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I INTRODUCTION

A central problem in molecular cell biology is the understanding of the fac-
tors that determine and regulate the structure and mechanical properties
of cells (Hesketh and Pryme, 1995). For instance monolayers of endothelial
cells when stimulated with laminar shear stress exhibit changes in morphol-
ogy that activate gene expression (Dewey et al., 1981; Satcher and Dewey,
1996). There is a plenitude of other cellular phenomena, where the material
properties of cells play a vivid role. These range from cell motility to cell
growth and division and active intracellular transport.

The structure responsible for the mechanical properties of the cell is the
cytoskeleton, a rigid yet flexible and dynamic network of proteins of varying
length and stiffness. Most cells contain three types of protein filaments com-
prised of actin, tubulin and intermediate filament proteins such as vimentin.
These, as well as the plasma-membrane associated filaments make up the
cytoskeleton (Schliwa, 1985). Together with a large variety of additional pro-
teins which act as cappers, cross-linkers and bundlers it constitutes a com-
posite system with a wide variety of material properties which may easily be
changed. On the one hand there is the extremely well organized and stably
structured actin cytoskeleton in a striated muscle cell. On the other hand
we have the very dynamic cytoskeleton in motile cells like leukocytes, fibrob-
lasts and other cell types that migrate individually on a surface or through
tissues. It is absolutely essential for these cells to be able to reorganize the
cytoskeleton efficiently and fast, otherwise it would not be possible to fight
against bacterial and viral infections, to undergo chemotaxis during muscle
regeneration, or even to perform normal cytokinesis. Hence it is of consider-
able relevance in cell biology to understand the factors that determine and
regulate the viscoelasticty of the cytoskeletal network.

Actin filaments seem to be of particular importance for the viscoelastic
properties of the cytoplasm. They are distributed throughout the cell and
give the appearance of a gel network when observed by electron microscopy
(see Fig. 1). F-actin which is a double-stranded helical filament made up
of G-actin monomers has several quite remarkable properties: (1) It is a
self-assembling protein which in buffers of physiologic ionic strength spon-
taneously starts to assemble from the globular actin subunits. (2) There is
a great variety of actin associated proteins (α-actinin, myosin, gelsolin etc.)
which regulate the average filament length and the assembly (e.g. the degree
of crosslinking) of F-actin in the cytoskeleton. (3) F-actin has a remark-
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Figure 1: Electron micrograph of a 0.4mg/ml actin solution polymerized in vitro.
The bar indicates the length of 1 µm.

ably stiff structure with a persistence length comparable to the total contour
length.

From a physicist point of view the main motivation for investigating the
viscoelastic properties of F-actin networks stems from the fact that they pro-
vide versatile model systems to study fundamental properties of polymeric
fluids and gels. One major difference to synthetic polymers is the enormous
length of these filaments – in vitro actin can form filaments up to 50 µm
in length – and their large persistence length of ℓp ≈ 17µm. Thus actin
filaments are a very good realization of semiflexible polymers whose material
and statistical properties are very different from Gaussian chains. First of all
their response to an external force is not isotropic but depends on the direc-
tion with respect to the mean contour. Second, the statistical mechanics (e.g.
the distribution function for the end-to-end vector) of such macromolecules
cannot be understood from conformational entropy alone but crucially de-
pends on the bending stiffness of the filaments. Unlike flexible polymers,
for which we have quite a complete theoretical picture (Yamakawa, 1971;
des Cloizeaux and Jannink, 1990; Doi and Edwards, 1986), the statistical
mechanics of semiflexible extended objects is still a field with many challeng-
ing theoretical problems. Recent advances in this area will be discussed in
section II.

The mechanical properties of single filaments can be expected to be con-
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stitutive for the collective mechanical properties of gels and sufficiently con-
centrated solutions of semiflexible polymers. These are interesting polymeric
systems with rheological properties that can not be accounted for by the clas-
sical theory of rubber elasticity (Treloar, 1975; Ferry, 1980). They exhibit
an elastic plateau already at remarkably low volume fractions, show strain
hardening and other anomalous material properties which will be discussed
in detail in section III. Studying the viscoelastic properties of F-actin net-
works in vitro is certainly a prerequisite for a deeper understanding of the
mechanical properties of biological tissue.

II STATICS AND DYNAMICS OF SINGLE FILAMENTS

Recent advances in visualizing and manipulating single polymer chains di-
rectly have provided unique experimental tools for studying the static and
dynamic properties of individual strands of F-actin (Nagashima and Asakura,
1980; Kishino and Yanagida, 1992; Gittes et al., 1993; Käs et al., 1993; Ott
et al., 1993; Käs et al., 1996). Further insight into the structural and dy-
namic properties can also be gained from micro-rheology (Ziemann et al.,
1994) and dynamic light-scattering (Schmidt et al., 1989; Götter et al., 1996)
of macromolecular networks. Due to this variety of experimental methods
it became possible to check the validity of theoretical models for the statics
and dynamics of single semiflexible polymers.

The model usually adopted for a theoretical description of semiflexible
chains like actin filaments is the wormlike chain model (Kratky and Porod,
1949; Saitô et al., 1967). Here the filament is represented by an inextensible
space curve r(s) of total length L parameterized in terms of the arc length
s. The statistical properties of the wormlike chain are determined by a free
energy functional H which measures the total elastic energy of a particular
conformation

H =

∫ L

0

ds
κ

2

(

∂t

∂s

)2

; |t| = 1 , (1)

where t(s) = ∂r(s)/∂s is the tangent vector. The energy functional H is
quadratic in the local curvature with κ being the bending stiffness of the
chain. The inextensibility of the chain is expressed by the local constraint,
|t(s)| = 1. This rigid constraint is the source of the difficulty in modeling the
statics dynamics of semiflexible polymers. Models that relax the constraint
too much – as e.g. the so called Harris-Hearst model (Harris and Hearst, 1966)
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– include artificial stretching modes and predict a Gaussian distribution for
all spatial distances along the contour; i.e. the essence of semiflexibility has
obviously been lost.

Despite the mathematical difficulty of the model some quantities can be
calculated exactly. Among these is the tangent-tangent correlation function
which decays exponentially, 〈t(s)·t(s′)〉 = exp [−(s − s′)/ℓp], with the persis-
tence length ℓp = 2κ/((d−1)kBT ) in d–dimensional space. Another example
is the mean-square end-to-end distance

〈R2〉 = 2ℓ2
p(e

−L/ℓp − 1 + L/ℓp) (2)

which reduces to the appropriate limits of a rigid rod, 〈R2〉 = L2, and a
random coil (with Kuhn length 2ℓp), 〈R2〉 = 2ℓpL, as the ratio of L to ℓp

tends to zero or infinity, respectively. The calculation of higher moments
quickly gets very troublesome (Hermans and Ullman, 1952).

In the following we will analyze the wormlike chain model in more detail
and determine some of its most important mechanical properties. This is a
necessary prerequisite for an understanding of the macroscopic viscoelastic
properties of entangled networks.

II.A Linear force-extension relation

One of the most obvious differences between flexible and semiflexible poly-
mers is their response to external forces. In the flexible case the response
is isotropic and proportional to 1/kBT , i.e., the Hookian force coefficient
is proportional to the temperature (a behavior which is known as rubber
elasticity). On the other hand when the persistence length is of the same
order of magnitude as the contour length, the response becomes increasingly
anisotropic. Fig. 2 shows the sketch of a semiflexible polymer of fixed length
L with one end clamped at a fixed orientation and a force f applied at the
other end at an angle θ0. Then the linear response of the chain may be char-
acterized in terms of an effective Hookian spring constant kθ0

which depends
on the orientation θ0 of the force with respect to the tangent vector at the
clamped end. Transverse forces give rise to ordinary mechanical bending of
the filaments and the transverse spring coefficient

kT =
3κ

L3
(3)

is proportional to the bending modulus κ. The linear response for longitu-
dinal forces is due to the presence of thermal undulations, which tilt parts
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Figure 2: Left: The elastic response of a stiff rod is extremely anisotropic due to
the Euler instability. Right: Response of a filament clamped at one end with a
fixed initial orientation to a small external force at the other end.

of the polymer contour with respect to the force direction. The effective
longitudinal spring coefficient1

kL =
6κ2

kBTL4
(4)

turns out to be proportional to κ2/T indicating the breakdown of linear re-
sponse at low temperatures (T → 0) or very stiff filaments (ℓp → ∞). This
is a consequence of the well known Euler buckling instability illustrated in
Fig. 2(left). We note that for the special boundary conditions of a grafted
chain (as depicted in Fig. 2) the linear response of the chain can even be
worked out exactly for arbitrary stiffness (Kroy and Frey, 1996); these calcu-
lations use the fact that the conformational statistics of the wormlike chain
is equivalent to the diffusion on the unit sphere (Saitô et al., 1967).

II.B Nonlinear response

In viscoelastic measurement on in vitro actin networks one observes strain
hardening (Janmey et al., 1990), i.e. the system stiffens with increasing
strain. This may either result from collective nonlinear effects or from the
nonlinear response of the individual filaments. In the preceding section we
have seen that the force coefficient obtained in linear response analysis for
longitudinal deformation diverges in the limit of vanishing thermal fluctua-
tions indicating that the regime of validity for linear response shrinks with

1Note that the numerical prefactor in the longitudinal spring coefficient quite sensitively
depends on the imposed boundary conditions (here one end clamped at fixed orientation).
If we consider a filament with a free hinge the prefactor becomes 90 (MacKintosh et al.,
1995) instead of 6.
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increasing stiffness. Since the nonlinear response of a single filament may be
obtained from the radial distribution function by integration, we discuss the
latter first.

A central quantity for characterizing the conformations of polymers is the
radial distribution function G(R; L) of the end-to-end vector R. For a freely
jointed phantom chain (flexible polymer) it is known exactly (Yamakawa,
1971) and for many purposes well approximated by a simple Gaussian dis-
tribution. While rather flexible polymers can be described by corrections
to the Gaussian behavior (Daniels, 1952), the distribution function of poly-
mers which are shorter or comparable to their persistence length shows very
different behavior. It is in good approximation given by

G(R; L) ≈ ℓp

NL2
f
(ℓp

L
(1 − R/L)

)

, (5)

with

f(x) =







π
2

exp[−π2x] for x > 0.2
1/x − 2

8π3/2x3/2
exp

[

− 1

4x

]

for x ≤ 0.2

and N a normalization factor close to 1 (Wilhelm and Frey, 1996). This
result is valid for L / 2ℓp, x / 0.5 and d = 3 where d is the dimension
of space. A similar expression exists for d = 2. As can be seen in Fig. 3,
the maximum weight of the distribution shifts towards full stretching as the
stiffness of the chain is increased to finally approach a sharp peak at R ≃ for
the rigid rod.

The radial distribution function is a quantity directly accessible to ex-
periment since fluorescence microscopy has made it possible to observe the
configurations of thermally fluctuating biopolymers (Gittes et al., 1993; Käs
et al., 1993; Ott et al., 1993). Comparing the observed distribution functions
with the theoretical prediction is both a test of the validity of the wormlike
chain model for actual biopolymers as well as a sensitive method to deter-
mine the persistence length which is the only fit parameter. It should be
noted here that the determination of persistence length e.g. of actin is still
an actively discussed subject (Dupuis et al., 1996; Wiggins et al., 1997).

A very interesting possibility would be to attach two or more markers
(e.g., small fluorescent beads) permanently to single strands of polymers and
to observe the distribution function of the marker separation. This would
eliminate all the experimental difficulties associated with the determination
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of the polymer contour. Note that in contrast to existing methods of analysis
it is not necessary to know the length of polymer between two markers; it
can be extracted from the observed distribution functions along with ℓp by
introducing L as a second fit parameter.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

r
G(r) L=`p = 10 L=`p = 0:5

d = 3, 40 segments, L=`p = 10; : : : ; 0:5
-40.0 -20.0 0.0 20.0 40.0 60.0

0.0

0.2

0.4

0.6

0.8

1.0

f [kT=L]
hR=Li f L=`p = 10 L=`p = 0:5

Figure 3: Left: End-to-end distribution function of a semiflexible polymer (nu-
merical results). Note that with increasing stiffness of the polymer there is a pro-
nounced crossover from a Gaussian to a completely non-Gaussian from with the
weight of the distribution shifting towards full stretching. Right: The mean end-to-
end distance R as a function of a force applied between the ends (f = −fR/|R|).
The step at positive (i.e. compressive) forces can be viewed as a remnant of the
Euler instability.

The nonlinear response of the polymer to extending or compressing forces
can be obtained from the radial distribution function by integration. The re-
sult (Fig. 3) is in agreement with and provides the transition between the
previously known limits of linear response and very strong extending forces
(e.g., (Marko and Siggia, 1995)). For compressional forces, a pronounced de-
crease of differential stiffness around the classical critical force fc = κπ2/L2

can be understood as a remnant of the Euler instability. For filaments slightly
shorter than their persistence length the influence of this instability region
extends up to and beyond the point of zero force corresponding to the max-
imum in the linear response coefficient for ℓp ≈ L (see Fig. 2). For large
compressions beyond the instability, the force-extension-relation calculated
from the distribution function is only in qualitative agreement with numerical
results because of the restricted validity of Eq. 5 for x → 1.
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II.C Single filament dynamics

There are several experimental tools which allow to study the dynamics of
single filaments. First of all recent advances in visualizing and manipu-
lating individual macromolecules have provided unique experimental tools
(Nagashima and Asakura, 1980; Smith et al., 1992; Ott et al., 1993; Käs
et al., 1993; Gittes et al., 1993) for such studies. But also dynamic light
scattering experiments (Schmidt et al., 1989; Farge and Maggs, 1993; Götter
et al., 1996; Kroy and Frey, 1997a) and micro-rheology with magnetic beads
(Zaner and Valberg, 1989; Ziemann et al., 1994; Schmidt et al., 1996; Am-
blard et al., 1996; Gittes et al., 1997; Mason et al., 1997), which typically
are used to study semi-dilute solutions, can to a large extend be understood
in terms of single filament dynamics.

Describing the dynamics of semiflexible polymers in solution is compli-
cated by essentially two factors, the chain’s local inextensibility (Goldstein
and Langer, 1995) and (long-ranged) hydrodynamic interactions mediated
by the solvent (Kroy and Frey, 1997a). As we have seen in section II.B
the inextensibility of the chain already leads to interesting nonlinear effects
for the conformations and the force-extension relation. That this will be
even more so in dynamics has been discussed in detail in Ref. (Goldstein
and Langer, 1995). In the following we will mainly consider experimental
situations where the (external) forces acting on the filament are small and
the chains are relatively stiff. This allows us to restrict ourselves to weakly
curved conformations, where all nonlinear effects become negligible. If in
addition one assumes local viscous forces, i.e. neglects backflow effects, the
transverse undulations of the semiflexible chain are governed by the following
Langevin equation

ζ⊥,0
∂

∂t
r⊥(s, t) = −κ

∂4

∂s4
r⊥(s, t) + f⊥(s, t) , (6)

where ζ⊥,0 is a local friction coefficient (per length) and the force f⊥(s, t) may
be either an external force (e.g. exerted by a tweezer) or a random thermal
force. In the latter case detailed balance requires

〈fα
⊥(s, t)fβ

⊥(s′, t′)〉 = 2kBTζ⊥,0δ
αβδ(s − s′)δ(t − t′) . (7)

In fact, for many purposes the hydrodynamics of the solvent can be com-
prised into a simple effective friction coefficient ζ⊥ as a consequence of two
scale separations. First, the Brownian dynamics of the polymers are slow
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compared to the time scale of the hydrodynamic interactions. So the latter
can be assumed to mediate an instantaneous interaction. The second sim-
plification is a peculiarity of the rod-like structure of semiflexible polymers.
The hydrodynamic interactions only give rise to a very weak (logarithmic)
mode number dependence of the local friction. As a consequence, the longi-
tudinal/transverse local friction coefficients can be estimated by (Kroy and
Frey, 1997a)

ζ‖ =
2πη

ln(ξh/a)
, ζ⊥ =

4πη

ln(ξh/a)
,

with a being the diameter of the polymer and ξh defining a second charac-
teristic hydrodynamic length scale. For example, for a free single polymer
in solution ξh will depend on the length scale of observation as discussed
below in the context of dynamic light scattering. On the other hand, for a
polymer in semidilute solution this length dependence saturates at about the
mesh size due to screening of the hydrodynamic interactions of this particu-
lar polymer through the surrounding network. For the following, we replace
the bare friction coefficient ζ⊥,0 by the renormalized coefficient ζ⊥.

The standard procedure of solving the above Langevin equation, Eq. 6, is
to look for eigenfunctions (Aragón and Pecora, 1985) which obey boundary
conditions appropriate for the particular physical situation under considera-
tion. The corresponding modes of the weakly bending chain are the analog of
the Rouse modes for flexible chains (Doi and Edwards, 1986). In the limit of
very long chains the characteristic intrinsic time scales of the chain dynamics
are set by the decay times τ(q) of such Rouse-like modes with wave vector q,

τ(q) =
ζ⊥
κq4

, (8)

which are immediately read off from Eq. 6 by dimensional analysis. Further-
more, the equipartition theorem tells us that the mean square displacement
of a ‘Rouse mode’ is given by

〈r⊥(q, t)r⊥(−q, t)〉 =
kBT

κq4
. (9)

Combining Eqs. 8 and 9 scaling dictates that the correlation function
〈r⊥(q, t)r⊥(−q, 0)〉 must be of the form

〈r⊥(q, t)r⊥(−q, 0)〉 =
kBT

κq4
C(κq4t/ζ⊥) . (10)
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This immediately implies that the mean square displacement of a point s on
the filament shows subdiffusive behavior r2

⊥(t) ≡ 〈r⊥(s, t)r⊥(s, 0)〉 ∝ t3/4:

r2
⊥(t) =

∫

dq
kBT

κq4
C(κq4t/ζ⊥)

= kBT
1

ζ
3/4
⊥ κ1/4

t3/4

∫

dyy−4C(y4) . (11)

A more quantitative calculation (Kroy and Frey, 1997a) gives

r2
⊥(t) = 0.47

(

kBT/ηℓ1/3
p

)3/4
t3/4 , (12)

where the numerical prefactor varies slightly with the approximations used to
arrive at the above result (Amblard et al., 1996; Granek, 1997). Subdiffusive
behavior with such an anomalous power law has recently been observed for
the center of mass motion of a bead with diameter d embedded in an actin
solution with a mesh size ξ larger than the bead diameter (Amblard et al.,
1996). It is argued that even if the bead is interacting with several filaments
this will only change prefactors but not the exponents of the anomalous
diffusion law.

II.C.1 Dynamic light scattering

A useful experimental technique for investigating the short time dynamics of
semiflexible polymers is dynamic light scattering (DLS). In DLS experiments
one directly observes the dynamic structure factor

g(k, t) =
1

N

∑

n,m

〈exp {ik · (rn(t) − rm(0))}〉 , (13)

where the sum runs over N equal scattering centers n = 1, 2, · · · , N
(monomers). First, we want to focus on the ideal case of a dilute or semidilute
solution of semiflexible polymers, where the scattering wavelength is much
smaller than the mesh size. We also assume a separation of length scales,
a ≪ λ ≤ ℓp, L, i.e., the scattering wavelength λ is large compared to the
monomer size a but small compared to the characteristic mesoscopic scale
defined by L and ℓp. As a consequence the contributions to the time decay
of g(k, t) from center of mass and rotational degrees of freedom of the chain
are strongly suppressed as compared to contributions from bending undula-
tions. Moreover, for this case it can be shown (Kroy and Frey, 1997a) that
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the structure factor can be written as exp(−k2r2
⊥(t)/4) with the local mean

square displacement r2
⊥(t) discussed above. From Eq. 11 we immediately

obtain the characteristic stretched exponential law

g(k, t) ∝ exp[−(γkt)
3/4] (14)

derived by many authors (Frey and Nelson, 1991; Farge and Maggs, 1993;
Harnau et al., 1996; Kroy and Frey, 1997a; Granek, 1997). It has been ap-
proved experimentally with very high accuracy for F-actin (Götter et al.,
1996). However, a more careful analysis reveals that it cannot hold for very
short times. For times shorter than ζ/κk4 the bending forces can be consid-
ered weak and the contour obeys (as far as allowed by the rigid constraint of
constant tangent length) the fast wiggling motion imposed by hydrodynamic
fluctuations. As a consequence the initial decay of the structure factor is of
the form g(k, t) ∝ exp(−γ

(0)
k t) with (Kroy and Frey, 1997a)

γ
(0)
k =

2kBT

3πζ⊥
k3 =

kBT

6π2η
k3 ln

(

e5/6/ka
)

. (15)

(The last equation (Kroy and Frey, 1997a), provides an explicit expression
for the above mentioned logarithmic effects of the hydrodynamic interac-
tion.) For polymers, which are not quite as stiff as actin, e.g. for so called
intermediate filaments, this initial decay regime is readily observed in light
scattering experiments. Analyzing the data by Eq. 15 allows one to estimate
the friction coefficient ζ⊥ entering the Langevin equation Eq. 6 or, equiva-
lently, the thickness a of these filaments. (P. Janmey has recently obtained
quite accurate values for the diameter of vimentin by this method (Janmey,
1997).)

The friction coefficient is an important input parameter, if the stretched
exponential law of Eq. 14 shall be used for a quantitative analysis of the
filament stiffness. To this end, the prefactor γk in Eq. 14 must be deter-
mined. Various slightly differing values for γk are available in the theoretical
literature (Farge and Maggs, 1993; Götter et al., 1996; Harnau et al., 1996;
Kroy and Frey, 1997a; Granek, 1997) reflecting different approximations in
the calculation. As we mentioned above, the accuracy of the value obtained
for the persistence length by this method is also limited by the accuracy of
ones knowledge of the input parameters, in particular by the friction coeffi-
cient ζ⊥. If both the initial decay and the stretched exponential regime can
be detected, it is possible to use the friction coefficient determined via Eq. 15
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together with γk = (Γ(1/4)/3π)4/3kBTk8/3/ζ⊥ ℓ
1/3
p in Eq. 14. The accuracy

of this method in determining the persistence length has not yet been ex-
plored in practice. It can be used in any case to study relative differences in
ℓp (Götter et al., 1996).

If the condition λ ≪ ξm assumed above does not hold, the form of the
dynamic structure factor is affected by steric constraints and hydrodynamic
screening effects. The latter lead to a saturation of the k−dependence of the
friction coefficient ζ⊥ given in Eq. 15, presumably at about k ≃ ξ−1

m . The
steric constraints can give rise to more dramatic effects. One observes a slow-
ing down of the long time decay of the structure factor and even a saturation
at a finite value (named ‘Debye-Waller factor’ by solid state physicists). This
reflects the cage effect caused by the surrounding network (see discussion be-
low). Strictly speaking, the notion of a ‘Debye-Waller factor’ is only justified
in a crosslinked gel, where the spatial correlations can not decay further. For
a solution one should rather speak of an elastic plateau. Scattering tech-
niques could be a valuable tool in exploring this plateau complementary to
the mechanical rheological methods mentioned below, and a quantitative the-
ory is currently being worked out. A simple method to account for the cage
effect is to redo the above analysis with an additional term γr⊥ (represent-
ing a tube-like harmonic confinement force) in the Langevin equation Eq. 6.
This is, however, not sufficient to explain the experimental data. A more
realistic model includes a term for the collective dynamics of the background
medium and eventually also filament tension accounting for crosslinks and
entanglements (the cage is not really a homogeneous tube). The theoretical
analysis as well as the pertinent experiments are still in a preliminary stage.

DLS experiments are a useful experimental method to answer some bio-
logically relevant questions. Recently it was found (Goldmann et al., 1997)
that the decay of the dynamic structure factor is slowed down with increasing
talin concentration. This can be attributed to a talin induced cross-linking of
actin filaments and formation of actin bundles. Similar results are obtained
with a talin tail fragment, but not with a head fragment. Especially for
strong talin concentrations a reduction in relaxation rate of about an order
of magnitude is observed and the shape of the curves deviates strongly from
the stretched exponential of Eq. 14. This is in sharp contrast to proteins
that cause a stiffening of F-actin, such as the tropomyosin/troponin complex
(Götter et al., 1996). In the latter case the relaxation rate is shifted but
the functional form is not affected, as expected from the dependence of γk
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on persistence length. On the other hand, for low talin concentrations the
curves for g(k, t) are quite similar to those with tropomyosin/troponin. It
is tempting to attribute this observation to the formation of single bundles,
which could behave similar to stiffened F-actin. However, such speculations
are dangerous if not supported by independent structural analysis. Dynamic
light scattering is a sensitive quantitative method when escorted by an ap-
propriate model. But it is also a highly ambiguous probe, not well suited for
the exploration of unknown structures.

II.C.2 Colloidal probes and micro-rheology

As we have seen in the preceding section dynamic light scattering allows us to
probe the single chain dynamics and attain information on the mean-square
displacement. It is however an indirect method in the sense that the dynamic
structure factor involves a summation over all monomers in the sample. A
complementary method would be to study the local dynamics by direct imag-
ing methods. One quite successful approach has been to attach fluorescent
labels to the actin filament and watch its motion using video microscopy
(Käs et al., 1994); this enabled a direct measurement of the self-diffusivity
by reptation. Instead of labeling a whole filament one has also started using
micron-sized particles embedded in the network to learn about the viscoelas-
tic properties (Ziemann et al., 1994; Amblard et al., 1996; Gittes et al., 1997;
Schnurr et al., 1997). These micro-rheological methods are local probes but
through collisions still couple to a large number of filaments in the network.
In order to learn about the single filament dynamics one would like to use
colloidal particles much smaller than the mesh-size which are attached to a
single filament and exert point forces. Such an idealized micro-rheological
experiment has recently been performed on a semiflexible polymer networks
consisting of microtubules (Caspi et al., 1998). An analogous study for F-
actin networks is currently being analyzed (Dichtl and Sackmann, 1998).

In the experiments of the microtubule networks (Caspi et al., 1998) the
subdiffusive behavior of the segment dynamics is clearly observed at suffi-
ciently small times. Using Eq. 12 even allows for a quantitative measurement
of the persistence length of microtubules (ℓp ≈ 7mm). For larger times the
mean-square displacement showed saturation indicating some effective tube
potential due to the topological constraints imposed by the surrounding fila-
ments. Preparing a stressed network and hence changing the filament dynam-
ics from bending to tension dominated the mean-square segment displace-
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ment also showed the expected behavior with 〈(r⊥(s, t) − r⊥(s, 0))2〉 ∝
√

t.
With further advances in experimental resolution these type of experiments
have a great potential in yielding important information on the dynamics of
F-actin networks in time-domains which have up to date not been accessible.

III VISCOELASTICTY OF BIOPOLYMER NETWORKS

One the basis of our understanding of the static and dynamic properties of
single actin filaments we are now in a position to analyze the by far more
complicated problem of the microscopic basis for the macroscopic viscoelastic
properties of solutions ad gels of semiflexible polymers. For networks consist-
ing of flexible polymers we have a rather good understanding of the polymer
dynamics on the molecular level based on ideas like entanglements, the tube
model and reptation theory (de Gennes, 1971; Doi and Edwards, 1978). In
this section we will discuss how some of these quite successful concepts can
be applied or have to be modified for semiflexible polymer networks.

III.A Experimental techniques and results

Remarkable progress has been achieved in our qualitative and quantitative
understanding of the viscoelasticty of semiflexible polymer solutions. This
is mainly due to the advances and new developments in experimental tech-
niques. In the following we describe some of the main experimental tools
and the results obtained by it. Part of the discussion of the experimental
results is deferred to section III.B where it will be analyzed in terms of the
theoretical models presented.

III.A.1 Macro-rheology

One of the best known method to study the viscoelastic properties of poly-
meric liquids is macroscopic rheometry using a rotating disc rheometer. There
have been a large number of experimental investigations on F-actin solutions
based on this classical rheological techniques (Sato et al., 1985; Zaner and
Hartwig, 1988; Janmey et al., 1988; Müller et al., 1991; Janmey, 1991; Pol-
lard et al., 1992; Wachsstock et al., 1993; Newman et al., 1993; Ruddies
et al., 1993; Janmey et al., 1994). There are various types of measurements
one can make with those rheometers. In the creep mode the creep compliance
can be measured in a time window of t = 10−1 − 104 s, which gives more
reliable values of the long time behavior of the network viscoelasticity. In the
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oscillatory mode the dynamic storage and loss moduli, G′(ω) and G′′(ω), can
be measured in the frequency range ω/2π = 10−5 − 10 Hz. Fig. 4 shows the
typical frequency dependence of the storage G′(ω) and loss modulus G′′(ω)
of an F-actin solution with gelsolin at monomer concentration c = 0.4 mg/ml
measured by a rotation disc rheometer (Hinner and Sackmann, 1998). The
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Figure 4: Frequency dependence of the storage G′(ω) and loss modulus G′′(ω) of
an F-actin solution with gelsolin at monomer concentration c = 0.4 mg/ml.

measurement was performed over four frequency decades; they show that
the response of the network depends on how fast one pulls. In physical net-
works where there are no permanent crosslinks between the filaments one can
roughly discern three different regimes as a function of the frequency of the
external perturbation. In an intermediate frequency range, usually slightly
below 1 Hz, the solution shows elastic behavior and obeys Hook’s law with a
linear relation σ = Gγ between stress σ and strain γ. At frequencies above
this “rubber plateau” the storage and loss modulus both show a power-law
dependence on the frequency. Below the rubber plateau (at large time scales)
the solution shows viscous behavior and obeys Newton’s law σ = ηγ̇, where
the stress is proportional to the strain rate γ̇. The latter regime is absent in
chemical networks where crosslinking proteins like α-actinin and talin pre-
vent large scale relative motion of the actin filaments (Wachsstock et al.,
1994). In Fig. 4 we merely see the onset of the terminal relaxation regime at
the lower end of the experimentally accessible frequency window. The latter
regime is, however, readily observed by creep measurements.

Unfortunately however, these macro-rheological studies did not lead to a
coherent picture of the viscoelastic properties. To the contrary the reported
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rheological parameters, in particular the magnitude of the plateau value, are
pretty disperse. A discussion of these discrepancies which may be partly due
to difficulties in purification and sample preparation has been given (Janmey
et al., 1994).

More recent experiments (Tempel et al., 1996; Hinner et al., 1998) and
micro-rheological measurements discussed below show consistently low val-
ues for the plateau modulus in the range of several tenth of a Pa depending
on concentration and length distribution of the filaments. Why other exper-
iments find elastic moduli higher by a factor of 1000 is not clear at present.
For a discussion of these recent data we refer the reader to section III.B.

III.A.2 Micro-rheology

Over the last few years new micro-rheological techniques have been developed
which allow the tracking or manipulation of sub-micrometer particles. Actu-
ally these type of methods have quite a long history. The first documented
usage of magnetic particles to investigate the local viscoelastic properties of
biomaterials dates back to 1922 when magnetic particles were manipulated
by field gradients in the cytoplasm of the cell (Heilbronn, 1922) and in gelatin
(Freundlich and Seifriz, 1922). Subsequently magnetic beads have been used
to study the creep response of the cytoplasm (Crick and Hughes, 1950; Sato
et al., 1984) and the viscosity of Amoeba protoplasm (Yagi, 1961). More
recently magnetic bead techniques have been applied to study the viscoelas-
ticity of F-actin networks (Zaner and Valberg, 1989) and the vitreous body
of the eye (Lee et al., 1993).

By now there are two different types of microrheological setups, which
either measure the correlation or response function of micron sized beads
embedded in the network. Of course, due to the fluctuation-dissipation theo-
rem both techniques should yield equivalent results though differences might
exist related to the spatial and temporal resolutions which can be achieved.
The magnetic bead rheometer (Ziemann et al., 1994; Schmidt et al., 1996)
and magnetic tweezer methods (Amblard et al., 1996) manipulates micron
sized magnetic beads by magnetic field gradients. Other methods employ
passive observation of the thermal fluctuations (Brownian motion) of the
probe particles (Gittes et al., 1997; Schnurr et al., 1997; Mason et al., 1997).
These methods also differ by the detection method of the particle displace-
ments. In all magnetic-bead techniques one uses video microscopy, while the
Michigan group (Gittes et al., 1997; Schnurr et al., 1997) employs laser inter-
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ferometry with a resolution less than 1 nm. Yet another method to obseyrve
thermal fluctuations of ensembles of particles is diffusive wave spectroscopy
(DWS) (Mason and Weitz, 1995). But, in contrast to the methods described
above DWS measures average and not local viscoelastic properties.

A central question in using these type of techniques is whether and how
the local response of the probe is related to the macroscopic modulus. One
line of thinking is to assume that the bead is embedded in a continuum vis-
coelastic medium (Ziemann et al., 1994). Taking into account the finite radius
R of the bead (Schnurr et al., 1997) one finds (for an incompressible medium)
that there is simple relation between the macroscopic shear modulus G∗(ω)
and the response function of the bead α(ω) given by α(ω) = 1/6πG∗(ω)R.
The applicability of such a continuum approach may, however, be questioned.
A different line of argument is based on a more molecular picture where the
beads push against individual filaments which themselves collide with other
filaments (Amblard et al., 1996). This relates the observed modulus to single
filament dynamics and in particular to the subdiffusive segment dynamics
discussed in section II.C. But, as already noted above the actual relation be-
tween the observed linear response function of the beads and the viscoelastic
properties of the medium awaits a theoretical description on a more molec-
ular level which includes both network and solvent dynamics. It may well
be that micro-rheology and macro-rheology are complementary experimental
probes sensitive to different modes and aspects of the complex viscoelastic
behavior of semiflexible polymer networks.

III.B Theoretical modeling

In order to describe the material properties of the cytoskeleton, one has to
understand how semiflexible polymers built up statistical networks and how
stresses and strains are transmitted through such networks. In particular
one would like to understand how the network responds to time-dependent
macroscopic (macro-rheology) or local (micro-rheology) deformations probed
by the experimental methods described in the preceding section. Note that
it is a priori not evident whether micro- and macro-rheology are probing the
same kind of network deformations or are sensitive to different aspects of
the network elasticity. Since the cytoskeleton contains a broad variety of
crosslinking proteins one would also like to understand how the mechanical
and dynamical properties of these proteins influence the viscoelasticity of the
network (Wachsstock et al., 1994; Tempel et al., 1996). Fig. 5 shows a sketch
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of a solution of semiflexible polymers with (right) and without (left) chemical
crosslinks, respectively.

Figure 5: Sketch of a physical (left) and a chemical (right) network. In physical
networks the rotational and translational motion of an individual test-polymer is
severely hindered by steric interactions with neighboring polymers. Anticipating
a time scale separation between internal bending modes and the center of mass
motion of the filaments these topological restrictions lead to a cage or tube of
a cylindrical structure. In chemical networks permanent connections between the
filaments due to some cytoskeletal proteins like α-actinin or talin lead to additional
constraints on the degrees of freedom of an individual chain. Arrows indicate an
externally imposed macroscopic deformation of the network.

In conventional polymer systems made up of long flexible chain molecules
the viscoelastic response is entropic in origin over a wide range of frequencies
(Doi and Edwards, 1986). For semiflexible polymers a complete understand-
ing of the viscoelastic response is complicated by several factors. First of all,
there are several ways by which forces can be transmitted in a network. This
can either happen by steric (or solvent-mediated) interactions between the
filaments (i.e. “collisions”) or by viscous couplings between the filaments and
the solution. It is a priori not at all obvious which if any of these coupling
will dominate. In the case of flexible polymers it is generally believed that
macroscopic stresses are transmitted in such a way that these transforma-
tions stay affine locally, i.e. that the end-to-end distance of a single filament
follows the macroscopic shear deformation (Doi and Edwards, 1986). Im-
plicit in this hypothesis is the assumption that there is a very strong viscous
coupling between polymers and solution and that inter-polymer forces can
be neglected. As a consequence most of the viscoelastic properties are mod-
eled by a single-filament picture. The applicability of such a single-filament
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theory to semiflexible polymer networks may be seriously questioned. Sec-
ond, as we have seen in section II, single filaments are anisotropic elastic
elements showing quite different response for forces perpendicular or parallel
to its mean contour. Therefore one has to ask what kind of deformation of
the actin filament is the dominant one and whether due to the anisotropy of
the building blocks of the network macroscopically affine deformations stay
affine locally.

III.B.1 Typical length and time scales; the tube picture

A good starting point for a theoretical analysis of the viscoelastic properties
of semiflexible polymer solutions is to consider the typical time and length
scales.

The persistence length ℓp and the total contour length L are the two in-
trinsic length scales of a single filament. A gross characterization of the
network architecture is the geometrical mesh-size ξm; it may be defined as
ξm =

√

3/νL where ν is the number of polymers per unit volume. Typi-
cal networks show a separation of length scales such that ℓp ≫ ξm. Hence
each polymer is surrounded by a large number of other polymers leading
to a severe restriction of its ability to move transverse to its mean contour.
This cage effect also restricts the undulations of the filament on length scales
larger than a certain length Le, called the deflection length or entanglement
length, which characterizes the typical distance between two collision points
of a “test-polymer” with the surrounding chains. If one approximates the
effect of the surrounding medium by a cylindrical tube of diameter d (of the
order of magnitude of the mesh size) the entanglement length is given by
Odijk’s estimate (Odijk, 1983)

L3
e ≃ d2ℓp . (16)

Actually, previous fluorescence microscopic observations (Käs et al., 1994)
seem to have virtually confirmed the existence of such a cylindrical tube or
cage. Physical networks of flexible polymers have very successfully been de-
scribed by reptation theory (Doi and Edwards, 1986) which uses the tube
concept quite extensively. In this approach one picks a test-polymer and
models the influence of all the surrounding polymers by an effective poten-
tial, called the reptation tube. The test-polymer is of course itself part of
the reptation tubes for various other polymers in its neighborhood. Thus
reptation theory is a mean-field or molecular field like approach as it can be
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Figure 6: Intuitive view of the cage effect in semidilute solutions of semiflexible
polymers. A test polymer is confined to a tube with diameter d. For a wormlike
chain L3

e ≃ d2ℓp (Odijk, 1983).

found in many other areas of physics. In the following we will adapt the tube
picture to semiflexible polymer networks and see how far this will carry us
in understanding its viscoelastic properties.

There are also a number of interesting time scales in semiflexible polymer
solutions. In sections II.C we already discussed the shortest of these time
scales, namely the relaxation times τ(q) = ζ⊥/κq4 for thermal undulations
with wave vector q. These time scales are accessible by dynamic light scat-
tering and microrheology and for wave length in the range of 0.1µm to 1µm
they are of the order of magnitude 1µsec to 1msec. Next we have a time
scale τe which a single filament needs to equilibrate within the tube. This
can be estimated as the time a segment on the filament needs to wander a
mean square distance of the order of the tube diameter d

d2 = r2
⊥(t) ∝ t3/4

κ1/4ζ3/4
. (17)

Theoretical estimates give that τe is of the order of 50 ms for a tube-diameter
of 0.2 µm. For larger times there should be an interesting crossover from
single filament dynamics to collective networks dynamics which is at present
largely unexplored. Future research should certainly concentrate on this
time window in order to shed some light on the physical principles which
lead to the elastic plateau. The longest time scale τr of the problem is
determined by the diffusion constant for the center of mass motion of the
semiflexible polymer in the disordered actin mesh (reptation time). This
is also the time scale at which the actin solution shows viscous behavior
which is of the order of hours (Hinner et al., 1998). Obviously there is
a huge gap between the equilibration time τe of a filament within a tube
and the reptation time τr. There might be several other time scales which
fill this gap and mark transitions from a dynamics dominated by transverse
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undulations to a dynamics dominated by longitudinal stress relaxation within
the tube (Isambert and Maggs, 1996). But up to now all arguments about
the existence and nature of these intermediate time scales are nothing but
very speculative ideas.

In the following we will concentrate on a description of present theoretical
models in the three major regimes, which is (1) the “rubber plateau”, (2)
the terminal regime and (3) the high-frequency region.

III.B.2 The “rubber plateau”

If solutions of semiflexible polymers are sufficiently dense and are probed
at sufficiently short time scales (typically in the range of 10−2 Hz to 1 Hz)
they will exhibit a so-called “rubber plateau” where the storage modulus
G′(ω) becomes nearly frequency independent. Already the existence of such
a plateau and hence an elastic response of a network in the absence of perma-
nent crosslinks is a nontrivial observation. In general it is traced back to the
fact that in sufficiently dense polymer solutions the center of mass motion
of a single filament is severely constrained by its neighboring filaments such
that there is a time scale separation between the internal dynamics and the
center of mass motion of the polymers. The topological constraints due to
the uncrossability of the polymers are termed entanglements and are despite
their transient nature thought to act in much the same way as permanent
crosslinks over the time scales in the plateau region.

Even by anticipating a separation of time scales and neglecting the center
of mass motion the calculation of the plateau modulus is still a complicated
statistical mechanics problem. One has to answer the question how in a disor-
dered network macroscopic stresses and strains are transmitted to individual
filaments. This requires an understanding of the coupling of the shear flow
in the solvent to the filament dynamics as well as the solvent-mediated or
direct steric interaction between the filaments. However little is known about
these matters. Present theoretical approaches all use a single-chain picture
where very different assumptions are made on the effect of the topological
constraints on the conformation of a single filament.

In what might be called the affine model the so called “phantom model” of
rubber-elasticity (Treloar, 1975) is adopted to semiflexible polymer systems
(MacKintosh et al., 1995). It is assumed that upon deforming the network
macroscopically the path of a semiflexible polymer between two entanglement
points is straightened out or shortened in an affine way with the sample. The
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macroscopic modulus is then calculated from the free energy cost associated
with the resulting change in the end-to-end distance. Since in a solution
forces between neighboring polymers can only be transmitted transverse to
the polymer axis and there is no restoring force for sliding of one filament
past another, it is however hard to imagine that entanglements are able to
support longitudinal stresses in filaments.

The modulus predicted in the affine model should scale as G0 ∝ c11/5

and leads to absolute values of the order of 10 Pa; such high values are at
odds with the low values observed in recent experiments on F-actin solutions
(Hinner et al., 1998). It was therefore argued (MacKintosh and Janmey,
1997) that such models are more appropriate for crosslinked networks, where
they would predict a plateau value G0 ≃ kBTℓ2

p/ξ
5
m. But, even in such

chemical networks with crosslinks present it is a priori not obvious that local
deformations on the scale of a single filament are actually affine and that
longitudinal stresses in the filaments are the dominant contribution to the
plateau modulus. Because of the strongly anisotropic behavior of the single
elements, a detailed investigation of the stress propagation in crosslinked
networks is necessary to determine the dominant deformation mode2.

The second approach to explain the observed plateau modulus employs
the tube picture in which each strand is confined within a cylindrical tube. Re-
cent theoretical and experimental studies (Isambert and Maggs, 1996; Hinner
et al., 1998) based on pioneering work from the 80’s (Helfrich and Harbich,
1985; Odijk, 1986; Semenov, 1986) suggest a different view. The basic idea
can be formulated in a way reminiscent of a well known effect in granular me-
dia. A randomly packed granular material increases its volume upon shearing
(see Fig. 7). In the polymer solution, the analogue of the granes are the tubes
of Fig. 6, which are a theoretical representation of the average volume avail-

2In section III.B.5 we will consider disordered networks to address a key aspect of the
geometrical structure of both cellular and artificial stiff polymer networks. Specifically, we
use a crosslinked network of sticks randomly placed in a plane as a toy model for studying
the origin of macroscopic elasticity in a stiff polymer network. Although quantitative
predictions about the behavior of existing (three-dimensional) networks of semiflexible
polymers are not attempted at this stage, this model is expected to reflect the salient
features of the full problem and to promote its understanding by allowing the detailed
discussion of questions like “What modes of deformation contribute most to the network
elasticity?”, “How many filaments do actually carry stress, how many remain mostly
unstressed?”, “What kind of effective description of the complicated microscopic network
geometry should be used?”. This approach connects the theory of cytoskeletal elasticity
to the very active fields of transport in random media and elastic percolation.
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Figure 7: Reynolds experiment. Upon shearing an elastic bottle filled with gran-
ular material and water the random packing of the granes is distorted. As a
consequence there are additional voids which in turn lead to a decrease in the
water level.

able to the unconstrained contour undulations of wavelength shorter than a
characteristic length Le, known as deflection length or entanglement length,
respectively. As the granes, the tubes are not space filling despite having an
optimum random packing in equilibrium. A shear deformation disturbs this
optimum packing, leading to an expansion of the granular medium but to
tube compression in the polymer solution, because in the latter the total vol-
ume (not the tube volume) is conserved. This intuitive argument suggests to
express the shear modulus in close analogy to the osmotic pressure in terms
of a virial expansion in the polymer concentration cp,

G0 = kBTcp(1 + B2cp . . . ) . (18)

To determine the second virial coefficient B2 we follow Onsager (Onsager,
1949) and estimate the number of mutual collisions of the tubes B2cp =
L/Lc (which we have rewritten by introducing the collision length Lc) by
the excluded volume d(L − Lc)

2 divided by the available volume ξ2
mL per

polymer. In the excluded volume we have subtracted Lc to account for the
reduced efficiency of dangling ends to contribute to the plateau modulus.
Lc is determined by the consistency requirement that the number of mutual
collisions of the tubes be equal to the number of collisions of the enclosed
polymer with its tube. After all, the tube is a mere theoretical concept
representing the physical interactions between polymers. Using Eq. 16 to
substitute the tube diameter d we obtain the curved line shown in Fig. 8.
With ℓp = 17 µm the optimum fit was obtained with ξm = 0.25 µm and a
prefactor of 1.4 to B2 in Eq. 18. This can be considered nice agreement at
the present level of experimental accuracy.
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Figure 8: The plateau modulus above the entanglement transition as a func-
tion of polymer length for constant monomeric actin concentration c = 1.0
mg/ml. The increase of G0 for large L is not yet fully understood. Taken
from (Hinner et al., 1998).

We now turn to a different argument for estimating the plateau modulus
which we think is better suited for a more quantitative analysis. Here one
considers the free energy cost of suppressed transverse fluctuations of the
polymers that comes about by an affine deformation of the tube diameter.
As noted above the mean distance between collisions of a tagged polymer
with its surrounding tube with diameter d is given by Le ≃ ℓ

1/3
p d2/3, see

Eq. 16. Since each of these collisions reduces the conformation space it cost
free energy of the order of kBT the total free energy of ν = c/L polymers per
unit volume becomes

F ≃ ν kBT
L

Le
. (19)

To be able to compare these results to experiments one needs to know how
the tube diameter d depends on the concentration of the solution or equiva-
lently on the mesh size ξm :=

√

3/νL. In other words we have to determine
the average thickness d of a bend cylindrical tube in a random array of poly-
mers as depicted in Fig. 9. The contour and thickness of the tube will be
determined by a competition between bending energy favoring a thin straight
tube and entropy favoring a curved thick tube. This competing effects define
a characteristic length scale which is nothing but the Odijk deflection length
Le defined above. For length scales below Le the tube will be almost straight
and we can estimate its thickness as follows. Upon restricting the orienta-
tions of the polymers to being parallel to the coordinate axes the density
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Figure 9: Sketch of a cylindrical tube in a random array of polymers (indicated
by black dots) with average distance ξm.

of intersection points (black dots in Fig. 9) will be 1/ξ2. Hence for a tube
of length Le the line density of these intersection points projected to a line
perpendicular to the tube increases as Le/ξ

2
m which implies that the tube

diameter decreases with increasing tube length as

d ≃ ξ2
m/Le . (20)

Combining Eq. 20 and 16 one finds Le = (ξ2
mℓ

1/2
p )2/5 leading to the following

form of the free energy and hence the plateau modulus G0 as a function of
temperature, concentration and the intrinsic stiffness of the filament param-
eterized by the persistence length

G0 ≃ F ≃ kBT ℓ−1/5
p c7/5 . (21)

The above scaling law is included as a limiting case in a more detailed analysis
concerned with the calculation of the absolute value of the plateau modulus
(Wilhelm and Frey, 1998a).

Recent experiments seem to favor the above tube picture, where the
plateau modulus is thought to arise from free energy costs associated with
deformed tubes due to macroscopic stresses. Fig. 10 shows the results of a re-
cent measurement of the concentration dependence of the plateau modulus in
F-actin solutions (Hinner et al., 1998) which confirms the scaling prediction
G0 ∝ c7/5 quite unambiguously. A much stronger dependence on concentra-
tion – as predicted by a purely mechanical model (Satcher and Dewey, 1996)
or by the affine model discussed above (MacKintosh et al., 1995) – is not in
accordance with the data in Fig. 10.
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Figure 10: Concentration dependence of the plateau modulus of pure actin (open
squares) and actin with a small amount of gelsolin (rAG = 6000 : 1) corresponding
to an average actin filament length L = 16 µm (open diamonds). The straight
lines indicate the power 7/5. Taken from (Hinner et al., 1998).

III.B.3 Terminal relaxation

At frequencies below the plateau regime the elastic response decreases and
the polymer solution starts to flow. The corresponding time scale is called the
terminal relaxation time. It can be determined from the measured plateau
modulus and the zero shear rate viscosity using the relation η0 = π2G0τr/12
or from the frequency dependent moduli. The zero shear rate viscosity is
a well defined property of the solution but it is difficult to measure if τr is
very large. The frequency, where G′ = G0/2 is sometimes used as an easier
accessible substitute. For actin both definitions of τr have been shown to
lead to the same results (Tempel, 1996). However, the experimental results
do not agree with previous theoretical predictions (Odijk, 1983; Doi, 1985).

Intuitively, the mechanism for the terminal relaxation seems obvious from
the tube picture (see Fig. 6) described above: viscous relaxation only occurs,
when the polymers have time to leave their tube-like cages by Brownian
motion along their axis. If the polymers perform a one dimensional diffusion
along a fixed path, the overlap with the original tube decays only slowly
(as 1/

√
t), because the polymer enters its old tube frequently. Only changes

in orientation lead to exponential stress relaxation. If we assume that the
stresses in the solution are proportional to the fraction of the polymers in
their original tubes, we conclude that the terminal relaxation time is equal
to the time calculated by Odijk and Doi (Odijk, 1983; Doi, 1985). In the stiff
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limit we thus expect

τr =
Lℓp

4D‖

. (22)

Here D‖ denotes the longitudinal diffusion coefficient derived from the fric-
tion coefficient ζ‖L introduced above via Einstein’s relation D‖ = kBT/ζ‖L.
As we already mentioned before, this prediction is not supported by recent
experiments on actin solutions (Tempel, 1996). Rather these data seem to
suggest the relation

τr ≃
L(L + 2ℓp)

2

D‖
(23)

with a persistence length ℓp ≈ 17 µm. In this expression the tube length is
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Figure 11: Terminal relaxation time above the entanglement transition (Hinner
et al., 1998). The curved line is a fit by Eq. 23.

augmented by the persistence length at each end. This result is not easily
interpreted theoretically. It can be obtained (Kroy and Frey, 1997b) from
the assumption that the stress does decay when the polymer has lost its
original orientation while moving along a fixed path (i.e., it is not allowed to
penetrate the tube walls). The slow algebraic stress decay implied by this
interpretation seems to be supported qualitatively by the slow decay of the
viscoelastic moduli at low frequencies. However, without further experimen-
tal and theoretical investigations, Eq. 23 can at present only be regarded as
a phenomenological parameterization.

III.B.4 High frequency behavior

At frequencies above the “rubber plateau” (i.e. above 1 Hz for a typical
F-actin solution) an anomalous power-law increase of the storage and loss
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modulus with frequency, G′(ω) ∝ G′′(ω) ∝ ω3/4, has been observed in various
recent experiments (Amblard et al., 1996; Gittes et al., 1997; Schnurr et al.,
1997).

This power-law dependence of the shear modulus seems to be a generic
feature of any semiflexible polymer solution at high frequencies. It is tempt-
ing to speculate that this universal power-law is somehow tightly connected
with the anomalous subdiffusive behavior of the segment dynamics of a single
filament. But in view of the actual micro-rheological experiments, where one
observes the mean-square displacement of a bead of diameter larger than
the mesh-size and hence couples to a large number of filaments, it is not
obvious how this comes about. A thorough understanding would need to ex-
plore the nature of the crossover from local dynamics dominated by filament
undulations to the collective dynamics of the network and the solvent.

At present there are two different theoretical approaches based on differ-
ent assumptions on the nature of the dominant excitations of the individual
filaments generated by the beads embedded in the network.

In one class of theoretical models one simply takes over the “phantom
model” approach for the plateau modulus to the high frequency behavior
(Gittes and MacKintosh, 1998; Morse, 1998). It is assumed that under an
applied shear deformation the filaments undergo affine deformations on a
length scale of order Le implying longitudinal stresses on single filaments.
This leads to a simple relation between the macroscopic shear modulus G(ω)
and the longitudinal single filament response α(ω),

G(ω) =
1

15
νLe/α(ω)− iωη . (24)

The longitudinal response function is found to be

α(ω) =
1

kBTq4
1ℓ

2
p

∞
∑

n=1

1

n4 − iω/2ω1
, (25)

where q1 = π/Le and ω1 = (κ/ζ)(π/Le)
4 are the relaxation rate and wave-

vector of the slowest mode, respectively. By construction of the model this
reduces to the plateau modulus G0 ≃ 6νkBTℓ2

p/L
3
e (MacKintosh et al., 1995)

at low frequencies, whose validity for entangled solution is questionable (see
the discussion in section III.B.2). In the high frequency regime ω ≫ ω1 one
gets (Gittes and MacKintosh, 1998; Morse, 1998)

G∗(ω) =
1

15
ν(kBT )1/4ℓ5/4

p (iωζ⊥)3/4 . (26)
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Note that this high frequency behavior of the plateau modulus is indepen-
dent of the entanglement length Le, but solely depends on the persistence
length of a single filament and the lateral friction coefficient ζ⊥. The theoret-
ical analysis reproduces the experimentally observed power-law dependence.
However, due to the generic nature of this power law, which is a direct con-
sequence of mode-spectrum of semiflexible polymers, this agreement may be
completely fortuitous. A real check of the theoretical model can be achieved
by comparing the theoretically estimated and experimentally measured am-
plitudes of this power-law. A recent estimate (Gittes and MacKintosh, 1998)
suggests that the amplitude of the affine model is off by a factor of about
seven.

A complementary theoretical approach starts from the picture of an ide-
alized micro-rheological experiment, where a point force fs = fδ(s) is applied
to the polymers by optical or magnetic tweezers techniques. This would re-
quire beads much smaller than the mesh-size which are tightly connected
with the filaments. Such a setup is hard too achieve but some recent exper-
imental studies point in this direction (Dichtl and Sackmann, 1998). The
equation of motion for the transverse undulations are then given by Eq. 6.
Such an ansatz has been used before (Amblard et al., 1996) to explain the
experimentally observed subdiffusive segment diffusion in entangled F-actin
solutions. Note that this scaling behavior can already be inferred from the
observation that the dynamic structure factor of single semiflexible polymers
decays as exp[−(γt)3/4] for scattering wavelengths much smaller than the per-
sistence length. This was measured in light scattering experiments (Götter
et al., 1996) and explained theoretically (Frey and Nelson, 1991; Farge and
Maggs, 1993; Kroy and Frey, 1997a) in terms of Eq. 6. From the fluctu-
ation dissipation theorem and the Kramers-Kronig-relations one concludes
G′ = (

√
2 − 1)G′′ ∝ ω3/4. The prefactor of this high-frequency modulus

which is now mainly due to transverse instead of longitudinal modes differs
from Eq. 26 by a factor of order ξm/ℓp, i.e. it is much smaller. This would
contary to the above model, where longitudinal deformations dominate, lead
to a modulus (per polymer) which not only depends on the intrinsic prop-
erties of the individual filaments but through the mesh-size also depends on
the density of the polymer solution. Which one of these theoretical models
is superior to the other is hard to tell. It may well be that the actual physi-
cal mechanism is different from both. There is certainly a tremendous need
for more detailed experimental studies which not only measure the power-law
dependence of the modulus but also determine the concentration dependence
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of the prefactor.

III.B.5 Effect of crosslinking

In a crosslinked network it is obviously possible in principle that longidudinal
deformations (changes in the end-to-end distance) are enforced upon single
filaments under strain. For very regular networks such as a triangular lattice
the force constant kL associated with such deformations will dominate the
macroscopic moduli since no strain of the network without a change of the
end-to-end distances is possible and3 kL/kT = 60ℓp/Lc ≫ 1 at the relevant
lengthscale Lc << ℓp where Lc is the typical distance between crosslinks.4

It is, however, possible to imagine network structures where the opposite
extreme is realized and the softer bending modes dominate completely —
see, e.g., (Satcher and Dewey, 1996). Naturally, this will lead to a very
different prediction for the elastic modulus of the network. It is not easy to
see which case is realized in less ideal structures with a significant amount of
disorder such as in typical cytoskeleton networks.

To study this problem we consider the following two dimensional toy
model: sticks of length L are placed randomly with regard to position and
orientation on a square piece of the plane. Wherever to sticks intersect they
are connected by a crosslink with zero extensibility. The crosslinks can either
be chosen to fix the relative orientation of the rods as well (“stiff crosslinks”)
or not (“flexible crosslinks”). The elasticity of the rods is determined by their
Young’s modulus E and radius r = a/2 leading to kL0 = πr2E/Lc and kT0 =
(3/4)πr4E/L3

c = kT . While this is a T = 0 model it captures the essential
feature kL/kT = (4/3)L2

c/r
2 ≫ 1 for sensible densities of the network. Note

that the lengthscale Lc below which kL > kL0 is Lc ≈ (45r2ℓp)
1/3 ≈ 0.3 µm for

actin such that the force constants used in this model can even be assumed to
be realistic for relatively dense networks as they are found in the cytoskeleton.

Periodic boundary conditions are applied and a shear deformation is en-
forced by shifting the boundary conditions between the upper and lower
edges of the square. The elastic response of the network is calculated using
the method of finite elements. By construction, the undeformed network is

3Note that the exact prefactors depend on and will change with the boundary conditions
chosen.

4A second crossover will take place at very short lengthscales Lc ≈ a with a the filament
diameter, where the bending modulus will become comparable to the elastic longitudinal
compressibility of actin.
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Figure 12: Left: Geometry of a sticks network for density ρ = 30 and system
size Ls = 2. Right: Dependence of the shear modulus on the ratio kL0/kT of
compressional to bending stiffness for constant kT for networks with Ls = 15 and
flexible crosslinks. Use of fixed crosslinks does not affect the result for densities
sufficiently above the percolation threshold. The error bars given indicate the
standard deviation of the modulus for different realizations of the network. Zero
errorbars correspond to only one sample.

not prestressed. In the following discussion we chose the rod length L as
unit length and κ/L3 as unit for the elastic modulus. The independent pa-
rameters of the system are the densitiy ρ of rods per area L2, the system
size LS and the aspect ratio α = r/L of the rods. If we are not too close
to the geomtric percolation threshold ρc ≈ 5.71 (Pike and Seager, 1974) the
modulus G is independent of system size Ls for moderately large systems.
For the results presented below we chose Ls = 15.

To address the question whether the elasticity of a random stiff polymer
network is dominated by transverse or by longitudinal deformations of the
filaments, we study the dependence of the shear modulus on the ratio of
the two force constants. Keeping kT fixed we increase kL0 from values corre-
sponding to α ≈ 0.1 (thick rod) to values corresponding to α ≈ 10−5 (slender
rod) for different system densities (see Fig. 12). We observe that beyond a
certain point the shear modulus ceases to depend on kL0, indicating that the
elasticity is dominated by bending modes for slender rods (see Fig. 12). Since
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the characteristic lengths in the network decrease with increasing densitiy,
the point of onset for this behavior shifts upwards with density. The domi-
nance of bending modes in this region is confirmed by the observation that
almost all of the energy stored in the deformed network is accounted for by
the transverse deformation of the rods.

While these two-dimensional results are certainly not straightforwardly
applicable to three-dimensional networks we will nevertheless try to get a
feeling for the scales involved. Network densities can be compared roughly
by using the average distance Lc between intersections as a measure: A cy-
toskeletal network might have Lc ≈ 0.1 µm with typical filament lengths of
2 µm corresponding to a two-dimensional density of ρ ≈ 20 and an apsect
ratio of α ≈ 0.002 resp. kL0/kT ≈ 10−5. Comparison with Fig. 12 shows that
this would just place the network in the bending dominated regime. This
might, however, be different for different scales or if more order is present
in the network than assumed here. The key point we want to make is that
the mechanics of a crosslinked network of stiff elements is already quite a
complicated problem without an obvious effective model. For a more de-
tailed analysis of the random stick model we refer the interested reader to
Ref. (Wilhelm and Frey, 1998b).

IV CONCLUSIONS AND OPEN PROBLEMS

We have seen that the cytoskeleton is a composite biomaterial with a wide
variety of interesting viscoelastic properties. In particular F-actin solutions
and networks provide a model system for a polymeric liquid composed of
semiflexible polymers which is accessible to a complementary set of experi-
mental techniques ranging from direct imaging techniques over dynamic light
scattering to classical rheological methods. From these studies it has become
quite obvious that semiflexible polymer networks require new theorectical
models different from conventional theories for rubber elasticity. The nature
of the entanglement in solutions of filaments is very different from flexi-
ble coils. In a frequency window where an elastic plateau is observed the
topological (steric) hindrance between the filaments does not support any
longitudinal stresses along the filaments. A model based on the tube picture
and the free energy costs associated with deformations of the tube diame-
ter leading to a restricted conformation space for the transverse undulations
seems to be sufficient to explain the observed concentration dependence of
the plateau modulus. Recent more detailed theoretical models even allow
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for a quantitative comparison with the absolute value of this modulus. Out-
side the rubber plateau in the high-frequency as well as the low-frequency
regime the situation is less clear. In the latter regime the classical descrip-
tion by Doi leads to a dependence of the terminal relaxation time which is at
odds with the experimental data. Micro-rheology and dynamic light scatter-
ing experiments allow us to access the short-time dynamics of the filaments
within a network. Here a theoretical model which describes the combined
dynamics of network and solvent in this regime is still lacking. At present
there are two quite different approaches which either start from a continuum
medium approximation or from a single-filament picture. Obviously both
are just limiting cases and a molecular theory needs to explain how starting
from the single-filament dynamics including interactions with the solvent and
the neighboring filaments leads at some length and time scale to collective
behavior, which might be described in terms of some continuum model.

Another very important question is concerned with the effect of chemical
crosslinks on the mechanical properties of semiflexible polymer networks.
This is of prime interest for both cell biology and for polymer science. In
cell biology one would like to know how the material properties (e.g. elastic
modulus, time scales for structural rearrangement and stress propagation)
change as a function of the network architecture and the mechanical and
dynamic properties of the crosslinks. From the perspective of polymer science
it connects cytoskeletal elasticity with the very active fields of transport in
random media and elastic percolation. In section III.B.5 we have presented
a numerical study using a two-dimensional toy model of sticks randomly
placed on a plane and crosslinked at their mutual intersection points. One
can certainly not expect that such a simplified model leads to quantitative
results, but we think that some of its main features carry over to the more
complicated situation of a three-dimensional network. Future research may
concentrate on extending these studies to three-dimensional networks and
study how distribution of crosslinks and different network architectures affect
the elastic modulus.
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Ziemann, F., J. Rädler, and E. Sackmann. 1994. Biophys. J., 66:2210.


