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This work is an attempt to unveil the skeleton
of anyon models. I present a construction to sys-
tematically generate anyon models. The construc-
tion uses a set of elementary pieces or fundamental
anyon models, which constitute the building blocks
to construct other, more complex, anyon models.
A principle of assembly is established that dictates
how to articulate the building blocks, setting out the
global blueprint for the whole structure. Remark-
ably, the construction generates essentially all tabu-
lated anyon models. Moreover, novel anyon models
(non-tabulated, to my knowledge) arise. To embody
the construction I develop a very physical, visual and
intuitive lexicon. An anyon model corresponds to a
system of bosons in a lattice. By varying the num-
ber of bosons and the number of lattice sites, towers
of more and more complex anyon models are built
up. It is a Boson-Lattice construction. A self-similar
anatomy is revealed: an anyon model is a graph that
is filled with bosons to engender a new graph that is
again filled with bosons. And further, bosons curve
the graph that the anyon model is: I disclose a ge-
ography in the space of anyon models, where one
is born from another by deforming the geometry of
space. I advance an alluring duality between anyon
models and gravity.

Anyons are fascinating objects. Their braiding statis-
tics has dramatically shattered our system of beliefs re-
garding the possible statistics for quantum particles [1–3].
Specially striking is the case of non-Abelian anyons [4–7]:
How is it possible that the result of sequentially exchang-
ing pairs in a set of indistinguishable particles might
depend on the order in which the exchanges were per-
formed? Anyons emerge as quasiparticles of an excep-
tional type of organization of matter, which is purely
quantum in nature: topological order [8, 9]. In a topo-
logically ordered state a system of individuals consti-
tute a global entity, which acquires a macroscopic self-
identity transcending the identities of the microscopic

constituents. The set of anyon types emerging from a
certain topological order satisfies a collection of fusion
and braiding rules [10–14], which determine the way in
which anyons fuse with each other to give rise to other
anyon types, and the form in which they braid around
each other. A set of anyon types together with their fu-
sion and braiding rules define an anyon model, which per-
fectly mirrors its corresponding underlying physical state.

What are the possible anyon models that can exist?
From a purely mathematical perspective, it is known that
the language underlying anyon models is modular ten-
sor category [15–22]. Within this beautiful (and com-
plex) mathematical formalism the answer to this ques-
tion can be simply phrased: any possible anyon model
corresponds to a unitary braided modular tensor cate-
gory. Wang [13] has tabulated all modular anyon models
with up to four anyon types. These correspond, for ex-
ample, to truncated Lie algebras such as the celebrated
Fibonacci model. Bonderson [14] has developed an algo-
rithm to numerically solve the set of algebraic consistency
conditions for an anyon model to exist, tabulating a se-
ries of very interesting models for up to ten topological
charges.

And yet, if we want to delve into our physical knowl-
edge of anyons, we should ask ourselves not only what
the possible anyon models are, but, more importantly,
what the relational architecture of possible anyon mod-
els is. Is there a hidden organization in the set of anyon
models? Can we construct complex anyon models from
other, simpler ones? Which are the elementary pieces?
What is the glue mechanism of these pieces? Moreover,
in answering these questions it would be crucial that we
use a meaningful physical language. If we are able to
capture the essence of anyon mathematical architecture
with an intuitive, comprehensive physical vocabulary, we
will be closer to understanding the corresponding physical
anatomy of topological orders.

In establishing relations between different anyon mod-
els, something that we know is how to disintegrate cer-
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tain complex anyon models into other, simpler ones. This
procedure, called anyon condensation [23–27], works by
making two or more different anyon types become the
same. Though no fully general description is known, for
the special case in which the condensing anyons have triv-
ial statistics, it is possible to systematically obtain a con-
densed anyon model from a more complex (uncondensed)
one. Little is known, however, about the reverse process,
that is, about how to build up more complex anyon mod-
els by putting simpler ones together. To go in this ”up”
direction, we have only straightforward operations at our
disposal, such as, for instance, making the product of
two or more given anyon models. It is crucial to develop
pathways to orderly construct anyon models. This can
help us enormously to apprehend the subjacent texture
of anyon models and thereby the anatomy of topological
orders.

Here, I present a construction to systematically gener-
ate anyon models. As in a Lego construction, a set of
brick-models are assembled to construct towers of other,
more complex, anyon models. The articulation principle
follows here a global blueprint, the pieces being glued in
a correlated manner. To frame the construction I develop
a graph language for anyon models. A graph (or a col-
lection of graphs) is used to compactly encode the prop-
erties of an anyon model in a visual manner. Topological
charges (anyon types) are represented by graph vertices.
Fusion rules can be read from the connectivity pattern
of the graphs. Braiding rules are obtained through the
diagonalization of graphs.

As elementary pieces to begin the construction I choose
the Abelian Zn anyon models. In the language of graphs
these models are represented by periodic one-dimensional
oriented lattices, in which each lattice site is connected to
its next (to the right) neighbour. Triggered by this graph
representation, I make a conceptual leap and identify a
Zn model with a single particle in a periodic lattice with
n sites. This visual image condenses the essence of the
building block into a particle in a lattice. It inspires the
conception of the principle of assembly. This is defined as
a bosonization procedure, in which particles correspond-
ing to different building blocks are made indistinguish-
able. The resulting Boson-Lattice system characterizes
the constructed anyon model.

I give a prescription to assign a graph to the Boson-
Lattice system. The graph is defined as a connectivity
graph of Fock states. Remarkably, this Boson-Lattice
graph always embodies a modular anyon model. A dic-
tionary is established between the elements of the Boson-
Lattice graph (Fock states, connectivity pattern, eigen-
values and eigenstates), and the properties of the anyon

model (topological charges, fusion rules, braiding rules).
By varying the number of building blocks (the number
of bosons) and their size (the number of lattice sites), a
variety of well known tabulated models arise. Moreover,
novel (non-tabulated) anyon models emerge.

The construction reveals a self-similar architecture for
anyon models. Any anyon model can serve as a building
block to engender towers of more complex anyon mod-
els. A brick graph is filled with bosons, giving rise to a
new graph, which can be again filled with bosons. What
is more, the bosons curve the original graph, so that
building block graphs and generated graphs are related
through a change of metric. This delineates a relational
tracery in the space of anyon models, in which anyon
models are obtained from each other by deforming the
geometry of space.

This article condenses the key essential ideas and re-
sults of the Boson-Lattice construction, advancing the
pathways it opens up. In [28] I present the full theory,
carrying out a complete analysis with thorough proofs, all
combined with enlightening illustrations and discussions.

Graph representation for anyon models. An anyon
model [10–14] is characterized by a finite set of conserved
topological charges or anyon types {a, b,⋯}, which obey
the fusion rules:

a × b =∑
c

N c
ab c, (1)

where the multiplicities N c
ab are non-negative integers

that indicate the number of ways that charge c can be
obtained from fusion of the charges a and b. There ex-
ists a unique trivial charge 0 that satisfies N b

a0 = δab,
and each charge a has a conjugate charge ā such that
N0
ab = δbā. Meanwhile, the charges obey a set of braid-

ing rules, encoded in the so called topological S and T
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matrices, that determine the way in which anyons braid
around each other and around themselves. For an anyon
model to exist, fusion and braiding rules have to fulfill a
set of of consistency conditions, known as the Pentagon
and Hexagon equations.

Let me consider a Hilbert space of dimension equal to
the number of topological charges in the anyon model.
I denote the canonical basis in this Hilbert space by
{∣a⟩ , ∣b⟩ , . . .}, where each state is associated with a
charge in the anyon model. I define an algebra of op-
erators {Xa,Xb,⋯} with matrix elements:

⟨c∣Xa∣b⟩ = N c
ab. (2)

This topological algebra defines a set of mutually com-
muting and normal operators. The operator correspond-
ing to the trivial charge is the identity operator, and
conjugate charges are associated with adjoint operators,
Xā =X

†
a.

I represent each operator in the algebra by a weighted
directed graph Ga, which I call topological graph. The
vertices of the graph are in one to one correspondence
to the states of the canonical basis. Two vertices ∣b⟩
and ∣c⟩ are connected if the matrix element ⟨c∣Xa∣b⟩ is
different from zero. The link is assigned a weight N c

ab,
and represented by a N c

ab-multiple line oriented from ∣b⟩
to ∣c⟩.

Within the graph language, anyon models can be rep-
resented in a visual and illuminating way. Fusion rules
are encoded in the connectivity pattern of the graphs.
Moreover, braiding rules can be obtained through their
simultaneous diagonalization. The topological S-matrix,
encoding the anyon mutual statistics, is formed by a set
of common eigenvectors of the topological graphs. Fur-
thermore, for elementary anyon models (those that are
not the product of two or more anyon models), a single
graph in the algebra is able to encode the complete set
of graphs 1. This generating graph is a connected graph:
there is a path of links connecting any pair of vertices.

For instance, let me consider the Abelian anyon model
Zn, which is characterized by a set of n charges:

1An anyon model that is the product of m elementary models
will be encoded in m generating graphs, one per model.

{0,1,⋯, n−1}, with fusion rules a×b = a+b (mod n). The
fusion and braiding rules of this model can be compactly
encoded in the graph corresponding to the charge 1: an
oriented one-dimensional lattice with periodic boundary
conditions.

The topological algebra can be directly read from the
connectivity of the graph as {1,X,⋯,Xn−1}, where X
is the chiral translation operator in the ring, satisfying
⟨b∣X ∣a⟩ = δb,a+1, and Xn = 1. Moreover, by trivially
diagonalizing this graph, and realizing that the eigenvec-
tors are plane waves of the form ⟨a∣ψb⟩ =

1
√
n
ei

2π
n a⋅b, we

directly obtain the S-matrix of the Zn model.

Another seminal model, the Fibonacci model can be
embodied in the graph below.

From the graph we read that the model is characterized
by two charges {0,1}. The topological algebra is {1,X},
with X2 = 1 +X. Diagonalization of the graph directly
gives us the quantum dimension d = ϕ and the topological
spin θ1 = e

i4π/5 of the non-trivial charge 1, where ϕ =
(1 +
√

5)/2 is the golden ratio.

Building blocks. Any elementary anyon model can
serve as a building block for the construction. The first
key idea is to identify the building block with its gener-
ating graph. What is more, I make an abstraction and
condense the anyon model into a physical image. The
building block is identified with a particle ”moving” in
a lattice as dictated by the connectivity pattern of the
generating graph. For example, a Zn anyon model cor-
responds to a particle in an oriented ring, hopping from
one site to the next to the right. This image captures the
essence of the elementary pieces of the construction. The
building blocks are particles in lattices. The construction
will assemble particles in lattices.

3



Boson-Lattice construction. I give now a prescrip-
tion to assemble the building blocks in order to sequen-
tially generate new anyon models. I present the formalism
for Zn building blocks, and then generalize it to any brick
model. The extremely simple Zn Abelian models are able
to generate essentially (up to trivial operations such as
products or embeddings) all tabulated anyon models.

To construct a new anyon model I consider k iden-
tical building blocks of length n. I define the Hilbert
space H(k,n) associated with the new anyon model as
the one resulting from bosonization (symmetrization) of
the tensor product of the k identical Hilbert spaces of the
building blocks:

H(k,n) = S H(1, n)⊗⋯⊗H(1, n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k copies

. (3)

The Hilbert space H(k,n) is that of k bosons in a ring
of n lattice sites. This defines the Boson-Lattice system.
I consider the basis of Fock states. Each Fock state is
characterized by the corresponding occupation numbers
of the lattice sites:

∣i⟩ ≡ ∣n
(i)
0 , n

(i)
1 ,⋯, n

(i)
n−1⟩ , (4)

with n
(i)
` being the occupation number of site `, ` =

0,⋯, n − 1, and ∑` n
(i)
` = k.

Boson-Lattice Graph. Associated with the Hilbert
space H(k,n) I define a graph G(k,n) which will be the
generating graph of the constructed anyon model. The
graph is defined as follows:

○ The vertices of the graph are in one to one correspon-
dence with the Fock states in the Boson-Lattice sys-
tem.

○ Two vertices are connected if the corresponding Fock
states are connected by tunneling of one boson to the
next (to the right) lattice site.

○ The link is given a weight 1.

The central result of this work states that the Boson-
Lattice graph defined above is the generating graph of a
modular anyon model. Important to emphasize is, that
the constellation of conditions that a graph has to fulfill
in order to be the generating graph of a modular anyon
model is so restrictive that a randomly chosen graph
would have low chances to succeed. Startlingly, the spe-
cial connectivity properties of the graph I have defined
guarantee the existence of a modular anyon model, for
any number of bosons, for any number of lattice sites.
This anyon model has the following properties.

Topological charges. The topological charges of the
Boson-Lattice anyon model are in one to one correspon-
dence with the Fock states of the Boson-Lattice sys-
tem. An anyon type is thereby represented by a Fock
state. The trivial charge 0 corresponds to the Fock state
∣0⟩ ≡ ∣k,0,⋯,0⟩, with all bosons occupying the same lat-
tice site ` = 0. The generating charge of the model will
be denoted by 1 and is represented by the Fock state
∣1⟩ ≡ ∣k − 1,1,⋯,0⟩, obtained from the state ∣0⟩ by trans-
ferring one boson to site 1. Given a charge a, the conju-
gate charge ā is represented by the conjugate Fock state,
∣ā⟩, whose occupation numbers are obtained by reflection

with respect to the site 0, n
(ā)
` = n

(a)
n−`.

Topological algebra and fusion rules. The fusion rules
of charge 1 are directly extracted from the connectivity
pattern of the Boson-Lattice graph. Denoting by X the
many-body operator corresponding to the graph, we have

1 × a =∑
b

⟨b ∣X ∣a⟩ b. (5)

The special features of the Boson-Lattice graph assure
that the operator X can be always completed to a topo-
logical algebra. First, the graph is connected, since there
is always a sequence of consecutive tunneling moves of
one particle to the next (to the right) lattice site that
connects two arbitrary Fock states. Also, the graph is
normal: it commutes with its adjoint, X†, a graph with
the same links, but arrows reversed. Moreover, the graph
is invariant under the chiral global translation T , which
translates all particles by one site. These properties guar-
rantee that for each charge a there exists a unique oper-
ator Xa of the form:

Xa = pa(X,X
†, T ), (6)

where pa is a polynomial of integer coefficients of the
operators X,X† and T satisfying: Xa ∣0⟩ = ∣a⟩ and
⟨c∣Xa∣b⟩ = 0,1,2,⋯. This set of polynomials defines
the topological algebra of the anyon model, whose fu-
sion rules are given by N c

ab = ⟨c∣Xa∣b⟩.
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Examples of anyon models generated by the construction, us-
ing the Abelian anyon models Zn as building blocks.

Quantum dimensions and modular matrices. Since the
Boson-Lattice graph is connected, the Perron-Frobenius
theorem guarantees the existence of an eigenvector with
all positive components. These components define the
quantum dimensions da of the anyon model. The char-
acteristic features of the graph assure that its eigenvec-
tors {∣ψb⟩} can be chosen to compose a unitary and
symmetric matrix Sab = ⟨a∣ψb⟩, which defines the topo-
logical S-matrix of the anyon model. Furthermore, the
graph is such that this symmetric matrix fulfills the mod-
ular relation (ST )3 = ΘS2, where Tab = θaδab and
Θ = 1

D ∑a d
2
aθa = e

i2πc/8. The diagonal matrix T de-
fines the T -matrix of the Boson-Lattice model, θa are
the topological spins, and c is the central charge.

By assembling different numbers of identical building
blocks (by varying the number of bosons k) and by chang-
ing their size (varying the number of lattice sites n) the
construction succeeds in generating towers of well known
tabulated anyon models. To see the construction at work,
I have selected three illustrative examples.

k bosons in 2 lattice sites. By assembling k copies
of the Abelian building block Z2, the construction gener-
ates the non-Abelian model SU(2)k. The Boson-Lattice
system is that of k bosons in a lattice of 2 sites, and
has dimension k + 1. Following the prescription of the
construction, the Boson-Lattice graph corresponds to a
one-dimensional lattice of k+1 sites in which each vertex
is connected to its two next neighbors. The two ending
vertices are not connected to each other.

The corresponding operator is

X =
k−1

∑
x=0

∣x + 1⟩ ⟨x∣ + h.c., (7)

which corresponds to the (real) tunneling operator of one
particle in a one-dimensional lattice of k + 1 sites with
open boundary conditions. Diagonalization of the op-
erator X is trivial. The eigenmodes are sine functions
that vanish at the boundaries of the one-dimensional lat-
tice. They have the form: ∣ψq⟩ = ∑x Sqx ∣x⟩, where

Sqx =
√

2
√
k+2

sin π
k+2
(q + 1)(x + 1). Pleasingly, they de-

fine a unitary symmetric matrix that exactly corresponds
to the S-matrix of the SU(2)k anyon model.

2 bosons in 3 lattice sites. By assembling 2 copies of
the Abelian building block Z3, the construction generates
the non-Abelian model Fib × Z3. This anyon model is
connected to the non-Abelian Read-Rezayi state for the
ν = 12/5 quantum Hall plateaux [14]. The Boson-Lattice
system is that of 2 bosons in a lattice of 3 sites, which has
dimension 6. The corresponding anyon model has thus 6
topological charges. The Boson-Lattice generating graph
is the one depicted below.

By inspection of the graph, the set of polynomials forming
the topological algebra are obtained as:

A = {1,X,T,XT,T 2,XT 2
}. (8)

It is illuminating to draw the graph corresponding to
the operator XT , which decomposes into three identical
copies of the generating graph of the Fibonacci model.
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Diagonalization of the generating graph X yields a unique
(up to conjugation) unitary symmetric matrix of eigen-
vectors. This matrix is the tensor product: S = SFib⊗SZ3 ,
where SFib and SZ3 are, respectively, the S-matrix of the
Fibonnaci and the Z3 anyon models. The corresponding
T -matrix is T = TFib ⊗ TZ3 .
3 bosons in 3 lattice sites. By assembling 3 copies of

the Abelian building block Z3, the construction generates
a well defined non-Abelian anyon model with 10 anyon
types. This model is not tabulated. The Boson-Lattice
system is that of 3 bosons in a lattice of 3 sites, which
has dimension 10. The Boson-Lattice graph is the one
depicted below.

By inspection of the graph the set of polynomials com-
posing the topological algebra is derived as:

A = {1, T, T 2,X,XT,XT 2,X†,X†T,X†T 2,Q},

where the operator Q fulfills: Q =XX†−1 and QT = Q.
Interestingly, this model has multiplicities larger than 1.
We have:

Q ×Q = 1 + T + T 2
+ 2Q. (9)

This model is not tabulated in the tables by Bonder-
son [14], which are restricted to multiplicity-free anyon
models. Diagonalization of the graphs yields a unique
(up to conjugation) symmetric and unitary matrix, which
defines the S-matrix of the anyon model. The topological
T -matrix is uniquely determined by the modular relation
above, relating the S and T matrices.

Self-similarity of the construction. Anyon models
generated by assembling the building blocks Zn can be
used themselves as building blocks to generate new mod-
els at higher levels of the construction. In fact, any anyon
model can serve as a building block to start the construc-
tion. The principle of assembly can be generally formu-
lated like this.

Given k copies of a building block with generating
graph G, the Boson-Lattice system is the one of k
bosons in that graph.

The Boson-Lattice graph GB is defined as the connec-
tivity graph of Fock states of the Boson-Lattice system,
where two Fock states are linked if they are connected
by a one-particle move allowed by the building block
graph G.

This defines the self-similar blueprint to generate a graph
from a graph, an anyon model from an anyon model. For
example, assembling two copies of the model SU(2)2,
which was generated itself by assembling two copies of a
Z2 model, we obtain the Boson-Lattice graph,

which corresponds to the anyon model SO(5)2. As an-
other interesting example, assembling k copies of the Fi-
bonacci model, we obtain the graph

which corresponds to the anyon model SO(3)2k+1.
Curved geography of anyon models. The Boson-

Lattice graph is constructed by filling with bosons the
graph of the building block. Whereas the building block
graph can be represented by a one-particle operator

XG = ∑
x↝x′∈G

a†
x′ax

(with the operator a†
x(ax) creating (annihilating) a par-

ticle at site x, and x ↝ x′ indicating that there is an
oriented link from x to x′ in the graph G), the Boson-
Lattice graph corresponds to a many-particle operator,
XGB . There is an illuminating form of writing it. It is a
correlated tunneling operator in which a particle tunnels
according to the connectivity of the building block graph
G, but, crucially, with an amplitude that depends on the
local density of bosons:

XGB = ∑
x↝x′∈G

a†
x′ g(nx, nx′)ax .

Effectively, the bosons curve the metric of the original
graph. I can say that the construction builds the new
graph by curving the metric of the building block graph.
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This discloses a fascinating structure: an anyon model is
engendered from another by deforming the geometry of
its corresponding space. Moreover, this points to a hid-
den symmetry of the Pentagon and Hexagon equations:
they seem to be invariant under such metric deforma-
tions. And therein lies the success of the construction:
starting with a well defined anyon model, the curvature
induced by the construction, changes the properties of
the model while nicely preserving the intricate set of con-
sistency conditions, so that a more complex, but still well
defined anyon model emerges.

Closures and openings. The Boson-Lattice con-
struction provides an orderly systematic way to construct
anyon models. By assembling different numbers of iden-
tical building blocks (by varying the number of bosons k)
and by changing their size (varying the number of lattice
sites n) the construction succeeds in generating towers
of well known tabulated anyon models. The construc-
tion reveals a self-similar skeleton for the space of anyon
models: anyon models are grouped in levels of hierarchy,
with models at a certain level being the building blocks
of those at the next, the articulation principle repeating
itself as a bosonization procedure that makes the elemen-
tary pieces indistinguishable.

The Boson-Lattice construction represents the collapse
of two languages into one. It reveals that the mathemati-
cal language to describe anyon models can be the same as
the one describing boson-lattice systems. It provides us
with a physically meaningful language (the one of bosons,
Fock states and tunneling Hamiltonians) to describe the
mathematical properties (fusion rules and braiding rules)
of anyon models. I believe this physical language can
help us in our way to fill the explanatory gap between
the mathematical and the physical sides of topological
orders.

I have focused in this work on the construction of mod-
ular anyon models, for which corresponding conformal
field theories and topological quantum field theories ex-
ist. Can we delineate a graph of correspondences be-
tween the Boson-Lattice construction and conformal and
topological quantum field theories? Might the Boson-
Lattice construction bring light into our understanding of
the anatomy of conformal field theories and topological
quantum field theories?

The Boson-Lattice construction can be enriched by
adding internal degrees of freedom to the bosons partic-
ipating. For example, we can consider bosons with color
or spin, or also change the dimensionality of the lattice.
In this way, anyon models corresponding to non-chiral
topological orders, such as quantum doubles, can be gen-
erated. Moreover, the construction can be extended to

fermions. By considering Fermion-Lattice graphs other
towers of anyon models are built up.

In light of the Boson-Lattice approach, the reverse pro-
cess of disintegrating anyon models into simpler pieces
acquires an enlightened perspective. Within the Boson-
Lattice picture, anyon condensation is a condensation of
actual bosons. Moreover, the concept of topological sym-
metry breaking corresponds to actual symmetry breaking
in the Boson-lattice system. I find extremely interest-
ing to investigate how anyon condensation is precisely
described in the Boson-Lattice language, and, moreover,
whether the Boson-Lattice construction can guide us to
develop a systematic framework to describe anyon con-
densation, for which no fully general description is known.

Especially interesting is the prospect of developing a
dual construction at the microscopic physical level. I be-
lieve the Boson-Lattice construction for anyon models can
inspire the blueprint of a construction of many-body wave
functions and Hamiltonians for the corresponding topo-
logical orders. A dual bosonization principle of assembly
could be used to orderly build up complex topologically
ordered many-body wave functions from elementary ones.
Such systematic framework would reveal a dual anatomy
in the phase space of topologically ordered systems.

I have drawn a correspondence between anyon mod-
els and curved-space geometries. What type of space-
geometries do anyon models correspond to? How can
time be included into the theory? I believe that this
connection anticipates a beautiful duality between anyon
models and gravity, which I feel compelled to unveil.
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