
1

Bacterial Games

Erwin Frey and Tobias Reichenbach

1 Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience,
Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München,
Germany

2 Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The
Rockefeller University, New York, New York 10065-6399, U.S.A.

Abstract. Microbial laboratory communities have become model systems for study-
ing the complex interplay between nonlinear dynamics of evolutionary selection
forces, stochastic fluctuations arising from the probabilistic nature of interactions,
and spatial organization. Major research goals are to identify and understand mech-
anisms that ensures viability of microbial colonies by allowing for species diversity,
cooperative behavior and other kinds of “social” behavior. A synthesis of evolution-
ary game theory, nonlinear dynamics, and the theory of stochastic processes pro-
vides the mathematical tools and conceptual framework for a deeper understanding
of these ecological systems. We give an introduction into the modern formulation
of these theories and illustrate their effectiveness focussing on selected examples of
microbial systems. Intrinsic fluctuations, stemming from the discreteness of individ-
uals, are ubiquitous, and can have important impact on the stability of ecosystems.
In the absence of speciation, extinction of species is unavoidable, may, however, take
very long times. We provide a general concept for defining survival and extinction
on ecological time-scales. Spatial degrees of freedom come with a certain mobility of
individuals. When the latter is sufficiently high, bacterial community structures can
be understood through mapping individual-based models, in a continuum approach,
onto stochastic partial differential equations. These allow progress using methods of
nonlinear dynamics such as bifurcation analysis and invariant manifolds. We con-
clude with a perspective on the current challenges in quantifying bacterial pattern
formation, and how this might have an impact on fundamental research in non-
equilibrium physics.
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1.1 Introduction

Microbial systems are complex assemblies of large numbers of individuals,
interacting competitively under multifaceted environmental conditions. Bac-
teria often grow in complex, dynamical communities, pervading the earth’s
ecological systems, from hot springs to rivers and the human body [1]. As an
example, in the latter case, they can cause a number of infectious diseases, such
as lung infection by Pseudomonas aeruginosa. Bacterial communities, quite
generically, form biofilms [1, 2], i.e., they arrange into a quasi-multi-cellular
entity where they highly interact. These interactions include competition for
nutrients, cooperation by providing various kinds of public goods essential for
the formation and maintenance of the biofilm [3], communication through the
secretion and detection of extracellular substances [4,5], chemical warfare [7],
and last but not least physical forces. The ensuing complexity of bacterial
communities has conveyed the idea that they constitute a kind of “social
groups” where the coordinated action of individuals leads to various kinds of
system-level functionalities [6].

Since additionally microbial interactions can be manipulated in a multi-
tude of ways, many researchers have turned to microbes as the organisms of
choice to explore fundamental problems in ecology and evolutionary dynam-
ics [7, 8, 9]. Much effort is currently devoted to qualitative and quantitative
understanding of basic mechanisms that maintain the diversity of microbial

populations. Hereby, within exemplary models, the formation of dynamic spa-
tial patterns has been identified as a key promoter [10, 11, 12, 13]. In partic-
ular, the crucial influence of self-organized patterns on biodiversity has been
demonstrated in recent experimental studies [7], employing three bacterial
strains that display cyclic competition. The latter is metaphorically described
by the game “rock-paper-scissors” where rock smashes scissors, scissors cut
paper, and paper wraps rock in turn. For the three bacterial strains, and for
low microbes motility, cyclic dominance leads to the stable coexistence of all
three strains through self-formation of spatial patterns. In contrast, stirring
the system, as can also result from high motilities of the individuals, destroys
the spatial structures which results in the take over of one subpopulation and
the extinction of the others after a short transient. There is also an ongoing
debate in sociobiology how cooperation within a population emerges in the
first place and how it is maintained in the long run. Microbial communities
again serve as versatile model systems for exploring these questions [8, 9].
In those systems, cooperators are producers of a common good, usually a
metabolically expensive biochemical product. Hence a successfully cooperat-
ing collective of microbes permanently runs the risk to be undermined by
non-producing strains (“cheaters”) saving the metabolically costly supply of
biofilm formation [14, 3]. As partial resolutions to this puzzling dilemma re-
cents studies emphasize nonlinear benefits [8] and population bottlenecks in
permanently regrouping populations [9].
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This article is intended as an introduction into some of the theoretical
concepts which are useful in deepening our understanding of these systems.
We will start with an introduction to the language of game theory and after
a short discussion of “strategic games” quickly move to “evolutionary game
theory”. The latter is the natural framework for the evolutionary dynamics
of populations consisting of interacting multiple species, where the success
of a given individual depends on the behavior of the surrounding ones. It is
most naturally formulated in the language of nonlinear dynamics, where the
game theory terms “Nash equilibrium” or “evolutionary stable strategy” map
onto “fixed points” of ordinary nonlinear differential equations. Illustrations
of these concepts are given in terms of two-strategy games and the cyclic
Lotka-Volterra model, also known as the “rock-paper-scissors” game. Before
embarking on the theoretical analysis of the role of stochasticity and space
we give, in a short chapter 3, some examples of game-theoretical problems in
biology, mainly taken from the field of microbiology.

A deterministic description of populations of interacting individuals in
terms of nonlinear differential equations misses some important features of
actual ecological systems. The molecular processes underlying the interaction
between individuals are often inherently stochastic and the number of indi-
viduals is always discrete. As a consequence, there are random fluctuations in
the composition of the population which can have an important impact on the
stability of ecosystems. In the absence of speciation, extinction of species is
unavoidable, may, however, take very long times. Chapter 4 starts with some
elementary, but very important, notes on extinction times, culminating in a
general concept for defining survival and extinction on ecological time scales.
These ideas are then illustrated for the rock-scissors-paper game.

Cyclic competition of species, as metaphorically described by the childrens
game “rock-paper-scissors”, is an intriguing motif of species interactions. Lab-
oratory experiments on populations consisting of different bacterial strains of
E. coli have shown that bacteria can coexist if a low mobility enables the
segregation of the different strains and thereby the formation of patterns [7].
In chapter 5 we analyze the impact of stochasticity as well as individuals mo-
bility on the stability of diversity as well as the emerging patterns. Within a
spatially-extended version of the May-Leonard model [15] we demonstrate the
existence of a sharp mobility threshold [13], such that diversity is maintained
below, but jeopardized above that value. Computer simulations of the ensu-
ing stochastic cellular automaton show that entangled rotating spiral waves
accompany biodiversity. In our final chapter we conclude with a perspective
on the current challenges in quantifying bacterial pattern formation and how
this might also have an impact on fundamental research in non-equilibrium
physics.
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1.2 The language of game theory

1.2.1 Strategic games and social dilemmas

Classical game theory [16] describes the behavior of rational players. It at-
tempts to mathematically capture behavior in strategic situations, in which
an individual’s success in making choices depends on the choices of others.
A classical example of a strategic game is the prisoner’s dilemma. It can be
formulated as a kind of a public good game where a cooperator provides a ben-
efit b to another individual, at a cost c to itself (with b − c > 0). In contrast,
a defector refuses to provide any benefit and hence does not pay any costs.
For the selfish individual, irrespective of whether the partner cooperates or
defects, defection is favorable, as it avoids the cost of cooperation, exploits
cooperators, and ensures not to become exploited. However, if all individuals
act rationally and defect, everybody is, with a gain of 0, worse off compared
to universal cooperation, where a net gain of b−c > 0 would be achieved. This
unfavorable outcome of the game, where both play “defect”, is called Nash

equilibrium [17]. The prisoner’s dilemma therefore describes, in its most basic
form, the fundamental problem of establishing cooperation. It is summarized
in the following payoff matrix (for the column player):

P Cooperator (C) Defector (D)
C b − c −c
D b 0

This scheme can be generalized to include other basic types of social dilem-
mas [18, 19]. Namely, two cooperators that meet are both rewarded a payoff
R, while two defectors obtain a punishment P . When a defector encounters
a cooperator, the first exploits the second, gaining the temptation T , while
the cooperator only gets the suckers payoff S. Social dilemmas occur when
R > P , such that cooperation is favorable in principle, while temptation to
defect is large: T > S, T > P . These interactions may be summarized by the
payoff matrix:

P Cooperator (C) Defector (D)
C R S
D T P

Variation of the parameters T , P , R and S yields four distinct types of games.
The prisoner’s dilemma arises if the temptation T to defect is larger than the
reward R, and if the punishment P is larger than the suckers payoff S. As
we have already seen above, in this case, defection is the best strategy for
the selfish player. Within the three other types of games, defectors are not
always better off. For the snowdrift game the temptation T is still higher
than the reward R but the sucker’s payoff S is larger than the punishment
P . Therefore, now actually cooperation is favorable when meeting a defector,
but defection pays off when encountering a cooperator, and a rational strat-
egy consists of a mixture of cooperation and defection. The snowdrift game
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derives its name from the potentially cooperative interaction present when
two drivers are trapped behind a large pile of snow, and each driver must
decide whether to clear a path. Obviously, then the optimal strategy is the
opposite of the opponent’s (cooperate when your opponent defects and defect
when your opponent cooperates). Another scenario is the coordination game,
where mutual agreement is preferred: either all individuals cooperate or defect
as the reward R is higher than the temptation T and the punishment P is
higher than sucker’s payoff S. Lastly, the scenario of by-product mutualism

(also called harmony) yields cooperators fully dominating defectors since the
reward R is higher than the temptation T and the sucker’s payoff S is higher
than the punishment P .

1.2.2 Evolutionary game theory

Strategic games are thought to be a useful framework in economic and social
settings. In order to analyze the behavior of biological systems, the concept of
rationality is not meaningful. Evolutionary Game Theory (EGT), as developed
mainly by Maynard Smith and Price [20, 21], does not rely on rationality
assumptions but on the idea that evolutionary forces like natural selection and
mutation are the driving forces of change. The interpretation of game models
in biology is fundamentally different from strategic games in economics or
social sciences. In biology, strategies are considered to be inherited programs
which control the individual’s behavior. Typically one looks at a population
composed of individuals with different strategies who interact generation after
generation in game situations of the same type. The interactions may be
described by deterministic rules or stochastic processes, depending on the
particular system under study. The ensuing dynamic process can then be
viewed as an iterative (nonlinear) map or a stochastic process (either with
discrete or continuous time). This naturally puts evolutionary game theory in
the context of nonlinear dynamics and the theory of stochastic processes. We
will see later on how a synthesis of both approaches helps to understand the
emergence of complex spatio-temporal dynamics.

In this section, we focus on a deterministic description of well-mixed pop-

ulations. The term “well-mixed” signifies systems where the individual’s mo-
bility (or diffusion) is so large that one may neglect any spatial degrees of
freedom and assume that every individual is interacting with everyone at the
same time. This is a mean-field picture where interactions are given in terms
of the average number of individuals playing a particular strategy. Frequently,
this situation is visualized as an “urn model”, where two individuals from a
population are randomly selected to play with each other according to some
specified game theoretical scheme. The term “deterministic” means that we
are seeking a description of populations where the number of individuals Ni(t)
playing a particular strategy Ai are macroscopically large such that stochastic
effects can be neglected.
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Fig. 1.1. The urn model describes the evolution of well-mixed finite populations.
Here, as an example, we show three species as yellow (A), red (B), and blue (C)
spheres. At each time step, two randomly selected individuals are chosen (indicated
by arrows in the left picture) and interact with each other according to the rules of
the game resulting in an updated composition of the population (right picture).

Pairwise reactions and rate equations

In the simplest setup the interaction between individuals playing different
strategies can be represented as a reaction process characterized by a set of
rate constants. For example, consider a game where three strategies {A, B, C}
cyclically dominate each other, as in the rock-paper-scissors game: A invades
B, B outperforms C, and C in turn dominates over A, schematically drawn
in Fig.1.2:

BC

A

Fig. 1.2. Illustration of cyclic dominance of three states A, B, and C: A invades B,
B outperforms C, and C in turn dominates over A.

In an evolutionary setting, the game may be played according to an urn
model as illustrated in Fig.1.1: at a given time t two individuals from a pop-
ulation with constant size N are randomly selected to play with each other
(react) according to the reaction scheme

A + B
k

A−→ A + A ,

B + C
k

B−→ B + B , (1.1)

C + A
k

C−→ C + C ,

where ki are rate constants, i.e. probabilities per unit time. This interaction
scheme is termed a cyclic Lotka-Volterra model 3. It is equivalent to a set of

3 The two-species Lotka-Volterra equations describe a predator-prey system where
the per-capita growth rate of prey decreases linearly with the amount of predators
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chemical reactions, and in the deterministic limit of a well-mixed population
one obtains rate equations for the frequencies (a, b, c) = (NA, NB, NC)/N :

∂ta = a(kAb − kCc) ,

∂tb = b(kBc − kAa) , (1.2)

∂tc = c(kCa − kBb) .

Here the right hand sides gives the balance of “gain” and “loss” processes.
The phase space of the model is the simplex S3, where the species’ densities
are constrained by a + b + c = 1. There is a constant of motion for the rate
equations, Eq.(1.3), namely the quantity ρ := akBbkC ckA does not evolve in
time [25]. As a consequence, the phase portrait of the dynamics, shown in
Fig. 1.3, yield neutrally stable cycles with fixed ρ around the reactive fixed
point F . This implies that the deterministic dynamics is oscillatory with the
amplitude and frequency determined by the initial composition of the popu-
lation.

Fig. 1.3. The three-species simplex for reaction rates kA = 0.2, kB = 0.4, kC =
0.4. Since there is a conserved quantity, the rate equations predict cyclic orbits of
constant ρ = akB bkC ckA ; F signifies the neutrally stable reactive fixed point.

The concept of fitness and replicator equations

Another line of thought to define an evolutionary dynamics, often taken in
the mathematical literature of evolutionary game theory [24, 25], introduces
the concept of fitness and then assumes that the per-capita growth rate of a
strategy Ai is given by the surplus in its fitness with respect to the average
fitness of the population. We will illustrate this reasoning for two-strategy

present. In the absence of prey, predators die, but there is a positive contribution
to their growth which increases linearly with the amount of prey present [22,23].
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games with a payoff matrix given by Eq. (1.2.1). Let NA and NB be the
number of individuals playing strategy A (cooperator) and B (defector) in a
population of size N = NA + NB. Then the relative abundances of strategies
A and B are given by

a =
NA

N
, b =

NB

N
= (1 − a) . (1.3)

The “fitness” of a particular strategy A or B is defined as a constant back-

ground fitness, set to 1, plus the average payoff obtained from playing the
game:

fA(a) := 1 + Ra + S(1 − a) , (1.4)

fB(a) := 1 + T a + P(1 − a) . (1.5)

In order to mimic an evolutionary process one is seeking a dynamics which
guarantees that individuals using strategies with a fitness larger than the av-
erage fitness increase while those using strategies with a fitness below average
decline in number. This is, for example, achieved by choosing the per-capita
growth rate, ∂ta/a, of individuals playing strategy A proportional to their
surplus in fitness with respect to the average fitness of the population:

f̄(a) := afA(a) + (1 − a)fB(a) . (1.6)

The ensuing ordinary differential equation is known as the standard replicator

equation [24, 25]

∂ta =
[

fA(a) − f̄(a)
]

a . (1.7)

Lacking a detailed knowledge of the actual “interactions” of individuals in
a population, there is, of course, plenty of freedom in how to write down a
differential equation describing the evolutionary dynamics of a population. In-
deed, there is another set of equations frequently used in EGT, called adjusted

replicator equations, which reads

∂ta =
fA(a) − f̄(a)

f̄(a)
a . (1.8)

The correct form to be used in an actual biological setting may be neither of
these standard formulations. Typically, some knowledge about the molecular
mechanisms is needed to formulate a realistic dynamics. As we will learn
in section 1.3 the functional form of the payoff depends on the microbes’
metabolism and is, in general, a nonlinear function of the relative abundances
of the various strains in the population.

One may also criticise the assumption of constant population size made
in evolutionary game theory. The internal evolution of different traits and
the dynamics of the species population size are in fact not independent [26].
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Species typical coevolve with other species in a changing environment and a
separate description of both, evolutionary and population dynamics, is in gen-
eral not justified. In particular, a species’ population dynamics does not only
affect the evolution within each species as considered for example by models
of density-dependent selection [27] but population dynamics is also biased by
the internal evolution of different traits. One visual example for this coupling
are biofilms which permanently grow and shrink. In these microbial structures
diverse strains live, interact, and outcompete each other while simultaneously
affecting the population size [14]. A proper combined description of the total
temporal development should therefore be solely based on isolated birth and
death events, as recently suggested in Ref. [28]. Such an approach offers also
a more biological interpretation of evolutionary dynamics than common for-
mulations like the Fisher-Wright or the Moran process [29, 30, 31, 32]: fitter
individuals prevail due to higher birth rates and not by winning a tooth-and-
claw struggle where the birth of one individual directly results in the death
of another one.

1.2.3 Nonlinear dynamics of two-player games

This section is intended to give a concise introduction into elementary concepts
of nonlinear dynamics [33]. We illustrate those for the evolutionary dynamics
of two-player games characterized in terms of the payoff matrix, Eq.(1.2.1),
and the ensuing replicator dynamics

∂ta = a(fA − f̄) = a(1 − a)(fA − fB) . (1.9)

This equation has a simple interpretation: the first factor, a(1 − a), is the
probability for A and B to meet and the second factor, fA − fB, is the fitness
advantage of A over B. Inserting the explicit expressions for the fitness values
one finds

∂ta = a(1 − a)
[

µA(1 − a) − µBa
]

=: F (a) , (1.10)

where µA is the relative benefit of A playing against B and µB is the relative
benefit of B playing against A:

µA := S − P , µB := T −R . (1.11)

Eq.1.10 is a one-dimensional nonlinear first-oder differential equation for
the fraction a of players A in the population, whose dynamics is most easily
analyzed graphically. The sign of F (a) determines the increase or decrease of
the dynamic variable a; compare the right half of Fig.1.4. The intersections
of F (a) with the a-axis (zeros) are fixed points, a∗. Generically, these inter-
sections are with a finite slope F ′(a∗) 6= 0; a negative slope indicates a stable
fixed point while a positive slope an unstable fixed point. Depending on some
control parameters, here µA and µB, the first or higher order derivatives of F
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Prisoner’s Dilemma

Coordination Game

Snowdrift Game

Harmony

µ
B

µA

F(a)

a10

Fig. 1.4. Classification of two-player games. Left: The black arrows in the control
parameter plane (µA, µB) indicate the flow behavior of the four different types of
two-player games. Right: Graphically the solution of a one-dimensional nonlinear
dynamics equation, ∂ta = F (a), is simply read off from the signs of the function
F (a); illustration for the snowdrift game.

at the fixed points may vanish. These special parameter values mark “thresh-
old values” for changes in the flow behavior (bifurcations) of the nonlinear
dynamics. We may now classify two-player games as illustrated in Fig.1.4.

For the prisoner’s dilemma µA = −c < 0 and µB = c > 0 and hence
players with strategy B (defectors) are always better off (compare the payoff
matrix). Both players playing strategy B is a Nash equilibrium. In terms of
the replicator equations this situation corresponds to F (a) < 0 for a 6= 0 and
F (a) = 0 at a = 0, 1 such that a∗ = 0 is the only stable fixed point. Hence
the term “Nash equilibrium” translates into the “stable fixed point” of the
replicator dynamics (nonlinear dynamics).

For the snowdrift game both µA > 0 and µB > 0 such that F (a) can change
sign for a ∈ [0, 1]. In fact, a∗

int = µA/(µA + µB) is a stable fixed point while
a∗ = 0, 1 are unstable fixed points; see the right panel of Fig.1.4. Inspection
of the payoff matrix tells us that it is always better to play the opposite
strategy of your opponent. Hence there is no Nash equilibrium in terms of
pure strategies A or B. This corresponds to the fact that the boundary fixed
points a∗ = 0, 1 are unstable. There is, however, a Nash equilibrium with a
mixed strategy where a rational player would play strategy A with probability
pA = µA/(µA + µB) and strategy B with probability pB = 1 − pA. Hence,
again, the term “Nash equilibrium” translates into the “stable fixed point” of
the replicator dynamics (nonlinear dynamics).

For the coordination game, there is also an interior fixed point at a∗

int =
µA/(µA +µB), but now it is unstable, while the fixed points at the boundaries
a∗ = 0, 1 are stable. Hence we have bistability: for initial values a < a∗

int the
flow is towards a = 0 while it is towards a = 1 otherwise. In the terminology of
strategic games there are two Nash equilibria. The game harmony corresponds
to the prisoner’s dilemma with the roles of A and B interchanged.
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1.3 Games in microbial metapopulations

Two of the most fundamental question that challenge our understanding of
evolution and ecology are the origin of cooperation [34,35,36,4,5,37,8,9] and
biodiversity [38,39,40,7,6]. Both are ubiquitous phenomena yet conspicuously
difficult to explain since the fitness of an individual or the whole commu-
nity depends in an intricate way on a plethora of factors, such as spatial
distribution and mobility of individuals, secretion and detection of signaling
molecules, toxin secretion leading to inter-strain competition and changes in
environmental conditions. It is fair to say that we are still a far way off from
a full understanding, but the versatility of microbial communities makes their
study a worthwhile endeavor with exciting discoveries still ahead of us.

Cooperation

Understanding the conditions that promote the emergence and maintenance
of cooperation is a classic problem in evolutionary biology [41,42,21]. It can be
stated in the language of the prisoners dilemma. By providing a public good,
cooperative behavior would be beneficial for all individuals in the whole pop-
ulation. However, since cooperation is costly, the population is at risk from
invasion by “selfish” individuals (cheaters), who save the cost of cooperation
but can still obtain the benefit of cooperation from others. In evolutionary the-
ory many principles were proposed to overcome this dilemma of cooperation:
repeated interaction [36,41], punishment [36,43], or kin discrimination [44,14].
All of these principles share one fundamental feature: They are based on some
kind of selection mechanism. Similar to the old debate between “selectionists”
and “neutralists” in evolutionary theory [45], there is an alternative. Due to
random fluctuations a population, initially composed of both cooperators and
defectors, may (with some probability) become fixed in a state of cooperators
only [46].

There has been an increasing number of experiments using microorgan-
isms trying to shed new light on the problem of cooperation [34,35,8,9]. Here,
we will shortly discuss a recent experiment on “cheating in yeast” [8]. Bud-
ding yeast prefers to use the monosaccharides glucose and fructose as carbon
sources. If they have to grow on sucrose instead, the disaccharide must first
be hydrolyzed by the enzyme invertase. Since a fraction of approximately
1 − ǫ = 99% of the produced monosaccharides diffuses away and is shared
with neighboring cells, it constitutes a public good available to the whole
microbial community. This makes the population susceptible to invasion by
mutant strains that save the metabolic cost of producing invertase. One is now
tempted to conclude from what we have discussed in the previous sections that
yeast is playing the prisoner’s dilemma game. The cheater strains should take
over the population and the wild type strain should become extinct. But, this
is not the case. Gore and collaborators [8] show that the dynamics is rather
described as a snowdrift game, in which cheating can be profitable, but is not
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necessarily the best strategy if others are cheating too. The explanation given
is that the growth rate as a function of glucose is highly concave and, as a
consequence, the fitness function is non-linear in the payoffs 4

fC(x) :=
[

ǫ + x(1 − ǫ)
]α − c , (1.12)

fD(a) :=
[

x(1 − ǫ)
]α

, (1.13)

with α ≈ 0.15 determined experimentally. The ensuing phase diagram, Fig. 1.5
as a function of capture efficiency ǫ and metabolic cost c shows an altered inter-
mediate regime with a bistable phase portrait, i.e. the hallmark of a snowdrift
game as discussed in the previous section. This explains the experimental ob-
servations. The lesson to be learned from this investigation is that defining a
payoff function is not a trivial matter, and a naive replicator dynamics fails to
describe biological reality. It is, in general, necessary to have a detailed look
on the nature of the biochemical processes responsible for the growth rates of
the competing microbes.
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f C  = [ε + x (1 − ε)]  – c

Fig. 1.5. Game theory models of cooperation in sucrose metabolism of yeast. a)
Phase diagram resulting from fitness functions fC and fD linear in the payoffs. This
model leads to fixation of cooperators (x = 1) at low cost and/or high efficiency
of capture (ǫ > c, implying that the game is mutually beneficial (MB)) but fix-
ation of defectors (x = 0) for high cost and/or low efficiency of capture (ǫ < c,
implying that the game is prisoners dilemma (PD)). b) A model of cooperation
with experimentally measured concave benefits yields a central region of parameter
space that is a snowdrift game (SG), thus explaining the coexistence that is observed
experimentally (α = 0.15). Adapted from Ref. [8]

4 Note that ǫ is the fraction of carbon source kept by cooperators solely for them-
selves and x(1 − ǫ) is the amount of carbon source shared with the whole com-
munity. Hence, the linear growth rate of cooperators and defectors would by
ǫ + x(1 − ǫ) − c and x(1 − ǫ), respectively, where c is the metabolic cost for
invertase production.
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Pattern formation

Investigations of microbial pattern formation have often focussed on one bacte-
rial strain [47,48,49]. In this respect, it has been found that bacterial colonies
on substrates with a high nutrient level and intermediate agar concentra-
tions, representing “friendly” conditions, grow in simple compact patterns [50].
When instead the level of nutrient is lowered, when the surface on which
bacteria grow possesses heterogeneities, or when the bacteria are exposed to
antibiotics, complex, fractal patterns are observed [47, 51, 52]. Other factors
that affect the self-organizing patterns include motility [53], the kind of bac-
terial movement, e.g., swimming [54], swarming, or gliding [55, 56], as well
as chemotaxis and external heterogeneities [57]. Another line of research has
investigated patterns of multiple co-evolving bacterial strains. As an example,
recent studies looked at growth patterns of two functionally equivalent strains
of Escherichia coli and showed that, due to fluctuations alone, they segregate
into well-defined, sector like regions [48, 58].

The Escherichia Col E2 system

Several Colibacteria such as Escherichia coli are able to produce and secrete
specific toxins called Colicines that inhibit growth of other bacteria. Kerr and
coworkers [7] have studied three strains of E. coli, amongst which one is able
to produce the toxin Col E2 that acts as an DNA endonuclease. This poison
producing strain (C) kills a sensitive strain (S), which outgrows the third,
resistant one (R), as resistance bears certain costs. The resistant bacteria
grow faster than the poisonous ones, as the latter are resistant and produce
poison, which is yet an extra cost. Consequently, the three strains of E. coli

display cyclic competition, similar to the children’s game rock-paper-scissors.
When placed on a Petri-dish, all three strains coexist, arranging in time-

dependent spatial clusters dominated by one strain. In Fig. 1.6, snapshots of
these patterns monitored over several days are shown. Sharp boundaries be-
tween different domains emerge, and all three strains co-evolve at comparable
densities. The patterns are dynamic: Due to the non-equilibrium character of
the species’ interactions, clusters dominated by one bacterial strain cyclically
invade each other, resulting in an endless hunt of the three species on the
Petri-dish. The situation changes considerably when putting the bacteria in a
flask with additional stirring. Then, only the resistant strain survives, while
the two others die out after a short transient time.

These laboratory experiments thus provide intriguing experimental evi-
dence for the importance of spatial patterns for the maintenance of biodi-
versity. In this respect, many further questions regarding the spatio-temporal
interactions of competing organisms under different environmental conditions
lie ahead. Spontaneous mutagenesis of single cells can lead to enhanced fit-
ness under specific environmental conditions or due to interactions with other
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Fig. 1.6. The three strains of the Escherichia Col E2 system evolve into spatial
patterns on a Petri-dish. The competition of the three strains is cyclic (of rock-
paper-scissors type) and therefore non-equilibrium in nature, leading to dynamic
patterns. The picture has been modified from [7].

species. Moreover, interactions with other species may allow unfit, but po-
tentially pathogenic bacteria to colonize certain tissues. Additionally, high
concentrations of harmless bacteria may help pathogenic ones to nest on tis-
sues exposed to extremely unfriendly conditions. Information about bacterial
pattern formation arising from bacterial interaction may therefore allow to
develop mechanism to avoid pathogenic infection.

1.4 Stochastic dynamics in well-mixed populations

The machinery of biological cells consists of networks of molecules interact-
ing with each other in a highly complex manner. Many of these interactions
can be described as chemical reactions, where the intricate processes which
occur during the encounter of two molecules are reduced to reaction rates,
i.e. probabilities per unit time. This notion of stochasticity carries over to the
scale of microbes in a manifold way. There is phenotypic noise. Due to fluctu-
ations in transcription and translation, phenotypes vary even in the absence
of genetic differences between individuals and despite constant environmen-
tal conditions [59, 60]. In addition, phenotypic variability may arise due to
various external factors like cell density, nutrient availability and other stress
conditions. A general discussion of phenotypic variability in bacteria may be
found in recent reviews [61,62,63,64]. There is interaction noise. Interactions
between individuals in a given population, as well as cell division and cell
death, occur at random points in time (following some probability distribu-
tion) and lead to discrete steps in the number of the different species. Then,
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as noted long ago by Delbrück [65], a deterministic description, as discussed
in the previous section, breaks down for small copy numbers. Finally, there
is external noise due to spatial heterogeneities or temporal fluctuations in
the environment. In this section we will focus on interaction noise, whose
role for extinction processes in ecology has recently been recognized to be
very important, especially when the deterministic dynamics exhibits neutral
stability [66, 67, 68] or weak stability [69, 46]. After a brief and elementary
discussion of extinction times we will introduce a general concept for defining
survival and extinction on ecological time-scales. The concept of extinction
will be illustrated for the stochastic dynamics of the cyclic Lotka-Volterra
model [67].

1.4.1 Extinction times and classification of coexistence stability

For a deterministic system, given an initial condition, the outcome of the
evolutionary dynamics is certain. However, processes encountered in biologi-
cal systems are often stochastic. For example, consider the degradation of a
protein or the death of an individual bacterium in a population. To a good
approximation it can be described as a stochastic event which occurs at a
probability per unit time (rate) λ, known as a stochastic linear death process.
Then the population size N(t) at time t becomes a random variable, and its
time evolution becomes a set of integers {Nα} changing from Nα to Nα−1 at
particular times tα; this is also called a realization of the stochastic process.
Now it is no longer meaningful to ask for the time evolution of a particular
population, as one would do in a deterministic description in terms of a rate
equation, ∂tN = −λN . Instead one studies the time evolution of an ensemble
of systems or tries to understand the distribution of times {tα}. A central
quantity in this endeavor is the probability P (N, t) to find a population of
size N given that at some time t = 0 there was some initial ensemble of pop-
ulations. Assuming that the stochastic process is Markovian, its dynamics is
given by the following master equation:

∂tP (N, t) = λ(N + 1)P (N + 1, t) − λNP (N, t) . (1.14)

A master equation is a “balance equation” for probabilities. The right hand
side simply states that there is an increase in P (N, t) if in a population of
size N + 1 an individual dies with rate λ, and a decrease in P (N, t) if in a
population of size N an individual dies with rate λ. Master equations can be
analyzed by standard tools from the theory of stochastic processes [70, 71].

A quantity of central interest is the average extinction time T , i.e. the
expected time for the population to reach the state N = 0. This state is also
called an absorbing state since (for the linear death process considered here)
there are only processes leading into but not out of this state. The expected
extinction time T can be obtained using rather elementary concepts from
probability theory. Consider the probability Q(t) that a given individual is
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still alive at time t conditioned on that it was alive at some initial time t = 0.
Since an individual will be alive at time t+ dt if it was alive at time t and did
not die within the time interval [t, t + dt] we immediately obtain the identity

Q(t + dt) = Q(t)(1 − λt) with Q(0) = 1 . (1.15)

The ensuing differential equation (in the limit dt → 0), Q̇ = −λQ is solved
by Q(t) = e−λt. This identifies τ = 1/λ as the expected waiting time for
a particular individual to die. We conclude that the waiting times for the
population to change by one individual is distributed exponentially and its
expected value is τN = τ/N for a population of size N ; note that each indi-
vidual in a population has the same chance to die. Hence we can write for the
expected extinction time for a population with initial size N0

T = τN0
+ τN0−1 + · · · + τ1 =

N0
∑

N=1

τ

N
≈ τ

∫ N0

1

1

N
dN = τ lnN0 . (1.16)

We have learned that for a system with a “drift” towards the absorbing bound-
ary of the state space the expected time to reach this boundary scales, quite
generically, logarithmically in the initial population size, T ∼ lnN0. Note that
within a deterministic description, Ṅ = −λN , the population size would expo-
nentially decay to zero but never reach it, N(t) = N0e

−t/τ . This is, of course,
flawed in two ways. First, the process is not deterministic and, second, the
population size is not a real number. Both features are essential to understand
the actual dynamics of a population at low copy numbers of individuals.

Now we would like to contrast the linear death process with a “neutral
process” where death and birth events balance each other, i.e. where the
birth rate µ exactly equals the death rate λ. In a deterministic description
one would write

∂tN(t) = −(λ − µ)N(t) = 0 (1.17)

and conclude that the population size remains constant at its initial value. In
a stochastic description, one starts from the master equation

∂tP (N, t) = λ(N +1)P (N +1, t)+λ(N −1)P (N −1, t)−2λNP (N, t) . (1.18)

Though this could be solved exactly using generating functions it is instructive
to derive an approximation valid in the limit of a large population size, i.e.
N ≫ 1. This is most easily done by simply performing a second order Taylor
expansion without worrying to much about the mathematical validity of such
an expansion. With

(N ± 1)P (N ± 1, t) ≈ NP (N, t) ± ∂N

[

NP (N, t)
]

+
1

2
∂2

N

[

NP (N, t)
]

one obtains
∂tP (N, t) = λ∂2

N

[

NP (N, t)
]

. (1.19)



1 Bacterial Games 17

Measuring the population size in units of the initial population size at time
t = 0 and defining x = N/N0, this becomes

∂tP (x, t) = D∂2
x

[

xP (x, t)
]

(1.20)

with the “diffusion constant” D = λ/N0. This implies that all time scales
in the problem scale as t ∼ D−1 ∼ N0; this is easily seen by introducing a
dimensionless time τ = Dt resulting in a rescaled equation

∂τP (x, τ) = ∂2
x

[

xP (x, τ)
]

. (1.21)

Hence for a (deterministically) “neutral dynamics” the extinction time, i.e.
the time reaching the absorbing state N = 0, scales, also quite generically,
linear in the initial system size T ∼ N0.

Finally, there are processes like the snowdrift game where the deterministic
dynamics drives the population towards an interior fixed point well separated
from the absorbing boundaries, x = 0 and x = 1. In such a case, starting
from an initial state in the vicinity of the interior fixed point, the stochastic
dynamics has to overcome a finite barrier in order to reach the absorbing
state. This is reminiscent to a chemical reaction with an activation barrier
which is described by an Arrehnius law. Hence we expect that the extinction
time scales exponentially in the initial population size T ∼ expN0.

These simple arguments on dependence of the mean extinction time T of
competing species on the system size N can now be used to define a general
framework to distinguish neutral from selection-dominated evolution. For a
selection-dominated parameter regime, instability leads to steady decay of
a species, and therefore to fast extinction [72, 73, 13]: The mean extinction
time T increases only logarithmically in the population size N , T ∼ lnN ,
and a larger system size does not ensure much longer coexistence. This be-
havior can be understood by noting that a species disfavored by selection
decreases by a constant rate. Consequently, its population size decays expo-
nentially in time, leading to a logarithmic dependence of the extinction time
on the initial population size. In contrast, stable existence of a species induces
T ∼ exp N , such that extinction takes an astronomically long time for large
populations [72,73,46]. In this regime, extinction stems from large fluctuations
that cause sufficient deviation from the (deterministically) stable coexistence.
These large deviations are exponentially suppressed and hence the time until
a rare extinction event occurs scales exponentially in the system size N . Then
coexistence is maintained on ecologically relevant time-scales which typically
lie below T . An intermediate situation, i.e., when T has a power-law depen-
dence on N , T ∼ Nα, signals dominant influences of stochastic effects and
corresponds to neutral evolution. Here the extinction time grows consider-
ably, though not exponentially, in increasing population size. Large N there-
fore clearly prolongs coexistence of species but can still allow for extinction
within biologically reasonable time-scales. Summarizing these considerations,
we have proposed a quantitative classification of coexistences stability in the
presence of absorbing states, which is presented in the following Box [13]:
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Classification of coexistence stability

Stability: If the mean extinction time T increases faster than any power
of the system size N , meaning T/Nα → ∞ in the asymptotic limit
N → ∞ and for any value of α > 0, we refer to coexistence as stable.
In this situation, typically, T increases exponentially in N .

Instability: If the mean extinction time T increases slower than any
power in the system size N , meaning T/Nα → 0 in the asymptotic
limit N → ∞ and for any value of α > 0, we refer to coexistence as
unstable. In this situation, typically, T increases logarithmically in N .

Neutral stability: Neutral stability lies in between stable and unstable
coexistence. It emerges when the mean extinction time T increases
proportional to some power α > 0 of the system size N , meaning
T/Nα → O(1) in the asymptotic limit N → ∞.

The strength of the above classification lies in that it only involves quan-
tities which are directly measurable (for example through computer simula-
tions), namely the mean extinction time and the system size. Therefore, it
is generally applicable to stochastic processes, e.g. incorporating additional
internal population structure like individuals age or sex, or where individuals
interaction networks are more complex, such as lattices, scale-free networks or
fractal ones. In these situation, it is typically impossible to infer analytically,
from the discussion of fixed points stability, whether the deterministic popula-
tion dynamics yields a stable or unstable coexistence. However, based on the
scaling of extinction time T with system size N , differentiating stable from
unstable diversity according to the above classification is feasible. In Section
1.5, we will follow this line of thought and fruitfully apply the above concept to
the investigation of a rock-paper-scissors game on a two-dimensional lattice,
where individuals mobility is found to mediate between stable and unstable
coexistence.

1.4.2 Cyclic three-strategy games

As we have learned in the previous section, the coexistence of competing
species is, due to unavoidable fluctuations, always transient. Here we illustrate
this for the cyclic Lotka-Volterra model (rock-scissors-paper game) introduced
in the section on Evolutionary Game Theory 1.2.2 as a mathematical de-
scription for non-transitive dynamics. Like the original Lotka-Volterra model
the deterministic dynamics of the rock-scissors-paper game yields oscillations
along closed, periodic orbits around a coexistence fixed point. These orbits
are neutrally stable due to the existence of a conserved quantity ρ. Including
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noise in such a game it is clear that eventually only one of the three species
will survive [67, 74, 75, 76]. However, it is far from obvious which species will
most likely win the contest. Intuitively, one might think, at a first glance,
that it pays for a given strain to have the highest reaction rate and hence
strongly dominate over its competitor. As it turns out, however, the exact
opposite strategy is the best [77]. One finds what could be called a “law of the
weakest”: When the interactions between the three species are (generically)
asymmetric, the “weakest” species (i.e., the one with the smallest reaction
rate) survives at a probability that tends to one in the limit of a large popu-
lation size, while the other two are guaranteed to extinct.

The reason for this unexpected behavior is illustrated in Fig.1.7, showing
a deterministic orbit and a typical stochastic trajectory. For asymmetric re-
action rates, the fixed point is shifted from the center Z of the phase space
(simplex) towards one of the three edges. All deterministic orbits are changed
in the same way, squeezing in the direction of one edge. In Fig.1.7 reaction
rates are chosen such that the distance λA to the a-edge of the simplex, where
A would win the contest, is smallest. The important observation here is that
because of simple geometric reasons λA is smallest because the reaction rate
kA is smallest! Intuitively, the absorbing state which is reached from this edge
has the highest probability of being hit, as the distance λ from the determin-
istic orbit towards this edge is shortest. Indeed, this behavior can be validated
by stochastic simulations complemented by a scaling argument [77].
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Fig. 1.7. The phase space S3. We show the reactive fixed point F, the center Z,
as well as a stochastic trajectory (red). It eventually deviates from the ‘outermost’
deterministic orbit (black) and reaches the absorbing boundary. λA, λB and λC

(blue/dark gray) denote the distances of the ’outermost’ orbit to the boundaries.
Parameters are (kA, kB, kC) = (0.2, 0.4, 0.4) and N = 36. Figure adapted from
Ref. [77].
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1.5 Spatial games with cyclic dominance

Spatial distribution of individuals, as well as their mobility, are common fea-
tures of real ecosystems that often come paired [78]. On all scales of living
organisms, from bacteria residing in soil or on Petri dishes, to the largest
animals living in savannas - like elephants - or in forests, populations’ habi-
tats are spatially extended and individuals interact locally within their neigh-
borhood. Field studies as well as experimental and theoretical investigations
have shown that the locality of the interactions leads to the self-formation of
complex spatial patterns [78, 79, 80, 81, 11, 82, 83, 7, 84, 85, 86, 87, 88, 89, 90, 91].
Another important property of most individuals is mobility. For example, bac-
teria swim and tumble, and animals migrate. As motile individuals are capable
of enlarging their district of residence, mobility may be viewed as a mixing,
or stirring mechanism which “counteracts” the locality of spatial interactions.

The role of mobility in ecosystems

The interplay between mobility and spatial separation on the spatio-temporal
development of populations is one of the most interesting and complex prob-
lems in theoretical ecology [78, 79, 80, 82, 84, 13]. If mobility is low, locally in-
teracting populations can exhibit involved spatio-temporal patterns, like trav-
eling waves [92], and for example lead to the self-organization of individuals
into spirals in myxobacteria aggregation [92] and insect host-parasitoid popu-
lations [11]. In contrast, high mobility results in well-mixed systems where the
spatial distribution of the populations is irrelevant [13]. In this situation, spa-
tial patterns do no longer form: The system adopts a spatially uniform state,
which therefore drastically differs from the low-mobility scenario. Pioneering
work on the role of mobility in ecosystems was performed by Levin [10], who
investigated the dynamics of a population residing in two coupled patches:
Within a deterministic description, he identified a critical value for the indi-
viduals’ mobility between the patches. Below the critical threshold, all sub-
populations coexisted, while only one remained above that value. Later, more
realistic models of many patches, partly spatially arranged, were also studied;
see e.g. Refs. [11,82,83,93] as well as references therein. These works shed light
on the formation of patterns, in particular traveling waves and spirals. How-
ever, patch models have been criticized for treating the space in an “implicit”
manner (i.e. in the form of coupled habitats without internal structure) [39].
In addition, the above investigations were often restricted to deterministic
dynamics and thus did not address the spatio-temporal influence of noise. To
overcome these limitations, Durrett and Levin [38] proposed to consider in-
teracting particle systems, i.e. stochastic spatial models with populations of
discrete individuals distributed on lattices. In this realm, studies have mainly
focused on numerical simulations and on deterministic reaction-diffusion equa-
tions, or coupled maps [12, 38, 39, 84, 40, 94, 95, 96, 89].
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Cyclic dominance in ecosystems

An intriguing motif of the complex competitions in a population, promoting
species diversity, is constituted by three subpopulations exhibiting cyclic dom-
inance, also called non-transitive competition. This basic motif is metaphori-
cally described by the rock-paper-scissors game, where rock crushes scissors,
scissors cut paper, and paper wraps rock. Such non-hierarchical, cyclic compe-
titions, where each species outperforms another, but is also itself outperformed
by a remaining one, have been identified in different ecosystems like coral reef
invertebrates [97], rodents in the high-Arctic tundra in Greenland [98], lizards
in the inner Coast Range of California [99] and microbial populations of col-
icinogenic E. coli [7, 100]. As we have discussed in section 1.3, in the latter
situation it has been shown that spatial arrangement of quasi-immobile bac-
teria on a Petri-dish leads to the stable coexistence of all three competing
bacterial strains, with the formation of irregular patterns. In stark contrast,
when the system is well-mixed, there is spatial homogeneity resulting in the
take over of one subpopulation and the extinction of the others after a short
transient.

The May-Leonard model

In ecology competition for resources has been classified [101] into two broad
groups, scramble and contest. Contest competition involves direct interac-
tion between individuals. In the language of evolutionary game theory the
winner in the competition replaces the looser in the population (Moran pro-
cess). In contrast, scramble competition involves rapid use of limiting re-
sources without direct interaction between the competitors. The May-Leonard
model [15] of cyclic dominance between three subpopulations A, B and C dis-
sects the non-transitive competition between these into a contest and a scram-
ble step. In the contest step an individual of subpopulation A outperforms a B
through “killing” (or “consuming”), symbolized by the (“chemical”) reaction
AB → A⊘, where ⊘ denotes an available empty space. In the same way, B
outperforms C, and C beats A in turn, closing the cycle. We refer to these
contest interactions as selection and denote the corresponding rate by σ. In
the scramble step, which mimics a finite carrying capacity, each member of a
subpopulation is allowed to reproduce only if an empty space is available, as
described by the reaction A⊘ → AA and analogously for B and C. For all
subpopulations, these reproduction events occur with rate µ, such that the
three subpopulations equally compete for empty space. To summarize, the
reactions that define the May-Leonard model (selection and reproduction)
read

AB
σ−→ A⊘ , A⊘ µ−→ AA ,

BC
σ−→ B⊘ , B⊘ µ−→ BB ,

CA
σ−→ C⊘ , C⊘ µ−→ CC . (1.22)
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Let a, b, c denote the densities of subpopulations A, B, and C, respec-
tively. The overall density ρ then reads ρ = a + b + c. As every lattice site is
at most occupied by one individual, the overall density (as well as densities
of each subpopulation) varies between 0 and 1, i.e. 0 ≤ ρ ≤ 1. With these
notations, the rate equations for the reactions (1.22) are given by

∂ta = a [µ(1 − ρ) − σc] ,
∂tb = b [µ(1 − ρ) − σa] ,
∂tc = c [µ(1 − ρ) − σb] . (1.23)

The phase space of the model is organized by fixed point and invariant mani-
folds. Equations (1.23) possess four absorbing fixed points. One of these (un-
stable) is associated with the extinction of all subpopulations, (a∗

1, b
∗

1, c
∗

1) =
(0, 0, 0). The others are heteroclinic points (i.e. saddle points underlying the
heteroclinic orbits) and correspond to the survival of only one subpopulation,
(a∗

2, b
∗

2, c
∗

2) = (1, 0, 0), (a∗

3, b
∗

3, c
∗

3) = (0, 1, 0) and (a∗

4, b
∗

4, c
∗

4) = (1, 0, 0), shown
in blue (dark gray) in Fig. 1.8. In addition, there exists a reactive fixed point,
indicated in red (gray) in Fig. 1.8, where all three subpopulations coexist (at
equal densities), namely (a∗, b∗, c∗) = µ

3µ+σ (1, 1, 1).
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Fig. 1.8. The phase space of the May-Leonard model. It is spanned by the densities
a, b, and c of species A, B, and C. On an invariant manifold (yellow), the flows
obtained as solutions of the rate equations (1.23) (an example trajectory is shown
in blue) initially in the vicinity of the reactive fixed point (red) spiral outwards,
approaching the heteroclinic cycle which connects three trivial fixed points (blue).
Adapated from Ref. [103].

For a non-vanishing selection rate, σ > 0, Leonard and May [15] showed
that the reactive fixed point is unstable, and the system asymptotically ap-
proaches the boundary of the phase space (given by the planes a = 0, b = 0,
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and c = 0). There, they observed heteroclinic orbits : the system oscillates
between states where nearly only one subpopulation is present, with rapidly
increasing cycle duration. While mathematically fascinating, this behavior was
recognized to be unrealistic [15]. For instance, as discussed in section 1.4, the
system will, due to finite-size fluctuations, always reach one of the absorb-
ing fixed points in the vicinity of the heteroclinic orbit, and then only one
population survives.

The spatially extended May-Leonard model

As discussed above, in the experiments by the Kerr group [7] crucial influence
of self-organized patterns on biodiversity has been demonstrated, employing
three bacterial strains that display cyclic competition. Here, from theoretical
studies, we show that cyclic competition of species can lead to highly non-
trivial spatial patterns as well as counterintuitive effects on biodiversity. To
this end we analyze the stochastic spatially-extended version of the May-
Leonard model [13], as illustrated in Fig. 1.9. We adopt an interacting particle
description where individuals of all subpopulations are arranged on a lattice.
Let L denote the linear size of a 2-dimensional square lattice (i.e. the number of
sites along one edge), such that the total number of sites reads N = L2. In this
approach, each site of the grid is either occupied by one individual or empty,
meaning that the system has a finite carrying capacity, and the reactions
are then only allowed between nearest neighbors. In addition, we endow the

Selection, rate σ: Reproduction, rate µ:

A B

C

Fig. 1.9. Individuals on neighboring sites may react with each other according to the
rules of cyclic dominance (selection; contest competition), or individuals may give
birth to new individuals if they happen to be next to an empty site (reproduction;
scramble competition).

individuals with a certain form of mobility. Namely, at rate ǫ all individuals
can exchange their position with a nearest neighbor. With that same rate ǫ,
any individual can also hop on a neighboring empty site. These “microscopic”
exchange processes lead to an effective diffusion of the individuals described by
a macroscopic diffusion constant D = ǫ/2L2. For simplicity, we consider equal
reaction rates for selection and reproduction, and, without loss of generality,
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set the time-unit by fixing σ = µ ≡ 1. From the phase portrait of the May-
Leonard model it is to be expected that an asymmetry in the parameters
yields only qualitative but not quantitative changes in the system’s dynamics.
The length scale is chosen such that the linear dimension of the lattice is
the basic length unit, L ≡ 1. With this choice of units the diffusion constant
measures the fraction of the entire lattice area explored by an individual in
one unit of time.

Typical snapshots of the steady states are shown in Fig. 1.10 5. When
the mobility of the individuals is low, one finds that all species coexist and
self-arrange by forming patterns of moving spirals. Increasing the mobility D,
these structures grow in size, and disappear for large enough D. In the absence
of spirals, the system adopts a uniform state where only one species is present,
while the others have died out. Which species remains is subject to a random
process, all species having equal chances to survive in the symmetric model
defined above.

           D3 x 10 3 x 10 3 x 10
- 6 - 5 - 4           D           c

Fig. 1.10. Snapshots obtained from lattice simulations are shown of typical states
of the system after long temporal development (i.e. at time t ∼ N) and for different
values of D (each color, blue, yellow and red, represents one of the species and black
dots indicate empty spots). Increasing D (from left to right), the spiral structures
grow, and outgrow the system size at the critical mobility Dc: then, coexistence of
all three species is lost and uniform populations remain (right). Figure adapted from
Ref. [13].

The transition from the reactive state containing spirals to the absorb-
ing state with only one subpopulation left is a non-equilibrium phase transi-
tion [102]. One way to characterize the transition is to ask how the extinction
time T , i.e. the time for the system to reach one of its absorbing states, scales
with system size N . In our analysis of the role of stochasticity in section 1.4
we have found the following classification scheme. If T ∼ N , the stability

5 You may also want to have a look at the movies posted on
http://www.theorie.physik.uni-muenchen.de/lsfrey/research/fields/biological_physics/2007_004/.
There is also a Wolfram demonstration project which can be downloaded from the
web: http://demonstrations.wolfram.com/BiodiversityInSpatialRockPaperScissorsGames/.

http://www.theorie.physik.uni-muenchen.de/lsfrey/research/fields/biological_physics/2007_004/
http://demonstrations.wolfram.com/BiodiversityInSpatialRockPaperScissorsGames/
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of coexistence is marginal. Conversely, longer (shorter) waiting times scaling
with higher (lower) powers of N indicate stable (unstable) coexistence. These
three scenarios can be distinguished by computing the probability Pext that
two species have gone extinct after a waiting time t ∼ N :

Pext = Prob [only one species left after time T ∼ N ] . (1.24)

In Fig. 1.11, the dependence of Pext on the mobility D is shown for a range of
different system sizes, N . Increasing the system size, a sharpened transition
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Fig. 1.11. The extinction probability Pext that, starting with randomly distributed
individuals on a square lattice, the system has reached an absorbing state after a
waiting time T ∼ N . Pext is shown as function of the mobility D (and σ = µ = 1) for
different system sizes: N = 20×20 (green), N = 30×30 (red), N = 40×40 (purple),
N = 100× 100 (blue), and N = 200× 200 (black). As the system size increases, the
transition from stable coexistence (Pext = 0) to extinction (Pext = 1) sharpens at a
critical mobility Dc ≈ (4.5 ± 0.5) × 10−4. Figure adapted from Ref. [13].

emerges at a critical value Dc = (4.5 ± 0.5)× 10−4. Below Dc, the extinction
probability Pext tends to zero as the system size increases, and coexistence
is stable in the sense defined in section 1.4. In contrast, above the critical
mobility, the extinction probability approaches one for large system size, and
coexistence is unstable. As a central result, the agent-based simulations show
that there is a critical threshold value for the individuals’ diffusion constant,
Dc, such that a low mobility, D < Dc, guarantees coexistence of all three
species, while a high mobility, D > Dc, induces extinction of two of them,
leaving a uniform state with only one species [13].

Pattern formation and reaction-diffusion equations

The emergence of spatial patterns, their form, and characteristic features can
be understood employing a continuum approach which maps the agent based
model to a set of stochastic partial differential equations (SPDE) (often re-
ferred to as Langevin equations) [102]:
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∂ta(r, t) = D∆a(r, t) + AA[a] + CA[a]ξA ,

∂tb(r, t) = D∆b(r, t) + AB [a] + CB[a]ξB ,

∂tc(r, t) = D∆c(r, t) + AC [a] + CC [a]ξC , (1.25)

where a = (a, b, c) and ∆ denotes the Laplacian operator. The first term de-
scribes the diffusive motion of each of the individual agents with a macroscopic
diffusion constant D. The reaction terms Ai[a] derived in a Kramers-Moyal
expansion [103] are identical - as it must - to the corresponding nonlinear
drift term in the diffusion-reaction equation, F [a] = A[a], which describe co-
evolution of different species in the absence of spatial degrees of freedom and
with a large number of interacting individuals. Noise arises because processes
are stochastic and population size N is finite. While noise resulting from
the competition processes (reactions) scales as 1/

√
N , noise originating from

hopping (diffusion) only scales as 1/N . In summary, this gives (multiplicative)
Gaussian white noise ξi(r, t) characterized by the correlation matrix

〈ξi(r, t)ξj(r
′, t′)〉 = δijδ(r − r

′)δ(t − t′) (1.26)

and amplitudes depending on the system’s configuration:

CA =
1√
N

√

a(r, t)
[

µ(1 − ρ(r, t)) + σc(r, t)
]

,

CB =
1√
N

√

b(r, t)
[

µ(1 − ρ(r, t)) + σa(r, t)
]

,

CC =
1√
N

√

c(r, t)
[

µ(1 − ρ(r, t)) + σb(r, t)
]

. (1.27)

The strength of such a continuum description is that it is generic, i.e. the
form of the equations does not depend on, for example, the precise form of
the lattice or the shape and size of individuals’ neighborhood as long as it
is local. It is the interplay between diffusion, mixing the system locally on
a certain length scale, and the reaction kinetics, whose features are encoded
by the phase portrait of the well-mixed system, which gives rise to the ob-
served complex dynamics. The stochastic reaction-diffusion equations can be
solved numerically. Fig. 1.12 shows the outcome of such a simulation starting
from a inhomogeneous initial condition (and using periodic boundary condi-
tions) [13], and compares the results obtained to agent based simulations and
deterministic diffusion-reaction equations. The comparison of those snapshots
reveals a remarkable coincidence of the patterns obtained from agent based
simulations and the continuum approach. As shown in Refs. [102, 103] these
similarities in patterns are actually fully quantitative and the spatio-temporal
correlations functions for the population densities are almost identical.

The approach of mapping the interacting particle system to the SPDE,
(1.26), yields extremely insightful results, as it enables the application of bifur-
cation theory [104]. Determining the bifurcations that the nonlinear functions



1 Bacterial Games 27

a) Typical spiral b) Agent based c) SPDE d) PDE

 

!

Fig. 1.12. Spiral patterns. a) Schematic drawing of a spiral with wavelength λ. It
rotates around the origin at a frequency ω. b) Agent-based simulations for D < Dc,
when all three species coexist, show entangled, rotating spirals. c) Stochastic partial
differential equations show similar patterns as agent-based simulations. d) Spiral
pattern emerging from the dynamics of the deterministic diffusion reaction equation
starting from a spatially inhomogeneous initial state. Parameters are σ = µ = 1 and
D = 1 × 10−5. Figure adapted from Ref. [13].

Ai[a] exhibit defines universality classes for the emerging patterns. Namely, in
the vicinity of bifurcations, the behavior is described by generic normal forms,
characterizing each bifurcation type. The resulting universality classes have
already been widely studied in the physical and mathematical community,
mostly by investigating deterministic partial differential equations, see e.g.
Refs. [105,106,107] for reviews as well as references therein. Although specific
models for competing populations will not yield SPDE that are identical to
the general equations studied there, their bifurcation behavior may coincide
with an equation that has already been investigated. Consequently, the specific
SPDE falls into that universality class, and generic results may be transferred.
In the present case of a spatially extended May-Leonard model, projecting the
deterministic version of the diffusion-reaction equation, Eq.(1.26), onto the re-

active manifold M one obtains [13, 102,103]:

∂tz = D∇2z + (c1 − iω)z − c2(1 + ic3)|z|2z . (1.28)

Here, we recognize the celebrated complex Ginzburg-Landau equation (CGLE),
whose properties have been extensively studied in the past [105,106]. In par-
ticular, it is known that in two dimensions the latter gives rise to a broad range
of coherent structures, including spiral waves whose velocity, wavelength and
frequency can be computed analytically. Remarkably, the results for the spi-
rals’ velocities, wavelengths, and frequencies agrees extremely well with those
obtained from the agent based simulations [13, 102,103].

Thus the formulation of the spatial game theoretical model in terms of
stochastic diffusion-reaction equations enabled us to reach a comprehensive
understanding of the resulting out-of-equilibrium and nonlinear phenomena.
Employing a mapping of the diffusion-reaction equation onto the reactive
manifold of the nonlinear dynamics it turned out that the dynamics of the co-
existence regime is in the same “universality class” as the complex Ginzburg-
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Landau equation (CGLE). This fact reveals the generality of the phenomena
discussed in this chapter. In particular, the emergence of an entanglement of
spiral waves in the coexistence state, the dependence of spirals’ size on the
diffusion rate, and the existence of a critical value of the diffusion above which
coexistence is lost are robust phenomena. This means that they do not de-
pend on the details of the underlying spatial structure: While, for specificity,
we have (mostly) considered square lattices, other two-dimensional topologies
(e.g. hexagonal or other lattices) will lead to the same phenomena, too. Also
the details of the cyclic competition have no qualitative influence, as long as
the underlying rate equations exhibit an unstable coexistence fixed point and
can be recast in the universality class of the Hopf bifurcations. It remains to
be explored what kind of mathematical structure corresponds to a broader
range of game-theoretical problems.

In this chapter, we have mainly focused on the situation where the ex-
change rate between individuals is sufficiently high, which leads to the emer-
gence of regular spirals in two dimensions. However, when the exchange rate
is low (or vanishes), we have seen that stochasticity strongly affects the struc-
ture of the ensuing spatial patterns. In this case, the (continuum) description
in terms of SPDE breaks down. In this situation, the quantitative analysis
of the spatio-temporal properties of interacting particle systems requires the
development of other analytical methods, e.g. relying on field theoretic tech-
niques [96]. Fruitful insights into this regime have already been gained by
pair approximations or larger-cluster approximations [108, 109, 110, 89]. The
authors of these studies investigated a set of coupled nonlinear differential
equations for the time evolution of the probability to find a cluster of cer-
tain size in a particular state. While such an approximation improves when
large clusters are considered, unfortunately the effort for solving their coupled
equations of motion also drastically increases with the size of the clusters. In
addition, the use of those cluster mean-field approaches becomes problematic
in the proximity of phase transitions (near an extinction threshold) where the
correlation length diverges. Investigations along these lines represent a major
future challenge in the multidisciplinary field of complexity science.

The cyclic rock-paper-scissor model as discussed in this section can be
generalized in manifold ways. The model with asymmetric rates turns out
to be in the same universality class as the one with symmetric rates [111].
Qualitative changes in the dynamics, however, emerge when the interaction
network between the species is changed. For example, consider a system where
each agent can interact with its neighbors according to the following scheme:

AB
1−→ AA

BC
1−→ BB

CA
1−→ CC (1.29)

AB
σ−→ A⊘

BC
σ−→ B⊘

CA
σ−→ C⊘ (1.30)

A⊘ µ−→ AA
B⊘ µ−→ BB
C⊘ µ−→ CC (1.31)

Reactions (1.29) describe direct dominance in a Moran-like manner, where an
individual of one species is consumed by another from a more predominant
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species, and the latter immediate reproduces. Cyclic dominance appears as
A consumes B and reproduces, while B preys on C and C feeds on A in
turn. Reactions (1.30) encode some kind of toxicity, where one species kills
another, leaving an empty site ⊘. These reactions occur at a rate σ, and are
decoupled from reproduction, Eqs. (1.31), which happens at a rate µ. Note that
reactions (1.29) and (1.31) describe two different mechanisms of reproduction,
both of which are important for ecological systems: In (1.29), an individual
reproduces when having consumed a prey, due to thereby increased fitness. In
contrast, in reactions (1.31) reproduction depends solely on the availability of
empty space. As can be inferred from Fig.1.13 the spatio-temporal patterns
sensitively depend on the strength σ of the toxicity effect. Actually, as can
be shown analytically [112], there is an Eckhaus instability, i.e., a convective
instability: a localized perturbation grows but travels away. The instabilities
result in the blurring seen in Fig. 1.13.

 !"  !#$"  !#

 !%
 

Fig. 1.13. Snapshots of the biodiverse state for D = 1× 10−5. (a), For large rates
σ, entangled and stable spiral waves form. (b), A convective (Eckhaus) instability
occurs at σE ≈ 2; below this value, the spiral patterns blur. (c), At the bifurcation
point σ = 0, only very weak spatial modulations emerge; we have amplified them
by a factor two for better visibility. The snapshots stem from numerical solution of
an appropraite SPDE with initially homogeneous densities a = b = c = 1/4.

It remains to be explored how more complex interaction networks with an
increasing number of species and with different types of competition affect
the spatio-temporal pattern formation process. Research along these lines is
summarized in a recent review [89].

1.6 Conclusions and Outlook

In this contribution we have given an introduction into evolutionary game
theory. The perspective we have taken was that starting from agent-based
models the dynamics may be formulated in terms of a hierarchy of theoretical
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models. First, if the population size is large and the population is well-mixed,
a set of ordinary differential equations can be employed to study the system’s
dynamics and ensuing stationary states. Game theoretical concepts of “equi-
libria” then map to “attractors” of the nonlinear dynamics. Setting up the
appropriate dynamic equations is a non-trivial matter if one is aiming at a re-
alistic description of a biological system. For instance, as nicely illustrated by
a recent study on yeast [8], a linear replicator equation might not be sufficient
to describe the frequency-dependence of the fitness landscape. We suppose
that this is rather the rule than the exception for biological systems such as
microbial populations. Second, for well-mixed but finite populations, one has
to account for stochastic fluctuations. Then there are two central questions: (i)
What is the probability of a certain species to go extinct or become fixated in
a population? (ii) How long does this process take? These questions have to be
answered by employing concepts from the theory of stochastic processes. Since
most systems have absorbing states, we have found it useful to classify the
stability of a given dynamic system according to the scaling of the expected
extinction time with population size. Third and finally, taking into account
finite mobility of individuals in an explicit spatial model a description in terms
of stochastic partial differential equations becomes necessary. These Langevin
equations describe the interplay between reactions, diffusion and noise which
give rise to a plethora of new phenomena. In particular, spatio-temporal pat-
terns or, more generally, spatio-temporal correlations, may emerge which can
dramatically change the ecological and evolutionary stability of a population.
For non-transitive dynamics, like the rock-scissors-paper game played by some
microbes [7], there is a mobility threshold which demarcates regimes of main-
tenance and loss of biodiversity [13]. Since, for the rock-scissors-paper game,
the nature of the patterns and the transition was encoded in the flow of the
nonlinear dynamics on the reactive manifold, one might hope that a gener-
alization of the outlined approach might be helpful in classifying a broader
range of game-theoretical problems and identify some “universality classes”.

What are the ideal experimental model systems for future studies? We
think that microbial populations will play a major role since interactions be-
tween different strains can be manipulated in a multitude of ways. In ad-
dition, experimental tools like microfluidics and various optical methods al-
low for easy manipulation and observation of these systems, from the level
of an individual up to the level of a whole population. Bacterial commu-
nities represent complex and dynamic ecological systems. They appear in
the form of free-floating bacteria as well as biofilms in nearly all parts of
our environment, and are highly relevant for human health and disease [26].
Spatial patterns arise from heterogeneities of the underlying “landscape” or
self-organized by the bacterial interactions, and play an important role in
maintaining species diversity [6]. Interactions comprise, amongst others, com-
petition for resources and cooperation by sharing of extracellular polymeric
substances. Another aspect of interactions is chemical warfare. As we have
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discussed, some bacterial strains produce toxins such as colicin, which acts
as a poison to sensitive strains, while other strains are resistant [7]. Stable
coexistence of these different strains arises when they can spatially segregate,
resulting in self-organizing patterns. There is a virtually inexhaustible com-
plexity in the structure and dynamics of microbial populations. The recently
proposed term “socio-microbiology” [113] expresses this notion in a most vivid
form. Investigating the dynamics of those complex microbial populations is
a challenging interdisciplinary endeavor, which requires the combination of
approaches from molecular microbiology, experimental biophysical methods
and theoretical modeling. The overall goal would be to explore how collective
behavior emerges and is maintained or destroyed in finite populations under
the action of various kinds of molecular interactions between individual cells.
Both communities, biology as well as physics, will benefit from this line of
research.

Stochastic interacting particle systems are a fruitful testing ground for
understanding generic principles in non-equilibrium physics. Here biological
systems have been a wonderful source of inspiration for the formulation of new
models. For example, MacDonald [114] looking for a mathematical description
for mRNA translation into proteins managed by ribosomes, which bind to the
mRNA strand and step forward codon by codon, formulated a non-equilibrium
one-dimensional transport model, nowadays known as the totally asymmetric
simple exclusion process. This model has led to significant advances in our
understanding of phase transitions and the nature of stationary states in non-
equilibrium systems [115, 116]. Searching for simplified models of epidemic
spreading without immunization Harris [117] introduced the contact process.
In this model infectious individuals can either heal themselves or infect their
neighbors. As a function of the infection and recovery rate it displays a phase
transition from an active to an absorbing state, i.e. the epidemic disease may
either spread over the whole population or vanish after some time. The broader
class of absorbing-state transitions has recently been reviewed [118]. Another
well studied model is the voter model where each individual has one of two
opinions and may change it by imitation of a randomly chosen neighbor. This
process mimics in a naive way opinion making [119]. Actually, it was first
considered by Clifford and Sudbury [120] as a model for the competition of
species and only later named voter model by Holley and Liggett [121]. It has
been shown rigorously that on a regular lattice there is a stationary state
where two “opinions” coexist in systems with spatial dimensions where the
random walk is not recurrent [122, 119]. A question of particular interest is
how opinions or strategies may spread in a population. In this context it is
important to understand the coarsening dynamics of interacting agents. For a
one-dimensional version of the rock-paper-scissors game Frachebourg and col-
laborators [123,124] have found that starting from some random distribution,
the species organize into domains that undergo (power law) coarsening until
finally one species takes over the whole lattice. Generalizing this model to ac-
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count for species mobility and multiple occupation of each site several distinct
pathways to extinction emerge, ranging from annihilating propagating waves
to intermittent dynamics arising from heteroclinic orbits [125]. Including mu-
tation the coarsening process is counteracted and by an interesting interplay
between equilibrium and non-equilibrium processes a reactive stationary state
emerges [126]. Yet another endeavor in non-equilibrium dynamics is to find
global variables that provide a characterization of the system. Entropy produc-
tion has been proposed as a useful observable [127,128], and different principles
governing its behavior have been suggested [129, 130], though problems arise
from different employed definitions of entropy and approaches to nonequilib-
rium dynamics [128,131,132]. Recent investigations of the rock-scissors-paper
model with mutations show that entropy production can indeed characterize
the behavior of population dynamics models. At a critical point the dynamics
exhibits a transition from large, limit-cycle like oscillations to small, erratic
oscillations. It is found that the entropy production peaks very close to this
critical point and tends to zero upon deviating from it [133]. One may hope
that, in a similar manner, entropy production may yield valuable information
about other models in evolutionary game theory.
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