6/22/07SoSe 2007

Prof. Dr. E. Frey Dr. T. Franosch

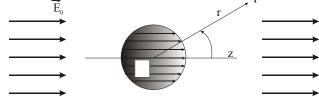
Lehrstuhl für Statistische Physik Biologische Physik & Weiche Materie Arnold-Sommerfeld-Zentrum für Theoretische Physik Department für Physik

T II: Elektrodynamik (Prof. E. Frey)

Problem set 10

Tutorial 10.1 Dielectric sphere

A dielectric sphere of radius R characterized by a dielectric constant ε is placed in an initially uniform electric field \vec{E}_0 . For convenience, choose the center of the sphere as the origin and consider E_0 along the z-axis. Then the problem exhibits an axial symmetry, which simplifies the problem.

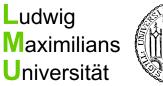


a) Determine the electrostatic potential $\varphi(\vec{x})$ inside the sphere, $|\vec{x}| \leq R$, and outside the sphere, $|\vec{x}| > R$. Formulate appropriate matching conditions at the surface of the sphere. Recall that the most general axially symmetric solution of Laplace's equation $\nabla^2 \varphi = 0$ in polar coordinates, $\vec{x} = r(\sin\vartheta\cos\phi,\sin\vartheta\sin\phi,\cos\vartheta)$, is given in terms of

$$\varphi(\vec{x}) = \sum_{\ell=0}^{\infty} \left(a_{\ell} r^{\ell} + b_{\ell} r^{-(\ell+1)} \right) \mathbf{P}_{\ell}(\cos \vartheta) \,,$$

where $P_{\ell}(t)$ denotes the Legendre polynomials and a_{ℓ}, b_{ℓ} are undetermined coefficients.

- b) Derive the corresponding electric field $\vec{E}(\vec{x})$. Extract the polarization $\vec{P}(\vec{x})$ inside the sphere and find the total induced dipole moment \vec{p} of the dielectric sphere. Determine the effective polarizability of the sphere α defined by $\vec{p} = \alpha \vec{E}_0$.
- c) Show that charges accumulate at the surface of the sphere and determine the induced surface charge density σ .



Problem 10.2 Magnetic shielding – µ-metal

A µ-metal is a nickel-iron alloy that has a very high magnetic permeability $\mu \sim 10^4 - 10^6 \gg 1$. The technical application of these materials is the screening of static (or low-frequency) magnetic fields, which cannot be attenuated by other methods.

Consider a spherical shell of magnetic permeability μ and inner an outer radii R_i and R_o , respectively, placed in a previously uniform magnetic field \vec{H}_{∞} . The medium inside and outside of the shell has a magnetic permeability $\mu = 1$.

- a) Argue that one can introduce a scalar magnetic potential φ_M to represent the field $\vec{H} = -\vec{\nabla}\varphi_M$, and show that it fulfills the Laplace equation $\nabla^2 \varphi_M = 0$ in each region.
- b) State the appropriate matching conditions for φ_M at the interfaces $r = R_i$ and $r = R_o$.
- c) Recalling that the most general solution of the Laplace equation with cylindrical symmetry is provided by

$$\varphi_M(\vec{r}) = \sum_{\ell=0}^{\infty} \left(a_\ell r^\ell + b_\ell r^{-(\ell+1)} \right) \mathbf{P}_\ell(\cos\vartheta) \,,$$

determine the magnetostatic potential in each region. Calculate explicitly the corresponding magnetic field \vec{H} inside of the shell.

d) Determine the leading behavior of the field inside of a thin shell of a μ -metal for $\mu \to \infty$. Discuss why a μ -metal provides an effective shielding.

Problem 10.3 Legendre polynomials

Consider the following partial differential equation

$$\frac{\partial}{\partial t} \left[(1 - t^2) \frac{\partial \psi}{\partial t} \right] = -\frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right). \tag{*}$$

A solution is provided by the function

$$\psi(r,t) = \frac{1}{\sqrt{1 - 2rt + r^2}}, \quad -1 < r < 1, \quad -1 \le t \le 1,$$

which serves as a generating function for the Legendre polynomials $P_{\ell}(t)$, i.e., a Taylor expansion with respect to r, $\psi(r,t) = \sum_{\ell=0}^{\infty} r^{\ell} P_{\ell}(t)$, defines the functions $P_{\ell}(t)$.

- a) Show by explicit substitution that $\psi(r, t)$ indeed solves the partial differential equation (*).
- b) Identifying $t = \cos \vartheta$ reveals that $\psi(r, t)$ corresponds to the Coulomb potential of a unit charge located on the z-axis at unit distance from the origin. Thus $\psi(r, t = \cos \vartheta)$ solves the Laplace equation in polar coordinates

$$\nabla^2 \psi(r, \cos \vartheta) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial \psi}{\partial \vartheta} \right) = 0 \,.$$

Using this observation derive the partial differential equation (*).

- c) Determine explicitly $P_{\ell}(t = \pm 1)$ observing that for $t = \pm 1$ the Taylor series of $\psi(r, t)$ becomes elementary.
- d) Employ the symmetries of $\psi(r,t)$ to argue that $P_{\ell}(t)$ is a symmetric (anti-symmetric) function for even (odd) ℓ .
- e) Inspect the Taylor series to demonstrate that $P_{\ell}(t)$ is a polynomial of order ℓ . Hint: Expand the square root in $x = 2rt - r^2$.
- f) Calculate and sketch the first four Legendre polynomials ($\ell = 0, \dots 3$).

g) Substitute the Taylor series of $\psi(r,t)$ in the partial differential equation (*). Comparing the coefficients of r^{ℓ} confirm that the $P_{\ell}(t)$ satisfy the second order differential equation, i.e., they are indeed Legendre polynomials,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[(1-t^2) \frac{\mathrm{d}P_{\ell}(t)}{\mathrm{d}t} \right] + \ell(\ell+1) P_{\ell}(t) = 0, \qquad -1 \le t \le 1.$$
(**)

h) Show that $(1-2rt+r^2)\partial\psi/\partial r = (t-r)\psi$. Make use of this result to derive the recursion relation

 $\ell P_{\ell-1}(t) - (2\ell+1)t P_{\ell}(t) + (\ell+1) P_{\ell+1}(t) = 0.$

Similarly, verify that $(1 - 2rt + r^2)\partial\psi/\partial t = r\psi$ and prove

$$P'_{\ell+1}(t) - 2tP'_{\ell}(t) + P'_{\ell-1}(t) = P_{\ell}(t).$$

i*) Show that the Legendre polynomials are orthogonal in the following sense,

$$\int_{-1}^{1} \mathrm{d}t \, \mathcal{P}_{\ell}(t) \mathcal{P}_{\ell'}(t) = \frac{2}{2\ell + 1} \delta_{\ell\ell'} \,.$$

Hint: Employ the differential equation (**) to show that

$$[\ell'(\ell'+1) - \ell(\ell+1)] \int_{-1}^{1} \mathrm{d}t \, \mathcal{P}_{\ell}(t) \mathcal{P}_{\ell'}(t) = 0$$

and conclude that orthogonality holds. The normalization follows by considering $\int dt \, \psi(r,t)^2$. First perform the integration directly; then use the Taylor expansion in r and the orthogonality property.