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Abstract

Cooperation phenomena are ubiquitous in nature. Although stunning to explain within
the framework of evolution, a fundamental question is why individuals living together in a
colony act altruistically since free-riders may receive the same benefit without paying any
cost, and hence have an evolutionary advantage over cooperators.
We study the experimental investigation of cooperation by Rainey & Rainey [1] in which
the bacteria strain Pseudomonas fluorescens rapidly diversifies in a spatially heterogeneous
environment through genetic mutation. Cooperative groups are established by the over-
production of an adhesive polymer. The mutual attachment after cell division enables the
cooperators to form a mat at the liquid-air interface of the broth pot. This evolutionary
advantage of cooperation, mediated by the access to oxygen, is, however, subverted by a
defecting trait which causes the sinking of the mat on a faster time scale than in absence
of these free-riders.

In this thesis, we investigate the interplay between the biologically relevant timescales
influencing the dynamics of cooperation in the mat experiment. We define a stochastic
model for the growth and sinking of bacterial mats. A mat is characterized by the number
of cooperating and defecting cells, by the effective mat volume, and by the mat density.
The number of cooperators and defectors follows a stochastic update [2]. Microscopically,
defectors are always better off, but cooperative groups can grow larger in size. Within
an effective coarse-grained description, the growth of the mat volume is abstracted in a
deterministic, non-spatial picture. In this averaged view, we assume that the mat only
grows at its surface. Hereby, we effectively introduce a scaling hypothesis for the dynamics
of the mat volume: the growth rate of the mat volume is proportional to its square root.
Moreover, the mat expansion is mediated by the presence of cooperating cells. Without
cooperators, the mat would not grow in size.
The mat density is then computed via the microscopic occupation of the mat volume.
Thereby, cooperators contribute with a smaller weight to the mat density than defectors
since they overproduce the sticky polymer. The mat starts to sink, when its density reaches
the density of water.

This mat model combines population dynamics with its internal evolution for mat popu-
lations. Regarding an ensemble of mats, the average percentage of cooperators reveals a
transient increase of cooperation after some time due to demographic fluctuations in the
beginning of the growth dynamics. The lower the initial size of the mat, the higher is the
impact of stochastic fluctuations on the mat dynamics including the maximal population
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size and the sinking time of the mat. Cooperative groups grow larger in size and sink
later in time, and thus have a higher probability to survive in a structured environment.
The sinking time increases if the selection pressure is lowered or if the mat expansion is
accelerated.
By applying repeated population bottlenecks, this stochastic effect may pave the way
for the maintenance of cooperation in structured populations. More generally, our work
provides conceptual insights into the requirements and mechanisms for the evolution of
cooperation, and the transition from single cells to multicellularity.



Zusammenfassung

Kooperationsphänomene sind in der Natur allgegenwärtig. Obwohl sich Kooperation im
Rahmen der Evolutionstheorie eindrucksvoll erklären lässt, ist es immer noch ein Rätsel,
warum Individuen alruistisches Verhalten zeigen, insbesondere wenn man bedenkt, dass
Trittbrettfahrer eine kooperierende Gemeinschaft unterwandern können, indem sie von der
Kooperation der anderen profitieren, ohne selbst zur Kooperation beizutragen und damit
Kosten sparen. Folglich haben Trittbrettfahrer aus evolutionärer Sicht immer einen Vorteil.

In dieser Masterarbeit wird ein Experiment von Rainey & Rainey [1] studiert, in dem
Kooperation auf bakterieller Ebene untersucht wurde. Wenn man den Bakterienstamm
Pseudomonas fluorescens in einer räumlich strukturierten Umgebung aussetzt, kann man
beobachten, dass sich diese Bakterien vergleichsweise schnell durch genetische Mutation an
die Umgebung anpassen. Im Fall, dass man diese Bakterien in einer ungestörten Nährlösung
in einem Glasgefäß wachsen lässt, können sich kooperative Gruppen dadurch bilden, dass
die Bakterien ein bestimmtes klebriges Polymer zu viel produzieren. Die Überproduktion
dieses Polymers hat zur Folge, dass zwei Bakterien nach der Zellteilung aneinander kleben
bleiben. Dadurch können die Bakterien eine Art Matte formen, die an der Wasseroberfläche
schwimmt, was den Vorteil mit sich bringt, dass die Bakterien jetzt besseren Zugang zu
Sauerstoff haben.
Dieser evolutionäre Vorteil, der durch Kooperation zustande kommt, wird von Bakterien
unterwandert, die in der Matte sitzen können, ohne dabei einen Beitrag zur Mattenstruk-
tur zu leisten. Aus spieltheoretischer Sicht sind sie klassische Trittbrettfahrer. Diese wer-
den auch Defektoren genannt, um sie von den Kooperatoren zu unterscheiden. Defektoren
nutzen den Vorteil der kooperierenden Individuen aus, ohne selbst einen Beitrag zur Koop-
eration zu leisten. Als Folge dessen sinkt die Matte auf einer deutlich kürzeren Zeitskala,
als wenn die Defektoren abwesend wären. Damit wird die Lebensfähigkeit der Matte durch
die Anwesenheit der Defektoren aufs Spiel gesetzt.

In dieser Arbeit wird das Zusammenspiel der biologisch relevanten Zeitskalen untersucht,
die die Dynamik der Kooperation in dem Mattenexperiment bestimmen. Dazu wird ein
stochastisches Modell aufgestellt, dass das Wachstum und das Sinken einer Matte beschreibt.
Eine Matte wird als ein Objekt betrachtet, dass durch die Anzahl der Kooperatoren, die
Anzahl der Defektoren, und durch das effektive Mattenvolumen sowie der Mattendichte
charakterisiert ist.
Dabei folgt die Anzahl der Kooperatoren und Defektoren einer stochastischen Dynamik [2].
Auf der einen Seite haben Defektoren immer einen evolutionären Vorteil gegenüber Koop-
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eratoren, denn sie haben keine Kosten für die Kooperation, auf der anderen Seite können
kooperative Gruppen schneller wachsen und größer werden. Das Wachstum des Mattenvol-
umens wird auf einer vergröberten Skala deterministisch und nicht-räumlich beschrieben.
In dieser gemittelten Sichtweise wird angenommen, dass die Matte nur an ihrer Oberfläche
wächst. Damit wird effektiv ein Skalenverhalten eingeführt: Die Wachstumsrate des Mat-
tenvolumens ist proportional zur Wurzel des Volumens. Darüber hinaus ist die Anwesenheit
der Kooperatoren essentiell für die Ausbreitung der Matte. Ohne Kooperatoren wäre die
Matte nicht in der Lage, zu wachsen. Die Dichte der Matte wird dann als die mikroskopis-
che Besetzung des effektiven Mattenvolumens berechnet. Dabei wird dem Fakt Rechnung
getragen, dass Kooperatoren einen kleineren Beitrag zur Dichte als Defektoren leisten, weil
sie das klebrige Polymer zu viel produzieren. Die Matte beginnt dann zu sinken, wenn ihre
Dichte den Wert der des Wassers erreicht hat.
Dieses Mattenmodell vereint Wachstumsdynamik und interne Evolution für Mattenpopu-
lationen. Bei der Betrachtung eines Ensembles von Matten stellt man fest, dass der Anteil
der Kooperatoren über alle Matten gemittelt nach einer gewissen Zeit des Abfalls wieder
steigt und das Anfangsniveau übersteigt. Der Grund dafür liegt in demografischen Fluktua-
tionen zu Beginn der Mattendynamik. Je kleiner zu Beginn die Populationsgröße ist, umso
größer ist der Einfluss von stochastischen Fluktuationen auf die Dynamik der Matten, was
zum Beispiel die Maximalgröße der Matte und die Zeit des Sinkens einschließt. Kooper-
ativere Gruppen können größer wachsen und sinken später und haben damit eine höhere
Überlebenwahrscheinlichkeit in strukturierten Umgebungen. Der Zeitpunkt des Sinkens
der Matte wird erhöht, wenn man den Selektionsdruck verringert oder den Einfluss der
Mattenausbreitung erhöht.

Dieser stochastische Effekt könnte den Weg zur Aufrechterhaltung von Kooperation in
strukturierten Populationen bereiten, wenn man Populationsengpässe betrachtet. Allge-
meiner liefert diese Arbeit einen Beitrag zum Verständnis der Voraussetzungen und Mech-
anismen der Evolution von Kooperation und des Übergangs von Einzelzellern zu multizel-
lulären Organismen.
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1 Multicellularity and the dilemma of
cooperation

1.1 Evolution of life forms

Nature presents us with a stunning diversity of complex life forms. The origin of life
[3, 4, 5], biodiversity [6, 7, 8], and the development of different organizational levels of life
[9, 10] are some distinguished phenomena challenging biologists and – increasingly so –
physicists alike.
To illustrate the latter issue, consider the example of the human body [11]. All the different
cell types such as blood, skin, or liver cells work together in the human body. These cells
depend on each other, and some are physically attached to one another. Individual cells
cannot just split off in vivo, leave the body, and live as single-celled entities. Instead,
one observes cooperation phenomena at different organizational levels. Single cells form
tissues, single tissues and single cells together form organs and all entities at different
levels are well-organized in the human body. Only the collective as a whole is able to
survive, and it also has to survive for the lower-level entities to live. Furthermore, the
human organism reproduces as a whole, but only specialized cells, namely gametes, can
form offspring organisms. How and why did all other individual cells in the human body
give away their ability to reproduce as individuals in the course of evolution?
Taking the other organizational direction into account, many human beings consciously or
unconsciously organize in groups in which they collaborate and cooperate with each other
to achieve a common goal; they live together in a family, they work together in a company,
and exhibit social commitment.
Interestingly, all these transitions from one organizational level to another [12, 9] involve
the change from many objects interacting on a lower scale to a unified, bigger object
consisting of all smaller entities, and operating as a whole on a larger scale.

In modern biology, the development of organisms is interpreted within the framework of
evolutionary theory. The fundamental principles of the theory of evolution refer to Charles
Darwin and his groundbreaking work “The origin of species” from 1859 [3] in which he
reveals the fundamental driving forces of evolution. Variation, selection, and heredity have
proven to be an adequate approach to explain evolutionary dynamics and provide powerful
tools to account for the evolution of species, speciation, and biodiversity – just to name a
few examples [3, 13]. From today’s point of view, with the knowledge of modern genetics,
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evolutionary dynamics can be based upon a few principles including variation, natural
selection, and heredity [14, 15, 16], which are summarized as follows.

• Phenotypic variation: Individuals show different phenotypic expressions in a popula-
tion. In other words, they can differ in their morphological, behavioral, or any other
observable property.

• Differential reproduction: Some phenotypes are slightly “better” adapted to envi-
ronmental factors than others in the population. Hence, the individuals’ growth,
reproduction and survival rates will vary depending upon their phenotypic adaption
to the environment which may change in time. In that sense, their contributions to
later generations will also vary. The individuals which are “better” adapted to the
environment will have a higher number of offspring, which we will refer to as the
individual’s fitness. This process is called selection and is often referred to as the
survival of the fittest.

• Heredity: The genotype of an offspring, or in other words its genetic code, is highly
correlated to the genotype of its parents. The genetic code, however, is also subject
to variation in many ways. Sexual reproduction, for example, combines the genetic
information of the parental organisms. Furthermore, spontaneous and induced mu-
tations can alter the genotype.
The genotype of an organism determines its phenotype to a large extent. The exact
genotype-phenotype map, however, is highly complex and is subject to numerous in-
fluences such as random description errors and environmental factors. For instance,
the gene expression, which is an essential part of this genotype-phenotype map, is
not yet fully understood and is still subject of ongoing research [17, 18].

For a detailed review of these evolutionary principles, see [16, 15].

1.2 From single cells to multicellularity

One of the major challenges is to explain the transition from single cells to multicellularity
[19, 20, 21] from a Darwinian point of view, that is by means of the described principles
of evolutionary dynamics.
What are the advantages of a multi-cellular organism over single-celled entities? First of
all, multicellular organisms are simply bigger in size than a single cell. If one thinks of the
multicellular organism as a big ball consisting of single cells, the ratio between surface and
volume decreases as the number of constituting cells rises. As a consequence, a multi-celled
entity is protected more easily from predators, environmental factors, or other threats than
singled-cells are. Moreover, the depletion of resources can be carried out more effectively,
and by division of labor, the metabolism of the whole organism can work more efficiently.
Because of its higher complexity, some cells may be able to specialize to specific tasks as a
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preliminary stage towards differentiation. The development of a germ line, accounting for
sexual reproduction, is a specific characteristics of this organizational level [22, 23]. The
multicellular organism may occupy new niches and adapt to new environmental situations,
which it has not been able to at the single-celled stage.

In order to gain deeper insight into the transition from singular cells towards a multicellular
organism, one would have to understand why individual cells cooperate with each other in
the first place and how mechanisms for the stabilization of cooperation could work in the
framework of Darwinian evolution. The problem of the transition, at its core, lies in the
following questions [24],

1. How does a group of cells form? Why do single cells form a cooperative group?

2. How can disruptive effects of cheaters in the group be minimized? How can cooper-
ation be maintained in the long run?

3. How might the cooperative group reproduce as a whole?

1.2.1 The dilemma of cooperation

The first question involves the antagonistic nature of cooperative behavior, which is often
referred to as the dilemma of cooperation. On the one hand, the whole population profits
from the existence of individuals enhancing the fitness of all members of the group. These
cooperating individuals are called cooperators. For example, cooperators could provide a
public good from which all members of the population benefit. On the other hand, free-
riders, that are organisms not contributing to the cooperation, do not have to bear the
costs of cooperation, but still receive the full benefit of the cooperators. Therefore, free-
riders, which we will also refer to as defectors, can reproduce faster than cooperators. They
have an evolutionary advantage over the cooperators and will ultimately outperform the
cooperating individuals. In this way, the viability of cooperators is always at risk although
it would be optimal for all individuals to cooperate.

Even though cooperation is threatened by evolutionary dynamics, many examples for co-
operative behavior are known in nature, for instance, public good producing bacteria such
as Pseudomonas aeruginosa [25, 26, 27] and Pseudomonas fluorescens [28, 1]. In the next
chapter, we will discuss one specific experiment with Pseudomonas fluorescens showing
how cooperative behavior can occur in nature at the level of microbes. More generally, the
formation of biofilms is often investigated in this context in order to study social bacteria
including the occurrence of cooperation and multicellularity.
Other examples for stable cooperation of higher developed life forms include bee colonies,
where eusocial behaviour can be observed [29, 30]. Ant colonies are a striking example of
cooperative social behaviour as well [31, 32, 33].



4 1. Multicellularity and the dilemma of cooperation

1.2.2 Maintenance of cooperation

We have seen that the dilemma of cooperation limits the success of cooperative behaviour
in the course of evolution and thus hampers the evolutionary transition from single cells
to multicellular organisms. Since, nevertheless, many examples of stable cooperative be-
havior can be observed in nature, we will discuss the second question from section 1.2 in
the following: how can cooperation be maintained in the long run?
In nature, there are many mechanisms of how disruptive effects of free-riders can be mini-
mized and of how cooperative behavior can be retained in the long run. These mechanisms
can be structured depending upon the cooperator’s ability to recognize and memorize other
cooperators, and the individual’s ability to actively adjust its appearance and behavior.
Means relying on the memory and the active adjustment of the behavior are referred to
as reciprocity measures [34, 35, 36]. It includes the application of strategies for repeated
interactions, as the famous tit for tat strategy for the repeated prisoner’s dilemma [37], or
the application of cultural strategies, as kinds of “legal policies”, punishment, and other
means of regulating social behaviour, to give some examples [38, 39].
If individuals are not able to actively distinguish between cooperators and defectors, and to
customize their behavior, the notion of relatedness gains significance. These mechanisms,
which are especially important to “lower level” species such as microbes, go under the
name of assortment means. Due to structural and environmental factors, cooperators will
interact with other cooperators with a higher probability than with defectors.

One often distinguishes between two assortment principles promoting the maintenance of
cooperation: kin selection and group selection [40]. It is again emphasized that we only
deal with passive forms of assortment in this context and no active choice of the interaction
partner is carried out by the individuals. The distinction between kin selection and group
selection and its importance for the maintenance of cooperation is controversially discussed
in the scientific community and is still subject of an ongoing debate (see for example [35]).
Historically, kin selection describes the idea that cooperation can be maintained if the
indirect or inclusive fitness surmounts the direct or individual fitness disadvantage of co-
operators. Direct fitness affects the individuals at the individual level, that is defectors are
microscopically better off than cooperators. Indirect fitness, however, refers to the benefit
from related individuals. Simply speaking, individuals will cooperate if the benefit for the
organism’s relatives is greater than the individual cost of cooperation. Hamilton’s rule,
b · r > c [41, 42], states that the less closer the relatedness, 0 ≤ r ≤ 1, to the interacting
individuals is, the higher the benefit of cooperation, b, has to be in order to surmount the
costs, c. In this context, Haldane’s famous quotation, “I would lay down my life for two
brothers or eight cousins”[43], illustrates this point of view.

Nevertheless, both principles, kin selection and group selection, can be regarded as just
being two sides of the same coin and we will discuss it in this way [44, 45]. For an outline
of some aspects of the historical debate, the reader is referred to the relevant literature
which can be found, for example, in [46, 47, 48].
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Crucial for the maintenance of cooperation at the stage of individuals living in one popula-
tion is that cooperators preferentially interact with other cooperators. In the simplest case,
this preferential interaction could be mediated by an additional structure that allows for
the division of the whole population into sub-populations, see figure 1.1 for an illustration.

Figure 1.1: Division of the whole population into sub-populations. Crucial for the maintenance
of cooperation is that cooperators preferentially interact with other cooperators. In
the simplest case, this preferential interaction could be mediated by the division
of the whole population into sub-populations. Within each sub-population, selec-
tion pressure acts on the individuals such that defectors are always better off than
cooperators (intra-group selection). Selection pressure could also act on different
sub-populations. Here, cooperative groups are favored over non-cooperative groups
(inter-group selection). The evolutionary outcome depends on the relation between
intra- and inter-group evolution, that is the relation between the two levels of selec-
tion (multi-level selection).

We will give two examples for this to happen later on. If one is able to distinguish between
these two levels, selection can act on both levels. The corresponding theory is referred to
as multi-level selection. On the one hand, selection acts on individuals within one sub-
population (intra-group selection). Here, defectors are always better off than cooperators.
On the other hand, selection may also act between the different sub-populations, such that
more cooperative groups are favored than less cooperative groups in the course of evolution
(inter-group selection). The evolutionary outcome depends on the relation between intra-
and inter-group evolution, that is the relation between the two levels of selection [10]. For
cooperation to be maintained, the advantage of cooperative sub-populations on the group
level has to be big enough to dominate the selection disadvantage of cooperators on the
lower level, that is within one sub-group [49]. If one refers only to the selection acting on
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the different sub-populations, the term “group selection” is commonly used.
The assortment into sub-populations could be passively driven by environmental factors,
for example by diffusion-limited dispersal of the common good promoted by cooperators
[42], such that cooperation is acting only locally within a sub-population. If this assort-
ment is actively driven by relatedness to other individuals in some sense, one speaks of kin
discrimination. We will understand this term in the “weak sense” [44], where the group
discrimination refers to the recognition of other cooperators, in contrast to kin selection in
the “strict sense”, where one emphasizes the degree of relatedness of the whole genome as
described above.
Price and Hamilton could show, however, that only the division of a big population, consist-
ing of cooperators and defectors, into sub-populations is necessary to formulate a condition
for the maintenance of cooperation in mathematical terms [49]. In this understanding, the
“weak” interpretation of kin selection as given above is sufficient.
As already indicated earlier in this chapter, it remains to be revealed, how the transition
between the different levels of selection could occur in nature. We have argued that if
selection acted on several levels, it could lead to the maintenance of cooperation. Never-
theless, we have to understand, how natural selection, acting only on single individuals, can
imply a fitness measure on the group level. This shift has to involve additional structural
elements on the population level, leading to sub-populations, such that cooperative groups
have an evolutionary advantage over non-cooperative groups.

Experimental results to this shift are rarely known, but we will introduce a microbial exper-
iment of Rainey & Rainey in the next chapter which shows the emergence and the dilemma
of cooperation, and which could serve as a guiding example for future investigations of this
transition. The mathematical framework in which evolutionary dynamics is conveniently
formulated will be introduced in chapter 3. In chapter 4, we will then develop a stochastic
mat model that describes and explains the occurrence of cooperation effects in microbial
biofilm colonies. The analysis will be motivated by and based upon the spirit and the
outcome of the Rainey & Rainey experiment. We will analyze the developed mat model
and compare the outcome of numerical simulations to the experimental observations in
chapter 5. Finally, chapter 6 is devoted to the proposal of repeated population bottlenecks
that might pave the way to stable cooperation scenarios.



2 Cooperation experiment of Rainey &
Rainey

In this chapter, we describe an experiment which was carried out by Rainey & Rainey
in 2003 [1], and which is often cited in the context of the evolution of cooperation in
microbial systems. The experiment will serve as an illustration of many problems we have
already encountered in the discussion of cooperative phenomena, namely the question of
how cooperation could arise in the course of evolution in the first place and how it could
be maintained thereafter.

2.1 Experimental setup and growth of mat

The experiment of Rainey & Rainey involves the investigation of the growth dynamics of
the well-studied bacteria strain Pseudomonas fluorescens, which is sketched in figure 2.1.

Figure 2.1: Sketch of Pseudomonas fluorescens, adapted from [50]. P. fluorescens is a rod shaped,
obligate aerobic bacterium which rapidly adapts to new environmental conditions due
to genetic mutation. In this way, P. fluorescens is a good example to test evolutionary
theory, especially the evolution of cooperation [1].

P. fluorescens is a rod shaped, obligate aerobic bacterium that is able to live under different
environmental conditions, e.g. in soil, water, and plants. The need for oxygen is an
important characteristics of its metabolism and is critical to its viability. Without oxygen,
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the gain of energy due to the splitting of sugars is inhibited and the bacteria cannot grow
or might even die [51].

In the Rainey & Rainey experiment, the so-called ancestral smooth (SM) P. fluorescens
strain is used as the initial genotype from which all other populations were founded. The
name SM refers to the smooth appearance of its colony morphology as shown in figure 2.2
after agar-plating. The bacteria are cultured in a static glass vial containing a mixture of
water and a nutrient, which we will refer to as broth in the following.
Another important feature of the setup is the introduction of a spatially structured en-
vironment for the bacteria growth, which is induced by an unmoved broth pot. By not
shaking and not stirring the broth pot, a gradient of oxygen concentration builds up with
high concentration of oxygen close to the liquid-air interface and very low oxygen concen-
tration at the bottom of the vessel [52, 53]. Regarding the metabolism of the bacteria, a
high oxygen concentration is much more preferred as mentioned above. Bacteria, whose
metabolism works more efficiently and faster due to the presence of higher oxygen concen-
tration, will have a higher doubling rate compared to bacteria having only access to a low
concentration of oxygen. Thus, bacteria with access to a high concentration of oxygen will
be favored in the course of evolution.
To summarize, the effect of spatial heterogeneity within the broth pot is that bacteria that
are able to live close to the liquid-air interface grow faster and, thus, have an evolutionary
advantage over the bacteria which are farther away from the surface.

A key attribute of P. fluorescens is the rapid adaption of its phenotype to new environ-
mental situations [28], which plays a crucial role in the experiment. P. fluorescens is,
metaphorically speaking, a real adjustment artist. When the SM strain is cultured in the
broth phase, it will rapidly diversify in this spatially structured environment. The diversifi-
cation process is mainly driven by simple genetic mutations leading to different phenotypic
expressions [54, 55, 56, 57, 58].
Two of the most prominent representatives of these niche specialists are the wrinkly
spreader (WS) and the fuzzy spreader (FS), again named after their morphological ap-
pearance, which can be seen in figure 2.2 after agar-plating.

2.2 Emergence and dilemma of cooperation

The experiment of Rainey & Rainey focuses on the wrinkly spreader which is derived
directly in the broth pot from the SM ancestral strain via a single genetic mutation [55].
This mutation causes the change of the cell cycle regulation, namely the change of the
gene expression of a cellulose-like polymer (CLP). As a result, the CLP is overproduced
outside the bacteria cell and acts like glue between the polymer-producing bacteria. It
can be assumed that the phenotypic state of the wrinkly spreader in which this CLP is
overproduced can be reached by many possible simple mutations from the SM genotype
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Figure 2.2: One distinguishes three different phenotypes of P. fluorescens, each named after its
appearance after agar-plating (upper lane) [28]. The left panel shows the ancestral
smooth (SM) strain, the middle panel depicts the wrinkly spreader (WS), and the
right panel shows the fuzzy spreader (FS). WS and FS strain are derived from the SM
genotype by genetic mutation. The WS phenotype arises after only approximately
20 generations if the broth pot is not stirred and not shaken. FS bacteria grow at
the floor of the vial (lower lane), whereas WS cells colonize the liquid-air interface
of the solution. Due to an overproduction of a cellulose-like polymer that acts like a
glue between the WS cells, they are able to form a mat. The WS trait only survives
transiently in a heterogeneous environment in which an oxygen gradient can build
up. In a homogeneous solution, the WS phenotype is rapidly outperformed by the
smooth strain.

[55]. This adaption explains the rapid diversification of the SM ancestral strain. It takes
roughly 20 generations in a spatially structured environment to observe the WS phenotype
in a broth phase in which only SM bacteria have been cultured in the beginning [59].
After cell division, the two WS daughter cells will stay connected to one another. If this
mutation occurs close to the liquid-air interface, the WS cells can attach to the edge of the
glass vial. Growing from this supporting point, the bacteria will spread rapidly and form
a fine biofilm at the liquid-air interface. It is also observed, however, that some WS cells
can form little rafts swimming at the surface of the solution before attaching to the edge
of the glass pot [60]. As the population of WS cells in this self-supporting mat grows, the
whole broth surface will be colonized. Its structure also changes from a fine biofilm to a
clearly visible and robust mat, which will ultimately suffer under its own prosperity: the
mat becomes too dense and will sink as shown in figure 2.3.
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Figure 2.3: Growth and sinking of the mat as an example for the occurrence and the dilemma of
cooperation; pictures adapted from [54]. The wrinkly spreader (WS) overproduces a
glue-like polymer such that two WS daughter cells remain stuck together after cell
division. The WS cells can attach to the edge of the glass vial and colonize the liquid-
air interface of the solution. The biofilm grows rapidly in size and thickness (left
picture). A mat is build up that will suffer under its own prosperity and ultimately
sink since the biomass of the bacteria in the mat surmounts the stabilizing forces
of the mat structure (right picture). More interestingly, the growth of the mat is
further limited by the occurrence of mutations from a WS cell to an ancestral SM
cell in the mat which causes the sinking process on a significantly shorter timescale.
This observation is an example for the dilemma of cooperation. Defecting genotypes
penetrate the mat like cancer cells threaten a healthy tissue since the fitness of the
defectors in the mat is even higher than the fitness of the WS cells. The defectors
gain the same benefit of the mat formation but have no cost for the production of the
sticky polymer in contrast to the cooperating WS cells. The optimum for the whole
microbial colony would be attained if only cooperating cells were present in the mat.

In the last chapter, we have presented the dilemma of cooperation stating that cooperators
are threatened by defectors which save the cost, but still benefit from the cooperation. Ul-
timately, defectors will outperform the cooperators although cooperation would be optimal
for the whole population. This configuration is also observed in the mat experiment.
The success of the mat growth is actually limited by the emergence of mutants that arise
de novo from the WS genotypes by genetic mutation [1]. These mutants from the CLP
expressing cells have the property of not overproducing the glue-like substance and resem-
bling the ancestral strain of SM cells in many attributes. They live in the mat close to
the liquid-air interface, and hence gain the same rewards of high oxygen concentration. In
contrast to the cooperating WS cells which are fixed in the mat frame, these mutants are
motile and do not support the skeleton of the mat. In this way, they do not contribute to
the mat structure. These cells will be called defectors in contrast to the WS, which will
be referred to as cooperators in order to signify their contribution to the mat structure.
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Ancestral SM cells and defecting cells show a similar smooth morphology, and the same
fitness in an unstructured environment can be assumed [55]. Fitness is always measured
in terms of the doubling rate during the exponential growth phase, and the fitness of the
ancestral SM strain is defined to be 1 [1].

Figure 2.4: Emergence of defecting cells in the mat [1]. The number of cooperating WS cells
(squares) and the number of defecting mutants (circles) in the mat are counted at
different points in time in colony-forming units (c.f.u.) per ml. The number of cooper-
ating WS cells increases rapidly until day 3 because of the access to oxygen mediated
by the mat formation. The mat is, however, threatened by defecting mutants which
arise de novo from the WS genotypes by genetic mutation. These mutants do not
contribute to the mat structure since they do not overexpress the sticky polymer.
They have an evolutionary advantage over the cooperating WS cells which leads to
a dilemma of cooperation. As a consequence, the number of defecting cells in the
mat increases rapidly until day 7. The number of cooperating WS cells is already
decreasing from day 4 on due to the sinking of the mat.

The WS cells have a significantly lower fitness of 0.33−0.80 compared to the SM phenotype
in an unstructured environment [55, 1, 61]. The cooperating cells overproduce the cellulose-
like polymer which is highly energy-costly to the metabolism of the WS cells compared to its
ancestral SM cells, and results in a reduced doubling rate. Namely, the carbon metabolism
of the WS cells shows catabolic defects causing the lowered relative fitness (for metabolic
details see [62]). In a homogeneous broth with sufficient oxygen supply, for example realized
by a permanently stirred environment, the WS cells would be outperformed by cells not
having the costs for the production of the sticky CLP. When the population of WS cells
grows in a spatially structured environment, however, the overproduction of CLP turns into
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a transient evolutionary advantage for the WS cells. The fitness of the WS cells increases
dramatically to 1.6 compared to the SM strain, because of the mat formation and the
induced vicinity to oxygen resulting in a reduced doubling time [55]. Moreover, the mat
also acts like an additional oxygen blocker to all other cells in the broth phase not living
in the mat. Experiments show that this blocking effect of a fully grown mat corresponds
to an oil layer of 2 mm in thickness at the surface of the broth applied to the cells in the
liquid [1].
The effect of the cooperation of the WS cells and the emergence of defecting cells are
quantitatively shown in figure 2.4, which depicts the number of cooperators and defectors
in time after the solution has been prepared with the ancestral SM strain. The profit of
cooperation on the population level is bigger than the costs at individual level for the WS
cells. Therefore, the number of WS bacteria in the mat grows rapidly between day 0 (the
first occurrence of a WS cell) and day 2.
The mat growth enhances the fitness of the WS trait, but at the same time the population
of WS will be vulnerable to the evolutionary emergence of defectors [1]. Because of
the microscopic selective advantage of the defecting phenotype over the cooperating cells,
the number of defecting cells in the mat increases rapidly until day 7. The number of
cooperating WS cells is already decreasing from day 4 on due to the sinking of the mat.
During the sinking process of the mat, the fraction of cooperators in the mat decreases as
can be inferred from the two curves in figure 2.4.

In figure 2.5, the consequence of the invasion of the mat by defecting cell types is depicted.
The dotted line shows the number of cooperating WS cells in absence of defectors. By
scoring the different bacteria phenotypes on agar plates, it is possible to identify mats
without defectors. The number of WS in the purely cooperative mat is increasing rapidly
in the beginning (growth phase). As already indicated, the mat sinks after day 4 which is
caused by an increase of the mat density. The sinking process is reflected by the gradual
decrease in the number of cells in the mat.
In presence of defectors, the growth of the WS cells in the mat stays unaffected in the
beginning. The invasion of the mat by defectors, however, has a negative impact on its
structure. Since the defectors do not produce the sticky polymer that is necessary for
the stabilization of the mat, the mat structure is weakened by the defectors. Whereas in
the case of absence of defectors in the mat, the sinking process takes approximately the
same time as the growth process, the whole mat sinks abruptly after having reached the
threshold mat density at day 4 when defecting cells are present in the mat. The instability
of the mat gives rise to its sinking, which takes place on a much shorter time scale than in
case without defectors.
This effect was also quantified in [1]: A mat infiltrated with 24% defecting cells at day 3
collapses under the weight of 79 mg of glass beads, whereas a mat comprised solely of WS
cells collapses only under 432 mg, which is more than the fivefold weight, at day 3. This
clearly emphasizes the negative impact of the defectors on the mat structure.
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Figure 2.5: Number of cooperating WS cells in the mat with (solid line) and without (dashed
line) defecting mutants [1]. The number of bacteria cells is counted on agar plates
in colony-forming units (c.f.u.) per ml. The case with no defecting cells is identified
afterwards. The sinking of the mat changes qualitatively if defecting cells are present
or absent in the mat. In presence of defectors, the mat sinks abruptly and on a much
shorter timescale than in absence of defectors since defecting cells do not contribute
to the mat skeleton that stabilizes the mat (time difference ∆T ). In this way, the
viability of the whole population is at risk when defecting cells are present.

2.3 Summary of the experiment

The Rainey & Rainey experiment [1] shows cooperation which emerges due to a single
mutation in a spatially heterogeneous environment. Whereas cooperation is costly on the
level of single cells, the benefits stemming from the cooperation at group level surmount
the costs and result in a transient evolutionary advantage of the cooperating trait over
the ancestral one. The spatial heterogeneity is a crucial property of the experiment. This
additional structural element is directly related to the competition for nutrients, in this
case oxygen, leading to the increased fitness of the cooperators.
The evolutionary transition is, however, put at risk due to the dilemma of cooperation.
Cells which are able to reap the profit from the cooperating cells without contributing to
the cooperation at group level will have an evolutionary advantage over the cooperators
since they do not have to bear the costs for cooperation. The defectors outperform the
cooperators. Thus, the viability of the whole population is threatened by these free-riders.

Turning back to chapter 1, where we discussed the transition from single cells to a multicel-
lular organism and formulated the obstacles of this transition in three steps, we recognize
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that the Rainey & Rainey experiment addresses the first question, namely how single cells
form a cooperative group. In a recent paper [54], Rainey discusses the other two issues,
the maintenance of cooperation and the reproduction of the group as a whole, by using
the example of the mat formation of P. fluorescens. Let us discuss this proposal as a
theoretical outlook to the experiment.

2.4 Proposal of Rainey & Kerr: cheaters as the germ line

The third question from section 1.2 (How might the cooperative group reproduce as a
whole?) addresses the so-called trade-off between fertility and viability [63]. On the one
hand, single-celled organisms can reproduce much more quickly, on the other hand, a
multicellular organism might live longer and receives the advantages to its viability as
mentioned above. Single cells have to trade-off fertility, that is give away their ability to
reproduce independently on their own, in order to reproduce as part of the group, in which
they might not be part of the germ line. Only few cells of the multicellular organism will
found offspring organisms; all other cells will sacrifice themselves for the whole group. How
can this altruistic behaviour be explained in terms of natural selection? How can a germ
line emerge in the course of evolution? We assume that bacteria, as indicated earlier, do
not have a conscious idea of the bigger picture, and are not aware of the advantages of
forming a multicellular organism a priori.

Turning to the experiment of Rainey & Rainey, this transition would mean that mats have
to participate in the process of evolution by natural selection as objects on their own.
Therefore, one needs variation of the mats on the group level. Moreover, the mats have
to be capable of reproducing own copies, and offspring mats have to resemble the parental
mats [54]. The key problem is to find a way such that mats can leave offspring groups. In
the experiment described in chapter 2, mats are short-lived and an evolutionary dead-end
since selection only acts at the level of individual cells, where defectors are always better
off than cooperators. As a consequence, the mat collapses at some point in time [54].

The proposal of Rainey and Kerr to resolve this problem involves a consideration out of
the ordinary. They regard the defecting bacteria not only as a threat for the maintenance
of cooperation, but also as a way out of the dilemma of cooperation. We have seen that
cheaters arise as readily by mutation from the cooperating trait as cooperators do from the
ancestral SM strain. Since defectors and ancestral SM bacteria show the same phenotypic
expression [1], one could imagine that cheaters might mutate back to the WS cooperators.
The point is that the cooperating bacteria are stuck in the mat skeleton and cannot leave
the mat. In contrast, the defector cells are highly motile and can free themselves of the mat
when it sinks since they are not part of the mat frame. In principle they can swim back to
the liquid-air interface, mutate back to a cooperating cell and the mat growth process could
start all over again as depicted in figure 2.6. In this way, a life cycle could build up with
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Figure 2.6: Proposal of Rainey & Kerr: cheaters as the germ line [54]. In order to describe
the transition from single-celled entities to a multicellular organism, Rainey uses the
example of the P. fluorescens strain. By proposing a life cycle in which cooperators
and defectors regularly mutate to one another, the maintenance of cooperation can be
assured and a multi-level selection setup is established. The defectors can be regarded
as the germ-line of the cooperating mat which reflects the soma-line. Experimental
evidence of this proposal is subject of current research. See text for details.

the cooperative collective, the WS mat, as the soma and the cheaters as the germ-line [54].
Each defector carries the genetic DNA allowing for cooperation after one simple mutation.
The innovative idea is that cheating is not only the problem of cooperation, that has to be
overcome, but it is also absolutely essential for the maintenance of cooperation. Cheating
is part of the solution [24].
In summary, this proposed life cycle describes the transition from single cells to multicellu-
larity by introducing a soma- and a germ-line, whereas cheaters function as the germ cells.
Therewith, the maintenance of cooperation can be assured and the multi-level selection
setup is established.
One can also change the point of view and regard the cooperating microbes as the germs
for the defecting bacteria. The defector cells are like stem cells that can mutate to WS
cells. This cooperative phenotype is a helping or scouting cell by building up the mat and
sacrificing its life for the germ line, that is the ancestral defecting bacteria [54]. Here, only
one mutational direction is needed, namely the mutation from a non-cooperating cell to a
cooperating cell.

From a biological point of view, this proposal, however, seems unrealistic at first. The life
cycle heavily relies on the occurrence of the right mutation at the right time. Therefore,
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the life cycle is unregulated, and rather underlies stochastic fluctuations.
Nevertheless, also the other approaches to a multi-level selection rely on stochastic events.
This will become clearer in chapter 6. What seems more challenging is the determination
of how a new mat was founded. Rainey proposes that a cheater mutates to a cooperator
cell which builds up the new mat. But how could such a way be distinguished from a
scenario in which a part of a sinking mat breaks away and these cooperative cells from
the collapsed mat form the new mat? From a experimentalist’s point of view, it should
be only possible to observe whether a new mat has formed or not. The way in which
this formation has happened, indirectly via a mutation from a cheater to a cooperator or
directly via a cooperator, is hard to infer since the observed outcome should be the same.
Moreover, bet hedging bacteria of the P. fluorescens strain have been observed recently
[64]. These bacteria are able to rapidly switch their phenotype stochastically. If such a
bacterium founded a new mat, it would again be challenging to identify its origin. Clearly,
some experimental effort has to be carried out in order to verify Rainey’s proposal. It will
be exciting to see, how these experimental obstacles can be overcome.
In this thesis, we will not follow this “indirect” life cycle of Rainey, but rather concentrate
on the aforementioned maintenance of cooperation through the “direct reproduction” of
mats in a simplified and artificial setup. We will come back to this discussion at the end
of this thesis in chapter 6.



3 Evolutionary Game Theory in Growing
Populations

In this chapter we present a brief introduction into the mathematical description of evolu-
tionary dynamics that is used throughout this thesis. The interplay between the principle
of natural selection, that is Darwinian evolution, and population growth, is formulated in
the most convenient way in terms of evolutionary game theory and population dynamics.
Both approaches can be merged into a combined view which was formulated in a recent
paper by Melbinger, Cremer & Frey in [2]. This concept enables us to treat the described
dilemma of cooperation in growing populations. It will be shown that this stochastic model
reveals a transient increase of cooperation caused by demographic fluctuations. For a di-
dactic introduction into this model, the reader is referred to the thesis of Lechner [65]. In
chapter 4, these ideas will be applied and extended to a model for the growth and sinking
of the mat in the Rainey & Rainey experiment.

3.1 Evolutionary dynamics

Speaking in general terms, evolutionary dynamics focuses on the temporal evolution of
a specific trait, strategy, or any other observable characteristics in a population under
selection pressure; see [66] for a recent overview. Let us investigate a common approach to
this evolutionary dynamics, namely the replicator equation in which the population size is
assumed to be constant.

3.1.1 Replicator equation

Consider a well-mixed population with individuals of L different traits. We are interested
in the evolution of the state vector x = (x1, . . . , xL), whereas xS is defined as the fraction
of trait S in the total population. We assume that the characteristics labeled by the index
S ∈ {1, . . . L} only changes due to its fitness ΦS ∈ R compared to the average fitness
Φ∼(x) :=

∑
S ΦSxS in the whole population. The fitness ΦS of trait S determines the

relative abundances of this trait in the next generation and thereby quantifies its adaption
to environmental and other factors. A microscopic derivation is obtained, for example,
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from evolutionary game theory which will be described in the next section. One important
case is the frequency-dependent fitness. Here, the fitness of a given trait depends on its
fraction within the population, that is in general ΦS = ΦS(x). The higher the fitness ΦS

of trait S is compared to the average fitness Φ∼ of the population, the higher will be the
percentage of trait S in the next generation [34].
The standard approach to describe the evolution of the relative abundances x is then given
by the so-called replicator equation in which the principle of frequency-dependent selection
becomes mathematically manifest [67, 68],

∂txS = (ΦS(x)− Φ∼(x)) · xS, for S ∈ {1, . . . L} . (3.1)

If the interest lies on the relative fitness advantage of a specific trait S over the average
fitness of the population, and not on the absolute fitness advantage as above, one introduces
the relative fitness,

fS = fS(x) :=
ΦS(x)

Φ∼(x)
. (3.2)

The replicator equation in its adjusted form then reads as,

∂txS =
ΦS(x)− Φ∼(x)

Φ∼(x)
· xS ,

= (fS(x)− f∼(x)) · xS, for S ∈ {1, . . . L} . (3.3)

By normalizing the fitness as in eq. (3.3), the timescale on which the state vector x changes
is altered. The result of the evolutionary dynamics, however, remains unaffected.
The replicator equation can be induced from the well-studied Price equation, which reveals
a deeper understanding of the interplay between the growth factor for species abundances
and its trait’s characteristics. At its core it states that a specific trait will increase in size
if the trait’s characteristics is well adapted (positively correlated) to the growth factor.
However, since the Price equation can be understood as a consistency relation, it does not
reveal more insight into the evolutionary dynamics, we are interested in. Therefore, we
will not deepen the discussion at this point, see [44, 45] for further details.
Furthermore, the replicator equation is a deterministic approach to the dynamics of evo-
lution. If we consider a finite population, demographic fluctuations can play a crucial
role for the evolutionary outcome of the dynamics. The replicator approach neglects the
stochasticity of birth and death events and reflects a mean-field approach which is only
valid for N → ∞, if N labels the size of the population. We will highlight this feature in
due course, but before let us discuss one possible way to motivate the fitness functions ΦS

from a more microscopic point of view.

3.1.2 Evolutionary game theory

One possible concept to describe and understand how different traits, strategies, or other
characteristics compete with each other within one population is evolutionary game theory



3.1 Evolutionary dynamics 19

[66, 12, 69]. In this framework, each individual of the population is assumed to have one
of the L fixed strategies. The goal is to describe the fitness functions ΦS for S ∈ {1, . . . L},
and to find out how successful a certain strategy is over the competing strategies.

Let us exemplify the game-theoretical approach for two different traits characterized by
their strategy, namely a cooperating (C) and a defecting (D) strategy. We introduce the so-
called payoff matrix P ∈ R2×2 defining the payoff of the specific strategies and prescribing
the success of one strategy over another. In classical game theory, the entry Pi,j of the
payoff matrix is understood as the payoff a player receives when playing strategy i against
strategy j played by a different agent. In the context of evolutionary game theory, Pi,j
describes the payoff of an individual of trait i interacting with a different individual of
trait j. The best rational decision is then to play the strategy which maximizes the payoff
against all other strategies.
The fitness function will then be computed as,

ΦS = 1 + s · (Px)S, for S ∈ {C,D} . (3.4)

The parameter s labels the selection strength and relates the influence of the played strategy
and the obtained payoff to the background fitness 1. In this way, we can tune the selection
pressure and the timescale at which selection acts. In this formulation, the fitness function
depends only linearly on the relative abundances x; however there are cases in which a
non-linear fitness function is crucial to explain the experimental outcome [70].

Let us elucidate the concept of game theory with the prominent example of the prisoner’s
dilemma. Two men, having committed a severe crime, are caught by the police and are
now separately under interrogation. Both suspects have the possibility to either remain
silent or to blame the other one for having committed the crime on his own. They do
not know about the other’s testimony before the interrogation. If one defendant blames
his companion and he remains silent, the betrayer will be released immediately and his
companion will be send to jail for ten years. If both criminals blame each other, they will
be imprisoned for five years each. Since there are not enough evidences, both defendants
can only be condemned for a minor crime if they cooperate and both remain silent. Then
each of them is send to prison for one year.
This game can be represented by the payoff matrix as follows,

C D
C -1 -10
D 0 -5

Let us analyze the game from a suspect’s point of view. If my companion is a defector,
that is he blames me for having committed the crime, I will be send to jail for ten years
if I say nothing, or I will be imprisoned for five years if I also defect and blame him for
having committed the crime. Hence, if the other criminal defects, I shall also better defect
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in order to reduce my time in prison (−10 < −5).
On the other hand, if my companion cooperates and remains silent, I will be sentenced to
one year; but if I blame him, I will be free. Again, the optimal strategy from my perspective
would be to defect (−1 < 0).
In mathematical terms, the payoff for a player from an individual’s point of view is always
maximized if he choses the defecting strategy. This conclusion holds true for all players.
Moreover, all players cannot increase their payoff by solely changing their strategy. This
situation is referred to as a Nash equilibrium [71].
From an egoistic point of view, both players would then choose to defect, that is both
defendants will be send to prison for five years each, although they have the possibility
to cooperate and, thus, to reduce the time in prison to one year for each. This social
dilemma is caused by the risk of being exploited by defectors, and reflects the dilemma of
cooperation we have already encountered in the experiment of Rainey & Rainey. Defectors
are always better off although it would be beneficial for all players to cooperate.

For a general two player game and social dilemmas, the payoff matrix is written as [72, 32],

P =

(
R S
T P

)
.

The two players are rewarded with the payoff R if both of them cooperate; however, both
players are tempted to defect due to the payoff T . P is the punishment if both players
are defecting and S quantifies the sucker’s payoff. A game leads to a social dilemma if the
reward exceeds the punishment R > P , and at the same time the temptation to defect is
larger than the sucker’s payoff, T > S, and the punishment, T > P .

Let us now turn to the scenario in which the fitness of an individual is given by the
expected payoff Φ(x) of a two player game. We will give a motivation for this situation
below. Depending on the entries of the payoff matrix, one can distinguish between four
different regimes for the stability of the two strategies within an evolutionary setup and a
whole population [66].

• Prisoner’s dilemma: T > R and P > S; leads to stable defection, that is cooperators
die out.

• Snowdrift game: T > R and P < S; leads to stable coexistence of cooperation and
defection.

• Coordination game: T < R and P > S; leads to unstable coexistence of cooperation
and defection.

• Mutualism: T < R and P < S; leads to stable cooperation, that is defectors die out.

In summary, the most difficult way to obtain stable cooperation is a setup which is charac-
terized by the properties of the prisoner’s dilemma. Therefore, we will take the prisoner’s
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dilemma as the basis for the microscopic definition of the trait-dependent fitness func-
tions ΦS, S ∈ {C,D}, but interpret the prisoner’s dilemma as a public goods game in the
following way,

P =

(
b− c −c
b 0

)
, b > c .

A cooperating individual provides a public good b to the individual with which the inter-
action takes place. To provide the public good, the cooperator has to invest the cost c. If
a cooperator interacts with another cooperator, the payoff will be b − c. The cooperator
will not receive the benefit if he interacts with a defector, but the defector will be rewarded
with the full benefit of the cooperator without paying any costs.
The fitness functions for a cooperating (C) and a defecting trait (D) then read as follows
(cf. (3.4)),

ΦC(x) = 1 + s(bx− c) ,
ΦD(x) = 1 + sbx ,

ΦC(x)− ΦD(x) = −sc ,
Φ∼(x) = x · ΦC(x) + (1− x)ΦD(x) = 1 + sx(b− c) .

The relative trait-dependent fitness functions can be computed accordingly as,

fC(x) =
1 + s(bx− c)
1 + sx(b− c)

= 1− sc(1− x) +O(s2x2) = 1− sc+O(sx) ' 1− sc ,

fD(x) =
1 + sbx

1 + sx(b− c)
= 1 + scx+O(s2x2) = 1 +O(sx) ' 1 ,

fC(x)− fD(x) =
−sc

1 + sx(b− c)
= −sc+O(s2x) ' −sc ,

f∼(x) = x · fC(x) + (1− x)fD(x) = 1 .

(3.5)

We have expanded the denominator in the equations for the relative fitness functions in
powers of the selection strength, s, and the fraction of cooperators, x. This expansion is
valid since 0 ≤ x ≤ 1 always holds, and for our purposes 0 < s . 0.15 (weak selection) can
be assumed for most cases. The cost c will be set to 1 throughout this thesis.
The important point to notice is that fC − fD ' −s. This relation reflects the property
that defectors are microscopically always better off than cooperators. We can quantify
the microscopic advantage of defectors by the strength of selection s. Equation (3.3) then
quantifies the temporal evolution of each trait. Note that the x-averaged fitness f∼ is
simply 1 for the case of relative fitness functions.
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3.2 Population dynamics

Population dynamics describes the temporal evolution of the number of individuals N
living in a population. In other words, we are interested in the change of the number of
individuals, in contrast to evolutionary dynamics which focused on the temporal evolution
of different traits within one population of fixed size.
Especially, population dynamics studies the internal and external influences on the growth
of a population. External factors involve, for example, environmental conditions such as
the access to nutrients and the existence of toxics, the interaction with preys and predators,
or geometric restrictions. The feedback of individuals on the growth of the population can
be used as an example for an internal factor. In the following, let us briefly review some
of the basic growth laws.

The growth law of Malthus

This growth law assumes that each individual reproduces with a constant per capita growth
rate r [73],

∂tN(t) = r ·N(t) ,

which leads to the exponential growth law, N(t) = N0 · ert, whereas N0 prescribes the
initial population size. This growth law holds true, for example, if nutrients are abundant
in a bacterial colony [74].

The growth law of Verhulst

The growth of a population, however, is often limited due to finite resources or confined
space. In order to account for this situation, Verhulst introduced a negative term to the
differential equation from above [75],

∂tN(t) = r ·N(t)− N(t)2

K
, (3.6)

with K as the carrying capacity. In this picture, the population can only grow to the value
of r · K in size in a sigmoid way (see figure 3.1) which can, again, be often observed in
bacterial and microbial colonies [76, 74]. The solution to this differential equation is given
by,

N(t) =
rKN0e

rt

rK −N0 +N0ert
=

rK

(rK/N0 − 1)e−rt + 1
. (3.7)
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Figure 3.1: Comparison of exponential and logistic growth. In both cases, we have set r = 5;
for the logistic growth, we have K = 100 (cf. eq. (3.6)). The logistic growth levels
off in a sigmoid way at the value r ·K in contrast to the exponential growth which
grows unbounded. Note, however, that the initial dynamics, that is the dynamics at
a small individual number, is similar for both growth laws.

General growth laws

In general, the growth of a population can be described in mathematical terms by the
following ordinary differential equation,

∂tN(t) = F (N(t), t) ,

with F as a non-linear function in N . The growth might be explicitly time-dependent, for
example, if the supply with nutrients varies in time or if any other seasonal effects play a
role.
In most cases, the growth of a microbial colony can be divided into four phases [74]. In the
beginning, bacteria are founded in a medium and will grow only in size before reproduction
processes start. During this lag period, the number of bacteria remains approximately
constant. Thenceforth, the bacteria start to divide and an exponential growth phase can be
observed until the number of bacteria levels off due to geometric restrictions, for example.
This time period in which the growth rate of individuals in the population is balanced with
the death rate such that the total number of bacteria remains constant is referred to as
the stationary phase. Subsequently, the number of bacteria can decline at some point in
time if the microbial colony is not supplied with additional nutrients.
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Population growth of more than one species

The standard approach to the growth of a population constituted of more than one species
is the Lotka-Volterra model [77, 78]. This model describes the dynamics of two species,
one prey species A and one predator species B, with a system of two coupled ordinary
differential equations of first order in time,

∂tNA(t) = NA · (r1 − r2NB) ,

∂tNB(t) = −NB · (r3 − r4NB) ,

The first equation reflects the constant growth of the prey with rate r1. Species B preys
species A. As a consequence, the number of prey NA decreases with rate r2, and the
number of predators NB increases with rate r4. The survival of the predators is under
threat since food supply is only assumed to be given by the presence of species A. Hence,
NB constantly decreases with rate r3.

3.3 Stochastic formulation of growth processes

In our description of evolutionary and population dynamics, we have only applied a de-
terministic approach, so far. We treated the number of individuals as continuous and did
not include demographic fluctuations in our description. In nature, however, evolutionary
and population dynamics are governed by per capita birth and death events. Hence, these
processes are intrinsically stochastic. Sometimes, it is important to include demographic
fluctuations and correlations into the analysis since they can alter the qualitative behaviour
of the outcome of a model [2, 79]. By applying a mean-field approach, which neglects these
fluctuations and correlations in the system, it could happen that not all features of the
experimental observation are captured. Some effects might be entirely stochastic.

One suitable approach to include stochastic fluctuations into the description of growth
processes is the formulation of Markov processes which are a particular class of stochastic
processes [80, 81]. Stochastic processes focus on the probability to find a specific set of
random variables (a state), for example the number of individuals of different traits, at a
specific point in time. In contrast, a deterministic mean-field approach asks only for the
average number of individuals and neglects all correlations. This will become clearer when
we introduce the stochastic process for the logistic growth later on. A Markov process
is characterized by the property that the conditional probability distribution of a future
state only depends on the state the system governs at the present time. All past states
do not determine the future state directly. In this sense, Markov processes are said to
be memoryless. The time evolution of the probability distribution is determined by the
master equation which is a first-order differential equation in time. This equation entirely
bases upon the Markov property of the stochastic process.
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Let us elucidate the presented approach for an example, we have already encountered in
the discussion of growth laws, namely the logistic growth. In this example, the qualitative
outcome will not be changed by including stochastic fluctuations in our analysis, however
quantitative results change. Nevertheless, the discussion of the logistic growth is still
worthwhile in order to introduce some of the key concepts which will also be used later on.
Another prominent stochastic model is, for example, the Fisher-Wright model [79, 82]
which focuses on the relation between different traits in a population of fixed size.

3.3.1 Stochastic description of the logistic growth

In the logistic growth, we consider the dynamics of the number of individuals of one trait
S. The number of individuals is called N and is treated as a stochastic variable. We
are interested in the probability density P (N, t) quantifying the probability to find N
individuals at time t.
For birth and death processes, we further assume that the total number of individuals is
increased or decreased by only one individual at each birth and death event. For these
so-called one-step processes, the master equation which constitutes the temporal evolution
of the probability distribution P (N, t), reads as follows [80, 81],

∂tP (N, t) = ΓS→2S(N − 1, t) · P (N − 1, t) + ΓS→∅(N + 1, t) · P (N + 1, t)−
− ΓS→2S(N, t) · P (N, t)− ΓS→∅(N, t) · P (N, t) ,

=
(
(E− − 1)ΓS→2S(N, t) + (E+ − 1)ΓS→∅(N, t)

)
P (N, t) ,

where ΓS→2S and ΓS→∅ denote the birth and death rates, respectively. Note that the
temporal evolution of the probability distribution P (N, t) is determined by the balance
between gain and loss terms. The probability to reach state N at time t is increased if at
time t either N − 1 individuals live in the population and an additional individual is born,
or the colony consists of N + 1 individuals and one individual dies. The probability to
observe N individuals at time t decreases if N individuals are present and one individual
is reproduced or dies at time t.
In the last line, the notion of the step operator E± was introduced. This operator increases
or decreases formally the number of individuals by one. For a general population with
L different traits, the vector of the number of individuals for each trait is given by N =
(N1, . . . , NL) and we define the step operator by,

E±i f(N, t) := f(N1, . . . , Ni ± 1, . . . , NL) .

The logistic growth model is specified by the following growth and death rates (n = 1),

ΓS→2S = g(N) ·N , with g(N) = r, r > 0 ,

ΓS→∅ = d(N) ·N , with d(N) =
N

K
, K > 0 .
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Individuals reproduce constantly with rate r and die with rate N/K.
From the master equation we can infer the temporal evolution equation of the k-th moment
(k ≥ 1) of N ,

∂t
〈
Nk
〉

= ∂t

∞∑
N=0

NkP (N, t) =
∞∑
N=0

Nk ∂tP (N, t) . (3.8)

Upon inserting the master equation into eq. (3.8), one obtains for the moment equations,

∂t
〈
Nk
〉

=
∞∑
N=0

Nk ∂tP (N, t) , k ≥ 1 ,

=
∞∑
N=0

Nk
(
(E− − 1)g(N) + (E+ − 1)d(N)

)
NP (N, t) ,

=
〈
ΓS→2S · ((N + 1)k −Nk)− ΓS→∅ · (Nk − (N − 1)k)

〉
,

=

〈
k∑
i=1

(
k

i

)
N i
(
g(N)− d(N)(−1)k−i

)〉
, k ≥ 1 . (3.9)

Hence, the first two moments of the stochastic variable N can be computed via the following
differential equations,

∂t 〈N〉 = 〈N(g(N)− d(N))〉 ,

= r 〈N〉 − 1

K

〈
N2
〉
, (3.10)

∂t
〈
N2
〉

= 〈N(g(N + d(N))〉+ 2
〈
N2 · (g(N)− d(N))

〉
,

= r 〈N〉+
1

K

〈
N2
〉

+ 2r
〈
N2
〉
− 2

K

〈
N3
〉
. (3.11)

The crucial point to note here is that the dynamics of the k-th moment depends on the
value of the (k+1)-th moment which gives rise to an infinite cascade of moment equations.

We can neglect, however, all correlations in the system by applying the mean-field approx-
imation,

〈φ(N)〉 = φ(〈N〉) ,

for an arbitrary function φ. In other words, all higher moments of the stochastic variable N
are neglected. For this reason, the obtained solutions of the moment equations are called
deterministic in this context. The mean-field equation for 〈N〉 reads in this approximation,

∂t 〈N〉 ' 〈N〉
(
r − 〈N〉

K

)
, (3.12)
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which coincides with the rate equation of the logistic growth (3.6). In the mean-field
approximation, we obtain for the stationary case, which is characterized by ∂t 〈N〉st = 0,

r − 〈N〉st
K

= 0⇒ 〈N〉st = rK , (3.13)

which is reached by the mean-field solution (3.7) for t → ∞ as mentioned earlier; in
other words 〈N〉mf → 〈N〉st = rK for t → ∞. This mean-field result, however, does not
reflect the stationary case of the stochastic system properly. Stochastic simulations reveal
a different outcome. One can show that the actual mean of the number of individuals is
〈N〉 ≈ rK − 1. In this specific example of the logistic growth, the differences between
the deterministic approach and the stochastic solution are only of quantitative nature, but
sometimes the inclusion of stochastic fluctuations can alter the qualitative behaviour of the
system dramatically. We will highlight this important feature in the upcoming discussion
of two different growth models in section 3.4 and chapter 4.

3.3.2 Analytical treatment of stochastic fluctuations

A convenient method to incorporate stochastic fluctuations into the analysis, is the so-called
van Kampen system size expansion [81]. This method systematically includes demographic
fluctuations around the mean-field solution. The basic idea is to rewrite the stochastic
variable N as follows,

N = Ω · n(t) +
√

Ω · ξ , (3.14)

whereas Ω is the system size parameter, n(t) = 〈N〉mf /Ω denotes the deterministic solution,
and ξ defines the stochastic variable accounting for the fluctuations in N . The stochastic
noise term is weighted with

√
Ω. This ansatz accounts for the scaling relation of Gaussian

fluctuations which scale with the square root of the system size. Other scaling exponents,
however, could also make sense depending on the particular problem [83].
The van Kampen ansatz is inserted into the master equation which is then expanded in
powers of the system size Ω. This procedure results in a Fokker-Planck-type equation for
the probability distribution of the fluctuations, and one can infer first-order differential
equations for the first and higher moments of the fluctuation ξ. By solving the ODEs for
the first moment 〈ξ〉, one obtains a solution for the mean individual number,

〈N〉 = Ω · n(t) +
√

Ω · 〈ξ〉 ,

representing an improved mean-field result by including the effect of stochastic fluctuations.
Further details and a pedagogical introduction to the van Kampen expansion can be found,
for example, in the thesis of Stephani [84].
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Figure 3.2: Operation of the Gillespie algorithm for the stochastic cooperator-defector model
presented in section 3.4. The Gillespie algorithm falls into the class of kinetic Monte
Carlo algorithms. At each loop, the algorithm makes use of two random numbers in
order to sample from the probability distribution of which only the temporal evolution
is known (via the master equation). The idea is to simulate n groups each of which
follows a stochastic trajectory determined by the master equation.

3.3.3 Numerical simulations of stochastic processes: Gillespie
algorithm

Analytical calculations are often not feasible for stochastic processes especially when the
dynamics of the growth process is more complicated than in the logistic growth. Neverthe-
less, we would like to gain insight into the behaviour of the stochastic system and compare
it to the biological picture and the mean-field solution. This comparison can reveal the in-
fluence of stochastic fluctuations on the dynamics of the system. One possibility to obtain
a deeper understanding of the stochastic system is to focus on numerical realizations of the
stochastic dynamics. Stochastic algorithms are designed in such a way that they mimic the
dynamics of the stochastic variables by drawing samples from the probability distribution
for the random variables of interest. Most of the times, the probability distribution for the
random variables is not known. Its temporal evolution, however, can be determined via
the master equation.

A stochastic algorithm simulating the dynamics of a random variable, of which only the
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master equation of its probability distribution is known, is the Gillespie algorithm [85].
The Gillespie algorithm falls into the class of kinetic Monte Carlo algorithms. Figure 3.2
illustrates the operation of the algorithm for the stochastic cooperator-defector model
presented in the next section. In order to draw conclusions on the average behaviour of
the stochastic system, many realizations of single trajectories of the random variables have
to be investigated. In other words, the algorithm will only be valuable when executed for
an ensemble of the stochastic system.

3.4 Entangled view: Evolutionary game theory in growing
populations

In this section, we introduce a coupled approach of evolutionary dynamics and population
dynamics and therewith follow closely the model of Melbinger et al. [2]. See also the theses
of Cremer [44] and Melbinger [45] for details.
Before we turn to the formulation of the model, let us point out why a coupling of these
two fields is reasonable. First of all, both evolutionary and population dynamics rely on
birth and death events. Therefore, the total number of individuals in a population will
never be constant, and studying evolution within a growing group seems to be the natural
setup.
Moreover, the assumption that evolutionary dynamics and population dynamics can be
idealized as being independent does not hold in many cases. It is clear that population
dynamics depends on its internal structure, for example on how different traits are related
to each other. The converse direction is evident as well; the dynamics between defectors
and cooperators, for example, affects the growth of the total number of individuals in
a population [86]. Of course, the concrete interplay between population dynamics and
internal evolution is a matter of timescales. In general, population dynamics will act on a
much shorter timescale than internal evolution does. For some biological systems, however,
the coupling between both dynamics cannot be neglected. Biofilms are often referred to
represent such systems [87, 27, 88, 89].
Furthermore, we have one particular experiment in mind, namely the Rainey & Rainey
experiment, which showed the emergence and the dilemma of cooperation. There are two
mechanisms, we would like to model. Firstly, groups with a higher fraction of cooperators
will grow larger and faster than groups with a lower fraction of cooperators since it is
beneficial to have cooperators in the group. Secondly, defectors are microscopically always
better off than cooperators. They have an evolutionary advantage over the cooperators
since they do not contribute to the cooperation but still benefit from the presence of the
cooperators.
We will now present the generic approach of Melbinger et al. to exactly account for the
effects one has observed in the experiment. The model couples both, evolutionary and
population dynamics, in a stochastic model in order to include demographic fluctuations.
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3.4.1 The cooperator-defector model of Melbinger et al.

• The state of the stochastic system is defined by two random variables, which char-
acterize two different traits in a well-mixed population. We distinguish between the
cooperating trait, C, and the defecting trait, D, which are described by the number
of cooperators, NC , and by the number of defectors, ND, respectively. Equivalently,
the state can be characterized by the total number of individuals, N , and the fraction
of cooperators, x,

N = NC +ND , x =
NC

N
.

• Our focus lies on the time-dependent probability distribution P (NC , ND, t) which
quantifies the probability to find the system at time t with NC cooperators and ND

defectors.

Figure 3.3: Illustration of the stochastic one-step process in the cooperator-defector model,
adapted from [2]. At each point in time, the number of individuals can be increased
or decreased by one. The rates for the birth and death of an individual depend on
its trait (cooperator or defector). The innovative idea of Melbinger et al. is to de-
compose birth and death rates into a global part, which is trait-independent, and
a relative part, which is trait-dependent. In this way, evolutionary dynamics and
population dynamics are combined in this model.

The temporal evolution of the number of cooperators and defectors in this stochastic
one-step Markov process is determined by the master equation for the probability
distribution P (NC , ND, t),

∂tP (NC , ND, t) =
∑
S=C,D

(
(E−S − 1)ΓS→2S + (E+

S − 1)ΓS→∅
)
P (NC , ND, t) , (3.15)

= ΓC→2C(NC − 1, ND, t) · P (NC − 1, ND, t) +

+ ΓC→∅(NC + 1, ND, t) · P (NC + 1, ND, t) +

+ ΓD→2D(NC , ND − 1, t) · P (NC , ND − 1, t) +

+ ΓD→∅(NC , ND + 1, t) · P (NC , ND + 1, t) −
− (ΓC→2C(NC , ND, t) + ΓC→∅(NC , ND, t)) · P (NC , ND, t) −
− (ΓD→2D(NC , ND, t) + ΓD→∅(NC , ND, t)) · P (NC , ND, t) .
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In the last line, we explicitly expanded the master equation to elucidate the compact
notation in eq. (3.15). For an illustration of the one-step process see figure 3.3.

• This model is specified by growth and death rates for the cooperating and defecting
trait, implemented as birth and death events via ΓS→2S = GS ·NS and ΓS→∅ = DS ·NS

for S ∈ {C,D}. GS and DS define the per capita birth and death rates. The basic
and innovative idea is now to decompose both rates into a global part, which is
trait-independent, and a relative part, which is trait-dependent,

ΓS→2S(NC , ND) = ΓS→2S(N, x) = g(x,N) · fS(x) ·NS , S ∈ {C,D} ,
ΓS→∅(NC , ND) = ΓS→∅(N, x) = d(x,N) · ωS(x) ·NS , S ∈ {C,D} .

The global fitness g(x,N) and the global weakness d(x,N) affect the dynamics of
the population as a whole. The relative fitness fS(x) and relative weakness ωS(x)
represent the relative advantage or disadvantage of one trait over another. They
explicitly depend on the trait.
In this way, evolutionary dynamics and population dynamics are merged in this
model. Both approaches can be recovered from this combined view by setting the
respective other fitness to 1.
The global fitness rates are specified as follows,

g(x,N) = 1 + px, p > 0 ,

d(x,N) =
N

K
, K > 0 .

The definition of g(x,N) accounts for the effect that cooperative groups grow larger
than non-cooperative groups. The higher the fraction of cooperators is in the group,
the larger the group will grow in size. Hence, the global fitness is assumed to increase
with x. As the most direct approach, a linear increase of g with x is assumed. The
parameter p quantifies the advantage of cooperative groups.
The global death rate is motivated by the logistic growth and is characterized by the
carrying capacity K.
The trait-dependent part is specified as follows,

ωS(x) = 1 , S ∈ {C,D} ,

fS(x) =
ΦS(x)

Φ∼(x)
, S ∈ {C,D} .

The relative weakness is set to 1 for both traits since we assume that the chances of
survival are equal for cooperators and defectors. The relative fitness, however, should
reflect the fact that defectors are always better off than cooperators. Hence, we
choose the relative fitness functions from eqs. (3.5) in order to model the microscopic
interaction as a prisoner’s dilemma setup. We have already highlighted that this setup
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can be interpreted as a public good game in which cooperators have an evolutionary
disadvantage over the defectors (see section 3.1). Therefore, we apply,

ΦC(x) = 1 + s(bx− c) ,
ΦD(x) = 1 + sbx ,

Φ∼(x) = x · ΦC(x) + (1− x)ΦD(x) = 1 + sx(b− c) ,

with b = 3 and c = 1, and s as the selection strength which is a free parameter in
this model. As already mentioned earlier, the crucial point is that fC < fD. It was
shown that the important information about the selective advantage of defectors over
cooperators is already contained in the following equations which can be regarded as
independent of game theoretic considerations,

fC(x) = 1− s ,
fD(x) = 1 .

The greater the selection pressure s, the higher is the advantage of defectors in the
course of evolution.

By having specified the rates in the described way, we have set up a stochastic model that
combines frequency dependent selection with population growth dynamics. In order to
analyze the influence of intrinsic demographic fluctuations, we have to analyze the mean-
field solutions first.

3.4.2 Moment equations of the cooperator-defector model

We derive the moment equations for 〈N〉 and 〈x〉 from the master equation (3.15) in the
same way as it was already carried out in eq. (3.9) for the logistic growth. For the first
moment of NC and ND, one obtains in general,

∂t 〈NS〉 = 〈ΓS→2S(NC , ND, t)− ΓS→∅(NC , ND, t)〉 ,
= 〈NS · (g(x,N)fS(x)− d(x,N)ωS(x))〉 ,

for S ∈ {C,D}. In terms of the variables x and N , these equations read as,

∂t 〈NC〉 = ∂t 〈x ·N〉 ,
= 〈x ·N · (g(x,N)fC(x)− d(x,N)ωC(x))〉 ,

∂t 〈ND〉 = ∂t 〈(1− x) ·N〉 ,
= 〈(1− x) ·N · (g(x,N)fD(x)− d(x,N)ωD(x))〉 .

Adding both equations leads to,

∂t 〈N〉 = ∂t 〈NC +ND〉 ,
= 〈N · (g(x,N)f∼(x)− d(x,N)ω∼(x))〉 ,
= 〈N · (g(x,N)− d(x,N))〉 .
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In the last step, the definition of f∼(x) was applied. As mentioned earlier, this definition
has the property,

f∼(x) = x · fC(x) + (1− x) · fD(x) = x · ΦC(x)

Φ∼(x)
+ (1− x) · ΦD(x)

Φ∼(x)
= 1 ,

and the same holds true for ω∼(x) = 1. In summary, we arrive at the following two moment
equations which will be the starting point of our further analysis,

∂t 〈N〉 = 〈N · (g(x,N)− d(x,N))〉 (3.16)

∂t 〈x ·N〉 = 〈x ·N · (g(x,N)fC(x)− d(x,N)ωC(x))〉 (3.17)

3.4.3 The population average of the fraction of cooperators

Before we proceed with the mean-field analysis, let us study one particular interesting ob-
servable, namely the population fraction of cooperators. Consider a population consisting
of n groups as depicted in figure 3.4.

Each of the n groups is comprised of NC,i cooperators and ND,i defectors for all i ∈
{1, . . . n}. All n groups follow the same stochastic dynamics as described above. By
decomposing the whole population into n groups, we have effectively introduced a structure
on the population. We have mentioned in chapter 1 that such a population structure could
pave the way for the maintenance of cooperation. For the moment, we are not interested
in how such a division of the whole population into sub-populations might have arisen in
nature. The significance of the population structure will be discussed later on in chapter 6.

It is of interest, however, how the overall fraction of cooperators, 〈x〉pop, evolves in time.
We will refer to this quantity as the population average of the fraction of cooperators since
it focuses on the percentage of cooperators in the whole population of n groups. From the
meaning of 〈x〉pop, its mathematical definition is evident,

〈x〉pop :=

∑n
i=1NC,i∑n
i=1Ni

. (3.18)

By rewriting this fraction, we can identify the observable of interest 〈x〉pop with the en-
semble average of the number of individuals,

〈x〉pop =

∑n
i=1 NC,i∑n
i=1Ni

=
1
n

∑n
i=1NC,i

1
n

∑n
i=1Ni

=
〈NC〉
〈N〉

.

Note that this observable is in general different from the ensemble average of x,

〈x〉 =

〈
NC

N

〉
6= 〈NC〉
〈N〉

= 〈x〉pop .
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Figure 3.4: Illustration of the population average of the percentage of cooperators. Consider a
population consisting of 6 groups at time t > 0. Due to demographic fluctuations,
the number of defectors and cooperators varies within each sub-population. Within
each group i ∈ {1, . . . 6}, the fraction of cooperators is computed via xi = NC,i/Ni,
and the average percentage of a group is then given as 〈x〉 = 1/6

∑6
i xi = 0.35. The

main observable of interest, however, is the average fraction of cooperators 〈x〉pop

over the whole population. In this simple structured population, it is actually the
crucial observable in order to understand how cooperation can be maintained. Here,
we compute 〈x〉pop = 〈NC〉 / 〈N〉 = 0.42, which is higher than the ensemble mean
〈x〉.

It is also noteworthy that the notion of 〈x〉pop does not make sense if one interprets the
population average for one group only. In contrast, 〈x〉 can be interpreted as the mean
fraction of cooperators of one group only. In the picture of an ensemble of groups in
one population, however, the definition of 〈x〉pop does make sense. It is actually a cru-
cial observable in order to understand how cooperation can be maintained in structured
populations. Hence, we will focus our attention on the dynamics of 〈x〉pop in the following.

3.4.4 Mean-field analysis of the cooperator-defector model

In this section, we will analyze the cooperator-defector model of Melbinger et al. [2] in
the mean-field approximation, that is we neglect all correlations and fluctuations in the
system. In particular, we are interested in the mean individual number, 〈N〉, the mean
percentage of cooperators in the population, 〈x〉, and the introduced population x-average
〈x〉pop.
Up to now, we have formulated all derivations towards eqs. (3.16), (3.17) in full generality.
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Now, we specify the rates accordingly to the model of Melbinger et al.. Furthermore, we
neglect all correlations and fluctuations in the system, and apply the mean-field approx-
imation, 〈φ(N)〉 = φ(〈N〉) for an arbitrary function φ. For the mean individual number
〈N〉, one obtains from eq. (3.16) in the mean-field picture,

∂t 〈N〉
MF' 〈N〉

(
1 + p 〈x〉 − 〈N〉

K

)
, (3.19)

Comparing this result to eq. (3.13), we recognize that the mean-field equation reduces to
the logistic growth equation if we set p = 0. In this sense, the model of Melbinger et al. can
be regarded as a natural extension of the logistic growth involving evolutionary dynamics.
The growth of the mean number of individuals is basically a logistic growth with the x-
dependent carrying capacity (1 + px)K.
For the population average of x, we obtain,

〈x〉 =

〈
NC

N

〉
MF' 〈NC〉
〈N〉

= 〈x〉pop .

In other words, both x-averages coincide in the mean-field picture. By applying eq. (3.17),
the temporal evolution of 〈x〉pop in the mean-field can be computed as follows,

∂t 〈x〉pop = ∂t

(
〈NC〉
〈N〉

)
=
∂t 〈NC〉
〈N〉

− 〈NC〉
〈N〉2

∂t 〈N〉 ,

MF' 〈x〉
(

(1 + p 〈x〉)fC(〈x〉)− 〈N〉
K

)
− 〈x〉pop

(
1 + p 〈x〉 − 〈N〉

K

)
,

MF' −s 〈x〉 (1− 〈x〉)(1 + p 〈x〉) ' ∂t 〈x〉 . (3.20)

We would like to highlight two important observations at this point. The time at which
the fraction of cooperators changes on average is τx ∝ 1/s since s ' 0.05 � 1 (weak
selection) and p ' 10, thus g = (1+px) lies in the order of 1. The mean individual number
〈N〉, however, changes on a timescale τN ∝ 1. Hence, the population growth is much
more rapidly than the timescale at which selection acts. As a consequence, the individual
number can grow nearly towards the carrying capacity 1 + px0 in the beginning since the
fraction of cooperators changes only slowly during this initial period (see figure 3.5). More
importantly, the population average of the fraction of cooperators decreases for all times
since s > 0 meaning that cooperators will ultimately die out.

3.4.5 Stochastic analysis of the cooperator-defector model

Let us now investigate how the mean-field behaviour changes due to the inclusion of
stochastic fluctuations. Figure 3.5 shows the outcome of a simulation which involves the
dynamics of 10000 groups. As one can see from the left plot, the stochastic result for the
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Figure 3.5: Results of the stochastic simulation of the dynamics of 10000 groups versus mean-
field solution for 〈N〉 and 〈x〉pop in the cooperator-defector model. The left subplot
shows also the average number of cooperators and defectors as obtained from the
simulation. The mean-field solution for the total number of individuals represents the
stochastic curve in good accordance. The behaviour of the population average of the
fraction of cooperators, however, reflects a striking change when we include stochastic
fluctuations into our analysis. Whereas the mean-field solution for 〈x〉pop declines
strictly monotonically for all times, the stochastic simulation reveals an overshoot,
that is a transient increase of cooperation. This effect is purely due to demographic
fluctuations and can be characterized by the time tC in which 〈x〉pop exceeds its
initial value x0. The population average of the percentage of cooperators is the main
observable of interest since it describes the change of the fraction of cooperators in a
structured population.
Chosen parameters: s = 0.05, p = 10,K = 100, b = 3, c = 1.
Initial values: N0 = 4, x0 = 0.5.

average total number of individuals is in good accordance with the mean-field solution.
The behaviour of the population average of the fraction of cooperators, however, reflects
a striking change when we include stochastic fluctuations into our analysis. Whereas the
mean-field solution for 〈x〉pop declines strictly monotonically for all times, the stochastic
simulation reveals an overshoot, that is a transient increase of cooperation at the begin-
ning of the evolutionary dynamics. Hence, the transient increase of cooperation is a purely
stochastic effect which is due to demographic fluctuations. The typical size of demographic
fluctuations scales as 1/

√
N . In other words, stochastic fluctuations will have a higher im-
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pact on the dynamics if the number of individuals is relatively low, that is in the beginning
of the evolution. In Figure 3.5, we have started the dynamics with all groups containing
two cooperators and two defectors. Since tiny fluctuations in the number of individuals
have a high impact on the fraction of cooperators in that group, the peaked distribution in
x over the whole ensemble of groups broadens immediately after the dynamics is started.
The population growth, as we have seen, dominates the influence of the selection pressure
in the beginning. Since we introduced a global growth rate that favors cooperative groups
(g = 1 + px), groups with a higher fraction of cooperators will grow larger than groups
with a lower percentage of cooperators. In this way, demographic fluctuations are asym-
metrically amplified towards an increasing fraction of cooperators for the initial dynamics.
Therefore, the population average 〈x〉pop will increase because cooperative groups have a
larger weight in the average due to their larger size. For larger times, however, selection
pressure drives the system ultimately towards a state in which only defectors survive. Only
purely cooperative groups can remain stable in the long run.
The transient increase of cooperation can be characterized by the time tC in which 〈x〉pop

exceeds its initial value x0. Melbinger et al. show numerically and analytically in [2] that
tC decreases with a higher selection strength s. The higher the selection pressure is, the
shorter is the time period in which cooperation can increase. Moreover, the transient in-
crease of cooperation is more pronounced the smaller the individual group size N0 is. The
less individuals are present in the beginning of the dynamics, the higher is the impact of
demographic fluctuations scaling as ∝ 1/

√
N0. The asymmetric amplification of fluctua-

tions is also promoted by a lower initial percentage of cooperators x0 with the result that
the maximal fraction of cooperators increases with a dropping value of x0.

3.5 Summary

In this chapter we have introduced both the concept of evolutionary dynamics and popu-
lation dynamics. By combining the two approaches in a stochastic setup, Melbinger et al.
established a model to study evolutionary game theory in growing populations. This
model is designed in such a way that it reflects the two basic properties we have already
encountered in chapter 1. Firstly, cooperative groups will grow larger and faster than non-
cooperative groups (mediated by parameter p) since it is beneficial to have cooperators
in the group. Secondly, defectors have an evolutionary advantage over the cooperators
(mediated by parameter s) since they do not contribute to the cooperation but still benefit
from the presence of the cooperators.
By analyzing the population mean of the percentage of cooperators, one observes an over-
shoot in this observable. The transient increase in 〈x〉pop = 〈NC〉 / 〈N〉 is a purely stochas-
tic effect driven by demographic fluctuations. The model, however, cannot explain the
maintenance of cooperation for longer times. Ultimately, cooperation will cease.
Nevertheless, Melbinger et al. could show that cooperation can be maintained by means of
repetitive fragmentation of populations into smaller sub-populations [90]. We will discuss
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this approach in chapter 6 later on.



4 Mat Model

In this chapter, we want to take the experiment of Rainey & Rainey [1] as basis for a
stochastic model that accounts for the main effects that were observed in the experiment
and that have been described in chapter 2. The focus will be put on modeling the emer-
gence of cooperation in this biological experiment, the dilemma of cooperation and on a
proposal to maintain cooperation in the long run later on. Thereby, the spirit of the generic
cooperator-defector model of Melbinger et al. will be applied to the specific situation in
the mat experiment.

First of all, we explain why the naive application of the introduced cooperator-defector
model of Melbinger et al. to the mat experiment of Rainey & Rainey is not possible in
a direct way (section 4.1). By discussing the phenomenology of the growth and sinking
process of the mat, we will identify the effective mat density as an additional structural
element to the model of Melbinger et al. (section 4.2). The cuboid model of the mat
will be introduced in section 4.3 and the concept of the effective mat density will be
introduced. We derive the dynamics of the mat expansion and the mat density from a
phenomenological approach (section 4.4), and define the coupling of the mat structure to
population dynamics. The final stochastic mat model is formulated in section 4.6 and
summarized in figure 4.8 which illustrates the central ideas and results of this chapter.
As an aside and consistency check of the mat model, the temporal evolution of the mat
density is derived in section 4.8.

4.1 Scope and limitations of the mat model

Let us set the scope of the mat model. First, it will be helpful to identify the features that
are not goal of the description within this mat model. The experiment of Rainey & Rainey
mainly points out the qualitative effects of the evolution of cooperation in these mat
populations. In this way, the available data mostly contains only a few experimental re-
alizations. See for example figure 2.5, where each data point represents the average over
three measurements of the number of cooperators. Stochastic fluctuations and measure-
ment uncertainties will limit the scope of quantitative conclusions. Hence, we should not
aim at fitting the data with the mat model or try to extract quantitative results.
Moreover, the mat experiment depends on many parameters, for example the exact ex-
tension of the glass pot and the density contribution of a cooperating and a defecting
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bacterium. Furthermore, biological details play a crucial role for the mat growth process
and the dilemma of cooperation. How does the mat grow at its front? How often do mu-
tations occur from a cooperating genotype to a defecting genotype and how is this change
in genotype translated into phenotypic expression? The answers to these questions are not
known to smallest detail and limit the scope of application of the mat model.
We can model, however, the main effects from a somewhat coarse-grained point of view by
not including all microscopic details. Still, we can gain a qualitatively accurate description
of the experiment. We will take the qualitative results as motivation and decide on an
abstract model in an averaged view that should be robust under changes of parameters
and specific functional dependencies. The model should express the observational fact that
defectors are always better off than cooperators on a microscopic level, but mats with a
higher fraction of cooperators can grow larger and will ultimately survive longer.
In chapter 3, we have already introduced a stochastic model coupling both evolutionary dy-
namics with population growth. In addition to this model, the Rainey & Rainey experiment
has a structural element that limits its direct application, namely the spatial heterogeneity
of the experimental setup. It results in the development of a mat, whose structure couples
back to population dynamics. All in all, we want to introduce an extension of the afore-
mentioned stochastic model that describes the emergence and the dilemma of cooperation
in a growing mat population by reproducing the experimental results of Rainey & Rainey
qualitatively. We shall evaluate the mat model on how it meets these demands. Later
on, we will also investigate the possibility of regrouping steps of these mat populations to
propose a possible way to maintain cooperation.

4.1.1 Setting up the null model

Let us point out why a direct approach as presented in chapter 3.4 cannot be sufficient to
describe the effect of the evolution of cooperation and conflict in the experimental bacterial
populations [1].
If we consider the evolution of one species only, which we will refer to as the null model in
the following, in the framework of the model of Melbinger et al., the dynamics reduces to
a logistic growth. This aspect can be seen from the master equation (3.15) for the coupled
model in the case where x = 1 (only cooperating trait present) or x = 0 (only defecting
trait present).
In this way, the model of Melbinger et al. can be regarded as an extension of the logistic
growth to a population with two traits, one cooperating and one defecting, as desired. It
was shown in section 3.3 that for the logistic growth, the average number of individuals
only increases and levels off at around the value of the imposed carrying capacity K.

In the Rainey & Rainey experiment, however, we have seen that the number of cooperators
decreases after some time and converges to zero due to the sinking of the mat (cf. figure 4.1).
In other words, the null model of Melbinger et al. is not sufficient to describe the qualitative
outcome of the experiment adequately. This point also becomes clear from a mathematical
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Figure 4.1: Qualitative sketch of the number of cooperators (left) and its derivative (right) over
time from the experiment. The number of cooperators increases in the beginning due
to the mat growth. After having passed the maximal individual number NC,max, the
mat sinks and the population number decreases in time.

point of view. If we look at the mean-field equations from chapter 3.4 for the null model,
that is for only one cooperating trait present in the experiment, we obtain

∂tNC
one trait

= ∂tN = h(N) . (4.1)

This equation is a first order ordinary differential equation (ODE) that has the property
to be autonomous since it does not explicitly depend on time. The point is that this
autonomous ODE cannot reproduce a qualitative behaviour, observed in the experiment
(cf. figure 4.2), where we have an increase and a decrease of the individual number for every
value of NC < NC,max. The derivative ∂tNC would have to take two different values for
one value of NC which is not possible in a mathematical frame. In other words, ∂tNC(NC)
would not be well-defined.

To resolve this mathematical problem, we have two obvious generalizations of eq. (4.1) at
hand.

• We could introduce an explicit time dependence of the function h(N)→ h(N, t). For
example, the ODE for a Gaussian solution would fit in this picture. The problem of
this approach lies in the physical interpretation of the explicit time dependence. What
is the mechanism that determines the time scale of the function h(N, t)? Actually
we are interested in such a time scale from a physical point of view and do not
want to introduce this scale by hand. The timescale defined on which ∂tN changes
should come out of a reasonable physical model. Thus, the physics of the population
dynamical problem limits the application of this approach.

• We could introduce a new variable ρ, independently defined of N , and formulate the
time development of that variable. Clearly, the dynamics of ρ has to be coupled to
the dynamics of N in order to account for the decrease of N after having passed its
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Figure 4.2: Plot of ∂tNC versus NC derived from the plots in figure 4.1. The curve shows that
the derivative of the individual number ∂tNC cannot be a function of one variable
NC only, even in absence of defectors. For one value of NC , two according values of
the derivative exist, one during the phase of the mat growth (∂tNC > 0), and one
during the sinking of the mat (∂tNC < 0). The function ∂tNC(NC) would be not be
well-defined. To resolve this mathematical problem, we will introduce a new variable
ρ and identify it as effective mat density. The dynamics of ρ will be coupled to the
dynamics of the number of individuals and account for the drop in NC .

maximum (cf. figure 4.2),

∂tN = h1(N, ρ) ,

∂tρ = h2(N, ρ) .

By introducing the new variable ρ, the problem with an explicit definition of a
timescale does not arise. Moreover, it seems promising from the physics point of
view to identify the new variable ρ with a structural element of the mat growth,
namely the effective density of the mat. The sinking of the mat is actually caused
by an increased mat density, and results in a decrease of the bacteria number in the
mat as described in chapter 2.

We will investigate the physics of the evolution of the structure and the density of the
mat in more detail in the next section since this picture will be the basis of the proposed
stochastic model for the bacteria growth.

4.2 Phenomenology of the growth and sinking of the mat

Let us briefly examine the physics of the mat and the phenomenology of the mat density
in order to motivate the second option of the proposed solutions to resolve the difficulty
with the null model from last section.
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An extended object will sink in a basin filled with water if the buoyancy force FB the
object experiences in water is lower than its gravitational force FG (see figure 4.3 for an
illustration). The buoyancy force is the gravitational force of the water the object displaces.
Hence, the process of sinking starts if FB ≥ FG, or equivalently ρmat ≥ ρH2O. That is, if
the average density of the mat exceeds the density of water, the mat will sink.

Figure 4.3: Swimming (a) and sinking (b) of the mat. The behavior of the mat is determined
by the effective buoyancy force and the gravitational force acting on the mat. The
effective buoyancy force combines the actual buoyancy force, that is the gravitational
force of the water the mat displaces, the attachment forces between the bacteria
expressing the extracellular polymer and the glass vial, and the surface tension of the
mat. Later on, we will introduce the effective mat volume (dashed contour) and the
effective density to account for these effects (see section 4.3). The mat will sink if the
effective buoyancy force is less than the gravitational force of the mat (b). When the
mat expands (a), the effective buoyancy force exceeds the gravitational force such
that the mat swims.

In this picture, we assume that only the buoyancy force of the mat is responsible for the
swimming and sinking of the mat. The experiment (cf. chapter 2) shows, however, that
the wrinkly spreader cells also attach firmly to the glass vial [55]. This attachment cannot
be neglected when discussing the forces that lead to the formation of the mat. Moreover,
surface tension might contribute as a force acting against gravitation. Due to our ignorance
of these forces and other microscopic details, we shall nevertheless regard the buoyancy
force as a net force accounting for the microscopic details and giving rise to the swimming
and sinking of the mat (see figure 4.3). This averaged view is mediated by the notion of
an effective mat density which will be defined and explained carefully in section 4.3. For
now, we want to introduce the phenomenological picture of the growth and sinking of the
mat and its relation to the mat density.

In figure 4.4 the mat density is plotted versus time and the sinking process of the mat is
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Figure 4.4: Phenomenology of the growth and the sinking of the mat. The effective mat density
is plotted versus time and the sinking process of the mat is depicted as a result of
the increase of the effective mat density. The effective density does not only account
for the density contribution of the bacteria, but also for their attachment to the glass
vial. The actual bacteria mat is depicted by the green filled cells. Here, we do not
distinguish between cooperating and cheating cells. The white cells are places which
are not occupied by the mat. They will be involved in the mat model later on, where
the effective mat volume is defined as the smallest cuboid containing the bacteria
mat. Note that there is no time scale given for the sinking process (it could be linear,
logarithmic, etc.). This qualitative picture has to be justified by a microscopic model
for the mat density, which will be subject of the following sections. For a detailed
description, see text.

depicted as a result of the density increase. The phenomenological picture of the sinking
process is the same for both solely cooperative mats and mats with cooperators and de-
fectors. We will discuss the influence of defecting bacteria on the dynamics of the mat
later on. In the beginning, a few cooperating bacteria attach to the edge of the pot at the
liquid-air interface through the overproduction of the extracellular glue-like polymer. The
bacteria cluster as close as possible to the water surface since the high concentration of
oxygen is advantageous to their metabolism and gives rise to an evolutionary advantage
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over the ancestral cells in the broth. The cluster will expand in the following in all possible
spatial directions (cf. figure 4.4 (1)). However, the oxygen concentration decreases rapidly
with distance to the liquid-air interface [52]. As the presence of oxygen is the main driver
for the effective growth rate of the bacteria cells (cf. chapter 2), the horizontal growth is
faster than the growth towards the bottom of the pot. Effectively, the vertical growth will
be highly dominated by the horizontal growth (cf. figure 4.4 (2)).
The first expanding bacteria at the front of the mat build up the skeleton of the mat
from which the space between the skeleton frames will be filled up with more bacteria (cf.
figure 4.4 (3)). The latter process will be referred to as aggregation or interior growth,
whereas the horizontal and vertical expansion of the mat will be called front growth from
now on.
Because of the finite extension of the broth pot, the horizontal growth will cease at some
point in time and hence the total front growth rate converges to zero. Thenceforth, the
interior growth dominates the front growth and results in a sharp increase of the mat
density. The average mat density ultimately reaches the density of the broth phase which
is approximately the density of water which causes the sinking of the mat (cf. figure 4.4
(4)). During the sinking process, the density could slightly increase further on since there
may be some parts of the mat that are still close to the liquid-air interface, where oxygen
is present in high concentration. Finally, the value of the mat density levels off at the
maximal value ρmax (cf. figure 4.4 (5)).
If the experimentalists used a pot with a large extension (or imagine an infinitely extended
glass vial), the mat would also sink ultimately. Since the vertical growth is limited by
the supply of oxygen in the water, which rapidly decreases with distance to the liquid-air
interface, the interior growth will always dominate locally after some time and lead to an
local increase of the density towards the density of water although the averaged density
of the whole mat could lie below the value of the density of water. Therefore, the whole
mat will also kink for an infinitely extended pot, but more slowly than for a finite pot. In
summary, the extension of the pot has an impact on the total number of bacteria in the
mat and the time scale at which the sinking of the mat takes place.

In presence of defecting bacteria, that is bacteria not overproducing the sticky polymer,
the sinking process of the mat will be accelerated. Defecting bacteria are not conducive
to the mat expansion since other bacteria cannot attach to a defecting cell. Hence, only
cooperators strengthen the structure of the mat by expansion. Moreover, if the network
of cooperating bacteria is dense enough, defectors can get stuck in this network. Since
defectors do not overproduce the glue-like polymer, a defecting bacterium in the mat
contributes to the mat density with an effective density much greater than a cooperator
does. They can be regarded as an additional weight pushing the effective mat’s density
ρmat faster to the critical value ρH2O at which the mat starts to sink.
If we have two mats with the same total number of individuals, one with cooperators only
and one with both cooperators and defectors, the latter will sink faster than the solely
cooperative one since the spatial density distribution in the cooperative mat will be more
homogeneous than in the mat with cooperators and defectors. Thus, the swimming of
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the cooperative mat is much more stable than for the mixed mat. This difference in the
structure of the two mats leads to a gradual sinking of the mat if only cooperators are
present and an abrupt drop of the mat if defectors are present in the mat.

4.3 Notion of the effective mat density

Up to now, we have gained an intuitive picture of the phenomenology of the growth and
sinking of the mat, as well as the dynamics of the mat density. In order to translate the
presented influences and dependencies into mathematical language, we will now define a
model for the mat and its density. We will describe the sinking of the mat later on by
taking care of the structural element, namely the effective mat density.

4.3.1 Cuboid model of the mat

At each point in time, the mat will be idealized by a cuboid with M sites, whereas each
cell has a length of size a. The cuboid with M sites is the smallest cuboid containing the
mat volume and can be viewed as the cuboid-like convex hull of the mat; see figure 4.5
for an illustration. M is then the effective mat volume. The notion of an effective mat
volume is necessary for the definition of a mat density on a macroscopic level which will
be presented shortly. The fictive M sites of the mat can be free or occupied by the N
bacteria cells in the mat. The effective volume M is determined by the way in which the
mat grows. The more crinkly the mat grows, the bigger will be the difference between the
effective volume M and the actual number of occupied sites N . For a compactly growing
mat, N will only be slightly less than M . A further discussion of the growth of the mat
volume will be presented in due course. Note that M is a discrete stochastic variable
due to the stochasticity of the mat growth process. Nevertheless, M will be treated as
a continuous deterministic variable because of our ignorance of microscopic details of the
mat growth process. This abstraction will be pointed out later on. We will measure all
lengths in the microscopic length unit a, and, as a consequence, the volume of the mat is
simply Vtot = M . The microscopic length scale a corresponds to the effective extension of
a bacterium cell such that a3 models the effective volume of a bacterium. The extension
of Ps. fluorescens lies in the order of 10−7 m [52] and similarly does a.

4.3.2 Model for the effective mat density

As already mentioned, the mat will sink if its effective density, ρmat, exceeds the density of
water, ρH2O. We have argued that we will understand the buoyancy force in a generalized
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Figure 4.5: Cuboid model of the mat. We consider the mat as a cuboid with an effective volume
Vtot. The cuboid can be thought of as being composed of M cubic cells, each of
which having an extension of length a. The length a refers to the spacial extension
of a bacterium. The cuboid with M sites is the smallest cuboid containing the mat
volume and can be viewed as the cuboid-like convex hull of the mat. Each cell of this
cuboid is then empty or occupied by a bacterium (indicated by a green cell). If we
measure lengths in units of a, the total volume of the mat is given by Vtot = M . In
the depicted example, the mat consists of 5 bacteria (green cells, N = 5) occupying
an effective mat volume of M = 12 sites. The normalized mat density would then be
γ = 5/12 · z∼(x) (see text for detailed explanation).

sense such that it also includes the surface tension of the mat and the forces responsible for
the attachment of the glass vial. In this picture, the effective density of the mat includes
these effects as well.

As a first approach, we will define the effective mat density microscopically as the occu-
pation density of the effective mat volume, that is proportional to N/M . The density
contribution of a bacteria cell has to be greater than the density of water to account for
the sinking of the mat at some point. For that reason, we assign the density contribution
ρ = z · ρH2O, with z > 1, to each occupied cell in the effective mat volume. If cooperators
and defectors had the same contribution to the mat density, this relation would lead to,

ρmat =
N

M
· z · ρH2O .

The density contributions of a cooperating cell and a defecting cell, however, are different.
As described above, only cooperators overproduce the sticky polymer. Therefore, we dis-
tinguish both traits by their structure factor zC and zD. With the density contributions
ρC = zC · ρH2O for a cooperator, and ρD = zD · ρH2O for a defector, this notion translates
into a different contribution to the mat density. We impose 1 < zC < zD for the structure
factors such that ρH2O < ρC < ρD. With these different density contributions, we have to
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weight the contributions according to the number of bacteria present in the mat:

ρmat =
1

M
· (NC · ρC +ND · ρD) =

ρH2O

M
· (NC · zC +ND · zD) .

In order to couple the mat density to population dynamics later on, it will be useful to
define the normalized mat density γ as follows,

γ :=
ρmat

ρH2O

. (4.2)

The normalized mat density, γ, varies in a range 0 < γ ≤ ρmax/ρH2O =: γmax with γmax > 1.
The mat sinks when γ = 1 is reached. For our purpose, we can assume that γmax ' 1 since
the sinking process of the mat itself can be simplified as being density-independent once
the mat has arrived at the critical density γ = 1.

In the picture of the cuboid model of the mat, one obtains for the normalized density,

γ =
ρmat

ρH2O

=
1

M
· (NC · zC +ND · zD) =

N

M
· (x · zC + (1− x) · zD) =

N

M
· z∼(x) , (4.3)

where the definition of an x-averaged function (cf. section 3.4) was applied in the last step.
The function z∼(x) interpolates linearly between the two border cases z∼(x→ 1) = zC and
z∼(x→ 0) = zD with both zC and zD being greater than 1, and hence z∼(x) > 1.

In general, the normalized density γ can be regarded as the observable that accounts for
the structure of the mat. This structural parameter determines the success of the group
since the mat sinks when γ = 1 is reached.
In the following, we will investigate how the structural observable γ, or equivalently the
effective mat volume M , evolves in time and how it can be coupled to the stochastic growth
dynamics of the mat. Note again that we have 2 + 1 independent variables, namely x, N ,
and either γ or M ; γ and M are related to each other via eq. (4.3).

4.3.3 Impact of front and interior growth on the effective mat density

Let us now discuss the influence of the front growth and the interior growth on the ef-
fective mat volume in order to combine the phenomenological picture, we have obtained
in section 4.2, with the definitions from above. Both growth processes are visualized in
figure 4.6.

• We have seen that cooperators build up the mat skeleton and hence increase the
effective volume of the mat. This front growth of the mat (cf. figure 4.6 (a)) results
in a decrease of the mat density since the mat is expanding, and reflects a pressure
of the dynamics of the mat density towards ρmin, which is the minimal density the
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Figure 4.6: Mat growth processes. The lattice represents the effective mat volume composed of
M cells. The green cells characterize the cells which are occupied by bacteria.
(a) The front growth involves the expansion of the mat. Only cooperators build up
the mat skeleton and hence increase the effective volume of the mat. It results in a
decrease of the normalized density of the mat. The growth in the horizontal direction
dominates the expansion in the vertical direction since oxygen is abundant only at
the liquid-air interface. The expansion of the mat is limited by the finiteness of the
broth pot.
(b) The interior growth is an aggregation process resulting in an increase of the mat
density. It is idealized to be proportional to the number of free places in the effective
mat volume. Later on, we will assume for the interior growth that defectors have a
greater growth rate than cooperating cells since they are microscopically better off
than cooperators.

mat could have if only the mat skeleton was built up.
Furthermore, the rate of the front growth is monotonically increasing with the frac-
tion of cooperators, x, since only cooperators can build up the mat skeleton. Hence,
the front growth rate of the mat should increase with a higher fraction of coopera-
tors. This effect is limited by the geometrical boundary conditions of the experimen-
tal setup, e.g., the finiteness of the broth pot. If the front of the mat reaches the
boundary of the pot, the expansion at the front comes to a halt.

The growth of the mat is only due to the presence of cooperators – without coop-
erators, the mat would not grow. Hence, the mat model will only be applicable for
0 < x0 ≤ 1, with x0 as the initial percentage of cooperators in the mat.
Actually, the results of Rainey & Rainey suggest that in the beginning of the mat
growth only cooperating bacteria are present some of which mutate to a defecting
bacterium later on (see chapter 2). Mutation rates in the coding region lie typically
in the range of 10−7 to 10−11 [91]. In other words, one nucleotide per 107-1011 nu-
cleotides per cell generation changes due to mutation. Furthermore, the error rate
of the gene expression, that is the translation of the genetic information into phe-
notypic expression, is approximately 10−9 for microbes [92]. In total, the mutation
rate in the sense of the rate corresponding to the change in the phenotype can be
assumed to be in the order of 10−7. This order of magnitude is also backed up by the
quantitative analysis of figure 2.4, where the numbers of cooperators and defectors
in the mat experiment are plotted over time. Defecting cells can be estimated to
appear approximately between day 1 and day 2, when 106-107 cooperating bacteria
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are already present in the mat.

For the sake of clarity and simplicity, however, we do not model the mutations from
a cooperating WS bacterium to a defector, but start the dynamics with a certain
amount of defectors in the mat instead. Nevertheless, for a more realistic model, mu-
tations can be included in this population growth model, too. The reader is referred
to [65] for the implementation and the analysis of mutation processes in a stochastic
cooperator-defector growth model.
By neglecting these mutations, it follows that the initial fraction of cooperators x0

should be slightly less than 1 to account for an adequate description of the experi-
mental situation.

• The interior growth (cf. figure 4.6 (b)) is an aggregation process resulting in an
increase of the density. This effect is a driving force for the dynamics of the mat
density towards a maximal density, ρmax. The interior growth rate will be modeled
to be proportional to the number of free places in the mat. This point will be
explained more carefully later on.
The aggregation process should depend on the mat structure and the total number of
bacteria N in the mat. We can also assume that the aggregation process is faster the
more defectors are present in the mat since we model defectors to have an evolutionary
advantage over cooperators as motivated in chapter 2 and implemented in chapter 3.

4.4 Mathematical formulation of the mat growth process

In the last section, we have defined the effective mat volume M and the related normalized
mat density γ, and identified them as the structural quantities characterizing the sinking of
the mat. Here, the phenomenological picture, we have gained up to now, will be specified in
a mathematical framework to determine the temporal evolution of the effective mat volume.
Furthermore, we will determine the growth rate of the mat in terms of the normalized
density γ.

4.4.1 Front growth

As mentioned above, the definition of the density makes only sense if we have already coop-
erators in the mat since only they can form the mat. Thus, the mathematical description
which is derived in this section will only be valid for x0 > 0 and M > 0.
We want to account for three effects that influence the front growth, that is the dynamics
of the temporal evolution of Vtot.

• The higher the fraction of cooperators, the faster the growth rate of the total volume
Vtot. In general, the front growth rate will be a monotonically increasing function of
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the fraction of cooperators. For simplicity, we assume,

∂tVtot(t) ∝ x(t) . (4.4)

Since only cooperators account for the mat expansion, the fraction of cooperators
at the front will always be slightly higher than the percentage of cooperators over
the whole mat. In other words, assumption (4.4) reflects a lower bound for the front
growth rate of the effective mat volume.

• The growth rate of the total mat volume should be directly linked to the surface of
the mat volume AV . As a first step, we can apply the approximation that the volume
of the mat grows proportional to the surface of the cuboid (as in figure 4.7), that is
∂tVtot(t) ∝ AV (t).
Furthermore, we may assume that the front growth of the mat effectively takes place
at its lateral surface since the vertical growth rapidly ceases because of the anoxic
conditions below the liquid-air interface (cf. section 4.2). In this way, we simplify the
initial dynamics of the mat growth, but describe the mat expansion accurately for
later times. Again, this simplification underestimates the front growth process, and
makes it harder for mats to survive.
Let us refer to the maximal vertical extension of the mat in the glass vial as l. If we
model the top surface of the cuboid to be a square with side length k, the volume
of the cuboid will be Vtot = l · k2 and its lateral surface AV = 4 · kl. Note that the
vertical extension of the mat l is treated as constant here. Therefore, we obtain the
relation,

AV (t) ∝ V
1
2

tot . (4.5)

For our further analysis, only this scaling behaviour is of importance since we will
introduce a proportionality constant for the dynamics of ∂tVtot, anyway. The same
result can also be inferred from modeling the mat as a cylinder with height l and
radius k.

If the mat grew along all directions, the exponent in eq. (4.5) would change to 2/3.
The different scaling relation with exponent 1/2 is caused by the abstraction of the
mat growth taking effectively place in two dimensions instead of three. The propor-
tionality between the change of the volume of the mat and the closure of its surface is
valid for compact growth scenarios, which can be assumed if nutrients are abundant
in the broth phase [93]. If nutrients are, however, lacking or aggregation is diffusion-
limited [94], different scaling exponents will be obtained for the proportionality,

AV (t) ∝ V ν
tot ,

with ν as the scaling exponent. One example for diffusion-limited aggregation, giving
rise to the appearance of fractals and fractal dimensions, is the Eden model [95, 96,
97]. Investigations of this model show (see for example [98]) that one obtains a scaling
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Figure 4.7: Expansion of the effective mat volume. In the mathematical approach, we assume
that the growth of the mat only takes place in the horizontal direction. Then, the
effective volume of the mat (that is the smallest cuboid comprising the bacteria which
are depicted as green cells) only expands at its lateral surface. In other words, we
expect ∂tVtot(t) ∝ AV (t) = 4 · l · k(t) and because of geometrical reasons (Vtot(t) =

l · k(t)2), it follows AV (t) ∝ V 1/2
tot . The same result is obtained by considering a mat

modeled by a cylinder with height l and radius k(t).

exponent ν ≥ 1/2 for a growth in two dimensions.
One can understand this relation by imagining a wrinkly surface at which the bacteria
can grow. Such a mat, with a volume which is equal to a cuboidal mat, has a much
larger surface than the cuboidal one due to its crinkliness. In general, the rougher the
surface of a cluster is, the bigger the growth exponent ν will be. In the experiment
of Rainey & Rainey, however, nutrients are abundant in the glass vial. Hence, the
assumption of ν = 1/2 should be an adequate approximation – at least on a coarse-
grained level.
Nevertheless, detailed microscopic growth models for biofilms exist and are well-
studied [52, 99, 53, 100]. Many of them model the front growth in an adequate
manner by involving many fitting parameters. Here, we keep the growth model as
simply as possible in order to account for the main feature we are interested in, that
is the interplay between the cooperator-defector dynamics and the structural element
of the mat. For this purpose, we have neglected the spatial structure of the mat and
introduced an averaged view on the mat, instead.

• In order to account for the finite size of the mat, we can introduce a limiting factor
that prevents the mat from further growing if a certain volume is reached. We model
this characteristics by introducing a limiting factor of ∂tVtot(t) ∝ (1− Vtot

Vmax
) as known

from the logistic growth. Vmax is the carrying capacity of the front growth process
and corresponds to the maximal volume the mat can reach. In case of a broth pot
without a closed boundary – imagine for example a lake in which the bacteria can
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attach to the shore at one side and form a mat that grows into the lake – we would
let Vmax diverge, Vmax →∞.

Putting all three effects together, we end up with,

∂tVtot(t) ∝ x(t) · AV (t) ·
(

1− Vtot(t)

Vmax

)
,

∝ x(t) · V
1
2

tot ·
(

1− Vtot(t)

Vmax

)
,

⇒ ∂tM = c1 · x(t) ·M(t)
1
2 ·
(

1− M(t)

K

)
=: m(x,M) , (4.6)

with K as the maximal number of possible sites of the mat that can be occupied, and
c1 as the proportionality constant, which basically influences the time scale of the front
growth. The function m(x,M) was introduced for short-hand notation. Note that at first
sight, the dynamics of the effective mat volume M only depends directly on the values of
x and M , but not on N , the numbers of bacteria in the mat. In the full stochastic model,
however, the dynamics of x is coupled to N (see section 4.6), and hence the mat growth
also depends on the number of bacteria in the mat.

The important step towards the ODE (4.6) lies in the assumption that the volume of the

mat grows at its surface with AV ∝ V
1/2

tot . Although having argued in a phenomenological
picture, further experimental and theoretical work has to be carried out in order to confirm
this assumption. In the near future, we will investigate numerical simulations of the mat
growth to verify these ideas.
Furthermore, assumption (4.5) implies the transition from a stochastic description of the
mat growth to a deterministic description. This approximation represents the coarse-
grained view on the mat growth and greatly simplifies the analysis of the mat model.
We have already indicated that the effective mat volume is also treated as a continuous
variable, although being defined discretely in the first place. The notion of a time derivative
of M in eq. (4.6) reflects this approach.

The parameter c1 > 0 combines the proportionality factor of all three effects mentioned
above. We will treat c1 as a fitting parameter later on, but this constant could be measured
in principle. Since the proportionality factor c1 relates the time scales of the front growth
to the interior growth, which will be described in the next section, one can imagine an
experimental setup with an optical density measurement to determine the experimental
value of c1. One would have to set up several laser devices at different distances from the
attachment point of the cooperators to the glass wall of the pot. By screening the broth
pot with the lasers perpendicular to the water surface at these positions over time, one
could measure the optical density at different places in the mat over time.
A different setup could consist of only one laser probing different points of the glass vial
for the optical density after one another. After having scanned one point in the mat for
the optical density, the laser would move to the next point. In this way, both methods
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could deliver a spatially resolved density profile of the mat in the pot over time. Moreover,
it should be possible to verify the modeled growth of the mat in principle.

4.4.2 Interior growth

As already mentioned, we define the interior growth as the aggregation process of bacteria
within the fixed mat skeleton which is build up by cooperators. From the explanations
above, it is evident that the more free places are present in the effective mat volume
(i.e. the higher (M − N)), the faster the growth of the number of individuals N will be.
Again, we have to differentiate between cooperators and defectors, since defectors have
microscopically an evolutionary advantage over the cooperators as described in chapter 3.
This aspect should be reflected in the model of the interior growth.
We follow the spirit of the model of population dynamics (see section 3.4) and separate the
growth rate for each trait into a global, trait-independent part for the interior mat growth,
gmat(x,N,M) and the trait-dependent fitness function fS(x) = ΦS/Φ∼(x) for S ∈ {C,D}.
Following the steps from chapter 3.4, we arrive at the mean-field equation for the interior
mat growth:

∂t 〈NS〉 = 〈NS〉 · gmat(〈x〉 , 〈N〉 ,M) · fS(〈x〉) , S ∈ {C,D} . (4.7)

Note that we have not included a death rate at this point. The death rate will be formulated
as a sinking rate for the sinking of the mat later on.
We choose gmat(x,N,M) proportional to the number of free places in the mat as motivated
above. The global mat growth rate will be normalized to the total number of possible sites
M as follows,

gmat(x,N,M) =
M −N
M

= 1− N

M
= 1− γ

z∼(x)
=: gmat(x,N, γ) . (4.8)

We will apply this global growth rate to the stochastic population model later on (see
section 4.6).

If we look at the isolated interior growth, that is neglecting all other mechanisms of the
mat dynamics for a moment, we obtain the mean-field equation for the total number of
individuals (cf. chapter 3) for the interior growth,

∂t 〈N〉 = 〈N〉 · gmat(〈x〉 , 〈N〉 ,M) = 〈N〉 · (1− 〈N〉
M

) .

The outcome of this calculation is basically that at each point in time the dynamics of the
total number of bacteria in the mat follows a logistic growth with a time-dependent carrying
capacity M(t) (cf. section 3.3). The dynamics of the carrying capacity is determined by
the front growth as described in the last section.
Note that the last equation for the total number of bacteria does not depend on the trait-
dependent rates fS. The reason for this simplification lies in the definition of fS as relative
growth advantages, that is fS = ΦS/Φ∼ as pointed out in section 3.4.
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4.5 Impact of the mat density on population dynamics

Before we can formulate the full stochastic mat model, let us summarize and specify the
impact of the mat volume and the related mat density on the population dynamics, that
is on the number of defectors and cooperators. Up to now, we dealt with the consequences
of the population dynamics on the mat growth in terms of its effective volume. We have
also discussed the influences of the mat structure on the interior growth which resulted in
the formulation of the global growth rate of the mat.

4.5.1 Growth of the mat

The growth rate for the bacteria in the mat was already motivated and applied in sec-
tion 4.4.2. We separate the total growth rate into a global, trait-independent mat growth
rate gmat(x,N, γ) = 1−γ/z∼(x), and a microscopic, trait-dependent part fS(x) = ΦS/Φ∼(x)
for S ∈ {C,D}.
If it was possible to hold the density fixed at value γ∗, we would infer that a mat with a
higher fraction of cooperators would grow more slowly than a mat with a lower fraction of
cooperators since z∼(x) = zCx+ zD(1− x) and zC < zD, that is gmat(x1; γ∗) < gmat(x2; γ∗)
for x1 > x2. This would be in contradiction to our phenomenological picture of the mat
growth process. The density is not fixed, however, but influenced by the number of coop-
erators and defectors in the mat, as γ = N/M · z∼(x). This feedback causes the growth
advantage of cooperative groups since more cooperative groups can grow larger due to
the front growth process. Microscopically, defectors remain to be always better off than
cooperators which is implemented by the trait-dependent part of the growth rate. In total,
the mat growth process is modeled by a consistent description.

4.5.2 Sinking of the mat

If the average density of a mat reaches the value of the density of water, the mat will sink.
Therefore, we introduce a sinking rate at γ = 1, which reduces the number of bacteria at
the water surface. In the experiment, the mat will tilt first such that a certain amount of
bacteria in the mat remains close to the liquid-air interface. Bacteria which are sunk are
not counted by the experimentalists in the experiment. For our purpose, these bacteria
can be regarded as dormant or dead. Hence, the sinking rate can be interpreted as a death
rate of the bacteria at the water surface.
From the experiment we obtain that a mat with a high fraction of defectors will sink much
faster than a mat with a low fraction of defectors since the density profile of the mat is
much more heterogeneous when defectors are present. In other words, the stability of the
mat is weakened by the presence of defectors. These considerations lead to the sinking
rate d(x,N, γ) = c2 · (c3 − x) ·Θ(γ − 1). The sinking process starts when the mat density
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reaches the density of water which is reflected by the Heaviside function. The sinking rate
is a linearly decreasing function of the fraction of cooperators: the higher the fraction of
cooperators, the lower the sinking rate. One can assume that the sinking of the mat is, in
general, a highly non-linear process. It depends on microscopic details and on the detailed
structure of the mat. Nevertheless, we want to model the qualitative behaviour of the mat
system and do not aim at fitting the observations from the experiment. In this sense, the
linear approximation of the sinking rate should be a suitable approach.
The positive constants c2 and c3 have to be chosen such that the sinking rate dominates
the growth rate for γ > 1 since the growth of the bacteria will be dominated by the sinking
process. Furthermore, c3 should be greater, but close to 1 in order to account for the
observation that mats with a higher fraction of cooperators sink more slowly than mats
with a lower fraction of cooperators.

4.6 Formulation of the stochastic mat model

In this section, we extend the deterministic description of the mat growth, which we have
obtained so far, to the stochastic mat model. In general, this extension would involve the
derivation of the master equation for the probability distribution P (NC , ND,M) depending
on all three independent variables NC , ND, and M . The key idea is to simplify the dynamics
of the stochastic mat model, but still include stochastic fluctuations into the analysis. This
can be achieved by treating the mat volume M as a deterministic variable, which is reflected
by eq. (4.6) and basically follows from the scaling hypothesis (4.5) for the front growth.
The number of cooperators and defectors will be treated stochastically by making use of
the ideas of the coupled cooperator-defector model presented in chapter 3. Cooperative
groups can grow larger and will sink later than non-cooperative groups, and microscopically
defectors are always better off than cooperators. The effective volume of the mat could then
be regarded as an additional structural element of the cooperator-defector model, together
with the notion of the normalized mat density. This additional structure to the population
dynamics translates into the growth and survival advantage of cooperative mats.

Speaking in mathematical terms, we couple the normalized density γ to the growth and
sinking rate of the stochastic dynamics of N and x, and describe the temporal evolution
of the mat volume with the ODE (4.6), which depends on x and M . Let us define the
full stochastic model in the following. An illustrated summary of this model is depicted in
figure 4.8 at the end of this section.

• We define two stochastic variables, the number of cooperators NC and the number
of defectors ND which can be transformed to the total number of individuals N and
the percentage of cooperators x through,

N = NC +ND , x =
NC

N
.
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In addition to the model of Melbinger et al., we introduce one additional stochastic
variable M , the effective mat volume, which is the volume of the smallest cuboid
comprising the mat. The normalized mat density is computed via,

γ =
N

M
· z∼(x) =

N

M
· (zC · x+ zD · (1− x)) ,

whereas zC and zD denote the structure factor of a cooperating cell and a defecting
cell, respectively.

• The temporal evolution of the number of cooperators and defectors in this stochas-
tic model is determined by the master equation for the probability distribution
P (NC , ND, t),

∂tP (NC , ND, t) =
∑
S=C,D

(
(E−S − 1)ΓS→2S + (E+

S − 1)ΓS→∅
)
P (NC , ND, t) .

This model is specified by growth and sinking rates for the cooperating and defecting
trait, implemented as birth and sink events via ΓS→2S and ΓS→∅ for S ∈ {C,D}.
These rates can be decomposed into a global part, which is trait-independent, and a
relative part, which is trait-dependent,

ΓS→2S(NC , ND, γ) = ΓS→2S(N, x, γ) = g(x,N, γ) · fS(x) ·NS , S ∈ {C,D} ,
ΓS→∅(NC , ND, γ) = ΓS→∅(N, x, γ) = d(x,N, γ) ·NS , S ∈ {C,D}.

The density of the mat couples with the population dynamics through the global
growth and sinking rate; the relative parts remain as in the formulation of Mel-
binger et al. [2],

g(x,N, γ) = 1− γ

z∼(x)
,

d(x,N, γ) = c2 · (c3 − x) ·Θ(γ − 1) ; c2, c3 > 1 ,

fS(x) =
ΦS(x)

Φ∼(x)
,ΦC = 1− s,ΦD = 1,

Cooperative groups grow larger and survive longer due to the better stability of
cooperative mats, but within mats defectors are better off than cooperators. The
evolutionary advantage of defectors over cooperators is tuned by the value of the
selection strength s.

• Although the effective mat volume is defined as a stochastic variable, we will prescribe
its temporal evolution to follow the deterministic equation,

∂tM = c1 · x(t) ·M(t)
1
2 ·
(

1− M(t)

K

)
·Θ(γ − 1) with c1, K > 0 . (4.9)
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The reason for this simplification lies in the ignorance about the microscopic details of
the mat growth process as pointed out in detail in the last sections. We introduced an
additional factor of Θ(1−γ) by hand in comparison to eq. (4.6) to stop the dynamics
of the mat volume during the sinking process. It is assumed that the effective volume
and the density of the mat will only change slightly during the sinking, and hence
this approximation should be appropriate.

Figure 4.8 summarizes and depicts the mat model together with the phenomenological
picture of the growth and the sinking of the mat.

4.7 Parameters of the mat model

What are the parameters of the mat model?

– c1. This parameter relates the timescale of the front growth process to the
timescale at which the interior growth acts. We regard c1 as a fitting parameter,
but it may be measured in an experiment as already proposed. c1 reflects the
growth advantage of mats with a higher percentage of cooperators. In this
way, it may be compared to the parameter p in the model of Melbinger et al.
(cf. chapter 3) since the constant p was introduced in the growth rate g =
1+px to model the growth advantage of cooperative groups over non-cooperative
groups. The parameter c1 can be interpreted in the same way.

– s. The selection strength s prescribes the microscopic evolutionary advantage
of defectors over cooperators. We set s = 0.15.

– zC , zD. These two constants mainly have an impact on the difference between
a purely cooperative mat and a mat with both cooperators and defectors. The
qualitative behaviour does not depend on the explicit choice of the values, but
it is important to choose 1 < zC < zD. In our simulations, we set zC = 2 and
zD = 6. Recall that zC , zD are the structure factors and responsible for the
different contributions of a cooperator and a defector to the effective density.

– γ(0). This parameter prescribes the initial density of the mat. The explicit value
does not change the qualitative behavior of the outcome of the computations.
For our simulations, we set γ0 = 0.2. This value is motivated by the model for
the mat and typical initial population sizes applied in simulations. Consider, for
example, a cube that is divided into 33 = 27 or 43 = 64 subcubes and an initial
population size of 5 individuals, that is 5 sites in this initial mat are occupied,
and an initially high percentage of cooperators. The initial density would be
γ0 ' N0/M0 · zC which lies between 0.37 and 0.16 for our chosen examples.
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Figure 4.8: Summary and sketch of the mat model. We describe the population dynamics in an
evolutionary cooperator-defector setup by taking into account the additional struc-
tural of the mat. The model introduces the three variables N, x (both stochastic) and
M (defined stochastically, but treated deterministically) from which the mat density
γ can be computed. A mat will sink if its effective density reaches the density of
water, that is if γ = 1. This condition divides the evolution of the mat into two
regimes: the growth and the sinking of the mat. During the growth phase, defectors
are better off than cooperators (parameter s), but cooperative mats grow larger in
size and sink at a later point in time. The mat growth is characterized by the param-
eters c1, zC , zD and K, and the initial conditions N0, x0 and γ0. During the sinking
process, the mat does not expand any longer and the growth rate may be neglected.
The sinking of the mat is characterized by the parameters c2 and c3. Compare also
figure 4.4 for the phenomenological picture of the growth and sinking of the mat.

– K. The carrying capacity of the broth pot, K, is determined by the experi-
mental setup. For a closed boundary of the pot, K is finite. The value of K in
our analysis is mainly determined by the compromise between computational
feasibility and adequate qualitative results. This aspect will be discussed later
on. In our simulations, K is specified to 1000.
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– c2, c3. These fitting parameters define the sinking process of the mat. The higher
c2 and c3 are, the faster the mat will sink. They also determine the influence of
defectors on the sinking process. A higher fraction of defectors leads to a faster
sinking of the mat. The two constants should be accessible in an experiment.
One has to thoroughly investigate the sinking process, and determine the speed
of sinking dependent on the percentage of cooperators in that mat.

4.8 Aside: dynamics of the mat density

Although we do not need the explicit formulation of the temporal evolution of the normal-
ized mat density γ, the result will be instructive in order to compare the phenomenological
picture of the mat density, which we have given in the beginning of this chapter, with
the mat model. The following calculation can be regarded as a consistency check for the
adequate mapping between the observed phenomena and the mat model. The result of the
analysis will be an autonomous ODE of first order for the normalized mat density γ which
depends on the current density, the total number of individuals N , and the percentage of
cooperators x,

∂tγ(t) = h(γ,N, x) , (4.10)

which will be discussed later on.
We have inferred the normalized mat density as (cf. eq. (4.3)),

γ =
N

M
· z∼(x) =

N

M
· (zC · x+ zD · (1− x)) .

The time derivative of the normalized mat density, γ, reads as,

∂tγ = ∂t

(
1

M(t)
· (NC(t) · zC +ND(t) · zD)

)
,

≈ ∂t

(
1

M(t)
· (〈NC〉 (t) · zC + 〈ND〉 (t) · zD)

)
,

= −∂tM(t)

M(t)2
· (〈NC〉 (t) · zC + 〈ND〉 (t) · zD)︸ ︷︷ ︸

effect of front growth

+
1

M(t)
· (∂t 〈NC〉 (t) · zC + ∂t 〈ND〉 (t) · zD)︸ ︷︷ ︸

effect of interior growth

.

(4.11)

In the second line, we replaced the discrete quantities NC and ND by their mean values
〈NC〉 and 〈ND〉 to simplify the dynamics of the mat density and treat the mat density
deterministically. It is important to note that the stochastic nature of NC and ND are
retained, only the dynamics of the mat density is formulated from a deterministic point of
view (see section 4.6).
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The ODE in the last line for the normalized mat density reflects mathematically the two
effects explained above. The first term involves the dynamics of the number of possible
sites in the mat, M(t), which corresponds to the front growth. The second term involves
the change of the bacteria numbers for a mat volume M at time t. This feature was exactly
introduced as the interior growth.
From the last equation, it can also be recognized that the front growth reduces the mat
density since ∂tM is positive for all times t (see next section, eq. (4.6)). This property
is also clear from its physical meaning: The number of possible sites in the mat, M , can
only increase. As long as the number of cooperators and defectors, NS, rises, the interior
growth increases the density of the mat.
In this way, the phenomenological picture of the mat growth is qualitatively represented
by the mat growth model.

Let us now combine the two effects, the front growth of the mat and the interior growth,
in order to formulate the time evolution of the mat density (see eq. (4.11)). Rewriting the
result from the front growth effect (cf. eq. (4.6)) in terms of γ, x,N reveals,

∂tM(t)

M(t)
= c1 · x(t) ·

(
γ

N · z∼(x)

) 1
2

·
(

1− N · z∼(x)

γ ·K

)
, (4.12)

≈ c1 · 〈x〉 (t) ·
(

γ

〈N〉 · z∼(〈x〉)

) 1
2

·
(

1− 〈N〉 · z∼(〈x〉)
γ ·K

)
=: l(〈N〉 , 〈x〉 , γ) ,

where eqs. (4.3), (4.6) have been applied and l(〈N〉 , 〈x〉 , γ) was defined for short notation.
If only the cooperating trait is present in the mat, the dynamics will simplify through
z∼(〈x〉) = z = zC .
The term corresponding to the interior growth effect can be converted as follows,

1

M(t)
·(∂t 〈NC〉 (t) · zC + ∂t 〈ND〉 (t) · zD) ,

=
〈N〉 · g(〈N〉 , 〈x〉 , γ)

M(t)
· (zC · 〈x〉 · fC(〈x〉) + zD · (1− 〈x〉) · fD(〈x〉)) ,

= γ · g(〈N〉 , 〈x〉 , γ) · zC · 〈x〉 · fC(〈x〉) + zD · (1− 〈x〉) · fD(〈x〉)
z∼(〈x〉)

,

= γ · g(〈N〉 , 〈x〉 , γ) · (z · f)∼(〈x〉)
z∼(〈x〉)

,

= γ ·
(

1− γ

z∼(〈x〉)

)
· (z · f)∼(〈x〉)

z∼(〈x〉)
.
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Thus, we end up with an autonomous ODE of first order as indicated in eq. (4.10),

∂tγ = γ ·
(
g(〈N〉 , 〈x〉 , γ) · (z · f)∼(〈x〉)

z∼(〈x〉)
− l(〈N〉 , 〈x〉 , γ)

)
·Θ(1− γ) ,

≈ γ ·


(

1− γ

z∼(x)

)
· (z · f)∼(x)

z∼(x)︸ ︷︷ ︸
interior growth

− l(N, x, γ)︸ ︷︷ ︸
front growth

 ·Θ(1− γ) , (4.13)

= h(N, x, γ) .

We introduced an additional factor of Θ(1− γ) by hand to stop the dynamics of the mat
density during the sinking process in the same way as it was done for the dynamics of the
effective mat volume M . The dynamics of the individual numbers NC and ND, however,
will not be stopped when the mat sinks. The sinking rate is greater than the growth rate
of the mat and reduces the individual number of the mat at the water surface.
Note that we switched from the deterministic to the stochastic picture for the variables
x and N in the second line. The aim was to establish the dynamics of the density. We
applied the ideas developed in section 4.4.1 and 4.4.2 and switched back to the stochastic
formulation. The result of this simplification is given in eq. (4.13), which reveals again the
two antagonizing effects contributing to the dynamics of the density.
The first part can be identified with the interior growth and is basically a logistic growth
towards the carrying capacity z∼(x) = zCx+ zD(1−x) > 1 on a slightly changed timescale
of z∼(x)/(z · f)∼(x). If only cooperators are present in the mat, that is x = 1, we will
have z∼(1) = zC and (z · f)∼(1)/z∼(1) = f∼(1) = 1. In this case, the timescale of the
logistic growth is solely defined by the birth rate of the cooperators (see section 4.6), and
the normalized density of the mat grows towards zC > 1. Nevertheless, the dynamics of
the mat density is stopped when γ = 1 is reached.
The second term in eq. (4.13) refers to the front growth of the mat and lowers the speed
at which the density of the mat grows. This term represents the observation that mats
with a higher fraction of cooperators can grow larger and sink at a later point in time than
groups with a lower fraction of cooperators.

All in all, the dynamics of the normalized mat density confirms our phenomenological
picture of the growth and sinking of the mat and support the derivation and the definition
of the mat model.
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Let us now have a look at the solutions of the mat model as formulated in the last chapter.
We are especially interested in the behaviour of the number of cooperators and defectors
since these are the quantities which are experimentally accessible. As already shown in
chapter 2, Rainey & Rainey have measured the number of cooperators in presence and
absence of defectors. The data is shown again in figure 5.1. We will compare our results
to this data from the experiment [1].

Figure 5.1: Summary of the experimental data of the Rainey & Rainey experiment already pre-
sented in figure 2.4 and 2.5.
Left: Emergence of defecting cells in the mat [1]. circles: number of defectors,
squares: number of cooperators.
Right: Number of cooperating wrinkly spreader cells in the mat [1]. Dashed line:
number of cooperators (wrinkly spreader in the experiment) without defectors. This
measurement refers to the case where only cooperators are present in the mat. Solid
line: number of WS in the mat in presence of defectors.
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5.1 Mean-field analysis

In order to evaluate the influence of stochastic demographic fluctuations, it is instruc-
tive to look at the mean-field equations first. This analysis also helps us to specify and
narrow down the range of the fitting parameters of the stochastic cooperator-defector
model. For the stochastic system described above, the mean-field equations are analogous
to eqs. (3.19), (3.20) from chapter (3). The only difference is that the growth and sinking
rate now also depend on the normalized density γ,

∂t 〈N〉 = 〈N〉 · (g(〈x〉 , 〈N〉 , γ)− d(〈x〉 , 〈N〉 , 〈γ〉)) ,

∂t 〈x〉 = 〈x〉 · (1− 〈x〉) · g(〈x〉 , 〈N〉 , 〈γ〉) · (fC(〈x〉)− fD(〈x〉)) .

The full mean-field system for the mat model then reads as follows,

∂t 〈N〉 = 〈N〉 ·
(

1− γ

z∼(〈x〉)
− c2 · (c3 − 〈x〉) ·Θ(〈γ〉 − 1)

)
,

∂t 〈x〉 = − s

1− s 〈x〉
· 〈x〉 · (1− 〈x〉) ·

(
1− 〈γ〉

z∼(〈x〉)

)
,

∂t 〈M〉 = c1 · 〈x〉 · 〈M〉
1
2 ·
(

1− 〈M〉
K

)
,

〈γ〉 =
〈N〉
〈M〉

· z∼(〈x〉) ,

(5.1)

with initial conditions 〈N〉(0) = N0, 〈x〉(0) = x0 and 〈γ〉(0) = γ0.
Recall that,

z∼(〈x〉) = zC · 〈x〉+ zD · (1− 〈x〉) ,

(z · f)∼(〈x〉) = zC · 〈x〉 ·
1− s

1− s 〈x〉
+ zD · (1− 〈x〉) ·

1

1− s 〈x〉
.

Results of mean-field analysis

Figure 5.2 shows the solution of the mean-field equations (5.1) for a specific set of param-
eters and initial conditions.

In the left part of figure 5.2, the numbers of cooperators and defectors are depicted. The
graph shows a qualitatively satisfactory agreement with the experimental data in figure 5.1.
The number of cooperators raises approximately exponentially after the dynamics is started
(note the logarithmic scale for the number of individuals) and reaches its maximum at
about t ' 4.3. Thenceforth, the number of cooperators decreases steadily, and the speed
of decrease is less than the speed of increase has been before. For the number of defectors,
we gain a similar picture. ND increases with a similar speed as the number of cooperators
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Figure 5.2: Left: Number of cooperating and defecting bacteria as obtained from the mean-field
system (5.1). The kink in the number of individuals refers to the sinking of the
mat. Right: Percentage of cooperators in the mats obtained from the mean-field
system (5.1). The x-average declines for all times and drops to 0 when all mats are
sunk. The blue curve shows the fraction of mats which are sunk up to time t.
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

in the beginning. The maximum of the number of defectors is reached at the same time
as for NC at about half of the maximal number of cooperators. The speed of decrease
of the number of defectors is less than for cooperators such that both individual numbers
converge to each other.
The same qualitative behaviour can be found in the data of Rainey & Rainey (cf. fig-
ure 5.1) but on a different time scale and a different scale in the number of individuals,
which is due to the chosen set of parameters.
Time is measured in dimensionless units of the doubling time in our simulations, that is
∆t = 1 refers approximately to the time in which a population doubles its size. In the ex-
periment, the doubling rate can be assumed to lie between 30 and 60 minutes for bacteria;
hence, one day refers to roughly t = 20 to 50 doubling times in our simulations. Especially
the carrying capacity of the mat, K, plays a crucial role for the outcome in the context
of scaling the number of individuals. To gain realistic results for the bacteria number of
order 109 as observed in the Rainey & Rainey experiment, one has to set K to a value in
that range, too. Assigning K ' 109 would lead, however, to very large groups and very
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Figure 5.3: Left: Evolution of the number of cooperators in presence and absence of defecting
bacteria as obtained from the mean-field system (5.1). The peak refers to the sinking
of the according mat.
Right: Density of the mat in presence and absence of defectors. Note the transient
decline of the mat density in both cases due to the front growth mechanisms which
is more pronounced if defectors are absent. The increase of the density is caused by
the interior growth. If the density of the mat reaches the value 1, the mat sinks.
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

high birth and sinking rates which are not tractable in stochastic numerical simulations.
Hence, we choose the compromise between numerical practicability and adequate qualita-
tive results, and set K = 1000.
Furthermore, the number of defectors reaches its maximum with a temporal delay of 3
days in the experiment compared to the maximal value of the number of cooperators. This
experimental result is not covered by the mat model since we do not distinguish explicitly
between defectors and cooperators during the sinking process (the trait-dependent sinking
rate is set to 1).

To understand the mean-field solutions more easily, the right part of figure 5.2 shows
the percentage of cooperators in those mats which are not sunk up to that time. This
observable makes sense from a biological point of view since these groups can actually
reproduce actively. When all mats start to sink at t = Tsink, this average, which we will
refer to as 〈x〉mat in the following, drops to zero. The fraction of cooperators is decreasing
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for all times. This behaviour can also be induced from eqs. (5.1). One recognizes that
always ∂t 〈x〉 < 0 holds true since 〈γ〉 ≤ 1 < z∼(〈x〉).

In figure 5.3, the number of cooperators is plotted for two cases, in presence and in absence
of defectors in the mat. The plot of the cooperators without defectors in the mat corre-
sponds to the so called null model as we have referred to it in section 4.1.1. The important
point to notice is that the number of cooperators is decreasing after t & 5.4 (see left part of
figure 5.3). This result would be different if we had applied the model of Melbinger et al.
naively in the very beginning. Then, for the case of cooperators only (x = 1), the graph
would show a logistic growth.
On the right-hand side of figure 5.3, the temporal evolution of the according normalized
mat density is shown. As one can see from the graph, the density of the whole mat de-
creases slightly in the beginning. This decline is due to the front growth process which
results in a rapid growth of the mat skeleton and lowers the mat density. However, the
front growth will be balanced with the interior growth. The relation between front growth
and interior growth is mainly influenced by the parameter c1 as indicated earlier. The mat
density passes its minimal value and starts growing at about t ' 0.8. At γ = 1, the average
mat density of the whole mat equals the density of water. Therefore, the mat sinks and
the mat density stays unchanged henceforward. Moreover, this sinking of the mat results
in the decrease of the number of individuals as mentioned above.

As one can infer from the right plot in figure 5.3, the density increase is slower when only
cooperators are present in the mat, which is clear from a physical point of view. This
feature was explicitly implemented in the model and is now reflected by the outcome of
the computation. As a consequence, the number of cooperators reaches a higher maximum
in the mat without defectors, and the drop of the number of cooperators appears at a later
time.
The decline in the number of cooperators in the case without defectors, however, is steeper
than in presence of defectors. This outcome is different from the observation in the ex-
periment, where the mat sinks rapidly if it is infiltrated with defectors, whereas a mat
consisting solely of cooperators sinks on a much larger time scale (cf. figure 5.1, right pic-
ture). On the one hand, the sinking rate and growth rate are proportional to the number of
individuals in the mat. Since groups with a higher fraction of cooperators can grow larger
than groups with a lower fraction, cooperative mats would sink faster. On the other hand,
the sinking rate was introduced to favor cooperative groups. The higher the percentage
of cooperators in a mat is, the smaller is the sinking rate. The detailed sinking of a mat,
however, is a highly non-linear process. In the our linear approximation with the chosen
parameters c2 and c3, cooperative mats decline faster than mats with a lower fraction of
cooperators in the mean-field case.
Nevertheless, the time at which a purely cooperative mat will be completely sunk is greater
than for a mat with defectors since the sinking of the mat starts at a later point in time.
This effect is one of the important conclusions of the experiment. The exact relation be-
tween these two different effects, the point in time at which the sinking process starts and
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the speed of decrease of the individual number, depends on the values of the parameters
c1, c2, and c3.
We conclude that the numerical results are in adequately qualitative accordance with the
observations of Rainey & Rainey given in figure 5.1. In order to point out the influence
of stochastic fluctuations on the dynamics of the mat growth, we will now analyze the
outcome of the full stochastic model. For example, one would expect the peaked number
of cooperators to smooth out if we included stochastic fluctuations to our analysis. Es-
pecially, we will draw attention to the behaviour of the percentage of cooperators since
this quantity has shown a qualitative change in the model of Melbinger et al. when we
discussed stochastic fluctuations (cf. chapter 3).

5.2 Stochastic simulations of the mat model

Let us examine the results of the full stochastic simulations according to section 4.6. The
numerical simulations are executed by employing the Gillespie algorithm which will be
described below.

5.2.1 Algorithm for the mat model

We treat the number of cooperators and the number of defectors as stochastic variables,
and update their values with the Gillespie algorithm reflecting the stochastic dynamics
according to section 4.6. The update of the effective mat volume M and the normalized
density γ follows the deterministic ODE given by eq. (4.9). We have introduced the effec-
tive mat volume as a discrete stochastic variable, but nevertheless describe its dynamics
deterministically due to our ignorance of microscopic details of the mat growth. This av-
eraged view is represented by the assumed scaling law in eq. (4.5) and translates into the
ODE for M in eq. (4.9).
A flowchart of the algorithm is depicted in figure 5.4. It shows an adjusted form of the
algorithm for the stochastic cooperator-defector model from chapter 3 to account for the
structural changes in the mat model.

5.2.2 Results of stochastic simulations of the mat model

In this section, we present the results of the stochastic simulations for the mat model from
section 4.6 obtained by executing the algorithm described above.

Figure 5.5 shows the evolution of 1000 mats at four different points in time for one chosen
set of parameters and initial values. Each of the four scatter plots depicts the distribution of
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Figure 5.4: The algorithm for the update of the variables N, x,M, and γ in the mat model is an
extension of the algorithm for the cooperator-defector model. Whereas the update of
the individual numbers NC and ND, or equivalently N and x, follows the stochastic
Gillespie algorithm, the effective mat volume is updated deterministically. Then, the
mat density is computed.

all 1000 mats with respect to their number of individuals, their percentage of cooperators,
and their normalized mat density, which is color-coded. The black cross indicates the
average over the number of individuals in all groups on the vertical axis, and the averaged
percentage of cooperators in all mats that are not sunk up to that point in time. The color-
code marks the normalized density of the mat. The deeper the blue of a circle is, the lower
the density of the mat will be. In contrast, a red circle refers to a mat with normalized
density γ = 1, that is a mat which is sinking. A sinking mat does not contribute any longer
to the average of the fraction of cooperators, 〈x〉mat.

The stochastic dynamics is started with all groups containing exactly four cooperators and
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Figure 5.5: Stochastic dynamics of the mat ensemble (1000 groups). The mat density γ is color-
coded; red circles represent sinking mats. All groups are equally initialized, but the
distribution in x rapidly broadens due to stochastic demographic fluctuations (1).
The higher the fraction of cooperators in a mat is after the initial dynamics, the
larger the group can grow, and the slower the density of the mat will increase (2), (3).
Ultimately, the mat density reaches the density of water and the mat sinks (4).
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.
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one defector; the initial density is set to γ0 = 0.2. The peaked density distribution for
the fraction of cooperators rapidly spreads which is due to stochastic fluctuations influ-
encing the population dynamics significantly for a low number of individuals in the mats
(cf. chapter 3). Figure 5.5 (1) shows this broadening of the x-distribution shortly after the
dynamics has been started. All mats started from the same position in the N -x-diagram
at N0 = 5, x0 = 0.8, but at t ' 1.8 this distribution has spread dramatically in the x-range.
One recognizes that the higher the fraction of defectors in a mat is, the higher the density
of that mat will be on average for the same number of individuals. In other words, the
density of a mat will increase more slowly if the percentage of cooperators is higher, which
is due to the front growth mechanism of the spreading mat. Defectors do not contribute
to the stability of the mat and weaken the structure of the mat. Therefore, the effective
density contribution to the mat density for a defector is higher (zD = 6 here) than for a
cooperator (zC = 2 here), and the density at which the mat sinks is reached more quickly
with a higher percentage of defectors. This is the reason why the first mats sink in the left
part of the mat bulk ensemble in the scatter plot. Figure 5.5 (2) represents this property
at t ' 3.8. One the one hand, one can see that a mat with a low percentage of cooperators
(0.2 . x . 0.3) grows only up to a maximal size of 100 to 200 individuals. After having
reached the sinking condition γ = 1, the mat sinks and the number of bacteria at the
liquid-air interface decreases quickly. In the diagram, the red circle then drops along the
vertical direction as a mat would sink in the glass vial, metaphorically speaking. On the
other hand, mats with a high fraction of cooperators (x & 0.8) can grow much larger (up
to 450 individuals) and will survive longer.
In figure 5.5 (2) and (3), we observe at later times that for a constant fraction of coop-
erators, mats that are larger and that are composed of more individuals have a higher
density than mats with only a small number of constituents. This attribute is caused by
the interior growth mechanism which results in an increase of the density. At t ' 4.8 (third
picture in the figure), more than half of all mats are sunk. On average, only those mats
which have a high percentage of cooperators have survived up to then.
This is also the reason, why the average fraction of cooperators over all mats which are
not sunk up to that time, 〈x〉mat, increases again and even exceeds the initial value x0.
First, the average over x decreases when the evolution of the mats is started because of the
selective advantage of defectors. Due to stochastic fluctuations in the beginning, however,
the distribution in x broadens dramatically. For later times the mats with a low fraction
of cooperators will then be sunk and do not contribute to the average 〈x〉mat any longer.
Only the mats with a high percentage of cooperators and an accordingly high individual
number will contribute. As a result, 〈x〉mat will raise again.
Ultimately, all mats will be sunk. Figure 5.5 (4) shows a situation, just before all mats
have arrived at the density of water γ = 1. When all mats are sinking or are already sunk,
we set the fraction of cooperators to zero.

Up to now, we have gained a qualitative understanding of how the ideas that led to the
mat model affect the qualitative behaviour of the dynamics of the mat ensemble in the
stochastic simulations. The average population size, 〈N〉, and the average fraction of
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Figure 5.6: Left: Average number of cooperating and defecting bacteria as obtained from the
stochastic mat model 4.6. The graph represents the ensemble average over 1000
groups. For details, see text.
Right: Percentage of cooperators in the mat obtained from the stochastic mat
model 4.6. After a transient period of steady decline, the x-average increases again
due to stochastic fluctuations in the beginning of the temporal evolution. The blue
curve shows the cumulated distribution of the sinking times for the ensemble of 1000
mats.
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

cooperators over all mats at the surface, 〈x〉mat, have already been introduced and will
be discussed in more detail in the following. In order to compare the outcome of the
simulations with the data from the Rainey & Rainey experiment, we will now have a closer
look at these time-dependent averages.

Figure 5.6 and 5.7 are the corresponding graphs of the stochastic simulations as figures 5.2
and 5.3 are for the mean-field analysis of the mat model from section 4.6. Both figures
are obtained from the same data presented in figure 5.5. They reduce the full information
about all mats to the dynamics of the time-dependent ensemble average of different ob-
servables. The left subfigures can again be compared to the data from Rainey & Rainey
depicted in figure 5.1. In our description, we want to focus on the differences between the
outcome of the stochastic simulations and the mean-field solution of the mat model.
The main difference lies in the influence of stochastic fluctuations which scale as ∼ 1/

√
N
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Figure 5.7: Left: Evolution of the number of cooperators in presence and absence of defecting
bacteria as obtained from the stochastic mat model 4.6. The graph is in qualitative
good agreement with the according data from Rainey & Rainey depicted in figure 5.1.
Right: Density of the mat in presence and absence of defectors.
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

and are especially important in the beginning of the temporal evolution when the popu-
lation size is small (see chapter 3). These stochastic demographic fluctuations cause the
spreading of the x-distribution initially peaked around x0. From the discussion of fig-
ure 5.5, we already know that this broadening has an impact on the time at which a mat
sinks. In contrast to the mean-field case, where all mats sink at the same time because
of the absence of stochastic fluctuations, we obtain a distribution over the sinking times
in the stochastic case. The blue curve on the right in figure 5.6 depicts the cumulated
distribution of sunk mats. The time at which the sinking process starts is smeared out.
For the mean-field solution, this graph is a step-function having the step at t ' 4.3 (cf.
figure 5.2).
Moreover, the spread in x at the beginning of the evolution also affects the average number
of individuals. For the same reason, the peak in the number of cooperators and defectors
in figure 5.2 is smoothed out in case of stochastic simulations (see left part of figure 5.6).
The decline in the number of defectors, however, is steeper than the decrease in the number
of cooperators, and both individual numbers decrease much faster than in the mean-field
model. Compared to the data from Rainey & Rainey these results remain in qualitatively



74 5. Analysis of the Mat Model

good accordance.
The most dramatic change in the results from the mean-field solution to the stochastic
simulation can be observed in the x-average over all mats which are not sunk, 〈x〉mat.
While the mean-field behaviour of this quantity shows a steady decrease, the outcome of
the stochastic simulations reveals a different behaviour. In the beginning, 〈x〉mat declines
in the same way as for the mean-field case. From the point, where the first mats sink (at
t ' 2.0), we notice a turnaround from a decrease to an increase of this observable. The
percentage of cooperators over all unsunk mats, 〈x〉mat, averages only over the mats at
the surface. This average is taken over less and less mats before all mats are sunk. That
is also the reason, why 〈x〉mat becomes more choppy before dropping to zero. Since more
cooperative mats can survive longer than less cooperative groups, the x-averages increases
again.
We can conclude that the fraction of cooperators in the whole mat ensemble can increase
due to stochastic fluctuations in contrast to the mean-field solution, where this quantity
decreases for all times. Note that the stochastic fluctuations are crucial for the dynamics
of the mat ensemble. We have expected this dependency since the mat model can be un-
derstood as an extension of the cooperator-defector model of Melbinger et al.
The result in the mat model, however, is a transient increase of cooperation after some
time and not a transient increase in the beginning as in the cooperator-defector model from
chapter 3. This transient increase of cooperation in the mat model is determined by the
time at which the first groups sink and the time at which all mats are sunk.

Comparing figure 5.7 with the deterministic analogue in figure 5.3, we can confirm the
results from above, namely the smearing out of the peaky curves in the mean-field picture
caused by the stochastic broadening of the x-distribution. As a consequence, the shapes
of the curves for the number of cooperators with and without defectors are in better
qualitative agreement with the experimental data (figure 5.1) than the mean-field results.

5.2.3 Parameter study

In section 4.6, we have already interpreted the role of different parameters for the dynamics
of the mat model. Let us now quantify the influence of biologically relevant parameters in
a systematic way.
The most important parameters for the qualitative behavior of the stochastic mat model
are the selection strength s, that is the evolutionary advantage of defectors over coopera-
tors, and the growth advantage c1 of cooperative groups. These two quantities reflect the
two antagonizing principles: cooperative groups grow to a larger size, but defectors are
better off microscopically.
In addition, we also discuss the initial percentage of cooperators x0 to highlight the im-
portance of the presence of cooperators in the beginning, and the initial population size
N0 scaling the impact of demographic fluctuations.
In order to quantify the impact of a chosen parameter or initial condition on the level
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Figure 5.8: Distribution of the sinking time Tsink for a mat ensemble of 1000 mats. The left
diagram shows the histogram for the number of mats sinking at time Tsink. The
distribution of the sinking time shows a pronounced peak around which the sinking
times are symmetrically distributed. This distribution decays rapidly for smaller
and larger times. Thus, one could approximate the distribution of sinking times by a
Gaussian. The mean sinking time 〈Tsink〉 will be used as an observable to characterize
the mat ensemble for a given set of parameters. On the right, the number of mats
that sink after time T ∗ is depicted. This curve shows a cumulated version of the left
distribution of sinking times which will be applied later on.
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

of cooperation, we define suitable observables with which we can compare the outcome
of the stochastic mat model for different sets of parameters. These observables should
be biologically relevant and should discriminate between cooperative and non-cooperative
groups.

The crucial property of the mats in the stochastic mat model is that they sink after a
specific time Tsink (see figure 5.5 and 5.6). In our model, the sinking time of a mat is
defined as the time until the normalized mat density reaches the value γ = 1 since a mat
cannot reproduce, from a biological point of view, after it is sunk (cf. chapter 6). This
property is important for the next section, where we consider regrouping steps with mats
that are not sunk. For this reason, a suitable observable of the mat ensemble is the mean
sinking time 〈Tsink〉. We assume from our phenomenological picture of the mat growth that
the sinking time should increase if cooperative groups are favored.

Another reasonable observable with which to characterize a mat and with which to dis-
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Figure 5.9: Distribution of the maximal number of individuals Nmax for a mat ensemble of 1000
mats. The left diagram is a histogram for the maximal number of individuals, Nmax,
comprised by a mat. The distribution of the maximal number of individuals shows a
broad maximum between Nmax ' 150 . . . 400. A Gaussian approximation would not
lead to an optimal fit of this distribution. The mean maximal number of individuals
〈Nmax〉 will be used as an observable to characterize the mat ensemble for a given
set of parameters. On the right, the number of mats that grow larger than N∗ are
depicted. This curve shows a cumulated version of the left distribution of Nmax which
will be applied later on.
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

criminate the level of cooperation is the maximal number of individuals Nmax the mat
comprises. Again, more cooperative groups should be able to incorporate more individuals
than non-cooperative groups since only cooperators build up the mat skeleton. Therefore,
we will also compute the mean maximal number of bacteria 〈Nmax〉 of a mat ensemble.

Figure 5.8 and 5.9 show the distribution of the sinking time Tsink and the maximal number
of individuals Nmax within a mat ensemble of 1000 groups for the set of parameters we
have already analyzed before (see figures 5.5, 5.6, 5.7).
The distribution of sinking times reflects once more the influence of stochastic fluctuations.
All groups start with the same initial conditions, but the sinking times show a symmetric
smearing out around the maximum. If stochastic effects were absent, only one peak with
the same sinking time for all mats would show up in this diagram. The same holds true
for the distribution of the maximal number of individuals, where the broadening of the
distribution is even more dramatic.
From the analysis of figure 5.5, we concluded that the larger a group grows, the longer
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Figure 5.10: Scatter plot of the maximal number of individuals Nmax versus the sinking time
Tsink for the mat ensemble containing 1000 groups. A linear regression analysis
supports the phenomenological picture that groups growing large in size will also
sink at a later point in time. The linear correlation between the two observables is
backed up by the regression coefficient r = 0.81, which is nearly 1.
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

the mat will survive before it sinks. Hence, one might raise the question in which sense
the distributions of Nmax and Tsink reflect the same information about the mat ensemble.
The answer to this question can be inferred from figure 5.10, where the maximal number
of individuals in the mat, Nmax, is plotted versus the sinking time of the mat, Tsink. The
scatter plot shows the distribution for the whole mat ensemble of 1000 groups. From
a linear regression analysis we can support the earlier observation, that the observables
Nmax and Tsink are highly correlated for this set of parameters, and in this sense just reflect
two sides of the same coin. The detailed analysis of different parameter sets reveals that
the approximately linear correlation holds also true in general. Nevertheless, we want to
quantify the effect of a change in the parameters for both observables.

Selection pressure s and growth advantage of cooperative groups c1

The selection strength s quantifies the evolutionary advantage of defectors over cooper-
ators. The quantitative impact of the variation of this parameter on the mean sinking
time and the mean maximal population size is shown in figure 5.11. One recognizes that
both observables decrease with an increase of the selection strength s. Hence, the more
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Figure 5.11: Influence of the selection pressure s on 〈Tsink〉 (left) and 〈Nmax〉 (right). The higher
the selection strength is, the higher the microscopic evolutionary advantage of de-
fectors over cooperators will be. Therefore, the average sinking time (left plot) and
the average maximal population size decrease with an increase of s. Chosen param-
eters: c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

defectors are favored, the faster the mat will sink, and the smaller the population grows in
size. These results confirm our phenomenological picture of the mat growth. Figure 5.12
depicts the influence of the variation of c1, the growth advantage of cooperative groups.
The greater the parameter c1, the higher the mean sinking time and the bigger the max-
imal population size. In this way, the term ’growth advantage of cooperative groups’ for
c1 is justified. Note, however, that both the sinking time and the maximal population
number level off for high values of c1. One can assign this effect to the finite value of K,
the carrying capacity of the mat. For large values of c1, the mat skeleton can be thought of
as being build up immediately after the mat dynamics is started. Hence, a further increase
of the parameter c1 does not increase the advantage of cooperators any more.
As a summary, figure 5.13 shows a color plot of 〈Tsink〉 and 〈Nmax〉, whereas both the se-
lection strength s and the cooperative advantage c1 are varied simultaneously. The plot
combines the two antagonizing driving forces for the stochastic mat model. A higher se-
lection strength s results in shorter sinking times, whereas a bigger cooperator’s advantage
c1 enlarges the time at which the mat sinks. Mats are successful (large sinking time and
large maximal population size) when cooperators are favored (small s and large c1).
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Figure 5.12: Influence of the advantage of cooperative groups c1 on 〈Tsink〉 (left) and 〈Nmax〉
(right). The higher c1 is, the more cooperative mats are favored. Therefore, the
average sinking time and the average maximal population size increase with an
increase of c1. Both curves, however, level off for c1 & 25. For large values of c1,
the mat skeleton can be thought of as being build up immediately after the mat
dynamics is started. Hence, a further increase of the parameter c1 does not increase
the advantage of cooperators any more.
Chosen parameters: s = 0.15, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

Initial percentage of cooperators x0 and initial population size N0

To complete the analysis of the stochastic mat model, we investigate the influence of the
relevant initial conditions on the mat dynamics. In non-equilibrium statistical mechanics,
initial conditions often play a crucial role for the outcome and the behavior of the system.
It can be recognized from figure 5.14 that a higher initial fraction of cooperators increases
the sinking time and the maximal population size. The microscopic picture behind the
mat growth supports this observation since cooperators build up the mat framework which
is essential for the maximal size and for the stability of the mat. We have already argued
that a high initial fraction of cooperators would represent the biological situation of the
mat growth best within our model.
Figure 5.15 represents the influence of the initial mat size N0 on the evolutionary dynamics
of the mat ensemble. The lower N0, the bigger is the impact of stochastic fluctuations on
the population size, and the broader the distribution in the percentage of cooperators will
spread in the beginning (see also figure 5.5). Thus, for a small initial population size, mats
with a high fraction of cooperators can form, which enlarges their mean sinking time.
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Figure 5.13: Impact of selection strength and cooperator’s advantage on mat dynamics. The
sinking time (left) and the maximal population size (right) are color-coded and
plotted as a function of the two most relevant parameters of the mat model, the
selection strength s and the growth advantage of cooperative groups c1. These two
parameters represent the antagonizing principle that defectors are microscopically
better off but cooperative groups grow larger. Both plots confirm that the lower
s and the higher c1, the higher 〈Tsink〉 and 〈Nmax〉 are. We can conclude that the
sinking time of a mat decreases when the selection pressure is increased or the
growth advantage of cooperative groups is lowered.
Chosen parameters: zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, x0 = 0.8, γ0 = 0.2.

5.3 Stochastic mat model in a nutshell

Let us briefly summarize the mat model and the results obtained from the numerical sim-
ulations so far.
Our goal is to investigate the interplay between the biologically relevant timescales leading
to cooperation in the mat experiment (chapter 2, figure 4.4). We have defined a stochastic
model for the growth and sinking of bacterial mats (section 4.6, figure 4.8). A mat is charac-
terized by the number of cooperating and defecting cells (NC and ND or equivalently N and
x), and by the effective mat volume M . The number of cooperators and defectors follows
a stochastic update [2]. Microscopically, defectors are always better off, but cooperative
groups can grow larger in size. Within an effective coarse-grained description, the growth
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Figure 5.14: Influence of the initial fraction of cooperators x0 on Tsink (left) and Nmax (right).
An increased percentage of cooperators results in a later sinking of the mats and a
bigger population size.
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: N0 = 5, γ0 = 0.2

of the mat is abstracted in a deterministic, non-spatial picture (section 4.4, eq. (4.6)). In
this averaged view, we assume that the mat only grows at its surface. Hereby, we effectively
introduce a scaling hypothesis for the dynamics of the mat volume: the growth rate of the
mat volume is proportional to its square root. Moreover, the mat expansion is mediated
by the presence of cooperating cells. Without cooperators, the mat would not grow in size.
The mat density is then computed via the microscopic occupation of the mat volume
(eq. (4.3)). Thereby, defectors contribute to the mat density with a larger weight than
cooperators since they do not overproduce the sticky polymer (1 < zC < zD). The mat
starts to sink, when its density reaches the density of water (γ = 1).

This mat model combines population dynamics with its internal evolution for mat popu-
lations. The average percentage of cooperators 〈x〉mat reveals a transient increase of coop-
eration after some time due to demographic fluctuations in the beginning of the growth
dynamics (figure 5.5). Cooperative groups grow larger in size and sink later in time, and
thus have a higher probability to survive. The sinking time 〈T 〉sink increases if the mat
expansion is accelerated via c1, and if the selection pressure s is lowered (figure 5.13). The
lower the initial size of the mat N0, the higher is the impact of stochastic fluctuations
(∝ 1/

√
N0) on the population size and the sinking time (figure 5.15).

In the next chapter, we will apply repeated population bottlenecks to the mat dynamics,
which may pave the way for the maintenance of cooperation in structured populations.
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Figure 5.15: Influence of the initial population size N0 on Tsink (left) and Nmax (right). The mean
sinking time decreases with an increase of the initial population size N0. This effect
crucially depends on demographic fluctuations scaling as 1/

√
N . One can infer the

importance of stochastic fluctuations from the 2σ-lines in both plots indicating the
high variance of the sinking time for small N0. Since the distribution of the sinking
times can be approximated to be Gaussian, 95% of all sinking times lie in the regime
comprised by the 2σ-lines. This approximation does not hold for the distribution
of Nmax, but still the 2σ-lines indicate the strong impact of stochastic fluctuations
for small N0. Note, however, that the average maximal population size is hardly
affected by N0.
Chosen parameters: s = 0.15, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: x0 = 0.5, γ0 = 0.2.



6 Outlook: structured mat populations

During the last three chapters, we have introduced the mat experiment of Rainey & Rainey
(chapter 2), and we have developed and analyzed the mat model (chapter 4 and 5). It
was shown that the qualitative outcome of the mat model is in good agreement with the
experimental results. Let us now turn to the maintenance of cooperation using the example
of the mat experiment and the according mat model. This chapter can be understood as
an outlook to the maintenance of cooperation and reflects work which is still in progress.

6.1 Structured populations and regrouping steps

Recall that we have already discussed the maintenance of cooperation in a general context
in chapter 1. The main motivation to study this issue was to gain insights into the transi-
tion from single-celled organisms to multicellularity. We have argued that in the simplest
case, structured populations might pave the way to sustain cooperative behavior. In other
words, the division of the whole population into sub-populations could be one possibility
of how cooperation might have advanced in the course of evolution [90, 65].
Speaking more specifically, we would like to reveal scenarios within the mat model giving
rise to an increase of cooperation. We have already seen in figure 5.6 that the average
fraction of cooperators shows a time window in which the initial fraction of cooperators
is exceeded. From a multi-level perspective, the time window of the transient increase of
cooperation is determined by the interplay of the already introduced intra-group evolution
and inter-group evolution (cf. chapter 1). The intra-group evolution reflects the evolution-
ary advantage of defectors over cooperators within one subpopulation, whereas inter-group
evolution favors cooperative mats over non-cooperative mats.
As we have found out in the previous chapter, the intra-mat evolution is mainly determined
by the selection pressure s. The growth advantage of cooperative groups is mediated by
the parameter c1 and the initial conditions x0 and N0. It is important to note that the
parameters s and c1 are determined by the structure, the metabolic properties, and other
microscopic details of the bacteria and their growth. It might be possible to determine
the value of both parameters from the experiment. In contrast to the values of x0 and N0,
however, s and c1 are not directly adjustable in an experimental setup.

Consider, for example, the setup in figure 6.1 in which a population is repeatedly dis-
persed into subpopulations after a specific time period, and as a consequence a population
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structure is explicitly imposed.

Figure 6.1: Repetitive life cycle as a generic setup to establish maintenance of cooperation in the
mat experiment. The formation step leads to the division of the whole population
into sub-populations. Each subpopulation evolves separately following the stochastic
dynamics of the mat model up to a predefined regrouping time Trg. Then, all mats (or
parts of them) which are not sunk up to that time are merged into one big population.
The fraction of cooperators in this well-mixed population is given by 〈x〉mat, that is
the fraction of cooperators over all sub-populations. The repeated application of
this regrouping scheme leads to three different scenarios which depend on the value
of the regrouping time Trg: stable coexistence of defectors and cooperators, a pure
cooperation scenario, and a regime in which cooperation ceases. Future work will
quantify this phenomenological picture.

This repetitive cycle consists of three steps:

1. Formation. This process refers to the division of a well-mixed population into several
sub-populations. We start from the whole population which has a specific fraction of
cooperators 〈x〉mat and from which the sub-populations are founded. Thereby, each
sub-population has N0 bacteria with a fraction of cooperators x0 in the beginning. In
other words, the initial number of cooperators is initialized stochastically, whereas the
initial total group size N0 is fixed. Note that 〈x0〉 = 〈x〉mat since the sub-populations
are founded from the “ancestral” population.

2. Evolution. The temporal evolution for all mats lasts for a predefined time Trg, the
regrouping time. During this time, there is no interaction between the different mats.
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All mats evolve separately following the stochastic dynamics described in chapter 4.

3. Merging. After the regrouping time Trg, all mats (or parts of them) which are not
sunk up to that time are merged into one big population. The fraction of cooperators
in this well-mixed population is then given by 〈x〉mat.

Note that the division of a whole population into several sub-populations seems artificial
at first glance. Nevertheless, many biological scenarios are known in which a “regrouping”
step is an adequate description. For example, population bottlenecks justify the application
of regrouping steps. These situations can be caused by environmental or other external
factors with the consequence that large parts of a population suddenly die out or parts of
the whole population are separated from the rest.
The consideration of a repetitive life cycle as proposed in 6.1, however, should be regarded
as a simplified, but generic approach to more detailed scenarios. The key point is that we
show that cooperation can be maintained in principle by combining mat dynamics with
this regrouping step in a general setup.

The concept of a regrouping step is adapted from [90] to the mat experiment. Cremer et al.
could show in [90] that such a setup with a repetitive cycle for the cooperator-defector
model presented in section 3.4.1 leads to regimes in which cooperation can emerge and
evolve. Moreover, stable coexistence between cooperators and defectors can be achieved.
These regimes crucially depend on the regrouping time Trg.
The same idea seems promising for the scheme presented in figure 6.1 for the mat sub-
populations. In figure 5.6, we investigated a mat ensemble with a fixed initial percentage of
cooperators x0 for all mats. In the repetitive cycle, however, the number of cooperators is
sampled from a binomial distribution with parameters N0 and probability 〈x0〉 in order to
generalize the dynamics to arbitrary 〈x0〉. Figure 6.2 shows the analogue of figure 5.6 for
a mat population for different 〈x0〉 that is the evolution of one single step of the repetitive
circle.

From figure 6.2, we can recognize the impact of the average initial fraction of cooperators
〈x0〉 and the initial average mat size N0 on the time window in which the percentage of
cooperators exceeds its initial value. Note that the distribution of sinking times is crucial
to the dynamics of the sub-populations. Non-cooperative mats will sink faster, whereas
cooperative mats grow larger in size and sink at a later point in time.
In particular, we can distinguish between three regimes for each set of parameters (fig-
ure 6.2, right). The first regime shows a transient decrease of cooperation. Here, the
evolution of many groups is dominated by the selection pressure leading to groups in
which the x-average drops. Some groups, however, show an increase of cooperation due to
a high fraction of cooperators in the beginning since bigger mats have a larger weight to the
average fraction of cooperators. Therefore, the fraction of cooperators increases again after
some time and ultimately exceeds the initial level of cooperation. In addition to stochastic
demographic fluctuations in the beginning of the mat dynamics which have been discussed
in the last chapter, another effect enforces the formation of highly cooperative groups. We
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Figure 6.2: Fraction of cooperators for several combinations of initial conditions: one regrouping
step. The left plot shows 〈x〉mat for three different values of 〈x0〉 and fixed initial
group size N0 = 5; the right plot depicts 〈x〉mat for two different values of 〈N0〉
and fixed initial fraction of cooperators x0 = 0.8. For each set of parameters, we
can distinguish three different regimes for the fraction of cooperators over all sub-
populations. In the beginning, we observe a transient decrease which is followed by
a transient increase in the percentage of cooperators for the time period tC . When
all mats are sunk, 〈x〉mat drops to zero. By repeatedly applying a regrouping step at
time Trg, one can infer on the regimes in which cooperation becomes stable.
Chosen parameters: s = 0.5, c1 = 20, zC = 2, zD = 6, c2 = 9, c3 = 1.1.
Initial values: γ0 = 0.2; Number of groups = 5000.

impose additional stochasticity to the dynamics of the mat sub-populations by initializing
the mats from a binomial distribution. For example, this sampling gives rise to initialized
groups that are purely cooperative even for values of x0 which are less than 1. Therefore, a
population whose sub-populations are initialized with a large mat size N0 = 20 (figure 6.2,
right plot) will also contain mats which are purely cooperative if x0 and the number of
groups are sufficiently high. This effect causes a regime in which only purely cooperative
mats remain unsunk, that is the average fraction of cooperators is 1, whereas all other
mats are already sunk.
The regime in which the fraction of cooperators exceeds its initial level is characterized by
the time window tC . This period ends with the sinking of the last mat. From figure 6.2,
we can infer that the length of the time window tC increases with a higher value of 〈x0〉
since more cooperative mats can survive longer. Moreover, it can be recognized that the
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time, at which the period of the transient increase begins, shifts to shorter times for lower
values of 〈x0〉.
One could also think of randomizing initial conditions for the group size N0 [90, 65] for
the single regrouping step. We do not follow this way here since an increased variance in
N0 would lead to even more solely cooperative groups in the beginning and hence ease the
way to an increase of cooperation.
Now, we can consider repeated regrouping steps with a fixed regrouping time Trg as shown
in figure 6.1. Numerical simulations are work in progress, but qualitatively, one can al-
ready infer some basic features of this regrouping scenario from figure 6.2. For every initial
fraction of cooperators 〈x0〉, there will always be a time regime in which cooperation can
increase since stochastic fluctuations lead to groups in which the x-average exceeds the ini-
tial average level. These groups gain significance for the overall average in the percentage
of cooperation since their size is much larger than for non-cooperative groups which also
sink at a much shorter time. If the regrouping time is chosen large enough, all mats will
be sunk, and in this way the next regrouping step would not be executable. This scenario
would lead to an extinction of cooperators.
Therefore, we expect three different regimes for the regrouping: stable coexistence of de-
fectors and cooperators, a pure cooperation scenario, and a regime in which cooperation
ceases. Future work will quantify this phenomenological picture.

6.2 Outlook

As already mentioned, we will examine the repeated life cycle by means of numerical simu-
lations in the near future. Moreover, it is interesting to refine the regrouping step to more
realistic scenarios in such a way that it might be tested by biologists. First discussions in
this direction have already been conducted with Prof. Jung from the microbiology depart-
ment of the Ludwig-Maximilians University Munich.
One possible setup could involve the consideration of geometric boundary conditions. One
could imagine a situation in nature in which the reproduction would be triggered by the
breaking away of small parts of the ancestral mat at shores, at leaves of water plants, or at
stone edges as described above. Then, we only regroup with those mats that are not sunk
and that have reached a particular threshold in size. The latter condition translates into a
condition on the mat volume M and can be investigated from a theoretical point of view
by applying the mat model. All mats enclosing too less volume do not arrive at the next
’shore’. Only those groups arriving at the next shore can form new mats (as propagules).
To conclude this theoretical picture, the variation on the mat level could be mediated by
the variation of the percentage of cooperators in the mat propagule. In this way, selection
pressure could act on the level of mats and a possible way to the higher level selection
might be paved. This transition might be considered as a kick-start towards the evolution
of multicellularity, where mats could reproduce as a whole.
In summary, it will be a long road to finally reveal the transition from single-celled or-
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ganisms to multicellularity. It surely needs some more scientific creativity to uncover this
secret of nature. In this thesis we have shown, however, that the interplay between the
dynamics of mat formation and the evolution within the mats is a promising starting point.



A Contents of the enclosed CD

The CD enclosed with this thesis contains the following data:

• This document as pdf-file.

• The C++ source code which has been used for numerical simulations.

• Many tools in Python for the analysis of the data obtained from simulations.
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