
SoSe 2007 6/8/07

Prof. Dr. E. Frey
Dr. T. Franosch

Lehrstuhl für Statistische Physik
Biologische Physik & Weiche Materie
Arnold-Sommerfeld-Zentrum für Theoretische Physik
Department für Physik

 Ludwig   

Maximilians   

Universität  

 T II: Elektrodynamik
(Prof. E. Frey)

Problem set 8

Tutorial 8.1 Helical waves

Motivate the constitutive equations for the induced current density ~j(~r, t) for the motion of electrons
in a metal in the presence of an external time-independent and spatially uniform magnetic �eld ~Bext =
Bextêz (Drude-Hall theory)
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Here ωp denotes the plasma frequency, m∗ the e�ective mass of the electrons, and τ is a characteristic
relaxation time.

a) Perform a temporal Fourier transform and show that in a spherical basis, P± = (Px ∓ iPy)/
√

2,
P0 = Pz, and similarly for the electric �eld, the susceptibility tensor is diagonal,

P±(~r, ω) = χ±(ω)E±(~r, ω) , P0(~r, ω) = χ0(ω)E0(~r) .

Determine the susceptibilities and infer the corresponding dielectric tensor. It is convenient to
introduce the electron Larmor frequency ωL = eBext/m∗c.

b) For the remainder of the problem, neglect the damping of the electronic response, τ →∞. Con-
sider monochromatic plane waves with wave vector ~k parallel to the magnetic �eld ~Bext. Show
that there are propagating circularly polarized, transverse waves and calculate their dispersion
relation in the form k = k±(ω) for high angular frequencies ω � ωp, ωL.

c) Consider now a monochromatic electromagnetic wave of angular frequency ω � ωp, ωL incident
on the metal that was originally linearly polarized in a direction transverse to the magnetic �eld.
Show that after propagating a length L along the magnetic �eld, the plane of polarization is
rotated (Faraday e�ect).



Tutorial 8.2 Fermat's principle
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Fermat's principle states that the path taken be-
tween two points by a ray of light is the path that
can be traversed in the least time, or more pre-
cisely, the optical path length must be extremal.
Consider an interface of two media with di�er-

ent indices of refraction, n1 and n2. A light ray
from point P1 in medium 1 hitting the interface
at an angle of incidence α1 is refracted to P2 in
medium 2 and re�ected to P3 in medium 1. The
angles of refraction and re�ection are α2 and α3,
respectively.
Applying Fermat's principle, derive Snell's law

of refraction,

n1 sin(α1) = n2 sin(α2),

and the law of re�ection, α1 = α3.

Problem 8.3 Optical activity

A model for the optical rotation of a chiral material is given in terms of Condon's constitutive equations

~D = ε ~E − g∂t
~H , ~B = µ ~H + g∂t

~E ,

where µ denotes the magnetic permeability, ε the average dielectric constant, and g abbreviates the
gyrotropic constant. The characteristic length cg is on the atomic scale, hence for optical frequencies
for which the model is built, ωg � √

εµ = n.
a) Show that for a monochromatic plane wave propagating along the z direction, Maxwell's equa-

tions imply (
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where E± = (Ex∓ iEy)/
√

2 and similar for the magnetic �eld are evaluated in a spherical basis.
Show that the waves in such a material are linear superpositions of two circularly polarized
waves. Determine the corresponding dispersion relations in the form k = k±(ω). Discuss also
the phase relation between D±, E± and B±,H± to leading order in the small parameter g.

b) A linearly polarized plane wave is normally incident on such a medium. Discuss the propagation
in the medium.

Problem 8.4 Tunnel e�ect
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Consider a thin �lm of thickness 2a character-
ized by a dielectric constant εf dividing the three-
dimensional space (with dielectric constant ε), see
�gure. A monochromatic electromagnetic plane
wave is incident on the �lm; the coordinate sys-
tem is chosen such that the incident wave vector
reads ~ki = (k, k‖, 0). Discuss the case of a polar-
ization of the incident electric �eld parallel to the
interfaces, ~Ei = (0, 0, Ei), i.e., out of the drawing
plane.



a) Determine the dispersion relation ω = ω(~k) separately in each region.

b) Argue that the polarization of the electric �eld is parallel to the interface in all three regions.

c) Since the tangential component of the electric �eld is continuous at the interfaces, the spatio-
temporal modulations at the interface are identical. Justify the following Ansatz for the electric
�eld

Ez(~x, t) = eik‖y−iωt


Eieikx + Ere−ikx for x < −a,

E+eiqx + E−e−iqx for −a < x < a,

Eteikx for x > a ,

and interpret the individual terms. Show that q becomes purely imaginary for k2
‖ > εf ω

2/c2.

d) Establish the conditions of continuity for the tangential components of ~H (= ~B here) and
calculate the e�ective transmission amplitude t = Et/Ei and the e�ective re�ection amplitude
r = Er/Ei. Discuss the maxima of the transmission coe�cient T = |t|2 in the case of normal
incidence. For total re�ection, k2

‖ > εf ω
2/c2, interpret the asymptotic behavior of T for thick

�lms.

Problem 8.5 Surface-plasmon polaritons

Schematic representation of the electromagnetic �eld as-
sociated with a surface-plasmon polariton propagating
along a metal-dielectric interface.

Consider an interface between a metal character-
ized by a dielectric function ε1(ω) = 1 − ω2

p/ω2

and an ideal dielectric, ε2(ω) = ε = const ,
(ε > 1). In each material the constitutive equa-
tions ~Di = εi

~Ei, ~Bi = ~Hi, i = 1, 2 apply. The
interface supports electromagnetic modes propa-
gating along the interface (surface-plasmon po-
laritons). Taking the interface as the z = 0 plane
and choosing the propagation of the mode as the
x-direction, choose as an Ansatz for the �elds

~Ei(~r, t) = ~Ei e
i(qx−ωt)e−κi|z|

~Bi(~r, t) = ~Bi e
i(qx−ωt)e−κi|z|

for i = 1, 2 and with positive decay constants κi > 0.
a) Formulate appropriate continuity conditions for the amplitudes ~Ei, ~Bi across the interface, z =

0. Show that the magnetic �elds are perpendicular to the interface and to the direction of
propagation, i.e. ~B = (0,By, 0).

b) Sketch the dispersion ω = ω(q). Show that for short wavelengths q � ωp/c, the surface-plasmon
polariton frequency approaches a constant ωs, whereas for long wavelength, the dispersion is
linear ω = csq to �rst order in q. Discuss the attenuation length li = 1/κi in the metal and the
dielectric as a function of frequency.
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