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Problem set 10

Tutorial 10.1 Dielectric sphere
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A dielectric sphere of radius R characterized by a
dielectric constant ε is placed in an initially uni-
form electric �eld ~E0. For convenience, choose the
center of the sphere as the origin and consider ~E0

along the z-axis. Then the problem exhibits an
axial symmetry, which simpli�es the problem.

a) Determine the electrostatic potential ϕ(~x) inside the sphere, |~x| ≤ R, and outside the sphere,
|~x| > R. Formulate appropriate matching conditions at the surface of the sphere. Recall that
the most general axially symmetric solution of Laplace's equation ∇2ϕ = 0 in polar coordinates,
~x = r(sinϑ cosφ, sinϑ sinφ, cosϑ), is given in terms of

ϕ(~x) =
∞∑

`=0

(
a`r

` + b`r
−(`+1)

)
P̀ (cosϑ) ,

where P̀ (t) denotes the Legendre polynomials and a`, b` are undetermined coe�cients.

b) Derive the corresponding electric �eld ~E(~x). Extract the polarization ~P (~x) inside the sphere
and �nd the total induced dipole moment ~p of the dielectric sphere. Determine the e�ective
polarizability of the sphere α de�ned by ~p = α~E0.

c) Show that charges accumulate at the surface of the sphere and determine the induced surface
charge density σ.



Problem 10.2 Magnetic shielding � µ-metal

A µ-metal is a nickel-iron alloy that has a very high magnetic permeability µ ∼ 104 − 106 � 1. The
technical application of these materials is the screening of static (or low-frequency) magnetic �elds,
which cannot be attenuated by other methods.
Consider a spherical shell of magnetic permeability µ and inner an outer radii Ri and Ro, respectively,

placed in a previously uniform magnetic �eld ~H∞. The medium inside and outside of the shell has a
magnetic permeability µ = 1.

a) Argue that one can introduce a scalar magnetic potential ϕM to represent the �eld ~H = −~∇ϕM ,
and show that it ful�lls the Laplace equation ∇2ϕM = 0 in each region.

b) State the appropriate matching conditions for ϕM at the interfaces r = Ri and r = Ro.

c) Recalling that the most general solution of the Laplace equation with cylindrical symmetry is
provided by

ϕM (~r) =
∞∑

`=0

(
a`r

` + b`r
−(`+1)

)
P̀ (cosϑ) ,

determine the magnetostatic potential in each region. Calculate explicitly the corresponding
magnetic �eld ~H inside of the shell.

d) Determine the leading behavior of the �eld inside of a thin shell of a µ-metal for µ→∞. Discuss
why a µ-metal provides an e�ective shielding.

Problem 10.3 Legendre polynomials

Consider the following partial di�erential equation

∂

∂t

[
(1− t2)∂ψ

∂t

]
= − ∂

∂r

(
r2
∂ψ

∂r

)
. (∗)

A solution is provided by the function

ψ(r, t) =
1√

1− 2rt+ r2
, −1 < r < 1 , −1 ≤ t ≤ 1 ,

which serves as a generating function for the Legendre polynomials P̀ (t), i.e., a Taylor expansion with
respect to r, ψ(r, t) =

∑∞
`=0 r

`P̀ (t), de�nes the functions P̀ (t).

a) Show by explicit substitution that ψ(r, t) indeed solves the partial di�erential equation (∗).
b) Identifying t = cosϑ reveals that ψ(r, t) corresponds to the Coulomb potential of a unit charge

located on the z-axis at unit distance from the origin. Thus ψ(r, t = cosϑ) solves the Laplace
equation in polar coordinates

∇2ψ(r, cosϑ) =
1
r2

∂

∂r

(
r2
∂ψ

∂r

)
+

1
r2 sinϑ

∂

∂ϑ

(
sinϑ

∂ψ

∂ϑ

)
= 0 .

Using this observation derive the partial di�erential equation (∗).
c) Determine explicitly P̀ (t = ±1) observing that for t = ±1 the Taylor series of ψ(r, t) becomes

elementary.

d) Employ the symmetries of ψ(r, t) to argue that P̀ (t) is a symmetric (anti-symmetric) function
for even (odd) `.

e) Inspect the Taylor series to demonstrate that P̀ (t) is a polynomial of order `.
Hint: Expand the square root in x = 2rt− r2.

f) Calculate and sketch the �rst four Legendre polynomials (` = 0, . . . 3).



g) Substitute the Taylor series of ψ(r, t) in the partial di�erential equation (∗). Comparing the
coe�cients of r` con�rm that the P̀ (t) satisfy the second order di�erential equation, i.e., they
are indeed Legendre polynomials,

d
dt

[
(1− t2)dP̀ (t)

dt

]
+ `(`+ 1)P̀ (t) = 0 , −1 ≤ t ≤ 1 . (∗∗)

h) Show that (1−2rt+r2)∂ψ/∂r = (t−r)ψ. Make use of this result to derive the recursion relation

`P`−1(t)− (2`+ 1)t P̀ (t) + (`+ 1)P`+1(t) = 0 .

Similarly, verify that (1− 2rt+ r2)∂ψ/∂t = rψ and prove

P′`+1(t)− 2tP′`(t) + P′`−1(t) = P̀ (t) .

i*) Show that the Legendre polynomials are orthogonal in the following sense,∫ 1

−1
dtP`(t)P`′(t) =

2
2`+ 1

δ``′ .

Hint: Employ the di�erential equation (∗∗) to show that

[`′(`′ + 1)− `(`+ 1)]
∫ 1

−1

dtP`(t)P`′(t) = 0

and conclude that orthogonality holds. The normalization follows by considering
∫

dt ψ(r, t)2. First
perform the integration directly; then use the Taylor expansion in r and the orthogonality property.
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