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2d-xy Heisenberg ferromagnet
Consider a 2d-xy ferromagnet. It may consist of a number n

of spins residing on a square lattice with lattice constant a.
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𝑆 𝑖 =  𝑆𝑖
𝑥 , 𝑆𝑖

𝑦
  

 

𝑆 𝑖
2

= 1  
 

𝑆𝑖
𝑥 = cos 𝜃𝑖 ,   𝑆𝑖

𝑦
= sin 𝜃𝑖  

 
 



2d-xy Heisenberg ferromagnet
Neglect all spin interactions but ones between nearest

neighbours. The Hamiltonian of the ferromagnet can be written (J>0)

It is natural to define the generating functional for correlation functions, W[h] 
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𝐻 = −𝐽 ∙   𝑆 𝑖 ∙ 𝑆 𝑗 − 1 =

<𝑖,𝑗>

𝐽 ∙  [1 − cos(θi − θj)]

<𝑖,𝑗>

 

 

𝑊 ℎ =
1

𝑍
∙   dθie

−βH+θi hi  ;    ℎ =  h1 , h3, h2 …hn  
+𝜋

−𝜋𝑖   

 

𝑊 ℎ = 0 = 1, 𝑍 = 𝑍 𝛽  ;    
𝜕𝑛𝑊

𝜕ℎ𝑘𝜕ℎ𝑙𝜕ℎ𝑚…𝜕ℎ𝑢
 
ℎ=0

=  θkθlθm … θu  

 
 



Spin wave approximation
At low temperature, it is reasonable to assume short-range order of the spins. 

More precisely, the orientation angles of nearest neighbours are supposed to differ only

very little, so that in good approximation

Furthermore, it appears natural to extend the range of  the value of the orientation

angle.

This leads to the further replacement,

with                                  , due to continuous symmetry of the system.
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cos θi − θj ≅ 1 −
1

2
(θi − θj)

2 

 

−𝜋 < 𝜃𝑖 < +𝜋  →  −∞ < 𝜃𝑖 < ∞ 
 

1

𝑍
 𝑑𝜃𝑖
𝑖

  →    𝑑𝜇[𝜃] 

 

 𝑑𝜇 𝜃 + 𝜃  = 𝑑𝜇[𝜃] 
 
 



Spin wave approximation
Upon defining , the Hamiltonian can now be written in the employed spin wave

approximation as follows

The definition of is illustrated below.
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𝛽𝐻𝑆: = 𝐾  (θi − θj)
2

<𝑖,𝑗>

=:
𝐾

2
 θi∆ijθj
𝑖,𝑗

=:
𝐾

2
(𝜃, ∆𝜃) 

 

K ≔ βJ 
 

∆ij  
 

∆ij≔ 4δi,j −   δi+α,j + δi−α,j = ∆ji

α=1,2

 

 

 ∆ji = 0

j

 

 



Spin wave approximation
In the approximation of small lattice constant a, one may introduce a continuous

description, namely

Note that the symmetry property, , is still valid.

Now that the specification of the employed idealizations is complete, the explicit

evaluation of the correlation functions shall be tackled.
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∆ij   →    −a2∇2;       θ, ∆θ  →  − d3r θ∇2θ 

 

𝑑𝜇 𝜃 + 𝜃  = 𝑑𝜇[𝜃] 
 



Correlation functions
In the new notation, the correlations generating functional reads

Performing the transformation,

the argument of the above exponential is given

Introduce new variables,
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𝑊𝑆 ℎ =  𝑑𝜇[𝜃]𝑒−
𝐾
2
 𝜃,∆𝜃 +(𝜃,ℎ)

 

 

𝜃𝑖 = 𝜃 𝑖 + 𝜑𝑖  ;       𝜃 𝑖
𝑖

= 0 

 

−
𝐾

2
 𝜃, ∆𝜃 +  𝜃, ℎ = −

𝐾

2
 𝜑, ∆𝜑 −

𝐾

2
 𝜃 , ∆𝜃  −

𝐾

2
 𝜑, ∆𝜃 +  𝜃 , ℎ +  𝜑, ℎ  

 

ℎ𝑖 ≔ 𝐾 ∆𝑖𝑗𝜃 𝑗 +
1

𝑁
 ℎ𝑗𝑗𝑗                  𝐺𝑖𝑗 :   ∆𝑖𝑙𝐺𝑙𝑗𝑙 = 𝛿𝑖𝑗 −

1

𝑁
;     𝐺𝑙𝑗𝑗 = 0 

 



Correlation functions
Substituting these variables, the generating functional factorizes beautifully to give

Now one evaluates

It is left to calculate explicitly the numbers

This is done most efficiently in Fourier space.
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𝑊𝑆 ℎ = 𝑒
1

2𝐾
(ℎ,𝐺ℎ)  𝑑𝜇[𝜃 + 𝜑]𝑒−

𝐾
2
 𝜑,∆𝜑 

               
=1

 

 

  𝜃𝑖
𝑖

 𝐻𝑆
= 0;    ℎ𝑗 = ℎ ≠ 0                      𝜃𝑖𝜃𝑗  𝐻𝑆

=  
𝑘𝐵𝑇

𝐽
 𝐺𝑖𝑗  

 
𝐺𝑖𝑗  

𝐺𝑙𝑗 =
1

𝑉
 𝐺 (𝑘  )

𝑘  

𝑒𝑖𝑘
  (𝑟 𝑙−𝑟 𝑗 ) ;       𝑉 = 𝑛𝑎2 

 



Correlation functions
As well-known from solid state physics, the range of the wave vector can be confined

to the first Brillouin zone.

Consider the sum

Using previous definitions,  

one can identify .
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−
𝜋

𝑎
≤ 𝑘𝑥,𝑗 , 𝑘𝑦,𝑗 <

𝜋

𝑎
 

 

 ∆𝑖𝑙𝐺𝑙𝑗

𝑙

=
1

𝑉
 𝐺  𝑘   

𝑘  

𝑒𝑖𝑘
   𝑟 𝑖−𝑟 𝑗   4 − 2𝑒𝑖𝑘𝑥𝑎 − 2𝑒𝑖𝑘𝑦𝑎  

 

 ∆𝑖𝑙𝐺𝑙𝑗

𝑙

≡ 𝛿𝑖𝑗 −
1

𝑁
=

1

𝑁
 𝑒𝑖𝑘

   𝑟 𝑖−𝑟 𝑗  

𝑘  

(1 − 𝛿𝑘,0) 

 𝐺  𝑘    



Correlation functions
…

Inserting this result in the previous expression, one can define

Now the work is almost done. Specifying

one finds in the continuous approximation
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𝐺  𝑘   =
𝑎2

4 − 2 cos 𝑘𝑥𝑎 − 2 cos 𝑘𝑦𝑎
  ;      𝑘  ≠ 0 

 

𝐺𝑚0 =  
𝑎2𝑒𝑖𝑘

  ∙𝑟 𝑚

4 − 2 cos 𝑘𝑥𝑎 − 2 cos 𝑘𝑦𝑎

1.𝐵𝑍

𝑘  ≠0

=:𝐺(𝑟 𝑚) 

 

𝐶 𝑟 𝑚  ≔  𝑆  𝑟 𝑚  𝑆  0   =   𝑒𝑖(𝜃𝑚−𝜃0)  =  𝑒𝑖(ℎ,𝜃)  ;       ℎ𝑗 ≔ 𝑖 𝛿𝑗𝑚 − 𝛿𝑗0  

 

𝐶 𝑟  = 𝑒−
1
𝐾
 𝐺 0 −𝐺(𝑟 ) =  𝑒−

1
2
  𝜃 𝑟  −𝜃 0  

2
 𝐻𝑆  



Correlation functions
It is of interest to check for long-range order (LRO). Thus, assume

for some cut-off distance      .Thus,

In the considered region            , the Bessel function is negligible, therefore

Note that the deviation of the orientation of the spins increase without limit with

increasing distance! 
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𝑟 ≫ 𝑎  

𝐺 0 − 𝐺 𝑟 ~
1

2𝜋
 𝑘𝑑𝑘

1
𝑎  

0

 𝑑𝜗
1 − 𝑒𝑖𝑘𝑟 cos 𝜗

𝑘2

2𝜋

0

=
1

2𝜋
 𝑑𝑘

1 − 𝐽0(𝑘𝑟)

𝑘

1
𝑎  

0

 

𝑎  

r>>𝑎  

𝑮 𝟎 − 𝑮 𝒓 ≈
𝟏

𝟐𝝅
𝒍𝒏  

𝒓

𝒂 
 + 𝒄𝒐𝒏𝒔𝒕 



Correlation functions
It follows that the correlation function is of the form

with the exponent

The exponent is not universal in this case!
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𝑪𝑺 𝒓 ~  
𝒓

𝒂 
 
−𝜼 𝑻 

;     𝒓 ≫ 𝒂  

 
 

𝜼 𝑻 =
𝒌𝑩𝑻

𝟐𝝅𝑱
> 𝟎 

 

 



Discussion on the result
There exists no LRO in the system (no broken symmetry). 

Instead, the angular deviations increase unlimited with distance .

The correlation function decays algebraically with a non-universal exponent.

Compare the 3d case. 

LRO below some critical

temperature.

universal exponent .

exponential decay of correlations

above the critical temperature.

like lines of critical points.
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Discussion on the result
Note that the 2d discussion was carried out in spin wave approximation.

This approximation is valid only in the regime of low temperatures.

The correlations must decrease exponentially for high temperatures (paramagnetic

phase ).

There apparently exist excitations of the system besides spin waves, which must be

taken into account to describe correctly the physical properties of this system.

Educated guess of the true correlations behaviour.
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Vortex postulation
Berezinskii, Kosterlitz and Thouless proposed, that this phase transition occurs due to

the unbinding of vortex states at some critical temperature TC
KT .

Vortices are configurations with the property that along any path enclosing the so

called vortex core,
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 ∇𝜃(𝑟) ∙ 𝑑𝑟 = 2𝜋𝑞,    𝑞 = ±1, ±2, ±3… (winding number) 

 



Vortex postulation
For vortex configurations, it follows for the gradient of the orientation angle,             , 

The energy of a vortex can be calculated to be

Having calculated the energy cost of a vortex, the reasoning of Kosterlitz and

Thouless can be duplicated naturally.

At low temperature, the creation of a single vortex is too costly. 

However, bound pairs of vortices (q,-q) will appear and lead to quasi-LRO. 

At TC
KT , these pairs break up and quasi-LRO is destroyed.
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 ∇𝜃𝑣 𝑟  = |𝑞| ∙
1

𝑟
 

 



Vortex postulation
A bound pair of the class (1,-1) is illustrated below. 
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The critical temperature
The critical temperature TC

KT is calculated from a consideration on the free energy

of a vortex. The core of the vortex can equally likely reside on any of positions.

Therefore the entropy is given

The free energy reads

The free energy turns positive at the temperature
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(L/𝑎 )2 

 

S𝑣 = kB ln(L/𝑎 )2 

 

 

F𝑣 = E𝑣 − TS𝑣 = (πJ − 2kBT)ln  
L

a 
  

 

𝐤𝐁𝐓𝐂
𝐊𝐓 =

𝛑𝐉

𝟐
 

 



Interesting analogue
The previous discussion is comparable to the treatment of a 2d Coulomb gas. 

The Kosterlitz-Thouless phase transition can be naturally interpreted in this

case. Consider vortices with positive (negative) winding number as positive

(negative) charges. 

Below the critical temperature, condensation occurs. Single charges tend to

form bound states (microscopic dipoles).

Kosterlitz-Thouless Phase Transitions 20


