
The Scale of Inflation in the Landscape
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter�CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ⇤ = 50, and linear beyond. The vertical scale is ⇤(⇤+ 1)Cl/2�. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-⇤ region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ⇤ = 50,
and linear beyond. The vertical scale is ⇤(⇤ + 1)Cl/2�. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di⇥ers from the ERCSC in its extraction philosophy: more e⇥ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di⇥erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di⇥erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the

27

BICEP2: E signal

1.7µK

−65

−60

−55

−50

Simulation: E from lensed−ΛCDM+noise

1.7µK

Right ascension [deg.]
D

ec
lin

at
io

n 
[d

eg
.]

BICEP2: B signal

0.3µK

−50050

−65

−60

−55

−50

Simulation: B from lensed−ΛCDM+noise

0.3µK

−50050

−1.8

0

1.8

−0.3

0

0.3

µ
K

µ
K

arXiv: 1109.5182, 1206.4034, 1303.3224, work in progress ...!
Koushik Dutta, Pascal Vaudrevange & AW / Francisco Pedro & AW!

DESY Hamburg



slow-roll inflation ...

Figure 1: Motion of the scalar field in the theory with V (φ) = m2

2 φ2. Several different regimes
are possible, depending on the value of the field φ. If the potential energy density of the field is
greater than the Planck density M4

p = 1, φ ! m−1, quantum fluctuations of space-time are so
strong that one cannot describe it in usual terms. Such a state is called space-time foam. At a
somewhat smaller energy density (for m " V (φ) " 1, m−1/2 " φ " m−1) quantum fluctuations
of space-time are small, but quantum fluctuations of the scalar field φ may be large. Jumps
of the scalar field due to quantum fluctuations lead to a process of eternal self-reproduction of
inflationary universe which we are going to discuss later. At even smaller values of V (φ) (for
m2 " V (φ) " m, 1 " φ " m−1/2) fluctuations of the field φ are small; it slowly moves down
as a ball in a viscous liquid. Inflation occurs for 1 " φ " m−1. Finally, near the minimum of
V (φ) (for φ " 1) the scalar field rapidly oscillates, creates pairs of elementary particles, and
the universe becomes hot.
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter�CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ⇤ = 50, and linear beyond. The vertical scale is ⇤(⇤+ 1)Cl/2�. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-⇤ region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ⇤ = 50,
and linear beyond. The vertical scale is ⇤(⇤ + 1)Cl/2�. The binning
scheme is the same as in Fig. 19.
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tected by Planck over the entire sky, and which therefore con-
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formation is provided for the sources at this time. The PCCS
di⇥ers from the ERCSC in its extraction philosophy: more e⇥ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di⇥erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di⇥erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the
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a speculative recipe ...

Let us start by making a set of assumptions about the 
landscape ... 	


these assumptions are not taken as proven to be true 
for the whole of the landscape	


yet they have certain support/evidence from some 
corners of the landscape	


given the set of assumptions, we can try to figure out 
the consequences - valid for a landscape conforming to 
these assumptions



premises / assumptions ...

• large-field inflation needs shift symmetry to 
control UV corrections:  
 

➡(i) shift symmetries only from p-form gauge fields 
of string theory	


•scalar fields with shift symmetry in string 
compactifications: 	


➡(ii) axions - field range is limited to < MP

O6 � V (⇥)
⇥2

M2
P

⇥ m2
� � H2 , � � 1



• population of the many vacua: 	


➡(iii) only known mechanism:  
CdL or HM tunneling, combined with eternal inflation	


• basic structure of the landscape of vacua	


➡(iv-1) exponentially many vacua in high-dimensional moduli space	


➡(iv-2) neighbouring vacua typically have large differences in 
vacuum energy:  
- small-c.c. vacua have neighbours with large c.c.  
- & need population from high-c.c. for anthropics to work	


➡(iv-3) eternal inflation

premises / assumptions ...



• eternal inflation	


➡there is global-local duality for:  
 
- causal patch measure 
 
- scale factor time measure 
 
- light-cone time cutoff measure  

premises / assumptions ...

[Bousso ’09]
[Bousso & Yang ’09]
[Bousso, Freivogel, Leichenauer 
& Rosenhaus ’10]

[Bousso, Freivogel & Yang ’06]
[Freivogel, Sekino, Susskind & Yeh ’06]

[de Simone, Guth, Linde, 
Noorbala, Salem & Vilenkin ’08]

progenitor: longest-lived dS vacuum 
seeds all other vacua!
Vinf << Vprogen. << 1 , still very high !



• EM Stueckelberg gauge symmetry:

on moduli fields coming from the internal metric and the dynamical string coupling. In

§3, we will show explicitly how these terms can lead to a variety of power law potentials

V / �pp0 , with the final power p shifted down from p0 via adjustments of heavy moduli.

2.1 Axions from the two-form potential B

Perturbative string theory contains a two-form potential field B = BMNdx
M ^ dxN that

is directly analogous to the usual vector potential A = AMdxM of electromagnetism.3 In

particular, B is sourced by fundamental strings just as the usual vector potential is sourced by

charged particles. There is a gauge invariance in the theory under which B ! B+d⇤1, with

⇤1 a one-form, analogous to the gauge invariance under A ! A+ d⇤0 in electromagnetism.

Similarly, there are other potential fields denoted Cp+1 sourced by p-dimensional extended

objects (Dp-branes) [23].

In electromagnetism, the action contains the gauge-invariant terms

SEM =

Z

d4x
p�g

�

FMNF
MN � ⇢2(AM + @MC)2 + . . .

 

, (2.1)

where under the gauge transformation AM ! A + @M⇤0, the field C transforms as C !
C �⇤0. The first term is the Maxwell action, written in terms of the field strength F = dA.

The second term, known as a Stueckelberg term, can arise from spontaneous symmetry

breaking, with ⇢ the vacuum expectation value of a charged field.4

In type II string theory, one finds generalizations of these Maxwell and Stueckelberg

terms, with the gauge transformation B ! B + d⇤1 accompanied by appropriate shifts of

the Cp fields. Although we will focus on specific examples in type IIB string theory below,

let us start by considering the relevant terms arising in D = 10 type IIA string theory. There

we have potential fields Cp with odd p, and it is useful to define the following generalized

field strengths that respect all the gauge symmetries of the theory:

H = dB ,

F0 = Q0 ,

F̃2 = dC1 + F0B ,

F̃4 = dC3 + C1 ^H3 +
1

2
F0B ^ B , (2.2)

where Q0 is an integer. These are gauge-invariant, with the transformation B ! B + d⇤1

3An exception is the type I string, in which closed strings are unstable to breaking into open strings, but
this theory contains a two-form potential sourced by D1-branes.

4In ordinary electrodynamics the symmetry is of course unbroken in vacuum, but ⇢ 6= 0 arises in a
superconductor from the condensation of the Cooper pair field.
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• string theory contains analogous gauge symmetries for 
NSNS and RR axions - e.g. IIA:
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extended to a combined transformation

�B = d⇤1 ,

�C1 = �F0⇤1 ,

�C3 = �F0⇤1 ^B . (2.3)

The e↵ective action starting from a total dimensionality D = 10 contains terms proportional

to5

� 1

↵04

Z

d10x
p�G

n 1

g2s
|H|2 +

X

p

|F̃p|2
o

. (2.4)

Upon dimensional reduction to four dimensions, these terms introduce a direct dependence

of the potential energy on the axion fields

bi ⌘
Z

⌃i
2

B (2.5)

obtained by integrating the potential field B over nontrivial 2-cycles ⌃i
2 in the compact-

ification manifold M. Another feature we need to take into account is that the fluxes

Qi
2 =

R

⌃i
2
dC1, Q4 =

R

⌃i
4
dC3, and N3 =

R

⌃a
3
H (with the index i running over topologically

distinct even-dimensional cycles, and a similarly indexing three-cycles) are quantized, as is

Q0 = F0.

Let us focus on the B-dependent terms, and for simplicity work on the branch of the

potential where Q2 = Q4 = 0 (also setting to zero the flux dC3 along the noncompact four

dimensional spacetime, or equivalently the dual 6-form flux Q6 ⌘
R

M ?10F4 =
R

M F6). In the

models in §3, we will incorporate the analogue in type IIB string theory of these additional

fluxes, which will yield interesting behavior in some cases, but for now we will focus on the

leading contributions to the potential at large field range. Given this, we have an action of

the schematic form6

� 1

↵04

Z

d10x
p�G

⇢

1

g2s
|H|2 + |Q0B|2 + |Q0B ^B|2 + �4g

2
s |Q0B ^B|4 + . . .

�

. (2.6)

Here in the last term and the ellipses we have allowed for corrections that could be read o↵

from the tree-level four-point and higher-point functions (�4 being an order 1 number). We

have also set to zero the contribution from |F̃6|2 = |C3 ^ H + Q0B ^ B ^ B/6|2, having in

mind situations where H flux is present in order to contribute to moduli stabilization, and C3

minimizes the |F̃6|2 term at zero. More generally, there should be interesting configurations

5Similar comments apply in the more generic cases with D > 10 [24].
6See e.g. equation 12.1.25 of [23]. However, we caution the reader that we follow the sign conventions of

[25], not those of [23].
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• type IIB similar

consequences of (i) & (ii) - axion monodromy



axion monodromy
• p-form axions get non-periodic potentials from 

coupling to branes or fluxes/field-strengths  

• produces periodically spaces set of multiple branches 
of large-field potentials:  
 

�

V (�,�) = µ4�p�p + �4(�) cos
�

�

2�f

�
+ Umod.(�)

instanton 
corrections

moduli 
potential

-1.0 -0.5 0.0 0.5 1.0
Re z

-1.0
-0.5

0.0
0.5
1.0

Im z

0

5

10

†lnHzL§



large-field string inflation ...  

!
• Fibre inflation (r < 0.01) Cicoli, Burgess & Quevedo 
 
 

• Single-Axion inflation with f > MP Grimm; Blumenhagen & Plauschinn;  
 

• 2-Axion inflation Kim, Nilles & Peloso; Berg, Pajer & Sjors; Kappl, Krippendorf & Nilles; Long,  
                               McAllister & McGuirk;Tye & Wong; Ben-Dayan, Pedro & AW; Gao, Li & Shukla ...  
 

• N-flation Dimopoulos, Kachru, McGreevy, Wacker; Easther & McAllister; Grimm; Cicoli, Dutta &  
                  Maharana; Choi, Kim & Yun; Bachlechner, Dias, Frazer & McAllister 
 

• axion monodromy    Silverstein & AW; McAllister, Silverstein & AW; Flauger, McAllister, Pajer, AW &  
                                      Xu; Dong, Horn, Silverstein & AW;  
                                      Shlaer; Palti & Weigand; Marchesano, Shiu &  
                                      Uranga; Blumenhagen & Plauschinn; Hebecker, Kraus & Witkowski; Ibanez &  
                                      Valenzuela; Kaloper, Lawrence & Sorbo; McAllister, Silverstein, AW & Wrase; Franco,  
                                      Galloni, Retolaza & Uranga; Blumenhagen, Herschmann & Plauschinn;

r ~ 0.001

r ~ 0.1



consequences of (i) , (ii), (iv-2) & (vi-3)

local measures: longest-lived dS - still generically of very high-
scale c.c. - is progenitor to all small-c.c. dS vacua



➡population of 
sufficiently many small-
c.c. vacua must go via an 
intermediate very large 
c.c vacuum 
 
 
because down tunneling 
is much more efficient

!

➡maintained by all 
measures free of 
obvious paradoxa

consequences of (iii) & (vi)



➥ up tunneling very expensive & undemocratic

consequences of (iii) tunneling ...

Φ

V

V-

V+

➥ ratio of up tunneling rates into 2 different higher dS vacua



➥ down tunneling less expensive & democratic

consequences of (iii) tunneling ...

Φ

V

V+

V-

�V+

�V�

⇠ e
� 1

V� ⌧ e
� 1

V+ ⌧ 1



➥ down tunneling less expensive & democratic

consequences of (iii) tunneling ...

➥ averaged ratio of down tunneling rates into 2 lower dS vacua

- independent from small V-	


- can average over barrier height



• (iii) Tunneling feeds the landscape:

➡nucleates bubbles of 
negative spatial 
curvature	


➡drops field into slow-
roll always !

➡proceeds via CDL 
instanton 
[Coleman, De Luccia '80]	


[Dvali, Kachru '03]	

[Freivogel et al. ’05]	

[Dutta, Vaudrevange, AW '11]



 
➥ successful anthropic explanation of present-day small c.c. 
requires efficient population of a very large # of small-c.c. vacua 
 
➥ large-c.c. vacuum is effective progenitor of most inflationary 
valleys with exit into small c.c. vacua - because down tunneling is 
efficient  
 
➥ down tunneling populates small-c.c. vacua & valleys 
democratically 
 
➥ negative curvature inside CDL bubbles removes initial 
condition problem for subsequent slow-roll  
 
➥ a universal bias seems to appear: no bias ... small-field and large-
field regimes appear to be seeded democratically (on the level of 
exponential bias)	


consequences of (i) , (ii) , (iii) & (iv) [AW ’12]



 
➥ consequence:  
 
if the measure choice decouples & tunneling treats small-field 
and large-field regimes approximately neutral ...  
 
distribution of field-range is fully determined by number 
frequency of inflationary solutions 
 
➥  ‘valley’ statistics determines r , as vacuum statistics 
(anthropically) determines late-time c.c. ! This is in principle a 
string theory question ...

consequences of (i) , (ii) , (iii) & (iv) [AW ’12]

[Susskind ’04; Douglas ’04; Denef & Douglas ’04; Aazami & Easther ’05; Marsh, 
McAllister & Wrase ’11;  Chen, Shiu, Sumitomo & Tye '11; Bachlechner, Marsh, 
McAllister & Wrase ’12; Marsh, McAllister, Pajer & Wrase ’13; Bachlechner ’13; ...]
[Battefeld, Battefeld & Schulz ’12]

➥ accessible via random matrix theory ...



valley statistics ...

➥
N�� > MP

N�� < MP

�
�h1,1
� >0 · ⇥h1,1

� ⇤ · �
V

1
4 >1016GeV

�flat saddle ·
�
1 � �

V
1
4 >1016GeV

�

➥

• The landscape ‘Drake equations’ of tensor modes

[AW ’12]

Nr > 0.01

Nr < 0.01
� N�� > MP

N�� < MP

�
�h1,1
� >0 · �h1,1

� � · �
V

1
4 >1016GeV

�flat saddle ·
�
1� �

V
1
4 >1016GeV

�

??
� NCY Ncr. �dS�vac.

NCY Ncr. �dS�vac.



➥ we know: 

�h1,1
� >0 < 1 not all CYs support the topology for axion monodromy

➥ we need: 

�flat saddle

[AW ’12]

h1,1
� � O(100) at least if # of CYs finite

�
V

1
4 >1016GeV

likely to be non-exponential in V



➥ approximate dS landscape from CY flux compactifications (e.g. 
KKLT, LVS, Kähler uplifting ...) by a random supergravity:

random supergravity ...
[Marsh, McAllister & Wrase ’11]

[Chen, Shiu, Sumitomo & Tye '11]

➥ random K and W generate scalar potential: 

2 Critical Points in N = 1 Supergravity

In this section we will discuss the form of the critical point equation, and describe the structure

of H at a critical point, in a general four-dimensional N = 1 supergravity. In §2.1 and §2.2 we

closely follow the work of Denef and Douglas [2], reviewing how the critical point equation can

be written as an eigenvalue equation, and we establish notation for the di�erent contributions
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tensor modes r ! 0.01 in upcoming CMB observations.

II. THE WIGNER ENSEMBLE AND RANDOM
SUPERGRAVITIES

The F-term potential of N = 1 supergravity

V = eK
(

FAF̄A − 3|W |2
)

(1)

is the starting point of the analysis of critical points in
the landscape. As usual FA = ∂AW + W∂AK and W
and K are the superpotential and the Kähler potential
respectively. Critical points are defined by the condition

∂AV |cp = 0 (2)

and can be maxima, minima or saddles. To determine
the nature of a given critical point one must analyse the
eigenvalues of the Hessian matrix, defined in terms of
the F-term potential as Hmn = ∂mnV where m, n can
be holomorphic or anti-holomorphic indices. Taking into
account the structure of the F-term potential of Eq. (1),
the Hessian decomposes into a sum of the form

H = HSUSY + HK(3)
︸ ︷︷ ︸

Wishart+Wishart

+Hpure + HK(4)

︸ ︷︷ ︸

Wigner

+Hshift. (3)

Each of these matrices is defined in terms of the Kähler
potential, the superpotential and their derivatives [19,
38]. For our purposes it suffices to review the definitions
and some properties of the Wishart and Wigner matrices
(for a review see [41–43]).

A Wishart matrix [40] is a complex matrix defined as
M = AA† where A is a random Nf ×Nf complex matrix
drawn from some distribution with mean µ and variance
σ: Ω(µ, σ). Its eigenvalue spectrum has support on the
interval [0, 4Nfσ2[, is peaked towards the origin and is
given by the Marcenko-Pastur law [44].

A Wigner matrix is a Hermitian matrix defined as M =
A + A†, where A is drawn from a distribution Ω(µ, σ).
The eigenvalue spectrum of the Wigner ensemble is given
by the Wigner semi-circle law

ρ(λ) =
1

2πNfσ2

√

4Nfσ2 − λ2 (4)

which can be obtained by unconstrained integration of
the joint probability density function (pdf)

dP (λ1, ..., λNf
) = exp

⎛

⎝− 1

σ2

Nf
∑

i=1

λ2
i

⎞

⎠

∏

i<j

(λi − λj)
2 (5)

over all but one variable. Equation (5) gives the probabil-
ity of generating a matrix with eigenvalues in [λi, λi +δλ]
and it will be crucial for the analysis of the probability
of inflation in the landscape of random supergravities we
will present later. A rather useful physical interpretation
of Eq. (5) was put forward by Dyson in [45] in terms of

a one dimensional gas of charged particles moving under
the influence of an attractive quadratic potential and a
repulsive mutual interaction. This picture proves very
useful in qualitatively estimating behaviour of the sys-
tem.

A crucial property of the eigenvalue spectrum of the
Wigner ensemble is that for the cases of interest, in
which the random matrices are drawn form a distri-
bution Ω(0, 1/

√

2Nf), it has support on the interval

[−
√

2,
√

2] M2
P . So unlike the Wishart ensemble, which

has all eigenvalues positive, a typical Nf ×Nf matrix in
the Wigner ensemble will have Nf/2 tachyonic directions.

The typical eigenvalue spectrum of random supergrav-
ities, as defined by H, was found analytically in [38]
through the free convolution of the constituent spec-
tra. The spectrum has support in ∼ [−0.7, 7.5] M2

P
(for Minkowski vacua) and so it typically features sev-
eral tachyonic directions, meaning that the most likely
critical points in random supergravity are steep saddles
rather than a local minima.

While the eigenvalue spectrum of the full random su-
pergravity is distinct from that of a Wigner matrix, it is
certainly true that its tachyonic part has its origin in the
Wigner matrix since the spectrum of the sum of Wishart
matrices is positive definite.

The presence of the positive semi-definite contribution
from the Wishart matrices in the full random supergrav-
ity leads to a substantially enhanced frequency of local
minima compared to a Wigner matrix based estimated.
However, as the frequency of inflationary regions relative
to local minima is dominated by the tachyonic part of
the spectrum originating in the Wigner matrix spectrum
alone, this relative likelihood of inflation is still deter-
mined to leading order by the Wigner matrix estimate in
the full random supergravity as well. Conversely, the ab-
solute frequency of inflationary regions will be enhanced
in the full random supergravity proportional to the in-
creased occurrence of local minima.

Studies of the string landscape often involve compu-
tation of the probability of occurrence of critical points,
with particular emphasis on minima, suited for descrip-
tion of the present day Universe. These spectra corre-
spond a large the shift of the smallest eigenvalue to the
right of its typical position and are exponentially unlikely
[38, 39, 46]:

Pmin ∼ e−cNp
f +O(N) p ∼ O(1). (6)

In this letter we analyse small field inflation in the
same light and try to determine how likely it is to find
sufficiently flat saddle points in the landscape using the
Wigner ensemble as our main tool. The reasons to ap-
proximate the full Hessian by a single Wigner matrix are
twofold: firstly it is the Wigner matrix that gives rise to
the tachyonic directions and so by focusing on these one
hopes to uncover the inflationary structure behind the
full Hessian; secondly for the Wigner ensemble we are
in possession of the joint pdf, Eq. (5), whose numerical
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(for Minkowski vacua) and so it typically features sev-
eral tachyonic directions, meaning that the most likely
critical points in random supergravity are steep saddles
rather than a local minima.

While the eigenvalue spectrum of the full random su-
pergravity is distinct from that of a Wigner matrix, it is
certainly true that its tachyonic part has its origin in the
Wigner matrix since the spectrum of the sum of Wishart
matrices is positive definite.

The presence of the positive semi-definite contribution
from the Wishart matrices in the full random supergrav-
ity leads to a substantially enhanced frequency of local
minima compared to a Wigner matrix based estimated.
However, as the frequency of inflationary regions relative
to local minima is dominated by the tachyonic part of
the spectrum originating in the Wigner matrix spectrum
alone, this relative likelihood of inflation is still deter-
mined to leading order by the Wigner matrix estimate in
the full random supergravity as well. Conversely, the ab-
solute frequency of inflationary regions will be enhanced
in the full random supergravity proportional to the in-
creased occurrence of local minima.

Studies of the string landscape often involve compu-
tation of the probability of occurrence of critical points,
with particular emphasis on minima, suited for descrip-
tion of the present day Universe. These spectra corre-
spond a large the shift of the smallest eigenvalue to the
right of its typical position and are exponentially unlikely
[38, 39, 46]:

Pmin ∼ e−cNp
f +O(N) p ∼ O(1). (6)

In this letter we analyse small field inflation in the
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distribution choice
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Figure 1: The eigenvalue spectra for the Wigner ensemble (left panel), and the Wishart ensem-

ble with N = Q (right panel), from 103 trials with N = 200.

As a Wishart matrix is the Hermitian square of another matrix, it is necessarily positive

semidefinite. The joint probability density of a complex Wishart matrix is (cf. e.g. [10])

f(�1, . . . ,�N) = C exp
�
� 1

⌅

N⇤

i=1

�i + 2
N⇤

i<j

ln|�i � �j|+ (Q�N)
N⇤

i

ln�i

⇥
. (3.6)

In the Coulomb gas picture, the non-negativity of a Wishart matrix corresponds to the presence

of a hard wall at � = 0.

The eigenvalue distribution in the Wishart ensemble is given by the Marčenko-Pastur law

[19], which takes the form

⇤(�) =
1

2⇥N⌅2�

⌅
(4N⌅2 � �)� , (3.7)

for the special case N = Q that will be relevant in our analysis, cf. Figure 1.

The probability density function of the smallest eigenvalue �1 was first computed by Edel-

man [18], and for our purposes it su⇥ces to note that for N = Q and ⌅ = 1⇥
N
, its average

position ⌃�1⌥ scales as 1
N2 .

3.1.3 The Altland-Zirnbauer CI ensemble

The matrix M appearing in the critical point equation (2.4) has an eigenvalue spectrum that

is broadly reminiscent of the Wigner semicircle law, but the 2N eigenvalues of M come in

opposite-sign pairs ±�a, with 0 ⇤ �1 ⇤ . . . ⇤ �N . As observed in [2], matrices M of the form

(2.5) belong to the Altland-Zirnbauer CI ensemble [20]. For normally-distributed entries of M,

the joint probability density of the eigenvalues is

f(�1, . . . ,�N) = C exp
�
� 1

⌅2

N⇤

i=1

�2
i +

N⇤

i �=j

ln|�2
i � �2

j |+
N⇤

i=1

ln |�i|
⇥
. (3.8)
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over all but one variable. Equation (5) gives the probabil-
ity of generating a matrix with eigenvalues in [λi, λi +δλ]
and it will be crucial for the analysis of the probability
of inflation in the landscape of random supergravities we
will present later. A rather useful physical interpretation
of Eq. (5) was put forward by Dyson in [45] in terms of

a one dimensional gas of charged particles moving under
the influence of an attractive quadratic potential and a
repulsive mutual interaction. This picture proves very
useful in qualitatively estimating behaviour of the sys-
tem.

A crucial property of the eigenvalue spectrum of the
Wigner ensemble is that for the cases of interest, in
which the random matrices are drawn form a distri-
bution Ω(0, 1/
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2Nf), it has support on the interval
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P . So unlike the Wishart ensemble, which

has all eigenvalues positive, a typical Nf ×Nf matrix in
the Wigner ensemble will have Nf/2 tachyonic directions.

The typical eigenvalue spectrum of random supergrav-
ities, as defined by H, was found analytically in [38]
through the free convolution of the constituent spec-
tra. The spectrum has support in ∼ [−0.7, 7.5] M2

P
(for Minkowski vacua) and so it typically features sev-
eral tachyonic directions, meaning that the most likely
critical points in random supergravity are steep saddles
rather than a local minima.

While the eigenvalue spectrum of the full random su-
pergravity is distinct from that of a Wigner matrix, it is
certainly true that its tachyonic part has its origin in the
Wigner matrix since the spectrum of the sum of Wishart
matrices is positive definite.

The presence of the positive semi-definite contribution
from the Wishart matrices in the full random supergrav-
ity leads to a substantially enhanced frequency of local
minima compared to a Wigner matrix based estimated.
However, as the frequency of inflationary regions relative
to local minima is dominated by the tachyonic part of
the spectrum originating in the Wigner matrix spectrum
alone, this relative likelihood of inflation is still deter-
mined to leading order by the Wigner matrix estimate in
the full random supergravity as well. Conversely, the ab-
solute frequency of inflationary regions will be enhanced
in the full random supergravity proportional to the in-
creased occurrence of local minima.

Studies of the string landscape often involve compu-
tation of the probability of occurrence of critical points,
with particular emphasis on minima, suited for descrip-
tion of the present day Universe. These spectra corre-
spond a large the shift of the smallest eigenvalue to the
right of its typical position and are exponentially unlikely
[38, 39, 46]:

Pmin ∼ e−cNp
f +O(N) p ∼ O(1). (6)

In this letter we analyse small field inflation in the
same light and try to determine how likely it is to find
sufficiently flat saddle points in the landscape using the
Wigner ensemble as our main tool. The reasons to ap-
proximate the full Hessian by a single Wigner matrix are
twofold: firstly it is the Wigner matrix that gives rise to
the tachyonic directions and so by focusing on these one
hopes to uncover the inflationary structure behind the
full Hessian; secondly for the Wigner ensemble we are
in possession of the joint pdf, Eq. (5), whose numerical

3

integration allows us to estimate probabilities without re-
curring to direct counting. The joint pdf that lies behind
the full Hessian of random supergravities, Eq. (3), is
unknown and so direct counting, the generation of large
samples of matrices and the counting of the ones that
have the spectra we are looking for, is the only probe
available. Since we are looking for minima and flat saddle
points, which are extremely rare events, direct counting
is computationally expensive.

We therefore focus our analysis on the Wigner ensem-
ble, presenting the results in the next section.

III. INFLATION IN THE LANDSCAPE

We start by deriving an identity regarding the proba-
bility for inflation in the Wigner landscape. As explained
above, the distribution of saddle points in a random su-
pergravity will be given by the Wigner ensemble as the
leading approximation to the full supergravity Hessian.
By simple manipulation of the integration limits it is pos-
sible to prove that inflationary saddle points are exponen-
tially more abundant than minima with masses greater
than the inflationary mass. For our purposes, q-field in-
flation happens in a saddle point in which q fields have
masses in the range [−η, η] and Nf − q fields in [η,∞[,
for suitably small η > 0.

The probability for generating a Wigner matrix with
all eigenvalues greater than −η can be found by integra-
tion of the joint pdf:

P (∀λ > −η) =

Nf
∏

i=1

∞∫

−η

dλidP (λ1, ..., λNf
)

=

Nf
∑

n=0

Nf !

n!(Nf − n)!

n
∏

i=1

η∫

−η

dλi

Nf
∏

j>n

∞∫

η

dλjdP.

(7)

In going from the first to the second line of (7) we
have simply split the integration region into [−η,∞[=
[−η, η[∪[η,∞[ for each λ, taking care to include the cor-
rect combinatorial factors. Using Dean and Majumdar’s
result regarding the probability of large fluctuations of
extreme eigenvalues for the Wigner ensemble [46]

P (∀λ > ξ) = e−2Φ(ξ)N2
f , (8)

where Φ(ξ) is given by

Φ(ξ) =
1

108

[

36ξ2 − ξ4 + (15ξ + ξ3)
√

6 + ξ2+

+27
(

log 18 − 2 log(−ξ +
√

6 + ξ2)
)]

,
(9)

one may write Eq. (7) as

P (inf)

P (∀λ > η)
= e2∆cN2

f − 1, (10)

with ∆c ≡ Φ(η)−Φ(−η). Henceforth P (inf) denotes the
total probability for inflation, defined as the sum over all
possible inflationary dynamics for a given Nf , i.e.

P (inf) =

Nf
∑

q=1

P (q − inf), (11)

In a manifestation that it is statistically more expen-
sive to displace the lowest eigenvalue to η than to −η, we
see that ∆c > 0 and so flat saddle points, suited for in-
flation, are exponentially more frequent in the landscape
than minima with all masses larger than η.

The main aim of this work is to determine the ratio
P (inf)/P (min), where we define P (min) = P (∀λ > 0).
Once again the results of [46] allow us to push ahead.
Noting that

P (min)

P (∀λ > η)
= e−2(Φ(0)−Φ(η))N2

f ≡ e−2f∆cN2
f (12)

one finds

P (inf)

P (min)
= (e2∆cN2

f − 1)e2f∆cN2
f ∼ e2ηΦ′(0)N2

f + O(η2).

(13)
We therefore expect inflationary saddle points to be ex-
ponentially more abundant than local minima in the
Wigner landscape.

In order to confirm and extend the above results we
estimate the relevant probabilities by Montecarlo inte-
gration of Eq. (5), setting η = 0.1, in the window
Nf ∈ [2, 16]. We then fit the relevant probabilities for
each value of Nf to the exponential law of Eq. (8) as is
expected from the theory of large eigenvalue fluctuations
developed in [46]. The results are presented in table I.
We see that our method systematically overestimates the

Analytical Fit

P (λ > −η) 0.447 0.429 ± 0.004

P (min) 0.549 0.530 ± 0.004

P (λ > η) 0.665 0.645 ± 0.004

P (inf) – 0.403 ± 0.002

Table I: Analytical estimates and fits to numerical data.

probabilities of occurrence of these rare events. This is
reflected on a shift of the fitted parameters on the level of
a few percent. We stress that even though the error bars
cannot account for this deviation, the fact that the nu-
merical and analytical results show the same trend lends
credibility to our results.

In Fig. 1 we plot the probability for finding an infla-
tionary saddle point in the landscape, presenting both
the data points, the analytical estimate [47]

P (inf) = e−2Φ(−η)N2
f − e−2Φ(η)N2

f . (14)

and the best fit of Table I.
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integration allows us to estimate probabilities without re-
curring to direct counting. The joint pdf that lies behind
the full Hessian of random supergravities, Eq. (3), is
unknown and so direct counting, the generation of large
samples of matrices and the counting of the ones that
have the spectra we are looking for, is the only probe
available. Since we are looking for minima and flat saddle
points, which are extremely rare events, direct counting
is computationally expensive.

We therefore focus our analysis on the Wigner ensem-
ble, presenting the results in the next section.

III. INFLATION IN THE LANDSCAPE

We start by deriving an identity regarding the proba-
bility for inflation in the Wigner landscape. As explained
above, the distribution of saddle points in a random su-
pergravity will be given by the Wigner ensemble as the
leading approximation to the full supergravity Hessian.
By simple manipulation of the integration limits it is pos-
sible to prove that inflationary saddle points are exponen-
tially more abundant than minima with masses greater
than the inflationary mass. For our purposes, q-field in-
flation happens in a saddle point in which q fields have
masses in the range [−η, η] and Nf − q fields in [η,∞[,
for suitably small η > 0.

The probability for generating a Wigner matrix with
all eigenvalues greater than −η can be found by integra-
tion of the joint pdf:

P (∀λ > −η) =

Nf
∏

i=1

∞∫

−η

dλidP (λ1, ..., λNf
)

=

Nf
∑
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∏
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∏
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η

dλjdP.

(7)

In going from the first to the second line of (7) we
have simply split the integration region into [−η,∞[=
[−η, η[∪[η,∞[ for each λ, taking care to include the cor-
rect combinatorial factors. Using Dean and Majumdar’s
result regarding the probability of large fluctuations of
extreme eigenvalues for the Wigner ensemble [46]

P (∀λ > ξ) = e−2Φ(ξ)N2
f , (8)

where Φ(ξ) is given by

Φ(ξ) =
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+27
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√
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(9)

one may write Eq. (7) as

P (inf)

P (∀λ > η)
= e2∆cN2

f − 1, (10)

with ∆c ≡ Φ(η)−Φ(−η). Henceforth P (inf) denotes the
total probability for inflation, defined as the sum over all
possible inflationary dynamics for a given Nf , i.e.

P (inf) =

Nf
∑

q=1

P (q − inf), (11)

In a manifestation that it is statistically more expen-
sive to displace the lowest eigenvalue to η than to −η, we
see that ∆c > 0 and so flat saddle points, suited for in-
flation, are exponentially more frequent in the landscape
than minima with all masses larger than η.

The main aim of this work is to determine the ratio
P (inf)/P (min), where we define P (min) = P (∀λ > 0).
Once again the results of [46] allow us to push ahead.
Noting that
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f + O(η2).

(13)
We therefore expect inflationary saddle points to be ex-
ponentially more abundant than local minima in the
Wigner landscape.

In order to confirm and extend the above results we
estimate the relevant probabilities by Montecarlo inte-
gration of Eq. (5), setting η = 0.1, in the window
Nf ∈ [2, 16]. We then fit the relevant probabilities for
each value of Nf to the exponential law of Eq. (8) as is
expected from the theory of large eigenvalue fluctuations
developed in [46]. The results are presented in table I.
We see that our method systematically overestimates the

Analytical Fit

P (λ > −η) 0.447 0.429 ± 0.004

P (min) 0.549 0.530 ± 0.004

P (λ > η) 0.665 0.645 ± 0.004

P (inf) – 0.403 ± 0.002

Table I: Analytical estimates and fits to numerical data.

probabilities of occurrence of these rare events. This is
reflected on a shift of the fitted parameters on the level of
a few percent. We stress that even though the error bars
cannot account for this deviation, the fact that the nu-
merical and analytical results show the same trend lends
credibility to our results.

In Fig. 1 we plot the probability for finding an infla-
tionary saddle point in the landscape, presenting both
the data points, the analytical estimate [47]

P (inf) = e−2Φ(−η)N2
f − e−2Φ(η)N2
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and the best fit of Table I.

➥ Dean & Majumdar’s result on exponential suppression of large 
eigenvalue fluctuation:

[Pedro & AW ’13]



inflationary saddle points are defined by Nf fields having mass 
eigenvalues between [-η , η]  where η < 0.1 in terms of the typical 
mass scale of an F-term supergravity scalar potential (m3/2)2

small field inflation in the landscape ...
➥ can compute the ratio of flat inflationary saddle points vs minima 
from joint PDF of  Wigner ensemble for  Nf  fields using Dean & 
Majumdar’s result:
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integration allows us to estimate probabilities without re-
curring to direct counting. The joint pdf that lies behind
the full Hessian of random supergravities, Eq. (3), is
unknown and so direct counting, the generation of large
samples of matrices and the counting of the ones that
have the spectra we are looking for, is the only probe
available. Since we are looking for minima and flat saddle
points, which are extremely rare events, direct counting
is computationally expensive.

We therefore focus our analysis on the Wigner ensem-
ble, presenting the results in the next section.
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We start by deriving an identity regarding the proba-
bility for inflation in the Wigner landscape. As explained
above, the distribution of saddle points in a random su-
pergravity will be given by the Wigner ensemble as the
leading approximation to the full supergravity Hessian.
By simple manipulation of the integration limits it is pos-
sible to prove that inflationary saddle points are exponen-
tially more abundant than minima with masses greater
than the inflationary mass. For our purposes, q-field in-
flation happens in a saddle point in which q fields have
masses in the range [−η, η] and Nf − q fields in [η,∞[,
for suitably small η > 0.

The probability for generating a Wigner matrix with
all eigenvalues greater than −η can be found by integra-
tion of the joint pdf:
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In going from the first to the second line of (7) we
have simply split the integration region into [−η,∞[=
[−η, η[∪[η,∞[ for each λ, taking care to include the cor-
rect combinatorial factors. Using Dean and Majumdar’s
result regarding the probability of large fluctuations of
extreme eigenvalues for the Wigner ensemble [46]
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with ∆c ≡ Φ(η)−Φ(−η). Henceforth P (inf) denotes the
total probability for inflation, defined as the sum over all
possible inflationary dynamics for a given Nf , i.e.

P (inf) =
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P (q − inf), (11)

In a manifestation that it is statistically more expen-
sive to displace the lowest eigenvalue to η than to −η, we
see that ∆c > 0 and so flat saddle points, suited for in-
flation, are exponentially more frequent in the landscape
than minima with all masses larger than η.

The main aim of this work is to determine the ratio
P (inf)/P (min), where we define P (min) = P (∀λ > 0).
Once again the results of [46] allow us to push ahead.
Noting that
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one finds
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f ∼ e2ηΦ′(0)N2

f + O(η2).

(13)
We therefore expect inflationary saddle points to be ex-
ponentially more abundant than local minima in the
Wigner landscape.

In order to confirm and extend the above results we
estimate the relevant probabilities by Montecarlo inte-
gration of Eq. (5), setting η = 0.1, in the window
Nf ∈ [2, 16]. We then fit the relevant probabilities for
each value of Nf to the exponential law of Eq. (8) as is
expected from the theory of large eigenvalue fluctuations
developed in [46]. The results are presented in table I.
We see that our method systematically overestimates the

Analytical Fit

P (λ > −η) 0.447 0.429 ± 0.004

P (min) 0.549 0.530 ± 0.004

P (λ > η) 0.665 0.645 ± 0.004

P (inf) – 0.403 ± 0.002

Table I: Analytical estimates and fits to numerical data.

probabilities of occurrence of these rare events. This is
reflected on a shift of the fitted parameters on the level of
a few percent. We stress that even though the error bars
cannot account for this deviation, the fact that the nu-
merical and analytical results show the same trend lends
credibility to our results.

In Fig. 1 we plot the probability for finding an infla-
tionary saddle point in the landscape, presenting both
the data points, the analytical estimate [47]
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Figure 1: Probability for inflation as a function of Nf . In
blue (lower line) the analytical estimate of Eq. (14) and in
red (upper line) the best fit of Table I.

As anticipated flat saddle points, like minima, are ex-
tremely unlikely in the Wigner landscape as they cor-
respond to large fluctuations of the smallest eigenvalue.
However since it is statistically costlier to displace the
smallest eigenvalue to 0 than to −η = −0.1, flat sad-
dle points are exponentially more abundant than local
minima as is illustrated in Fig. 2. The ratio given by

P (inf)

P (min)
∼

{

e0.127N2
f fitted

e0.109N2
f analytical

. (15)
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Figure 2: P (inf)/P (min): Inflationary saddle points are ex-
ponentially more likely than local minima in the Wigner land-
scape. In blue (lower line) the analytical estimate and in red
(upper line) the best fit.

We will now relate this behaviour in terms of the cutoff
η on the mass of the fields to the 2nd slow-roll condition
ηV = η/V < 1. For this purpose, we note that our re-
sults above were obtained by choosing the variance of
the Wigner ensemble to be σ = 1/

√

2Nf . This approxi-
mates a random supergravity where the mass eigenvalues
distribute according to the Wigner semi-circle law on a
range [−

√
2,
√

2] in units of MP . The crucial point to
observe is that a typical supergravity landscape has both

its typical potential energy and mass eigenvalue scale
characterised by the gravitino mass m3/2 = eK/2W as
this controls the typical size of the individual contribu-
tions in (1): |⟨V ⟩| ∼ m2

3/2 ∼
√

⟨(∂i∂jV )2⟩. Therefore,

the choice σ = 1/
√

2Nf with its typical mass eigen-
value size of O(1) describes random supergravities with
m3/2 ∼ O(1). Since for such supergravities we then
also have |⟨V ⟩| ∼ m2

3/2 ∼ O(1), we have η ∼ ηV and

a cutoff η < 1 in the integrations of (7) directly im-
plies slow-roll. The study of actual string theory de-
rived example landscapes [16, 48–50] points to scenar-
ios where |⟨V ⟩| ∼ m2

3/2 ! M2
GUT ∼ 10−5. We can

now use the Wigner semi-circle law (4) together with
the joint pdf (5) to rescale σ → σ m2

3/2 which will ap-
proximate the mass eigenvalue distribution of a random
supergravity with |⟨V ⟩| ∼

√

⟨(∂i∂jV )2⟩ ∼ m2
3/2 and

eigenvalue range [−
√

2m3/2,
√

2m3/2]. This forces us to
rescale the integration limits in (7) to ±η m2

3/2. As we

now have
√

⟨(∂i∂jV )2⟩ ∼ m2
3/2, we now get that the 2nd

slow-roll parameter ηV = η m2
3/2/

√

⟨(∂i∂jV )2⟩ ∼ η is
again specified by the original cutoff η < 1. Therefore,
the exponential enhancement which we found above for
m3/2 ∼ O(1) generalises to the known string landscape
regions which can be approximated by random super-
gravities with m3/2 ! MGUT controlling both the typical
size of the scalar potential and the mass matrix eigen-
value size.

Note that this exponential enhancement is estimated
conservatively, as the random matrix description of the
critical points of a random supergravity by definition
selects for either minima or saddle points. Yet, small-
field inflationary regions do exist on almost flat inflection
points of the scalar potential as well, with a tuning cost
comparable to that of flat saddle point. Therefore, our
method is conservative in that it underestimates the to-
tal rate of small-field inflationary regions occurring in a
given random supergravity.

The same method that lead us to the above conclusions
also allows us to discern what is the preferred inflation-
ary dynamics for a given Nf . Dyson’s interpretation of
Eq. (5) in terms of a gas of charged particles gives us
a hint of what behaviour to expect. For any particular
value of Nf there are Nf possible types of inflationary
dynamics: from single field to Nf field inflation. Single
field inflation corresponds to having only one eigenvalue
in the range [−η, η] and the remaining Nf − 1 in [η,∞[.
For large values of Nf this is highly unlikely since eigen-
value repulsion in the interval [η,∞[ would tend to push
one or more eigenvalues into the inflationary region. On
the other hand Nf field inflation is also very rare, since
it corresponds to squeezing all eigenvalues in the narrow
range [−η, η], leading to a configuration where the re-
pulsive force would tend to push some eigenvalues out
of this interval. Somewhere between these two limiting
cases one can find the most likely behaviour. In Fig. 3
we plot the ratio P (q − inf)/P (inf) as a function of Nf

� �flat saddle � 1

[Pedro & AW ’13]



small field inflation in the landscape ...

➥ however !!  --- valley statistics alone is insufficient:  
 
 
 
     - We need a graceful exit into a dS minimum

[Pedro & AW ’14]
[work in progress]
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small field inflation in the landscape ... [Pedro & AW ’14]

➥ need to compute:  P(distant minimum | flat crit. point) :  	

the probability to get a positive Hessian far away from a flat saddle 
point ...

[work in progress]

➥ large-field models: minimum built-in !

➥ but for small-field models: close-by vacua usually AdS  
    ➜ ∆N = ±1 changes of flux cause O(1) changes in vacuum energy  
     
    ... viable dS minima are distant
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exit
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small field inflation in the landscape ...

➥ use Dyson Brownian Motion:  eigenvalue relaxation ...

Hab � Hab +
�s

�
(Aab �Hab)

random, symmetric, 
zero-mean perturbationcorrelation length in 

field space

➥ e.g. start with a 50 x 50 Wishart matrix: all eigenvalues positive
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eigenvalues relax in 1 
corr. length toward 
Wigner distro

fluctuating toward a 
minimum extremely 
suppressed

[Marsh, McAllister, Pajer & Wrase ’13]
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small field inflation in the landscape ... [Pedro & AW ’14]

➥ use Dyson Brownian Motion:  
 
    ... described in continuum limit by Fokker-Planck equation  
 
    ➜ time-dependent probability distribution for Hessian

[work in progress]
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small field inflation in the landscape ... [Pedro & AW ’14]

➥ so we get:  
 
    

[work in progress]
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➥  can undo  
     saddle point count!
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where do we go from here ...

➥  small-field models ➥  large-field models

accidental small-field 
saddle points (e.g. 
complex structure 
moduli)

less-accidental small-
field saddle points!
(e.g. Kahler moduli)

axion 
monodromy

unwinding inflation!
... others/unknown ??

covered here ... 

exit also often built-
in ... P = ??

 P = ??maybe!
Plarge / Psmall = non-exp.


