WiSe 2006 11/16/06

Prof. Dr. E. Frey Dr. T. Franosch

Lehrstuhl für Statistische Physik Biologische Physik & Weiche Materie Arnold-Sommerfeld-Zentrum für Theoretische Physik Department für Physik

T VI: Soft Matter and Biological Physics (Prof. E. Frey)

Problem set 5

Problem 5.1 classical elasticity of a bending rod

The total energy of a rod under tension is given in terms of the functional

$$\mathcal{A} = \int_0^L \mathrm{d}s \left[\frac{\kappa}{2} \left(\frac{\mathrm{d}\vec{t}(s)}{\mathrm{d}s} \right)^2 - \vec{F} \cdot \vec{t}(s) \right]$$

The material parameter characterizing the rod is the bending rigidity κ . The configuration of the rod is given in terms of a curve $\vec{r}(s)$, specified by its (normalized) tangent $\vec{t}(s) = d\vec{r}/ds$, and parameterized by its arc length s. The actual curve is obtained by *minimizing* the total energy \mathcal{A} . Appropriate boundary conditions have to be imposed in order to apply the calculus of variations. In this problem we choose both ends clamped

$$\vec{t}(s=0) = \vec{t}_a$$
, $\vec{t}(s=L) = \vec{t}_b$.

- 1. Introduce spherical coordinates to fulfill the constraint, $|\vec{t}(s)| = 1$, i.e. the tangent is normalized. Show that the variational problem maps to the principle of least action for a classical pendulum. Determine the equations of motion and find possible first integrals.
- 2. To simplify specialize to a *weakly bending rod*, i.e. the tangent vector $\vec{t} = (\vec{t}_{\perp}, t_{\parallel})$ is essentially aligned with some axis. Show that the energy functional is then approximately given by

$$\mathcal{A} = -F_{\parallel}L + \int_0^L \mathrm{d}s \left[\frac{\kappa}{2} \left(\frac{\mathrm{d}\vec{t}_{\perp}(s)}{\mathrm{d}s} \right)^2 - \vec{F}_{\perp} \cdot \vec{t}_{\perp}(s) + \frac{1}{2} F_{\parallel} \vec{t}_{\perp}(s)^2 \right] \qquad (*)$$

with corresponding boundary conditions $\vec{t}_{\perp}(0) = \vec{t}_{a,\perp}, \vec{t}_{\perp}(L) = \vec{t}_{b,\perp}$. The problem to calculate the minimal \mathcal{A} is then equivalent to determine the classical action of a harmonic oscillator. Calculate the classical trajectory $\vec{t}_{\perp}(s)$ as the solution of the corresponding Euler-Lagrange equations and determine the minimal elastic energy \mathcal{A} .

3. For vanishing perpendicular forces $\vec{F}_{\perp} = 0$ and clamped ends $\vec{t}_{\perp,a} = \vec{t}_{\perp,b} = 0$ the Euler-Lagrange equation has a trivial solution $\vec{t}_{\perp}(s) \equiv 0$. For strong negative forces $F_{\parallel} < 0$ this solution does not correspond to a minimum of the functional given by Eq. (*). Estimate the critical force of the instability by a scaling argument. Introduce discrete Fourier modes that fulfill the boundary condition

$$\vec{t}_{\perp}(s) = \sum_{n=1}^{\infty} \vec{t}_{n,\perp} \sin\left(\frac{\pi n}{L}s\right)$$

and determine the force $F_{\parallel,c}$ beyond which it is favorable for the rod to buckle.