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1 Introduction

Statistical mechanics is one of the oldest branches in theoretical physics being still
an up to date field of modern research. It deals with physical systems of which
the macroscopic properties can be inferred from a microscopic description [1, 2].
Although mathematical tools have been developed successfully to study systems
in thermodynamic equilibrium by ensemble theory, the examination of many-
body systems in non-equilibrium is still a challenging task for theoretical physics,
since more general and more elaborate concepts are needed. The requirement
for the study of non-equilibrium statistical physics stems from its relevance to
describe processes in nature. Most systems are exposed to an interaction to other
systems yielding an exchange of energy and matter and thus cannot be described
in terms of thermodynamic equilibrium physics.

The focus of this essay will lie on systems being comprised of many diffusing
particles reacting with each other in a defined manner and the adequate mod-
elling of them in order to explain the experimentally or computationally gained
observations. We are always interested in two questions concerning these reaction-
diffusion processes. The first point occupies the existence of a steady state, that is
an unchanged particle density in time and in case of existence, its spatial depen-
dence. The second question, being naturally much harder to answer, examines
the way the system approaches the steady state. Since we look at the long-time
behaviour of such systems, we can always assume to be in the so-called diffusion
limited regime, where low particle densities are present and the dynamics will be
dominated by the diffusion rates.
Macroscopically, the time evolution of these systems is often modelled by or-
dinary differential equations (ODEs) for the observable or quantity of interest.
These variables could be, for instance, the mean particle or population density,
chemical concentration or magnetisation.
By including also spatial degrees of freedoms, the variables become local functions
and the mathematical frame would be shifted to partial differential equations
(PDEs) revealing more complex behaviour such as spreading, front propagation
and patterns [3].

However, due to the underlying interaction between the constituents of the sys-
tem, correlations between the particles may arise, possibly leading to collective
phenomena, which involve oscillations, pattern formation or phase transitions be-
tween different macroscopic states. Moreover, the system contains randomness in
its variables, either because of its random kinetics (reaction of several reactants
with a certain probability) or because of our ignorance by modelling the system,
since it is mathematically not feasible to include all degrees of freedom for a many
particle system.
It turns out that many systems show universal scaling behaviour as they evolve
in time towards the steady state [4]. This critical behaviour may be described
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by power laws with critical exponents for the order parameter characterising the
large-scale and long-time properties of the system. For example, the effective
reaction rate of the process can change in the presence of fluctuations and corre-
lations.
However, the description of the temporal dependence of a stochastic many par-
ticle system performing reaction and diffusion processes in terms of ODEs and
PDEs for the rates of the involved quantities entirely neglects correlations and
spatial variations and is referred to as a mean-field description. It is often not
possible to explain the right scaling behaviour and critical exponents by applying
the theory of rate equations, but the appearance of these phenomena suggests
the use of methods known from statistical field theory.

It has been one of the biggest successes of theoretical physics for the last decades
to explain universality and scaling laws in condensed matter and particle physics
and statistical field theory delivers the appropriate mathematical framework and
tools to study these systems, namely renormalisation group techniques.

This essay deals with the application of these methods to reaction-diffusion sys-
tems in order to overcome the lack of the rate equation model. However, for the
sake of lucidity, we will restrict our attention to the pair annihilation process

A + A
λ−→ ∅, a specific reaction-diffusion system, being explained more detailed

later on.
First, the rate equation model is outlined and its features are compared to exper-
iments and numerical simulations. In order to generalise the model and to apply
methods from statistical field theory, the lattice approach to reaction-diffusion
systems is introduced. Based on the description of reaction-diffusion processes on
a lattice, the microscopic master equation is re-formulated in terms of creation
and annihilation operators in analogy to quantum mechanics on a Fock space,
which provides a natural framework for systems with changing particle numbers.
This enables the path integral formulation and a field theory action is obtained.
By renormalising the field theory, universal scaling behaviour and the right criti-
cal exponents for the way the system approaches its steady state can be extracted
and qualitative results are stated for other reaction-diffusion systems.

2 Pair Annihilation Reaction-Diffusion Process

We shall examine and exemplify the features and problems arising at the analysis
of reaction-diffusion systems on the single-species pair annihilation process,

A + A
λ−→ ∅ + diffusion . (2.1)

The particles of species A are allowed to diffuse in space and annihilate each
other with reaction rate λ. We investigate this simple reaction-diffusion system,
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because all main features of critical behaviour can be extracted analytically for
this pair annihilation process and the analysis stays manageable and traceable
within the scope of this essay.

The steady state of such a process is very simple. Depending on the initial
condition, whether we start the reaction-diffusion process with an even or odd
number of particles, the steady state will contain either no particles (empty space)
or only one particle left. Therefore, the focus of our analysis will lie on the
question, how the system approaches the steady state.

3 Rate Equations

Reaction-diffusion systems are generally studied in terms of rate equations, be-
ing part of the analysis of partial differential equations (PDE) [5, 6, 7]. In d
spatial and one time dimension they are equations for the mean particle density
ρ : Rd+1 → R, which reads for the pair annihilation process (eq. 2.1) as follows,

∂

∂t
ρ(x, t) = D · ∇2ρ(x, t)︸ ︷︷ ︸

diffusion

−λρ(x, t)2

︸ ︷︷ ︸
reaction

(3.2)

ρ(x, 0) = f(x) , (3.3)

where suitable initial conditions may be imposed in eq. (3.3). The first term
on the right-hand side is subject to diffusion, the second term takes care of the
reaction process.

If we neglect the diffusive part in eq. (3.2) for a moment, we get the kinetic rate
equation,

∂

∂t
ρ(t) = −λρ(t)2 , (3.4)

which is a first order ordinary differential equation solved by,

ρ(t) =
1

1/ρ(0) + λt
, (3.5)

whereas ρ(0) denotes the initial particle density at time t0 = 0. This solution
(3.5) behaves asymptotically like ρ ∼ t−1.

If we return to the inhomogeneous system, where the particle density ρ(x, t) is
considered to be local, diffusion effects have to be taken into account. Assuming
uniformity of the particle density in spatial coordinates for all times [4], the solu-
tion of the full rate eq. (3.2) will perform the same scaling law for the asymptotic
temporal behaviour as given in eq. (3.5).

However, experiments and computer simulations show that the long-time be-
haviour does indeed depend on the dimension d we are considering and hence
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such a kinetic PDE approach inheres an inadequate description in some regimes.
Some examples can be found in [8, 9, 10].
For the pair annihilation process, one finds,

ρ(x, t) ∼





t−1/2 d = 1, PDE prediction wrong

ln t · t−1 d = 2, PDE prediction wrong

t−1 d > 2, PDE prediction right

(3.6)

This suggests the assumption that the PDE approach to reaction-diffusion prob-
lems may be too naive in some cases and does not predict the right long-time
behaviour for all dimensions.
In fact it turns out, that such a PDE description neglects any spatial fluctuations
and correlations in the system and corresponds to a mean-field description. This
feature will be extracted in detail in due course.
Nevertheless, we want to predict the right long-time behaviour (3.6) for a given
reaction-diffusion system. Hence, we will include statistical fluctuations in our
analysis and rewrite the pair annihilation process in terms of field theoretic quan-
tities by using the lattice model described in the next section. By applying dy-
namic renormalisation group methods, it will be shown, that the approach to the
steady state is critical in the sense that it exhibits universal scaling behaviour
and critical exponents.

4 Lattice Model for Reaction-Diffusion Systems

To model reaction-diffusion systems, starting from a microscopic description, we
consider a lattice in d dimensions, whereas each lattice site is occupied by a certain
number of particles of different particle species α = A, B, . . . (cf. figure 4.1).
The spatial difference between two neighbouring lattice sites is called a and the
particle number for a specific particle species at a lattice point i ∈ Zd is denoted
by nα

i . The total number of particles N occupying the lattice can be computed
via N =

∑
i,α nα

i . A configuration η is given by the specification of all particle
numbers for all sites and particle species, that is η = {nα

i }.
The dynamics of such a system will be governed by two processes: reactions
and diffusion. For each time step the particles are allowed to jump to a nearest
neighbour lattice site. We assume that no spatial direction for the jump process is
preferred and that it can be described by a diffusion process in the continuum limit
with diffusion constant Dα, depending on the particle species α. Furthermore,
reaction processes may take place on a single lattice site with a specific reaction
rate λ. Possible reactions could include, for example [4]:

• Production: ∅ λ1−→ A
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Figure 4.1: Microscopic lattice model for reaction-diffusion systems.

• Degradation: A
λ2−→ ∅

• Mutation: A
λ3−→ B

• Chemical reaction: A + B
λ4−→ C

• Dominance: A + B
λ5−→ A + A

Here, ∅ denotes an empty lattice site. If we perform the continuum limit by
letting a → 0 (or equivalently the volume of a spatial cell of volume Vb = bd →∞
and N → ∞) such that the ratio of the number of particles included in a cell
of side length b and the volume of this cell bd stays finite, we can define the
particle density ρ(x, t), where x labels then the continuous spatial coordinate in
d dimensions.

For the pair annihilation process, we consider a lattice in d dimensions with only
one particle species. The particles are allowed to hop on the lattice (corresponding
to diffusion in the continuum limit with diffusion constant D) and if two particles
meet each other at one site, they will annihilate irreversibly with reaction rate λ.

5 Field Theoretic Formulation

5.1 Operator Description

5.1.1 Master equation

The starting point of the description of the temporal evolution for the pair anni-
hilation system (2.1) is the introduction of the time-dependent probability distri-
bution P (η, t), prescribing the probability of a configuration η to occur at time t.
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The dynamics of the probability distribution is governed by a master equation,

∂

∂t
P (η, t) =

∑
η′
{Tη′→ηP (η′, t)− Tη→η′P (η, t)} , (5.7)

which is a first order differential equation in time and represents the underlying
assumption of a continuous Markov process, meaning that no memory is imposed.
The next step in the time evolution of the probability distribution depends only
on the probability distribution of the current time t simplifying the problem enor-
mously. The master equation can be thought of as a balance between gain and
loss terms. All transitions from a configuration η′ to the configuration η, charac-
terised by the transition rate Tη′→η, contribute to a gain of probability at time
t in configuration η, all transitions form η to other configurations, characterised
by the transition rate Tη→η′ result in a loss of P (η, t). Note, that the transition
rates are said to be independent of time t.

The initial condition is determined by a product of Poisson distributions over all
lattice sites,

P (η, t = 0) =
∏

i

(〈n0〉ni

ni!
e−〈n0〉

)
, (5.8)

where 〈n0〉 denotes the average number of particles per site. At each lattice
site, we have a binomial distribution for the random variable Xm (= number of
occupations) in a sequence of m independent yes/no experiments if we assume
uniform, random initial conditions. Each occupation experiment yields an occu-
pation number n with probability p = 〈n0〉

m
, thus Xm ∼ Bin(m, p).

The law of rare events states [11] that for fixed 〈n0〉 and for Xm ∼ Bin(m, 〈n0〉
m

)
and Y ∼ Pois(〈n0〉) one obtains for fixed n,

lim
m→∞

P(Xm = n) = P(Y = n) =
〈n0〉n

n!
e−〈n0〉.

5.1.2 Bosonic operator description

In the following, we will introduce a bosonic operator representation and map the
master equation (5.7) onto a stochastic quasi-Hamiltonian description [12, 13].
However, it should be emphasized that this procedure reflects a classical approach
and does not involve any quantum mechanical physics.

We define a Fock space on the lattice for this stochastic process. The empty
lattice without any particles is called the vacuum state and will be denoted by |0〉.
From this vacuum state, we can construct other states in analogy to the quantum
mechanical Fock space by introducing creation and annihilation operators a†i , ai.
For example, the creation operator a†i creates a particle of particle species A at
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lattice site i ∈ Zd . The state |ni〉 represents a configuration with ni particles at
site i. We impose the following constraints on our vacuum state, which naturally
arise if we think of |0〉 being the vacuum state,

ai|0〉 := 0 ,

〈0|0〉 := 1 .

Mathematically, the bosonic operators are defined on the Fock space, such that,

a†i |ni〉 := |ni + 1〉 ,

ai|ni〉 := ni|ni − 1〉 ,
(5.9)

which justifies the name for the creation and annihilation operator. A general
configuration η = {nα

i } corresponds to the state |n1, n2, . . . 〉, being defined as,

|η〉 = |{nα
i }〉 = |n1, n2, . . . 〉 :=

(
a†1

)n1
(
a†2

)n2

. . . |0〉 . (5.10)

From these definitions, the well-known bosonic commutation relations can be
obtained,

[ai, a
†
j] = aia

†
j − a†jai = δij , (5.11)

[a†i , a
†
j] = [ai, aj] = 0 . (5.12)

Furthermore, it turns out that a† is the hermitian conjugate to the operator
a. Note, however, the different normalisation in eq. (5.9) in comparison to the
quantum mechanical analogue, where the operators are defined in such a way that
the normalisation is conserved. If we apply definition (5.9, 5.10), we recognise
that 〈n|m〉 = n! · δnm. Nevertheless, the normalisation of states is not needed
in this representation and the building-up process of states by acting with the
creation operator on the vacuum state (5.10) becomes simpler.

We also define the particle number operator n̂i := a†iai, whose eigenvectors are
the occupation number states,

n̂i|ni〉 = ni|ni〉 . (5.13)

Next, the probability distribution P (η, t) is mapped to a state vector |ψ(t)〉, being
defined on the Fock space as follows,

|ψ(t)〉 =
∑

η

P (η, t)|η〉 , (5.14)

which is a sum over all possible configurations weighted by their probability to
occur at time t. We can now study the time evolution of this state vector by
applying the master equation (5.7) yielding a Schroedinger type equation,

∂

∂t
|ψ(t)〉 = −H({a†i , ai})|ψ(t)〉 , (5.15)
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where H({a†i , ai} represents the quasi-Hamiltonian acting on the Fock space.
Formally, this equation is solved by,

|ψ(t)〉 = e−Ht|ψ(0)〉 . (5.16)

The initial condition of the master equation (5.8) is mapped in this occupation
number representation to,

|ψ(t = 0)〉 =
∑

η

P (η, t = 0)|η〉 =
∑

{ni}

∏
i

(〈n0〉ni

ni!
e−〈n0〉

(
a†i

)ni

)
|0〉 (5.17)

=
∏

i

e−〈n0〉e〈n0〉a†i |0〉 , (5.18)

Let us examine the map to the Schroedinger type equation in more depth and
illustrate the procedure of extracting H for a couple of examples.

Diffusion between two sites

Consider first the case, where particles are only allowed to jump from site 1 to
site 2 with diffusion rate D (cf. figure (5.2)).

Figure 5.2: Diffusion between two sites.

∂

∂t
P (n1, n2, t) = D(n1 + 1) · P (n1 + 1, n2 − 1, t)−Dn1 · P (n1, n2, t) , (5.19)

since we gain probability for P (n1, n2, t) if we start in a configuration η = (n1 +
1, n2 − 1) and a particle jumps to site 2 and we loose probability if a particle
jumps from 1 to 2 out of a configuration η = (n1, n2). The state vector for this
simple example is defined as,

|ψ(t)〉 =
∑
n1,n2

P (n1, n2, t)|n1, n2〉 =
∑
n1,n2

P (n1, n2, t)
(
a†1

)n1
(
a†2

)n2 |0〉 . (5.20)



5 FIELD THEORETIC FORMULATION 11

Taking the time derivative of eq. (5.20) and inserting the master equation (5.19)
yields,

∂

∂t
|ψ(t)〉 =

∑
n1,n2

∂

∂t
P (n1, n2, t)

(
a†1

)n1
(
a†2

)n2 |0〉

=
∑
n1,n2

(
D(n1 + 1) · P (n1 + 1, n2 − 1, t)−Dn1 · P (n1, n2, t)

)(
a†1

)n1
(
a†2

)n2 |0〉

=
∑
n1,n2

D · P (n1 + 1, n2 − 1, t) a†2a1

(
a†1

)n1+1 (
a†2

)n2−1

|0〉

−
∑
n1,n2

D · P (n1, n2, t) a†1a1

(
a†1

)n1
(
a†2

)n2 |0〉

= D(a†2a1 − a†1a1)|ψ(t)〉 = −H1→2(a
†
1, a

†
2, a1)|ψ(t)〉 ,

where H1→2(a
†
1, a

†
2, a1) := −D(a†2 − a†1)a1 was defined. From the second to the

third line, we used the fact that the occupation number states are eigenvectors of
the particle number operator (eq. (5.13)) together with the following conversion,

a
(
a†

)n+1
= aa†

(
a†

)n
= (I+ a†a)

(
a†

)n
= (n + 1)

(
a†

)n
.

The big advantage of using the second-quantised occupation number formalism
lies in its pictorial and intuitive understanding of the process. The first term
of H1→2 corresponds to a annihilation of a particle at site 1, whereas a particle
at site 2 is created. This process takes place with a diffusion rate D. The
second term is less obvious and reflects a consistency relation, because H({a†i =
I, ai}) = 0 [4]. It is related to the conservation of probability in time due to the
master equation (5.7). We will not go into further details at this point, but shall
encounter this consistency term at several points.

The back hopping from site 2 to 1 leads in the same way to the same Hamil-
tonian with interchanged indices, H2→1(a

†
1, a

†
2, a2) = −D(a†1 − a†2)a2. The total

hopping Hamiltonian between site 1 and 2 is the sum of H1→2 and H2→1, thus
H1↔2(a

†
1, a

†
2, a1, a2) = D(a†2 − a†1)(a2 − a1).

Diffusion on the lattice

We can generalise this result to the diffusion on the whole lattice, since the
particles are allowed to jump only to a nearest neighbour lattice site. Thus we
end up with,

Hdiff({a†i , ai}) = D ·
∑

〈i,j〉
(a†i − a†j)(ai − aj) , (5.21)

where the sum is carried out over all nearest neighbours 〈i, j〉.
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Reaction A + A
λ−→ ∅

The single site pair annihilation reaction can be treated in the same way as it
was shown for the diffusion case. Again, one has to look at the gain and loss
terms of the probability distribution P (n, t). We can increase P (n, t) if n + 2
particles react at time t with each other and a reaction of two particles from a
state with occupation number n at time t leads to a decrease of P (n, t). Hence,
the master equation (5.7) for the probability distribution P (n, t) for this reaction
at one lattice site reads as follows,

∂

∂t
P (n, t) = λ(n + 2)(n + 1) · P (n + 2, t)− λn(n− 1) · P (n, t) . (5.22)

For the single site reaction, the state vector can be written as,

|ψ(t)〉 =
∑

n

P (n, t)|n〉 =
∑

n

P (n, t)
(
a†

)n |0〉 , (5.23)

and thus,

∂

∂t
|ψ(t)〉 =

∑
n

∂

∂t
P (n, t)

(
a†

)n |0〉

=
∑

n

(
λ(n + 2)(n + 1) · P (n + 2, t)− λn(n− 1) · P (n, t))

) (
a†

)n |0〉

= λ ·
∑

n

P (n + 2, t) a2
(
a†

)n+2 |0〉 − λ ·
∑

n

P (n, t)
(
a†

)2
a2

(
a†

)n |0〉

= λ ·
(
a2 − (

a†
)2

a2
)
|ψ(t)〉 = −H(a†, a)|ψ(t)〉 ,

where from the second to the third line,

(n + 2)(n + 1)|n〉 = a2|n + 2〉,
and

n(n− 1)|n〉 = (n2 − n)|n〉 =
((

a†a
)2 − a†a

)
|n〉

=
(
a†aa†a− a†a

) |n〉 =
(
a†(I+ a†a)a− a†a

) |n〉
=

(
a†

)2
a2|n〉 ,

were used. We defined in the last line H(a†, a) := −λ · (a2 − (
a†

)2
a2). In the

pair annihilation reaction, two particles are annihilated with rate λ and thus a
term with −λ · a2 appears in the Hamiltonian. The second term represents the
consistency relation as mentioned above.

For the whole lattice one obtains the Hamiltonian for the pair annihilation reac-
tion by summing over all lattice sites,

Hreact({a†i , ai}) = −λ ·
∑

i

(
I−

(
a†i

)2
)

a2
i , (5.24)
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Pair annihilation reaction-diffusion process on the lattice

To summarise the results from the above calculations, we can infer the Hamilto-
nian for the pair annihilation reaction-diffusion process on the lattice,

H({a†i , ai}) = Hdiff({a†i , ai}) + Hreact({a†i , ai})

= D ·
∑

〈i,j〉
(a†i − a†j)(ai − aj)− λ ·

∑
i

(
I−

(
a†i

)2
)

a2
i , (5.25)

which will be the starting point for our further analysis. Note, that this Hamil-
tonian is normal-ordered, since all creation operators are to the left of all anni-
hilation operators in products and thus the expectation value 〈0|H|0〉 is zero.

Generalisation to other reactions, Lotka-Volterra model

If we were to write down the Hamiltonian for the Schroedinger type equation (5.15)
for a general reaction-diffusion system, we can proceed in the same way as it was
demonstrated above. The Hamiltonian for the diffusive part can be copied for
every process from eq. (5.21).

The Hamiltonian for the reaction part can be constructed via the intuitive bosonic
operator description and consists of two parts, both being normal ordered. The
negative part takes care of the annihilated and created particles due to the reac-
tion. For each annihilated particle of species α we insert an annihilation operator
aα, for each created particle a creation operator a†α. The positive part of the
Hamiltonian reflects the consistency relation and includes a creation and an an-
nihilation operator for each reactant.

Let us exemplify this procedure on the two-species Lotka-Volterra system [14].
In this model two species are in competition with each other: the predator A and
the prey B. The interactions can be described by three reactions plus diffusion.

1. A
µ−→ ∅ Ã H = −µ(I− a†)a

The predators die with a rate µ spontaneously.

2. B
σ−→ B + B Ã H = −σ(

(
b†

)2 − b†)b
The preys reproduce with a rate σ spontaneously.

3. A + B
λ−→ A + A Ã H = −λ(

(
a†

)2 − a†b†)ab
The preys are consumed by the predators reproducing themselves at the
same time with rate λ.

The Hamiltonian for the Lotka-Volterra reaction-diffusion system then reads as
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follows,

HLV({a†i , b†i , ai, bi}) = Hdiff({a†i , b†i , ai, bi}) + Hreact({a†i , b†i , ai, bi})
= DA ·

∑

〈i,j〉
(a†i − a†j)(ai − aj) + DB ·

∑

〈i,j〉
(b†i − b†j)(bi − bj) (5.26)

− λ ·
∑

i

((
a†i

)2

− a†ib
†
i

)
aibi − µ ·

∑
i

(
I− a†i

)
ai − σ ·

∑
i

((
b†i

)2

− b†i

)
bi .

This is the main reason, why we use the occupation number representation. To-
gether with the Schroedinger type equation (5.15), it is a powerful tool to describe
the time evolution, even for more sophisticated interacting stochastic many par-
ticle systems [15].

5.1.3 Expectation Values of Observables

In the end, we want to compute expectation values for specific observables, for
example the mean particle number, and evaluate its dependence on time. On this
account, we will rewrite expectation values Ā(t) of observables A(η) in the bosonic
operator representation. The expectation value of an observable is defined as,

Ā(t) :=
∑

η

A(η)P (η, t) . (5.27)

This expectation is equivalent to,

Ā(t) = 〈0|e
P

i aiA(η)|ψ(t)〉 . (5.28)

as one can see from the identity 1 = 〈0|e
P

j aj
∏

j

(
a†j

)nj |0〉, which follows directly

from the bosonic commutation relations (5.11) and the following conversion,

Ā(t) =
∑

η

A(η)P (η, t) · 1

=
∑

η

A(η)P (η, t) · 〈0|e
P

j aj

∏
j

(
a†j

)nj |0〉

5.20
= 〈0|

∏
j

eajA(η)|ψ(t)〉 .

It is convenient to shift the e
P

j aj in front of the observable A(η) in eq. (5.28)
between the A(η) and |ψ(t)〉 term by making use of the identity ecaf(a†) =
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f(a† + c) eca for c ∈ C. Hence, we obtain,

Ā(t) = 〈0|e
P

j ajA({ni})|ψ(t)〉 = 〈0|
∏

j

e1·ajA({a†i , ai})e−H({a†i ,ai})t|ψ(0)〉

shift
= 〈0|A({a†i + I, ai})e−H({a†i +I,ai})t

∏
j

e1·aj |ψ(0)〉

5.18
= 〈0|A({a†i + I, ai})e−H({a†i +I,ai})t

∏
j

eaje−〈n0〉e〈n0〉a†j |0〉

shift
= 〈0|A({a†i + I, ai})e−H({a†i +I,ai})t

∏
j

e−〈n0〉e〈n0〉(a†j+I)eaj |0〉

= 〈0|A({a†i + I, ai})e−H({a†i +I,ai})t
∏

j

e〈n0〉a†j |0〉 .

According to literature [16], we denote,

f̃({a†i , ai}) := f({a†i + I, ai}) , (5.29)

which is often referred to as Doi-shift.

In terms of Doi-shifted quantities, we finally arrive at,

Ā(t) = 〈0|Ã({a†i , ai})e−H̃({a†i ,ai})t
∏

j

e〈n0〉a†j |0〉 . (5.30)

Mean particle number

The starting point and motivation of all analysis was the question of how the
particle density ρ(x, t) evolves for large times. That is, we are particularly inter-
ested in the mean of the particle number operator n = a†a as our observable that
can be written as,

n̄(t) = 〈0|(a† + I)a e−H̃({a†i ,ai})t
∏

j

e〈n0〉a†j |0〉

= 〈0|a e−H̃({a†i ,ai})t
∏

j

e〈n0〉a†j |0〉 . (5.31)

5.2 Path Integral Formulation

After having transformed the expression for the mean value of an observable
(5.27) into expression (5.30) via the bosonic operator description, we are now
at the point to introduce the path integral formulation for a reaction-diffusion
process.
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Since we mapped the dynamics of such a reaction-diffusion system from the mas-
ter equation (5.7) to a Schroedinger type equation (5.15, 5.16), we can perform
the process of rewriting the theory into a path integral language in the same way
as it is done in quantum field theory [17]. The result will be a field theoretic
prescription of a reaction-diffusion process.

Let us explain the idea and outline the important steps of this transformation.
The key point is to split the time interval (0, t) into N pieces (cf. figure 5.3),

such that each time piece has length δt = t/N , and express e−H̃t in eq. (5.30) as
a limit as δt → 0,

e−H̃t = lim
δt→0

(1− δt · H̃)t/δt

= lim
δt→0
N→∞

(1− δt · H̃) · (1− δt · H̃) · · · (1− δt · H̃)︸ ︷︷ ︸
N factors

. (5.32)

We want to simplify the exponential of the Hamiltonian and write it therefore as
the limit of a product of N factors, involving the Hamiltonian only linearly.

Figure 5.3: Split of the time interval (0, t) into N pieces of length δt.

One can evaluate this product by sandwiching each linear term in the product
by a suitable identity,

↑
I

(1− δt · H̃) ·
↑
I

(1− δt · H̃) ·
↑
I

· · ·
···
·
↑
I

(1− δt · H̃)
↑
I

.

The question is always, which identity simplifies the product most.
In this case, where we are dealing with a normal ordered Hamiltonian H̃({a†i , ai}),
the eigenstates of the bosonic annihilation operator ai provide an appropriate
simplification.

It is an easy calculation (since the occupation number states {|n〉}n∈N constitute
an orthogonal set and in our convention 〈m|n〉 = n! · δmn) that the eigenstates
|φ〉 of the bosonic annihilation operator a, fulfilling a|φ〉 = φ|φ〉 for φ ∈ C, can
be written as [18],

|φ〉 = φ0

∑
n≥0

φn

n!
|n〉 = φ0 · eφa†|0〉 = e−

1
2
|φ|2+φa†|0〉 , φ ∈ C . (5.33)

These states are normalised, 〈φ|φ〉 = 1, overcomplete and referred to as coherent
states.
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By using δmn = 1
πm!

∫
d2φ e−|φ|

2
(φ∗)mφn, we obtain a presentation of the identity

operator for a single lattice site,

I =
∑
n≥0

1

n!
|n〉〈n| =

∑
m,n≥0

1

n!
|n〉〈m| δmn

=
∑

m,n≥0

1

n!
|n〉〈m| · 1

πm!

∫

φ∈C

d2φ e−|φ|
2

(φ∗)mφn

5.33
=

1

π

∫

φ∈C

d2φ |φ〉〈φ| = 1

π

∫

φ∈C

d2φ e−|φ|
2

eφa†eφ∗a|0〉〈0| ,

where the integration measure is d2φ = d(Re(φ)) d(Im(φ)). Turning to the whole
lattice, we introduce the multiple particle state |{φ}〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · and
generalise the result from above to the identity operator on the whole lattice,

I =

∫

φi∈C

∏

i∈Zd

(
d2φi

π

)
|{φ}〉〈{φ}| . (5.34)

By using identity (5.34) and inserting it into eq. (5.32) and eq. (5.30), we have
to evaluate the following terms (for the sake of clarity given at one lattice site
only) by applying again the Doi shift, the identity ecaf(a†) = f(a†+c) eca and its
conjugate form as well as the normal ordering of the Hamiltonian and observables,

1. N bulk-terms,

〈0|eφ∗(t)a(1−δtH̃(a†, a))eφ(t−δt)a† |0〉 = · · · = eφ(t−δt)φ∗(t)
(
1− δtH̃(φ∗(t), φ(t− δt))

)
.

2. Two boundary terms,
〈0|Ã(a†, a)eφ(t)a† |0〉 = · · · = A(φ(t)),

〈0|eφ∗(0)ae〈n0〉a† |0〉 = · · · = e〈n0〉φ∗(0).

3. N + 1 factors of e−|φ(t)|2 .

Putting everything together, we get for one lattice site,

Ā(t) =
1

N lim
δt→0
N→∞

∫ N∏

k=0

(
dφ(tk)dφ∗(tk)

π

)
×

× exp

{
−

N−1∑
j=0

(
δtH̃(φ∗(tj), φ(tj)) + |φ(tj + δt)|2 − φ(tj)φ

∗(tj + δt)
)}

×

× A(φ(t)) · e〈n0〉φ∗(o)−|φ(0)|2 ,
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where, N is the normalisation, obtained from averaging over the identity opera-
tor.
As it is usually done in literature, this cumbersome limit is abbreviated as follows,

Ā(t) = N−1

∫
D[φ∗(t)]D[φ(t)] A(φ(t)) · e−S[φ∗(t),φ(t)] ,

S[φ∗(t), φ(t)] =

t∫

0

dτ
(
H̃(φ∗(τ), φ(τ)) + φ∗(τ)∂τφ(τ)

)
− (〈n0〉 − φ(0))φ∗(0) ,

which displays an average over all fields φ∗(t), φ(t), weighted by the exponential
of the stated action S[φ∗(t), φ(t)]. The boundary term in the action S ensures
the initial condition φ(0) = 〈n0〉 since the path integral over φ∗(0) leads formally
to a δ-function. The φ(0)φ∗(0)-term can be dropped due to the perturbation
expansion, being developed in the next section, which has the feature that the
propagator of this theory only connects earlier φ∗ to later φ [4].

However, we have only performed the analysis for one single lattice site up to
now and have to account for the whole lattice.
Furthermore, we carry out the spatial continuum limit by letting the lattice
spacing a → 0 in order to end up with a field theory. We will have to redefine the
fields and parameters of our theory, since

∑
i∈Zd ad . . . 7→ ∫

ddx . . . , as follows,

φi(t)

ad
7→ φ(x, t) , φ∗(t) 7→ φ̃(x, t) , D 7→ D

a2
, λ 7→ λ

ad
, 〈n0〉 7→ ρ0 =

〈n0〉
ad

.

In case of our pair annihilation reaction-diffusion process (2.1), the Hamiltonian
becomes in the continuum limit,

H({a†i , ai}) = D ·
∑

〈i,j〉
(a†i − a†j)(ai − aj)− λ ·

∑
i

(
I−

(
a†i

)2
)

a2
i ,

Doishift7−→ H̃({φ∗i (t), φi(t)}) = D ·
∑

〈i,j〉
(φ∗i − φ∗j)(φi − φj)− λ ·

∑
i

(
I− (φ∗i + I)2

)
φ2

i ,

cont.limit7−→
∫

ddx
(
D∇φ̃ · ∇φ + λ(φ̃2 + 2φ̃)φ2

)

Finally, we arrive at

Ā(t) = N−1

∫
D[φ̃(x, t)]D[φ(x, t)] A(φ(x, t)) · e−S[φ̃(x,t),φ(x,t)] , (5.35)
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whereas the action for the pair annihilation process (2.1) can be written as,

S[φ̃(x, t), φ(x, t)] =

∫
ddχ





t∫

0

dτ L[φ̃(χ, τ), φ(χ, τ)]− ρ0φ̃(χ, 0)



 , (5.36)

L[φ̃(x, t), φ(x, t)] = φ̃(∂t −D∇2
x)φ︸ ︷︷ ︸

pure diffusion

+ 2λφ̃φ2 + λφ̃2φ2

︸ ︷︷ ︸
reaction A+A

λ−→∅

, (5.37)

where the bilinear part of the Lagrangian corresponds to the pure diffusion pro-

cess and the higher order interactions represent the reaction term A + A
λ−→ ∅.

Eq. (5.35, 5.36, 5.37) will be the starting point of all further analysis. The path
integral together with the action build up the basis of the field-theoretic exami-
nation of the pair annihilation process.

The mean particle number n̄ in the continuum limit becomes the mean particle
density ρ and is equal to the mean of the field ρ(x, t) = 〈φ(x, t)〉 in this path
integral formulation, so,

ρ(x, t) =

∫ D[φ̃(x, t)]D[φ(x, t)] φ(x, t)e−S[φ̃(x,t),φ(x,t)]

∫ D[φ̃(x, t)]D[φ(x, t)] e−S[φ̃(x,t),φ(x,t)]
= 〈φ(x, t)〉 =: G1(x, t) .

(5.38)

It will be shown in the next chapter how to evaluate eq. (5.38) perturbatively.

We could generalize this procedure to other reactions, too, the only change would
concern the establishing of the Lagrangian of the theory, which goes back to
finding the microscopic Hamiltonian on the lattice. For example, the Lotka-
Volterra model (5.26) can be mapped to a field theory (5.35, 5.36) by carrying
out the same steps as it was shown for the pair annihilation process, namely
performing the Doi shift and carrying out the continuum limit, leading to the
following Lagrangian [14],

L[φ̃, ψ̃, φ, ψ] = φ̃(∂t −DA∇2
x + µ)φ + ψ̃(∂t −DB∇2

x − σ)ψ (5.39)

− σψ̃2ψ − λ(φ̃ + 1)(φ̃− ψ̃)φψ .

5.3 Remarks to Field Theory

5.3.1 Classical field equation

It is worth to investigate the classical field equations of action (5.36). In order to
take the stationarity solutions of the field action, one has to compute,

∂S

∂φ
=

∂S

∂φ̃

!
= 0 ,
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which is, for example, solved by φ̃ = 0 and (∂t −D∇2
x)φ + 2λφ2 = 0. Taking the

expectation of the latter yields,

(∂t −D∇2
x)〈φ〉+ 2λ〈φ2〉 = 0 ,

⇒ ∂

∂t
ρ(x, t) = D∇2ρ(x, t)− 2λ〈φ2〉 ,

which has nearly the form of the rate equation (3.2). The difference between
the two rate equations lies in the different interaction terms. If we assume a
factorisation in the two-particle probability density and hence 〈φ2〉 = 〈φ〉2 = ρ2,
we obtain the rate equation (3.2). But this assumption is only true in case of
absence of spatial fluctuations and correlations in the system. Thus, the rate
equation approach corresponds to a mean-field description as pointed out earlier.

5.3.2 Stochastic Langevin equations

A possible extension of the classical field equation approach is the application
of the Langevin formalism, which formulates the problem in terms of a stochas-
tic partial differential equation (SPDE). It will be shown, how the field theory
characterised by action (5.36) and Lagrangian (5.37) can be cast into a Langevin
equation.

Generally, a Langevin equation is written in the form [19],

∂

∂t
φ(t) = −γ

δH
δφ︸ ︷︷ ︸

deterministic

+ ξ(t)︸︷︷︸
stochastic noise

, (5.40)

whereas H is the Hamiltonian from the last section in the continuum limit, γ
a real parameter and ξ(t) reflects a time-dependent random noise function with
zero mean and two-point function,

〈ξ(t)ξ(t′)〉 = 2σδ(t− t′) . (5.41)

The parameter σ determines the strength of the noise. Its characterisation will
have interesting implications. Langevin equations are mostly used to describe
equilibrium systems, such as Brownian motion of a mesoscopic particle suspended
in a solution of smaller particles. The system is in thermal equilibrium with the
heat bath being characterised by temperature T . For these stochastic processes,
it turns out that the noise correlation is adequately described by Gaussian noise,
that is σ = D > 0, the diffusion constant, which is related to parameter γ by the
fluctuation-dissipation-theorem,

γkBT = D , (5.42)
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with kB being Boltzmann’s constant. We will see how the noise correlation
changes if we describe the non-equilibrium pair-annihilation process (2.1) by a
Langevin equation one would obtain from an equilibrium process.
In order to extract the correct form of the Langevin equation (5.40, 5.41), it is
convenient to express the two-point function as an average over the noise ξ,

〈φ(t1)φ(t2)〉 =

〈∫
D[φ] φ(t1)φ(t2)δ[φ(t)− solution to (5.40)]

〉

ξ(t)

.

By applying theorems from functional integration, the analysis results in (for
details see [19], [4]),

〈φ(t1)φ(t2)〉 =

∫
D[φ̃]D[φ] φ(t1)φ(t2)e

−S[φ̃,φ] ,

S[φ̃, φ] =

∫
dt

{
φ̃∂tφ + φ̃γ

δH
δφ

− σφ̃2

}
. (5.43)

A comparison of the field action yielded by the general Langevin approach (5.43)
with the field action from the lattice approach (5.36) reveals the stochastic partial
differential equation,

∂tφ(t) = D∇2φ− 2λφ2 + ξ ,

〈ξ(t)ξ(t′)〉 = −λφ2δ(t− t′) ,
(5.44)

which can be regarded as an extension of the classical field equation including
now stochastic noise. Note, that the noise correlator now includes the field itself
and a minus sign. The former implicates a multiplicative noise, which can be
understood qualitatively since the noise should vanish if the particle density is
zero. The latter says that the noise ξ must be a complex field. In contrast to the
description of equilibrium processes, the noise cannot be a real field and limits
the phenomenological interpretation of the Langevin equation. It is not possible
to simply extend the classical field equation by adding real Gaussian noise to the
deterministic part of the classical equation.

However, eq. (5.44) could be the starting point for a perturbation analysis, which
is realised in [20]. Nevertheless, the application of this approach is limited to
reactions with two reactants only, since only these reactions can be transformed
directly into a SPDE [4]. Therefore, further analysis will be carried out by starting
from eq. (5.35, 5.36, 5.37).

6 Diagrammatic Expansion

Let us summarize the results derived in the last section. We managed to rewrite
the microscopic stochastic description of the pair annihilation reaction (2.1) in
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terms of a master equation (5.7) into a field theory (5.35, 5.36, 5.37) by virtue
of the second quantised formalism and the continuum limit. We are now in the
position to evaluate the one-point function 〈φ(x, t)〉 via eq. (5.38), but, in contrast
to the rate equation approach (3.2), including fluctuations and correlations in our
analysis. However, being faced with this field theoretic problem, it is possible
to apply the prosperous methods from field theory, in particular perturbation
expansions and renormalisation methods to compute 〈φ(x, t)〉. These methods
are well established, for example in statistical and quantum field theory, but
involve a lot of effort to derive them from scratch. Therefore, only the main steps
and features of the field-theoretic description of this reaction-diffusion process
will be presented in the following and specialties of the pair annihilation process
will be pointed out.

In order to compute 〈φ(x, t)〉, one defines the generating functional Z[h̃, h] by
introducing external field sources h̃, h linearly coupled to the fields φ̃, φ in the
action,

Z[h̃, h] :=

∫
D[φ̃]D[φ] exp



−S[φ̃, φ]−

∫

x,τ

(h̃φ̃ + hφ)



 , (6.45)

where the shorthand notation
∫

x,τ

. . . :=
∫

ddx
t∫

0

dτ . . . was used.

Thus, the one-point function can be computed by taking the first functional
derivative with respect to the field source h and setting h̃ = h = 0,

G1 = 〈φ〉 =
−1

Z[0, 0]
· δ

δh
Z[h̃, h]

∣∣∣∣
h̃=h=0

. (6.46)

The task is now shifted to the evaluation of the generating functional Z[h̃, h],
which can be performed perturbatively.

6.1 Free Field Theory: Pure Diffusion

To evaluate the generating functional Z[h̃, h] and hence to compute eq. (5.38,
6.46) for the one-point function perturbatively, one has to establish a theory,
normally referred to as free-field theory, that can be solved exactly. Usually, it
will be the bilinear part in the field theory action, for which the path integral can
be solved exactly (at least formally) by means of functional Gaussian integrals
and around which a perturbation expansion can be formulated.

For the pair annihilation reaction-diffusion process, the bilinear part of the ac-
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tion (5.36) is the following term, corresponding to pure diffusion,

S0[φ̃, φ] =

∫
ddx

t∫

0

dτ φ̃ (∂τ −D · ∇2
x)︸ ︷︷ ︸

=:O(τ,x)

φ , (6.47)

where the diffusion operator was abbreviated, O(τ, x) := ∂τ−D ·∇2
x. The related

generating functional for this free-field theory Z0[h̃, h] can be written as,

Z0[h̃, h] :=

∫
D[φ̃]D[φ] exp



−

∫

x,τ

(
φ̃Oφ + h̃φ̃ + hφ

)


 (6.48)

If we define the inverse operator O−1 of the diffusion operator as follows,

O(x, t)O−1(x′, t′) = δ(x− x′)δ(t− t′) , (6.49)

one can complete the square in eq. (6.48) by shifting the field φ 7→ φ +
∫

x,τ
O−1h̃

and carrying out the Gaussian integration, revealing,

Z0[h̃, h] =

∫
D[φ̃]D[φ] exp



−

∫

x,τ

φ̃Oφ +

∫

x,τ

∫

x′,τ ′

hO−1h̃



 ,

= Z0[0, 0] · exp





∫

x,τ

∫

x′,τ ′

hO−1h̃



 , (6.50)

which is an exact result for the free field theory as promised.

Propagator - Inverse of the Diffusion Operator

The explicit form of the inverse O−1 to the diffusion operator still has to be
specified. This can be done by applying Fourier transform methods to eq. (6.49).
This procedure is common in field theories, compare for example with fermionic
field theory and the Dirac operator. Finally, one obtains in Fourier space,

O−1(q, ω) =
1

−iω + Dq2
=: G0(q, ω) . (6.51)

Conveniently, the inverse operator of the free field theory is given an own label,
here G0, since it is the propagator of our field theory,

〈φ(q, ω)φ̃(q′, ω′)〉0 = (2π)d+1δ(q + q′)δ(ω + ω′)G0(q, ω) ,
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where averages with respect to the free field action (6.47) are denoted by the
subscript 〈〉0.
If we go back into the time domain by applying inverse Fourier transform only
in the time coordinate, one obtains,

G0(q, t) =
1

2π

∫
dω e−iωtG0(q, ω) = Θ(t) · e−Dq2t , (6.52)

with the Heaviside function,

Θ(t) =

{
1 t ≥ 0 ,

0 t < 0 .

Thus, the propagator G0 inherently represents a causal ordering of the fields φ
and φ̃, since only earlier fields φ̃ are connected to later fields φ,

〈φ(q, t)φ̃(q′, t′)〉0 ∝ Θ(t− t′) · e−D(q−q′)2(t−t′) .

This is a crucial feature of the diffusion propagator, whereupon the structure of
Feynman diagrams in the perturbation expansion will be restricted. This will be
content of the next section.

6.2 Perturbation Around Diffusion

Let us go back to our initial aim of this chapter, the evaluation of the generat-
ing functional Z[h̃, h] for the full reaction-diffusion action (5.36, 5.37) and the
computation of the one-point function 〈φ(x, t)〉 via eq. (6.46). The generating
functional can be rewritten as follows,

Z[h̃, h] =

∫
D[φ̃]D[φ] exp



−S[φ̃, φ]−

∫

x,τ

(h̃φ̃ + hφ)





=

∫
D[φ̃]D[φ] e−S0 exp



−

∫

x,τ

(
2λφ̃φ2 + λφ̃2φ2

)


e

− R
x,τ

h̃φ̃+hφ

with boundary condition: φ(x, 0) = ρ0(x)

= exp



−

∫

x,τ

(
2λ

δ

δh̃

δ2

δh2
+ λ

δ2

δh̃2

δ2

δh2

)

Z0[h̃, h] + b.c.

6.50
= Z0[0, 0] · exp



−

∫

x,τ

(
2λ

δ

δh̃

δ2

δh2
+ λ

δ2

δh̃2

δ2

δh2

)

 exp





∫

x,τ

∫

x′,τ ′

hG0h̃



 + b.c.

(6.53)
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The idea is now to expand the exponential with the reaction terms in orders of
the coupling parameter λ according to eλx =

∑
n(λx)n/n!. By doing so, one

ultimately ends up with an perturbation expansion around pure diffusion, where
the reactions constitute the perturbations.
Physically, this way of expanding the generating functional makes sense, since we
are interested in the long-time behaviour of the one-point function 〈φ〉, that is
in a regime being dominated by diffusion. The reactions are assumed to be only
small corrections to the pure diffusive case.

For the reason of clarity and better understanding, one usually denotes this ex-
pansion series in terms of so called Feynman diagrams. Each diagram in this
graphical notation corresponds to an integral expression in the perturbation ex-
pansion according to the following identification,

Figure 6.4: Propagator and vertices for the pair annihilation reaction.

For example, the 2λφ̃φ2-term corresponds to a vertex that connects two incoming
propagators with one outgoing propagator. The causal structure of the propa-
gator for the reaction-diffusion process ensures time-ordering, hence, the time
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increases from the right to the left in a Feynman diagram.

Since we are only interested in the one-point function, we do not have to compute
all possible diagrams. After having differentiated Z[h̃, h] with respect to the
source h in eq. (6.46), we set all external fields to zero, h̃ = h = 0. Therefore,
all diagrams in the perturbation expansion for the one-point function will vanish
unless they have one external leg.

The Feynman rules for drawing all diagrams contributing to 〈φ(x, t)〉 resulting
from eq. (6.46, 6.53) are most conveniently formulated in momentum space, since
we are dealing with a translationally invariant system in space and time. They
can be summarised as follows [17, 4],

• Draw all diagrams with one external leg on the left and with initial legs on
the right.

• Each line corresponds to a propagator G0 (figure 6.4).

• The two vertices (figure 6.4) connect internal lines together. A 3-vertex
goes with a factor of (−λ1 = −2λ), a 4-vertex contributes with a factor of
(−λ2 = −λ).

• Integrate over each undetermined loop momentum p with measure 1
(2π)d

∫
ddp . . .

and over each undetermined time t0 with measure
t′′∫
t′

dt0 . . .

• Impose momentum conservation at each vertex. The final propagator must
have q = 0 (spatial uniformity) and all propagators connected with an
initial leg (figure 6.4) also have q = 0, because of the initial condition in
Fourier space. Each initial leg comes with a factor of ρ0.

• Include a symmetry factor for each diagram being equal to the number of
possibilities to attach an inner propagator to a vertex.

Figure 6.5: Loops at one time yield zero because of the causal structure of the propa-
gator.

Note that loops at one specific time t′ are not allowed (figure 6.5), due to the time-
ordering principle and causal structure of our propagator G0(q, t) = Θ(t) · e−Dq2t.



6 DIAGRAMMATIC EXPANSION 27

An integration over such a loop is proportional to the integral,

t′∫

t′

dt G0(p, 0) = 0 .

For the one-point function, the diagrammatic expansion, according to the Feyn-
man rules, yields,

Figure 6.6: Diagrammatic expansion for the one-point function.

To exemplify the correspondence between the diagrams and the integral expres-
sions, let us have a closer look at two integrals.

(1) =

t∫

0

dt1 G0(0, t− t1)(−λ1)G0(0, t1)
2 · ρ2

0 ∝ −λ1ρ
2
0t ,

(2) =

t∫

0

dt2

t2∫

0

dt1 G0(0, t− t2)(−λ1)×

×
∫

ddp

(2π)d
G0(p, t2 − t1)(−λ2)G0(−p, t2 − t1) · 2G0(0, t1)

2ρ2
0 .

The first integral (1) corresponds to a linear decrease of the initial density in
time, but the second integral (2) demonstrates a problem of our naive proceeding
in the perturbation expansion, since it diverges. To see this, consider the effective
coupling λeff , being part of our integral expression above, given by the diagram
depicted in figure 6.7,
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Figure 6.7: Effective coupling.

with (calculations for d 6= 2, 4),

I(t) =: −λeff =

t2∫

0

dt1

∫
ddp

(2π)d
G0(p, t2 − t1)(−λ2)G0(−p, t2 − t1) · 2 ,

∝ −λ2 · t1−d/2 (d 6= 2, 4) .

We have to distinguish between two cases for I(t), depending on the dimension
d. The qualitative behaviour changes at a critical dimension dc = 2 [20, 4].

• d < dc = 2
For small times t → 0, I(t) is finite and the perturbation expansion results
are reliable. This limit is also referred to as ultraviolet (UV) limit (q, ω →
∞).
For large times t → ∞, I(t) diverges and the perturbation theory breaks
down. This limit is also referred to as infrared (IR) limit (q, ω → 0).

• d > dc = 2
Perturbation theory breaks down for t → 0, but works for t →∞.

The UV divergences for d ≥ 2 are caused by the continuum limit, where the
lattice spacing a → 0. Physically, there will always be a short-distance cut-off
Λ, which can be introduced by hand into the analysis and which resolves the UV
divergence.
In contrast, the IR divergence for d ≤ 2, thus the limit we are interested in,
weighs more severe, since the naive perturbation series cannot be resolved by a
physical argument as for the UV divergence.
Nevertheless, it is possible to extract the right scaling behaviour for the mean
particle density even for d ≤ 2 by means of renormalisation group, being described
later on.
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6.3 Tree Diagrams Correspond to Mean-Field Rate Equa-
tion

Let us have closer look at the so called tree diagrams, that is the Feynman
diagrams not involving any loops.

Figure 6.8: Iterative expression for the tree diagrams.

For the sum of all tree diagrams ρtree, one can infer on an iterative expression
according to the Feynman rules from the last section (cf. figure 6.8).

ρtree(t) = ρ0 − λ1

t∫

0

dt1 ρtree(t1)
2 .

By taking the time derivative of this equation, one obtains the kinetic mean-field
rate equation (3.4) for the pair-annihilation process with the correct initial con-
dition.
Hence, all analysis on the tree diagram level corresponds to the mean-field PDE
approach and fluctuation corrections are represented by the diverging loop inte-
gral expressions. The analysis of the fluctuation corrections will play the central
part of the next section.

7 Renormalisation

In the last chapter, we have seen, how one can compute 〈φ(x, t)〉 perturbatively.
However, this perturbation expansion approach is too naive and leads to diver-
gences in the IR limit for asymptotic times below a critical dimension dc = 2.
Nevertheless, our aim is to extract the correct asymptotic behaviour of the parti-
cle density ρ(x, t). To this end, first the UV divergences at d = 2 will be examined
and scale invariance can be shown for the underlying reaction-diffusion system.
Renormalisation methods will render finite results for the loop diagrams, but pa-
rameters of the theory will then depend on the introduced UV cut-off Λ. The
scaling behaviour is extracted by means of dynamic renormalisation group (RG),
leading to the identification of an IR-stable renormalisation group fixed point.
The scale invariance for asymptotic times is used to derive scaling behaviour also
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in the IR limit. Scaling laws in other dimensions d < dc = 2 can finally be ob-
tained by dimensional expansion around d = dc in a small parameter ε = dc − d,
which will not be that small in the end, since we want to set ε = 1, in order to
get results for d = 1.

The detailed analysis, of how IR divergences are connected to UV singularities,
can be found in [21].

7.1 Primitive UV Divergences

We want to investigate the primitive UV divergences, we have encountered in the
diagrammatic expansion of 〈φ(x, t)〉 in d = 2. These divergences are called prim-
itive, since they are superficial and can be removed by a short-distance cut-off
Λ−1. The dependence on the physical lattice cut-off Λ will be rewritten in terms
of dimensional regularisation.
Also, only amputated connected diagrams will be examined, since it was shown
that loops and the corresponding effective couplings cause divergences. Ampu-
tated refers to the fact that propagators of external lines are neglected. The sum
of all amputated connected n-point functions is denoted by F̂n(q, ω).

Primitive divergences have their origin in loop integrals, thus F̂ can be written
as,

F̂ ∝
∫

dpdL 1

(−iω + Dp2)I
∝

∞∫

0

d|p| |p|dL−1 1

(−iω + Dp2)I
,

where L denotes the number of loops in the Feynman diagram and I the number
of internal lines. The diagram corresponds to a UV divergent integral if the
superficial degree of divergence DoD := dL− 2I ≥ 0.
From only topological reasons, it can be inferred that the superficial degree of
divergence can be computed as [17],

DoD = (d− 4)L +
∑

n

(n− 4)Vn − E + 4 . (7.54)

Vn denotes the number of vertices of valence n and E the number of external
legs. However, DoD ≤ 0 does not guarantee that a diagram is finite, since subdi-
vergences are not taken care of, meaning that also diagrams with DoD ≤ 0 can
have divergent subgraphs. Nevertheless, it turns out that the superficial degree of
divergence is the right tool to analyse and resolve divergences via renormalisation
techniques (cf. renormalisation theorem).
In our case, we have d = 2 and hence DoD ≥ 0 ⇔ −V3 − E + 4 ≥ 2L. First
of all, it can be derived that the more loops involved, the better the chance for
the diagram to be well-defined. If the worst case with L = 0 is taken, only two
situations have to be considered.
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• V3 = 0
In case of no 3-vertex interaction, it follows the condition for superficial
divergence: E ≤ 4. Since the interaction involves vertices with always two
incoming fields, only diagrams with one or two outgoing fields are allowed.

• V3 = 1
Now, the condition becomes E ≤ 3 and only diagrams with one outgoing
field are allowed.

V3 > 1 is not possible since no outgoing fields could be included.
Hence, only two sets of Feynman diagrams carry UV divergences, because of the
underlying vertex structure of the pair annihilation reaction, namely F̂3(q, ω) and
F̂4(q, ω) (cf. figure 7.9).

Figure 7.9: F̂4(q, ω) (left) and F̂3(q, ω) (right) contain all Feynman diagrams that give
rise to infinities in the diagrammatic expansion.

Note that no superficial divergences can appear in F̂2 and hence F̂2(q, ω) = −iω+
Dq2 (cf. figure 7.10).

Figure 7.10: No renormalisation is needed for the propagator.

This is due to the structure of the pair annihilation interaction and the time-
ordering property of the propagator with the consequence that no divergences
occur for the propagator itself. Therefore, the propagator stays unchanged dur-
ing the renormalisation process and the diffusion constant does not have to be
renormalised. The same is true for the fields φ̃, φ and in the language of renor-
malisation, we have Zφ̃ = Zφ = 1 and ZD = 1. This is a special feature of
the pair annihilation process and in contrast to scalar quantum field theory with
φ4-interaction, for example, where the mass term has to be renormalised. It is
then possible to set the diffusion constant to D = 1 to all orders in perturbation
theory.
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Figure 7.11: Full diagrammatic expansion for F̂3.

Figure 7.12: Full diagrammatic expansion for F̂4.

Moreover, we can immediately write down the full diagrammatic expansion for
F̂3 and F̂4, again because of the structure of the vertices (figure 6.4) together
with the causal structure of the propagator,

By assigning J(q, ω) to the integral expression of the loop, we can write F̂3(q, ω)
as a geometric series,

F̂3 = −2(−2λ)− (−2λ)J(−λ)22 − (−2λ)J(−λ)J(−λ)23

= 4λ(1− 2Jλ + 22J2λ2 ∓ . . . )

= 4 · λ

1 + 2λJ
=: 4 · λR , (7.55)

which is an exact result to all orders in the loop expansion. This is again a feature,
contrary to, for example, scalar quantum field φ4-theory, where the evaluation
can only be carried out order by order in the loop expansion. Thus, the whole
analysis for the following renormalisation procedure simplifies enormously.
The loop integral J(q, ω) can be evaluated by dimensional regularisation, that is
the occurring divergences are transformed to poles of functions depending on the
small parameter ε = 2−d, which describes the distance to the critical dimension.
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Usually, one has d ∈ Z+, but one can regulate by analytic continuation to d ∈ C.

J(q, ω) =

∫
ddq′

(2π)d

∫
dω′

2π

1

−iω′ + q′2
1

−i(ω′ − ω) + (q′ − q)2

∝
∫

ddq′

−iω + (q′ − q)2 + q′2
q′ 7→q′/

√
2∝
∫

ddq′

q′2 − 2q′ · q√
2

+ q2 − iω

=
Γ(1− d/2)

(4π)d/2Γ(1)
· 1

( q2

2
− iω)1−d/2

,

where in the last step the Gamma-function was introduced (Γ(α) = 1/α ·Γ(α+1)
and Γ(1) = 1, Γ(1/2) =

√
π) and the following integral identity was used [21],

∫
ddk

(k2 + 2k · p + m2)s
=

Γ(s− d/2)

(4π)d/2Γ(s)
· 1

(m2 − p2)s−d/2
.

With ε = 2− d, we finally arrive at,

J(q, ω) =
1

(8π)d/2
· Γ

( ε

2

)
·
(
−iω +

q2

2

)−ε/2

, (7.56)

F̂3 = 4 · λ

1 + 2λ
(8π)d/2 · Γ

(
ε
2

) ·
(
−iω + q2

2

)−ε/2
. (7.57)

One can now recognize the extracted divergence from above by looking at the
parameter ε. If q = 0, the expression for F̂3 for ε > 0 diverges as ω → 0,
representing the IR singularity. The UV divergence is now expressed by the
poles of the Γ-function for ε = 0,−2,−4, . . . , since Γ

(
ε
2

) ∼ 2
ε

as ε → 0.

A similar result can be obtained for F̂4.

7.2 Renormalisation Procedure

7.2.1 Renormalisation Idea

Let us summarise the key points, we have encountered up to now. We started
with a field theory whose Lagrangian can essentially be written as,

L = L0 + Lint

= φ̃(∂t −D∇2
x)φ + 2λφ̃φ2 + λφ̃2φ2 .

It was derived that in two dimensions, the amputated connected n-point function
F̂n(q, ω; λ, Λ) shows IR divergences (for q → 0 and t → ∞) and UV divergences
due to the continuum limit for n = 3, 4. The good news is that F̂2 is well-defined
and finite and hence no renormalisation of the fields and the diffusion coefficient
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is needed. Furthermore, it was possible to compute F̂3, F̂4 to all orders in the
loop expansion.
It was shown in eq. (7.55, 7.57) that if the continuum limit is carried out (cor-
responding to Λ → 0 or equivalently ε → 0 in dimensional regularization), the
effective coupling diverges.
However, in the theory, there must be a physical coupling λphys, being measured
in an experiment and corresponding to an effective interaction,

Figure 7.13: Physical effective coupling.

Thus, one makes the ansatz λphys = λ+λ̃ = λ(1+λ̃/λ), whereby λ is the coupling
appearing in the Lagrangian and λ̃ is an introduced shift in the parameter which
depends on the cut-off Λ. So, the idea is to allow λ to depend on the cut-off Λ,
λ 7→ λ̂(Λ).
We want to carry out a more sophisticated limit, that is take Λ → 0 with λ̂(Λ)
varying, but λphys held fixed. We must get finite answers for all observable quanti-
ties in this limit. The existence of such a limit is non-trivial, but can be achieved
for the pair annihilation process by introducing a finite number of additive terms
to the Lagrangian, also known as counter terms (such a theory is called renor-
malisable). Note, that in general one would also allow D, φ̃, φ to depend on the
cut-off Λ, but this is not needed for the pair annihilation process as already men-
tioned.
We will see that this procedure removes divergences, but at the cost of running
couplings, that is parameters and fields of the theory will depend on the cut-off
in general.

In practice, the divergences can be cancelled by adding counter terms to the
Lagrangian L 7→ L + Lc.t.. Normally this would have to be carried out order
by order (in loops), but here we know the divergences to all orders and can
immediately write down the needed counter terms to all loop orders,

Lc.t. = Aφ̃φ2 + Bφ̃2φ2 ,

by which new vertices are introduced to the field theoretic expansion of L+Lc.t.

in addition to figure 6.4, depicted in figure 7.14.

These new vertices are constructed and defined in order to subtract off exactly
the divergences occurring in the original Lagrangian L. Hence, by taking re-
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Figure 7.14: New vertices due to counter terms.

sult (7.55, 7.57) into account, one obtains,

A = λR =
λ

1 + 2λ
(8π)d/2 · Γ

(
ε
2

) ·
(
−iω + q2

2

)−ε/2
= λ̂ .

7.2.2 Dimensional Analysis

Before proceeding in the renormalisation analysis, a more precise dimensional
analysis has to be carried out, since a perturbation expansion only makes sense
in a dimensionless quantity. We will see that, apart from two dimensions, the
coupling λ carries dimension ε and thus, a dimensionless quantity has to be
introduced. Therefore, let us examine again the action from eq. (5.36, 5.37),

S[φ̃(x, t), φ(x, t)] =

∫
ddχ





t∫

0

dτ
(
φ̃(∂t −D∇2

x)φ + 2λφ̃φ2 + λφ̃2φ2
)
− ρ0φ̃(χ, 0)



 .

The action S appears in the exponential in the path integral and thus has di-
mension 0, whereas quantities are measured in momentum units, for example
Λ. Hence, [S] = 0, [p] = 1, [x] = −1 and we are free to choose [D] = 0,
a dimensionless diffusion constant. It follows from the diffusion operator that
[1/x2] = [1/t] ⇒ [t] = −2. Furthermore, the way the continuum limit for the field
theory was defined yields [φ̃] = 0. But this implicates [φ] = d and [λ] = 2−d = ε.
A dimensionless coupling g ([g] = 0) is defined in d = 2 − ε dimensions by
introducing an arbitrary scale µ with [µ] = 1, being also called the RG-scale,

λ = g · µε and λ̂ = ĝ · µ̂ε .
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7.2.3 Callan-Symanzik Equation and Beta-Function

In this subsection, the idea of renormalisation and the dimensional analysis are
brought together and physical consequences are inferred.
We define the bare Lagrangian LB as the shifted Lagrangian L + Lc.t. now in
terms of dimensionless couplings,

LB : = L+ Lc.t.

= φ̃(∂t −D∇2
x)φ + 2ĝ · µεφ̃φ2 + ĝ · µεφ̃2φ2 + Â · µεφ̃φ2 + B̂ · µεφ̃2φ2

= φ̃B(∂t −DB∇2
x)φB + 2ĝB · µεφ̃Bφ2

B + ĝB · µεφ̃2
Bφ2

B .

In the second line, the counter term couplings A,B have been expressed in terms
of dimensionless couplings, for example,

Â(ε) =
∑
n≥1

gnÂn(ε) =
g

1 + 2g
(8π)d/2 · Γ

(
ε
2

) ·
(
−iω + q2

2

)−ε/2
= ĝ , (7.58)

and similar for B̂. In the third line, we have rewritten the bare Lagrangian in the
same form as the original Lagrangian by defining bare fields (φ̃B := φ̃, φB := φ)
and bare parameters (DB := D, ĝB := ĝ + Â). Note, that the bare parameters
and bare fields depend on the cut-off parameter ε, but are independent of the
RG-scale µ. In contrast, the renormalised parameter ĝ = ĝ(µ) depends on the
arbitrary RG-scale µ, but not on ε.

However, the arbitrariness of µ will lead to a constraint on the theory, which will
be presented in the following.
We can rewrite the path integral in terms of bare quantities as follows,

SB[φ̃B, φB] =

∫
ddχ





t∫

0

dτ LB[φ̃B, φB]− ρ0φ̃B(χ, 0)



 and D[φB] = D[φ]

⇒ 〈φB(x, t)〉 =

∫ D[φ̃B]D[φB] φB e−SB [φ̃B ,φB ]

∫ D[φ̃B]D[φB] e−SB [φ̃B ,φB ]

!
= ρ(x, t) . (7.59)

The last step reflects the fact that physical predictions must not depend on the
RG-scale µ, since this parameter was introduced as an arbitrary scale. Mathe-
matically, the constraint reads for the one-point function as,

GB
1 (x, t; ĝB, ε)

!
= G1(x, t; ĝ, µ) . (7.60)

Since the left-hand side of eq. (7.60) does not depend on µ, the explicit dependence
of G1 on µ on the right-hand side has to be cancelled by the implicit dependence
of ĝ(µ), being expressed by,

µ
d

dµ
G1(x, t, D, ĝ, µ)

∣∣∣∣
NP

= 0 .
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The normalisation point |NP is chosen for convenience at q2 = 0 and −iω2 =
µ2 and corresponds to holding the bare parameter ĝB fixed. Applying the last
equation leads to,

µ
d

dµ

∣∣∣∣
NP

= µ
∂

∂µ
+ µ

dĝ

dµ

∣∣∣∣
NP︸ ︷︷ ︸

=:βg

· ∂

∂ĝ
,

where the beta-function βg(ĝ) was defined. The beta-function can be calculated
from eq. (7.58) again to all orders of loops, revealing,

βg(ĝ) = −εĝ + εĝ2 2

(8π)d/2
· Γ

( ε

2

)
. (7.61)

Finally, the constraint for the one-point function can be written as,

(
µ

∂

∂µ
+ βg(ĝ)

∂

∂ĝ

)
G1 = 0 , (7.62)

which is also known as the Callan-Symanzik equation.

Since the beta-function captures the scale dependence of the coupling parameter
ĝ, its zeros correspond to scale invariance of the theory. If the parameter does
not change with changing scale, the theory defined by the parameter ĝ becomes

scale invariant. The zeros of βg(ĝ) lie at ĝ1 = 0 and ĝ2 = (8π)d/2

2·Γ( ε
2)

.

The first zero at ĝ1 = 0 corresponds to λ = 0, which means that only diffusion
is in existence. The second zero, however, is non-trivial and corresponds to the
special IR stable fixed point value for the coupling [4]. Since Γ

(
ε
2

) ∼ 1/ε, we get
ĝ2 ∼ ε as ε → 0. Further details to this analysis can be found in [4, 22]. The
fixed-point ĝ2 is crucial for the scaling behaviour and determines the asymptotic
behaviour of the one-point function as mentioned earlier.

Ultimately, we are interested in the time dependence of the one-point function
〈φ(x, t)〉. From eq. (5.38) and the dimensional analysis [φ] = d, it follows that
[G1] = [φ] = d. Consequently, the one-point function may be rewritten as follows
(omitting the spatial coordinate),

G1(t, ĝ, µ) = µd · Ĝ1(µ
2t, ĝ)

Hence, one can transform the µ-derivative in the Callan-Symanzik equation (7.62)
into a time-derivative,

µ
∂

∂µ
G1(t, ĝ, µ) = µ

∂

∂µ

(
µd · Ĝ1(µ

2t, ĝ)
)

=

(
d + 2t

∂

∂t

)
G1(t, ĝ, µ) .



7 RENORMALISATION 38

Figure 7.15: Beta function β(ĝ) = −εĝ(1− ĝ
ĝ2

).

However, a subtlety arises from the boundary term ρ0φ̃(χ, 0) in the field ac-
tion (5.36). A mathematically rigorous analysis shows that an additional deriva-
tive term appears in the Callan-Symanzik equation due to the initial density.
Finally, one obtains the converted Callan-Symanzik equation,

(
d + 2t

∂

∂t
+ βg(ĝ)

∂

∂ĝ
− dρ0

∂

∂ρ0

)
ρ(t, ĝ, ρ0, µ) = 0 , (7.63)

which is a first order partial differential equation (PDE) for the renormalised
particle density ρ that can be solved by the methods of characteristics being a
standard method in the analysis of partial differential equations. One introduces a
flow parameter l and chooses the right curves (characteristics) by which the PDE
can be reduced to a set of ordinary differential equations (ODE). The solutions
of the ODEs can be evaluated along the characteristics and deliver the solution
for the PDE.

The important result of this standard procedure is ρ(t, ĝ, ρ0, µ) ∼ t−d/2 for ε =
dc − d = 2− d > 0 and a complete analysis (including d = 2) reveals,

ρ(t, ĝ, ρ0, µ) ∼ t−d/2 =





∼ t−1/2 d = 1,

∼ ln t · t−1 d = 2,

∼ t−1 d > 2,

(7.64)

which is exactly the result we encountered in eq. (3.6). Thus, this renormalisation
group approach to the pair annihilation process exactly reproduces the long-
time behaviour, suggested by experiments and computer simulations. The long-
time behaviour of the rate equation (3.2) becomes exact above the upper critical
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dimension dc = 2. In lower dimensions (d = 1), the mean-field assumption
(factorisation of the two-particle probability density) does not describe the scaling
behaviour accurately, the ρ ∼ t−1 solution has to be renormalised to ρ ∼ t−1/2.

7.3 Heuristics

It was pointed out that the loop diagram expansion goes beyond the mean-
field description of the pair annihilation reaction. Is it possible to understand
physically, why the mean-field description becomes wrong for long times in one
dimension?

Figure 7.16: Initial distribution on the lattice.

Consider a one-dimensional lattice, where nearly all lattice sites are populated
by particles of species A (cf. figure 7.16), such that the annihilation reaction

A + A
λ−→ ∅ can in principle take place everywhere. Thus, the initial dynamics

is accurately described by the solution of the kinetic rate equation (3.2) with
ρ ∼ t−1.

Figure 7.17: Asymptotic distribution on the lattice.

At later times, the lattice sites become more and more diluted (cf. figure 7.17) and
the reaction rate is limited by the first passage time of a random walk in d = 1,
scaling exactly with t−1/2. Hence, the long-time behaviour of ρ is renormalised
to ρ ∼ t−1/t−1/2 = t−1/2.

It turns out that the dimensionality of the system is crucial, since it determines
the dimensionality of the diffusion process and hence the underlying random walk
process. It is known, that for d = 1, a random walk returns to a specific point in
space in finite time almost certainly, whereas for d > 2 this does not hold [19].
Therefore, for d > 2, fluctuation and correlation corrections to the mean-field
behaviour ρ ∼ t−1 become irrelevant.
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8 Summary and Outlook

In this essay, the pair annihilation reaction A + A
λ−→ ∅ was investigated by

means of statistical field theory methods. It was shown that the rate equation
approach does not capture the nature of spatial fluctuations and correlations due
to interactions within the system and is hence inadequate to describe the critical
long-time behaviour of observables, such as the mean particle density for dimen-
sions d ≤ dc = 2. It corresponds to a mean-field description of the process.
However, the phenomenological rate equation can be extended to a stochastic
Langevin equation by including random noise, whose two-point function is neg-
ative. A perturbation theory can be established (cf. [20]), but the phenomeno-
logical interpretation of the Langevin approach is limited and, moreover, is only
applicable to reactions with only two reactants.

The presented field theoretic approach overcomes this constraint by starting
from a microscopic lattice description. This concept generalises the approach
to reaction-diffusion systems by systematically including fluctuations and corre-
lations in the analysis. The microscopic probability description was transformed
to a field theory by making use of the bosonic creation and annihilation opera-
tors and taking the continuum limit. In order to extract the asymptotic long-time
behaviour of the mean particle density ρ, a perturbation expansion for the one-
point function of this field theory was formulated, leading to divergences in the
IR limit below the critical dimension dc = 2. By applying renormalisation group
techniques, scale invariance was shown for the critical dimension and the exact
scaling laws were obtained for d < dc by a dimensional expansion in the param-
eter ε = dc − d around dc.
It turns out that the mean-field solution of the pair annihilation process ρ ∼ t−1

is exact for d > dc = 2 and gets renormalised, due to higher-order terms in a
divergent loop expansion, for d < dc = 2 to ρ ∼ t−d/2 and logarithmic corrections
lead to ρ ∼ ln t · t−1 for dc = 2.
In contrast to the stochastic Langevin approach, the application of statistical
field theory also allows the investigation of more complex many particle systems,
reproducing the exact long-time behaviour in agreement with experiments and
simulations. For example, the single-species reaction-diffusion process kA −→ lA
can be examined as a direct generalisation of the pair annihilation reaction and
shows a similar qualitative behaviour [4, 3, 20, 19]. Fluctuations alter the critical
power law for the long-time behaviour of the mean particle density predicted by
mean-field rate equations below an upper critical dimension, depending on the
number of reactants k, namely dc = 2/(k − 1). Hence, if our attention is only
caught by physical dimensions, the cases k = 2 (pair reaction) and k = 3 (triplet
reaction) show a modification due to stochastic fluctuations for d ≤ dc and k > l.
One finds that the qualitative behaviour of the pair annihilation reaction is also
obtained for the coagulation reaction A + A −→ A. It can be shown that
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both reactions belong to the same universality class. For the triplet reaction
3A −→ lA (l = 0, 1, 2), one gets, for instance, ρ ∼ (ln t · t−1)1/2 in d = dc = 1 [4].

In order to investigate multi-species reactions, different propagators have to be
introduced in the field theoretic analysis as indicated in the chapter on path
integral formulation, but the concept of the renormalisation idea stays unchanged.
However, the method is limited by the existence of an IR stable fixed point
of the yielded β-function as outlined in the previous chapter. The analysis for
multiple-species reactions, such as A+B −→ ∅, gets more involved and additional
correlation effects (particle segregation, establishing of reaction zones) may occur
that cannot be predicted by rate equations [4, 20]. For more complex systems,
such as the Lotka-Volterra system, the analysis becomes even more sophisticated
[14] and ends in open questions.
Nevertheless, numerical and chemical experiments support and justify the yielded
results and underline the strength of the application of field theoretic methods to
reaction-diffusion problems [8, 9, 10, 15, 14]. Spatial fluctuations and correlations
can be non-negligible and even crucial for dynamical processes and can sometimes
cause complex cooperative, non-equilibrium phenomena going beyond the scope
of rate equations and Langevin theory.

But still, more chemical and biological experiments have to be carried out to verify
the theoretical results and evaluate its relevance to physical phenomena and to
deepen the understanding of many-body systems. The development of further
non-perturbative renormalisation methods could resolve some open problems of
the theoretical investigation of complex reaction-diffusion problems.
Finally, the study of non-equilibrium systems such as reaction-diffusion processes
will remain an interesting and fruitful part of ongoing research in the future.
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