α^{\prime} adventures

with Jim Liu (in progress + [arXiv:1304.3137])
with A. Coimbra, H. Triendl and D. Waldram ([arXiv:1407.7542] + in progress [CMW]) with Ilarion Melnikov and Savdeep Sethi ([arXiv:1403.4298])

Higher-derivative terms

- Probe the stringy regime (α^{\prime} and genus expansion)
- Needed for consistency
- Important for applications
\triangleright The plan:
- more α^{\prime} (... from dualities)
- heterotic generalised geometry
- supersymmetric heterotic backgrounds
\triangleright Main equation (for this talk) - Heterotic Bianchi Identity :

$$
d H_{3}=\frac{\alpha^{\prime}}{4}\left(\operatorname{tr} R^{2}\left(\Omega_{+}\right)-\operatorname{tr} F^{2}\right)+\mathcal{O}\left(\alpha^{\prime}\right)
$$

where

$$
R\left(\Omega_{ \pm}\right)=R\left(\Omega^{\mathrm{LC}} \pm \frac{1}{2} \mathcal{H}\right)=R(\Omega) \pm \frac{1}{2} d \mathcal{H}+\frac{1}{4} \mathcal{H} \wedge \mathcal{H}, \quad \mathcal{H}^{a b}=H_{\mu}{ }^{a b} d x^{\mu}
$$

- Choice of connection in heterotic BI
\triangleright tied to a choice of field redefinitions in the higher order curvature corrections to supergravity
\triangleright manifest $(0,1)$ world-sheet supersymmetry: covariant Hermitian space-time metric $G \quad \leftrightarrow \quad \Omega_{+}=\Omega^{\mathrm{LC}}+\frac{1}{2} \mathcal{H}$
$\triangleright(0,2)$ world-sheet SUSY likes Chern connection, but ... that requires G to pick up non-trivial space-time Lorentz and gauge transformations (and α^{\prime} shifts in susy transformations)
\triangleright (Narain) T-duality
- Lessons of α^{\prime} expansion:
\triangleright it is not physically correct to treat the heterotic space-time equations of motion, truncated to include just the leading order α^{\prime} corrections, as a closed system
\triangleright simultaneously consider the α^{\prime} expansion for both the solution and the equations of motion
I. Dualities and higher derivative couplings

T-duality - coord-independent $O(n, n)$ transformation (perturbative symmetry) in a background with n isometries v^{i} leading to topology change. For type II theories:

Correspondence space $Y=X \times_{M} \tilde{X}$:
\diamond a circle bundle over X with first Chern class $\pi^{*}\left(c_{1}(\tilde{X})\right)$
\diamond a circle bundle over \tilde{X} with first Chern class $\tilde{\pi}^{*}\left(c_{1}(\tilde{X})\right)\left(\mathcal{L}_{\mathrm{v}} H=0 \Rightarrow \mathrm{~d}\left(\iota_{\mathrm{v}} H\right)=0\right)$
T-duality:

$$
\pi_{*} H=c_{1}(\tilde{X}) \quad \tilde{\pi}_{*} \tilde{H}=c_{1}(X) \quad \in H^{2}(M, \mathbb{Z})
$$

- \quad Start with $\mathrm{d} H=0$ and

$$
\mathcal{L}_{v} g_{10}=0=\mathcal{L}_{v} H:
$$

$H=\pi^{*} h_{3}+\pi^{*} \tilde{T} \wedge e$

$$
\mathrm{d} H=0 \quad \Leftrightarrow \quad \begin{cases}\bullet & \mathrm{~d} h_{3}=\tilde{T} \wedge T=\frac{1}{4}\left[\left(T_{+}\right)^{2}-\left(T_{-}\right)^{2}\right] \\ \bullet & \mathrm{d} \tilde{T}=0\end{cases}
$$

- $T_{ \pm}=T \pm \tilde{T}$
- Locally $H=\mathrm{d} B=\mathrm{d}\left(b_{2}+b_{1} \wedge e\right) \quad \Rightarrow \quad \tilde{T}=\mathrm{d} b_{1} \quad$ and $\quad h_{3}=\mathrm{d} b_{2}-b_{1} \wedge T$
- h_{3} - invariant under T-duality (b_{2} is not!)
- Note $b_{2} \rightarrow b_{2}+\mathrm{d} \lambda_{1}+\lambda_{0} T, b_{1} \rightarrow b_{1}+\mathrm{d} \lambda_{0}$ and h_{3} is gauge invariant
- Now turn to $\mathrm{d} H=\frac{\alpha^{\prime}}{4}\left[\operatorname{tr} R^{2}\left(\Omega_{+}\right)-\operatorname{tr} F^{2}\right]$ denote $X_{4}\left(\Omega_{+}, A\right) \equiv \operatorname{tr} R^{2}\left(\Omega_{+}\right)-\operatorname{tr} F^{2}=\pi^{*} \tilde{X}_{4}+\pi^{*} \tilde{X}_{3} \wedge e$

$$
\mathrm{d} X_{4}=0 \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\bullet \\
\bullet \\
\bullet \\
\mathrm{d} \tilde{X}_{3}=0 \\
\tilde{X}_{4}-\tilde{X}_{3} \wedge T=0
\end{array}\right.
$$

$$
\text { If } \mathcal{L}_{v} X_{3}^{(0)}=0 \quad \Rightarrow \quad \tilde{X}_{3} \text { is exact: } \tilde{X}_{3}=\mathrm{d} \tilde{X}_{2}
$$

$$
\begin{aligned}
\mathrm{d} H=\frac{\alpha^{\prime}}{4} X_{4}\left(\Omega_{+}, A\right)
\end{aligned} \Leftrightarrow\left\{\begin{array}{l}
\bullet \mathrm{d} \tilde{H}_{2}=\frac{\alpha^{\prime}}{4} \tilde{X}_{3} \Rightarrow \tilde{T}=\tilde{H}_{2}-\frac{\alpha^{\prime}}{4} \tilde{X}_{2} \\
\bullet \\
\mathrm{~d} h_{3}=\frac{\alpha^{\prime}}{4}\left[\tilde{X}_{4}-\tilde{X}_{2} \wedge T\right]-T \wedge \tilde{T}
\end{array}\right\} \begin{aligned}
-8 \pi^{2}\left(\tilde{X}_{4}-\tilde{X}_{2} \wedge T\right)= & R^{\alpha \beta}\left(\omega_{+}\right) \wedge R^{\alpha \beta}\left(\omega_{+}\right)-\frac{1}{2} R^{\alpha \beta}\left(\omega_{+}\right) \wedge \hat{T}_{+}{ }^{\alpha}{ }_{\gamma} \hat{T}_{+}{ }^{\beta}{ }_{\delta} e^{\gamma} \wedge e^{\delta} \\
& +\frac{1}{2}\left(\nabla_{\gamma} \hat{T}_{+}{ }^{\alpha}{ }_{\delta}+\frac{1}{2} h_{\gamma}{ }^{\alpha \rho} \hat{T}_{+}{ }^{\rho}{ }_{\delta}\right)\left(\nabla_{\epsilon} \hat{T}_{+}{ }^{\alpha} \iota+\frac{1}{2} h_{\epsilon}{ }^{\alpha \sigma} \hat{T}_{+}{ }_{\iota}\right) e^{\gamma} \wedge e^{\delta} \wedge e^{\epsilon} \wedge e^{\iota} \\
& +\mathcal{O}\left(\alpha^{\prime}\right)-F \wedge F
\end{aligned}
$$

- missing $R F^{2}$ and $(\nabla F)^{2}$ terms
problems?
- \hat{T}_{+}("graviphoton") terms - OK with SUSY, but ...O(n) vs. O(n, $\mathrm{n}+16$)
- $\left(\alpha^{\prime}\right)^{2}$ terms? $\hat{T}_{+}=T+\tilde{H}_{2}=T_{+}+\frac{\alpha^{\prime}}{4} \tilde{X}_{2}$

Computing on \mathbb{T}^{n} vs \mathbb{R}^{n} (generic point in moduli space)

- Apperance of couplings that vanish in decompactification limit
- $T_{+}^{i} \leftarrow V_{I}^{i} \mathcal{F}^{I}$ where $i=1, \cdots, n$ and $I=1, \cdots, 2 n+16$
- V_{I}^{i} is $O(n, n+16) / O(n) \times O(n+16)$ (part of) coset element
$\diamond V=\left\{V_{I}^{i} ; V_{I}^{\alpha}\right\}$ with $\alpha=1, \cdots n+16$
$\diamond V_{I}^{i}=\mathbb{I}_{n}+\tilde{V}_{I}^{i}(\phi)$
$\diamond T_{+}^{i}$ couplings start from 3-pt, the generic \mathcal{F}^{I} - form 4-pt
- no $\left(\alpha^{\prime}\right)^{2}$ terms
- Het/M-th duality: three-level $B \mathcal{F}^{2} \mapsto(C G G)_{M} ; B R \mathcal{F}^{2}$ and $B(\mathcal{D F})^{2} \mapsto$???

Reduction of heterotic GS couplings

- (on $K 3$ these give rise to GS couplings in $6 \mathrm{~d}(1,0)$ theory $\sim \alpha^{\prime}$)
- on \mathbb{T}^{n} do not give rise to terms $\sim \alpha^{\prime}$ but \ldots
- do not vanish! $\Rightarrow \quad \imath_{\mathrm{v}_{1}} \ldots \iota_{\mathrm{v}_{n}}\left(B \wedge X^{\mathrm{GS}}\right) \neq 0$

Six-dimensional Heterotic/IIA duality

- $H^{\mathrm{het}}=e^{2 \phi} * H^{\mathrm{IIA}}, \quad g_{\mu \nu}^{\mathrm{het}}=e^{2 \phi} g_{\mu \nu}^{\mathrm{IIA}}, \quad \phi=-\varphi^{\mathrm{IIA}}$
- Het. BI : $d H_{3}=\frac{\alpha^{\prime}}{4}\left(\operatorname{tr} R^{2}-\operatorname{tr} F^{2}\right) \quad \Leftrightarrow \quad$ Type II EOM $\left(\Leftarrow B \wedge\left(F^{I} \wedge F^{J} d_{I J}-\operatorname{tr} R^{2}\right)\right)$
$\diamond B \wedge F \wedge F$ descends from 11d $C_{3} \wedge G_{4} \wedge G_{4} \quad\left(d_{i J}=\int_{K 3} \omega_{I} \wedge \omega_{J}\right)$
$\diamond B \wedge \operatorname{tr} R^{2}$ descends from 11d $C_{3} \wedge X_{8}\left(\Omega^{\mathrm{L} C}\right)$
- Ω_{+}and the duality?

Heterotic effective action

$$
e^{-1} \mathcal{L}=e^{-2 \phi}\left[R+4 \partial \phi^{2}-\frac{1}{12} H_{\mu \nu \rho}^{2}-\frac{1}{4} \alpha^{\prime} \operatorname{tr} F_{\mu \nu}^{2}+\frac{1}{8} \alpha^{\prime} R_{\mu \nu \lambda \sigma}\left(\Omega_{+}\right) R^{\mu \nu \lambda \sigma}\left(\Omega_{+}\right)\right],
$$

Dirac operator in the susy transformations has $\Omega_{-}=\Omega-\frac{1}{2} \mathcal{H}$ (similar to the sign flip in the local expressions for index theorems for Dirac operation with $\Omega \neq \Omega^{\mathrm{LC}}$)

$$
R\left(\Omega_{+}\right)=R\left(\Omega+\frac{1}{2} \mathcal{H}\right)=R(\Omega)+\frac{1}{2} d \mathcal{H}+\frac{1}{4} \mathcal{H} \wedge \mathcal{H}, \quad \mathcal{H}^{a b}=H_{\mu}{ }^{a b} d x^{\mu} .
$$

H has a non-trivial Bianchi identity

$$
d H=\frac{1}{4} \alpha^{\prime} \operatorname{tr} R\left(\Omega_{+}\right) \wedge R\left(\Omega_{+}\right)-\frac{1}{4} \alpha^{\prime} \operatorname{tr} F \wedge F .
$$

The equations of motion (up to $\left(\alpha^{\prime}\right)^{2}$ terms) :

$$
\begin{aligned}
R-4 \partial \phi^{2}+4 \square \phi-\frac{1}{12} H_{\mu \nu \rho}^{2}-\frac{1}{4} \alpha^{\prime} \operatorname{tr} F_{\mu \nu}^{2}+\frac{1}{8} \alpha^{\prime} R_{\mu \nu \lambda \sigma}\left(\Omega_{+}\right) R^{\mu \nu \lambda \sigma}\left(\Omega_{+}\right) & =0, \\
R_{\mu \nu}+2 \nabla_{\mu} \nabla_{\nu} \phi-\frac{1}{4} H_{\mu \rho \sigma} H_{\nu}{ }^{\rho \sigma}-\frac{1}{4} \alpha^{\prime} \operatorname{tr} F_{\mu \rho} F_{\nu}{ }^{\rho}+\frac{1}{4} \alpha^{\prime} R_{\mu \lambda \rho \sigma}\left(\Omega_{+}\right) R_{\nu}{ }^{\lambda \rho \sigma}\left(\Omega_{+}\right) & =0, \\
d\left(e^{-2 \phi} * H\right) & =0, \\
e^{2 \phi} d\left(e^{-2 \phi} * F\right)+A \wedge * F-* F \wedge A+F \wedge * H & =0
\end{aligned}
$$

Two $(1,1)$ supergravities in 6D:

- $(1,1)_{\text {het }}$: \quad Non-trivial BI and single Dirac operator
- $(1,1)_{\text {IIA }}: \quad \mathrm{d} H=0$ and two Dirac operators $\partial+\Omega_{ \pm} \rightarrow D_{ \pm}$

Dualisation of $\mathrm{d} H=\frac{1}{4} \alpha^{\prime} \operatorname{tr} R\left(\Omega_{+}\right) \wedge R\left(\Omega_{+}\right)+\ldots=2 \pi^{2} \alpha^{\prime}\left[\overline{X_{4}}+\underline{X_{4}}\right]$:

- $\overline{X_{4}}$ (het) $\longrightarrow \overline{X_{4}}$ (IIA) (up to terms vanishing on-shell)
- $\underline{X_{4}}($ het $) \longrightarrow$ CP-even terms in IIA

On IIA side: $\quad \mathrm{d}\left(e^{2 \phi} * H+\alpha^{\prime} * T\right)=2 \pi^{2} \alpha^{\prime} \overline{X_{4}}$

- $\alpha^{\prime} \mathrm{d} * T$ comes from the variation of (one-loop) $\epsilon_{4} \epsilon_{4} R^{2}$ and $t_{4} t_{4} R^{2}$ terms in 6D IIA theory (lin. duality: $\left.H=0 \quad \Rightarrow \quad T \rightarrow 0 \quad \& \quad \overline{X_{4}} \rightarrow X_{4}\right)$
- CS term in $(1,1)_{\text {IIA }}: \quad \sim \alpha^{\prime} B_{2} \wedge \overline{X_{4}}$

$$
2 e^{-1} \delta \mathcal{L}_{\text {CP-even }}=\left\{\begin{array}{l}
R_{\mu \nu \rho \sigma}\left(\Omega_{+}\right)^{2}+E_{4}\left(\Omega_{+}\right)+4 R_{\mu \nu \rho \sigma}\left(\Omega_{+}\right) H^{\mu \rho a} H^{\nu \sigma a}-4 R_{\mu \nu}\left(\Omega_{+}\right) H^{2 \mu \nu} \\
+\frac{2}{3} R\left(\Omega_{+}\right) H^{2}+\frac{1}{9}\left(H^{2}\right)^{2}-\frac{2}{3} H^{4}
\end{array}\right.
$$

- Matched by 4-pt function calculation! NO $\mathcal{O}\left(\alpha^{\prime}\right)$ corrections to 6d duality dictionary

Summary of type II ($\left.\alpha^{\prime}\right)^{3}$ couplings (10D):

	No B	With B
$\begin{gathered} \text { e-0 } \\ + \\ 0-e \end{gathered}$	$\begin{aligned} & \frac{1}{8}\left(t_{8} \epsilon_{10}+\epsilon_{10} t_{8}\right) B R^{4} \\ & =B \wedge X_{8}\left(\Omega^{\mathrm{LC}}\right) \\ & =\frac{1}{192(2 \pi)^{4}} B \wedge\left(\operatorname{tr} R^{4}-\frac{1}{4}\left(\operatorname{tr} R^{2}\right)^{2}\right) \end{aligned}$	$\begin{aligned} & \frac{1}{8}\left(t_{8} \epsilon_{10}+\epsilon_{10} t_{8}\right) B R^{4}\left(\Omega_{+}\right) \\ & =\frac{1}{8} t_{8} \epsilon_{10} B\left(R^{4}\left(\Omega_{+}\right)+R^{4}\left(\Omega_{-}\right)\right) \\ & =\frac{1}{2} B \wedge\left[X_{8}\left(\Omega_{+}\right)+X_{8}\left(\Omega_{-}\right)\right] \\ & =\frac{1}{192 \cdot(2 \pi)^{4}} B \wedge\left(\operatorname{tr} R^{4}-\frac{1}{4}\left(\operatorname{tr} R^{2}\right)^{2}+\text { exact terms }\right) \end{aligned}$
e-e	$t_{8} t_{8} R^{4}$	$t_{8} t_{8} R^{4}\left(\Omega_{+}\right)=t_{8} t_{8} R^{4}\left(\Omega_{-}\right)$
0-0	$\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4}$	$\begin{aligned} & \frac{1}{8} \epsilon_{10} \epsilon_{10}\left(R\left(\Omega_{+}\right)^{4}+\frac{8}{3} H^{2} R\left(\Omega_{+}\right)^{3}+\cdots\right) \\ & =\frac{1}{8} \epsilon_{10} \epsilon_{10}\left(R\left(\Omega_{-}\right)^{4}+\frac{8}{3} H^{2} R\left(\Omega_{-}\right)^{3}+\cdots\right) \end{aligned}$

\diamond Connection with torsion: $\Omega_{ \pm \mu}{ }^{\alpha \beta}=\Omega_{\mu}{ }^{\alpha \beta} \pm \frac{1}{2} H_{\mu}{ }^{\alpha \beta}\left(\right.$ where $\left.\mathcal{H}^{\alpha \beta}=H_{\mu}{ }^{\alpha \beta} d x^{\mu}\right)$
\diamond Curvature: $R\left(\Omega_{ \pm}\right)=R \pm \frac{1}{2} d \mathcal{H}+\frac{1}{4} \mathcal{H} \wedge \mathcal{H}$
\diamond New kinematic structures in o-o sector

Couplings can be lifted to eleven dimensions

- All expressions even in $H: H^{2} \rightarrow G^{2}$ with an extra pair of summed indices
- lifting ambiguities: more terms in eleven dimensions than in ten

Reduction of heterotic GS couplings on \mathbb{T}^{3} vs. reduction of $C_{3} \wedge X_{8}$ on $K 3$

$$
B \wedge X^{\mathrm{GS}}(R, F) \Rightarrow\left\{\begin{array}{l}
\bullet d_{I J K L M} a^{I} \wedge \mathrm{~d} a^{J} \wedge F^{K} \wedge F^{L} \wedge F^{L} \Rightarrow 0 \\
\diamond d_{I J K} F^{I} \wedge R_{2}^{a b} \wedge\left(F_{1}\right)_{a}^{J} \wedge \nabla\left(F_{1}\right)_{b}^{K} \\
\diamond \tilde{d}_{I J K} F^{I} \wedge R_{2}^{a b} \wedge R_{2}^{c d} \wedge F_{a c}^{J} \wedge \nabla F_{b d}^{K}+\cdots
\end{array}\right\} \quad \Leftarrow \quad C \wedge \overline{X_{8}(\Omega, G)}
$$

- 0 for four-derivative terms at generic lattice $\Gamma_{3,19}$ points. Non-zero at enhancement points \Leftarrow singular K3 surfaces
- $C_{3} \wedge X_{8}$ cannot give rise to four derivative terms beyond $C \wedge \operatorname{tr} R^{2}$
$\triangleright R \mathcal{F}^{2}$ and $(\mathcal{D F})^{2}$ terms in heterotic BI are matched by $\overline{X_{8}(\Omega, G)}$
$\diamond d_{I J K}, \tilde{d}_{I J K}$ are computable on heterotic side
\diamond on M-theory involve integrals dependent on $K 3$ metric (e.g. $\int \omega_{2}^{I} \wedge \omega_{a b}^{J} R_{2}^{b c} \omega_{c a}^{K}$)
$\diamond C_{3} \wedge X_{8}(\Omega, G)$ gets fixed!

II. Generalised geometry for heterotic strings

Generalised complex structure (GCG)

- GCG $\mathcal{J}: T \oplus T^{*} \longrightarrow T \oplus T^{*} \quad\left(\mathcal{J}^{2}=-1 ; \quad \mathcal{J}^{\dagger} \mathcal{I} \mathcal{J}=\mathcal{I}\right)$
\diamond Structure group: $\Rightarrow \mathrm{U}(3,3)$
- GCS integrable: $\pi_{+}\left[\pi_{-}(v), \pi_{-}(w)\right]_{\text {Lie }}=0 \mapsto \Pi_{+}\left[\Pi_{-}(X), \Pi_{-}(Y)\right]_{C}=0$ with Courant bracket:

$$
[v+\xi, w+\eta]=[v, w]_{\text {Lie }}+\left\{\mathcal{L}_{v} \eta-\mathcal{L}_{w} \xi-\frac{1}{2} \mathrm{~d}\left(\imath_{v} \eta-\imath_{w} \xi\right)\right\}
$$

(Courant closes on $L_{\mathcal{J}}$ - the i-eigenbundles of \mathcal{J}.)

- Closed B-transform $\left(v_{1}, \rho_{1}\right) \mapsto e^{B}\left(v_{1}, \rho_{1}\right)=\left(v_{1}, \rho_{1}+v_{v_{1}} B\right)$ is an auto-morphism of Courant: $\left[e^{B}\left(v_{1}, \rho_{1}\right), e^{B}\left(v_{2}, \rho_{2}\right)\right] \mapsto e^{B}\left[\left(v_{1}, \rho_{1}\right),\left(v_{2}, \rho_{2}\right)\right]$
- Twisting: $\quad \mathrm{d} \mapsto \mathrm{d}-H \wedge, \quad[.,]_{C} \mapsto[., .]_{C}+\underline{\imath_{v} v_{w}} H$
- Replacing Lie bracket by Courant allows to extend Riemannian objects to generalised objects (e.g. generalised connection)

Generalised tangent bundle :

$$
0 \longrightarrow T^{*} M \longrightarrow E \xrightarrow{\pi} T M \longrightarrow 0,
$$

Sections of E :

$$
X=\binom{v}{\xi} \quad \longmapsto \quad X^{\prime}=e^{-B} X=\left(\begin{array}{cc}
\mathbb{I} & 0 \\
-B & \mathbb{I}
\end{array}\right)\binom{v}{\xi}=\binom{v}{\xi-\imath_{v} B} .
$$

- Note $(v, \xi) \rightarrow\left(v, \xi-\imath_{v} \mathrm{~d} \Lambda\right)$
- Courant on $E \quad \rightarrow \quad$ twisted Courant on $T \oplus T^{*}$

On $L_{\phi} \otimes E\left(\phi, g\right.$ and B define $\left.S^{ \pm}(E) \cong L_{\phi} \otimes \Lambda^{\text {even/odd }} T^{*} M\right)$:

- Courant does not define an unambiguous gen. Riemman but ...unique $\hat{R}_{a b}=R_{a b}-\frac{1}{4} H_{a c d} H_{b}^{c d}+2 \nabla_{a} \nabla_{b} \phi+\frac{1}{2} e^{2 \phi} \nabla^{c}\left(e^{-2 \phi} H_{c a b}\right)$ and $\hat{R}=R+4 \nabla^{2} \phi-4(\partial \phi)^{2}-\frac{1}{12} H^{2} \quad \leftrightarrow \quad$ LBT: $S^{\mathrm{NS}} \epsilon=4\left(D^{a} D_{a}-D^{2}\right) \epsilon$
- The dynamics and supersymmetry transformations of type II supergravity theories are captured by a (torsion-free) generalised connection
- α^{\prime} corrections to geometry
- HS $\left.(\mathrm{d} H \neq 0): \Rightarrow B \rightarrow B+\mathrm{d} \Lambda+\frac{\alpha^{\prime}}{4} \mathrm{~d}^{-1} \delta \mathrm{~d}^{-1} X_{4}\left(\Omega_{+}, A\right)\right\}$

Two simple ideas:

- Find an extended gen. tangent space with a closed 3-form!
\diamond Generalise $U(1)$ fibration $S^{1} \hookrightarrow X \xrightarrow{\pi} M$ case:
$\triangleright \mathrm{d} H=0$ on $X \quad \Rightarrow \quad \mathrm{~d} h_{3}=\tilde{T} \wedge T=\frac{1}{4}\left[\left(T_{+}\right)^{2}-\left(T_{-}\right)^{2}\right]$ on M
$\triangleright h_{3}$ is gauge invariant!
Generalised heterotic tangent space is built as a double fibration:

$$
\begin{aligned}
& 0 \longrightarrow \mathfrak{g} \longrightarrow C \longrightarrow T M \longrightarrow 0, \\
& 0 \longrightarrow T^{*} M \longrightarrow E \longrightarrow C \longrightarrow 0
\end{aligned}
$$

$\diamond \mathfrak{g}$ is the adjoint bundle given a principle G-bundle
\diamond Locally $E \simeq T M \oplus T^{*} M \oplus \mathfrak{g}$
\diamond Obstruction: $p_{1}(\mathfrak{g})=0$

- (gen.) Lichnerowicz theorem: $\left(D^{A} D_{A}-D^{2}\right) \epsilon=\left[\frac{1}{4} S+\gamma^{a b c d} I_{a b c d}\right] \epsilon \quad$ (S tensorial!)
\diamond Heterotic effective action: $\quad S=R+4 \nabla^{2} \phi-4(\partial \phi)^{2}-\frac{1}{12} H^{2}-\frac{\alpha^{\prime}}{4} \operatorname{tr} \hat{\mathcal{F}}^{2}$
$\diamond I_{a b c d}=\frac{1}{6} \nabla_{[a} H_{b c d]}-\frac{\alpha^{\prime}}{8} \operatorname{tr} \hat{\mathcal{F}}_{[a b} \hat{\mathcal{F}}_{c d]}=0$
$\left.\diamond \begin{array}{rl}\delta \psi_{a} & =D_{a} \epsilon=\nabla_{a} \epsilon+\frac{1}{8} H_{a b c} \gamma^{b c} \epsilon \\ \delta \zeta_{\alpha} & =D_{\alpha} \epsilon=-\frac{1}{8} \sqrt{2 \alpha^{\prime} \mathcal{F}_{a b \alpha}} \gamma^{a b} \epsilon\end{array}\right\} \quad \leftarrow \quad$ covariant derivative $(A=\{a, \alpha\})$
$\diamond \quad \delta \lambda=D \epsilon=\left(\gamma^{a} \nabla_{a}+\frac{1}{24} H_{a b c} \gamma^{a b c}-\gamma^{a} \partial_{a} \phi\right) \epsilon \quad \leftarrow \quad$ Dirac operator
Gravitational terms (obstruction to E) ?
\diamond take $G \rightarrow G_{\text {gauge }} \times O(n) \ldots$. This splits $E=\tilde{C}_{+} \oplus \tilde{C}_{\mathfrak{g}} \oplus \tilde{C}_{-}$
\diamond reduce the structure group of E to $O(n) \times G \times O(n) \subset O(d+\operatorname{dim}(\mathfrak{g})) \times O(n)$
\diamond Identify $O(n) \in G$ with $O(n)$ in \tilde{C}_{+}
\triangleright Works only for $\hat{\mathcal{A}}=\Omega_{-}=\omega^{\mathrm{LC}}-\frac{1}{2} \mathcal{H}!!!\quad$ (cf susy for Ω_{-})
\triangleright For type II $G \rightarrow O(n) \times O(n)$ does NOT work
\triangleright Flip of the sign in $\mathcal{O}\left(\alpha^{\prime}\right)$ effective action wrt $D_{a}: \Omega_{+} \longrightarrow \Omega_{-}$!!!
$\diamond \quad R_{m n p q}\left(\Omega^{-}\right)-R_{p q m n}\left(\Omega^{+}\right)=-12 d H_{m n p q}$
- All orders in α^{\prime} :
\triangleright "gaugino" $\psi_{a b} \in \Gamma\left(\Lambda^{2} C_{+} \otimes S\left(C_{-}\right)\right)$for "gauge group" $O(n)_{+}$
$\diamond \quad \delta \psi_{a b}=\frac{1}{8} \sqrt{\alpha^{\prime}} R\left(\Omega^{-}\right)_{\bar{a} \bar{b} a b} \gamma^{\bar{a} \bar{b}} \epsilon \ldots=D_{a b} \epsilon$ (?)
$\triangleright \psi_{a b}$ - composite "gravitino curvature"
$\diamond \delta \psi_{a b}=D_{a b} \epsilon+\frac{1}{8} \sqrt{\alpha^{\prime}}\left(3 \alpha^{\prime}\left[\operatorname{tr} F \wedge F-\operatorname{tr} R\left(\Omega^{-}\right) \wedge R\left(\Omega^{-}\right)\right]_{a b \bar{b} \bar{b}}\right) \gamma^{\bar{a} \bar{b}} \epsilon \rightarrow \hat{D}_{a b} \epsilon$
$\triangleright D_{a b} \rightarrow \hat{D}_{a b} \quad$ in LBT $\Rightarrow \mathcal{O}\left(\alpha^{\prime 2}\right)$ modifications of susy
\triangleright (iterative) hierarchy of higher α^{\prime} corrections (consistent with GCG)
- Lichnerowicz-Bismut theorem \Leftrightarrow Supersymmetry (Susy Ward identity)
\triangleright susy modifications due to gaugings:
$\diamond \quad \delta_{\epsilon}^{\prime} \Psi=A \cdot \epsilon, \quad \delta_{\epsilon}^{\prime} \chi=B \cdot \epsilon$
\triangleright susy Ward identity (for potential V):
$\diamond \quad B^{\dagger} B-A^{\dagger} A=V \mathbb{I}$
$\diamond 10 \mathrm{~d}$ theory views as a reduction to zero dimensions on a 10d manifold M :
$\left\{\right.$ global sym. group $\mathcal{G} \Leftrightarrow$ group of diffs and local $O(d, d) \times \mathbb{R}^{+}$gauge transf.
R-symmetry $\mathcal{H} \Leftrightarrow$ subgroup of local $O(d) \times O(d)$ gauge transf.
\triangleright GCG \Leftrightarrow infinite-dimensional version of the embedding tensor formalism

III. Torsional heterotic backgrounds

Conditions for supersymmetry (up to $\sim \mathcal{O}\left(\alpha^{\prime}\right)$) on $M_{4} \times X_{6}$:

- Internal space:

$$
\omega^{3}=\frac{3 i}{4} \Omega \wedge \bar{\Omega}, \quad \omega \wedge \Omega=0
$$

space with trivial canonical bundle ($S U(3)$ structure)

- dilaton:

$$
\mathrm{d}\left(e^{-\phi} \omega^{2}\right)=0, \quad d\left(e^{-\phi} \Omega\right)=0
$$

internal manifold is complex

- H-flux:

$$
H=i(\bar{\partial}-\partial) \omega=0
$$

- Gauge fields:

$$
\mathcal{F} \wedge \Omega=0=\mathcal{F} \wedge \bar{\Omega}, \quad \omega^{2} \wedge \mathcal{F}=0
$$

Hermitean YM
\triangleright Susy + Bianchi identity \Rightarrow solution

Solutions

\diamond Leading $\left(\sim \mathcal{O}\left(\alpha^{\prime}\right)\right)$ corrections to the geometry in CY compactifications

- Theorem: for $4 \mathrm{~d} \mathcal{N}=2$ supersymmetry need internal CFT with with $c=9$ and $(0,4)$ susy + a pair of $U(1)$'s ($c=3$ with $(0,2)$ susy)
$\triangleright \mathbb{T}^{2}$ fibration over hyper-Kähler base
\triangleright Generic internal space for het. strings in $\mathcal{N}=2$ heterotic/type II duality (not $\mathbb{T}^{2} \times K 3$)
\triangleright the target-space necessarily has string-scale cycles; flux solutions do not have a 10d large radius limit, they do have an eight-dimensional large radius limit
\triangleright Duality Het $/ M \times \mathbb{T}^{2}$ vs. F theory $/ M \times K 3_{e}$:
\diamond eight-dimensional theory (min. susy) with $O(2,18, \mathbb{Z})$ symmetry
\diamond Non-trivial $G_{4} \Rightarrow$ nontrivial $\mathbb{T}^{2} \hookrightarrow X \xrightarrow{\pi} M$
$\diamond G_{4}=0$ for $X=\mathbb{T}^{4}$, so X only be $K 3$
\diamond F-theory: $G_{4}=\gamma \wedge \gamma^{\prime}\left(\gamma\right.$ and $\gamma^{\prime}-(1,1)$ primitive forms on M and $\left.K 3_{e}\right)$
$\triangleright G_{4}=\gamma \wedge \gamma^{\prime}+\Omega_{0} \times \bar{\Omega}_{0}^{\prime}+$ c.c. only $\mathcal{N}=1$ susy is preserved
\diamond eight-dimensional graviphotons are affected!
\diamond deformations of C.S. in $\mathcal{N}=2$ case either preserve all susy or break all susy
$\mathbb{T}^{2} \hookrightarrow X \xrightarrow{\pi} K 3$
- on the K3 base

$$
\omega_{0}^{2}=\frac{1}{2} \Omega_{0} \bar{\Omega}_{0}, \quad \omega_{0} \Omega_{0}=\Omega_{0}^{2}=0
$$

$\left(\omega_{0}, \Omega_{0}, \mathcal{A}\right)$ - Calabi-Yau structure

- On X :

$$
\omega_{X}=e^{2 \phi} \omega_{0}+\frac{i \mathrm{a}}{2} \Theta \bar{\Theta}, \quad \Omega_{X}=e^{2 \phi} \sqrt{\mathrm{a}} \Omega_{0} \Theta, \quad \mathcal{F}=\pi^{*} \bar{\partial} \mathcal{A}
$$

$\diamond \boldsymbol{F}=\boldsymbol{F}^{1}+i \boldsymbol{F}^{2}\left(d \boldsymbol{\Theta}^{1,2}=\pi^{*}\left(\boldsymbol{F}^{1,2}\right), \boldsymbol{F}^{1,2} \in H^{2}(M, 2 \pi \mathbb{Z})\right)$ must satisfy:

$$
\omega_{0} \wedge \boldsymbol{F}=0 \quad \Omega_{0} \wedge \boldsymbol{F}=0
$$

\diamond Curvature of \mathbb{T}^{2} bundle:

$$
\boldsymbol{F}=F+F^{\prime}, \quad F \in H^{1,1}(M), \quad F^{\prime} \in H^{2,0}(M)
$$

\triangleright supersymmetry:

$$
\left.\begin{array}{l}
F^{\prime}=0 \quad\left(\text { i.e. } \bar{\Omega}_{0} \wedge \boldsymbol{F}=0\right) \\
F^{\prime} \neq 0
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\mathcal{N}=2 \text { (only left symmetries broken) } \\
\mathcal{N}=1 \text { (broken right (susy!) symmetries) }
\end{array}\right.
$$

- H-flux:

$$
\begin{aligned}
H & =i(\bar{\partial}-\partial) \omega_{X}=i \omega_{0}(\bar{\partial}-\partial) e^{2 \phi}+\frac{\mathbf{a}}{2}\left(\bar{F}^{\prime}-\bar{F}\right) \Theta+\frac{\mathbf{a}}{2}\left(F^{\prime}-F\right) \boldsymbol{\Theta} \\
& =H_{\mathrm{hor}}+H_{I} \bar{\Theta}^{I}=H_{\mathrm{hor}}+\mathbf{a}\left(\boldsymbol{F}_{I}^{2,0}+\boldsymbol{F}_{I}^{0,2}-\boldsymbol{F}_{I}^{1,1}\right) \boldsymbol{\Theta}^{I}
\end{aligned}
$$

$\triangleright \mathcal{N}=2$ solution: $H=H_{\text {hor }}-\frac{\mathrm{a}}{2}\left(\Pi_{0}^{1,1} \boldsymbol{F}\right) \bar{\Theta}-\frac{\mathrm{a}}{2}\left(\Pi_{0}^{1,1} \overline{\boldsymbol{F}}\right) \Theta$

- Quantisation of a \Leftrightarrow disconnection between $\mathcal{N}=2$ and $\mathcal{N}=1$ flux vacua:
\triangleright C.S. deformation of $\boldsymbol{F}=F \in H^{1,1}(M)$ can generate $F^{\prime} \in H^{2,0}(M)$
\triangleright can relate $\mathcal{N}=2$ and $\mathcal{N}=1$ backgrounds via deformation?!?!
\triangleright cf $\quad\left\{\begin{array}{l}H_{\text {def }}=\left(H_{\text {hor }}\right)_{\text {def }}-\frac{\mathbf{a}}{2}\left(\Pi_{s}^{1,1} \boldsymbol{F}+\Pi_{s}^{2,0} \boldsymbol{F}\right) \bar{\Theta}-\frac{\mathbf{a}}{2}\left(\Pi_{s}^{1,1} \overline{\boldsymbol{F}}+\Pi_{s}^{0,2} \overline{\boldsymbol{F}}\right) \Theta \\ H_{\mathcal{N}=1}=H_{\text {hor }}-\frac{\mathrm{a}}{2}\left(\Pi_{s}^{1,1} \boldsymbol{F}-\Pi_{s}^{2,0} \boldsymbol{F}\right) \bar{\Theta}-\frac{\mathrm{a}}{2}\left(\Pi_{s}^{1,1} \overline{\boldsymbol{F}}-\Pi_{s}^{0,2} \overline{\boldsymbol{F}}\right) \Theta\end{array}\right.$
\triangleright variation of complex structure of $\mathcal{N}=2$ solution either breaks or preserves ALL supersymmetry
- The area of \mathbb{T}^{2} a is quantised in units of α^{\prime}
\triangleright resolves 2 problems... need to turn to Bianchi Identity

Heterotic Bl and connections with torsion

Fu and Yau showed existence of solutions to susy equations with H flux and BI :

$$
d H_{3}=2 i \partial \bar{\partial} \omega_{X}=\frac{\alpha^{\prime}}{4}\left(\operatorname{tr} R^{2}\left(\Sigma_{\text {Chern }}\right)-\operatorname{tr} F^{2}\right)
$$

\triangleright Chern (canonical Hermitean) connection on complex manifolds:

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\Sigma_{\nu}^{\mu} & 0 \\
0 & \bar{\Sigma}_{\bar{\nu}}^{\bar{\mu}}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{d} z^{\lambda} g_{\nu \bar{\lambda}, \lambda} g^{\bar{\lambda} \mu} & 0 \\
0 & \mathrm{~d} \overline{\bar{z}}^{\bar{\lambda}} g_{\lambda \bar{\nu}, \bar{\lambda}} g^{\bar{\mu} \lambda}
\end{array}\right)
$$

$\oplus!$ When connection is Chern, both sides of the BI are $(2,2)$ forms
\triangleright Curvature two-form for the connection with torsion $\left(\Omega_{+}=\boldsymbol{\Sigma}+\boldsymbol{T}\right)$:

$$
R_{+}=\left(\begin{array}{cc}
\bar{\partial} \Sigma-\bar{T} T & \bar{\partial} T-\bar{T} T \\
\partial \bar{T}-\Sigma \bar{T} & \partial \bar{\Sigma}-T \bar{T}
\end{array}\right)+\left(\begin{array}{cc}
0 & \partial T-T \Sigma \\
\bar{\partial} \bar{T}-\bar{\Sigma} \bar{T} & 0
\end{array}\right)=R_{(1,1)}+R_{(2,0)}+R_{(0,2)}
$$

$\ominus!R_{(2,0)} \neq 0$ for $F^{\prime} \neq 0\left(F^{\prime}=\boldsymbol{F}_{(2,2)}\right) \quad$ problems for $\mathcal{N}=1$ solution
$\ominus!$! To satisfy EOM $\mathcal{O}\left(\alpha^{\prime}\right)$ two-form R needs to satisfy HYM. $R(\boldsymbol{\Sigma})$ does not!
\mathbb{T}^{2} area a is quantised in units of α^{\prime}

- Bianchi Identity

$$
2 i \partial \bar{\partial} e^{2 \phi} \omega_{0}+\mathbf{a} \partial \bar{F}^{\prime} \Theta+\mathbf{a} \bar{\partial} F^{\prime} \bar{\Theta}=\frac{\alpha^{\prime}}{4}\left[\operatorname{tr} R_{+}^{2}-\operatorname{tr} \mathcal{F}^{2}+\frac{4 \mathbf{a}}{\alpha^{\prime}}\left(F \bar{F}-F^{\prime} \bar{F}^{\prime}\right)\right]+\mathcal{O}\left(\alpha^{\prime 2}\right)
$$

\triangleright For $\mathrm{a} \sim \alpha^{\prime} \quad$ all solved by

$$
\partial \bar{F}^{\prime}=0 \quad \Rightarrow \quad \begin{cases}\bullet & F^{\prime}=\lambda \Omega_{0} \text { for } \lambda=\text { const } \\ \bullet & \partial F=0\end{cases}
$$

$\triangleright \phi=\alpha^{\prime} f / 4 \quad \Rightarrow \quad i \partial \bar{\partial} f=\frac{1}{4}\left[\operatorname{tr} R_{+}^{2}-\operatorname{tr} \mathcal{F}^{2}+\frac{4 \mathbf{a}}{\alpha^{\prime}}\left(F \bar{F}-F^{\prime} \bar{F}^{\prime}\right)\right]+\mathcal{O}\left(\alpha^{\prime}\right)$
$\triangleright \ln \mathcal{N}=2$ case, Ω_{+}is horizontal. No α^{\prime} expansion of dilaton is needed. Direct map to Fu-Yau solution (higher α^{\prime} vanish for $\mathcal{N}=2$?!)

- HYM for R_{+}
$\triangleright R_{(2,0)} \sim \mathcal{O}\left(\alpha^{\prime}\right)$ provided $\partial F=0$
\triangleright Can show

$$
\omega_{X}^{2} \wedge R_{+}^{1,1}=\frac{i \mathbf{a}}{2} \Theta \wedge \bar{\Theta} \wedge \omega_{0} \wedge R_{+}^{1,1}=\mathcal{O}\left(\alpha^{\prime 2}\right)
$$

Generalise to dual pairs incl. non-geometric backgrounds. 3d theories without 4d lift...

Some open questions:

- Tests of 10 and 11-d couplings:
\triangleright fixing the ambiguities
\triangleright higher orders in α^{\prime}
\triangleright susy transformations
\triangleright LBT \Rightarrow general formalism for susy theories (with α^{\prime}) corrections
- Lower dimensions and less supersymmetry:
\triangleright recent progress in construction of four-dimensional $\mathcal{N}=2$ higher-derivative terms
\triangleright Implications for consistency (swampland)
\triangleright subleading terms in AdS/CFT
- Construction of generic $\mathcal{N}=1$ heterotic flux backgrounds
\star Can generalised geometry capture the systematics of the string (perturbation) theory?
* More news from old dualities?

