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Problem 4.1 Biopolymer

Many biopolymers (e.g. titin) have a modular structure, where each module can undergo a transition
between two energetically different states (folded and unfolded) in which the modules have different length
lf and lu, respectively (see figure); for titin lf = 4nm and lu = 32nm. Consider a polymer where N such
modular units are arranged in a straight line, Nu of which are in the unfolded state and Nf of which are
in the folded state, such that the total length is L = Nf lf + Nulu. The folded state with energy εf is
energetically favored with respect to the unfolded state with energy εu. Derive the relation between the
length L of the chain molecule and the tension F applied between both ends of the molecule. Use the
canonical ensemble at constant tension.

Figure 1: Illustration of a two-state model for a modular biopolymer like titin; see M. Rief et al., Phys. Rev.
Lett. 81, 4764 (1998).

Problem 4.2 entropy of mixing

Consider a container at temperature T of volume V separated by an unpermeable fixed wall into subsys-
tems of volume VA, VB, containing NA, NB particles, respectively. Removing the wall the system reaches a
new equilibrium state, where the N = NA +NB particles homogeneously fill the total container. Calculate
the change of entropy for such a process (mixing entropy) for the case that the particles in VA and VB are
chemically different/identical. Discuss the problem in particular for equal pressures in the subsystems and
underline the significance of the combinatorial factors in the partition sum.



Problem 4.3 typical states

Consider a thermodynamic system with discrete energy levels. The canonical ensemble assigns proba-
bilities for the microstates k with corresponding energy Ek according to
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Use the thermodynamic identity F = −kBT lnZ = 〈E〉 − TS to eliminate the partition sum Z in favor of
the mean energy 〈E〉 and the entropy S. Show that the probability for a typical state k, i.e. a state with an
energy close to the mean one, |Ek − 〈E〉| ≤ Nε, fulfills the bounds

e−S/kBe−Nε/kBT ≤ pk ≤ e−S/kBeNε/kBT .

Use the extensivity of the heat capacity
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to show that in the thermodynamic limit, N →∞ the atypical states have negligible weight, i.e.
∑′ pk → 0,

where the prime indicates that the sum is restricted to atypical states. Argue that in the thermodynamic
limit all typical microstates are essentially equiprobable, and that the entropy is a measure for the number
of these typical states.

Problem 4.4 free energy

Consider the probabilites for microstates k

pk(β) = Z(β)−1 exp(−βEk) , β = 1/kBT

of some thermodynamic system as a function of inverse temperature. Use probabilistic arguments to show

Z(β) = Z(β0)〈e
(β0−β)E〉0 ,

where 〈·〉0 denotes canonical averaging at inverse temperature β0 = 1/kBT0. Use the definition of the
cumulants to show that the corresponding free energies satisfy

−βF (β) = −β0F (β0) +
∞
∑

n=1

κn
(β0 − β)n

n!

where κn are the cumulants of the energy with respect to the probability distribution at β0.

Problem 4.5 ideal gas reservoir

Consider a system of N1 particles described by a Hamilton function H1 in weak thermal contact with
an ideal gas of N2 particles. Starting from the microcanonical probability distribution function for the joint
system, derive the probability distribution function of the system of the N1 particles alone by integrating
out the degrees of freedom of the ideal gas. Consider, in particular, the limit when the ideal gas acts as a
thermal reservoir, i.e. particle number N2 → ∞ and total energy E → ∞ with fixed energy per particle
ε = E/N2.


