WiSe 2006 11/09/06

Prof. Dr. E. Frey

Lehrstuhl für Statistische Physik Biologische Physik & Weiche Materie Arnold-Sommerfeld-Zentrum für Theoretische Physik Department für Physik

T VI: Soft Matter and Biological Physics (Prof. E. Frey)

Problem set 4

Problem 4.1 weakly bending rod

In the weakly bending rod approximation the propagator for the tangents $G(\vec{t}_{\perp}, s | \vec{0}, 0) \equiv Z(\vec{t}_{\perp}, s)$ of a worm-like chain fulfills a Schrödinger-type equation reminiscent of a harmonic oscillator

$$\frac{\partial}{\partial s}Z(\vec{t}_{\perp},s) = \left[\frac{1}{2\ell_p}\nabla_{\perp}^2 + \frac{1}{k_BT}f_{\parallel}\left(1 - \frac{1}{2}\vec{t}_{\perp}^2\right) + \frac{1}{k_BT}\vec{f}_{\perp}\cdot\vec{t}_{\perp}\right]Z(\vec{t}_{\perp},s)$$

Here the tangent vector $\vec{t} = (\vec{t}_{\perp}, t_{\parallel})$ has been decomposed into parallel, t_{\parallel} , and perpendicular components, \vec{t}_{\perp} , and a similar decomposition is used for the force $\vec{f} = (\vec{f}_{\perp}, f_{\parallel})$ acting on the polymer. By assumption, the deviations from directing to the north pole are small, $|\vec{t}_{\perp}| \ll 1$, $t_{\parallel} \simeq 1 - \vec{t}_{\perp}^2/2$. The Schrödinger equation has to be supplemented by the initial condition for the propagator

$$G(\vec{t}_{\perp}, s = 0 | \vec{0}, 0) = Z(\vec{t}_{\perp}, s = 0) = \delta(\vec{t}_{\perp})$$

To simplify part the algebra, only the case of vanishing perpendicular force $\vec{f}_{\perp} = 0$ shall be considered.

1. Solve for the propagator using a gaussian ansatz

$$Z(\vec{t}_{\perp},s) = \exp\left(-\frac{M(s)}{2}\vec{t}_{\perp}^2 + \Gamma(s)\right)\,,$$

with unspecified functions M(s), $\Gamma(s)$. Show that this ansatz transforms the partial differential equation (Schrödinger equation) into a *closed* set of ordinary differential equations. Formulate appropriate conditions for the unknown functions in the limit $s \to 0$. Recall that for small s the forces are irrelevant and the Schrödinger equation reduces to a diffusion problem.

2. Use the correspondence of the generating function of the end-to-end distance for the polymer problem without force and $G(\vec{t}_{\perp}, L|\vec{0}, 0)$ to determine the average stored length $L - \langle r_{\parallel}(L) \rangle$ and the mean-square perpendicular fluctuations $\langle \vec{r}_{\perp}(L)^2 \rangle$ in the weakly bending rod approximation.