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Key SM Parameters

4 parameters from bosonic sector: g [SU(2)L ], g′ [U(1)Y ], μ, λ

h / mRb: α ≡ g2 sin2θW∕4π (± 6.6 × 10−10)

ge−2: α ≡ g2 sin2θW∕4π (± 8 × 10−13) [derived]

PSI: GF ≡ 1∕(√2 v2) (± 5 × 10−7) [v = 246.22 GeV]

LEP 1: MZ ≡ MW∕cosθW (± 2 × 10−5)

Tevatron: MW ≡ g v∕2 (± 2 × 10−4) [derived]

Z pole: sin2θW ≡ g′2∕(g2 + g′2) (± 7 × 10−4) [derived]

LHC: MH ≡ λ v = √(−2 μ2) (± 3 × 10−3)

LHC / Tevatron: mt(mt) ≡ λt v (± 6 × 10−3)
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9

Compare with results on 
coupling strength 



MH [GeV]

10

source MH uncertainty

radiative corrections 89 +22 −18

LHC Higgs branching ratios 123.7 2.3

ATLAS direct 125.5 0.6

CMS direct 125.7 0.4

global fit 125.5 0.4

JE, Ayres 2013
PDG 2014
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The Weak Mixing Angle
W± = (W1 ∓ i W2)∕√2

Z0 = cosθW W3 – sinθW B

A = sinθW W3 + cosθW B

MW = ½ g v = cosθW MZ

sin2θW = g′2∕(g2 + g′2) = 1 – MW2∕MZ2



Renormalization schemes

Many different schemes and definitions. Most commonly used:

M̅S ̅-scheme: sin2θW̅(μ) ≡ gʹ̅2∕(g̅2 + gʹ̅2) (theorist’s definition)

ideal for gauge coupling unifcation (analogous to α̅s in QCD)

effective weak mixing angle in terms of vector (gV ∝ 1 - 4 Qf sin2θW) and 
axial-vector couplings gA (experimentalist’s definition)

numerically close to sin2θW̅(MZ) (analogous to α in QED)

on-shell definition: sin2θW ≡ 1 – MW2∕MZ2

induces spurious mt2-dependence (enhances higher order contributions)
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10 2

10 3

0.23 0.232 0.234

sin2e
lept
eff

m
H
  [

G
eV

]

r2/d.o.f.: 11.8 / 5

A0,l
fb 0.23099 ± 0.00053

Al(Po) 0.23159 ± 0.00041

Al(SLD) 0.23098 ± 0.00026

A0,b
fb 0.23221 ± 0.00029

A0,c
fb 0.23220 ± 0.00081

Qhad
fb 0.2324 ± 0.0012

Average 0.23153 ± 0.00016

6_had= 0.02758 ± 0.000356_(5)

mt= 172.7 ± 2.9 GeV

Z-pole Asymmetries

LEP/SLC Average:  0.23153 ± 0.00016   χ2∕d.o.f. = 16.8∕12

Tevatron Average: 0.23176 ± 0.00060
LHC Average:       0.2297  ±  0.0010

Grand Average:     0.23150 ± 0.00016   χ2∕d.o.f. = 20.2∕14

Standard Model:    0.23155 ± 0.00005
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Lower Energies
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Davier et al. 2011
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gμ−2: other contributions

 γ×γ: (1.1 ± 0.3)×10-9                                                       
Prades, de Rafael, Vainshtein 2009

 < 1.6×10-9 (extension of threshold mass trick)                     
JE, Toledo 2006

 SUSY? MSUSY ≃ + 71+14−9 GeV √tanβ                                        
Arnowitt, Chamsedine, Nath 1984
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source comment uncertainty

δΔα(3)(m̅c)

ms ≠ mu

md ≠ mu

singlet contributions

m̅c(m ̅c), m̅b(m ̅b)
α̅s(MZ)

TOTAL

e+ e– → hadrons 3 × 10−5

flavor separation 5 × 10−5

isospin breaking 1 × 10−5

OZI rule violation 3 × 10−5

QCD sum rules 4 × 10−5

Z and τ-decays 4 × 10−5

incl. (excl.) parametric 9 (7) × 10−5

JE, Ramsey-Musolf 2005
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Effective couplings

Normalized so that gLLLL = 1 (μ-decay)

NC couplings: gefAV e ̅γμγ5 e f ̅γμ f        gefVA e ̅γμ e f ̅γμγ5 f

          |gefAV| = ½ − 2 |Qf| sin2θW        |gefVA| = ½ − 2 sin2θW

f = e → |geeAV| = ½ − 2 sin2θW ≪ 1

in SM: enhanced sensitivity to sin2θW                         
(compete with Z-pole)

BSM: enhanced sensitivity to Λnew

29
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Atomic Parity Violation

effects tiny and ~ Z3 → seen only in heavy atoms

gAV (C1q) add up coherently → nuclear spin-independent 
interaction

spin-dependent gVA (C2q) clouded by dominant nuclear 
anapole moment  (~ Z2∕3) 

separate gAV and gVA by measuring different hyperfine 
transitions

31
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initially agreement with SM Wood et al 1997

direct measurement of ratio of off-diagonal hyperfine amplitude to 
polarizability reduced overall error → 2.5 σ deficit Bennett, Wieman 1999

reevaluation of Breit interaction → 1.2 σ Derevianko 2000

reevaluation of other effects canceled each other → 1 σ                      
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reevaluation of other effects canceled each other → 1 σ                      
Dzuba, Flambaum, Ginges; Johnson; Milstein, Sushkov; Kuchiev, Flambaum; Derevianko;  
Milstein, Sushkov, Terekhov 2002; Sapirstein 2003; Shabaev 2005

state-of-the-art many body calculation → 0.1 σ Porsev, Beloy, Derevianko 2009

corrections to two non-dominating terms → 1.5 σ Dzuba, Berengut, 
Flambaum, Roberts 2012
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take ratios of PV in different isotopes Rosner 1996

reduces atomic theory uncertainty Bouchiat, Pottier 1986

but effect also partly cancels → higher precision needed 

also new uncertainty from poorly known neutron radius                   
Pollock, Fortson, Wilets 1992

JLab experiments such as PREX and CREX will help

mostly constrains gAVep ≡ 2 gAVeu + gAVed Ramsey-Musolf 1999 

but different γ-Z box than Qweak experiment (see later)

ideally one would measure APV in H and D Dunford, Holt 2007

single trapped Ra ions are promising due to much larger PV effect 
Wansbeek et al 2012
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Elastic Scattering
Scattering from proton as a whole → 

gVAep ≡ 2 gVAeu  + gVAed =− ½ + 2 sin2θW

JLAB-Qweak Collaboration completed data taking to determine gVAep  from

  

Small Q2 = 0.025 GeV2  and y ≡ 1 − Eʹ∕E = 0.0082 important to keep y2-term 
and associated hadronic uncertainties below experimental error.

extrapolation to y → 0 using other ALRep measurements at higher Q2

can extract weak charge of proton QWp ≈ − 2 gAVep (4%) and sin2θW (0.3%)

34
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(similarly for charge radius correction to gVAeq)

for APV (Ee ≈ 0, Q2 ≈ 0) effect for gAVeq is ∝ gVAeq and vice versa

for elastic scattering Ee ≠ 0, mixing in opposite chirality structure

➡ strong point for P2 (Mainz)

much activity recently:

gVAeq large error Gorchtein, Horowitz 2009; Sibirtsev, Blunden, Melnitchouk, Thomas 
2010; Gorchtein, Horowitz, Ramsey-Musolf 2011; Rislow, Carlson 2011; Hall et al. 2013

gAVeq for PVES Blunden, Melnitchouk, Thomas 2011; Rislow, Carlson 2013

gAVeq for APV (1 − 4 sin2θW)-suppressed Blunden, Melnitchouk, Thomas 2012
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Elastic Scattering Future (P2)

order y2-term significant at Qweak                                              
(⅓; no 1 − 4 sin2θW suppression)

➡ 1.5% theory uncertainty

➡ go to even lower y

New experiment (P2) planned at MESA (Mainz) at                    
Q2 = 0.0048 GeV2 and y = 0.0038

γ-Z box correction will also be smaller at lower Q2

auxiliary JLab and Mainz experiments will help to better 
constrain γ-Z box

➡ P2 goal of 2% in gAVep or QWp and ±0.00036 in sin2θW or better
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gVAeu and gVAed

problematic at low very energies (elastic or quasi-elastic)

charge weighted combination from (in valence quark approximation)

eDIS asymmetries much larger (≳ 10−4) than in elastic scattering

measured to ~ 10% at SLAC for 0.92 GeV2 < Q2 < 1.96 GeV2 
Prescott et al 1979 

2 further points at Q2 = 1.1 and 1.9 GeV2 to 4.5% by JLab-Hall A 
Collaboration

approved SOLID experiment will measure large array of kinematic 
points up to 9.5 GeV2 (0.5% precision in coupling combination)
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LIMITS ON COMPOSITENESS SCALES

JENS ERLER

We want to obtain limits on compositeness scales which can be compared as di-
rectly as possible with existing limits. We mostly adapt here the conventions from [2]
and the procedure followed by the LEP 2 Collaborations, as it is quite explicitly de-
scribed in [1]. This is not necessarily meant as an endorsement of the conventions
and method used there.
The new physics e↵ective Lagrangian for eq interactions is given by [2]
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|⌘
ij
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where v = (
p
2G

F

)�1/2 = 246.22 GeV is the Higgs vacuum expectation value setting
the electroweak scale. Note, that the explicit factor 1/2 in the second line of Eq. (2)
is historical, and arises from writing g

V

= g
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+ g

R

and g

A

= g

L

� g

R

instead of

(3) g
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=
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L
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2

,

and likewise for the bilinear e↵ective couplings in Eq. (2). This is important for the
numerical values of ⇤ discussed below.
Now suppose that a measurement of the e↵ective coupling, geq

V A

, or a fit to some
data set, finds the central value ḡ

eq

V A

, then the best estimate of the new physics
contribution would be given by
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g2 = 4π (convention)

Customary to quote one-sided limits on Λ!
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ḡ

eq

V A

� g

eq

V A

(SM)

2v2
.



P⁄    -Experiments

42

precision Δ sin2θW̅(0) Λnew (expected)
APV 133Cs

E158
Qweak I
PVDIS

Qweak final
SoLID

MOLLER
P2

PVES 12C
APV 225Ra

APV 213Ra/225Ra

0.58 % 0.0019 32.3 TeV
14 % 0.0013 17.0 TeV
19 % 0.0030 17.0 TeV
4.5 % 0.0051 7.6 TeV
4.5 % 0.0008 33 TeV
0.6 % 0.00057 22 TeV
2.3 % 0.00026 39 TeV
2.0 % 0.00036 49 TeV
0.3 % 0.0007 49 TeV
0.5 % 0.0018 34 TeV
0.1 % 0.0037 16 TeV
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Portals to New Physics

neutrino portal: H L S

Higgs portal: |H|2 |H|2

U(1) portal: Fμν Fμν
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Running sin2θW and Dark Parity Violation

Davoudiasl, Lee, Marciano 2012; Marciano 2013

Br(Zd → e+ e−) ≈ 1 Br(Zd → e+ e−) ≈ 0

K+ → π+ ν ν̅
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Running sin2θW and Dark Parity Violation

Marciano 2013
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Three independent determinations of MH agree very well

Persistent: gμ−2 and AFB(b) vs. ALR

Amusing: revival of APV anomaly?

emergence of MW anomaly? (small, but MW is special)

Low-energy: 

next generation experiments set to reach LEP precision

model-independent couplings: multi-TeV scale

consistent with what the LHC has not seen, there appears at least a little 
hierarchy between MH and Λnew.

is the dark sector messing with low-energy observables?
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