α' adventures

with Jim Liu (in progress + [arXiv:1304.3137])

with A. Coimbra, H. Triendl and D. Waldram ([arXiv:1407.7542] + in progress [CMW])

with Ilarion Melnikov and Savdeep Sethi ([arXiv:1403.4298])

if not ... computing higher derivative terms is the closest you get

Higher-derivative terms

- Probe the stringy regime (α' and genus expansion)
- Needed for consistency
- Important for applications
- \triangleright The plan:
 - more α' (... from dualities)
 - heterotic generalised geometry
 - supersymmetric heterotic backgrounds
- ▷ Main equation (for this talk) Heterotic Bianchi Identity :

$$dH_3 = \frac{\alpha'}{4} (\operatorname{tr} R^2(\Omega_+) - \operatorname{tr} F^2) + \mathcal{O}(\alpha')$$

where

$$R(\Omega_{\pm}) = R(\Omega^{\mathrm{LC}} \pm \frac{1}{2}\mathcal{H}) = R(\Omega) \pm \frac{1}{2}d\mathcal{H} + \frac{1}{4}\mathcal{H} \wedge \mathcal{H}, \qquad \mathcal{H}^{ab} = H_{\mu}{}^{ab}dx^{\mu}$$

- Choice of connection in heterotic BI
 - b tied to a choice of field redefinitions in the higher order curvature corrections to supergravity
 - ▷ manifest (0,1) world-sheet supersymmetry: covariant Hermitian space-time metric $G \quad \leftrightarrow \quad \Omega_+ = \Omega^{\text{LC}} + \frac{1}{2}\mathcal{H}$
 - ▷ (0,2) world-sheet SUSY likes Chern connection, but ... that requires G to pick up non-trivial space-time Lorentz and gauge transformations (and α' shifts in susy transformations)
 - ▷ (Narain) T-duality

- Lessons of α' expansion:
 - ▷ it is not physically correct to treat the heterotic space-time equations of motion, truncated to include just the leading order α' corrections, as a closed system
 - $\triangleright\,$ simultaneously consider the α' expansion for both the solution and the equations of motion

I. Dualities and higher derivative couplings

T-duality - coord-independent O(n, n) transformation (perturbative symmetry) in a background with *n* isometries v^i leading to **topology change**. For type II theories:

Correspondence space $Y = X \times_M \tilde{X}$:

♦ a circle bundle over X with first Chern class $\pi^*(c_1(\tilde{X}))$

♦ a circle bundle over \tilde{X} with first Chern class $\tilde{\pi}^*(c_1(\tilde{X}))(\mathcal{L}_{\mathsf{v}}H = 0 \Rightarrow \mathrm{d}(\imath_{\mathsf{v}}H) = 0)$ T-duality:

$$\pi_* H = c_1(\tilde{X}) \quad \tilde{\pi}_* \tilde{H} = c_1(X) \qquad \in H^2(M, \mathbb{Z})$$

• Start with
$$dH = 0$$
 and $S^1 \hookrightarrow X_{10}$
 $\mathcal{L}_v g_{10} = 0 = \mathcal{L}_v H$: $de = \pi^* T$ $(\mathcal{L}_v e = 0)$
 X_9

$$H = \pi^* h_3 + \pi^* \tilde{T} \wedge e$$

$$dH = 0 \qquad \Leftrightarrow \qquad \begin{cases} \bullet \quad dh_3 = \tilde{T} \wedge T = \frac{1}{4} \left[(T_+)^2 - (T_-)^2 \right] \\ \bullet \quad d\tilde{T} = 0 \end{cases}$$

•
$$T_{\pm} = T \pm \tilde{T}$$

- Locally $H = dB = d(b_2 + b_1 \wedge e) \Rightarrow \tilde{T} = db_1$ and $h_3 = db_2 b_1 \wedge T$
- h_3 invariant under T-duality (b_2 is not!)
- Note $b_2 \rightarrow b_2 + d\lambda_1 + \lambda_0 T$, $b_1 \rightarrow b_1 + d\lambda_0$ and h_3 is gauge invariant

• Now turn to
$$dH = \frac{\alpha'}{4} [\operatorname{tr} R^2(\Omega_+) - \operatorname{tr} F^2]$$

denote $X_4(\Omega_+, A) \equiv \operatorname{tr} R^2(\Omega_+) - \operatorname{tr} F^2 = \pi^* \tilde{X}_4 + \pi^* \tilde{X}_3 \wedge e$
 $dX_4 = 0 \qquad \Leftrightarrow \qquad \begin{cases} \bullet \quad d\tilde{X}_3 = 0\\ \bullet \quad d\tilde{X}_4 - \tilde{X}_3 \wedge T = 0 \end{cases}$

If
$$\mathcal{L}_v X_3^{(0)} = 0 \qquad \Rightarrow \qquad \tilde{X}_3 \text{ is exact: } \tilde{X}_3 = \mathrm{d}\tilde{X}_2$$

$$dH = \frac{\alpha'}{4} X_4(\Omega_+, A) \qquad \Leftrightarrow \qquad \begin{cases} \bullet \quad d\tilde{H}_2 = \frac{\alpha'}{4} \tilde{X}_3 \quad \Rightarrow \quad \tilde{T} = \tilde{H}_2 - \frac{\alpha'}{4} \tilde{X}_2 \\ \bullet \quad dh_3 = \frac{\alpha'}{4} \left[\tilde{X}_4 - \tilde{X}_2 \wedge T \right] - T \wedge \tilde{T} \end{cases}$$

$$-8\pi^{2}\left(\tilde{X}_{4}-\tilde{X}_{2}\wedge T\right) = R^{\alpha\beta}(\omega_{+})\wedge R^{\alpha\beta}(\omega_{+}) - \frac{1}{2}R^{\alpha\beta}(\omega_{+})\wedge \hat{T}_{+}{}^{\alpha}{}_{\gamma}\hat{T}_{+}{}^{\beta}{}_{\delta}e^{\gamma}\wedge e^{\delta}$$
$$+\frac{1}{2}(\nabla_{\gamma}\hat{T}_{+}{}^{\alpha}{}_{\delta}+\frac{1}{2}h_{\gamma}{}^{\alpha\rho}\hat{T}_{+}{}^{\rho}{}_{\delta})(\nabla_{\epsilon}\hat{T}_{+}{}^{\alpha}{}_{\iota}+\frac{1}{2}h_{\epsilon}{}^{\alpha\sigma}\hat{T}_{+}{}^{\sigma}{}_{\iota})e^{\gamma}\wedge e^{\delta}\wedge e^{\epsilon}\wedge e^{\iota}$$
$$+\mathcal{O}(\alpha')-F\wedge F$$

• missing RF^2 and $(\nabla F)^2$ terms

• \hat{T}_+ ("graviphoton") terms - OK with SUSY, but ...O(n) vs. O(n,n+16)

• $(\alpha')^2$ terms? $\hat{T}_+ = T + \tilde{H}_2 = T_+ + \frac{\alpha'}{4}\tilde{X}_2$

problems?

Computing on \mathbb{T}^n vs \mathbb{R}^n (generic point in moduli space)

• Apperance of couplings that vanish in decompactification limit

•
$$T^i_+ \leftarrow V^i_I \mathcal{F}^I$$
 where $i = 1, \cdots, n$ and $I = 1, \cdots, 2n + 16$

- V_I^i is $O(n, n + 16)/O(n) \times O(n + 16)$ (part of) coset element $\diamond V = \{V_I^i; V_I^\alpha\}$ with $\alpha = 1, \dots n + 16$ $\diamond V_I^i = \mathbb{I}_n + \tilde{V}_I^i(\phi)$
 - $\diamond T^i_+$ couplings start from 3-pt, the generic \mathcal{F}^I form 4-pt
- no $(\alpha')^2$ terms
- Het/M-th duality: three-level $B\mathcal{F}^2 \mapsto (CGG)_M$; $BR\mathcal{F}^2$ and $B(\mathcal{DF})^2 \mapsto ???$

Reduction of heterotic GS couplings

- (on K3 these give rise to GS couplings in 6d (1,0) theory $\sim \alpha'$)
- on \mathbb{T}^n do not give rise to terms $\sim \alpha'$ but ...
- do **not** vanish! $\Rightarrow \imath_{\mathbf{v}_1} \dots \imath_{\mathbf{v}_n} (B \wedge X^{\mathrm{GS}}) \neq 0$

Six-dimensional Heterotic/IIA duality

- $H^{\text{het}} = e^{2\phi} * H^{\text{IIA}}, \qquad g^{\text{het}}_{\mu\nu} = e^{2\phi} g^{\text{IIA}}_{\mu\nu}, \qquad \phi = -\varphi^{\text{IIA}}$
- Het. BI : $dH_3 = \frac{\alpha'}{4} (\operatorname{tr} R^2 \operatorname{tr} F^2) \quad \Leftrightarrow \quad \text{Type II EOM } (\Leftarrow B \land (F^I \land F^J d_{IJ} \operatorname{tr} R^2))$
 - ♦ $B \land F \land F$ descends from 11d $C_3 \land G_4 \land G_4$ ($d_{iJ} = \int_{K3} \omega_I \land \omega_J$)
 - $\diamond B \wedge \operatorname{tr} R^2$ descends from 11d $C_3 \wedge X_8(\Omega^{\mathsf{L}C})$
- Ω_+ and the duality?

Heterotic effective action

$$e^{-1}\mathcal{L} = e^{-2\phi} [R + 4\partial\phi^2 - \frac{1}{12}H^2_{\mu\nu\rho} - \frac{1}{4}\alpha' \text{tr} F^2_{\mu\nu} + \frac{1}{8}\alpha' R_{\mu\nu\lambda\sigma}(\Omega_+) R^{\mu\nu\lambda\sigma}(\Omega_+)],$$

Dirac operator in the susy transformations has $\Omega_{-} = \Omega - \frac{1}{2}\mathcal{H}$ (similar to the sign flip in the local expressions for index theorems for Dirac operation with $\Omega \neq \Omega^{LC}$)

$$R(\Omega_{+}) = R(\Omega + \frac{1}{2}\mathcal{H}) = R(\Omega) + \frac{1}{2}d\mathcal{H} + \frac{1}{4}\mathcal{H} \wedge \mathcal{H}, \qquad \mathcal{H}^{ab} = H_{\mu}{}^{ab}dx^{\mu}.$$

H has a non-trivial Bianchi identity

$$dH = \frac{1}{4}\alpha' \operatorname{tr} R(\Omega_+) \wedge R(\Omega_+) - \frac{1}{4}\alpha' \operatorname{tr} F \wedge F.$$

The equations of motion (up to $(\alpha')^2$ terms) :

$$R - 4\partial\phi^2 + 4\Box\phi - \frac{1}{12}H^2_{\mu\nu\rho} - \frac{1}{4}\alpha' \operatorname{tr} F^2_{\mu\nu} + \frac{1}{8}\alpha' R_{\mu\nu\lambda\sigma}(\Omega_+)R^{\mu\nu\lambda\sigma}(\Omega_+) = 0,$$

$$R_{\mu\nu} + 2\nabla_{\mu}\nabla_{\nu}\phi - \frac{1}{4}H_{\mu\rho\sigma}H_{\nu}^{\ \rho\sigma} - \frac{1}{4}\alpha'\operatorname{tr}F_{\mu\rho}F_{\nu}^{\ \rho} + \frac{1}{4}\alpha'R_{\mu\lambda\rho\sigma}(\Omega_{+})R_{\nu}^{\ \lambda\rho\sigma}(\Omega_{+}) = 0,$$

$$d(e^{-2\phi}*H) = 0,$$

$$e^{2\phi}d(e^{-2\phi}*F) + A \wedge *F - *F \wedge A + F \wedge *H = 0$$

Two (1,1) supergravities in 6D:

• $(1,1)_{het}$: Non-trivial BI and single Dirac operator

• $(1,1)_{\text{IIA}}$: dH = 0 and two Dirac operators $\partial + \Omega_{\pm} \to D_{\pm}$

Dualisation of $dH = \frac{1}{4}\alpha' \operatorname{tr} R(\Omega_+) \wedge R(\Omega_+) + \ldots = 2\pi^2 \alpha' [\overline{X_4} + \underline{X_4}]$:

- $\overline{X_4}(het) \longrightarrow \overline{X_4}(IIA)$ (up to terms vanishing on-shell)
- $\underline{X_4}(het) \longrightarrow CP$ -even terms in IIA

On IIA side: $d(e^{2\phi} * H + \alpha' * T) = 2\pi^2 \alpha' \overline{X_4}$

• $\alpha' d * T$ comes from the variation of (one-loop) $\epsilon_4 \epsilon_4 R^2$ and $t_4 t_4 R^2$ terms in 6D IIA theory (lin. duality: $H = 0 \implies T \to 0 \& \overline{X_4} \to X_4$)

• CS term in
$$(1,1)_{\text{IIA}}$$
: $\sim \alpha' B_2 \wedge \overline{X_4}$
 $2e^{-1}\delta \mathcal{L}_{\text{CP-even}} = \begin{cases} R_{\mu\nu\rho\sigma}(\Omega_+)^2 + E_4(\Omega_+) + 4R_{\mu\nu\rho\sigma}(\Omega_+)H^{\mu\rho a}H^{\nu\sigma a} - 4R_{\mu\nu}(\Omega_+)H^{2\,\mu\nu} \\ + \frac{2}{3}R(\Omega_+)H^2 + \frac{1}{9}(H^2)^2 - \frac{2}{3}H^4 \end{cases}$

• Matched by 4-pt function calculation! NO $\mathcal{O}(\alpha')$ corrections to 6d duality dictionary

Summary of type II $(\alpha')^3$ couplings (10D):

	No B	With B
e-o	$\frac{1}{8}(t_8\epsilon_{10}+\epsilon_{10}t_8)BR^4$	$\frac{1}{8}(t_8\epsilon_{10}+\epsilon_{10}t_8)BR^4(\Omega_+)$
+	$= B \wedge X_8(\Omega^{\mathrm{LC}})$	$= \frac{1}{8} t_8 \epsilon_{10} B(R^4(\Omega_+) + R^4(\Omega))$
о-е	$= \frac{1}{192(2\pi)^4} B \wedge \left(\operatorname{tr} R^4 - \frac{1}{4} (\operatorname{tr} R^2)^2 \right)$	$= \frac{1}{2}B \wedge [X_8(\Omega_+) + X_8(\Omega)]$
		$= \frac{1}{192 \cdot (2\pi)^4} B \wedge \left(\operatorname{tr} R^4 - \frac{1}{4} (\operatorname{tr} R^2)^2 + \operatorname{exact terms} \right)$
e-e	$t_{8}t_{8}R^{4}$	$t_8 t_8 R^4(\Omega_+) = t_8 t_8 R^4(\Omega)$
0-0	$\frac{1}{8}\epsilon_{10}\epsilon_{10}R^4$	$\frac{1}{8}\epsilon_{10}\epsilon_{10} \left(R(\Omega_{+})^{4} + \frac{8}{3}H^{2}R(\Omega_{+})^{3} + \cdots \right)$
		$= \frac{1}{8} \epsilon_{10} \epsilon_{10} \left(R(\Omega_{-})^4 + \frac{8}{3} H^2 R(\Omega_{-})^3 + \cdots \right)$

- \diamond Connection with torsion: $\Omega_{\pm \mu}{}^{\alpha\beta} = \Omega_{\mu}{}^{\alpha\beta} \pm \frac{1}{2}H_{\mu}{}^{\alpha\beta}$ (where $\mathcal{H}^{\alpha\beta} = H_{\mu}{}^{\alpha\beta}dx^{\mu}$)
- ♦ Curvature: $R(\Omega_{\pm}) = R \pm \frac{1}{2}d\mathcal{H} + \frac{1}{4}\mathcal{H} \wedge \mathcal{H}$
- ◊ New kinematic structures in o-o sector

Couplings can be lifted to eleven dimensions

- All expressions even in $H: H^2 \rightarrow G^2$ with an extra pair of summed indices
- lifting ambiguities: more terms in eleven dimensions than in ten

Reduction of heterotic GS couplings on \mathbb{T}^3 vs. reduction of $C_3 \wedge X_8$ on K3

$$B \wedge X^{\mathrm{GS}}(R,F) \quad \Rightarrow \quad \left\{ \begin{array}{l} \bullet \ d_{IJKLM}a^{I} \wedge \mathrm{d}a^{J} \wedge F^{K} \wedge F^{L} \wedge F^{L} \Rightarrow \mathbf{0} \\ \diamond \ d_{IJK}F^{I} \wedge R_{2}^{ab} \wedge (F_{1})_{a}^{J} \wedge \nabla(F_{1})_{b}^{K} \\ \diamond \ \tilde{d}_{IJK}F^{I} \wedge R_{2}^{ab} \wedge R_{2}^{cd} \wedge F_{ac}^{J} \wedge \nabla F_{bd}^{K} + \cdots \end{array} \right\} \quad \Leftarrow \quad C \wedge \overline{X_{8}(\Omega,G)}$$

- 0 for four-derivative terms at generic lattice $\Gamma_{3,19}$ points. Non-zero at enhancement points \leftarrow singular K3 surfaces
- C₃ ∧ X₈ cannot give rise to four derivative terms beyond C ∧ tr R²
 *RF*² and (*DF*)² terms in heterotic BI are matched by X₈(Ω, G)
- $\diamond d_{IJK}$, \tilde{d}_{IJK} are computable on heterotic side
- \diamond on M-theory involve integrals dependent on K3 metric (e.g. $\int \omega_2^I \wedge \omega_{ab}^J R_2^{bc} \omega_{ca}^K$)
- ♦ $C_3 \land X_8(\Omega, G)$ gets fixed!

II. Generalised geometry for heterotic strings

Generalised complex structure (GCG)

- GCG $\mathcal{J}: T \oplus T^* \longrightarrow T \oplus T^*$ $(\mathcal{J}^2 = -1; \mathcal{J}^{\dagger} \mathcal{I} \mathcal{J} = \mathcal{I})$
 - \diamond Structure group: ⇒ U(3,3)
- GCS integrable: $\pi_+[\pi_-(v), \pi_-(w)]_{\text{Lie}} = 0 \mapsto \Pi_+[\Pi_-(X), \Pi_-(Y)]_C = 0$ with Courant bracket:

$$[v+\xi, w+\eta] = [v,w]_{\text{Lie}} + \left\{ \mathcal{L}_v \eta - \mathcal{L}_w \xi - \frac{1}{2} \operatorname{d}(\imath_v \eta - \imath_w \xi) \right\}$$

(Courant closes on $L_{\mathcal{J}}$ – the i-eigenbundles of \mathcal{J} .)

- Closed B-transform $(v_1, \rho_1) \mapsto e^B(v_1, \rho_1) = (v_1, \rho_1 + \imath_{v_1}B)$ is an auto-morphism of Courant : $[e^B(v_1, \rho_1), e^B(v_2, \rho_2)] \mapsto e^B[(v_1, \rho_1), (v_2, \rho_2)]$
- Twisting: $d \mapsto d H \land$, $[.,.]_C \mapsto [.,.]_C + \underline{\imath_v \imath_w H}$
- Replacing Lie bracket by Courant allows to extend Riemannian objects to generalised objects (e.g. generalised connection)

Generalised tangent bundle :

$$0 \longrightarrow T^*M \longrightarrow E \xrightarrow{\pi} TM \longrightarrow 0,$$

Sections of E:

$$X = \begin{pmatrix} v \\ \xi \end{pmatrix} \qquad \longmapsto \qquad X' = e^{-B}X = \begin{pmatrix} \mathbb{I} & 0 \\ -B & \mathbb{I} \end{pmatrix} \begin{pmatrix} v \\ \xi \end{pmatrix} = \begin{pmatrix} v \\ \xi - \imath_v B \end{pmatrix}.$$

• Note $(v,\xi) \to (v,\xi - \imath_v d\Lambda)$

• Courant on $E \rightarrow twisted$ Courant on $T \oplus T^*$

On $L_{\phi} \otimes E$ (ϕ , g and B define $S^{\pm}(E) \cong L_{\phi} \otimes \Lambda^{\text{even/odd}}T^*M$):

- Courant does not define an unambiguous gen. Riemman but ...unique $\hat{R}_{ab} = R_{ab} - \frac{1}{4}H_{acd}H_{b}^{\ cd} + 2\nabla_{a}\nabla_{b}\phi + \frac{1}{2}e^{2\phi}\nabla^{c}(e^{-2\phi}H_{cab}) \text{ and}$ $\hat{R} = R + 4\nabla^{2}\phi - 4(\partial\phi)^{2} - \frac{1}{12}H^{2} \qquad \leftrightarrow \qquad \text{LBT:} \quad S^{\text{NS}}\epsilon = 4\left(D^{a}D_{a} - D^{2}\right)\epsilon$
- The dynamics and supersymmetry transformations of type II supergravity theories are captured by a (torsion-free) generalised connection

- α' corrections to geometry HS (d $H \neq 0$): $\Rightarrow B \rightarrow B + d\Lambda + \frac{\alpha'}{4} d^{-1} \delta d^{-1} X_4(\Omega_+, A)$ Extensions of GTB

Two simple ideas:

- Find an extended gen. tangent space with a closed 3-form! (Global data)
- \diamond Generalise U(1) fibration $S^1 \hookrightarrow X \xrightarrow{\pi} M$ case:

$$\triangleright dH = 0 \text{ on } X \quad \Rightarrow \quad dh_3 = \tilde{T} \wedge T = \frac{1}{4} \left[(T_+)^2 - (T_-)^2 \right] \text{ on } M$$

 \triangleright h_3 is gauge invariant!

Generalised heterotic tangent space is built as a double fibration:

$$0 \longrightarrow \mathfrak{g} \longrightarrow C \longrightarrow TM \longrightarrow 0 ,$$

 $0 \longrightarrow T^*M \longrightarrow E \longrightarrow C \longrightarrow 0$

- $\diamond \mathfrak{g}$ is the adjoint bundle given a principle G-bundle
- \diamond Locally $E \simeq TM \oplus T^*M \oplus \mathfrak{g}$
- ♦ Obstruction: $p_1(\mathfrak{g}) = 0$

gen. Lichnerowicz theorem (LBT) \Rightarrow effective actions (*Local data*)

- (gen.) Lichnerowicz theorem: $(D^A D_A D^2) \epsilon = \left[\frac{1}{4}S + \gamma^{abcd}I_{abcd}\right]\epsilon$ (S tensorial!)
- ♦ Heterotic effective action: $S = R + 4\nabla^2 \phi 4(\partial \phi)^2 \frac{1}{12}H^2 \frac{\alpha'}{4} \operatorname{tr} \hat{\mathcal{F}}^2$

Gravitational terms (obstruction to E)?

$$\diamond$$
 take $G \to G_{gauge} \times O(n)$ This splits $E = \tilde{C}_+ \oplus \tilde{C}_{\mathfrak{g}} \oplus \tilde{C}_-$

- \diamond reduce the structure group of E to $O(n) \times G \times O(n) \subset O(d + \dim(\mathfrak{g})) \times O(n)$
- ♦ Identify $O(n) \in G$ with O(n) in \tilde{C}_+
 - ▷ Works only for $\hat{\mathcal{A}} = \Omega_{-} = \omega^{\text{LC}} \frac{1}{2} \mathcal{H}!!!$ (cf susy for Ω_{-})
 - ▷ For type II $G \to O(n) \times O(n)$ does **NOT** work
 - ▷ Flip of the sign in $\mathcal{O}(\alpha')$ effective action wrt $D_a : \Omega_+ \longrightarrow \Omega_- !!!$

$$\diamond \quad R_{mnpq}(\Omega^{-}) - R_{pqmn}(\Omega^{+}) = -12dH_{mnpq}$$

• All orders in α' :

 \triangleright "gaugino" $\psi_{ab} \in \Gamma(\Lambda^2 C_+ \otimes S(C_-))$ for "gauge group" $O(n)_+$

$$\diamond \qquad \delta\psi_{ab} = \frac{1}{8}\sqrt{\alpha'}R(\Omega^{-})_{\bar{a}\bar{b}ab}\gamma^{\bar{a}\bar{b}}\epsilon.... = D_{ab}\epsilon \ (?)$$

 $\triangleright \psi_{ab}$ - *composite* "gravitino curvature"

$$\diamond \ \delta\psi_{ab} = D_{ab}\epsilon + \frac{1}{8}\sqrt{\alpha'} \left(3\alpha' [\operatorname{tr} F \wedge F - \operatorname{tr} R(\Omega^{-}) \wedge R(\Omega^{-})]_{ab\bar{a}\bar{b}} \right) \gamma^{\bar{a}\bar{b}}\epsilon \ \rightarrow \ \hat{D}_{ab}\epsilon$$

- $\triangleright D_{ab} \rightarrow \hat{D}_{ab}$ in LBT $\Rightarrow \mathcal{O}(\alpha'^2)$ modifications of susy
- \triangleright (iterative) hierarchy of higher α' corrections (consistent with GCG)
- Lichnerowicz-Bismut theorem \Leftrightarrow Supersymmetry (Susy Ward identity)
 - ▷ susy modifications due to gaugings:
 - $\diamond \qquad \delta'_{\epsilon}\Psi = A\cdot\epsilon, \qquad \qquad \delta'_{\epsilon}\chi = B\cdot\epsilon$
 - \triangleright susy Ward identity (for potential V):

$$\diamond \qquad B^{\dagger}B - A^{\dagger}A = V \,\mathbb{I}$$

- ♦ 10d theory views as a reduction to zero dimensions on a 10d manifold M: $\begin{cases}
 global sym. group G ⇔ group of diffs and local O(d, d) × ℝ⁺ gauge transf.$ R-symmetry H ⇔ subgroup of local O(d) × O(d) gauge transf.
- ightarrow GCG \Leftrightarrow infinite-dimensional version of the embedding tensor formalism

III. Torsional heterotic backgrounds

Conditions for supersymmetry (up to $\sim \mathcal{O}(lpha')$) on $M_4 imes X_6$:

• Internal space:

$$\omega^3 = \frac{3i}{4} \Omega \wedge \bar{\Omega} \,, \qquad \omega \wedge \Omega = 0$$

space with trivial canonical bundle (SU(3) structure)

• dilaton:

$$d(e^{-\phi}\omega^2) = 0, \qquad d(e^{-\phi}\Omega) = 0$$

internal manifold is complex

• *H*-flux:

$$H = i(\bar{\partial} - \partial)\omega = 0$$

• Gauge fields:

$$\mathcal{F} \wedge \Omega = 0 = \mathcal{F} \wedge \overline{\Omega}, \qquad \omega^2 \wedge \mathcal{F} = 0$$

Hermitean YM

 \triangleright Susy + Bianchi identity \Rightarrow solution

Solutions

- ♦ Leading (~ $\mathcal{O}(\alpha')$) corrections to the geometry in CY compactifications
- Theorem: for 4d $\mathcal{N} = 2$ supersymmetry need internal CFT with with c = 9 and (0, 4) susy + a pair of U(1)'s (c = 3 with (0, 2) susy)
 - $\triangleright \mathbb{T}^2$ fibration over hyper-Kähler base
 - ▷ Generic internal space for het. strings in $\mathcal{N} = 2$ heterotic/type II duality (not $\mathbb{T}^2 \times K3$)
 - ▷ the target-space necessarily has string-scale cycles; flux solutions do not have a 10d large radius limit, they do have an *eight-dimensional* large radius limit
 - ▷ Duality Het/ $M \times \mathbb{T}^2$ vs. F theory/ $M \times K3_e$:
 - \diamond eight-dimensional theory (min. susy) with $O(2, 18, \mathbb{Z})$ symmetry
 - $\diamond \text{ Non-trivial } G_4 \quad \Rightarrow \quad \text{nontrivial } \mathbb{T}^2 \hookrightarrow X \xrightarrow{\pi} M$
 - $\diamond G_4 = 0$ for $X = \mathbb{T}^4$, so X only be K3
 - ♦ F-theory: $G_4 = \gamma \land \gamma'$ (γ and $\gamma' (1, 1)$ primitive forms on M and $K3_e$)
 - \triangleright $G_4 = \gamma \wedge \gamma' + \Omega_0 \times \overline{\Omega}'_0 + c.c.$ only $\mathcal{N} = 1$ susy is preserved
 - ◊ eight-dimensional graviphotons are affected!
 - \diamond deformations of C.S. in $\mathcal{N} = 2$ case either preserve all susy or break all susy

$\mathbb{T}^2 \hookrightarrow X \xrightarrow{\pi} K3$

• on the K3 base

$$\omega_0^2 = \frac{1}{2}\Omega_0\bar{\Omega}_0 , \qquad \qquad \omega_0\Omega_0 = \Omega_0^2 = 0$$

 $(\omega_0, \Omega_0, \mathcal{A})$ - Calabi-Yau structure

• On *X*:

$$\begin{split} \omega_X &= e^{2\phi}\omega_0 + \frac{i\mathbf{a}}{2}\Theta\bar{\Theta} , \qquad \Omega_X = e^{2\phi}\sqrt{\mathbf{a}}\Omega_0\Theta , \qquad \mathcal{F} = \pi^*\bar{\partial}\mathcal{A} \\ \diamond \ \mathbf{F} &= \mathbf{F}^1 + i\mathbf{F}^2 \ (d\Theta^{1,2} = \pi^*(\mathbf{F}^{1,2}), \ \mathbf{F}^{1,2} \in H^2(M, 2\pi\mathbb{Z})) \text{ must satisfy:} \\ \omega_0 \wedge \mathbf{F} &= 0 \qquad \Omega_0 \wedge \mathbf{F} = 0 \end{split}$$

 \diamond Curvature of \mathbb{T}^2 bundle:

F = F + F', $F \in H^{1,1}(M)$, $F' \in H^{2,0}(M)$

▷ supersymmetry:

$$\begin{array}{l} F' = 0 \quad (\text{ i.e. } \bar{\Omega}_0 \wedge F = 0) \\ F' \neq 0 \end{array} \end{array} \right\} \qquad \Rightarrow \qquad \begin{cases} \mathcal{N} = 2 \text{ (only left symmetries broken)} \\ \mathcal{N} = 1 \text{ (broken right (susy!) symmetries)} \end{cases}$$

• *H*-flux:

$$H = i(\bar{\partial} - \partial)\omega_X = i\omega_0(\bar{\partial} - \partial)e^{2\phi} + \frac{\mathbf{a}}{2}(\bar{F}' - \bar{F})\Theta + \frac{\mathbf{a}}{2}(F' - F)\Theta$$
$$= H_{\mathsf{hor}} + H_I\bar{\Theta}^I = H_{\mathsf{hor}} + \mathbf{a}(F_I^{2,0} + F_I^{0,2} - F_I^{1,1})\Theta^I$$

 $\triangleright \mathcal{N} = 2 \text{ solution: } H = H_{\mathsf{hor}} - \frac{\mathbf{a}}{2} (\Pi_0^{1,1} \mathbf{F}) \overline{\Theta} - \frac{\mathbf{a}}{2} (\Pi_0^{1,1} \overline{\mathbf{F}}) \Theta$

Quantisation of a ⇔ disconnection between N = 2 and N = 1 flux vacua:
▷ C.S. deformation of F = F ∈ H^{1,1}(M) can generate F' ∈ H^{2,0}(M)
▷ can relate N = 2 and N = 1 backgrounds via deformation?!?!

$$\triangleright \text{ cf} \qquad \begin{cases} H_{\text{def}} = (H_{\text{hor}})_{\text{def}} - \frac{\mathbf{a}}{2} (\Pi_s^{1,1} \mathbf{F} + \Pi_s^{2,0} \mathbf{F}) \overline{\Theta} - \frac{\mathbf{a}}{2} (\Pi_s^{1,1} \overline{\mathbf{F}} + \Pi_s^{0,2} \overline{\mathbf{F}}) \Theta \\ H_{\mathcal{N}=1} = H_{\text{hor}} - \frac{\mathbf{a}}{2} (\Pi_s^{1,1} \mathbf{F} - \Pi_s^{2,0} \mathbf{F}) \overline{\Theta} - \frac{\mathbf{a}}{2} (\Pi_s^{1,1} \overline{\mathbf{F}} - \Pi_s^{0,2} \overline{\mathbf{F}}) \Theta \end{cases}$$

- \triangleright variation of complex structure of $\mathcal{N} = 2$ solution either breaks or preserves **ALL** supersymmetry
- The area of \mathbb{T}^2 a is quantised in units of α'
 - ▷ resolves 2 problems... need to turn to Bianchi Identity

Heterotic BI and connections with torsion

Fu and Yau showed existence of solutions to susy equations with *H* flux and BI:

$$dH_3 = 2i\partial\bar{\partial}\omega_X = \frac{\alpha'}{4}(\operatorname{tr} R^2(\Sigma_{\operatorname{Chern}}) - \operatorname{tr} F^2)$$

▷ Chern (canonical Hermitean) connection on complex manifolds:

$$\boldsymbol{\Sigma} = \begin{pmatrix} \Sigma^{\mu}_{\nu} & 0\\ 0 & \bar{\Sigma}^{\bar{\mu}}_{\bar{\nu}} \end{pmatrix} = \begin{pmatrix} \mathrm{d}z^{\lambda}g_{\nu\bar{\lambda},\lambda}g^{\bar{\lambda}\mu} & 0\\ 0 & \mathrm{d}\bar{z}^{\bar{\lambda}}g_{\lambda\bar{\nu},\bar{\lambda}}g^{\bar{\mu}\lambda} \end{pmatrix}$$

 \oplus ! When connection is Chern, both sides of the BI are (2,2) forms

 \triangleright Curvature two-form for the connection with torsion ($\Omega_+ = \Sigma + T$):

$$R_{+} = \begin{pmatrix} \bar{\partial}\Sigma - \bar{T}T & \bar{\partial}T - \bar{\Sigma}T \\ \bar{\partial}\bar{T} - \Sigma\bar{T} & \bar{\partial}\bar{\Sigma} - T\bar{T} \end{pmatrix} + \begin{pmatrix} 0 & \bar{\partial}T - T\Sigma \\ \bar{\partial}\bar{T} - \bar{\Sigma}\bar{T} & 0 \end{pmatrix} = R_{(1,1)} + R_{(2,0)} + R_{(0,2)}$$

 $⊖! R_{(2,0)} \neq 0 \text{ for } F' \neq 0 (F' = F_{(2,2)}) \text{ problems for } \mathcal{N} = 1 \text{ solution}$ $⊖!! \text{ To satisfy EOM } \mathcal{O}(\alpha') \text{ two-form } R \text{ needs to satisfy HYM. } R(\Sigma) \text{ does not!}$

- \mathbb{T}^2 area \mathbf{a} is quantised in units of α'
 - Bianchi Identity

$$2i\partial\bar{\partial}e^{2\phi}\omega_{0} + \mathbf{a}\partial\bar{F}'\Theta + \mathbf{a}\bar{\partial}F'\bar{\Theta} = \frac{\alpha'}{4}\left[\operatorname{tr}R_{+}^{2} - \operatorname{tr}\mathcal{F}^{2} + \frac{4\mathbf{a}}{\alpha'}(F\bar{F} - F'\bar{F}')\right] + \mathcal{O}(\alpha'^{2})$$

 \triangleright For $\mathbf{a} \sim \alpha'$ all solved by

$$\partial \bar{F}' = 0 \qquad \Rightarrow \qquad \begin{cases} \bullet & F' = \lambda \Omega_0 \text{ for } \lambda = \text{const} \\ \bullet & \partial F = 0 \end{cases}$$

 $\triangleright \phi = \alpha' f / 4 \quad \Rightarrow \quad i \partial \bar{\partial} f = \frac{1}{4} \left[\operatorname{tr} R^2_+ - \operatorname{tr} \mathcal{F}^2 + \frac{4\mathbf{a}}{\alpha'} (F\bar{F} - F'\bar{F}') \right] + \mathcal{O}(\alpha')$

- ▷ In $\mathcal{N} = 2$ case, Ω_+ is *horizontal*. No α' expansion of dilaton is needed. Direct map to Fu-Yau solution (higher α' vanish for $\mathcal{N} = 2$?!)
- HYM for R_+
 - $\triangleright R_{(2,0)} \sim \mathcal{O}(\alpha') \text{ provided } \partial F = 0$
 - $\triangleright \text{ Can show } \qquad \omega_X^2 \wedge R_+^{1,1} = \frac{i\mathbf{a}}{2} \Theta \wedge \bar{\Theta} \wedge \omega_0 \wedge R_+^{1,1} = \mathcal{O}(\alpha'^2)$

Generalise to dual pairs incl. non-geometric backgrounds. 3d theories without 4d lift...

Some open questions:

- Tests of 10 and 11-d couplings:
 - ▷ fixing the ambiguities
 - $\,\vartriangleright\,$ higher orders in α'
 - ▷ susy transformations
 - ▷ LBT \Rightarrow general formalism for susy theories (with α') corrections (?)
- Lower dimensions and less supersymmetry:
 - $\triangleright~$ recent progress in construction of four-dimensional $\mathcal{N}=2$ higher-derivative terms
 - ▷ Implications for consistency (swampland)
 - ▷ subleading terms in AdS/CFT
- Construction of generic $\mathcal{N}=1$ heterotic flux backgrounds
- Can generalised geometry capture the systematics of the string (perturbation) theory?
- ★ More news from old dualities?