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Figure: The square lattice

- We consider a set of spin-1/2’s
arranged on a square lattice of
size M×N, interacting only with
nearest neighbours, without any
external magnetic field.

- J1 and J2 are the coupling
constants along vertical and
horizontal axes, respectively.
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- The Hamiltonian takes the form:

−βE (σ) = βJ1

N,M∑
n,m=1

σn,mσn,m+1 + βJ2

N,M∑
n,m=1

σn,mσn+1,m

- With boundary conditions:

σN+1,m = σ1,m

σn,M+1 = σn,1

- With these conditions, the square lattice is topologically
equivalent to the 2-torus.

- We set:
Ki := βJi , i = 1, 2

~σn := (σn,1, ..., σn,M)

- Note: each σn,m is a classical variable taking value ±1
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- Definition of the Transfer Matrix:

V (~σn, ~σn+1) = exp

(
1

2
K1(~σn) + K2(~σn, ~σn+1) +

1

2
K1(~σn+1)

)

- V (~σn, ~σn+1) is a 2M × 2M symmetric matrix

- Therefore, we can calculate the partition function in terms of
the transfer matrix:

Z =
∑
~σ1...~σN

exp(−βE (~σ1, ...~σN))

=
∑
~σ1...~σN

V (~σ1, ~σ2)...V (~σN , ~σ1) =
∑
~σ1

V N(~σ1, ~σ1) = TrV N
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- Eigenvalue of the symmetric transfer matrix:∑
~σ′

V (~σ, ~σ
′
)ψν(~σ

′
) = λνψν(~σ)

- We deduce for the partition function:

Z =
2M∑
ν=1

λN
ν

(In the thermodynamic limit (N →∞), only highest eigenvalues contribute to the free energy per particle)

- We rewrite this equation in a new form:

matrix V =⇒ operator V̂ on
⊗M

1 H( 1
2
)

vector ψ =⇒ ψ̄ ∈
⊗M

1 H( 1
2
)

H( 1
2
) is the hilbert space of a spin-1

2 .
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- We get:

ψ̄ =
∑
~σ

ψ(~σ)χσ1(1)⊗ ...⊗ χσM
(M)

with χσ=+1 :=

(
1
0

)
and χσ=−1 :=

(
0
1

)

- Now, we look for V̂ such that: V̂ ψ̄ = ψ̄
′

- Since,
ψ(~σ) =< χσ1(1)⊗ ...⊗ χσM

(M) | ψ̄ >

=⇒ < χ
σ
′
1
(1)⊗ ...⊗ χ

σ
′
M

(M) | V̂ ψ̄ >= ψ
′
(~σ
′
)

- We define σ̂z
m = 1⊗ ...⊗ σ̂z ⊗ ...⊗ 1 where σ̂z is a Pauli

Matrix at the m position and we define σ̂x
m and σ̂y

m in the
same way. For convenience, we write σx

m, σy
m and σz

m.
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exp(1
2K1), exp(K2) =⇒

∏M
m=1 exp(K1

2 σ
z
mσ

z
m+1),

∏M
m=1 exp(K2σ

z
′

mσ
z
m)

- For each m, we have this matrix form:

eσ
z′σz

=

(
eK2 e−K2

e−K2 eK2

)
= eK2(1 + e−2K2σx) = ...

=
√

2sinh(2K2)eK∗2 σ
x
, with tanh(K ∗

2 ) = e−2K2

- Final result:
V̂ = (2sinh(2K2))

M
2 ×

exp

(
K1

2

M∑
1

σz
mσ

z
m+1

)
exp

(
K ∗

2

M∑
1

σx
m

)
exp

(
K1

2

M∑
1

σz
mσ

z
m+1

)
- V̂ represents V in the Fock space

⊗M
1 χ (i.e. matrix elements

of V̂ in Fock space are V (~σ, ~σ
′
))
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Transfer Matrix - Consequences

- If K1,K
∗
2 << 1, we can neglect noncommutative terms and

we get:

V̂ ≈ (2sinh(2K2))
M
2 e−Ĥ

with Ĥ = K ∗
2 (−

∑
m σ

x
m − K1

K∗2

∑
m σ

z
mσ

z
m+1)

- Now, we want to connect our Ĥ to the quantum Hamiltonian
of the second talk about the scaling approximation:

Ĥ
K ∗

2

= Ĥ = −
∑
m

σx
m − Λ

∑
m

σz
mσ

z
m+1

with Λ = K1
K∗2

- Last remark:

K ∗
2 << 1 =⇒ Λ =

K1

K ∗
2

≈ K1

tanh(K ∗
2 )

=
K1

e−2K2
=:

K

e−2Kτ
= λ
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of the second talk about the scaling approximation:

Ĥ
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of the second talk about the scaling approximation:

Ĥ
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