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Problem set 11

Problem 11.1 Bose gas in two dimensions
Show that for an ideal Bose gas in two dimensions no Bose-Einstein condensation occurs.

Problem 11.2 Pauli para-magnetism
Consider the effect of spin on the magnetic susceptibility on a non-interacting electron gas. The hamil-

tonian is given by

H =
∑
sk

εsknsk , s =↑, ↓ , nsk = 0, 1.

The electrons are fermions with a dispersion relation

ε↑k =
~2k2

2m
− gH , ε↓k =

~2k2

2m
+ gH

Find the free energy F , the magnetization M = −(∂F/∂H)T and the susceptibility χT = (∂M/∂H)T of the
system for small fields H. Since the Fermi energy (chemical potential) is large compared to the temperatures
of interest, restrict the discussion to T = 0. Then the problem reduces to finding the ground state energy
compatible with the Pauli principle.

Problem 11.3 Bose gas in a harmonic trap
Recently it has been possible to cool simple gases to very low temperatures using optical traps. As a

simplified model consider the case of N � 1 non-interacting bosons confined by a spherical harmonic trap.
The energy eigenvalues for each particle are given by

εn = ~ω(nx + ny + nz) , nx, ny, nz ∈ N0

Here the energies are shifted such that the ground state corresponds to ε = 0, which can be achieved by
a corresponding shift of the chemical potential. Using the grand canonical ensemble for non-interacting
bosons

Φ
kBT

=
∑
n

ln(1− ze−βεn) , z = eβµ

relate the particle number N to the fugacity z. For sufficiently low temperatures the ground state is
populated macroscopically, and deserves special treatment. Separate the sum over all states into ground



state and remaining ones. The sum over non-condensate states can be replaced by an integral as in continuum
BEC.

Determine the fugacity where the condensate occurs. Show that the critical temperature where the phase
transition occurs is given by

kBTc = ~ω

(
N

g3(1)

)1/3

� ~ω

with the Bose function g3(z) =
∑∞

j=1 zj/j3. Evaluate the condensate fraction for T ≤ Tc.
Calculate the energy and specific heat in the low temperature phase T ≤ Tc.

Problem 11.4 Rotons
In superfluid 4He the dispersion relation ωk of collective density fluctuations exhibits a minimum at some

finite wave number k0. The elementary excitations to wave numbers close to k0 can approximately regarded
as non-interacting bosons called rotons, and there the dispersion relation is given by

~ωk = ∆ +
~2(k − k0)2

2m∗ , ∆ > 0 ,m∗ > 0

Use the effective hamiltonian

H =
∑
k

~ωknk , nk = 0, 1, ...

and calculate the mean number of rotons Nrot =
∑

k n̄k in leading order at low temperatures. Convince
yourself that the mean occupation numbers n̄k = [exp(β~ωk) − 1]−1 are small so that one can replace
them by the Boltzmann value n̄k ≈ e−β~ωk . Evaluate the mean energy E =

∑
k ~ωkn̄k and find the roton

contribution to the specific heat.

∗Problem 11.5 relativistic electrons
Calculate the energy and pressure of a relativistic degenerate Fermi gas, i.e. temperature T = 0. Discuss

the cross-over from the non-relativistic to the ultra-relativistic case.


