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Zusammenfassung

Lebende Zellen sind einer Vielzahl von fluktuierenden Umwelteinflüssen ausgesetzt, wie
zum Beispiel variierende Nahrungsvorkommen, die Konfrontation mit toxischen Stoffen,
oder sich ändernde Zelldichten. Um auf diese Signale in einer sinnvollen Weise zu reagieren,
wurden durch die Evolution immer ausgefeiltere biochemische Netzwerke selektiert, die
die Zelle befähigen verschiedenste Signale auf einer schnellen Zeitskala zu verarbeiten.
Das Erforschen dieser regulatorischen Netzwerke ist von zentraler Bedeutung für unser
Verständnis der Verbindung zwischen unbelebter und belebter Natur. Die verwickelten
regulatorischen Strukturen dieser Netzwerke bringen jedoch solch eine Komplexität mit
sich, dass angesichts der derzeitigen Datenlage eine Analyse der Netzwerke als ganzes nicht
sinnvoll erscheint. Kleine, isolierte Netzwerkmodule können auf der anderen Seite sowohl
theoretisch als auch experimentell sehr wohl untersucht werden und dieser Ansatz wurde
auch in den jüngsten Jahren erfolgreich verfolgt.

Die vorliegende Arbeit beschäftigt sich mit der Frage, wie solche Netzwerke (basierend
auf den Prinzipien der Genregulation) gewisse Signale aus ihrer Umwelt speichern können.
Es wird ein minimaler genetischer Schaltkreis vorgeschlagen, welcher in der Lage ist, ein
Signal in Form einer Proteinkonzentration zu speichern. Das Verhalten dieses Regelkreises
ist dem Speicher in einem elektronischen Schaltkreis sehr ähnlich: Er liest und speichert
das Eingangssignal nur, wenn ein Speichersignal vorliegt. Das Speichern geschieht also
nur bedingt und wird deshalb als konditional bezeichnet. Die Architektur des vorgeschlage-
nen Schaltkreises basiert auf einem vormals schon experimentell realisierten ”genetischen
Schalter”, welcher aus zwei, sich gegenseitig unterdrückenden Genen besteht. Es wurde
gezeigt, dass dieser zentrale Baustein bistabiles Verhalten zeigt und somit geeignet ist,
um die beiden logischen Zustände 0 und 1 einer Speichereinheit zu repräsentieren. Dieser
Schalter wird durch ein regulierendes ”Front-end” ergänzt, welches das Eingangs- und Spei-
chersignal im Form von zwei weiteren Proteinen enthält. Diese Proteine können Homo-
und Heterodimere bilden und in diesen beiden Konformationen selektiv die Produktion
der jeweiligen ”Schalter-Proteine” unterdrücken. Dadurch kann zwischen den Zuständen 0
und 1 umgeschaltet werden.

Die hochgradig stochastische Natur chemischer Reaktionen bei typischerweise sehr
niedrigen Molekülzahlen (oft sind weniger als 100 Moleküle einer Spezies pro Zelle vorhan-
den) erfordert eine theoretische Analyse sowohl mit deterministischen als auch mit stochasti-
schen Techniken. Zur Untersuchung der Gleichgewichtseigenschaften des Schaltkreises
in Abhängigkeit von den realistisch gewählten Parametern wurden die deterministischen
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Reaktions Raten-Gleichungen verwendet. Es wird gezeigt, dass der Schaltkreis für die Pro-
teine TetR und LacI tatsächlich bistabiles Verhalten aufweist und das Zustandsdiagramm
(analog zum Phasendiagramm in der Thermodynamik) wird präsentiert. Des Weiteren
wird der Einfluss des regulierenden Front-ends auf den zentralen Schalter untersucht und
es wird demonstriert, dass das resultierende Verhalten analog zu dem des ”mean-field”
Ising Modells in einem magnetischen Feld ist, wobei das Eingangs- und Speichersignal je-
weils dem äusseren Feld und der Temperatur entsprechen. Es wird weiter dargelegt, wie
man die Sensitivität des Schaltkeises an gegebene Signalamplituden durch Mutationen in
den DNA-Bindestellen der Homo- und Heterodimere anpassen kann.

Das dynamische Verhalten des Speicherelements in Abhängigkeit von zeitabhängigen
Eingangs- und Speichersignalen macht klar, dass die gewünschte Fähigkeit Signale auf
schnellen Zeitskalen (ca. 30 min) zu lesen und zu speichern tatsächlich gegeben ist. Stochas-
tische Simulationen mit dem Gillespie Algorithmus zeigen weiter, dass trotz der stochastisch
induzierten Übergänge zwischen den beiden ”stabilen” Zuständen, die Halbwertszeit des
”Gedächtnisverlusts” bei mindestens 40 Stunden liegt. Zusätzlich werden noch neue stochas-
tisch induzierte Fehler, die während des Speichervorgangs stattfinden, identifiziert. Diese
Fehler können jedoch minimiert werden, wenn das Speichersignal nur ausreichend lange
präsent ist.

Die Struktur dieser Arbeit ist wie folgt: Im ersten Kapitel wird eine kurze historische
Einleitung in die Molekularbiologie gegeben und die Motivation für die vorliegende Arbeit
wird aufgezeigt. Das zweite Kaptitel gibt einen Überblick über die derzeitigen quantitiven
Zugänge zur Genregulation, führt den Leser in die Genregulations-Netzwerke ein und disku-
tiert die wichtigsten mathematischen Konzepte zu deren Beschreibung. Zusätzlich werden
die Quellen biochemischer Fluktuationen in diesen Netzwerken diskutiert. Im dritten Kapi-
tel werden die eingeführten Konzepte auf den oben beschriebenen ”konditionalen Speicher”
angewendet und dessen Verhalten sowohl mit deterministischen als auch mit stochastischen
Methoden untersucht. Das letzte Kapitel diskutiert die Resultate und beleuchtet sie vom
Standpunkt einer möglichen experimentellen Realisierung.



Summary

Living cells are exposed to a variety of fluctuating environmental signals, such as the
nutrient supply, the concentration of toxics or the cell density. In order to respond to
these signals in a reasonable way, evolution selected for sophisticated biochemical reaction
networks that allow the cell to integrate and process a multitude of signals on a rapid
timescale. The comprehension of these regulatory networks belongs to the most challenging
tasks in understanding life and is important to build the bridge between the inanimate and
the animate matter. However, the intricate structure of these networks confers an enormous
complexity, that makes it in the lack of detailed biochemical data prohibitively difficult
to analyze these networks as a whole. The theoretical and experimental characterization
of small and compact network modules on the other hand, seems feasible and has been
pursued in the recent years.

The present work deals with the question, how the capability to memorize certain
environmental signals can be realized in a genetic network. A minimal genetic circuit is
proposed, that conditionally memorizes a signal in the form of a protein concentration.
The circuit behaves qualitatively similar to memory in an electronic circuit: it reads and
stores an input signal only when conditioned to do so by a read signal. The circuit is based
on a previous experimental realization of the ”genetic toggle switch”, which consists of
two mutually repressing genes. This ”core unit” exhibits bistable behavior, thus suitable
for the implementation of the logic states 0 and 1. It is complemented with a ”regulatory
front end” comprising two additional proteins, which carry the input and the read signal,
respectively. Moreover, these proteins may form homo- or heterodimers, which selectively
repress the synthesis of the two toggle switch proteins. Thereby it is possible to switch
between the states 0 and 1.

Due to the highly stochastic nature of the biochemical reaction events involved in these
processes, the theoretical analysis is carried out by using both deterministic and stochastic
simulation techniques. The deterministic rate equations are used to explore the steady
state behavior of the circuit in dependence on the realistically chosen parameters. It is
shown that the circuit exhibits bistable behavior for the proteins TetR and LacI and the
state diagram (analogous to the phase diagram known from thermodynamics) is presented.
Moreover the impact of the regulatory front end on the core toggle switch is investigated
and it is found, that the resulting behavior is analogous to a mean-field Ising system in a
magnetic field, where the read and input signals correspond to temperature and magnetic
field, respectively. It is also shown, that the circuit can be adapted to varying amplitudes of
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the input and the read signal by mutations in the binding sites of the regulatory proteins.
The dynamical response of the circuit with respect to time-dependent read and input

signals shows that the desired ability to read and store signals on rapid timescales (around
30 min) is given. Stochastic simulations with Gillespie’s algorithm reveal also, that even
though there are stochastically induced transitions between the two ’stable’ states, the
resulting memory loss has a half-life of at least 40 hours. Additional to this, other noise
induced errors are identified during the processes of ”reading” the input signals. It is found,
that these errors are an intrinsic property of the proposed design and can be minimized by
increasing the duration of the read signal.

The structure of the thesis is as follows. In the first chapter a brief historical introduction
to molecular biology is presented and the motivation for the current work is given. The
second chapter provides a review of the present quantitative approaches to gene regulatory
systems, gives an introduction to gene regulatory networks and to the most important
mathematical modeling techniques. In addition, also the sources and descriptions of bio-
chemical fluctuations are discussed. In the third chapter these concepts are applied to
the ’conditional memory circuit’ and its behavior is investigated from a deterministic and
stochastic point of view. The last chapter discusses the results and gives an outlook on
possible experimental applications of the presented work.
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Chapter 1

Motivation

From the 17th century on the natural sciences separated into many diverging disciplines.
The major fields of physics, chemistry, earth sciences and biology specialized themselves
in countless sub-disciplines which typically embody their own terminology and nomencla-
ture. The 20th century however, was marked by the reunion of many of these disciplines.
In the 1930’s the history of molecular biology begins with the convergence of previously
distinct branches of biology, as for instance biochemistry, genetics, microbiology and virol-
ogy. Interestingly many physicist made substantial contributions to this newly emerging
field: Max Delbrücks (1906-1981) thoughts about the physical basis of life stimulated the
writing of the highly influential little book ”What is life?” [101] by Erwin Schrödinger
(1887-1961). This in turn was an important guidance for the Nobel prize winners James
D. Watson (*1928) and Francis Crick (1916-2004), who discovered the double helical struc-
ture of DNA by X-ray diffraction in 1953 [37].

In the past 60 years molecular biology has made tremendous progress, as not only the
genetic code of humans was sequenced, but also the mechanisms by which cells regulate
the activity of their genes and respond to external stimuli were discovered. With the fast-
paced development of new experimental techniques as e.g. micro-arrays, flow-cytometry or
single-cell fluorescence microscopy, modern biology is evolving from a qualitative and de-
scriptive science to a quantitative and predictive one. At the same time as biology becomes
quantitative the physicist gets the opportunity to extend his horizon to a completely new
sphere: the animated matter.

The hope of the biophysicist is, that many concepts used in physics also apply for
living systems. Cells are in principle genuine non-equilibrium chemical reaction systems
with a confined volume defined by their cell membrane. Due to the small molecule numbers
involved in these reactions, they are expected to be of highly stochastic nature. A gene for
instance serves as the template for protein synthesis and is often only available in a single
copy. Therefore on the microscopic scale the appropriate description seems to be the one
by a probabilistic master-equation. However, on a larger scale also other concepts, like
reaction rate equations for continuously changing concentrations of chemicals do apply.
Thus also nonlinear dynamics can be applied to the life sciences: the mathematics of
a nonlinear LR-circuit (van der Pol oscillator) is for example very similar to the one of
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a biological oscillator controlling the day-night cycle of cyanobacteria or humans [53],
since both result in limit-cycle behavior. As we will see in Chapter 2 also concepts from
equilibrium thermodynamics find their application.

Whether the ultimate goal of a mathematically based comprehension of life will be
attained, remains to be seen, but there are already numerous examples where the fusion
of biology, physics and informatics has fostered exceptional results. The interdisciplinary
cooperation among these fields has culminated in the foundation of a new discipline called
Systems Biology [71], with the emphasis on a system-wide view on cells and organisms.

Of particular interest to Systems Biology are the genetic networks with their intricately
connected regulatory structures (Section 2.3). Roughly speaking, they control which genes
in a cell are ON and which are not, i.e. which genes are translated into proteins and
which not. Thus by altering the gene expression pattern the intracellular composition of
proteins can be modified. If environmental signals are coupled via signal transduction
pathways to the genetic network, the cell can respond to varying external conditions by
producing appropriate sets of proteins. The understanding of the emergent phenomena
encoded in these networks might hence be seen as one of the major tasks in understanding
life. Although a lot of progress was made in this direction in the past two decades, this
field is still in its infancies and the comprehension of the entire regulatory structure is far
beyond reach. In contrast, small network motifs consisting only of a few interacting genes
are amenable to both theoretical and experimental characterization, as will be illustrated
in Section 2.3.1.

The aim of this work is to theoretically predict a minimal network motif with the ability
to store transient signals in form of protein concentrations. Such an implementation of
memory in its simplest form provides a basis for the comprehension of epigenetic memory
in large-scale genetic networks. By definition, ”epigenetics is the study of epigenetic in-
heritance, a set of reversible heritable changes in gene function (...) that occur without a
change in DNA sequence” (Wikipedia). In Section 2.3.2 we will go into some mechanisms
of epigenetic memory.

With this study the first attempt to introduce sequential [68] rather than combinatorial
logic [28] into gene regulatory circuitry is made. By sequential logic one means, that the
response of the network not only depends on its present input signals, but also on the
history of these signals. It hence provides the natural next step in our understanding of
cells as ”molecular computing machines” [28].



Chapter 2

Gene regulation and genetic networks

This chapter shall give a brief overview of our current understanding of biological cells
as non-equilibrium chemical reaction systems. The first two sections introduce the basic
biochemical processes necessary for protein synthesis and a quantitative framework for
their description is presented. It is shown, that the mechanisms by which certain proteins
regulate the synthesis of other proteins are crucial for the emergence of complex genetic
networks. These are discussed in Section 2.3 and two prototypic networks are scrutinized
in detail. Section 2.4 reviews the most important deterministic and stochastic modeling
techniques, ranging from the chemical master equation and its simulation to reaction rate
and Langevin equations. The last section finally discusses the origins and descriptions of
biochemical noise associated with gene regulatory circuits.

2.1 The central dogma of molecular biology

With the discovery of the structure of DNA by Watson and Crick in the early 50’s [37]
the foundations of modern molecular biology were set. They could show that DNA is a
double-helical polymer, that encodes the information necessary for protein synthesis in the
sequence of its constituting bases. Triplets made up of the four existing bases A (adenine),
G (guanine), C (cytosine) and T (thymine) code for one of the 20 amino acids. The
codon GCA for instance, codes for the amino acid alanine. A chain of several hundred to
thousand amino acids eventually folds up to form of a protein. The sequence of bases on
DNA required for the synthesis of a protein is called a gene.

In Fig. 2.1 the schematic processes of the central dogma of molecular biology as for-
mulated by Francis Crick [36] is shown. It is a statement about the flow of the genetic
information: the information encoded on the DNA is replicated in a robust manner and
thereby it is passed on to the daughter cells. From DNA a template molecule, called mes-
senger RNA (mRNA) is transcribed and this single-stranded molecule contains a sequence
of bases complementary to the one on DNA. In the majority of the cases the information
flow is strictly from DNA to RNA and not back. The mRNA itself acts as a blueprint for
protein synthesis, and many proteins are translated from one copy of mRNA.
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Figure 2.1: The central dogma of molecular biology is a statement about the flow of the genetic
information. The figure was taken from [8].

Although the flow of genetic information is a ”one-way-trip”, this does not mean that it
is an unregulated process. Indeed quite the contrary is the case, since every single step on the
way from the gene to the protein is highly controlled: proteins regulate transcription and
the lifetime of other proteins, small RNAs and RNA-binding proteins control translational
initiation and the lifetime of mRNA, and so on. This results in an intricate feedback and
feed-forward structure of the regulatory players, and gives rise to the emergence of complex
systems behavior. Some of the regulation mechanisms and their quantitative description
are introduced in the remainder of this chapter.

2.2 Quantitative description of gene regulation

In this section a quantitative view on gene regulation in bacterial cells (prokaryotes) will be
developed. In contrast to eukaryotic cells (the cells of higher organisms as plants, mammals,
etc.), prokaryotes lack a cell nucleus and the principles of gene regulation are much better
understood. First, it is important to get aware of the size and the dimensions of the object
of interest. This is in the present case the bacterium E. coli (see Fig. 2.2), which is one
of the best-studied organisms of microbiology and serves in many cases as a paradigmatic
example. Then we take a closer look at the previously mentioned processes of mRNA
and protein production, i.e. transcription and translation, describe the biological details
and show the most important mathematical descriptions of these processes. In addition to
the mechanisms of mRNA and protein production, it is very important for living cells to
degrade and recycle these substances once they are not needed any more. This property
is crucial, since it turns them into highly dissipative open chemical reaction systems. We
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Figure 2.2: Low-temperature electron micrograph of a cluster of Escherichia coli bacteria, which
lives in the lower intestines of mammals and is involved in the proper digestion of food. The
photo was taken from [1].

will briefly introduce some of the mechanisms of active and passive degradation. Last, the
mechanisms and implications of cooperative interactions will be discussed.

2.2.1 Statistics of the bacterium Escherichia coli

In order to develop a intuition for the quantitative description of gene regulation in bacterial
cells it is instructive to have a closer look at the typical molecule numbers and the length
scales found in these organisms. In Fig. 2.2 a colony of E. coli cells is shown. They are
cylindrical cells with an average length of 1 − 2 µm, a diameter of 0.5 µm and a resulting
volume of about 10−15 L. Based on this estimation one molecule per cell corresponds to
a concentration of 10−9 M = 1 nM (one nano-mole). This is the canonical concentration
unit for bacterial cells, since the typical molecule numbers vary from 1 to about 104.
Table 2.1 gives an overview over the most important numbers and dimensions of E. coli’s
constituents. One surprising example is the following: the intracellular pH level of E. coli
is neutral (pH 7), which means that there is a concentration of 10−7 M = 100 nM of H+ ions
in the cell. Hence there are only 100 soluted H+ ions in each bacterium. These low numbers
make it very evident, that the statistical fluctuations which are roughly proportional to
the square root of the molecule number play a crucial role in the life of the cells. One can
imagine that there have evolved sophisticated mechanisms of reducing these fluctuations
if they threaten the survival of the bacteria. On the other hand one could also think of
the possibility, that evolution made an advantage of these huge relative fluctuations and
even amplified them in order to obtain a larger population heterogeneity (we will get back
to that point in Section 2.3).
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Item Property

DNA

size 5 × 106 base pairs
length 1.55 mm
number of open reading frames 4441
number of protein coding genes 4252
number of genes coding for transcrip-
tional regulatory proteins

247

mRNA

size 1100 bases
length 370 nm
total copy number 4000/cell

Proteins

size 360 amino acids
diameter 5 nm
total copy number 3.6 × 106/cell
protein oligomerization state 4/complex

Housekeeping machinery

number of ribosomes 18000/cell
diameter of a ribosome 20 nm
number of RNA polymerases 1000/cell
diameter of RNA polymerase 15 nm

Table 2.1: Average sizes and numbers of E. coli’s molecular constituents. Source: [2]

2.2.2 Transcription and its control by regulated recruitment

Transcription initiation, elongation and termination. As stated in Section 2.1 a
copy of the genetic code in form of an mRNA molecule is synthesized in order to serve
as a blueprint for the assembly of the respective protein. This process of transcription is
carried out by a sophisticated molecular machine called RNA polymerase (RNAP), which
forms together with a σ-factor a transcriptionally active holoenzyme, see Fig. 2.3 (a). The
holoenzyme binds to a specific sequence of DNA, called the promoter region. It is located
in front of the respective gene and is responsible for the initiation of transcription: Once
the holoenzyme is bound to the promoter region, it separates the double stranded DNA
locally into two single strands, releases the σ-factor and starts the assembly of the mRNA
strand by complementary base pairing as it proceeds along the gene, see Fig. 2.3 (b). This
elongation process continues until a terminator sequence is reached and the mRNA strand
is released.

Physics of protein-DNA interaction

The mechanisms by which the holoenzyme recognizes the promoter region are general for
a large class of DNA-binding proteins, i.e. also for the class of proteins named transcrip-
tion factors, which will be discussed further below. In order to understand the physical
interactions between proteins and DNA it is elucidating to have a glance at their physico-
chemical organization. In the lower part of Fig. 2.4 the three-dimensional structure of
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(b)

(a)

Figure 2.3: (a) The holoenzyme binds with its various sub-domains to distinct regions in the
promoter region in order to initiate transcription. In (b) the processes of transcriptional initiation,
elongation and translation are depicted schematically.(a) was taken from [26] and (b) from [3]

DNA is depicted. It consists of two strands of bases and the four existing bases A, G, C
and T link the individual strands via hydrogen bond formation, but only the contacts A-T
and G-C are energetically favorable. In addition, the individual base-pairs attract each
other by hydrophobic forces. Together with the flexible sugar-phosphate backbone, which
connects the bases along the axis of DNA, this leads to the double helical structure. Note
that the hydrogen bonds between the bases are not arranged in a perfect angle of 180◦

and therefore double-helical DNA develops two grooves of different size: the major and the
minor groove. This geometry has consequences for the binding of proteins to DNA, as for
instance in the case of the 434 repressor protein (Fig. 2.4, upper part): The amino-acids of
the two α-helices of 434 repressor (depicted in green) serve as ”reading heads” and contact
the bases in the major groove of the DNA. Thereby hydrogen bonds between proteins and
DNA are formed, which is the physical basis of specific protein-DNA interaction. By spe-
cific it is meant, that the binding (free) energy of the protein to the DNA depends on the
sequence of base-pairs on the DNA and a stable complex is only formed with the target
sequence. This is due to the fact, that certain amino-acids ”recognize” certain base-pairs
on the DNA. For the Cro-repressor for instance, the amino acid glutamine recognizes an
AT pair in the major groove of DNA while asparagine recognizes a GC pair in the minor
groove [27]. This is called the direct read-out mechanism.

There exists a ”best binder” sequence for every DNA-binding protein [47]. For the
434 repressor for instance the best binder sequence is depicted in Table. 2.2. The central
bar signals the center of symmetry of the operator sequence and it indicates, that the 434
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Figure 2.4: Schematic illustration of the dimeric 434 repressor (top) bound to the double stranded
DNA (bottom). The two α-helices depicted in green mediate the contact with the bases in the
major grooves of DNA. The illustration was taken from [4].

A C A A x x x x x x T T G T
T G T T x x x x x x A A C A

Table 2.2: Consensus operator sequence of the 434 repressor [61]. The x’s denote non-conserved
bases, which are not contacted by the repressor protein and yield therefore no contribution to
the binding energy. The central bar represents the center of symmetry.

repressor binds as a dimer with anti-parallel orientation. Around the central region the
x’s stand for non-conserved bases. In terms of binding energy contributions, these base-
pairs are somewhat arbitrary, since they are not contacted by the repressor and therefore
don’t confer any binding energy1. The exchange of a few base-pairs by non-ideal bases
is penalized by a ”mismatch energy” of ε ≈ 1 . . . 3 kBT per base-pair and thereby the
protein’s binding affinity is reduced. Thus the affinity can be tuned or programmed over
a large range through the choice of the nucleotide sequence and the resulting equilibrium
dissociation constant K ranges from K = 1 nM to 1000 nM for typical transcription factors,
see [47].

Thermodynamic model of transcription

The various processes of transcriptional initiation, elongation and termination can be sub-
sumed into an effective model, that only depends on a few parameters. It turns out,
that under certain assumptions the rate of transcription is proportional to the equilibrium
probability to find RNA polymerase (RNAP) on the promoter site [24]. One of these as-
sumptions is for instance, that the open complex formation is the rate limiting step in the
previously mentioned cascade of transcriptional initiation. Only then the assumption of

1Actually in some cases the non-contacted bases do matter and influence the binding energy. This is
due to the fact, that the flexibility of DNA is determined by the sequence of the base-pairs [40] and the
establishment of a TF-DNA contact often requires the bending of DNA.
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an equilibrium between binding and unbinding to the promoter sequence is reasonable.
How can the probability of finding RNAP on the promoter be determined? In order to

answer this question we will follow the reviews of Bintu et al. [24, 23]. There they employ
the general framework of statistical mechanics to approach the problem: If one is able to
compute the statistical weight Zbound of all configurations, where RNAP is bound to the
promoter site, the probability pbound of finding RNAP on the promoter is simply the ratio
of Zbound and the total statistical weight Ztot

pbound =
Zbound

Ztot

. (2.1)

These partition functions Zi will be determined in the following. Under in vivo conditions,
i.e. in living cells, most of the RNA polymerase molecules will be bound non-specifically
to the DNA and only a negligible amount is free in solution [24]. There are NNS ≈ 107

possible non-specific binding sites on the DNA and the difference in binding energy ∆εpd

between the non-specific and specific binding of RNAP to DNA is given by

∆εpd = kBT ln

(

KS
pd

KNS
pd

)

. (2.2)

Here the K’s are the equilibrium dissociation constants for specific and non-specific binding
taken from in vitro measurements of the lac promoter (∆εpd ≈ −3kBT ) and the phage T7
promoter (∆εpd ≈ −8kBT ).

With this notation the statistical weight Z(P ) of finding the promoter unoccupied is
just the number of possibilities to distribute P RNAP molecules on NNS non-specific sites
times P Boltzmann factors of nonspecific binding:

Z(P ) =
NNS!

P !(NNS − P )!
× e−PεNS

pd
/kBT . (2.3)

Thus, the weight of the bound state is given by the weight of P − 1 polymerases bound to
nonspecific sites and one bound to the promoter

Zbound = Z(P − 1)e−εS
pd

/kBT , (2.4)

where εS
pd is the specific binding energy of RNAP binding to the promoter. The total

statistical weight Ztot is the sum of the two partition sums in Eqs. (2.3)and (2.4) and
ultimately pbound takes the simple form

pbound =
1

1 + NNS

P
e−∆εpd/kBT

. (2.5)

If we assume 1000 polymerases P and use the above mentioned values of NNS and ∆εpd

we obtain for the T7 promoter an equilibrium occupancy of 0.23 and for the lac promoter
only 0.002. How can the lac promoter nevertheless yield an mRNA output comparable to
the strong promoter in the T7 phage? This question will be addressed in the next section.
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(a) repression by steric hindrance

(b) repression by DNA looping

(c) Class I activation

(d) Class II activation

Figure 2.5: The most prominent mechanisms of bacterial gene regulation. For details see text.
The figures were taken from [26].

Transcriptional control by regulated recruitment of RNAP.

The genome of E. coli consists of approximately 4500 genes. Without any regulatory
mechanisms all genes would be transcribed simultaneously with a probability proportional
to the affinity of RNAP to their associated promoter site. Clearly, the living cell needs
some means to orchestrate these transcriptional events in time and (in some cases) also in
space. This is necessary in order to respond to environmental stimuli ”intelligently” by the
production of specific sets of proteins. Expressing different (disjunct) sets at the same time
would have devastating consequences for the cell. If for instance the apoptosis pathway of
a eukaryotic cell would not be regulated carefully, the cell could kill itself at any time.

The orchestration of the different genes is mediated by a subclass of proteins called
transcription factors (TFs). These DNA-binding proteins have no other purpose than
regulating the transcription of other genes by a simple principle: they either increase or
decrease the affinity of RNAP to bind to the promoter site of the respective target gene.
This principle is called regulated recruitment of RNA polymerase [93, 91] and the TFs
are named activators or repressors, respectively. In Fig. 2.5 the most recurrent regulatory
processes are summarized. Before they are discussed in detail, we highlight the thermody-
namical implications of regulated recruitment for the probability to find RNAP bound to
the promoter.

Regulated recruitment. If both TF and RNAP are bound adjacently on DNA, the
interaction of a TF with RNAP involves an additional contribution εtp to the free energy.
In the case of an attractive interaction (activator), mediated by hydrogen bonds or hy-
drophobic forces, we have εtp < 0. The binding or operator site of the activator may not
overlap with the promoter, because otherwise the TF would sterically inhibit the binding
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of RNAP. This is exactly the case for many repressors, i.e. their operator sites overlap
at least partially with the promoter. If the repressor and RNAP mutually exclude each
other, the interaction energy becomes for the repressor with RNAP becomes infinitely
large (εtp → +∞). With the additional configurations of having RNAP and TFs bound
and unbound one can again find expressions for the different partition functions entering
Eq. (2.1). Ultimately one can show [24] that the probability to find RNAP on the promoter
site becomes

pbound(TF ) =
1

1 + NNS

P Freg(TF )
e−∆εpd/kBT

. (2.6)

The only difference to Eq. (2.5) is the introduced regulation factor Freg(TF ), which is a
function of the TF abundance. It can be seen as the effective increase (Freg > 1, activator)
or decrease (Freg < 1, repressor) of the number of RNAP molecules available for binding
the promoter. The precise dependence of Freg(TF ) on the TF abundance is specific for the
respective regulation mechanism. We discuss the different mechanisms depicted in Fig. 2.5
and their regulation factors one by one in the following.

Transcriptional repression by competition. The simplest and most frequent way to
repress transcription is by competitive binding (Fig. 2.5 (a)): if the binding site of the TF
overlaps the promoter region, the bound TF sterically inhibits the RNAP to locate the
promoter site (εtp → +∞). The regulation factor Freg is in this case [24] given by

Freg(R) =
1

1 + R
NNS

e−∆εrd/kBT
. (2.7)

Here R is the number of repressor molecules and ∆εrd the difference between specific and
nonspecific binding free energy of the repressor bound to DNA. Inserting Eq. (2.7) in
Eq. (2.6) yields with the in vivo equilibrium dissociation constant of repressor-operator
interaction KOR

:= NNS exp(∆εrd/kBT ) and with the dimensionless factor
P̃ := P

NNS
exp(−∆εpd/kBT )

pbound(R) =
1

1 + P̃−1
(

1 + R
KOR

) . (2.8)

With NNS = 107 nonspecific binding sites, P = 103 RNAP molecules and ∆εpd ≈ −3kBT
for the lac promoter, it is guaranteed that P̃ << 1 (weak promoter limit) and thus

pbound(R) ≈ P̃
1

1 + R
KOR

. (2.9)

This is the traditional Hill- form of the promoter activity function (PAF) with an Hill-
exponent2 n = −1. We note that the abundance of the RNAP molecules enters this
formula only as a pre-factor and is usually assumed to be constant. Thus, in the later
sections we will refer to the PAF only as the dimensionless second factor, call it p and
subsume P̃ into the other multiplicative pre-factors.

2The negative sign is because H(x) := (x/K)n

1+(x/K)n .
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Repression by DNA looping. Another interesting example of repressive transcrip-
tional control is DNA looping. In some cases there is a second operator site located a
few hundred base pairs upstream of the actual promoter region [113], see Fig. 2.5 (b). In
the case of the Lac-repressor LacI one dimer binds to this upstream operator site and one
to the second operator site located near the promoter. Since the distance between these
operators is larger than the persistence length of the DNA, it is likely that the DNA bends
and forms a loop. This loop is then stabilized by the heads of the LacI molecules, that
glue together to form a stable tetramer. This mechanism confers an extremely robust way
of repressing transcription for at least two reasons: first, the loop itself prevents RNAP
to approach the promoter and second, once one of the two TFs unbinds, the possibility of
reconnecting to the proper operator site is facilitated as can be seen in the following. The
promoter activity function similar to Eq. (2.8) can be obtained via a statistical thermo-
dynamics approach [98] and leads in the limit where the upstream operator is very strong
to

pbound(R) ∼ 1

1 +
(

e−∆ǫloop/kBT + R
)

/KOR

, (2.10)

where ∆ǫloop is the free energy difference for looping and KOR
the in vivo dissociation

constant for the repressor R binding to the operator site. Here the contribution of the loop
effectively increases the concentration of R and thus repression is enhanced (for details see
[98] or [113]).

Transcriptional activation. Although most of E. coli’s promoters are strong promoters
which are restrained by the action of repressors, there are also several examples of weak
promoters which are activated by transcription factors. The two main classes of activators
are shown in Fig. 2.5 (c),(d) and they differ only in the location of their binding sites. The
regulation factor is in both cases given by

Freg =
1 + A

NNS
e−∆εad/kBT e−εap/kBT

1 + A
NNS

e−∆εad/kBT
, (2.11)

where εap < 0 is the free energy of the interaction between activator A and RNAP. With
the substitutions analogous to above and f := e−εap/kBT we get

pbound =
1 + A

KOA

f

1 + A
KOA

f + P̃−1
(

1 + A
KOA

) (2.12)

P̃<<1
= P̃ f

A/KOA

1 + A/KOA

. (2.13)

Eq. (2.13) is again the ’weak promoter limit’ and resembles the commonly used Hill-function
for activation with an Hill-exponent of n = 1. In Section 2.2.3 we will see, that cooperative
binding of multiple TFs to adjacent operator sites leads to |n| > 1.
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2.2.3 Combinatorial transcription logic and cooperativity

In Section 2.2.2 the regulation of gene expression by a single transcription factor (TF) via
regulated recruitment of RNA polymerase (RNAP) was introduced. The natural extension
of this concept is the recruitment of RNAP by multiple TF’s acting synergistically or
competitively. As we will see in the subsequent section, these synergistic and cooperative
effects are the underlying reason for the emergence of complex systems behavior on the
network level.

Dimerization. Dimerization is one of the most common synergistic effects in gene reg-
ulation. It is known that many bacterial TFs bind DNA only in their dimeric form, as
e.g. λ-repressor, Cro repressor [92] or the activator AraC [99]. There are plenty of possible
reasons for this , but one of the most important functional implications is the following: If

we consider for instance the dimerization reaction of a repressor R+R
k+

⇀↽
k−

R2 in equilibrium,

the ’law of mass action’ applies and we have KR = R2/R2. Here and in the remainder of
the thesis the squared brackets, which usually denote the concentrations are omitted. This
relation implies, that at low total protein concentrations mainly momoners R, and at high
total concentrations mainly dimers R2 are present. Thus, additional to the Hill-form of the
promoter activity function a further nonlinearity is imposed into the system’s response. In
the limit of ’infinite cooperativity’, i.e. where only the dimers can bind DNA, we have to
replace the repressor in Eq. (2.9) by the dimer R2. The promoter activity function is now
given by

pbound = P̃ (1 + R2/KOR
)−1 . (2.14)

However, since actually the total protein abundance Rtot = R+2 R2 of the repressor is the
variable under the control of other cellular processes, one has to express R2 in Eq. (2.14)
in terms Rtot. This is again achieved via the law of mass action and we obtain

pbound(Rtot) = P̃

(

1 +
Rtot + KR/4 −

√

K2
R + 8KRRtot/4

2 KOR

)−1

. (2.15)

For many bacterial TFs the equilibrium dimerization constant is very low (KR = 1 . . . 10nM)
and thus the equilibrium is strongly biased towards the dimers. The result is that R2 ≈
Rtot/2 and thus a Hill function with exponent n = −1 is the result:

pbound(Rtot) ≈ P̃

(

1 +
Rtot

2 KOR

)−1

. (2.16)

For large dimerization constants KR on the other hand, one can expand the root in
Eq. (2.15) in x = 8Rtot/KR and one obtains R2 ≈ 2R2

tot/KR. Thus, only in the limit of weak
dimerization one obtains a Hill function with exponent n = −2 and K =

√

KRKOR
/2:

pbound(Rtot) ≈ P̃
1

1 + (Rtot/K)2 . (2.17)
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Figure 2.6: Logic gates are the result of combinatorial transcription control by multiple TFs.
The dashed lines depict adhesive interactions between the molecules and the black and white
boxes correspond to strong and weak binding-/promoter sites, respectively. The surface-plots on
the right depict the promoter activity for a given combination of TFs in units of the minimal
activity: ∆P = p([A], [B])/pmin. The figure was taken from [28].

The sigmoidal shape of this function (for |n| > 1) is essential for the emergence of complex
systems behavior, as will be revealed in Section 2.3.2. Anyhow, since the limit of large
dimerization constants is not met in most of the cases, nature has invented more efficient
cooperative mechanism for gene regulation and the most important ones will be introduced
now.

Synergistic TF-DNA binding. Analogous to the adhesive or repulse interaction be-
tween TFs and RNAP molecules, also the (dimeric) TFs interact with each other. This was
already implicitly assumed in the case of DNA-looping: The TF bound to the upstream
operator site increased to effective concentration of repressor at the second operator site.
Another example is the synergistic binding of λ-repressor CI to the adjacent operator sites
OR1 and OR2 [91]. As soon as the operator OR1 is occupied by CI2, it facilitates the occu-
pation of the second operator by another CI2 dimer. If εtt is the interaction free energy for
the TF-TF contact, the regulation factor for two interacting repressors becomes for this
specific example [24]

Freg(R1, R2) =

(

1 +
R1

KOR1

+
R2

KOR2

+
R1

KOR1

R2

KOR2

ω

)−1

, (2.18)
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with ω := exp(−εtt/kBT ) and R1 and R2 being the two repressor concentrations (which
are identical in the cited example). In the general framework of statistical mechanics it is
possible to derive the regulation factor for any combination of activating and repressing
TFs (see [24] for a comprehensive listing).

Combinatorial transcription logic. If we regard the promoter activity as the output
signal and the TF abundances as the input signals, the process of combinatorial transcrip-
tion regulation can be seen as the computation of the input signals with the result of an
analog output signal [28, 23]. The above mentioned example for instance, corresponds -
for weak operator affinities (large KOR1

, KOR2
) and strong cooperativity (large ω) - to the

logic computation of an NAND-gate (see Fig. 2.6 (c)): while a single repressor-species
is not sufficient to inhibit transcription substantially, only the presence of both factors R1

and R2 at the same time leads to a synergistic down-regulation of the promoter activity.
In Fig. 2.6 (a) and (b) exemplarily the realizations of an AND and an OR-gate are de-
picted as well. Although a variety of possibilities exists to combine different input signals
to distinct logic gates, there are nevertheless limitations due to the confined size of the
promoter region. As we saw before, the promoter region is approximately 40 bp long, and
only a limited number of operator sites can be placed in its vicinity.

However, an effective strategy to prevent promoter overcrowding is to take advantage of
DNA looping. Thereby it is possible to integrate a variety of different signals and construct
a ”molecular computing machine” [28]. The parallel or serial connection of multiple gates,
where the output of a gate is again a TF and serves as one input for an other gate, is the
basis for complex transcriptional networks, as will be discussed in Section 2.3.

2.2.4 Translation and turnover

In addition to the complex mechanisms of transcriptional regulation, also the subse-
quent steps on the way to the functional protein are carefully administered. This post-
transcriptional control ranges from translational control by small regulatory RNAs [55],
involving translational initiation, peptide elongation and translational termination, to the
quality control of protein folding by the proteolytic machinery [67]. However, this work
is based only on the cis-regulatory mechanisms as discussed in the previous sections. The
post-translational steps will be considered simplistically as unregulated processes, as de-
scribed in the following.

Translation and mRNA degradation. The first bases downstream of the transcrip-
tional start site include a sequence called the Shine-Dalgarno sequence or ribosome binding
site (RBS) [81]. Soon after RNAP has synthesized this part of the mRNA, the first ribo-
some binds to the RBS and initiates the translation of the message into a chain of amino
acids that eventually folds up to the final protein. As the ribosome proceeds downstream,
it clears the RBS, the next ribosome can bind and thus a chain of parallely translating ribo-
somes is the consequence, see Fig. 2.7 (a). In addition to the ribosome the RNA degrading
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(a) (b)

(c)

Figure 2.7: (a) Many ribosomes translate a strand of mRNA in parallel; the arrow indicates
the transcriptional start site (upper right) and as the ribosomes progress along the mRNA one
observes the elongated polypeptide chains (best visible at the left) (the image was taken from
[5]). (b) shows the timecourse of a single protein measurement. It is clearly visible, that protein
synthesis occurs at bursts. The distribution of burst sizes in (c) follows a geometric distribution
(figures (b) and (c) were taken from [31])

RNase has its binding site in the vicinity of the RBS and therefore ribosomes and RNases
compete for binding [81]. The number of proteins produced per mRNA can be calculated
from a simple probabilistic model [81], if we assume independent trials of ribosome/RNase
binding. Let p be the probability of a ribosome to bind the RBS and 1 − p the probability
of the RNase to bind its recognition site. Then the probability of obtaining n proteins from
one mRNA transcript follows a geometric distribution

P (n) = pn (1 − p), (2.19)

with mean b = p
1−p

and variance σ = p
(1−p)2

. The average number b of proteins produced
per mRNA is usually > 1. Therefore the protein production is a bursty process, and b is
called the burst factor.

Recent pioneering experiments on the single molecule level have supported this simple
theory [31, 117], see Fig. 2.7 (b) and (c). They could show in E. coli that translation indeed
follows a geometric distribution with a burst size of around 5 molecules per mRNA for the
protein β-galactosidase. Other typical values for b range from 5 to 40 proteins per mRNA
[106].

Dynamical model. The standard dynamical molecular model for translation [87] is a
’truncated’ Poisson process, since degradation of mRNA terminates translation from the
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respective mRNA:

m
νp−→ m + protein (2.20)

m
λm−→ ø, (2.21)

with translation rate νp and mRNA degradation rate λm. The burst factor is then simply
given by b = νp/λm. Due to the active degradation of mRNA via RNases, the resulting
half-life of mRNA (τm = ln 2/λm) can be very short and is in these cases of the order of 1
to 5 minutes [21].

Protein dilution and degradation. Most of the bacterial proteins are stable and their
concentrations are governed by the balance of synthesis and dilution. Their dilution rate is
determined by the cell doubling time, which ranges in the exponential growth phase from
30 to 60 minutes. However, some selected proteins are targets of active proteolysis and
their half-life is reduced to the order of a few minutes. What are the advantages for a cell
to actively degrade its well folded and functional proteins, especially since both synthesis
and active degradation are energy consuming?

As already mentioned, mRNA and protein synthesis are stochastic processes. Therefore
it happens, that a protein burst accidentally takes place, although the gene is supposed
to be OFF. If the respective protein plays a central regulatory role in the organism, it is
advantageous to actively get rid of it in this case. Another very important advantage of
active proteolysis is connected to the dynamical behavior of TF networks. In a later section
we will see, that the time required to reach the steady state concentration of a TF is solely
determined by its half-life (independent of whether the gene is turned from ON to OFF or
vice versa). For this reason directed degradation of proteins via SsrA tags with half-lives
of around 5 minutes [56, 67] speeds the response times of transcriptional networks [96].

Models of dilution and degradation. If we consider bacterial growth to be linear in
time [13] the dilution with dilution rate λdil is a simple first order process and leads to a
dilution flux fdil of the proteins X

fdil(X) = λdilX. (2.22)

Although cell division involves the bisection of the molecule numbers, the concentrations
in mother and daughter cells remain the same, since they are intensive variables (evidently
also the volume is divided by 2 and thus the ratio of molecule number and volume remains
constant). Thus the assumption of a continuous process for dilution is justified .

Active degradation on the other hand involves the enzymatic digestion of proteins by
proteases. Since the proteases are in some cases even rate limiting, the degradation flux
fdeg takes a Michaelis-Menten form [78]

fdeg = λ̃deg
protease · X

Km + X
, (2.23)
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with a modified degradation rate λ̃deg and the Michaelis-Menten constant Km. In many
situations the proteases are not limiting (Km ≫ X) and active degradation can be approx-
imated by a first order process [81, 13] as well

fdeg(X) ≈ λdegX, (2.24)

where λdeg :=
λ̃deg ·protease

Km
is the degradation rate with dimension s−1.

However, the saturating effect of the proteases seems to play a crucial role for the
emergence of oscillations in biological clocks [76], as it introduces cooperativity into the
system. We can consider this nonlinear degradation as an cooperative effect, since at high
protein levels the proteases are saturated by some sacrificing proteins and they allow the
rest of the population to ’survive’. Another nonlinear degradation effect is in many cases
mediated by cooperative stability of multimeric protein complexes [29]. Often the protease
recognition domains get hidden in the dimerization interfaces, thus conferring a much longer
half-life of the complexes. The shift of the multimer equilibrium from the monomeric form
at low total protein concentration to the multimeric form at high concentrations thus
implies a concentration-dependence of the degradation rate. The consequences on the
function of genetic circuits are similar to the ones discussed in the following section [29].
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Figure 2.8: Gene regulatory network controlling the early development of the sea urchin embryo.
The arrowheads represent positive regulation, whereas the arrow bars stand for repressive control
of the respective gene. The figure was taken from [38].

2.3 Genetic networks

In the previous sections, we saw how the transcription of genes is regulated by transcription
factors, which themselves are products of a certain gene. In this way, the activity of one
gene is regulated indirectly by other genes, in combination with external stimuli. These
interdependencies commonly form large regulatory networks of highly complex structure.
The network of the developmental body plan of the sea urchin embryo [38] is shown in
Fig. 2.8 and it reminds us strongly of an electronic circuit. Here the nodes correspond to
genes and the positive or negative interactions between the nodes are mediated by TFs.
The respective sign of the interaction is commonly abstracted by an arrow-head (activator)
or an arrow-bar (repressor). In contrast to an electronic circuit that bears many nodes with
a low degree of connectivity (one node - a transistor - is usually regulated by not more
than one or two input signals), genetic networks have a low number of nodes that are
highly connected. The gene Bra in the central part of Fig. 2.8 for instance, is regulated by
five activators and one repressor. Evidently, the quantitative understanding of the signal
integration at individual genes is crucial for the comprehension of the entire network.
Without a detailed knowledge about that, it is not possible to predict what happens when
e.g. an activator and a repressor are present at the same time.

Therefore a network diagram as depicted in Fig. 2.8 is not sufficient for a quantitative
model. Especially the fact, that the network’s qualitative response is highly dependent on
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all involved biochemical parameters, which are in most of the cases unknown, poses severe
problems. One approach to solve this problem is to separate the whole network into smaller
sub-networks, called network modules. A module refers to a group of proteins (and genes)
that work together to execute a distinct function [80]. The modules are often separated
in time or space and have a low number of in- and output signals. The ultimate goal of
this approach is to gain a systems-level understanding from the interplay of the individual
modules. But before this may be done, it is crucial to characterize the individual modules
in every detail.

In the recent years this bottom-up approach has made amazing advances, both theoret-
ically and experimentally. Ultimately it culminated in the foundation of a new field, called
Synthetic Biology.

2.3.1 Synthetic biology and designer networks

The goal of synthetic biology is to extend or modify the behavior of organisms and engineer
them to perform new tasks [102, 11]. As we saw in the previous sections, there exist
various ways of revising the naturally existing regulatory structures. The key feature that
allows the experimentalist to comfortably modify biological function, is the great versatility
and programmability of the genetic code [47]. The exchange of individual base pairs in
the operator or promoter sequences permits the tuning of the protein binding affinities.
Thereby the transcription rates (mutations in the promoter region) or sensitivities with
respect to TF concentrations (mutations in the operator sites) can be adjusted. Similarly,
the translation and degradation rates are affected by the sequence of the ribosome binding
sites or the RNase recognition sites. In addition it is also practicable to replace entire
operator sequences by the binding sites of other TFs. Thereby one is able to redirect
the wires and create synthetic transcription networks. Other synthetic systems involve
engineered RNA systems [63] or gene-metabolic circuits [43].

Such synthetic systems are of immense importance for the study of the principles of
gene regulation. The limited number of network components gives rise to the hope, that
the enormous complexity visible in Fig. 2.8, can be reduced. Some successful studies are
summarized in the following. The fusion of multiple fluorescent reporter proteins to a syn-
thetic construct including the tet-promoter Ptet allowed the determination of its promoter
activity function [97]. By the step-wise engineering of a synthetic promoter it could be
shown that the properties of regulatory subsystems can be used to predict the behavior of
larger, more complex regulatory networks [57]. Small network modules were constructed
and proved to exhibit bistable [46, 64, 15] or oscillatory behavior [41, 15, 43]. It was also
shown, that the coupling of multiple oscillators leads to synchronization and confers an
increased stability of the individual oscillators with respect to molecular noise [44]. Other
work was dedicated to the engineering of bacterial colonies, that were able to create patterns
of differently fluorescing bacteria [20]. This was possible by constructing ’band-detector’
networks, reacting specifically to a narrow concentration range of a signaling molecule. By
generating spatial gradients of these molecules bacterial bulls-eye patterns were created.
In [77] light-receptors were coupled to a synthetic circuit, such that a colony of bacteria
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could ’photograph’ various light-patterns.

2.3.2 Bistable systems for epigenetic memory

In this section it is shown, that simple feedback mechanisms are able to confer interesting
behavior of small genetic network motifs. If we consider the concentrations of the TFs
as the state variables of a dynamical system, it will be shown that feedback may lead to
multiple steady states in the phase space of TF concentrations. Of particular interest are
the bistable systems, since their features are representative for the entire class of multistable
circuits. The ability to exhibit two distinct states implies to some extend the ’digitalization’
of circuit behavior: only LOW or HIGH concentration values for the respective TF-species
are allowed and most importantly - these states are self-perpetuating. Therefore it is
reasonable to regard these bistable circuits as digital memory devices in which the LOW
and HIGH concentrations correspond to the logic states 0 and 1, respectively [33].

Epigenetics. The evolutionary advantage of the ability to switch between different types
of behavior is demonstrated in an imposing manner in certain bacterial viruses as e.g. in
temperate phages [110]. Upon infection of the host cell a decision process takes place:
either the virus kills the cell and thereby replicates itself (lytic state) or it integrates its
genome into the host chromosome and remains dormant (lysogentic state) [92]. Only if
certain signals like e.g. cell death of the host arrive, the virus returns to the lytic state.
On the microscopic scale this switch corresponds to a bistable system consisting basically
of two mutually repressing TFs, the λ-repressor CI and the Cro-repressor. The lysogenic
state corresponds to a state where CI is highly expressed and the transcription of Cro is
inhibited. Only transient induction signals that promote the synthesis of Cro drive the
switch to the lytic state in which Cro is ON and CI is OFF. A prototype of this mutually
repressive network motif will be discussed later on.

The switch in phage λ has served as a paradigmatic system for gene regulation and can
be seen as one of its ’hydrogen atoms’. The low number of involved TFs made it possible
to study the basic regulatory mechanisms thoroughly and revealed many fundamental
mechanistic details of gene regulation. But most importantly it shed light on how an
organism with identical genomic material can produce different phenotypes, corresponding
to distinct gene expression states. This phenomenon combined with with the ability to
inherit the phenotype to the daughter cells is known as epigenetic memory [65]. In addition
to stable gene expression states epigenetics involves also more durable forms of memory,
as e.g. the chemical modification of chromatin [14], but this is beyond the scope of this
work.

What are the minimal ingredients necessary for epigenetic memory? Many theoretical
[34, 15, 115] and experimental studies [46, 64] have focused on this question and we will
now give a brief overview over the most simple network modules that confer bistability.
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Positive autoregulation

The most elementary circuit exhibiting bistability consists only of one gene that positively
regulates its own production. The fairly simple cartoon is shown in Fig. 2.9 (a) and its
dynamical behavior shall be scrutinized now. To demonstrate the main features of the
system, it is in this case sufficient to consider only the time-evolution of the total protein
concentration Atot. Under a number of simplifying assumptions3 we can write the reaction
reaction rate equation of the positive autoregulator as

dAtot

dt
= α p(Atot) − λAtot. (2.25)

The first term represents the protein production flux and it is given by the maximal pro-
duction rate α times the dimensionless promoter activity function. The second term is the
degradation or dilution flux (compare Section. 2.2.4). In order to determine the steady state
of the circuit, we have to specify the promoter activity function (PAF). If only the dimeric
form of the TF is capable to bind the operator we obtain in the limit of large dimerization
constants a Hill function with n = 2 (see Fig. 2.9, red graph): p(Atot) ≈ A2

tot/(K̃
2 + A2

tot)
with K̃ =

√

KOA
KA/2. The steady state values A∗

tot of Eq. (2.25) are given by
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)

(2.26)

Linear stability analysis [109] yields, that for α/λ < 2K̃ only A∗
tot1

is stable (and the

other two are imaginary). On the other hand, if the ratio α/λ is increased, at α/λ = 2K̃
a saddle-node bifurcation additionally creates one stable and one unstable fixed point, see
the bifurcation diagram in Fig. 2.9 (c). Thus, for α/λ > 2K̃ the positive autoregulator
exhibits bistability with two stable steady states A∗

tot1
and A∗

tot2
.

From Fig. 2.9 (b) the fixed points can be determined graphically as well: the functions
p(Atot) and f(Atot) = λ

α
Atot are plotted against Atot. The intersection points correspond

to the fixed points of Eq. (2.25) and their stability is determined by the ratio of the
slopes of both curves. If the derivatives of f and g at the fixed point obey for instance
f ′(A∗

tot) > p′(A∗
tot) , a small deviation from A∗

tot leads to a net flux back to the fixed
point and thus it is a stable fixed point. For the red curve with n = 2 the sigmoidal shape
of the function is responsible for three intersection points with the black curve f(Atot),
corresponding to the fixed points in Eq. (2.26). As the slope of f(Atot) increases, e.g. due
to a reduced promoter strength, the intersection points A∗

tot2
and A∗

tot3
approach each other

until they finally annihilate at λ/α = 2K̃.
For a Hill coefficient of n = 1 (see Fig. 2.9 (b), blue graph) on the other hand, we find

maximally two intersection points. For α/λ > K̃ only the A∗
tot-LOW state and for α/λ > K̃

only the A∗
tot-HIGH state is stable. Thus the circuit is monostable for all parameters.

3Under the premises that mRNA production and decay are in equilibrium all the time and monomers
as well as dimers are degraded with the same rate λ (no cooperative stability) Eq. (2.25) is valid. The
general details of model reduction are discussed is Section 3.7
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Figure 2.9: The positive autoregulatory network motif (a) exhibits bistability for parameter
ratios α/λ > 2K, as can be seen in the bifurcation diagram in (c) (K = 10 nM). The solid lines
correspond to the stable fixed points, whereas the dotted one stands for the unstable one. With
(b) the graphical solution of Eq. (2.25) can be determined, for details see text.

This important result can be generalized [34] and it turns out that for the emergence of
bistability always some degree of cooperativity is required. The specific mechanisms are not
of importance and can range from dimeric binding and non-additive effects from multiple
operator sites [34] to nonlinear degradation [28].

Experimental validation of bistability in a positive autoregulatory module was given in
[64]. In this work the authors studied a small synthetic autoregulator with a temperature-
sensitive protein. By variations in temperature the degradation rate λ was altered and
thereby one could drive the circuit from the monostable to the bistable regime. Another
study focused on the positive feedback in the lactose utilization network [85] where the
lactose uptake is autocatalytically enhanced. They could show, that this system exhibits
hysteresis, an essential aspect of bistable systems - we will get back to this point later
on. As a last example the investigation of the galactose-signalling network in [7] shall be
mentioned. In this system the positive feedback leads to an extremely high stability of
the HIGH and LOW states with almost irreversible behavior. Interestingly nature added
a second, negative feedback loop that destabilizes this memory by allowing stochastically
induced transitions between the two ’stable’ states. It was speculated that this destabi-
lized memory might amount to a selective advantage in environments with time-dependent
nutrient supply. As theoretically shown in [75] the random switching between different
phenotypes (or stable gene expression states) indeed increases the population fitness in
fluctuating environments. Thus, bistable systems can not only act as persistent memory
devices but might also be employed to generate population heterogeneity.
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Figure 2.10: In (a) the mutually repressing network motif is depicted. (b) shows the nullclines
g(Atot, Btot) = 0 and h(Atot, Btot) = 0 together with some trajectories under randomly distributed
initial conditions (grey). The black line is the separatrix, the border which divides the two basins

of attraction. The stability behavior in dependence of the parameter ratios αA/λA and αB/λB is
summarized in the state diagram (c) (schematic).

Mutual repression

The next step in complexity is the mutual-repressor motif depicted in Fig. 2.10 (a). It
consists of two genes A and B, that reciprocally repress the transcription of the other gene.
As shown in the following, for properly chosen parameters the circuit exhibits bistability:
one state with A HIGH and B LOW and another state with A LOW and B HIGH. The rate
equations for the total protein numbers Atot and Btot are set up analogously to Eq. (2.25)
and we have

dAtot

dt
=

αA

1 + (Btot/K̃B)2
− λAAtot = g(Atot, Btot) (2.27)

dBtot

dt
=

αB

1 + (Atot/K̃A)2
− λBBtot = h(Atot, Btot). (2.28)

The calculation of the fixed points however, is analytically not possible, since it involves
the solution of a fifth order polynomial. They are either computed numerically, or for
better intuition one might determine them graphically. This is done in Fig. 2.10 (b). If
we plot the functions g(Atot, Btot) = 0 and h(Atot, Btot) = 0 of Eqs. (2.27) and (2.27) in
the phase plane (Atot, Btot), the intersection points correspond to the fixed points of the
circuit. Fig. 2.10 (b) shows additionally a few trajectories with random initial conditions
(Atot(t = 0), Btot(t = 0)) in gray. We observe, that the initial condition determines fate
of the individual trajectory: if Atot(t = 0) > Btot(t = 0) the trajectory is attracted by
the fixed point (A HIGH, B LOW) and to the other one else. One defines the separatrix
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(depicted as the black line in Fig. 2.10 (b)) as the border between these two basins of
attraction. However, one finds that the fixed point behavior again depends strongly on the
parameter ratios αA/λA and αB/λB. This is summarized in the so called state diagram
(see Fig. 2.10 (c)) - similar to the phase diagram known from thermodynamical systems.
Experimental evidence for the occurrence of bistability in the mutual-repressor motif has
been given by Gardner et al. [46] with the construction of a synthetic circuit implementing
the described network topology. It is the basis of this work and will be discussed in greater
detail in Section 3.1.1.

One might expect that other, more complicated networks also exhibit two or more
stable states. Multistability can result from the combined effects of positive and negative
regulators, or from the combined effects of regulators that each demonstrate bistability.
Up to the current date no study came to the knowledge of the author, where multistability
was investigated in gene regulatory circuits. Whether bacterial cells can only respond with
’yes’ or ’no’ or if they can also say ’perhaps’ thus belongs to the realm of speculations.
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2.4 Modeling techniques

In Section 2.3.2 we investigated the stability behavior of the positive autoregulator and
the mutual repressor by means of reaction rate equations. We implicitly assumed, that
the protein concentrations are continuous variables that follow deterministic kinetic laws.
However, the concentration increments are actually 1 nM (’birth or death’ of one molecule
per cell) and the typical concentrations are of the order 1 to 1000 nM. Thus it is evident,
that the assumption of continuous concentrations is very crude. But also the second
assumption falls with low molecule numbers: the reaction of the type A + B → product
is based on the molecular collision of the substrates. In the case of low molecule numbers
this collision does no more occur with a constant rate but rather with a constant reaction
probability. The times between two reaction events are then highly fluctuating random
variables.

In this section an overview over the standard modeling techniques for chemical reaction
systems is given. One of the major assumptions in all the presented formalisms is that we
are dealing with a well-stirred solution of chemical reactants which is in thermal equilib-
rium. The question, to what extend this is really the case in the crowded cytoplasm of a
cell is still a field of active research [112, 111].

2.4.1 Chemical master equation

We consider a reaction system of N chemical species {S1, . . . , SN} interacting through M
elementary reaction channels {R1, . . . , RM}. Elementary means, that the reaction is either
unimolecular or bimolecular (more complicated reactions are actually coupled sequences
of them) and that it happens instantaneously. Let Xi(t) be the number of molecules of
species Si at time t. Our ultimate goal is to study the time-evolution of the state vector
~X(t) = (X1(t), . . . , XN(t)) under the initial condition that at t = t0 the system was in the

state ~X(t0) = ~X0.

Stoichiometric matrix and propensity function. Two quantities characterize the
reaction channel Rj mathematically: The state-change vector ~Σj = (Σ1,j, . . . , ΣN,j) de-
scribes the change of the molecule numbers of {S1, . . . , SN} upon an reaction event Rj. If

the system was in state ~x before, it jumps instantaneously to the state ~x + ~Σj when the
reaction Rj takes place. The {Σi,j} are usually known as the elements of the stoichiometric
matrix Σ. The second characterizing quantity of the reaction channel Rj is its propensity
function aj. One can easily keep it in mind as ’probability density’, since aj(~x) dt yields the

probability, that a reaction of type Rj occurs in the time interval [t, t+dt], given ~X(t) = ~x.
For unimolecular reactions Sj → products the underlying quantum mechanical processes
imply basically identical reaction probabilities for all particles and thus the propensity
function is linear in the particle number of the substrate: aj(~x) = cj xi. The constant cj

turns out to be equal to the reaction rate constant kj of the deterministic rate equations
[49]. For bimolecular reactions there is an additional source of stochasticity imposed by the
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uncertainty of the precise positions and velocities of the involved particles. One can only
predict the probability of a collision between particles Si and Si′ in the next time interval
dt, followed by a reaction of type Rj. The propensity function for bimolecular reactions
is then given by aj(~x) = c̃j xi xi′ , if i 6= i′ and aj(~x) = 1

2
c̃j xi (xi − 1) of i = i′ [49]. The

products of the molecule numbers account for the number of possible collisions between
the reactants, and in the case of one species reacting with itself, every particle Si has only
xi − 1 possible reactants. With Ω being the reaction volume, the constants c̃j correspond
to either kj/Ω if the reactants are different species or 2 kj/Ω if they are the same [49].

Master equation. With this notation we are able to formulate an expression for the
time-evolution of the probability P (~x, t | ~x0, t0) that the system will be in state ~x at time
t, given that it was in the state ~x0 at time t0. We can write P (~x, t + dt | ~x0, t0) as

P (~x, t + dt | ~x0, t0) = P (~x, t | ~x0, t0) ×
[

1 −
M

∑

j=1

aj(~x) dt

]

(2.29)

+
M

∑

j=1

P (~x − ~Σj, t | ~x0, t0) × aj(~x − ~Σj) dt.

Here the first term on the right corresponds to the probability, that the system was already
in the state ~x at time t and no reaction occurs in [t, t + dt). The individual terms in the

second sum reflect the probability, that the system was exactly in the state ~x−~Σj at t0 and
an reaction of type Rj occurrs in [t, t + dt). In the limit of dt → 0 we obtain the chemical
master equation (CME) [49]:

∂P (~x, t | ~x0, t0)

∂t
=

M
∑

j=1

[

aj(~x − ~Σj)P (~x − ~Σj, t | ~x0, t0) − aj(~x)P (~x, t | ~x0, t0)
]

.(2.30)

Although the CME completely determines the time evolution of P (~x, t | ~x0, t0), it is
in practice almost impossible to solve it analytically. Actually Eq. (2.30) is not only one
equation, but rather a set of infinitely many equations for the different state vectors ~x .
This is due to the fact that there are as many state vectors ~x as there are combinations of
molecule numbers and in principle these numbers may range from zero to infinity. Therefore
the CME can analytically only be solved for a very limited number of simple model systems
[45, 62]. Also the numerical solution of the CME is prohibitively difficult for the same
reason. However, there is an other way to obtain the desired function P (~x, t | ~x0, t0):
if one succeeds to simulate a stochastic process, that obeys the same probabilistic laws
as the master equation, it is possible to estimate P (~x, t | ~x0, t0) from numerous repeated
simulation runs. The resulting probability density may then be used to derive the properties
of interest, i.e. the various moments. However, there are further ways of deducing the
moments, as will briefly be discussed in the context of the ’derivation’ of the deterministic
rate equations in Section 2.4.3. But before that, an algorithm for simulating the function
P (~x, t | ~x0, t0) is presented.



28 2. Gene regulation and genetic networks

1. Initialize the system’s state ~X(t0) = x0 and its time t = t0

2. Compute all the aj(~x) according to ~x and sum them up to get a0(~x)

3. Generate τ and j according to Eqs. (2.35) and (2.36)

4. Update the state by ~x → ~x + ~Σj and the system-time by t → t + τ

5. Record (~x, t) as desired; if t < simulation time go to Step 2, else quit

Table 2.3: Gillespie’s stochastic simulation algorithm.

2.4.2 Gillespie’s stochastic simulation algorithm

In order to account for the stochastic nature of chemical reaction events D. T. Gillespie
formulated in 1977 an efficient algorithm for the simulation of these processes [48] - the
stochastic simulation algorithm (SSA). The underlying stochastic process is identical with
the one that was considered to formulate the master equation in Eq. (2.30) and therefore the
method claims to be exact [48], i.e. it obeys the same laws as the chemical master equation.
Although Gillepie has been the first to formulate this algorithm for chemical reactions,
there was an earlier paper of Bortz, Kalos and Lebowitz in 1975, where they worked out
an analogous algorithm for the simulation of the Ising-model [25]. This algorithm is in the
physical literature known as the BKL- or simply the Kinetic Monte Carlo-algorithm.

The basic idea of all these algorithms is to simulate the time evolution of the system
under investigation by answering two questions: 1.When will the next event occur? and 2.
If an event takes place, what type of event is it? How these decisions can be made is now
shown for the SSA.

Stochastic simulation algorithm. Let p(τ, j | ~x, t) dτ be the probability that given
~X(t) = ~x, the next reaction will occur in [t + τ, t + τ + dτ) and will be an reaction of
type Rj. In order to derive an analytical expression for p(τ, j | ~x, t) dτ we first note that
one can write it as the product of the probability of no reaction taking place in [t, t + τ),
P0(τ | ~x, t), and the probability of a reaction Rj to occur in [t + τ, t + τ + dτ):

p(τ, j | ~x, t) = P0(τ | ~x, t) × aj(~x) dτ. (2.31)

Further, the probability of having no reaction in [t, t + τ + dτ) is given by

P0(τ + dτ | ~x, t) = P0(τ | ~x, t) × [1 −
M

∑

k=1

ak(~x) dτ ]. (2.32)
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In the limit of dτ → 0 this leads to a simple differential equation with the solution

P0(τ | ~x, t) = exp(−a0(~x) τ), where a0(~x) :=
M

∑

k=1

ak(~x). (2.33)

The resulting probability density is now given by

p(τ, j | ~x, t) = aj(~x) exp(−a0(~x) τ) = pj(~x) × pτ (~x), (2.34)

which is a product of a ”τ -density” function pτ (~x) = a0(~x) exp(−a0(~x) τ) and a ”j-density”
function pj = aj(~x)/a0(~x). In order to generate random numbers according to these den-
sities we have to draw two uniformly distributed random numbers r1 and r2 in (0, 1] and
compute τ according to [62]

τ =
1

a0(~x)
ln (1/r1) (2.35)

and take j to be that integer for which

j−1
∑

k=1

ak(~x) ≤ r2 a0(~x) <

j
∑

k=1

ak(~x). (2.36)

Gillespie’s formulation of the stochastic simulation algorithm [48] is eventually shown in
Table 2.3.

The price of the exactness of the SSA is in many cases payed by a huge ’computational
cost’. If the molecule numbers of the reaction system become large, also the total propensity
function a0(~x) in Eq. (2.35) becomes large, such that the time steps of the simulation are
rendered extremely small. In these cases other, approximating algorithms are needed, some
of which are briefly discussed at the end of Section 2.4.4.

2.4.3 Reaction rate equations

With the solution of the CME or by simulations with the SSA one gets hands on the full
probability density P (~x, t | ~x0, t0). The burden for this is in most of the cases a high compu-
tational cost. However, for many problems it is not necessary to have the total information
contained in the probability density. Very often the time evolution of the first two mo-
ments, i.e. the mean and the variance, are sufficient. In the most simplistic description one
is only interested in the dynamical behavior of the average molecule numbers of each chem-
ical species. The average of each species Si is defined as 〈Xi(t)〉 =

∑

~x xiP (~x, t | ~x0, t0) and
its time-evolution is obtained by multiplying both sides of Eq. (2.30) by xi and summing
over all possible states ~x. After rearranging the summation indices this leads to

d〈 ~Xi(t)〉
dt

=
M

∑

j=1

Σij 〈aj( ~X(t))〉 (2.37)
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for the first moment [52]. If all reaction channels are linear, we have 〈aj( ~X(t))〉 =

aj(〈 ~X(t)〉) and Eq. (2.37) turns into a closed set of ordinary differential equations (ODEs)
for the first moments. Obviously, if any of the reaction channels is bimolecular, such that
aj( ~X) contains quadratic terms in the Xi’s, the right side of Eq. (2.37) depends on higher
moments. The same holds for the ODEs for each higher moment and thus Eq. (2.37)
becomes just the first in an infinite system of coupled ODEs for all the moments. Only in
the hypothetical case where we can neglect the fluctuations and all higher moments, we
get

d〈 ~Xi(t)〉
dt

=
M

∑

j=1

Σij aj(〈 ~X(t)〉). (2.38)

Dividing these equations by the volume Ω gives us the reaction rate equations (RRE)
of traditional deterministic chemical reaction kinetics. The average molecule abundances
〈Xi〉 get replaced by the concentrations [Xi] and the rates for the bimolecular reactions
transform as mentioned in Section 2.4.1. Although the assumption of negligible fluctuations
is certainly not fulfilled in gene regulatory networks, in practice this approach proves to be
very useful. Moreover, the RRSs are easy to set up, as long as the stoichiometric matrix
and the propensity functions are given. Their solution on the other hand is due to the
involved nonlinearities in most of the cases only possible by means of numerical integration.

2.4.4 Stochastic differential equations

Another approach that accounts for the stochastic nature of the reaction events dates back
to Langevin’s treatment of Brownian motion [45]. The irregular movement of small pollen
grains in a solution of water inspired him to formulate an equation of motion based on
Newton’s law, but with an additional random force ξ(t)

M
d2y(t)

dt2
= −γM

dy(t)

dt
+ ξ(t), (2.39)

with γ the friction coefficient and y and M the position and mass of the particle, respec-
tively. Since the random force is the result of countless collisions with water molecules, the
central limit theorem suggests that ξ behaves like gaussian white noise with zero mean and
〈ξ(t) ξ(t′)〉 = σ2 δ(t− t′). The variance σ2 of the random force is eventually determined by
the Einstein relation4 [108]

σ2 = 2γMkBT, (2.40)

which relates it to the friction coefficient.
The general Langevin approach can be summarized as follows:

• Formulate the macroscopic equations of motion (or rate equations in the case of
chemical reactions) for a given system.

4With Eq. (2.39) one determines the expectation value of the squared velocity 〈
(

dy
dt

)2〉 under application
of the ’uncorrelatedness’ of the Gaussian noise. Then one assumes the system in equilibrium and applies

the equipartition theorem from equilibrium thermodynamics 1
2M〈

(

dy
dt

)2〉 = 1
2kBT
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• Add gaussian white noise with variance σ2.

• Adjust σ2 such that the stationary solution reproduces the correct mean-square fluc-
tuations known from statistical mechanics (or by some other considerations).

However, despite its widely spread use this approach should be used with care, since it
might lead to wrong results. Especially in the case of the general Langevin equation

dy(t)

dt
= A(y(t), t) + B(y(t), t)ξ(t), (2.41)

with a generally nonlinear function A(y(t), t) and multiplicative noise, which is reflected in
the y(t)-dependence of B, difficulties arise: the differential form of Eq. (2.41) implies the
existence of an integral form5, which involves the solution of a stochastic integral (result-
ing from the second term). Depending on the different interpretations of this stochastic
integral6 different Fokker-Planck equations and thus non-equivalent results are obtained,
for details see [45]. But even if the proper interpretation was chosen for the respective
problem there remain unresolved problems. If the noise source is not an externally acting
one with know properties but rather caused by the internal properties of the dynamical
system, it is not clear how to choose the the functions A and B.

Chemical Langevin Equation. In some cases the Langevin equation can nevertheless
be successfully applied to chemical reaction systems. Following Gillespie [52] one employs
the same premises as for the ’derivation’ of the CME and demands two additional dynamical
conditions, ultimately leading to a time evolution of the Langevin type. It is shown in [51],
that the resulting chemical Langevin equation is equivalent to a Fokker-Planck equation,
which can in turn be obtained from a Kramers-Moyal expansion of the chemical master
equation (continuum limit).

Using the same nomenclature as in the previous sections and further introducing Kj(~x
t, τ)

as the number of reactions Rj occurring in a time interval [t, t + τ ] given that ~X(t) = ~xt,
one can write for the state vector at time t + τ

Xi(t + τ) = xt
i +

M
∑

j=1

Σij Kj(~x
t, τ) (i = 1, . . . , N). (2.42)

The random variables Kj( ~X, τ) are generally not independent of each other and their com-
putation is equally difficult as solving the master equation. We will get back to this point
later on. If the two following conditions hold the Kj( ~X, τ) can be further approximated:

5The integral form of Eq. (2.41) is given by dy =
∫ t+dt

t
dt′A(y(t′), t′) +

∫ t+dt

t
dt′B(y(t′), t′)ξ(t′).

6Since the stochastic process ξ(t) can be considered as a random succession of delta peaked kicks,
it is not clear which value of y(t) has to be used in the evaluation of the stochastic integral. In Itô’s

interpretation y(t) is taken before the random kick arrives (dy = A(y(t′), t′)dt + B(y(t), t)
∫ t+dt

t
dt′ξ(t′)),

whereas in Stratonovich’s interpretation the mean value of y(t) before and after the kick is chosen (dy =

A(y(t′), t′)dt + B(y(t)+y(t+dt)
2 , t+[t+dt]

2 )
∫ t+dt

t
dt′ξ(t′))



32 2. Gene regulation and genetic networks

Condition I: Demand τ to be small enough, such that the change of the state vector
during [t, t + τ ] does not alter the propensity functions noticeably:

aj( ~X(t′)) ∼= aj( ~X(t)), ∀ t′ ∈ [t, t + τ ], (j = 1, . . . ,M). (2.43)

This means that all reaction events occurring in [t, t + τ ] will be basically independent of
each other, implying that each Kj(~x

t, τ) can be approximated by a Poisson random variable
Pj(aj(~x

t)τ) with mean and variance equal to aj(~x
t)τ . Most importantly, condition I also

implies that the individual Pj(aj(~x
t)τ) are independent of each other as well. Thus, it

allows to approximate Eq. (2.42) by

Xi(t + τ) = xt
i +

M
∑

j=0

Σij Pj(aj(~x
t)τ) (i = 1, . . . , N). (2.44)

Condition II: Demand τ to be large enough that each reaction channel Rj fires much
more than once, i.e.

〈Pj(aj(~x
t)τ)〉 = aj(~x

t)τ ≫ 1, (j = 1, . . . ,M). (2.45)

This condition seems to contradict condition I and in practice it is very likely, that not
both can be satisfied simultaneously. However, in the limit of large molecule numbers both
can be met: if for instance τ would be chosen such that the expectation values in Eq. (2.45)
were around 50 molecules, this change in the state vector would be negligible compared to
total molecule numbers of a few thousands.

Hence, if condition II holds each discrete Poisson random variable Pj(aj(~x
t)τ) can

be approximated by a continuous normal random variable Nj(aj(~x
t)τ, aj(~x

t)τ) with equal
mean and variance. By applying the linear combination theorem [50] for normal random

variables, N (m,σ2) = m + σN (0, 1) and after replacing ~xt by ~X(t), τ by dt and the unit
normal random variables Nj(0, 1) by Γj(t) (which are δ-correlated in time) one obtains

Xi(t + dt) = Xi(t) +
M

∑

j=0

Σij aj( ~X(t))dt +
M

∑

j=1

Σij

√

aj( ~X(t))Γj(t)
√

dt (i = 1, . . . , N).

(2.46)
This has the form of a ”standard-form” Langevin equation for a multivariate continuous
Markov process. It can be transformed to the equivalent ”white-noise form” Langevin
equation [45, 52]

dXi(t)

dt
=

M
∑

j=1

Σij aj( ~X(t)) +
M

∑

j=1

Σij

√

aj( ~X(t))Γj(t) (i = 1, . . . , N), (2.47)

which is called the chemical Langevin equation (CLE).
Evidently the validity of the CLE stands and falls with the conditions I and II. It was

exemplified, that in the limit of large molecule numbers a macroscopically infinitesimal time
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τ exists, such that both conditions can be met simultaneously. However, for typical molecule
numbers in the range of about a few to a few hundred this is not the case. Especially for
bistable systems where the expectation values of the respective ’off- state’ is often even
smaller than 1, the described scheme does not apply. We also saw that condition I allowed
us to assume the Poissonian and later the Gaussian random variables Γj(t) as basically
independent of each other (for all j). However, at low molecule abundances one expects
complicated correlations between the individual Γj(t), since the change of the state vector
upon a reaction Rj has in this case a non-negligible impact on the propensity functions

aj′( ~X) and all other reactions Rj′ might be affected by fluctuations in the number of Rj

reactions. This makes it in practice almost impossible to simulate random processes with
these intricate correlation structures. For these reasons in this study simulations of the
chemical master equation with the SSA are preferred.

As investigated recently by Tănase-Nicola et al. [105], the reactions that allow a network
to detect biochemical signals, indeed induce correlations between the extrinsic noise7 of the
input signals and the intrinsic noise of the reactions that form the network. This in turn
has consequences for the modular description of noise transmission in signaling cascades
(for details see [105]).

Approximate algorithms. Besides the exact simulation of the stochastic process with
the SSA, there exist also other, approximate algorithms, that rely on the ’update-rules’
defined by Eqs. (2.44) and (2.46). If condition I is fulfilled, it is reasonable to advance
the system by some pre-selected time-step τ through the generation of M Poisson random
variables according to Eq. (2.44). This is called the tau-leaping method and for the optimal
choice of τ in this procedure it shall be referred to Cao et al. [32]. If additionally condition II
is met, the update-rule according to Eq. (2.46) is called the Langevin leaping formula, which
corresponds to the straightforward simulation of the Langevin equation Eq. (2.47).

7For definitions of extrinsic and intrinsic noise, see Section 2.5.1.



34 2. Gene regulation and genetic networks

Figure 2.11: In a colony of genetically identical cells the synthesis of an artificially integrated
green-fluorescence protein displays a high degree of variability. The image was taken from [6].

2.5 Noise in gene expression

In this section the different sources of variability in gene regulatory systems are presented.
From the general description of stochastic gene expression by the master equation, one can
derive a fluctuation-dissipation theorem, that allows for an easy and concise description of
noise in gene regulatory networks. Last, a glance at the mechanisms for noise suppression
or noise amplification is given and some examples are discussed.

2.5.1 Intrinsic and extrinsic noise

The classification of noise into intrinsic and extrinsic contributions has brought about
some confusion under biologists and physicists. The origin of this confusion lies in the
variety of possible definitions of this separation. Since intrinsic and extrinsic basically
mean ’inside’ and ’outside’, the question is mainly how to discriminate the system from
the environment. As summarized by Paulsson [87] there are many distinct (and reasonable)
ways to distinguish the different contributions - depending on the respective perspective.
One definition for instance terms all sources of variability arising from transcription and
translation of a single gene as intrinsic and the impact of other regulatory proteins on its
synthesis as extrinsic. Another definition on the other hand terms all noise arising from
gene expression as intrinsic and only the influence of the non-modeled variables, which
are subsumed into the reaction rates (as e.g. RNAP, RNase or protease abundances), as
extrinsic [35]. This definition is very convenient from the modeling point of view. In many
cases it is namely assumed, that the fluctuations in the reaction rates are either very slow
or of negligible magnitude, such that the rates can be fixed to some constant values. Then
all remaining fluctuations are intrinsic and stem from low molecule number noise of the
modeled variables.

There are many other possible definitions [106, 97, 35, 103] and one should always keep
in mind, that this classification is model-specific and therefore to some extend arbitrary.
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No matter how one baptizes the fluctuations - one should be aware of their origins. In
the following a summary of the most prominent sources of intrinsic and extrinsic noise
according to the definition based on modeled and non-modeled variables are mentioned.

Intrinsic noise

In Section 2.2.2 it was stated, that the transcription rate of a gene is proportional to the
equilibrium probability to find RNA polymerase (RNAP) bound to the respective promoter
site. We saw that this probability can be regulated by the presence of activators or repres-
sors and the resulting promoter activity function connected the transcription factor (TF)
concentration with the gene activity. But if one scrutinizes this regulated recruitment
from a stochastic point of view the situation changes: Although the operator occupation
is on average given by the equilibrium dissociation constant of the TF to the operator, a
permanent binding and unbinding of the individual TFs takes place. Only if the rates of
binding and unbinding for the TFs are much faster than the association rate of RNAP to
the promoter site, RNAP ’senses’ the average operator occupancy. For slow attachment
and detachment rates of the TFs the gene activity rather oscillates between HIGH and
LOW values - following ’adiabatically’ the operator occupation states [70, 94, 66]. As a
result, the slow operator state fluctuations lead to transcriptional bursting. The burst size
of mRNAs is analogously to the case of translational bursting (compare Section 2.2.4 on
p. 15) given by a geometric distribution. Here we have again a Poisson process (tran-
scriptional initiation by RNAP) that is truncated e.g. by the binding of a repressor into
the promoter region . This was also confirmed experimentally in bacteria [54], where an
average burst size of 4 transcripts per ’activity’ period could be determined for the TetR
repressible promoter PLtetO.

Besides transcriptional and translational bursting additional intrinsic fluctuations are
imposed by the association and dissociation events of dimerization and the randomly driven
proteolysis. However, although these processes contribute to the overall stochasticity at
very low protein abundances, in many cases the protein number is so high, that the major
sources of noise are the previously mentioned bursting processes. This does not mean,
that the protein abundance is not subject to drastic fluctuations. The origin of the protein
fluctuations is rather the amplified low molecule number noise from the level of operator
state fluctuations and random birth and death of mRNAs. Further below a general frame-
work for the description of noise in linear chemical reaction systems is presented and the
amplification of mRNA and operator-state noise will appear with more clarity.

Extrinsic noise

In a population of bacterial cells not all cells are identical. They vary in in many aspects
as e.g. in size, in their doubling time or simply in their location inside the bacterial pop-
ulation. The last point results from non-ideally stirred bacterial populations and leads to
gradients in signaling molecules, acidity or in the nutrient supply. The implications for
gene regulation are, that every individual cell has a different intracellular composition of
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its housekeeping protein machinery and of the available chemical building blocks. On the
transcriptional level e.g. the number of RNAPs, the abundance of ribonucleotides (the
building blocks of mRNA) and the available ATP (the energy source of the process) might
be rate limiting [35]. But also on the translational level the abundance of ribosomes, the
availability of amino acids (determined by the nutrient supply) or the number of RNases
determine the respective transcription and degradation rates. Last, also the degradation
rate of the proteins depends on the number of proteases and is thereby also subject to
intercellular variations. These are only a few examples that demonstrate possible sources
of population heterogeneity of the effective parameters used in the standard model of gene
regulation as presented in the previous sections. It shall be mentioned as well, that the
parameters not only vary from cell to cell, but also in time within individual cells [97].

However, if certain extrinsic fluctuations are suspected to play a major role for the
behavior of the regulatory circuit, it is possible to simply include the respective processes
into the model. Therefore standard modeling attempts [81, 13, 106, 82] do not consider
fluctuations in the parameters.

2.5.2 Fluctuation-Dissipation Theorem

Measures of noise

In principle the fluctuations of a chemical reaction species Si are determined by the second
moments σ2

i (Xi) := 〈X2
i − 〈Xi〉2〉 of the stochastic process determined by the master

equation Eq. (2.30). Reasonable quantitative measures for noise are either given by the
relative magnitude of noise ηi(Xi)

ηi(Xi) :=
σi(Xi)

〈Xi〉
(2.48)

or by the Fano Factor Fi(Xi)

Fi(Xi) :=
σ2

i (Xi)

〈Xi〉
. (2.49)

Which measure is more appropriate, depends on the specific situation. The Fano Factor
for instance equals one for the Poisson process, since variance equals the mean in this case.
Therefore the Fano Factor is often employed to measure the deviation from a Poisson
process. But this is only suitable for univariate random processes, for which the variance
is at least proportional to the average. For the case of multivariate random processes the
Fano Factor can be misleading, since the poisson distribution holds no special position [87].
In these cases a more useful measure is the dimensionless relative magnitude of noise ηi.

Fluctuation-Dissipation Theorem

As already mentioned, the computation of the ηi or Fi requires the derivation of the second
moments from the master equation analogously to Eq. (2.37). Besides this straightforward
method there exists a more generic approach that relies on a first order van Kampen’s
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system size- (or Ω-) expansion of the master equation [86, 87]. By this it is possible
to derive a general Fluctuation-Dissipation Theorem (FDT), that connects the matrix of
covariances σ (σii = σ2

i ) with the Jacobian A of the dynamics of the averages and the
diffusion matrix B:

dσ

dt
= Aσ + σA

T + B. (2.50)

More precisely, A is given by

Aij =
∂

∂〈Xj〉
d〈Xi〉

dt
(2.51)

=
∂

∂〈Xj〉
M

∑

j=1

Σij aj(〈 ~X(t)〉), (2.52)

where in the second step the fluctuations were neglected and by this the average propensity
function was replaced by the propensity function of the averages. As stated in Section 2.4.3
this is exact for linear systems and represents an approximation for nonlinear ones. The
diffusion matrix B depends on the size of the random events and is given by

Bij =
∑

k

ΣikΣjkck, (2.53)

where the Σij are the elements of the stoichiometric matrix Σ and the ck are the reaction
probabilities of reaction channel Rk.

For many applications it is sufficient to calculate the steady state noise characteristics,
given by setting the left side of Eq. (2.50) to zero. Then the calculation of A and B and
the subsequent solution of the resulting set of equations for σ is in the linear case straight-
forward. For nonlinear systems this is generally not the case and leads to complicated
expressions or is only numerically solvable. However, even in the linear case the rearrange-
ment of the solution and its interpretation in terms of intuitive physical principles is the
real conceptual challenge [87]. One example is briefly presented in the following.

Applications and limitations of the FDT

The standard model. For the simple linear gene-mRNA-protein motif as depicted in

Fig. 2.12 the normalized stationary variance of the protein (η2
3 =

(

σ3

〈n3〉

)2
) can be be com-

puted [87] as shown in the lower part of Fig. 2.12. This expression is already arranged in
intuitive terms: The first contribution to the noise of the proteins is the Poissonian term
resulting from births and deaths of individual proteins. The two other terms have their
origin in the fact that the rate of protein synthesis is itself a fluctuating random variable.
The second one describes the transduced noise from the Poissonian nature of mRNA birth
and death. It is multiplied by a dimensionless factor, ranging from 0 to 1, that measures the
time-averaging imposed by the finite lifetime of the proteins. This time-averaging stems
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Figure 2.12: Application of the FDT to a linear system of gene activation and inactivation by
a repressor, followed by subsequent transcription and translation. The involved timescales τi

i=1,2,3 are given by the inverse inactivation or degradation rates of the individual species. The
figure is taken from [87].

from the fact that the time to reach the steady state value is for any arbitrary variable X,
following the rate equation

dX

dt
= α − λX, (2.54)

solely determined by the degradation rate λ. This is because the distance from the steady
state X∞ = α/λ follows

(X(t1) − X∞) = (X(t0) − X∞) e−λ(t1−t0). (2.55)

In the above mentioned example the mRNA abundance controls the synthesis rate α of the
proteins. Consequently, changes in the number of mRNAs alter the protein steady state
level X∞. If the protein lifetime is much longer than the lifetime of mRNA (τ3 >> τ2 or
λ3 << λ2), the timescale of the mRNA fluctuations would be so fast, that the proteins could
not adjust to the newly defined steady state values. Thus the mRNA fluctuations would
be averaged out and the second term in the lower part of Fig. 2.12 disappears. This means
that for slow protein degradation the spontaneous mRNA fluctuations cannot influence of
the protein level. In the other limit, in which the protein degradation is infinitely fast and
therefore the new steady state is approached instantaneously (τ3 = 0), spontaneous mRNA
noise is fully transduced to the protein level.

The last term in the lower part of Fig. 2.12 has its origin activation and inactivation of
the gene by the previously mentioned operator state fluctuations. The binomial fluctuations
of the operator state induce an enforced mRNA noise. But before it enters the protein
noise a time averaging by mRNA and proteins take place (two-step time-averaging).

Other applications. With the FDT a simple theoretical framework for the computation
of different contributions to the noise of an individual variable is readily available. It has
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been applied for instance to study the dependence of protein noise on the burst factor b
[106, 87], as introduced in Section 2.2.4 on p.15. In the case where the gene is always ON
and the protein lifetime is much longer than the one of its mRNAs (τ3 >> τ2) one obtains
for the Fano Factor of the proteins

F3 =
σ2

3

〈n3〉
∼= 1 + b. (2.56)

Thus, only in the limit of continuous or deterministic protein production (b → 0) the Fano
factor really approaches unity, as expected for a Poisson process. The linear dependence
of the Fano factor on b in Eq. (2.56) was confirmend by altering the translational efficiency
through mutations in the ribosome binding site [84].

The FDT was also used to study the noise propagation in a synthetic transcriptional
cascade [90] or to discriminate between global or local sources of fluctuations [90, 18].

Limitations of the FDT. The derivation of the FDT in Eq. (2.50) assumes small Gaus-
sian fluctuations [87], while general models of gene regulatory circuits usually produce very
broad and skewed distributions. The situation gets even worse when the circuit involves
intricate feedback and feedforward loops since they can confer multistability, leading to
multipeaked distributions. In these cases the results generated by the FDT are not valid.

2.5.3 Suppression and exploitation of noise

It is astounding, that a single copy of a gene with a burst-like production of proteins can
generate reliable functionality of genetic circuits. Already Schrödinger was fascinated by
this empirical fact [101]:

” (...) Eine einzelne nur in einem einzigen Exemplar vorhandene Atom-
gruppe ist Ausgangspunkt geordneter Vorgänge, die in wunderbarer Weise und
nach höchst subtilen Gesetzen aufeinander und auf die Umwelt abgestimmt sind.
(...) Es bedarf keiner dichterischen Vorstellungskraft, sondern nur klarer und
nüchterner Überlegung, um zu erkennen, daß die gesetzmässige und ordnungs-
gemäße Abwicklung dieser Vorgänge von einem ganz anderen ’Triebwerk’ bes-
timmt wird als vom ’Wahrscheinlichkeitsmechanismus’ der Physik. (...) Es
ist gleichgültig, ob wir es erstaunlich oder selbstverständlich finden, daß eine
kleine, aber hochorganisierte Atomgruppe fähig ist, in dieser Weise zu wirken;
das ändert nichts an der Einmaligkeit dieses Tatbestandes, der ausschließlich
bei der lebenden Substanz vorkommt.”

Today it seems as if the additional mechanisms (’Triebwerk’) required for the explana-
tion of the highly ordered and proper function of these processes are given by the regulatory
structure of the genetic networks themselves. It has been shown, that a negative autoreg-
ulatory network module is able to reduce the normalized noise η, when compared to the
circuit without negative feedback [106]. Also DNA looping has proved to suppress noise
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[113]. But it was also speculated, that the intrinsic determinants of noise themselves as
e.g. the operator state fluctuations and the burst size have evolved as a trade-off between
energy efficiency and noise reduction [106, 84]. If for instance the burst factor was reduced
while the transcriptional efficiency simultaneously was increased, the same average protein
abundance would be obtained with a much lower variance. The burden would be however,
that the cell had to synthesize many mRNAs, which in most of the cases would be degraded
before any protein was translated from them.

Another possible exploitation of noise is ’stochastic focusing’ [88] - a phenomenon sim-
ilar to stochastic resonance [58]. Stochastic focusing refers to the paradox situation, where
the noise of biochemical reactions can reduce the noise of the overall network. This is
because under certain conditions noise leads to an increased sensitivity of the promoter
activity function and thereby fluctuations can be suppressed [89, 107].

One crucial aspect for gene regulatory and signaling networks was highlighted by Koll-
mann et al. [73]. It was shown, that the signaling network responsible for chemotaxis in
E. coli not only attenuates the noise of individual network components, but is also robust
against globally acting co-variations of the parameters. The up-regulation of the transcrip-
tion rates (by fluctuations in the RNAP abundance) for instance could have devastating
effects for the stability of gene expression patterns, if it would not be compensated for by
the network topology itself. It was hypothesized that this concept of robustness against
co-variations would apply to a large class of signaling and gene regulatory networks.

Besides the high reliability in the production of genes that are crucial for the proper
function of cell fate decisions as for instance in development [12], other genes exhibit
remarkable fluctuations. Some of these genes are responsible for the induction of phenotypic
diversity, which was speculated to generate evolutionary advantages on the population level
[75].



Chapter 3

A conditional memory circuit

The ability to learn and respond to recurrent events can provide a selective advantage to an
organism. Learning depends on the capacity to remember transient biological events that
occurred in the past. In this chapter a simple genetic circuit that conditionally memorizes
a signal in the form of a transcription factor concentration is proposed. The circuit behaves
qualitatively similar to memory in an electronic circuit; it reads and stores an input signal
only when conditioned to do so by a read signal. It is based on the genuine physical and
chemical principles of gene regulation introduced in the last chapter and employs a bistable
switch as the ’core memory module’.

In the following we will investigate the ”device physics” of this conditional memory
circuit. First, the proposed network design is introduced and its difference to a traditional
non-conditional memory circuit is elucidated with a simple coarse-grained model. Then
a full description including all the microscopic details of gene regulation is developed for
a set of experimentally characterized genes and proteins and the employed models are
presented. Next, the results of the steady state characteristics are presented. It is shown
that the behavior of the conditional memory circuit is analogous to what we know from
magnetic memory. After that the deterministic and stochastic dynamics of the circuit are
presented. The determining timescales are scrutinized in detail and moreover the impeding
effects of molecular noise on the reliability of the circuit are characterized. In a next step
we investigate how the circuit’s sensitivity can be adjusted to given environmental signals.
The last two sections deal with two modeling-specific issues that arose during this work.
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3.1 Illustration of the circuit’s function

In this section the basic design of the proposed conditional memory circuit is presented.
First, the difference with respect to the traditional genetic toggle switch is elucidated.
Then the physical working principle of the memory circuit is explained by a simplified
mathematical model.

3.1.1 Conditional vs. non-conditional memory

Our starting point for a circuit that exhibits conditional memory is the mutually repressing
network motif, which exhibits bistability for properly chosen parameters (see Section 2.3.2).
This means, that the circuit will be either in the state where A is high and B is low or
in the state where A is low and B is high, depending on the initial concentrations. But
for being useful as a memory circuit, it is important that the state of this bistable device
can be dictated by some external condition. This means that one has to couple it to some
external signal in order to toggle intendedly between the two states, i.e. one has to make
the circuit addressable.

Unconditional memory. This addressability was achieved in the groundbreaking work
of Gardner et al. [46] by the coupling of the inducers I1 and I2 to the mutually repressing
network as depicted in Fig. 3.1 (a). I1 prevented gene A to repress gene B and so did I2 with
the repression of B on A. Thereby they could toggle between the ON-state (A high) and
the OFF-state (A low) by adding one of the inducer signals. The addition of I2 for instance
blocked the repression of gene B on gene A, proteins A could be synthesized and thus the
switch was set to the A ON-state. The logic rules of this ’toggle switch’ are summarized in
Fig. 3.1 (b), and its dynamic behavior is sketched in Fig. 3.1 (c). It is illustrated, how the
switch is driven to the A ON state by a transient I2 exposure (Fig. 3.1 (c), left column)
and reset to the A OFF state by a pulse of I1 (Fig. 3.1 (c), right column). Clearly, the
toggle switch always stores the state determined by its latest inducer exposure similar to
a light switch responding to the latest finger pressing it. In that sense the behavior of the
toggle switch is unconditional, as no higher hierarchical signal ”allows” or ”prevents” this
storage.

Conditional memory. To obtain a conditional memory we also start with the mutually
repressing network motif, but introduce combinatorial control of two other proteins R and
S, see Fig. 3.1 (d). The protein R can form homodimers R2 which repress the expression
of gene A via an additional binding site in the promoter PA. It can also bind to S to form
heterodimers RS which bind specifically to another operator site in the promoter region
PB and thereby repress the expression of gene B.

Qualitatively we expect that if R is absent, neither R2 nor RS can form. In this state the
existing memory of the circuit is maintained regardless of the level of S. When a significant
amount of R is present, at a low concentration of S mostly homodimers R2 are formed.
Gene A is repressed and the switch is forced into the OFF-state. Conversely, when S is
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Figure 3.1: The schematic design and function of (a–c) the toggle switch of Gardner et al. [46]
compared to (d–f) the “conditional memory circuit”. In the toggle switch (a) the bistable circuit
of two mutually repressing genes A, B is controlled by the two inducers I1 and I2 according to
the rules (b). The diagrams (c) illustrate how the switch is “set” to the ON state, i.e. high (HI)
expression of A, and “reset” to the OFF state, i.e. low (LO) expression of A, by pulses of I2 and
I1, respectively. In contrast, the conditional memory circuit (d) is regulated by the transcription
factors R and S. They form hetero- and homodimers RS and R2 repressing the transcription of
gene A and B, respectively. Effectively, the circuit remembers the expression state of S during
the last pulse of R. Hence, R functions as a read signal for the information contained in S, as
illustrated in the table (e) and the diagrams (f).

highly expressed, mostly the heterodimers RS form and force the switch into the ON-state,
see Fig. 3.1 (e) and (f). Hence at a high level of R, the state of gene A reflects the state of S
and at low levels, S does not affect the state of the circuit. This means that R corresponds
to the command (or the condition) to ”read” the input signal S, which is then ”memorized”
when R is set to a low level in the following.
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3.1.2 Working principle

The working principle of the conditional memory circuit of Fig. 3.1 (d) is best understood
within a reduced deterministic description. It considers only the time evolution of the
total concentrations of the proteins A and B. In such a description one assumes that all
biochemical processes which do not change the total concentrations Atot and Btot are so
rapid that they remain equilibrated at almost all times (see Section 3.7). The net change
of Atot and Btot due to protein synthesis and degradation then follows rate equations of
the form

d

dt
Atot = αAPA(B2, R2) − λpAtot

d

dt
Btot = αBPB(A2, RS) − λpBtot . (3.1)

Here, it is assumed that protein degradation occurs at the constant rate λp. In contrast, the
synthesis of proteins A and B is regulated. Their maximal synthesis rates are denoted by
αA and αB, while the form of the regulatory control is described by the promoter activity
functions PA(B2, R2) and PB(A2, RS). The promoter activity is the fraction of time the
promoter is not blocked by a repressor and thereby free to bind RNA polymerase (PA and
PB take on dimensionless values between 0 and 1), see Section 2.2.2. The arguments of
PA and PB are the concentrations of the dimeric repressors which down-regulate the tran-
scription. Within the thermodynamic model for transcription regulation (Section 2.2.3),
the promoter activity function PA takes the form

PA(B2, R2) =
(

1 +
B2

KOB

)−2(

1 +
R2

KOR2

)−1

(3.2)

and similarly,

PB(A2, RS) =
(

1 +
A2

KOA

)−2(

1 +
RS

KORS

)−1

. (3.3)

Here, the K’s denote the equilibrium dissociation constants for the dimer-operator inter-
action in vivo [47]. To achieve the cooperativity required for the bistability of the toggle
switch [34], we introduce two binding sites each for the repressor dimers A2 and B2, which
is reflected in the square of the first factor [24, 23]. Note that the dimer concentrations
A2 and B2 in Eqs. (3.2) and (3.3) must be expressed in terms of the total protein concen-
trations Atot and Btot to close the rate equations (3.1). The explicit expressions will be
derived in Section 3.7. Similarly, the concentrations of the control proteins, R2 and RS,
are functions of the total protein concentrations Rt and St, which we use to quantify the
strengths of the read and input signals.

Without read signal (Rtot = 0), the second factor on the right hand side of Eqs. (3.2)
and (3.3) disappears and the conditional memory circuit behaves like the regular toggle
switch [46]. The toggle switch shows three different types of behavior depending on the
ratio of the maximal promoter activities αA and αB: The switch is bistable only when αA

and αB are similar and sufficiently strong; otherwise it is monostable, either always ON
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Figure 3.2: Working principle of the conditional memory circuit. (a) When the concentrations of
the control proteins R and S change, the circuit moves in the state diagram of the toggle switch,
which displays either bistable or monostable behavior depending on the (effective) promoter
strengths of gene A and B. (b-d) The control proteins R and S tilt the separatrix, which separates
the basins of attraction of the two stable fixedpoints (filled circles). When the circuit reaches
the borderline to a monostable regime in (a), one of the stable fixedpoints “annihilates” with the
unstable fixedpoint (empty circle).

(A high, B low) or always OFF (A low, B high), see Fig. 3.2(a) and Section 2.3.2. In the
conditional memory circuit, the maximal promoter activities get replaced by the effective
activities α̃A and α̃A:

α̃A = αA/(1 + R2/KOR2
) (3.4)

and

α̃B = αB/(1 + RS/KORS
). (3.5)

Hence, variation in the concentrations of the control proteins R and S effectively change
the maximal promoter activities, and thus can be interpreted as regulated shifts within
the state space of the toggle switch. Without read signal, the conditional memory circuit
is in the bistable regime and its state is saved. When it receives a read signal, but no
S signal, it moves into the monostable low-A regime as indicated by the green arrow in
Fig. 3.2 (a). In contrast, when receiving an R and S signal together, it moves into the
monostable high-A regime as indicated by the red arrow. The mechanism underlying these
operations is illustrated in Figs. 3.2 (b-d), which represent the dynamic properties of the
circuit at the three indicated points in the state diagram (Fig. 3.2 (a)): At any given
time, the state of the two-gene circuit is specified by the two concentrations Atot and Btot

and its dynamics is therefore represented by trajectories in the At-Bt phase-plane. These
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trajectories are attracted by the stable fixedpoints shown as filled circles in Figs. 3.2 (b-
d). Within the bistable regime, there are two stable fixedpoints and the state space is
divided by a separatrix into two basins of attraction for these fixedpoints (the empty
circle indicates the unstable fixedpoint). When a read signal is given, this separatrix tilts
either towards the A-axis or the B-axis, depending on the signal S. Thereby, the basin of
attraction of one of the fixedpoints is eliminated, so that the circuit is ultimately forced
towards the remaining fixedpoint. The upward/downward tilting of the separatrix is the
physical working principle underlying the two functional operations of Fig. 3.1(f). This
simple picture holds only within the reduced model in Eq. (3.1), but we will see that the
qualitative behavior survives in a more realistic quantitative description developed in the
following.

3.2 Quantitative model

In this section a quantitative model model for the conditional memory circuit is developed.
All involved reaction mechanisms are described and the different levels of modeling are
presented. Last, the used parameters are stated.

3.2.1 Chemical reaction scheme

A quantitative model of Fig. 3.1 must involve all details of gene regulation introduced in
Section 2.2. Fig. 3.3 shows the reaction mechanisms and introduces the parameter and
variable notations used for the remainder of this work.

Toggle switch module. The upper part of Fig. 3.3 depicts the toggle switch module:
genes A and B are transcribed from the promoters PX into mRNA mX at a rate νmX

(X = A, B for the rest of the paragraph). These mRNAs are either translated at rate νp or
actively degraded with a degradation rate λm. Monomeric and dimeric proteins associate
or dissociate with on- and off-rates k+

X and k−
X respectively1 and are both degraded at

rates λp. Finally the dimers bind and unbind independently to the two operator sites OX1

and OX2
inside the promoter region of the respective antagonist at rates k+

OXj
and k−

OXj

(j=1,2). We introduce two identical binding sites for A and B on each promoter in order to
guarantee a sufficient degree of cooperativity needed for the emergence of bistability (see
Section 2.3.2). However, cooperative interactions between the two TFs are not assumed,
since this would confer harder experimental constraints.

Regulatory front-end. In the lower part of Fig. 3.3 the interactions of the ”regulatory
front-end” are shown. As above we equally include the processes of transcription, transla-
tion and turnover of genes R and S. Protein R can either form homodimers R2 with itself

1In Fig. 3.3 only the equilibrium constant is depicted, but the model includes all on- and off-processes
explicitly.
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Figure 3.3: Detailed reaction mechanisms included in the model of the conditional memory circuit:
the translated proteins form dimers, which bind dual, but independently to their operator sites.
If at least one dimer is bound, transcription of the downstream gene is inhibited.

or heterodimers RS with S. In this model we forbid the possible formation of S2 homo-
dimers. They don’t play a functional role in our design because there is no binding site
for S2. Thus, the only effect of S2 homodimerization is the reduction of the monomeric
form of S. The dimers R2 and RS can bind to their respective operator site downstream of
the transcriptional start site, see Fig. 3.3. This downstream binding is necessary, because
there are spatial constraints for the binding to the promoter region and no more than two
TFs can bind to one promoter site.

Promoter states and elementary reactions. From Fig. 3.3 one can read off the ele-
mentary reactions between the reactants. One obtains exemplarily for translation, dimer-
ization and turnover of gene A the following reactions

mA
νp−→ mA + A

A + A
k+

A−→ A2

A2

k−

A−→ A + A

mA
λp−→ ø

A
λp−→ ø

A2
λp−→ ø.
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Figure 3.4: In this model the eight possible promoter states are captured by 6 distinct variables
(exemplarily only the promoter PA is shown). We account for the two fold degeneracy of the
states PA •B2 and PA •B2 •R2 by doubling the respective on- and off-rates, see text for details.

The full list of 56 reactions for the 24 distinct species (including the reactions between the
different promoter states, see below) can be found in Appendix A.1, Eqs. (A.1) - (A.56).

Transcriptional regulation is modeled by the introduction of 6 different promoter occu-
pation states for each of the promoters PA and PB as depicted for PA in Fig. 3.4. We treat
each of these promoter states as individual variables, which are transformed into each other
by binding and unbinding of the allowed dimeric transcription factors (compare Fig. 3.3
and Refs. [13, 70]). Fig. 3.4 shows that there are two distinct microscopic configurations
for the variables PA • B2 and PA • B2 • R2: one with B2 bound to OB1

and the other one
with B2 bound to OB2

. Since the operators OB1
and OB2

are identical, we account for this
two fold degeneracy by doubling the rates of the reactions, that lead to one of these states,
e.g.

PA + B2

2 k+

OB−→ PA • B2 (3.6)

PA • B2 • B2

2 k−

OB−→ PA • B2 + B2 (3.7)

but

PA • B2 + B2

k+

OB−→ PA • B2 • B2 (3.8)

PA • B2

k−

OB−→ PA + B2. (3.9)

Input signals. The aim is to control the time dependent transcription rates of genes
R (νmR

(t)) and S (νmS
(t)), and to use them as input signals to the conditional memory

circuit. For instance, the circadian rhythm may impose a periodic transcription rate νmR
(t)

due to other regulatory processes in the cell. The transcription of S might be coupled via a
signal transduction pathway or a quorum sensing mechanism [19] to some time-dependent
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external signal, such as the cell density or the nutrient supply. Therefore our aim is to
characterize the response of the circuit for different forms of the input signals νmR

(t) and
νmS

(t).

3.2.2 Deterministic and stochastic model of the full system

Deterministic rate equations Following the general framework of Section 2.4.3 we set
up now the rate equations from the chemical reaction system in Eqs. (A.1) - (A.56). This
leads, again exemplarily for mRNA and monomers A, to the following equations

dmA

dt
= νmA

PA − λmmA (3.10)

dA

dt
= νpmA − 2k+

AA2 + 2k−
AA2 − λpA. (3.11)

The full list of equations for the 24 variables are stated in Appendix A.2. With a number of
steady state assumptions and in the limit of large molecule abundances this vast number of
degrees of freedom (24) can be reduced to two: we obtain the simplified (or reduced) model
for the total number of proteins Atot and Btot (Eqs. (3.1); for derivation see Section 3.7
on p.79). In Section 3.7 it is also shown, that the assumptions leading to the reduced
model are not really met for the used set of parameters. Therefore only the full model
is appropriate to serve as a reference for the stochastic simulations and all quantitative
statements related to deterministic issues will be obtained from numerical integration2 of
the full model.

Stochastic simulation algorithm. The vast number of reactants (24) and reaction
channels (56) demanded a versatile implementation of the stochastic simulation algorithm
(Section 2.4.2). This was essential to this work, especially because the goal was to inves-
tigate different modifications of the model. Therefore a comprehensive program with the
stoichiometric matrix and the reaction probabilities as input parameters was coded in C.
The source code can be found in Appendix B.

3.2.3 Parameter choice

To render this theoretical study as realistic as possible, the parameters of all involved
processes were collected carefully from existing literature. In Table 3.1 and Table 3.2
the complete list of parameters used here is presented. However, some of them were not
experimentally characterized and therefore additional assumptions had to be made, as will
be shown in the following.

2The solver routine ’ode23s’ for stiff sets of ordinary differential equations from MATLAB was used.
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Reaction/event Parameter Reference and comments

Transcription

PA

νmA−→ PA + mA νmA
= 5min−1 strong promoters; programmable through choice of nucleotide

PB

νmB−→ PB + mB νmB
= 5min−1 sequence [79]

PR

νmR−→ PR + mR PRνmR
= (0.01 − 1) nM min−1 inducible promoter; [79]

PS

νmS−→ PS + mS PSνmS
= (0.01 − 2) nM min−1 inducible promoter; [79]

Translation

mi

νp
−→ pi νp = 2.3 min−1 for all translation events i; selected to match average burst

size of 10 proteins/mRNA for the given mRNA half-life [106]

Turnover

mi
λm−→ ø λm = 0.23 min−1 for all transcripts; corresponds to a half-life Tm of 3 min [21];

(λm = ln(2)/Tm)

pi

λp
−→ ø λp = 0.138 min−1 for all proteins; corresponds to a half-life Tp of 5 min achieved

by SsrA-tags [56, 83];

Table 3.1: Parameters for transcription, translation and turnover.

Reaction/event Parameter Reference and comments

Dimerization

A + A
k
+

A
⇀↽
k
−

A

A2 k+

A
= 0.2∗ nM−1min−1

k−

A
= 0.02 min−1

parameters of TetR; for details see paragraph Equilibrium

constant of TetR dimerization

B + B
k
+

B
⇀↽
k
−

B

B2 k+

B
= 0.2∗ nM−1min−1

k−

B
= 0.003 min−1

parameters of LacI [104]

R + R
k
+

R2
⇀↽

k
−

R2

R2 k+

R2
= 0.2∗ nM−1min−1

k−

R2
= 2 min−1

parameters of 434 repressor; In [40] in vitro measurements
yielded K = 1000 nM but the results in [61] suggested much
lower values for K in vivo. Therefore we used K = 10 nM for
the in vivo value, in agreement with [74].

R + S
k
+

RS
⇀↽

k
−

RS

RS k+

RS
= 0.2∗ nM−1min−1

k−

RS
= 2 min−1

parameters of 434 and 434[α3(P22R)] repressor; since the
dimerization domain is unchanged, we used same K as for
434 repressor (for reference see above)

TF-DNA binding

A2 + OAi

k
+

OA
⇀↽

k
−

OA

A2 · OAi
k+

OA
= 0.2∗ nM−1min−1

k−

OA
= 2 min−1

for both binding sites i=1,2: (TetR)2 interacting with tet−O1;
the given in vitro equilibrium dissociation constant of Kd =
0.45 nM [22] was altered in order to obtain a more symmetric
toggle switch

B2 + OBi

k
+

OB
⇀↽

k
−

OB

B2 · OBi
k+

OB
= 0.308 nM−1min−1

k−

OB
= 2.22 min−1

for both binding sites i=1,2: (LacI)2 interacting with lac−O1;
[116]

R2 + OR2

k
+

OR2
⇀↽

k
−

OR2

R2 · OR2
k+

OR2

= 0.2∗ nM−1min−1

k−

OR2

= 0.32 min−1

(434)2 interacting with 434 − O1; [40]

RS + ORS

k
+

ORS
⇀↽

k
−

ORS

RS · ORS k+

ORS
= 0.2∗ nM−1min−1

k−

ORS
= 1 min−1

(434[α3(P22R)])2 interacting with hybrid operator, see [61]

Table 3.2: Chosen parameters for dimerization and TF-DNA binding. ∗: In these cases only the
equilibrium dissociation constant K was given and the off-rate was calculated from k− = k+K.
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Figure 3.5: Top: The homodimers (434R • 434R[α3(P22R)])2 and 434R2 bind to the native
P22 and 434 operators, respectively. Their amino-terminal recognition helices are depicted as
cylinders. Bottom: After mixing, a heterodimer of the two proteins is shown bound to a hybrid
P22/434 operator, where each repressor monomer is bound to its cognate half-site. The figure
was taken from [61].

Concrete genes and proteins

Toggle switch. For the proteins A and B of the toggle switch an obvious choice is to use
the same proteins as in the toggle switch of Gardner et al. [46]. These are Tet repressor
(TetR) for A and Lac repressor (LacI) for B, both belonging to the best characterized
TFs in E. coli. Besides the fact that almost all thermodynamic and kinetic parameters
of these proteins are known and thus ideal modeling premises are given, this pairing has
already proven to exhibit bistabililty [46]. Another possibility would be the usage of the
well studied bacteriophage λ repressor CI [46, 92] instead of one of the other proteins.
However, the strong cooperative binding of CI2 to the adjacent operators OR1 and OR2

imposes additional experimental constraints. The spacing between the operator sites for
instance has to be kept at its native value.

Regulatory front end. Hollis et al. characterized a pair of proteins, the 434 repressor
(434R) and its synthetic mutant 434R[α3(P22R)], which behaves like R and S described
above, see Fig. 3.5. They replaced the amino-terminal domain of 434R repressor by the
recognition helix of the Salmonella phage P22 repressor, resulting in the mutant protein
434R[α3(P22R)]. Typically the corboxyl-terminal domain (which is unaffected by the
mutation) mediates the dimerization between the proteins, whereas the amino-terminal
domain is responsible for the recognition of the DNA sequence. They could show that a
mixed solution of 434R and 434R[α3(P22R)] yields homodimers (434R)2 and heterodimers
434R • 434R[α3(P22R)].

Additional to the mutant protein they engineered a hybrid operator site, which consisted
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one half of the 434R operator and the other half of the P22R operator. The resulting
chimeric operator bound the heterodimer with high affinity and specificity. In the following
we will refer to the 434 repressor as protein R and to the mutant protein as S. Alternatively
one could have used the pair of TFs described by Dmitrova et al. in [39], but since the
parameter details are not known in that case, they were not considered here.

Protein degradation

The protein half-life determines the timescale the conditional memory circuit, as we will
see in Section 3.4.2. Therefore it is favorable to use proteins, that are not only diluted by
cell division but are rather actively degraded (compare Section 2.2.4). This can be achieved
by the addition of SsrA tags [67] to the end of the sequence of the proteins. Natively, the
SsrA system is used to clear stalled ribosomes. This can happen if the lack of an amino
acid or a tRNA prevents the ribosome to continue the assembly of the protein. The SsrA
system involves a tRNA-like structure of mRNA which enters in this case the ribosome and
thereby forces the translation of its own mRNA. This sequence, once translated, serves as
a recognition site for the proteases ClpXP or Tsp and thus degradation is enforced. The
resulting protein half-life is of the order of a few (3-5) minutes [56, 83], so we will use a
half-life of 5 minutes for all proteins, see Table 3.1.

Diffusion limited on-rate

For almost all bimolecular reactions, i.e. for TF dimerization and TF-DNA binding, only
the equilibrium dissociation constants were experimentally determined, see Table 3.2. Since
our aim is to model the binding and unbinding processes explicitly, we had to find an
estimate for either the on- or the off-rate and calculate the other one (K = k−

k+ ).
A natural assumption is, that at least the order of magnitude of the on-rate is deter-

mined by diffusion, because the elementary reaction requires the molecular collision of the
two reactants. We assume in the lack of data, that only one out of ten molecular collisions

leads to a successful reaction and thus k+ =
k+

DS

10
for all on-rates. Here k+

DS is the diffusion
limited on-rate given by the Debye-Smoluchowski theory [27]

k+
DS = 4πD3b, (3.12)

where D3 is the in vivo diffusion constant for three-dimensional diffusion in the cytoplasm
of a cell and b is the scattering cross-section of the two molecules. Typical values are
D3 ≈ 7 µm2

s
(for the GFP protein) [42] and b = 5 nm, leading to an on-rate of k+

DS =
2 nM−1min−1. Thus we use k+ = 0.2 nM−1min−1, which seems to be reasonable since the
only known on-rate reported for the Lac repressor is k+

LacI ≈ 0.3 nM−1min−1 [116].

Equilibrium constant of TetR dimerization

The folding and dimerization of Tet repressor seems to be concerted, which means that
there is no evidence for folded monomers [60]. However, by indirect measurements it was
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shown that the free energy difference for the dimerization reaction (at 22◦ C and standard
conditions) is larger than

∆G0 > 54
kJ

mol
(3.13)

and thus the equilibrium is strongly biased towards the dimer. This results in an equilib-
rium dissociation constant of

KTetR = V −1 e−∆G0/RT < 0.27 nM, (3.14)

where V is the reaction volume at standard conditions (1 liter). Thus we choose KTetR =
0.1 nM for convenience.

Transcription, translation and mRNA turnover

The translation rates and half-lifes of the used mRNA’s were not given in the literature.
Therefore we assumed in all cases typical values of 3 minutes half-life and adjusted the
transcription rates such that an average burst factor of 10 proteins per mRNA was obtained,
see Table 3.1.

For the transcriptional processes we assumed in all cases strong promoters with maximal
transcription rates of νmA

= νmB
= 5 min−1 for PA and PB and tunable transcription rates

for the control proteins νmR
= (0.01 − 1) min−1 and νmS

= (0.01 − 2) min−1, see also
Table 3.1. Since the promoter sequence is programmable and therefore the transcription
rate tunable over a wide range (compare Section 2.2.2) it is reasonable to study the behavior
of the circuit in dependence of νmA

and νmB
in the following. We could alternatively tune

the translation rates via mutations in the ribosome binding site, but for simplicity we will
only vary the experimentally most convenient parameters.

3.3 Steady state characteristics

In this section the steady state behavior in dependence of the programmable transcription
rates of A and B, νmA

and νmB
respectively, is characterized. First, it is demonstrated

that the circuit may exhibit bistability for the chosen genes and proteins - a necessary
condition for the emergence of memory. Then the influence of the regulatory front end
on the toggle switch module is elucidated in quantitative terms and it is shown, that this
eventually results in a switchable hysteresis as known from magnetic memory.

3.3.1 State diagram

In the simple descriptions of the circuits in Section 2.3.2 we saw, that their steady state
behavior crucially depends on the parameters. As the ratios of production and degradation
of the proteins were altered, bifurcations from one to two stable steady states occurred.
This stability behavior in dependence on the parameters could be summarized in a state
diagram analogously to the phase diagram in thermodynamics. Fig. 3.6 shows the result
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Figure 3.6: State diagram of the conditional memory circuit in the absence of the control proteins
R and S. Data obtained from the full deterministic model (Section 3.2.2).

for the full model of the conditional memory circuit in the absence of the control proteins R
and S, i.e. νmR

= νmS
= 0. As mentioned before, in this limit the behavior of conditional

memory circuit reduces to that of the simple genetic toggle switch [46]. If the promoter
strength (or maximal transcription rate νmA

and νmB
) of one gene dramatically dominates

over the other, all initial conditions of concentrations will end in a state in which the
dominating gene is highly expressed and the other one is only basally expressed. Since
this behavior corresponds to an attractive fixedpoint in the 24 dimensional phase space,
one speaks of monostable behavior. On the other hand, if the transcription of both genes
is comparably large and sufficiently strong the circuit exhibits bistable behavior and two
attractive fixedpoints are present - one with A high and B low and the other one with A
low and B high.

Note that the ’phase’ borders are somewhat asymmetric due to asymmetries in the
parameter values of TetR and LacI. The width of the bistability region is determined as
in [46, 34] by the degree of cooperativity. Increasing cooperativity widens the bistability
region in Fig. 3.6 (data not shown).

Stability analysis

In the case of the autoregulatory positive feedback circuit the steady state solution could
be obtained analytically and the stability of these fixedpoints could be determined by linear
stability analysis. But already for the simple description of the mutually repressive circuit
it was evident that both the fixedpoints and their stability had to be computed numerically.

However, in the current model with 24 state variables it is even worse: it turned out,
that also the numerical stability analysis3 failed. Since the scope of this work was not

3The stability analysis with MATHEMATICA yielded results for the reduced description in Eqs. (3.1).
However, for the full model the computations for one parameter set were aborted after the runtime of a
day.
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Figure 3.7: Steady state characteristics of the regulatory front end. At a constant transcription
level of R (νmR

= 1.2/min) the transcription rate of S was varied. At low levels of S formation of
R2 is dominant, whereas at high transcription rates of S the formation of RS is dominant. The
data was obtained by numerical integration of the full model.

the inversion of high dimensional matrices, a pragmatic way of obtaining the fixed-point
behavior had to be chosen: Two initial conditions ~X1 and ~X2 were prepared - one with A
high and B low and one with A low and B high. The respective high and low values were
chosen such that the two initial conditions belonged to the different basins of attraction
in the bistable regime4. In the monostable case there is only one basin and all trajectories
are attracted by the same fixedpoint. The two simulations were run for long times t∞ and
it was checked, whether their resulting state vectors differed by a significant amount. If

∣

∣

∣

~X1(t∞) − ~X2(t∞)
∣

∣

∣
> ε(t∞) (3.15)

the system was considered to be bistable and monostable else. As depicted in Eq. (3.15),
the discrimination ’distance’ ε(t∞) between the state vectors has to be adjusted according
to t∞, such that two trajectories that converge to the same fixed point are not erroneously
identified as trajectories that converge to different fixed points.

3.3.2 Regulatory front end

Dimer balance in steady state. In Section 3.2.1 it was mentioned, that the input
signals to the conditional memory circuit are the time-dependent transcription rates of the
proteins R and S, νmR

and νmS
respectively. It is expected that for a given read signal

(R high) the balance between homo- and heterodimers R2 and RS can be adjusted by the
amount of proteins S. But is this really the case for the physiologically relevant parameters
given in Table 3.1 and Table 3.2?

4We chose for the high-values of A and B total protein numbers of 5000 and for their low-values 0. The
high-values were estimated by increasing them until the resulting state diagram didn’t change any more.
The resulting value was multiplied by a factor 5.
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Figure 3.8: Impact of the regulatory front end on the stability of the toggle switch. For R HI
(νmR

= 1 min−1, red curve) the variation of S from basal level (νmS
= 0.01 min−1) to a HI

level (νmS
= 2 min−1) drives the memory circuit from the monostable (A OFF, B ON) to the

monostable (A ON, B OFF) regime. When R is LOW (νmR
= 0.1 min−1, blue curve) the circuit

is driven through the bistable regime under variation of S over the same range as in the R HI case,
resulting in hysteretic behavior (the stable fixed points of Atot along these traces are plotted in
Fig. 3.9 (a)). The simulations were carried out with the full deterministic model. The promoter
strengths of PA and PB are νmA

= νmB
= 5 min−1.

Fig. 3.7 shows the steady state behavior of homo- and heterodimers R2 and RS as a
function of the store signal strength νmS

for a constant read signal (νmR
= 1.2 min−1). It

can be obtained by solving the determining equations

Rtot = RS + 2R2 +

√

K̃R2
R2 (3.16)

Stot = RS +
K̃RSRS
√

K̃R2
R2

(3.17)

for R2 and RS. Here K̃RS = (k−
RS + λp)/k

+
RS and K̃R2

= (k−
R2

+ λp)/k
+
R2

are the in vivo
dimerization constants [29] and Rtot = (νmR

νp)/(λmλp) and Stot = (νmS
νp)/(λmλp) the

total R and S abundances.
At basal level of S (νmS

= 0.01 min−1) almost only homodimers R2 form, whereas at
high levels of S (νmS

= 10 min−1) the heterodimers dominate. Without changing the dimer-
ization constants the crossover point at which the two species have the same abundance,
can be adjusted by changing the level of R: a reduction of R shifts this point to lower
values of νmS

and an increase of R shifts it to higher values of νmS
.

Impact on the toggle switch. It was stated in the context of the reduced model,
that the control dimers R2 and RS reduce the effective expression rates αA and αB of the
promoters PA and PB in Eqs. (3.4) and (3.5). It turns out that the same holds for the full
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model, if we compute the equilibrium probability to find the promoters PA and PB not
occupied by the control dimers. Thus they reduce the maximal transcription rates νmA

and νmB
to effective transcription rates ν̃mA

and ν̃mA
:

ν̃mA
= νmA

/(1 + R2/KOR2
) (3.18)

and
ν̃mB

= νmB
/(1 + RS/KORS

). (3.19)

Therefore the addition of different ratios of R2 and RS results in shifts in the state
diagram, and hence the fixed point behavior can be tuned. How do the effective tran-
scription rates in Eqs. (3.18) and (3.19) change if we keep the read signal constant and
vary the store signal, i.e. if we vary the ratio of R2 and RS as in Fig. 3.7? In Fig. 3.8
this behavior in the two dimensional parameter space (ν̃ma

, ν̃mB
) is embedded into the

state diagram of the toggle switch, since this depends on the same parameters (compare
Fig. 3.6). We used νmA

= νmB
= 5 min−1 for the maximal transcription rates in Eqs. (3.18)

and (3.19) and varied the store signal for either R LOW (νmR
= 0.1 min−1, blue trace) or

R HIGH (νmR
= 1 min−1, red trace) over the physiological range of νmS

= 0.01 min−1 to
νmS

= 2 min−1.
For a high level of the read signal (red trace) this variation of S has dramatic effects:

at LOW S (upper left part of the curve) predominantly homodimers R2 are formed and
thus basically the transcription of A is repressed from its maximal rate of νmA

= 5 min−1

to ν̃mA
≈ 0.2 min−1. This results in a shift of the circuit’s stability to the monostable B

region. If the amount of S is increased, the stability of the conditional memory circuit
follows the red trace. Ultimately, if S is highly expressed (lower right part of the curve),
RS is dominant over R2 and the production rate of B is decreased from νmB

= 5 min−1 to
ν̃mB

≈ 0.3 min−1, thus leading to the monostable A state.
At a low level of the read signal (blue trace) the circuit is affected less drastically, since

the maximal numbers of R2 and RS are limited by the amount of total R. Therefore a
variation of S over the same range as above can hardly force the circuit out of the bistable
region. The implications of this will be discussed in the next section.

3.3.3 Switchable hysteresis

A key property of the conditional memory circuit is to be sensitive to the input S, if the
read signal R is high, and to be insensitive to S when R is low. The behavior described
above results in a hysteresis effect, which exists at low R, but is switched off when R is
raised. Fig. 3.9 (a) demonstrates the switchable hysteresis in a plot of the steady-state
concentration A∗

tot of gene A against Stot for the same traces as in Fig. 3.8. The red curve
shows the behavior at high R: Over the entire interval, gene A has a unique steady state,
and the steady state concentration increases monotonically with S. Hence the state of gene
A follows that of signal S.

At a low R level (blue curve), gene A has two steady state values, one low and one high,
over most of the plotted range of S (bistable regime). When S is raised from a low value,
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Figure 3.9: Comparison of the behavior of the conditional memory circuit with the thermody-
namic behavior of a (single-domain) magnet.

gene A remains in the lower steady state and switches to the higher steady state only at
the upper end of the bistable regime. Conversely, if S is lowered from maximal expression,
A remains in the higher steady state until the lower end of the bistable regime is reached.

In the remainder of the study, we will use a LOW level of R that is still a factor 10
smaller than in the Figs. 3.8 and 3.9. Then the hysteresis loop extends to a much broader
range, such that for physiological concentrations of S the bistability borders cannot be
crossed.

Analogy to thermodynamical systems

The switchable hysteresis is similar to that of magnetic memory. Although the underlying
physics of a magnet is fundamentally different from that of a genetic circuit, it is instructive
to compare their behavior: Fig. 3.9 (b) shows the corresponding plot for a single-domain
magnet, which was obtained from the rescaled state equation of a Weissian magnet

x = tanh

(

y + x

t

)

, (3.20)

where x, y and t are proportional to the magnetization M , the external magnetic field B0

and temperature T , respectively [100].
Figs. 3.9 (a) and (b) both show the external condition for the respective system on

the vertical axis, the store signal strength Stot for the conditional memory circuit and
the external magnetic field for the magnet. The horizontal axis shows a state variable
of the system: the magnetization for the magnet, which is the conjugate variable to the
external field, and the level of protein A for the conditional memory circuit, which is the
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state variable that is linked to the store signal S (the table in Fig. 3.9 summarizes the
corresponding quantities of the two systems). Both plots show two curves with different
values of a control parameter: for the magnet the control parameter is the temperature,
while the level of protein R assumes the role of temperature in the conditional memory
circuit. In Fig. 3.9 (b), the red curve shows the magnetization for a temperature above
the critical temperature Tc (paramagnetic phase), where the magnetization directly follows
the external field. The blue curve shows the well-known hysteresis below Tc (ferromagnetic
phase), where the magnetization remembers its state: upon application of an external field
in the opposite direction, it inverts its direction only when the field has at least a certain
minimal strength. Clearly, the conditional memory circuit displays essentially the same
behavior as magnetic memory, even though it is an dissipative dynamical system and does
not have a well-defined Gibbs free energy. Here, we compare only the bulk behavior of the
magnet with the deterministic behavior of the conditional memory circuit.

However, on a qualitative level, the similarity extends beyond this “mean-field” level:
fluctuations in the biochemical reactions, which are prominent at low concentrations, lead
to spontaneous switching between the two stable states in the bistable regime, and sim-
ilarly fluctuations in the orientation of single spins can induce a spontaneous flip in the
magnetization for small systems of few spins. More precisely, at external fields different
from zero (but still small enough to be inside the hysteresis loop), the spin system has
two minima in the Gibbs free energy, that are not symmetric: for external fields larger
than zero the state with positive magnetization has a lower free energy than the negative
magnetization. Thus on timescales much larger than an intrinsic relaxation timescale the
spin system will flip from the locally stable to the globally stable state. This timescale
depends on the potential barrier height separating the two minima and the relative mag-
nitude of the fluctuations. Thus, for systems with only a low number of interacting spins,
these fluctuations will become larger compared to the barrier height and the spontaneous
switching rate increases.

The van der-Waals equation of state also exhibits a hysteresis loop for the volume of
a real gas as a function of the pressure. However, in this system the relaxation time is
so short, that the metastable branch of the hysteresis loop can hardly be observed - not
even for macroscopic systems. Therefore the isotherms are better described by a Maxwell-
construction in this phase coexistence region [100]. One assumes that the system is at
all values of p in the globally stable potential minimum and switches to the other state
only if the free energies of both states equal each other. This corresponds formally to a
phase transition of first order between the gas and the liquid phase with a corresponding
discontinuity of the first derivative of the free energy.

As mentioned before, the conditional memory circuit resembles the behavior of the
magnet rather than the behavior of the van der-Waals gas. This is due to a spontaneous
switching rate corresponding to a half-life time of the order of 40 hours and longer, as will
be shown in Section 3.4.3. Nevertheless one could also make a Maxwell-type of construction
for this dissipative system [69].
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3.4 Dynamical behavior

3.4.1 Proof of principle

To perform its intended function, the conditional memory circuit must respond to time-
dependent input signals if and only if the protein R is present, as illustrated in Fig. 3.1 (f).
To verify this response within the quantitative model, we prepare the circuit in the ON
state (A high) and then impose time-dependent transcription rates νmR

(t) for R and νmS
(t)

for S with shapes as shown in Fig. 3.10 (a). The protocol of Fig. 3.10 (a) tests the
complete set of fundamental circuit operations in the order: (i) remember S high, (ii) read
S low, (iii) remember S low, and (iv) read S high. Fig. 3.10 (b) shows the response for
both genes, A and B, within the deterministic description (dark green and red curve) as
well as exemplary trajectories from a stochastic simulation (light green and orange curve,
respectively). Qualitatively, the curves exhibit the desired behavior: From t = 0−150 min,
when both R and S are in the low state (basal transcription rate of 0.01/min), gene A
remains in the ON state. Shortly after the transcription of R is turned on at t = 150 min,
the memory switches to the state of S, i.e. the OFF state. When the transcription of R is
stopped at t = 210 min, gene A remains OFF, even after S is switched to the ON state at
t = 250 min. The change in the state of S affects gene A only after the transcription of R
is turned on again at t = 300 min.

However, after the validation of the proper functionality of the circuit, now its device
physics shall be characterized. From Fig. 3.10 a lot of interesting questions arise and the
following ones are addressed in the remainder of the chapter:

• How long must the read signal be presented until the store signal is stored? What
determines this timescale?

• Some of the trajectories flip even in the absence of the read signal to the other state.
What is the spontaneous switching rate for these events? Is the timescale of the
induced memory loss sufficiently long compared to the time it takes to read a signal?

• Are there noise induced ”toggle errors”? In Fig. 3.10 (c) and (d) it is visible, that
after the end of the second read pulse at t = 260 min a considerable percentage does
not reach the intended OFF state, even though the read signal was applied for 60 min.
What is the chance to reach the desired state in dependence on the read signal length?

• What happens if the transcription rates of the control proteins shown in Fig. 3.10 (a)
deviate from the chosen values? Can the sensitivity of the circuit be adjusted to
different levels of external signal amplitudes?
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Figure 3.10: The time-dependent response of the conditional memory circuit to the input signals
(a) is shown in (b-d). The dark red and dark green line in (b) show the total concentrations At

and Bt calculated from the deterministic rate equations, whereas the light red and green lines are
obtained from a single stochastic simulation run. The time evolution of the probability densities
for At and Bt are shown in (c) and (d), respectively (the densities are estimated from 50000
stochastic simulation runs; the color codes for the observed number of trajectories inside each
bin).
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3.4.2 Switching timescale

Here we want to investigate the factors that determine the timescale of the conditional
memory circuit. From Fig. 3.10 (b) we can get a rough idea of the characteristic time it
takes to flip the switch: The duration from the onset of the read signal to the point where
gene A and B have reached the same expression level is about 35 min when the switch is
flipped from the ON to the OFF state and approximately one hour for the reverse direction.

The toggle time

In order to find a quantitative measure for this ’toggle time’ one would naively look at
the time it takes to reach and cross the separatrix. However, in our system it is hard to
make such a generic definition because the separatrix as well as the fixed points of A and
B are themselves a function of time (compare Section 3.1.2 on p. 44). If the read pulse
is applied, the separatrix tilts until the control proteins reach the critical value at which
the stable and unstable fixed point annihilate and only one attractive fixed point is left.
Evidently, at this stage we cannot determine whether the switching event was successful
or not, since the system is not in the bistable regime. Thus, we have to release the read
pulse first and check after the decay of the control proteins, which state is reached. Here,
the crucial point is that the control proteins themselves have a certain dynamical timescale
that is not infinitely fast, but actually on the same order as the toggle switch.

We therefore define the toggle time Tt as the minimal read pulse duration that is needed
to flip successfully between the states. This observable is of relevance for the experimental
implementation since the read pulse duration is a controllable external parameter and also
in the in silico model it can easily be determined by an Interval Bisection routine.

Now that we have a reasonable measure for the response time of the toggle switch, we
want to investigate its determinants. Consider the switch to be in either one of the states,
such that one of the concentrations is high and the other one is low. If the appropriate
read pulse is applied (with either S high or low, opposite to the state of the switch),
the production of the gene that was in the ON-state will be blocked. However, for the
expression of the other gene to start, the proteins of the former ON state have to be
degraded in order to clear the promoter of its antagonist. Therefore we expect the protein
half-lives of A and B to be the major determinants of the toggle time. But also the
production rates of A and B as well as the binding thresholds of OA and OB are expected
to influence the toggle time substantially. The former defines the steady state protein level
of the ON-state and therefore the initial value of the exponential decay (XHI) and the
latter determines the protein level below which the production of the new gene takes off
(XLO). With the protein half-life T1/2 we expect a behavior of the following form

Tt ∼ T1/2 log2

(

XHI

XLO

)

. (3.21)

The logarithmic factor corresponds to the number of half-lives required for a exponential
decay from XHI to XLO.
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Figure 3.11: Toggle time as a function of the protein half-life for both switching directions. The
connecting lines are meant as a guide to the eye.

Fig. 3.11 shows the toggle time as a function of the protein half-life5 of A and B for
both switching directions, while the half-lives of R and S were not altered. It increases
for Tt > 10 min in both cases linearly with the protein half-life as expected. However,
for short protein half-lives it saturates and does not approach zero. This behavior can be
understood if we recall, that also the control proteins have a certain dynamics. It turns
out, that the offset in the toggle time for small protein half-lives is due to the time it takes
the control proteins to fully block the transcription of the active gene.

Another interesting aspect is the evident asymmetry between the both switching direc-
tions. For the half-life of 5 min used throughout this study, the toggle time for switching
from the ON- to the OFF-state is only 10.5 min, whereas the switching into the other
direction takes a read pulse duration of at least 36 min. We will investigate the origin of
this asymmetry in the next section, where the full state space dynamics is explored.

Full state space dynamics

Up to now only the dynamics of the total proteins At and Bt (Fig. 3.10 (b)) was shown.
But in order to fully understand the behavior of the circuit one has to scrutinize the
dynamics of all the components of the state vector, as done in Fig. 3.126. There, the
’information propagation’ through the network for both switching directions is compared:
the left column corresponds to the circuit’s answer upon a pulse of R for a low store signal
(switching from A ON to A OFF) and the right column shows the same for a high store
signal (switching from A OFF to A ON). In both cases the desired switching is successful,
but however, the answer upon a (R high, S low) pulse is considerably faster than the answer
upon the other pulse. This asymmetry will be investigated in the following.

5The increased half-life was compensated by increasing the transcription rates such that the steady
state levels remained constant.

6Not all different promoter states are shown, since they are not essential for the understanding of the
message.
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Figure 3.12: Information propagation through the network. The left column (a)-(g) shows the
response upon a read pulse at basal store signal level νmS

= 0.01 min−1 (with initial condition A
ON) whereas the right column (h)-(m) shows the same at high store signal level νmS

= 2 min−1

(with initial condition A OFF). For details see text.
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Switching from ON to OFF. In this and in the next paragraph all figure labels (a),(b),
etc. refer to Fig. 3.12. In (a) the time-dependent read and store signals are depicted and
the resulting abundances of functional control protein dimers is shown in (b). Within about
10 minutes after the start of the read pulse at t = 25 min they approach their steady states
and, subsequently also their respective operator sites become occupied. The occupancy of
OR2

of about 0.95 leads to a down-regulation of gene A’s effective transcription rate to 5%
of the unrepressed value and consequently, the transcript and protein abundance of gene
A decrease exponentially to their new steady state levels (d). The kink observed in the
mA- curve will become clear soon.

As soon as the dimer abundance A2 reaches the apparent binding threshold7 for the
TF-DNA binding K̂A = 4.1nM , the occupancy8 of OA drops below 0.5. At the same time
the promoter activitiy PB increases (e), allowing the synthesis of mB and B2 in (f). In (g)
one observes, that additional to the occupancy of OR2

, also the occupancy of OB increases
at t ≈ 50 min. This is the negative feedback mechanism of gene B on gene A and it further
decreases the promoter activity function PA (g). Without this feedback, the mA abundance
in (d) would saturate at a level of about 5% of its maximal value (due to the impact of
R2), which would be at mA ≈ 1 transcript. Only the additional feedback of gene B further
represses A’s transcription. This is the origin of the kink in the mA- curve in (d).

Switching from OFF to ON. For the reverse switching direction the time evolution
of the corresponding state variables is shown in (h)-(n). In contrast to the other direction,
one now observes in (i), that there is a substantial amount of R2 dimers formed, although
ideally only RS should be available (compare Section 3.1.2 on p. 44). Since the binding
threshold for R2 is lower (KOR2

= 1.6 nM) than the one for RS binding (KORS
= 5 nM)

this amount of R2 is sufficient to occupy OR2
significantly, see (j). Nevertheless, the high

occupancy of the proper operator site ORS results in a shut-off of transcription of gene
B as can be seen in (k). Although the subsequent drop in OB occupancy is visible in
(l), the promoter activity of gene A PA does only increase slowly while the read pulse is
present (until t = 100 min). This is due to the high and spurious occupation of OR2

in (j).
Consequently, the synthesis of gene A is hampered (m) and therefore the establishment of
the negative feedback of gene A back to gene B gets impeded.

Thus, the reason for the asymmetry of the two switching directions can be directly
related to the spurious overproduction of R2 dimers, while the store signal is ON. This leads
to a faulty repression of gene A’s synthesis and as a consequence, the negative feedback of
gene A on gene B is hampered.

7The apparent binding threshold is defined as the transcription factor concentration, at which the
promoter activity function equals 50% of its maximal value. Note that in the case of independent operator
binding (Eqs. (3.2) and (3.3) on p. 44) used here, the apparent binding threshold K̂ is not equal to the
equilibrium dissociation constant K, but is rather given by K̂ = (

√
2 − 1)K ≈ 0.41K.

8Here the occupancy of OA is taken to be the sum of all promoter states, where an A2 dimer is bound
to PB . The same definition is made for the occupancy of OB .



66 3. A conditional memory circuit

3.4.3 Stochastically driven memory loss

In Section 3.3.3 we discussed in the context of magnetic memory the spontaneous switching
of the magnetization in systems of only a few interacting spins. Similar events occur in
the conditional memory circuit, as can be seen in Fig. 3.10 during the first 150 minutes:
even though the read signal is at a basal level (νmR

= 0.01 min−1) a considerable fraction
of trajectories flips to the OFF state. Interestingly, when the system is in the OFF state
(t = 210min to t = 300min) only a very small percentage flips spontaneously to the ON
state. Why do we observe noise induced toggle events for molecule numbers as large as
about 350? What determines the spontaneous switching rates and what is their magnitude?
Where does the observed asymmetry stem from?

Lifetime estimation via two state model

Before these questions will be addressed, it is first shown how the spontaneous switching
rates are determined operationally. Theoretically, we are dealing with a stochastically
driven ‘first exit problem’ and the task is to compute the probability of getting from each
of the fixed points across the separatrix. This has been thoroughly investigated in the
work of Aurell and Sneppen [16], where they studied the spontaneous switching of the
λ-switch with a simplified Langevin-approach. Another recent study of Roma et al. [95]
estimated the transition-rates in a reduced model of the toggle switch model based on an
Eikonal approximation of the chemical master equation. However, both approaches rely
on effective models using only two state variables and heuristical sources of noise. The full
description of the conditional memory circuit by 24 state variables cannot be approached
on this way.

Another possibility is to run many simulations for a long time and from the outcome
one can estimate the probability of switching between the states. In the case of very rare
switching events this brute-force procedure fails due to computational limitations: Reliable
estimates of the rates require many events. Therefore extremely long simulation times
are required for rare switching events. Although there have been successful attempts to
simulate rare switching events very efficiently and accurately [10, 9], these algorithms were
not employed here. It turns out, that the brute-force method yields a sufficient number of
events for the switching rates under investigation.

Kramers reaction-rate theory. In order to develop an intuition for the stochastic
switching between the two states of the conditional memory circuit, it is instructive to
have a look at an analogous problem: In 1940 Kramers [59] developed a theory for chemical
reactions based on the model depicted in Fig. 3.13. He considered a classical particle with
mass M moving in an asymmetric double well potential U(y). y corresponds to the reaction
coordinate and the respective minima of the potential denote the substrate and product
states. In order to cross the potential barrier between both states a certain activation
energy is required. This energy is provided by the coupling of the system to a heat bath of
temperature T. The stochastic dynamics of the system is described by a Langevin equation
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Figure 3.13: Illustration of the stochastically driven switching between the states A ON and B
ON by a particle moving in an asymmetric double-well potential. This sketch serves only as a
qualitative visualization. We can not define a potential of the flux for the conditional memory
circuit.

with damping rate γ and a random force ξ(t)

M
d2y

dt2
= −dU

dy
− γM

dy

dt
+ ξ(t). (3.22)

The force ξ(t) denotes Gaussian white noise with zero mean, which fulfills the fluctuation-
dissipation theorem 〈ξ(t)ξ(t′)〉 = 2MγkBTδ(t − t′). The Fokker-Planck equation corre-
sponding to Eq. (3.22) can then be employed to calculate the stationary probability flux
from one potential well to the other and this is in turn proportional to the Kramers rate
for barrier crossing [59]. In the overdamped limit (large γ) the Kramers rate for getting
from B to A writes

kKramers
BA =

ω0ωb

2πγ
e−∆UBA/(kBT ), (3.23)

where the ω are the negative curvatures of the potential, ω0 = −M d2U(y0)
dy2 at the respective

minimum and ωb = −M d2U(yb)
dy2 at the barrier maximum. The pre-factor of the exponential

is often called the attempt frequency and the exponential itself is referred to as the Arrhenius
factor.

Dynamical two state model for lifetime estimation. Here a simple two state model
is presented, which is used to estimate the rates of switching back and forth between the
states from the simulated data. Although we cannot define a potential for the system9

[70], we want to visualize the stability of each of the states by a heuristic ’free energy’ as
shown in Fig. 3.13. Let kAB be the rate for hopping from A to B and kBA the rate for

9Even for the simple description in Eqs. (3.1) on p. 44 the flux is not curl-free and thus no potential
can be defined.
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hopping from B to A. Then we define the lifetime τX of a state X = A,B as the inverse
rate of exiting it:

τA :=
1

kAB

, τB :=
1

kBA

. (3.24)

If we think of an ensemble of N realizations of our stochastic process, i.e. N different
simulation runs, we can set up a rate equation for the average number of runs being e.g.
in the A ON state NA(t):

d

dt
NA(t) = kBANB(t) − kABNA(t) (3.25)

N = NA(t) + NB(t) = const (3.26)

⇒ d

dt
NA + (kBA + kAB)NA − kBAN = 0 . (3.27)

The solution is given by elementary integration

NA(t) = N
kBA

kBA + kAB

+ ce−(kBA+kAB)t (3.28)

with an integration constant c, which is determined by the initial conditions. If all runs
are initialized e.g. in the A ON state, we have

NA(t) = N

(

kBA + kABe−(kBA+kAB)t

kBA + kAB

)

(3.29)

NB(t) = N − NA(t) . (3.30)

Lifetime estimation. In order to estimate the lifetime of the states A ON and A OFF,
50000 simulation runs were initialized in the respective state. Analogous to Fig. 3.10 the
time evolution of these trajectories was recorded and thereby the probability densities
n(Atot, t) and n(Btot, t) of the total protein concentrations could be estimated as a function
of time. In Fig. 3.14 the A ON state was initialized and the resulting probability density
of gene A n(Atot, t) is shown over 280 hours. From this the time dependent number of
simulation runs in the A OFF state could be defined as

NB(t) =

∫ Asep

0

n(A, t)dA , (3.31)

where Asep = 75 molecules is the approximate location of the high-dimensional separatrix
projected onto the one dimensional A-axis. However, it turns out that the exact value
of Asep does not influence our results dramatically, because the vicinity of the separatrix
is populated sparsely anyway. Finally, by fitting the theoretical prediction of Eq. (3.30)
to the results from Eq. (3.31) one can determine the rates kAB and kBA and thereby the
lifetimes τA and τB.
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5000 simulation runs) is the basis of the lifetime estimation. The color codes for the number n
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number of trajectories in the (A OFF, B ON) state (which assumed to correspond to an interval
of 0 to 75 proteins of A) was measured as a function of time (bottom) and fitted to the theoretical
prediction of Eq. (3.30), see text.
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τA R absent R basal

S absent (73.01 ± 0.03) h
S basal (73.01 ± 0.03) h (37.71 ± 0.015)h
S high (73.01 ± 0.03) h (100.67 ± 0.13)h

τB R absent R basal

S absent (2.27 ± 0.05) 104h
S basal (2.27 ± 0.05) 104h (1.85 ± 0.07) 104h
S high (2.27 ± 0.05) 104h (614.3 ± 1.6)h

Table 3.3: Top: lifetime of state A ON under different amounts of the control proteins; Bottom:

the same for state A OFF; errors were obtained from the asymptotic standard errors of the
parameter fits: for the state A ON the relative errors were smaller than 10−3. The basal values
of R and S correspond to transcription rates of νmR

= νmS
= 0.01/min and the S HIGH value

to νmS
= 2/min.

The lifetimes depend on the basal level of the control proteins

Table 3.3 summarizes the results of the described procedure for different values of the
control proteins. We make three findings: first, in the absence of the read signal the state
A OFF is about 2 orders of magnitude more stable than the state A ON. This is based
on the asymmetry in the parameters: LacI (protein B) has a slightly higher dimerization
affinity (equilibrium biased to the dimer form) as well as a higher operator affinity (more
dimers bound to the operator) than TetR. At equal transcription rates of both proteins their
average levels are equally high, but due to the mentioned differences in their dimerization-
and binding affinities the repression of TetR by LacI is stronger than the repression of
LacI by TetR. Therefore the state with LacI ON (B ON), is more stable than the other
state. In other words the heuristic ’potential energy’ has two minima of different depth,
corresponding to one globally stable fixed point (A OFF) and one locally stable fixed point
(A ON), as depicted in Fig. 3.13.

The second observation is, that the lifetime of both states depends on the control
protein abundance, as summarized in Table 3.3. The addition of basal levels of R and S
(νmR

= νmS
= 0.01/min) destabilizes state A and stabilizes state B. If we recall that the

control proteins tilt the separatrix towards one of the axes, it is clear that the probability
of one of the states to cross the separatrix increases, while the probability of the other one
decreases. This qualitative description also explains the increase of state A’s lifetime if we
add R at basal and S at HIGH amounts (νmR

= 0.01/min, νmS
= 2/min): the separatrix

is tilted towards the B axis and the probability of state A to cross the barrier decreases. In
the ’free energy’ analogy the addition of different amounts of control proteins distorts the
energy landscape, such that the depth of the minima and the height of the barrier can be
regulated. Note that the control proteins are at basal synthesis rates themselves random
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Figure 3.15: The lifetime of the states A ON (a) and B ON (b) are shown as a function of the
protein half-life (the degradation rates of proteins A and B were altered simultaneously while
their translation rates were adjusted to match a constant burst factor of 10 [recall: b =

νp

λm
]).

The lifetime of the state A ON (c) and B ON (d) as a function of the burst factor. The mRNA
half-life was kept constant (3 min) while the translation rate νp was altered in order to change
the burst factor. At the same time we adjusted the transcription rate νmi

in order to keep the
average protein level, which is proportional to

νmi
νp

λm
= νmi

· b, at a constant value.

variables and thus they generate a heavily fluctuating potential-landscape.
The third and concluding remark is that, although we find a certain asymmetry in the

lifetimes, even the shortest lifetime of around 40 hours is sufficiently long to fulfill the
requirements of persistent memory.

Influence of the shape of noise

In addition to the ’potential-landscape’, also the size and the frequency of the random
events are crucial for the stochastically driven barrier crossing [118].

Burst factor. In the analogy to Kramers’ model, the size of the random events corre-
sponds to the temperature of the heat bath. Since the major determinant of the size of the
random events is expected to be the burst factor b, a high temperature would correspond
in this picture to a genetic circuit with a bursty protein synthesis. Recall that the burst
factor b is defined as the average number of proteins synthesized from one mRNA. The
simulated dependence of the lifetime on b is shown in Fig. 3.15 (c) and (d) for both states.
We observe a monotonic decrease of the lifetimes with increasing burst factor. This is
analogous to increasing barrier crossing rates at high temperatures. In order to verify the
correspondence between burst factor and temperature, it was checked whether the depen-
dence of the Kramers rate on temperature could predict the dependence of the lifetimes
on the burst factor. Since the fluctuation-dissipation theorem imposes a dependence of the
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friction coefficient on temperature, γ ∼ T−1, the Kramers rate suggests a dependence of
the lifetime on the burst factor b of the following form

τ(b) =
αeβ/b

b
, (3.32)

with the fit-parameters α and β. Fits of Eq. (3.32) to the data are shown in Fig. 3.15 (c) and
(d) and the agreement seems plausible . However, this result should not be over-interpreted
and serves mainly as a rough explanation of the behavior shown in Fig. 3.15 (c) and (d).

Protein degradation rate. As we saw in Section 3.4.2, the timescale of the circuit to
react to environmental changes in the parameters, which are here the transcription rates
of R and S, is determined by the protein half-life. This suggests that the timescale of
the spontaneous fluctuations is determined by the same quantity as well. It is therefore
reasonable to assume, that the attempt frequency entering the Kramers rate in Eq. (3.23)
is proportional to the degradation rate. Thus the lifetime, which is the inverse Kramers
rate, is expected to depend linearly on the protein half-life given by the inverse degradation
rate.

Indeed, as shown in Fig. 3.15 (a), this is precisely the case10: The longer the half-life is,
the slower is the timescale of the fluctuations and thus less attempts to cross the potential
barrier are made. Fig. 3.15 (b) shows the same for state A OFF and although the relative
errors are immense11, the general linear trend of increasing lifetimes can be verified as
well. This effect of the protein half-life on the frequency of the fluctuations was confirmed
recently by single-cell fluorescence microscopy [17, 35]: an increased degradation rate leads
to a shift in the power spectrum to higher frequencies.

In summary, the lifetimes of states A ON and A OFF are significantly longer than the
the time it takes to address the memory (given by the toggle time). The asymmetry in the
lifetimes stems from the intrinsic parameter asymmetries of TetR and LacI. Additionally
the basal levels of R and S bias the ’potential-landscape’ such that the stability of the
states can be altered. Furthermore higher magnitudes and frequencies of the fluctuations
destabilize both states, thus leading to an increased stochastically driven barrier crossing.
These quantities are accessible by tuning the burst factor and the protein degradation
rates, respectively.

While the spontaneous switching has been characterized in different types of toggle
switches before, we now want to investigate a new feature of the conditional memory
circuit.

10The transcription rates were adjusted such that the average protein abundance remained constant.
11These huge errors stem from the fact, that the extremely low switching rates generate in these cases

only a low number of switching events. However, with a lifetime of more that 104 hours, the precise values
do not matter for the current study, since from an experimental point of view, they are close to infinity.
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Figure 3.16: The false negative error fraction as a function of the read pulse duration for
switching (a) into the OFF state and (b) into the ON state. The circles indicate data from
stochastic simulations and the solid lines indicate the toggle time, which is the minimum read
pulse duration for switching in the absence of noise. The interpolating dashed lines are only
guides to the eye.

3.4.4 Noise induced toggle errors

The new aspect of the conditional memory circuit is that biochemical noise leads to two
additional types of noise-induced errors: During a read pulse (high R), the switch may
not flip even though it is triggered to do so (false negative), or the switch may flip, even
though it was already in the correct state (false positive).

False negatives

False negative errors are visible in Figs. 3.10 (c) and (d) on p. 61 at t ≈ 400 min right
after the second read pulse, where a certain fraction of the Atot density remains in the low
state, while the same fraction of the Btot density erroneously ends up in the high state. In
contrast, for the inverse switching direction (after the first read pulse), we observe hardly
any false negatives. Fig. 3.16 shows the fraction of false negatives as a function of the read
pulse duration for both switching directions12. We observe that the error fraction decreases
rapidly with increasing read pulse duration. For long read pulses, it drops below 0.5 %
when switching OFF and below 4 % when switching ON. Note however that the timescales
of Fig. 3.16 (a) and (b) differ by a factor of 3. This asymmetry is equally reflected in the
deterministic ‘toggle times’ (solid lines in Fig. 3.16), as discussed in Section 3.4.2.

The origin of the asymmetry in the false negatives is again the asymmetry of the
regulatory front end: The spurious overproduction of R2 during the presence of the store
signal leads to a repression of gene A, which in turn only slowly approaches the value
required for a stable establishment of the negative feedback loop. Thus the switching from
A OFF to A ON (driven by this ’imperfect’ read pulse) demands a much longer read pulse

12We allow for a relaxation time of 60 min after the end of the read pulse and then determine the error
fraction. Since the rate of spontaneous flipping is very low, the result depends only very weakly on the
precise value of the relaxation time, provided it is not too short.
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Figure 3.17: Estimation of the false positives for a read pulse duration of 75 minutes. Even
though the read pulse is applied while S is HI (a) and all trajectories are initially in the correct
state, some of the them flip after the end of the read pulse erroneously to the state A OFF. The
densities were estimated from 50000 repeated simulation runs and the color codes for the number
of trajectories in each bin.

duration than the reverse direction for the same number of false negatives.

False positives

The protocol depicted in Fig. 3.10 (a) did not test for false positives: The read pulse was
only applied, when the present store signal was contrary to the state of the system, i.e. R
was turned ON when A was high AND S was low (at t = 150 min) or when A was low AND
S was high (at t = 300 min). Therefore another protocol had to be used to quantify the
percentage of false positives. As an example the estimation for the A ON state is shown in
Fig. 3.17: The circuit was prepared in the ON state and while the store signal S was ON
as well, a read pulse was applied for a defined duration. The false positives were measured
60 minutes after the end of the read signal, analogously to the false negatives.

For the A ON state the dependency of the false positives on the read pulse duration
is depicted in Fig. 3.18. With increasing read pulse duration the fraction of false positives
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Figure 3.18: False positives as a function of the read pulse duration TR for the state A ON.
Even though the read pulse is applied while S is high (and A is supposed to be switched ON),
for long pulses approximately 4 % of the trajectories switch to the A OFF state. The results
were generated by 50000 simulation runs, all initialized in the state A ON, with a read pulse of
νR = 1/min applied from t = 0min to t = TR (compare Fig. 3.17).

increases until it eventually saturates at about 3.7 % and a read pulse length of 150 min.
For the reverse direction the fraction of false positives is very small (< 0.1 %) and therefore
not shown here. The explanation for the false positives is again given by the asymmetric
front end: During the presence of the read pulse (0-75 min) there is a small amount
of spuriously produced R2 homodimers although ideally only heterodimers RS should be
abundant and these R2 dimers repress the transcription of A. Therefore one observes a
down-regulation of the density of A in Fig. 3.17 and the lower the amount of A at the end
of the read signal becomes, the more likely it is to relax to the state A OFF instead of
A ON. This explains the time dependence of the false positives in Fig. 3.18: The longer
the read pulse is applied, the lower drops the average abundance of A. Therefore the false
positives increase with read pulse duration. They saturate at a level, that is determined
by the steady state distribution of Atot in the presence of the read signal. This distribution
is in turn determined by the amount of overproduced R2.

Note that the resulting curve in Fig. 3.18 does not approach zero for a read pulse length
of 0 minutes, since there is a noticeable amount of spontaneous flips during the relaxation
time of 60 min after the end of the read pulse. However, this systematic overestimation
of the false positives is approximately the same for all measured read pulse durations and
thus the general trend of a saturation at TR ≈ 150 min is not affected by this.

For the reverse direction (A OFF → A ON) under the control scenario (R HI, S LO)
almost no false positives (< 0.1%) could be detected. This makes perfect sense, since in
this case no spurious formation of RS is possible and thus gene B cannot be suppressed.
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3.5 Adaptation of the circuit’s sensitivity to the en-

vironment

Above, the duration of the read signal was varied, while the concentrations for the high and
low levels of the R and S proteins were assumed to be given. However, when the conditional
memory circuit is embedded into the cellular environment, it must be adjustable to work
with a variety of input signals, the level of which depends on the specific context: in one
situation an S concentration of 50 molecules per cell might correspond to the ON state of a
signaling process, while in another situation this could be the basal level in the OFF state.

Set points. For a given set of circuit parameters, there exists a certain threshold concen-
tration (or “set point”) for S, below which the memory flips to the OFF state and above
which it flips to the ON state when a read signal is given. Similarly, there is a set point
for the read signal, above which the circuit reads the input and below which it ignores the
input. These set points are depicted in Fig. 3.19.

For the circuit design to be versatile, the set points must be programmable, so that they
can be adjusted to lie between the typical high and low levels of S and R, respectively.
For the proposed circuit design this can be achieved by exploiting the programmability
of operator binding affinities through simple changes in their nucleotide sequence [47]:
the response of the toggle switch of Fig. 3.3 (top) on p. 47 to the regulatory front end
(bottom) critically depends on the binding thresholds of the R2 and RS binding sites.
Altering these binding thresholds corresponds to an effective increase or decrease of the R2

and RS abundances. Therefore these mutations lead to shifts of the red and blue ”control
curves” in the state diagram in Fig. 3.19. If for instance the affinity of the R2 binding site
OR2

was increased, less R2 would be sufficient to generate the same degree of repression
of gene A as before. Thus, the curves depicted in Fig. 3.19 would be collectively shifted
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Figure 3.20: Tuning the set points as defined in Fig. 3.19 by mutations in the R2 (a,b) and RS
(c,d) binding sites. Similarly, there is a set point R∗ for the read signal, above which the circuit
will read the input and below which it will ignore the input. There exist two set points R∗: one
for reading S HI (blue solid lines) and one for reading S LO (blue dashed lines).

to the left. Evidently, these shifts affect the set points, since the intersection points with
the phase borders will vary. An alternative approach to adapt the circuits sensitivity to
environmental signal amplitudes would be the adjustment of the underlying phase diagram
in Fig. 3.19. Clearly this also leads to shifts in the set points, as now the phase borders
are shifted themselves. In the following we will merely investigate the effect of the R2 and
RS binding sites, keeping in mind that the other option exists as well.

In Fig. 3.20 (a) and (b) the binding threshold for the R2 binding site is varied from
0.1 nM to 10 nM and we observe, that all set points can be tuned over 1-2 orders of
magnitude. Variation of the binding threshold for the RS binding site in (c) and (d) leads
to similar results. Note, that in both cases one of the R∗ set points is almost unaffected by
the mutation. This is due to the fact, that e.g. in (b) the mutation of the R2 binding site
has no effect on the binding of RS and thus the case where S is high and thereby mainly
RS is formed (solid line) is not affected. The same (with exchanged roles of R2 and RS)
holds for the opposite case in(d), where S LO is read (dashed line). The two large dots
in all plots indicate the high and low level of the total concentrations of R or S (ordinate)
and the binding thresholds (abscissa) used for all simulations reported here. For proper
functionality of the circuit, the setpoints must always be adjusted to lie between these high
and low levels of R and S, which are usually determined by the environment. Thus, one
expects that the circuit can easily be adapted to work under a wide range of conditions.
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3.6 Stochastic average vs. deterministic result

From Fig. 3.10 (b) on p. 61 one gets the impression that the deterministic reaction rate
equations (RREs) mirror the average of the stochastic simulations. But already the mere
view at the probability densities of the total protein abundances in Fig. 3.10 (c) and (d)
suggests, that this is not the case.

In Fig. 3.21 the results of the RREs are plotted together with the averages of the time
dependent probability densities of Atot and Btot, 〈Atot〉 and 〈Btot〉. It is clearly visible,
that already during the first 150 min, where no read signal is present, the spontaneous
switching leads to significant deviations between both results. The divergence becomes
much more pronounced after the end of the second read pulse (t = 360 min), when many
false negatives are found.
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Figure 3.21: Comparison of the results obtained by the deterministic reaction rate equations
(solid lines) with the averages of the stochastic simulations (dashed lines). The control protocol
as well as the probability densities used for the averaging are the same as in Fig. 3.10 on p. 61.

This reveals what was already mentioned briefly in Section 2.4.3: as soon as we are
dealing with nonlinear chemical reaction systems, the assumptions leading to the RREs
loose their validity. Especially when the involved molecule numbers become low or the
system gets close to a branching point (as is the case during the second read pulse) the
differences are most significant.

Nevertheless we saw in the previous sections, that the RREs prove to be very useful
in many circumstances and should be considered as the first approach to a new system.
Deterministic stability analysis as well as phase space dynamics yield the indispensable
guidance necessary for the examination of stochastic phenomena.
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3.7 Model reduction

In this section the connection between the full model, consisting of 24 state variables, and
the reduced description in Eqs. (3.1) shall be elucidated. First, the relationship between
the dynamical model of transcriptional regulation by six distinct promoter states and the
equilibrium promoter activity function in Eqs. (3.2) and (3.3) is derived. Then it is shown
which additional equilibrium assumptions have to be made in order to further reduce the
degrees of freedom. Last, the steady state characteristics and the dynamics of the full and
the reduced model are juxtaposed.

3.7.1 Adiabatic approximation and promoter activity function

In the current approach the dynamics of transcriptional regulation is modeled by six dis-
tinct promoter states (compare Fig. 3.4 on p.48), which is described by the RREs in
Eqs. (A.89) - (A.101). In order to compare this with the promoter activity function (PAF)
in Eqs. (3.2) and (3.3), one assumes the binding and unbinding reactions to be in equi-
librium for any given number of TFs (adiabatic approximation, [45, 114]) and calculates
the fraction of free promoter sites. This fraction corresponds to the equilibrium promoter
activity function. However, calculating the equilibrium of Eqs. (A.89) - (A.101) results in
expressions, which extend to three MATHEMATICA notebook lines. Much more concise
expressions can be derived with with an analogous approach, as shown in the following.
Plotting both solutions yields identical results.

In order to derive an expression for the probability of the promoter being in an unoc-
cupied state, we consider the following: The three operator sites on each of the promoters
can be described by their occupancy number n1, n2, n3. For the remainder of this section
we will focus on the promoter PA, since the problem is symmetric in A and B. n1 is the
occupancy for OB1

, n2 for OB2
and n3 for OR2

. The probability for a single operator
being unoccupied is (1 − ni) and therefore the probability for the entire promoter being
unoccupied writes

PA =
3

∏

i=1

(1 − ni) (3.33)

Now we calculate the occupancy numbers of the operators. Assuming that the total abun-
dance of the two species of TFs (e.g. B2 and RS) in the cell are constant, the molecule
number conservation writes

B2 = nB2cell
+ n1 + n2 (3.34)

R2 = nR2cell
+ n3, (3.35)

where the species with the cell index correspond to the number of dimers in the cellular cy-
toplasm, i.e. not bound to the operators. The dynamical behavior is under the assumption
of identical operator sites OB1

and OB2
with k+

OB1

= k+
OB2

= k+
OB

and k−
OB1

= k−
OB2

= k−
OB
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described by 4 ODE’s

∂tn1 = k+
OB

nB2cell
(1 − n1) − k−

OB
n1 (3.36)

∂tn2 = k+
OB

nB2cell
(1 − n2) − k−

OB
n2 (3.37)

∂tn3 = k+
OR2

nR2cell
(1 − n3) − k−

OR2

n3 (3.38)

∂tnB2cell
= k−

B(n1 + n2) − k+
BnB2cell

(2 − n1 − n2). (3.39)

With the molecule number conservation we find for the steady state solution, that n1 =
n2 = n and

n =
1

4

(

2 + KOB
+ B2 −

√

(2 + KOB
+ B2)2 − 8 B2

)

(3.40)

n3 =
1

2

(

1 + KOR2
+ R2 −

√

(1 + KOR2
+ R2)2 − 4 R2

)

. (3.41)

One should not be confused by the dimensions of the single terms in the solution, since the
total number of each operator site is set to 1 and its explicit dimension was suppressed.
The probability for an unoccupied promoter thus reads

PA(B2, R2) =
1

32

(

2 − KOB
− B2 +

√

(2 + KOB
+ B2)2 − 8 B2

)2

(3.42)

×
(

1 − KOR2
− R2 +

√

(1 + KOR2
+ R2)2 − 4 R2

)

and similarly for PB

PB(A2, RS) =
1

32

(

2 − KOA
− A2 +

√

(2 + KOA
+ A2)2 − 8 A2

)2

(3.43)

×
(

1 − KORS
− RS +

√

(1 + KORS
+ RS)2 − 4 RS

)

.

This form of the promoter activity function looks slightly more complicated than the
previously used expressions (Eqs. (3.2) and (3.3)), which were based on purely thermody-
namical considerations

PA(B2, R2) =
(

1 +
B2

KOB

)−2(

1 +
R2

KOR2

)−1

PB(A2, RS) =
(

1 +
A2

KOA

)−2(

1 +
RS

KORS

)−1

.

The difference between these functions stems from the fact, that the former explicitly takes
into account, that the binding of one TF to an operator site reduces the number of TF’s
in solution. Therefore the binding of a second TF while one is bound already is less likely
than in the case, where the TFs in solution is kept constant. This is explicitly assumed in
the derivation of the latter expression. This effect is most pronounced if the TF number
is small (data not shown). In Section 3.7.3 the circuit behavior using these two different
forms of the PAF is compared.
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3.7.2 Rapid equilibrium assumptions

Similar to the adiabatic approximation for the TF-DNA binding one can also assume most
of the other cellular processes as equilibrated. The remaining slow degrees of freedom are
the total protein abundances Atot and Btot [30]. Such an approximation is only valid, if
the timescales really separate, and as we will see in the next section this is not completely
the case for the parameters under investigation.

First, we focus on the toggle switch and do not explicitly consider the time evolution
of the control proteins R and S. Let’s consider R2 and RS as external control parameters
of the toggle switch, the levels of which are governed by Eqs. (3.17). The time evolution
of the total protein number, here only shown exemplarily for Atot, is given by

d

dt
Atot =

d

dt

(

A + 2 A2 + 2 PB • A2 + 2 PB • A2 • RS

+4 PB • A2 • A2 + 4 PB • A2 • A2 • RS
)

= νAmA − λAA − 2λA2
A2 . (3.44)

By assuming to have no cooperative stability (λA = λA2
= λp) and by neglecting the TFs

bound to their operator sites in the limit of large protein abundances (Atot ≈ A + 2A2) we
can write

d

dt
Atot = νpmA − λpAtot .

If further the relaxation time of mRNA is much faster than the one of the proteins
(λm >> λp), mRNA synthesis and decay can be considered to be equilibrated for any
TF concentration and we have, now for both genes:

d

dt
Atot =

νAνmA

λmA

PA(B2, R2) − λAAtot (3.45)

d

dt
Btot =

νBνmB

λmB

PB(A2, RS) − λBBtot . (3.46)

The only remaining task is to express the dimers in the promoter activity function by the
total protein concentrations. This is achieved by assuming that dimerization equilibrates
prior to synthesis and degradation and the result is

A2 =
Atot

2
+

K̃A −
√

K̃2
A + 8 K̃A Atot

8
(3.47)

B2 =
Btot

2
+

K̃B −
√

K̃2
B + 8 K̃B Btot

8
, (3.48)

with the in vivo dimerization constants K̃A =
k−

A
+λA2

k+

A

and K̃B =
k−

B
+λB2

k+

B

[29]. Together

with the steady state relations for the control dimers R2 and RS of Eqs. (3.17) the rate
equations in Eqs. (3.45) and (3.46) can be closed and related to the input signals νmR

and
νmS

.
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3.7.3 Comparison of the full with the reduced model

How do the assumptions made in the last two sections influence the steady state and
dynamical behavior of the models? Here we juxtapose

1. the full model,

2. the reduced model in Eqs. (3.1) on p. 44 with the ’exact’ promoter activity function
in Eqs. (3.42) and (3.43) on p. 80 and

3. the reduced model with the simple promoter activity function in Eqs. (3.2) and (3.3).

Fig. 3.22 (a) displays the phase borders of the state diagram similar to Fig. 3.6 for all
three models. Here only the model 3) shows minor deviations of the phase border between
bistable and monostable B regime. The good agreement can easily be understood, if we
recall that the assumptions leading to the reduced models 2) and 3) were primarily steady
state assumptions. Therefore it is just reasonable that their steady state behavior is close
to identical.
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Figure 3.22: In (a) the phase borders of the state diagram similar to Fig. 3.6 on p. 54 are
displayed for the three models, see labels. The dynamics of the models are juxtaposed in (b).

In Fig. 3.22 (b) the dynamical behavior of all models under the same control protocol as
in Fig. 3.10 (a) is presented. The reduced models 2) and 3) react considerably faster with
respect to the onset of the read pulse than the full model. Again, this is not surprising:
with the elimination of all ’fast’ variables from the full model, many processes that actually
require at least some time to equilibrate are assumed to happen instantaneously. By
comparing the half-lives of mRNAs (3 minutes) and proteins (5 minutes) it becomes clear,
that the assumption of mRNA being the fast variable and proteins being the slow variables
is somewhat crude. It turns out that the elimination of the mRNA dynamics is indeed the
major reason for the delay between the reduced and the full model.



Chapter 4

Discussion and outlook

Discussion

In this work, the design of a simple genetic circuit to implement conditional memory in
bacteria is described, and various properties of this circuit are characterized theoretically.
The circuit is based on the genetic toggle switch which has been demonstrated to function
in vivo in E. coli [46, 72], and contains an additional control module involving two tran-
scription factors R and S. The additional layer of control dictates the condition (level of R)
by which transient information (level of S) may be stored in the toggle switch. Conditional
memory would then enable organisms to manipulate information “collected” under dif-
ferent conditions at different times. Such capabilities may provide selective advantages to
organisms in time varying environments. For instance, under repeated cycles of famine and
feast, bacteria which can remember certain environmental trait during feast may formulate
better survival strategies at the time of famine [75].

In the proposed design, the input signals were taken to be the transcriptional rates of
R and S. This provides a versatile interface of the circuit to other cellular processes. For
instance, the transcription of R or S may be driven by the output of a natural or synthetic
two-component signaling system that senses an environmental trait, e.g. the light intensity
[77] or density of bacteria [19]. Alternatively it may be driven by metabolic or growth
regulators that signal the internal state of the cell.

According to the presented design and analysis, one expects the circuit to be able
to respond rapidly to variations in input signals, on a time scale as short as 30 min.
This response time scale is dictated by the half-life of the regulatory proteins which was
shortened in this design by the use of protein degradation tags [67]. Despite the short basic
time scale, this analysis suggests that a broad parameter regime can be found for which the
memory is stable to stochastic fluctuations in gene expression for many hours. It turned
out that the stability of the states depends on the basal levels of R and S - an aspect where
stochastic resonance might be important, see next paragraph. It was also shown that the
circuit can easily be adjusted to function with a broad range of input signal amplitudes,
e.g. the transcription rates for R and S, by mutations in the R2 and RS binding sites.

This study suggests that conditional memory such as that envisaged by the presented
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design should be implementable in bacteria using typical protein regulators and transcrip-
tional control mechanisms. The basic toggle switch involves the mutual repression of two
simple repressor proteins for which the only property demanded is specific binding to DNA.
The control module involves only adding one operator site each to repress the two pro-
moters of the toggle switch, for homodimer or heterodimer of the transcription factors R
and S. The analysis was performed for parameters associated with a specific choice for the
R/S pair, the 434 repressor and its mutant 434R[α3(P22R)], because their properties had
already been characterized quantitatively [61]. However, it is believed that such pairs may
be readily generated by modifying known bacterial transcription factors: As demonstrated
by Dmitrova et al. [39], not only can DNA binding domains of the transcription factors
be altered to enable different binding specificities, the dimerization domain can also be
manipulated to enable the desired homo- and hetero-dimerization required by this design
for the conditional memory circuit.

From a technical point of view this work shows, that the full description of the genetic
circuit by a vast number of state variables can be reduced by rapid equilibrium assumptions.
The resulting simple model accounts for the dynamics of the remaining slow degrees of
freedom, which are here the total protein abundances. It could be shown, that the steady
state characteristics of the simple model almost perfectly resembles the full model, whereas
the dynamics differ significantly. This suggested, that the major assumption of mRNA
equilibrium was not justified, since the timescales of mRNA and protein dynamics are
similar. Thus, whenever a simple model is used, one has to be aware that it relies on
adiabatic approximations and the separation of timescales has to be ensured.

Outlook

This work is intended to stimulate the construction and experimental characterization of
the conditional memory circuit. It represents a concrete example for a nontrivial sequential
logic circuit, the implementation of which would be a milestone in synthetic biology and
a necessary first step for the construction of circuits with more advanced functions, e.g.
“genetic counters”.

It might be used as a diagnostic tool as well, capturing the transient state of single cells
under a given condition. If for instance the store signal would be coupled to some cell-cell
signaling messenger, bacteria equipped with the conditional memory circuit could act as
”agent-cells”, locally detecting the ”state” of other cells only if triggered to do so by an
external read signal which could be e.g. a pulse of light.

The conditional memory circuit might also serve as a perfect model system for the study
of stochastic resonance in gene regulatory circuits. Quoting Hänggi, ”(...) Stochastic res-
onance refers to a situation where the mere addition of random noise to the dynamics im-
proves a system’s sensitivity to discriminate weak information-carrying signals.” [58]. The
mechanism underlying stochastic resonance, can be exemplified by using the ”potential-
picture” of the conditional memory circuit (see Section 3.4.3). It was illustrated, that the
effect of the control proteins R and S could be interpreted as a distortion of the ”double-well
potential” of the bare toggle switch. At basal levels of R we saw, that the spontaneous
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Figure 4.1: Schematic mechanism of stochastic resonance, for details see text. The illustration
was taken from [58].

switching rate from one state to the other depends on the level of S, corresponding to
varying depths of the potential minima. Thus a weakly oscillating store signal generates
a periodically distorted energy landscape as depicted in Fig. 4.1. In this case ”(...) the
presence of an optimal dose of noise (so that the average stochastic escape time approx-
imately equals half the period of the signal) will statistically induce synchronized hopping
events between the two locally stable states.” [58].

Through the regulation of the basal read signal strength the impact of S on the toggle
switch could be readily tuned. This would in turn allow for a gradual activation of the
stochastic resonance effect. Such a versatile ”detection-tool” for small signal amplitudes
would also permit the adjustment to different periods of the external signal. Due to the read
signal dependence of the circuit’s spontaneous switching time also the optimal frequency
for stochastic resonance would be shifted.
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Appendix A

Model details

A.1 List of elementary chemical reactions

Degradation of mRNAs, protein monomers and dimers:

R1 : mA
λm−→ ø (A.1)

R2 : mB
λm−→ ø (A.2)

R3 : A
λp
−→ ø (A.3)

R4 : B
λp
−→ ø (A.4)

R5 : A2

λp
−→ ø (A.5)

R6 : B2

λp
−→ ø (A.6)

Protein dimerization:

R7 : A + A
k
+

A−→ A2 (A.7)

R8 : B + B
k
+

B−→ B2 (A.8)

R9 : R + R
k
+

R2−→ R2 (A.9)

R10 : R + S
k
+

RS−→ RS (A.10)

R11 : A2

k
−

A−→ A + A (A.11)

R12 : B2

k
−

B−→ B + B (A.12)

R13 : R2

k
−

R2−→ R + R (A.13)

R14 : RS
k
−

RS−→ R + S (A.14)
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TF-Operator binding and unbinding:

R15 : PA + B2

2 k
+

OB−→ PA · B2 (A.15)

R16 : PA + R2

k
+

OR2−→ PA · R2 (A.16)

R17 : PB + A2

2 k
+

OA−→ PB · A2 (A.17)

R18 : PB + R2

k
+

OR2−→ PB · R2 (A.18)

R19 : PA · B2 + B2

k
+

OB−→ PA · B2 · B2 (A.19)

R20 : PA · B2 + R2

k
+

OR2−→ PA · B2 · R2 (A.20)

R21 : PA · R2 + B2

2 k
+

OB−→ PA · B2 · R2 (A.21)

R22 : PB · A2 + A2

k
+

OA−→ PB · A2 · A2 (A.22)

R23 : PB · A2 + RS
k
+

ORS−→ PB · A2 · RS (A.23)

R24 : PB · RS + A2

2 k
+

OA−→ PB · A2 · RS (A.24)

R25 : PA · B2 · B2 + R2

k
+

OR2−→ PA · B2 · B2 · R2 (A.25)

R26 : PA · B2 · R2 + B2

k
+

OB−→ PA · B2 · B2 · R2 (A.26)

R27 : PB · A2 · A2 + RS
k+ORS−→ PB · A2 · A2 · RS (A.27)

R28 : PB · A2 · RS + A2

k
+

OA−→ PB · A2 · A2 · RS (A.28)

R29 : PA · B2

k
−

OB−→ PA + B2 (A.29)

R30 : PA · R2

k
−

OR2−→ PA + R2 (A.30)

R31 : PB · A2

k
−

OA−→ PB + A2 (A.31)

R32 : PB · RS
k
−

ORS−→ PB + RS (A.32)

R33 : PA · B2 · B2

2 k
−

OB−→ PA · B2 + B2 (A.33)

R34 : PA · B2 · R2

k
−

OR2−→ PA · B2 + R2 (A.34)

R35 : PA · B2 · R2

k
−

OB−→ PA · R2 + B2 (A.35)

R36 : PB · A2 · A2

2 k
−

OA−→ PB · A2 + A2 (A.36)

R37 : PB · A2 · RS
k
−

ORS−→ PB · A2 + RS (A.37)

R38 : PB · A2 · RS
k
−

OA−→ PB · RS + A2 (A.38)

R39 : PA · B2 · B2 · R2

k
−

OR2−→ PA · B2 · B2 + R2 (A.39)

R40 : PA · B2 · B2 · R2

2 k
−

OB−→ PA · B2 · R2 + B2 (A.40)

R41 : PB · A2 · A2 · RS
k
−

ORS−→ PB · A2 · A2 + RS (A.41)

R42 : PB · A2 · A2 · RS
2 k

−

OA−→ PB · A2 · RS + A2 (A.42)
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Transcription and translation:

R43 : PA

νmA−→ PA + mA (A.43)

R44 : PB

νmB−→ PB + mB (A.44)

R45 : mA

νp
−→ mA + A (A.45)

R46 : mB

νp
−→ mB + B (A.46)

The regulatory front end:

R47 : PR

νmR−→ PR + mR (A.47)

R48 : PS

νmS−→ PS + mS (A.48)

R49 : mR

νp
−→ mR + R (A.49)

R50 : mS

νp
−→ mS + S (A.50)

R51 : mR
λm−→ ø (A.51)

R52 : mS
λm−→ ø (A.52)

R53 : R
λp
−→ ø (A.53)

R54 : S
λp
−→ ø (A.54)

R55 : R2

λp
−→ ø (A.55)

R56 : RS
λp
−→ ø (A.56)

The numbered chemical species Si are:

S1 : A (A.57)

S2 : A2 (A.58)

S3 : B (A.59)

S4 : B2 (A.60)

S5 : R (A.61)

S6 : S (A.62)

S7 : R2 (A.63)

S8 : RS (A.64)

S9 : PA (A.65)

S10 : PA · B2 (A.66)

S11 : PA · R2 (A.67)

S12 : PA · B2 · R2 (A.68)

S13 : PA · B2 · B2 (A.69)

S14 : PA · B2 · B2 · R2 (A.70)

S15 : PB (A.71)

S16 : PB · A2 (A.72)

S17 : PB · RS (A.73)

S18 : PB · A2 · RS (A.74)

S19 : PB · A2 · A2 (A.75)

S20 : PB · A2 · A2 · RS (A.76)

S21 : mA (A.77)

S22 : mB (A.78)

S23 : mR (A.79)

S24 : mS (A.80)
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A.2 Rate equations of the full model

dA

dt
= νpmA − 2k+

A
A2 + 2k−

A
A2 − λpA (A.81)

dA2

dt
= −λpA2 − k−

A
A2 − 2k+

OA
A2PB − k+

OA
A2PB • A2 − 2k+

OA
A2PB • RS (A.82)

−k+

OA
A2PB • A2 • RS + k+

A
A2 + k−

OA
PB • A2 + 2k−

OA
PB • A2 • A2

+k−

OA
PB • A2 • RS + 2k−

OA
PB • A2 • A2 • R2

dB

dt
= νpmB − 2k+

B
B2 + 2k−

B
B2 − λpB (A.83)

dB2

dt
= −λpB2 − k−

B
B2 − 2k+

OB
B2PA − k+

OB
B2PA • B2 − 2k+

OB
B2PA • R2 (A.84)

−k+

OB
B2PA • B2 • R2 + k+

B
B2 + k−

OB
PA • B2 + 2k−

OB
PA • B2 • B2

+k−

OB
PA • B2 • R2 + 2k−

OB
PA • B2 • B2 • RS

dR

dt
= −2k+

R2
R2 − k+

RS
R S − λpR + 2k−

R2
R2 + k−

RS
RS + νpmR (A.85)

dS

dt
= −k+

RS
R S − λpS + k−

RS
RS + νpmS (A.86)

dR2

dt
= −k−

R2
R2 − k+

OR2

R2PB − k+

OR2

R2PA • B2 − k+

OR2

R2PA • B2 • B2 − λpR2 (A.87)

+k+

R2
R2 + k−

OR2

PA • R2 + k−

OR2

PA • B2 • B2 + k−

OR2

PA • B2 • B2 • R2

dRS

dt
= −k−

RS
RS − k+

ORS
RSPA − k+

ORS
RSPB • A2 − k+

ORS
RSPB • A2 • A2 − λpRS (A.88)

+k+

RS
R S + k−

ORS
PB • RS + k+

ORS
PB • A2 • RS + k+

ORS
PB • A2 • A2 • RS

dPA

dt
= −2k+

OB
B2PA − k+

OR2

R2PA + k−

OB
PA • B2 + k−

OR2

PA • R2 (A.89)

dPA • B2

dt
= −k+

OB
B2PA • B2 − k+

OR2

R2PA • B2 − k−

OB
PA • B2 + k+

OB
B2PA (A.90)

+2k−

OB
PA • B2 • B2 + k+

OR2

PA • B2 • R2

dPA • R2

dt
= −k+

OB
B2PA • R2 − k−

OR2

PA • R2 + k+

OR2

R2PA + k−

OB
PA • B2 • R2 (A.91)

dPA • B2 • R2

dt
= −k+

OB
B2PA • B2 • R2 − k−

OB
PA • B2 • R2 − k−

OR2

PA • B2 • R2 (A.92)

+k+

OR2

R2PA • B2 + k+

OB
B2PA • R2 + 2k−

OB
PA • B2 • B2 • R2

dPA • B2 • B2

dt
= −k+

OR2

R2PA • B2 • B2 − 2k−

OB
PA • B2 • B2 + k+

OB
B2PA • B2 (A.93)

+k−

OR2

PA • B2 • B2 • R2

dPA • B2 • B2 • R2

dt
= −k−

OB
PA • B2 • B2 • R2 − k−

OR2

PA • B2 • B2 • R2 (A.94)

+k+

OR2

R2PA • B2 • B2 + k+

OB
B2PA • B2 • R2

dPB

dt
= −2k+

OA
A2PB − k+

ORS
RSPB + k−

OA
PB • A2 + k−

ORS
PB • RS (A.95)

dPB • A2

dt
= −k+

OA
A2PB • A2 − k+

ORS
RSPB • A2 − k−

OA
PB • A2 + 2k+

OA
A2PB (A.96)

+k−

OA
PB • A2 • A2 + k−

ORS
PB • A2 • RS

dPB • RS

dt
= −2k+

OA
A2PB • RS − k−

ORS
PB • RS + k+

ORS
RSPB + k−

OA
PB • A2 • RS (A.97)

dPB • A2 • RS

dt
= −k+

OA
A2PB • A2 • RS − k−

OA
PB • A2 • RS − k−

ORS
PB • A2 • RS (A.98)

+k+

ORS
RSPB • A2 + 2k+

OA
A2PB • RS + 2k−

OA
PB • A2 • A2 • RS
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dPB • A2 • A2

dt
= −k+

ORS
RSPB • A2 • A2 − 2k−

OA
PB • A2 • A2 + k+

OA
A2PB • A2 (A.99)

+k−

ORS
PB • A2 • A2 • RS

dPB • A2 • A2 • RS

dt
= −2k−

OA
PB • A2 • A2 • RS − k−

ORS
PB • A2 • A2 • RS (A.100)

+k+

ORS
RSPB • A2 • A2 + k+

OA
A2PB • A2 • RS

dmA

dt
= νmA

PA − λmmA (A.101)

dmB

dt
= νmB

PB − λmmB (A.102)

dmR

dt
= νmR

PR − λmmR (A.103)

dmS

dt
= νmS

PS − λmmS (A.104)
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Appendix B

A versatile implementation of the

stochastic simulation algorithm

Listing B.1: C Implementation of the stochastic simulation algorithm

1 #include <iostream>
2 #include <f stream>
3 #include <c s t d l i b >
4 #include <s t r i ng >
5 #include <cmath>
6 #include <sys / time . h>
7

8 us ing namespace std ;
9

10 #define N 24
11 #define M 56
12 #define N sim 100000 //number o f sim . runs used f o r dens i t y es t imat ion
13 #define R max 600 //maximal molecule number o f each sp e c i e s
14 #define sampl ing t ime 600 //samping time of the dens i t y p l o t
15 #define t o t a l t ime 42000 //must match the maximal time in the f r o n t e n d f i l e !
16

17 int f a c t o r i a l ( int ) ;
18 int get mu (double , double ∗ ) ;
19 double propens ( int ∗ , int sub s t r a t e [M+1] [N+1] , int ,double ) ;
20 void c h e c k f i l e ( int open , char f i l ename [ ] ) ;
21

22 int main ( int argc , char∗∗ argv ) {
23

24 char model [70 ]= ”memory3” ;
25 char spec [70]=”dens” ;
26 char f r o n t f i l e [70 ]=” f ront new 1 . txt ” ;
27 int N time=int ( t o t a l t ime / sampl ing t ime ) ;
28 double c [M+1] , a [M+1] ;
29 int i n t t ime , x0 [N+1] ,x [N+1] , sub s t r a t e [M+1] [N+1] , product [M+1] [N+1] ,
30 densityA [ N time +1] [R max+1] , densityB [ N time +1] [R max+1] ;
31

32 // o u t f i l e s
33 ofstream myof1 , myof2 ;
34 int N spec = s t r l e n ( spec ) ;
35 s t r c a t ( spec , ” densA . dat” ) ;
36 myof1 . open ( spec , i o s : : out ) ;
37 spec [ N spec ] =’ \0 ’ ;
38 s t r c a t ( spec , ” densB . dat” ) ;
39 myof2 . open ( spec , i o s : : out ) ;
40 spec [ N spec ] =’ \0 ’ ;
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41

42 // reading the model in format ion
43 i f s t r e am sta , sub , prod , prob , f r on t ;
44 int N st r ing = s t r l e n ( model ) ;
45 s t r c a t (model , ” s t a t e . txt ” ) ;
46 s ta . open (model , i o s : : in ) ; c h e c k f i l e ( ! sta , model ) ;
47 model [ N s t r ing ]= ’ \0 ’ ;
48 s t r c a t (model , ” s ub s t r a t e . txt ” ) ;
49 sub . open (model , i o s : : in ) ; c h e c k f i l e ( ! sub , model ) ;
50 model [ N s t r ing ]= ’ \0 ’ ;
51 s t r c a t (model , ” product . txt ” ) ;
52 prod . open (model , i o s : : in ) ; c h e c k f i l e ( ! prod , model ) ;
53 model [ N s t r ing ]= ’ \0 ’ ;
54 s t r c a t (model , ” prob autogenerated . txt ” ) ; // in c r ea s ed R2 o f f r a t e
55 prob . open (model , i o s : : in ) ; c h e c k f i l e ( ! prob , model ) ;
56 model [ N s t r ing ]= ’ \0 ’ ;
57 f r on t . open ( f r o n t f i l e , i o s : : in ) ; c h e c k f i l e ( ! f ront , f r o n t f i l e ) ;
58 f r on t . c l o s e ( ) ;
59

60 for ( int j =1; j<=M; j++){
61 for ( int i =1; i<=N; i++){
62 sub >> sub s t r a t e [ j ] [ i ] ;
63 prod>> product [ j ] [ i ] ;
64 }
65 }
66 for ( int i =1; i<=M; i++){prob >> c [ i ] ; }
67 for ( int i =1; i<=N; i++){ s ta >> x0 [ i ] ; }
68

69 //compose the propens i t y update matrix
70 int t i ck update , update [M+1] [N+1] ;
71 update [ 0 ] [ 0 ] = 0 ; update [ 0 ] [ 1 ] = 0 ; update [ 1 ] [ 0 ] = 0 ;
72 for ( int i =1; i<=M; i++){for ( int j =1; j<=N; j++){update [ i ] [ j ]=0;}}
73 for ( int i =1; i<=M; i++){
74 t i ck update =1;
75 for ( int j =1; j<=N; j++){
76 i f ( sub s t r a t e [ i ] [ j ] !=0 | | product [ i ] [ j ] !=0){
77 for ( int k=1;k<=M; k++){
78 i f ( sub s t r a t e [ k ] [ j ] !=0){ update [ i ] [ t i ck update ]=k ; t i ck update++;}
79 }
80 }
81 }
82 }
83

84 // generate random numbers
85 long idum ;
86 long mi l l i s ekunden = 0 ;
87 struct t imeva l time ;
88 gett imeofday(&time , NULL) ;
89 mi l l i s e c ond s = time . tv u s e c ;
90 idum = −mi l l i s e c ond s ;
91 drand48 ( idum ) ; // i n i t i a l i z a t i o n o f the random number generator
92 long double a 0 , t ;
93 long unsigned int mu, n A , n B , tt , t i c k t ;
94 for ( int i =1; i<=N time ; i++){
95 for ( int j =1; j<=R max ; j++){
96 densityA [ i ] [ j ]=0; densityB [ i ] [ j ]=0;
97 }
98 }
99

100 for ( int sim=1;sim<=N sim ; sim++){
101 for ( int i =1; i<=N; i++){x [ i ]=x0 [ i ] ; }
102 f r on t . open ( f r o n t f i l e , i o s : : in ) ;
103 f r on t . c l e a r ( ) ;
104 f r on t . seekg (0 , i o s : : beg ) ;
105 t t=sampl ing t ime ; t =0. ; t i c k t =0;
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106 while ( f r on t . good ( ) ){
107 f ront>>i n t t ime ; f ront>>c [ 4 7 ] ; f ront>>c [ 4 8 ] ;
108 i f ( in t t ime >t o t a l t ime ){ cer r<<”Time in f r o n t e n d f i l e i s not c on s i s t e n t
109 with time in code” ; e x i t ( 1 ) ; }
110 for ( int i =1; i<=M; i++){
111 a [ i ]=propens (x , subst rate , i , c [ i ] ) ; // i n i t i a l p r o p en s i t i e s
112 }
113 while ( t<i n t t ime ){
114 while ( t<double ( t t ) ){
115 a 0 =0. ;
116 for ( int i =1; i<=M; i++){a 0+=a [ i ] ; }
117 mu=get mu ( a 0 , a ) ;
118 for ( int i =1; i<=N; i++){
119 x [ i ]+=(product [mu ] [ i ]− sub s t r a t e [mu ] [ i ] ) ; // s t a t e update
120 }
121 t i ck update =1;
122 while ( update [mu ] [ t i ck update ] !=0 && tick update<M){
123 a [ update [mu ] [ t i ck update ] ]= propens (x , subst rate ,
124 update [mu ] [ t i ck update ] , c [ update [mu ] [ t i ck update ] ] ) ;
125 t i ck update++;
126 }
127 t+=log (1 ./(1 . − drand48 ( ) ) ) / a 0 ; // time update 1−drand48 () i s in (0 ,1 ]
128 }
129 t t+=sampl ing t ime ; t i c k t++;
130 n A=int ( x [ 1 ]+2 .∗ x [ 2 ]+2 .∗ x [16 ]+2 .∗ x [18 ]+4 .∗ x [19 ]+4 .∗ x [ 2 0 ] ) ;
131 n B=int ( x [ 3 ]+2 .∗ x [ 4 ]+2 .∗ x [10 ]+2 .∗ x [12 ]+4 .∗ x [13 ]+4 .∗ x [ 1 4 ] ) ;
132 i f (n A > R max | | n B > R max ){ cout<<”Warning : Molecule number
133 exceeds matrix dimenions ”<<endl ;}
134 densityA [ t i c k t ] [ n A]++;
135 densityB [ t i c k t ] [ n B]++;
136 }
137 }
138 f r on t . c l o s e ( ) ;
139 }
140 double binsum A , binsum B ;
141 int n bin =10;
142

143 for ( int j =0; j<R max/double ( n bin ) ; j++){
144 for ( int i =1; i<=N time ; i++){
145 binsum A =0. ; binsum B =0. ;
146 for ( int k=0;k<n bin ; k++){binsum A+=densityA [ i ] [ j ∗ n bin+k ] ;
147 binsum B+=densityB [ i ] [ j ∗ n bin+k ] ; }
148 myof1<<binsum A<<” ” ;
149 myof2<<binsum B<<” ” ;
150 }
151 myof1<<endl ;
152 myof2<<endl ;
153 }
154

155 return 0 ;
156 }
157

158 int f a c t o r i a l ( int num)
159 {
160 int r e s u l t =1;
161 for ( int i =1; i<=num; ++i )
162 r e s u l t∗=i ;
163 return r e s u l t ;
164 }
165

166 double propens ( int ∗ s ta te , int sub s t r a t e [M+1] [N+1] , int index , double c )
167 {
168 double r e s u l t=c ;
169 for ( int i =1; i<=N; i++){
170 i f ( sub s t r a t e [ index ] [ i ] !=0){
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171 i f ( s t a t e [ i ]>=subs t r a t e [ index ] [ i ] ) {
172 for ( int j =0; j<sub s t r a t e [ index ] [ i ] ; j++){
173 r e s u l t∗=double ( s t a t e [ i ]− j ) ;
174 }
175 r e s u l t /= f a c t o r i a l ( sub s t r a t e [ index ] [ i ] ) ;
176 }
177 else r e s u l t =0. ; // e l s e re turn 0 . ; //
178 }
179 }
180 return r e s u l t ;
181 }
182

183 int get mu (double a 0 , double ∗a )
184 {
185 int mu=0;
186 double sum=0. ;
187 double auxran = 1.−drand48 ( ) ;
188 while ( sum/a 0 <= auxran ){
189 sum+=a [mu+1] ;
190 mu++;
191 }
192 return mu;
193 }
194

195 void c h e c k f i l e ( int open , char f i l ename [ ] )
196 {
197 i f ( open ){ cout << ”Error : Can ’ t open the f i l e ”<<f i l ename<<endl ; e x i t ( 1 ) ; }
198 else cout<<”Opened f i l e ”<<f i l ename<<endl ;
199 }
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