Spanner and M. Yu. Ivanov, Phys. Rev. A, 77, 033407,
(2008) (EVA- Eikonal Volkov Approximation).

With these basic ingredients, a model was built that can reprodruce the intensity-
dependent shifts of the harmonic minima in CO2.

Possible mixing of the ionic states by the field can also be described instead of using
Ui(t, t

′), let the field mix (but not distort) the ionic states. The effect of the mixing was
reported to be negligible.
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