Status of the Electroweak Standard Model

Jens Erler (IF-UNAM & MITP) Sommerfeld Theory Colloquium LMU Munich, January 15, 2014

Introduction

Introduction

The Weak Mixing Angle

- Introduction
- The Weak Mixing Angle
- Lower Energies

- Introduction
- The Weak Mixing Angle
- Lower Energies
- Parity Violation

- Introduction
- The Weak Mixing Angle
- Lower Energies
- Parity Violation
- Implications for New Physics

- Introduction
- The Weak Mixing Angle
- Lower Energies
- Parity Violation
- Implications for New Physics
- Conclusions

Introduction

(before electroweak symmetry breaking)

Key SM Parameters

• 4 parameters from bosonic sector: g [SU(2)_L], g' [U(1)_Y], μ , λ

$$\mathcal{L}_{\phi} = (D^{\mu}\phi)^{\dagger} D_{\mu}\phi - \mu^{2}\phi^{\dagger}\phi - \frac{\lambda^{2}}{2}(\phi^{\dagger}\phi)^{2}$$

• h / m_{Rb}: $\alpha = g^2 \sin^2 \theta_W / 4\pi (\pm 6.6 \times 10^{-10})$

 $g_e = 2: \alpha \equiv g^2 \sin^2 \theta_W / 4\pi (\pm 8 \times 10^{-13}) \text{ [derived]}$

- PSI: $G_F = 1 / (\sqrt{2} v^2) (\pm 5 \times 10^{-7}) [v = 246.22 \text{ GeV}]$
- $\square LEP I: M_Z = M_W / \cos \theta_W (\pm 2 \times 10^{-5})$
- Tevatron: $M_W \equiv g v/2 (\pm 2 \times 10^{-4})$ [derived]
- Z pole: $\sin^2\theta_W = g'^2/(g^2 + g'^2) (\pm 7 \times 10^{-4})$ [derived]

• LHC: $M_H = \lambda v = \sqrt{(-2 \mu^2) (\pm 3 \times 10^{-3})}$

• LHC / Tevatron:
$$m_t(m_t) = \lambda_t v (\pm 6 \times 10^{-3})$$

I 950s: development of fundamental ideas underlying the SM (Yang-Mills theory, parity violation, V-A, intermediate vector bosons)

- I 950s: development of fundamental ideas underlying the SM (Yang-Mills theory, parity violation, V-A, intermediate vector bosons)
- I 960s: construction of the SM (gauge group, Cabbibo-universality, Higgs mechanism, model of leptons)

- I 950s: development of fundamental ideas underlying the SM (Yang-Mills theory, parity violation, V-A, intermediate vector bosons)
- I 960s: construction of the SM (gauge group, Cabbibo-universality, Higgs mechanism, model of leptons)
- I 970s: discovery of key predictions of the SM (neutral currents, APV, v-scattering, polarized DIS)

- I 950s: development of fundamental ideas underlying the SM (Yang-Mills theory, parity violation, V-A, intermediate vector bosons)
- I 960s: construction of the SM (gauge group, Cabbibo-universality, Higgs mechanism, model of leptons)
- 1970s: discovery of key predictions of the SM (neutral currents, APV, v-scattering, polarized DIS)
- 1980s: establishment of basic structure of the SM (discovery of W & Z, mutually consistent values of $\sin^2\theta_W = g'^2/(g^2 + g'^2)$ from many different processes)

- I 950s: development of fundamental ideas underlying the SM (Yang-Mills theory, parity violation,V-A, intermediate vector bosons)
- I 960s: construction of the SM (gauge group, Cabbibo-universality, Higgs mechanism, model of leptons)
- 1970s: discovery of key predictions of the SM (neutral currents, APV, v-scattering, polarized DIS)
- 1980s: establishment of basic structure of the SM (discovery of W & Z, mutually consistent values of $\sin^2\theta_W = g'^2/(g^2 + g'^2)$ from many different processes)
- 1990s (LEP, SLC): confirmation of the SM at the loop level ⇒ new physics at most a perturbation

- I 950s: development of fundamental ideas underlying the SM (Yang-Mills theory, parity violation,V-A, intermediate vector bosons)
- 1960s: construction of the SM (gauge group, Cabbibo-universality, Higgs mechanism, model of leptons)
- I 970s: discovery of key predictions of the SM (neutral currents, APV, v-scattering, polarized DIS)
- 1980s: establishment of basic structure of the SM (discovery of W & Z, mutually consistent values of $\sin^2\theta_W = g'^2/(g^2 + g'^2)$ from many different processes)
- 1990s (LEP, SLC): confirmation of the SM at the loop level ⇒ new physics at most a perturbation
- 2000s (Tevatron): ultra-high precision in m_t (0.5%) and M_W (2×10⁻⁴) \Rightarrow (most of) new physics seperated by at least a little hierarchy (or else conspiracy or very weak coupling)

- I 950s: development of fundamental ideas underlying the SM (Yang-Mills theory, parity violation,V-A, intermediate vector bosons)
- 1960s: construction of the SM (gauge group, Cabbibo-universality, Higgs mechanism, model of leptons)
- 1970s: discovery of key predictions of the SM (neutral currents, APV, v-scattering, polarized DIS)
- 1980s: establishment of basic structure of the SM (discovery of W & Z, mutually consistent values of $\sin^2\theta_W = g'^2/(g^2 + g'^2)$ from many different processes)
- 1990s (LEP, SLC): confirmation of the SM at the loop level ⇒ new physics at most a perturbation
- 2000s (Tevatron): ultra-high precision in m_t (0.5%) and M_W (2×10⁻⁴) \Rightarrow (most of) new physics seperated by at least a little hierarchy (or else conspiracy or very weak coupling)
- 2010s (LHC, intensity frontier): EW symmetry breaking sector (Higgs & BSM)

• $\sin^2 \theta_W = 0.233 \pm 0.010$ Kim, Langacker, Levine, Williams 1981 minimal SU(5) $\implies \sin^2 \theta_W \leq 0.21$ (2.2 σ smaller) Marciano 1979

• $\sin^2 \theta_W = 0.233 \pm 0.010$ Kim, Langacker, Levine, Williams 1981 minimal SU(5) $\Rightarrow \sin^2 \theta_W \leq 0.21$ (2.2 σ smaller) Marciano 1979 • gauge unification \Rightarrow SUSY; $m_t < 180$ GeV Amaldi et al. 1987

sin²θ_W = 0.233 ± 0.010 Kim, Langacker, Levine, Williams 1981
 minimal SU(5) ⇒ sin²θ_W ≤ 0.21 (2.2 σ smaller) Marciano 1979
 gauge unification ⇒ SUSY; m_t < 180 GeV Amaldi et al. 1987
 N_V = 3 light active neutrinos ALEPH, DELPHI, L3, OPAL (CERN) 1989

• $\sin^2 \theta_W = 0.233 \pm 0.010$ Kim, Langacker, Levine, Williams 1981 minimal SU(5) $\Rightarrow \sin^2 \theta_W \leq 0.21$ (2.2 σ smaller) Marciano 1979 • gauge unification \Rightarrow SUSY; $m_t < 180$ GeV Amaldi et al. 1987 • $N_V = 3$ light active neutrinos ALEPH, DELPHI, L3, OPAL (CERN) 1989 • $m_t = 124^{+20} - 35^{+28} - 15$ GeV ($M_H = 250^{-200} + 750$ GeV) Langacker, Luo 1991 consistent with $m_t = 180 \pm 12$ GeV cDF, DØ (FNAL) 1995

- $\sin^2\theta_W = 0.233 \pm 0.010$ Kim, Langacker, Levine, Williams 1981 minimal SU(5) $\Rightarrow \sin^2\theta_W \leq 0.21$ (2.2 σ smaller) Marciano 1979 • gauge unification \Rightarrow SUSY; $m_t < 180$ GeV Amaldi et al. 1987 • $N_v = 3$ light active neutrinos ALEPH, DELPHI, L3, OPAL (CERN) 1989 • $m_t = 124^{+20} - 35^{+28} - 15$ GeV ($M_H = 250^{-200} + 750$ GeV) Langacker, Luo 1991 consistent with $m_t = 180 \pm 12$ GeV cDF, DØ (FNAL) 1995
- $M_{H} < 730 \text{ GeV}, \alpha_{s}(M_{Z}) = 0.127 \pm 0.005 \text{ JE, Langacker 1995}$

- $\sin^2\theta_W = 0.233 \pm 0.010$ Kim, Langacker, Levine, Williams 1981 minimal SU(5) $\Rightarrow \sin^2\theta_W \leq 0.21$ (2.2 σ smaller) Marciano 1979 • gauge unification \Rightarrow SUSY; $m_t < 180$ GeV Amaldi et al. 1987 • $N_v = 3$ light active neutrinos ALEPH, DELPHI, L3, OPAL (CERN) 1989 • $m_t = 124^{+20}$ -35⁺²⁸-15 GeV (M_H = 250⁻²⁰⁰+750 GeV) Langacker, Luo 1991 consistent with $m_t = 180 \pm 12$ GeV cDF, DØ (FNAL) 1995
- $M_{H} < 730 \text{ GeV}, \alpha_{s}(M_{Z}) = 0.127 \pm 0.005 \text{ JE, Langacker 1995}$
- $M_{H} = 69^{+85}_{-43}$ GeV, $\alpha_{s}(M_{Z}) = 0.1214 \pm 0.0036$ JE, Langacker 1998

- $\sin^2 \theta_{W} = 0.233 \pm 0.010$ Kim, Langacker, Levine, Williams 1981 minimal SU(5) \Rightarrow sin² $\theta_{W} \leq 0.21$ (2.2 σ smaller) Marciano 1979 \odot gauge unification \Rightarrow SUSY; $m_t < 180$ GeV Amaldi et al. 1987 N_V = 3 light active neutrinos ALEPH, DELPHI, L3, OPAL (CERN) 1989 $m_t = 124^{+20} - 35^{+28} - 15 \text{ GeV} (M_H = 250^{-200} + 750 \text{ GeV})$ Langacker, Luo 1991 consistent with $m_t = 180 \pm 12$ GeV cdf, dø (fnal) 1995 $M_{H} < 730 \text{ GeV}, \alpha_{s}(M_{Z}) = 0.127 \pm 0.005 \text{ JE}, Langacker 1995$
- $M_{\rm H} = 69^{+85}_{-43} \text{ GeV}, \alpha_{\rm s}(M_{\rm Z}) = 0.1214 \pm 0.0036 \text{ JE, Langacker 1998}$
- \odot consistent with M_H = 125.6 ± 0.4 GeV ATLAS, CMS (CERN) 2012

M_H from Higgs branching ratios?

M_H from Higgs branching ratios?

Compare with results on coupling strength

ATLAS m _H = 125.5 GeV	-+ σ(stat) σ(sys) σ(theo)	Total uncertainty $\underline{\bullet} \pm 1\sigma$ on μ	
$H \rightarrow \gamma \gamma$ μ = 1.55 ^{+0.3} _{-0.2}	±0.23 ±0.15 ⁸ ±0.15		
Low p_{Tt} $\mu = 1.6^{+0.}_{-0.}$	⁵ ₄ ±0.3		
High p_{Tt} $\mu = 1.7^{+0.}_{-0.}$	⁷ ₆ ±0.5	P1	
2 jet high mass (VBF) $\mu = 1.9_{-0.}^{+0.}$	⁸ ₆ ±0.6		
VH categories $\mu = 1.3^{+1.}_{-1.}$	² ±0.9 ►		
$H \rightarrow ZZ^* \rightarrow 4I$ $\mu = 1.43^{+0.4}_{-0.3}$	±0.33 ±0.17 5 +0 14		
$\begin{array}{ll} \text{VBF+VH-like} \\ \text{categories} \end{array} \mu = 1.2^{+1.}_{-0.} \end{array}$	6 + 1.6 9 - 0.9		
Other $\mu = 1.45^{+0.4}_{-0.3}$	³ ₆ ±0.35		
$H \rightarrow WW^* \rightarrow I_V I_V$ $\mu = 0.99^{+0.3}_{-0.2}$	±0.21 ±0.21 ±0.21 ±0.12		
0+1 jet $\mu = 0.82_{-0.3}^{+0.3}$	³ ₂ ±0.22		
2 jet VBF $\mu = 1.4^{+0.}_{-0.}$	⁷ ₆ ±0.5		
Comb. H →γγ, ZZ* , W μ = 1.33 ^{+0.2} _{-0.1}	/ * ±0.14 1 ±0.15 ⁸ ±0.11		
√s = 7 TeV ∫Ldt = 4.6-4.8 f	_{b-1} 0	1 2 3	
√s = 8 TeV ∫Ldt = 20.7 fb ⁻¹		Signal strength (μ)	

M_H [GeV]

source	M _H	uncertainty
radiative corrections	89	+22 -18
LHC Higgs branching ratios	123.7	2.3
ATLAS direct	125.5	0.6
CMS direct	125.7	0.4
global fit	125.5	0.4

JE, Ayres 2013 PDG 2014

The Weak Mixing Angle $W^{\pm} = (W^{\dagger} \mp i W^{2})/\sqrt{2}$ $Z^{0} = \cos\theta_{W}W^{3} - \sin\theta_{W}B$ $A = \sin\theta_{W}W^{3} + \cos\theta_{W}B$

 $M_W = \frac{1}{2} g v = \cos\theta_W M_Z$

 $\sin^2\theta_W = g'^2/(g^2 + g'^2) = I - M_W^2/M_Z^2$

Renormalization schemes

Many different schemes and definitions. Most commonly used:

- MS-scheme: $\sin^2\theta_W(\mu) = \overline{g'^2}/(\overline{g^2} + \overline{g'^2})$ (theorist's definition)
 - ideal for gauge coupling unifcation (analogous to $\overline{\alpha}_s$ in QCD)
- effective weak mixing angle in terms of vector ($g_V \propto 1 4 Q^f \sin^2 \theta_W$) and axial-vector couplings g_A (experimentalist's definition)

$$A^{f} \equiv \frac{2g_{V}^{f}g_{A}^{f}}{(g_{V}^{f})^{2} + (g_{A}^{f})^{2}} \qquad \qquad \sin^{2}\theta_{\text{eff}}^{\ell} \equiv \frac{1}{4} \left[1 - \frac{g_{V}^{\ell}}{g_{A}^{\ell}} \right] = \sin^{2}\hat{\theta}_{W}(M_{Z}) + 0.00029$$

• numerically close to $\sin^2\theta_W(M_Z)$ (analogous to α in QED)

• on-shell definition: $\sin^2\theta_W \equiv 1 - M_W^2/M_Z^2$

induces spurious mt²-dependence (enhances higher order contributions)

Z-pole Asymmetries

LEP/SLC Average: $0.23153 \pm 0.00016 \quad \chi^2/d.o.f. = 16.8/12$

Tevatron Average: 0.23176 ± 0.00060 LHC Average: 0.2297 ± 0.0010

Grand Average: $0.23150 \pm 0.00016 \quad \chi^2/d.o.f. = 20.2/14$

Standard Model: 0.23155 ± 0.00005

Lower Energies

$\Delta \alpha$ and μ anomalous magnetic moment (a_{μ})

$$\hat{\alpha}(\mu) = \frac{\alpha}{1 - 4\pi\alpha\hat{\Pi}(0)} \text{ (MS)}$$

$$\alpha(s) = \frac{\alpha}{1 - \Delta\alpha_{\text{lep}}(s) - \Delta\alpha_{\text{had}}(s)} \text{ (on-shell)}$$

$$\Delta\alpha_{\text{had}}(s) = -\frac{\alpha}{3\pi} \operatorname{Re} \int_{4m_{\pi}^2}^{\infty} ds' \frac{sR(s')}{s'(s' - s - i\epsilon)}$$

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2}$$

$$a_{\mu}^{\text{had},2-\text{loop}} = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} ds \, \frac{K(s)}{s} R(s)$$

K(s): known kernel function

$a_{\mu} \equiv (1165920.80 \pm 0.63) \times 10^{-9}$ BNL-E821 2004

gµ-2

- $₀ a_{\mu} ≡ (165920.80 ± 0.63) × 10^{-9}$ BNL-E821 2004
- goal of FNAL-E989 (New g-2 Collaboration): $\pm 0.16 \times 10^{-9}$

g_µ-2

 $SM: a_{\mu} ≡ (1165918.41 ± 0.48)×10^{-9}$

- $₀ a_{\mu} ≡ (165920.80 ± 0.63) × 10^{-9}$ BNL-E821 2004
- goal of FNAL-E989 (New g-2 Collaboration): $\pm 0.16 \times 10^{-9}$
- SM: $a_{\mu} \equiv (||659|8.4| \pm 0.48) \times |0^{-9}|$
- \odot 3.0 σ deviation (includes e^+e^- and τ -decay data)

hadrons

- $₀ a_{\mu} ≡ (1165920.80 ± 0.63) × 10^{-9}$ BNL-E821 2004
- goal of FNAL-E989 (New g-2 Collaboration): $\pm 0.16 \times 10^{-9}$
- SM: $a_{\mu} \equiv (||659|8.4| \pm 0.48) \times |0^{-9}|$
- \odot 3.0 σ deviation (includes e^+e^- and τ -decay data)
- and 3-loop hadronic vacuum polarization:
 - \bullet e⁺ e⁻ based (annihilation & radiative return): 3.6 σ
 - τ based: 2.4 σ
 - 2.3 σ discrepancy between exp. B($\tau^- \rightarrow \nu \pi^0 \pi^-$) and prediction from e⁺e⁻ and CVC (γ - ρ mixing?)
 - I.9 σ conflict between KLOE and BaBar (which is not inconsistent with T-data)

- ⓐ $a_{\mu} \equiv (1165920.80 \pm 0.63) \times 10^{-9}$ BNL-E821 2004
- goal of FNAL-E989 (New g-2 Collaboration): $\pm 0.16 \times 10^{-9}$
- SM: $a_{\mu} \equiv (||659|8.4| \pm 0.48) \times |0^{-9})$
- \odot 3.0 σ deviation (includes e^+e^- and τ -decay data)
- and 3-loop hadronic vacuum polarization:
 - e^+e^- based (annihilation & radiative return): 3.6 σ
 - \odot T based: 2.4 σ
 - 2.3 σ discrepancy between exp. B($\tau^- \rightarrow \nu \pi^0 \pi^-$) and prediction from e⁺e⁻ and CVC (γ - ρ mixing?)
 - I.9 σ conflict between KLOE and BaBar (which is not inconsistent with T-data)

Davier et al. 2011

g_{μ} -2: other contributions

 γ hadrons γ γ γ γ γ γ μ

g_{μ} -2: other contributions

Y×Y: (1.1 ± 0.3)×10-9 Prades, de Rafael, Vainshtein 2009

Second Structures S

g_{μ} -2: other contributions

Y×Y: (|.| ± 0.3)×|0-9 Prades, de Rafael, Vainshtein 2009

Second Structures S

• SUSY? $M_{SUSY} \simeq + 71^{+14}-9$ GeV $\sqrt{\tan\beta}$ Arnowitt, Chamsedine, Nath 1984

Uncertainties

 $\sum_{j \sim \infty}$ Y ~~~~

source	comment	uncertainty
$\delta\Delta\alpha^{(3)}(\overline{m}_c)$	$e^+ e^- \rightarrow hadrons$	3 × 10 ⁻⁵
m _s ≠ m _u	flavor separation	5 × 10 ⁻⁵
m _d ≠ m _u	isospin breaking	× 0 ⁻⁵
singlet contributions	OZI rule violation	3 × 10 ⁻⁵
$\overline{m}_{c}(\overline{m}_{c}), \overline{m}_{b}(\overline{m}_{b})$	QCD sum rules	4×10^{-5}
$\overline{\alpha}_{s}(M_{Z})$	Z and T-decays	4×10^{-5}
TOTAL	incl. (excl.) parametric	9 (7) × 10 ⁻⁵

JE, Ramsey-Musolf 2005

Uncertainties

source	comment	uncertainty
$\delta\Delta\alpha^{(3)}(\overline{m}_c)$	$e^+ e^- \rightarrow hadrons$	3 × 10 ⁻⁵
m _s ≠ m _u	flavor separation	5 × 10 ⁻⁵
m _d ≠ m _u	isospin breaking	× 0 ⁻⁵
singlet contributions	OZI rule violation	3 × 10 ⁻⁵
$\overline{m}_{c}(\overline{m}_{c}), \overline{m}_{b}(\overline{m}_{b})$	QCD sum rules	4 × 10 ⁻⁵
$\overline{\alpha}_{s}(M_{Z})$	Z and T-decays	4×10^{-5}
TOTAL	incl. (excl.) parametric	9 (7) × 10 ⁻⁵

JE, Ramsey-Musolf 2005

The Low-Energy (Fermi) Limit

 $\nu, e^{-} \qquad \nu, e^{-}$ $Z \neq f$ $f \qquad f$

• Normalized so that $g_{LLL} = I (\mu - decay)$

- Normalized so that $g_{LLL} = I (\mu decay)$
- NC couplings: $g^{ef}_{AV} = \gamma^{\mu}\gamma^{5} e f \gamma_{\mu} f$ $g^{ef}_{VA} = \gamma^{\mu} e f \gamma_{\mu}\gamma^{5} f$

- Normalized so that $g_{LLL} = I (\mu decay)$
- NC couplings: $g^{ef}_{AV} = \gamma^{\mu}\gamma^{5} = f \gamma_{\mu} f$
- $|g^{ef}_{AV}| = \frac{1}{2} 2 |Q_f| \sin^2 \theta_W$ $|g^{ef}_{VA}| = \frac{1}{2} 2 \sin^2 \theta_W$ (J)

 $g^{ef}_{VA} e \gamma^{\mu} e f \gamma_{\mu} \gamma^{5} f$

- $\begin{array}{ccc} \nu, e^{-} & \nu, e^{-} \\ & & \\ & & \\ & & \\ f & & \\ & & f \end{array}$
- Normalized so that $g_{LLL} = I (\mu decay)$
- NC couplings: $g^{ef}_{AV} = \gamma^{\mu}\gamma^{5} e f \gamma_{\mu} f$

$$g^{ef}_{VA} e \gamma^{\mu} e f \gamma_{\mu} \gamma^{5} f$$

 $|g^{ef}_{VA}| = \frac{1}{2} - 2 \sin^2\theta_W$

$$|g^{ef}_{AV}| = \frac{1}{2} - 2 |Q_f| \sin^2\theta_W$$

- $f = e \rightarrow |g^{ee}_{AV}| = \frac{1}{2} 2 \sin^2 \theta_{W} \ll 1$
 - in SM: enhanced sensitivity to $sin^2\theta_W$ (compete with Z-pole)
 - BSM: enhanced sensitivity to Λ_{new}

Parity Violation

• effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms

• effects tiny and $\sim Z^3 \rightarrow$ seen only in heavy atoms

• $g_{AV}(C_{Iq})$ add up coherently \rightarrow nuclear spin-independent interaction

• effects tiny and $\sim Z^3 \rightarrow$ seen only in heavy atoms

• $g_{AV}(C_{Iq})$ add up coherently \rightarrow nuclear spin-independent interaction

• spin-dependent g_{VA} (C_{2q}) clouded by dominant nuclear anapole moment (~ $Z^{2/3}$)

• effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms

- $g_{AV}(C_{Iq})$ add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent g_{VA} (C_{2q}) clouded by dominant nuclear anapole moment (~ $Z^{2/3}$)

Separate g_{AV} and g_{VA} by measuring different hyperfine transitions

• good understanding of atomic structure crucial \rightarrow Cs (Tl)

• good understanding of atomic structure crucial \rightarrow Cs (Tl)

moving history of most precise measurement (Cs) by Boulder group

- \odot good understanding of atomic structure crucial \rightarrow Cs (Tl)
- moving history of most precise measurement (Cs) by Boulder group
- initially agreement with SM wood et al 1997

- \odot good understanding of atomic structure crucial \rightarrow Cs (Tl)
- moving history of most precise measurement (Cs) by Boulder group
- initially agreement with SM wood et al 1997
- direct measurement of ratio of off-diagonal hyperfine amplitude to polarizability reduced overall error $\rightarrow 2.5 \sigma$ deficit Bennett, Wieman 1999
- \odot good understanding of atomic structure crucial \rightarrow Cs (Tl)
- moving history of most precise measurement (Cs) by Boulder group
- initially agreement with SM wood et al 1997
- direct measurement of ratio of off-diagonal hyperfine amplitude to polarizability reduced overall error $\rightarrow 2.5 \sigma$ deficit Bennett, Wieman 1999
- \odot reevaluation of Breit interaction \rightarrow 1.2 σ Derevianko 2000

- \odot good understanding of atomic structure crucial \rightarrow Cs (Tl)
- moving history of most precise measurement (Cs) by Boulder group
- initially agreement with SM wood et al 1997
- direct measurement of ratio of off-diagonal hyperfine amplitude to polarizability reduced overall error $\rightarrow 2.5 \sigma$ deficit Bennett, Wieman 1999
- \odot reevaluation of Breit interaction \rightarrow 1.2 σ Derevianko 2000

- \odot good understanding of atomic structure crucial \rightarrow Cs (Tl)
- moving history of most precise measurement (Cs) by Boulder group
- initially agreement with SM wood et al 1997
- direct measurement of ratio of off-diagonal hyperfine amplitude to polarizability reduced overall error $\rightarrow 2.5 \sigma$ deficit Bennett, Wieman 1999
- \odot reevaluation of Breit interaction \rightarrow 1.2 σ Derevianko 2000
- reevaluation of other effects canceled each other → | O
 Dzuba, Flambaum, Ginges; Johnson; Milstein, Sushkov; Kuchiev, Flambaum; Derevianko; Milstein, Sushkov, Terekhov 2002; Sapirstein 2003; Shabaev 2005
- state-of-the-art many body calculation $\rightarrow 0.1 \text{ } \sigma$ Porsev, Beloy, Derevianko 2009

- \odot good understanding of atomic structure crucial \rightarrow Cs (Tl)
- moving history of most precise measurement (Cs) by Boulder group
- initially agreement with SM wood et al 1997
- direct measurement of ratio of off-diagonal hyperfine amplitude to polarizability reduced overall error $\rightarrow 2.5 \sigma$ deficit Bennett, Wieman 1999
- \odot reevaluation of Breit interaction \rightarrow 1.2 σ Derevianko 2000
- state-of-the-art many body calculation $\rightarrow 0.1 \text{ } \sigma$ Porsev, Beloy, Derevianko 2009
- corrections to two non-dominating terms $\rightarrow 1.5 \text{ } \sigma$ Dzuba, Berengut, Flambaum, Roberts 2012

take ratios of PV in different isotopes Rosner 1996

take ratios of PV in different isotopes Rosner 1996

reduces atomic theory uncertainty Bouchiat, Pottier 1986

take ratios of PV in different isotopes Rosner 1996

- reduces atomic theory uncertainty Bouchiat, Pottier 1986
- \odot but effect also partly cancels \rightarrow higher precision needed

take ratios of PV in different isotopes Rosner 1996

- reduces atomic theory uncertainty Bouchiat, Pottier 1986
- \odot but effect also partly cancels \rightarrow higher precision needed
- also new uncertainty from poorly known neutron radius Pollock, Fortson, Wilets 1992

take ratios of PV in different isotopes Rosner 1996

- reduces atomic theory uncertainty Bouchiat, Pottier 1986
- \odot but effect also partly cancels \rightarrow higher precision needed
- also new uncertainty from poorly known neutron radius Pollock, Fortson, Wilets 1992

■ JLab experiments such as PREX and CREX will help

take ratios of PV in different isotopes Rosner 1996

- reduces atomic theory uncertainty Bouchiat, Pottier 1986
- \odot but effect also partly cancels \rightarrow higher precision needed
- also new uncertainty from poorly known neutron radius Pollock, Fortson, Wilets 1992
 - JLab experiments such as PREX and CREX will help
- mostly constrains $g_{AV}^{ep} = 2 g_{AV}^{eu} + g_{AV}^{ed}$ Ramsey-Musolf 1999

take ratios of PV in different isotopes Rosner 1996

- reduces atomic theory uncertainty Bouchiat, Pottier 1986
- $_{\odot}$ but effect also partly cancels \rightarrow higher precision needed
- also new uncertainty from poorly known neutron radius Pollock, Fortson, Wilets 1992
 - JLab experiments such as PREX and CREX will help
- mostly constrains $g_{AV}^{ep} \equiv 2 g_{AV}^{eu} + g_{AV}^{ed} Ramsey-Musolf 1999$

• but different γ -Z box than Qweak experiment (see later)

take ratios of PV in different isotopes Rosner 1996

- reduces atomic theory uncertainty Bouchiat, Pottier 1986
- $_{\odot}$ but effect also partly cancels \rightarrow higher precision needed
- also new uncertainty from poorly known neutron radius Pollock, Fortson, Wilets 1992
 - JLab experiments such as PREX and CREX will help
- mostly constrains $g_{AV}^{ep} \equiv 2 g_{AV}^{eu} + g_{AV}^{ed} Ramsey-Musolf 1999$

• but different γ -Z box than Qweak experiment (see later)

• ideally one would measure APV in H and D Dunford, Holt 2007

take ratios of PV in different isotopes Rosner 1996

- reduces atomic theory uncertainty Bouchiat, Pottier 1986
- $_{\odot}$ but effect also partly cancels \rightarrow higher precision needed
- also new uncertainty from poorly known neutron radius Pollock, Fortson, Wilets 1992
 - JLab experiments such as PREX and CREX will help
- mostly constrains $g_{AV}^{ep} \equiv 2 g_{AV}^{eu} + g_{AV}^{ed} Ramsey-Musolf 1999$

• but different γ -Z box than Qweak experiment (see later)

• ideally one would measure APV in H and D Dunford, Holt 2007

single trapped Ra ions are promising due to much larger PV effect Wansbeek et al 2012

Elastic Scattering

 $_{\odot}$ Scattering from proton as a whole \rightarrow

 $g_{VA}^{ep} \equiv 2 g_{VA}^{eu} + g_{VA}^{ed} = -\frac{1}{2} + 2 \sin^2\theta_W$

JLAB-Qweak Collaboration completed data taking to determine gvA^{ep} from

$$A_{LR}^{ep} \equiv \frac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_R} = -\frac{m_p(2E_e + m_p)}{v^2} \frac{g_{AV}^{ep}}{4\pi\alpha} \mathcal{F}^{ep}$$
$$\mathcal{F}^{ep} = \left[y + \mathcal{O}(y^2)\right] \mathcal{F}_{QED}^{ep}(Q^2, y)$$

• Small $Q^2 = 0.025 \text{ GeV}^2$ and y = | - E'/E = 0.0082 important to keep y^2 -term and associated hadronic uncertainties below experimental error.

• extrapolation to $y \rightarrow 0$ using other A_{LR}^{ep} measurements at higher Q^2

• can extract weak charge of proton $Q_{W^P} \approx -2 g_{AV^{eP}} (4\%)$ and $\sin^2\theta_W (0.3\%)$

y-Z boxes

• generate large EW logs regulated in the IR by uncertain hadronic scale (similarly for charge radius correction to g_{VA}^{eq})

 $_{\odot}$ generate large EW logs regulated in the IR by uncertain hadronic scale (similarly for charge radius correction to gvA^{eq})

(a) for APV ($E_e \approx 0, Q^2 \approx 0$) effect for g_{AV}^{eq} is ∝ g_{VA}^{eq} and vice versa

- \odot generate large EW logs regulated in the IR by uncertain hadronic scale (similarly for charge radius correction to gvA^{eq})
- o for APV (E_e ≈ 0, Q² ≈ 0) effect for g_{AV}^{eq} is ∝ g_{VA}^{eq} and vice versa
- for elastic scattering $E_e \neq 0$, mixing in opposite chirality structure

- $_{\odot}$ generate large EW logs regulated in the IR by uncertain hadronic scale (similarly for charge radius correction to g_{VA}^{eq})
- o for APV (E_e ≈ 0, Q² ≈ 0) effect for g_{AV}^{eq} is ∝ g_{VA}^{eq} and vice versa
- $_{\odot}$ for elastic scattering E_e \neq 0, mixing in opposite chirality structure
- strong point for P2 (Mainz)

- \odot generate large EW logs regulated in the IR by uncertain hadronic scale (similarly for charge radius correction to g_{VA}^{eq})
- for APV ($E_e \approx 0, Q^2 \approx 0$) effect for g_{AV}^{eq} is $\propto g_{VA}^{eq}$ and vice versa
- $_{\odot}$ for elastic scattering E_e \neq 0, mixing in opposite chirality structure
- strong point for P2 (Mainz)
- much activity recently:
 - Svaeq large error Gorchtein, Horowitz 2009; Sibirtsev, Blunden, Melnitchouk, Thomas 2010; Gorchtein, Horowitz, Ramsey-Musolf 2011; Rislow, Carlson 2011; Hall et al. 2013
 - SAV^{eq} for PVES Blunden, Melnitchouk, Thomas 2011; Rislow, Carlson 2013
 - \odot gav^{eq} for APV (1 4 sin² θ_W)-suppressed Blunden, Melnitchouk, Thomas 2012

- order y²-term significant at Qweak $(\frac{1}{3}; no I 4 sin^2 \theta_W suppression)$
 - ➡ 1.5% theory uncertainty
 - go to even lower y

• order y²-term significant at Qweak $(\frac{1}{3}; no I - 4 sin^2 \theta_W suppression)$

- ➡ I.5% theory uncertainty
- go to even lower y
- New experiment (P2) planned at MESA (Mainz) at $Q^2 = 0.0048$ GeV² and y = 0.0038

• order y²-term significant at Qweak $(\frac{1}{3}; no I - 4 sin^2 \theta_W suppression)$

- ➡ 1.5% theory uncertainty
- go to even lower y
- New experiment (P2) planned at MESA (Mainz) at $Q^2 = 0.0048$ GeV² and y = 0.0038
- \circ γ -Z box correction will also be smaller at lower Q^2
 - $_{\odot}$ auxiliary JLab and Mainz experiments will help to better constrain γ -Z box

• order y²-term significant at Qweak $(\frac{1}{3}; no I - 4 sin^2 \theta_W suppression)$

- ➡ 1.5% theory uncertainty
- go to even lower y
- New experiment (P2) planned at MESA (Mainz) at $Q^2 = 0.0048$ GeV² and y = 0.0038
- \circ γ -Z box correction will also be smaller at lower Q^2
 - auxiliary JLab and Mainz experiments will help to better constrain γ-Z box
- \Rightarrow P2 goal of 2% in g_{AV}^{ep} or Q_W^p and ±0.00036 in sin² θ _W or better

gva^{eu} and gva^{ed}

problematic at low very energies (elastic or quasi-elastic)

charge weighted combination from (in valence quark approximation)

$$A_{LR}^{e\text{DIS}} = -\frac{3}{20\pi\alpha} \frac{Q^2}{v^2} \left[\left(2g_{AV}^{eu} - g_{AV}^{ed} \right) + \left(2g_{VA}^{eu} - g_{VA}^{ed} \right) \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \right]$$

• eDIS asymmetries much larger ($\geq 10^{-4}$) than in elastic scattering

- measured to ~ 10% at SLAC for 0.92 GeV² < Q² < 1.96 GeV² Prescott et al 1979
- 2 further points at $Q^2 = 1.1$ and 1.9 GeV^2 to 4.5% by JLab-Hall A Collaboration
- approved SOLID experiment will measure large array of kinematic points up to 9.5 GeV² (0.5% precision in coupling combination)

Implications for New Physics

S

Energy-Intensity Complementarity

New Physics Sensitivity

$$\mathcal{L}_{eq} = \left[\frac{G_F}{\sqrt{2}}g_{VA}^{eq}(\mathrm{SM}) + \frac{g^2}{\Lambda^2}\right]\bar{e}\gamma_{\mu}e\,\bar{q}\gamma^{\mu}\gamma^5q$$

$$\frac{g^2}{\Lambda^2} = \frac{4\pi}{\Lambda^2} = \frac{\bar{g}_{VA}^{eq} - g_{VA}^{eq}(SM)}{2v^2}$$

 $g^2 = 4\pi$ (convention)

Customary to quote one-sided limits on Λ !

P-Experiments

	precision	$\Delta \sin^2 \overline{\theta}_{W}(0)$	Λ_{new} (expected)
APV ¹³³ Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	19 %	0.0030	17.0 TeV
PVDIS	4.5 %	0.0051	7.6 TeV
Qweak final	4.5 %	0.0008	33 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV
APV ²²⁵ Ra	0.5 %	0.0018	34 TeV
APV ²¹³ Ra/ ²²⁵ Ra	0.1 %	0.0037	I6 TeV

PV (axial)-electron (vector)-quark couplings

 $[2 g^{eu} - g^{ed}]_{AV}$

Compositeness Scales

[2 g^{eu} - g^{ed}]_{AV}

Portals to New Physics
Portals to New Physics

neutrino portal: H L S

Portals to New Physics

neutrino portal: H L S
Higgs portal: |H|² |H|²

Portals to New Physics

• neutrino portal: H L S• Higgs portal: $|H|^2 |H|^2$ • U(1) portal: $F_{\mu\nu} F^{\mu\nu}$

Running sin² θ_{W} and Dark Parity Violation

Davoudiasl, Lee, Marciano 2012; Marciano 2013

 $Br(Z_d \rightarrow e^+ e^-) \approx 1$

Running sin² θ_{W} and Dark Parity Violation

Davoudiasl, Lee, Marciano 2012; Marciano 2013

 $Br(Z_d \rightarrow e^+ e^-) \approx I$

 $Br(Z_d \rightarrow e^+ e^-) \approx 0$

Running sin² θ_{W} and Dark Parity Violation

Marciano 2013

Precision tests generally in excellent agreement with SM.

- Precision tests generally in excellent agreement with SM.
- $_{\odot}$ Three independent determinations of M_{H} agree very well

- Precision tests generally in excellent agreement with SM.
- $_{\odot}$ Three independent determinations of M_{H} agree very well
- Persistent: g_{μ} -2 and $A_{FB}(b)$ vs. A_{LR}

- Precision tests generally in excellent agreement with SM.
- $_{\odot}$ Three independent determinations of M_{H} agree very well
- Persistent: g_{μ} -2 and $A_{FB}(b)$ vs. A_{LR}
- Amusing: revival of APV anomaly?

- Precision tests generally in excellent agreement with SM.
- $_{\odot}$ Three independent determinations of M_{H} agree very well
- Persistent: g_{μ} -2 and $A_{FB}(b)$ vs. A_{LR}
- Amusing: revival of APV anomaly?
- emergence of M_W anomaly? (small, but M_W is special)

- Precision tests generally in excellent agreement with SM.
- $_{\odot}$ Three independent determinations of M_{H} agree very well
- Persistent: g_{μ} -2 and $A_{FB}(b)$ vs. A_{LR}
- Amusing: revival of APV anomaly?
- emergence of M_W anomaly? (small, but M_W is special)
- Low-energy:

- Precision tests generally in excellent agreement with SM.
- $_{\odot}$ Three independent determinations of M_{H} agree very well
- Persistent: g_{μ} -2 and $A_{FB}(b)$ vs. A_{LR}
- Amusing: revival of APV anomaly?
- \odot emergence of M_W anomaly? (small, but M_W is special)

Low-energy:

next generation experiments set to reach LEP precision

- Precision tests generally in excellent agreement with SM.
- $_{\odot}$ Three independent determinations of M_{H} agree very well
- Persistent: g_{μ} -2 and $A_{FB}(b)$ vs. A_{LR}
- Amusing: revival of APV anomaly?
- \odot emergence of M_W anomaly? (small, but M_W is special)

Low-energy:

- next generation experiments set to reach LEP precision
- model-independent couplings: multi-TeV scale

- Precision tests generally in excellent agreement with SM.
- Three independent determinations of M_H agree very well
- Persistent: g_{μ} -2 and $A_{FB}(b)$ vs. A_{LR}
- Amusing: revival of APV anomaly?
- \odot emergence of M_W anomaly? (small, but M_W is special)

Low-energy:

- next generation experiments set to reach LEP precision
- model-independent couplings: multi-TeV scale
- consistent with what the LHC has not seen, there appears at least a little hierarchy between M_H and Λ_{new} .

- Precision tests generally in excellent agreement with SM.
- $_{\odot}$ Three independent determinations of M_{H} agree very well
- Persistent: g_{μ} -2 and $A_{FB}(b)$ vs. A_{LR}
- Amusing: revival of APV anomaly?
- \odot emergence of M_W anomaly? (small, but M_W is special)

Low-energy:

- next generation experiments set to reach LEP precision
- model-independent couplings: multi-TeV scale
- consistent with what the LHC has not seen, there appears at least a little hierarchy between M_H and Λ_{new} .
- is the dark sector messing with low-energy observables?

Recent and Upcoming Reviews

Krishna Kumar, Sonny Mantry, William Marciano and Paul Souder Annu. Rev. Nucl. Part. Sci. 63 (2013) 237–67

> Jens Erler and Shufang Su Prog. Part. Nucl. Phys. 71 (2013) 119–149

> > Jens Erler and Ayres Freitas Particle Data Group (2014)

Jens Erler, Charles Horowitz, Sonny Mantry and Paul Souder Annu. Rev. Nucl. Part. Sci. (2014)