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Summary of the talk

Nilpotent Superfields in Superspace
Applications to Rigid and Local Supersymmetry
Partial Supersymmetry Breaking in Rigid N=2 Theories
Emergence of Volkov-Akulov and Born-Infeld Actions
Symplectic Structure and Black-Hole Attractors: 
analogies and differences
New U(1)n Born-Infeld Actions and Theory of Invariant 
Polynomials



Some of the material of this presentation originates from some 
recent work with Antoniadis, Dudas, Sagnotti; Kallosh, Linde

and some work in progress with Porrati, Sagnotti

The latter introduces a generalization of the 
Born-Infeld Action for an arbitrary U(1)n N=2 supergravity

with N=2 self-interacting vector multiplets



NILPOTENCY CONSTRAINTS IN SPONTANEOUSLY BROKEN 
N=1 RIGID SUPERSYMMETRY

(Casalbuoni, De Curtis, Dominici, Ferruglio, Gatto; Komargodski, Seiberg; Rocek; Lindstrom, Rocek)

solution: (G Weyl fermion)X =
GG
FG

+ i
p

2q G + q2 FG

chiral superfield nilpotency:X X2 = 0(D̄ȧX = 0)

Lagrangian: Re X X̄
���

D
+ f X

���
F

Equivalent to Volkov-Akulov goldstino action

More general constraints (Komargodski,Seiberg)

independent fieldsX2 = 0 , XY = 0 yX = G , yY

independent fieldsXWa = 0 yX = G , Fµn , l = f (yX, Fµn)



NILPOTENT CONSTRAINTS IN LOCAL SUPERSYMMETRY
(SUPERHIGGS EFFECT IN SUPERGRAVITY)

Pure supergravity coupled to the Goldstino

W(X) = f X + m

theory of a massive gravitino coupled to gravity 
and cosmological constant: L = | f |2 � 3m2

(Deser, Zumino; Rocek; Antoniadis, Dudas, Sagnotti, S.F.)

Volkov-Akulov-Starobinsky supergravity

(a linear (inflaton) multiplet T, and a non-linear 
Goldstino multiplet S, with S2=0)

V =
M2
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Starobinsky inflaton potential axion field



Recently, nilpotent super fields have been used in more general 
theories of inflation

For a class of models with SUPERPOTENTIAL

the resulting potential is a no-scale type, and has a universal form

(Kallosh, Linde, S.F.; Kallosh, Linde)

(Kallosh, Linde, Roest;
Kallosh, Linde, Rube)W = S f (T)

Veff = eK(T) KSS̄ | f (T)|2 > 0 goldstino yS

with Tq=0 = j + ia , inflaton: j aor

depending which one is lighter during inflation



GENERALITIES ON PARTIAL SUPERSYMMETRY BREAKING
GLOBAL SUPERSYMMETRY

(Witten; Hughes, Polchinski; Cecotti, Girardello, Porrati, Maiani, S.F.; 
Girardello, Porrati, S.F.; Antoniadis, Partouche, Taylor)

Ja
µa(X)fermion variations; susy Noether currentdcaa = 1 . . . N

Current algebra relation (Polchinski)

Relation to the scalar potential:
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a

b

dca dc̄b = V da
b + Ca

b

In N=2 (APT, FGP)

C

a

b

= sxa

b

e
xyz

Q

y ^ Q

z = 2sxa

b

(~E ^ ~
M)

x

; Q

x =

✓
M

x

E

x

◆



In Supergravity (partial SuperHiggs) (CGP, FM, FGP) 
there is an extra term in the potential which allows

supersymmetric anti-de-Sitter vacua

dca dc̄b = V da
b + 3MacM̄bc

Mab = Mba “gravitino mass” term

dya
µ = Dµea +Mabgµēb



N=2 RIGID (SPECIAL) GEOMETRY

Ri ‚̄kl̄ = Cikp C̄‚̄l̄ p̄ gpp̄

∂ı̄V = 0 , Dj∂iV = Cjik gkk̄ ∂k̄ V̄ , ∂‚̄∂iV = 0

M UABC = dABC

Cikp = ∂i∂k∂pU = Uikp

U = X2 +
X3

M
+ . . . +

Xn+2

Mn

V =

✓
XA ,

∂U
∂XA

◆

for M large: U � X2 ⇠ X3

M



N=2 rigid supersymmetric theory with Fayet-Iliopoulos terms
(n vector multiplets, no hypermultiplets) in N=1 notations

Kahler potential: K = i(Xa ŪA � X̄A UA) , UA =
∂UA

∂XA

U(    : N=2 prepotential)

Fayet-Iliopoulos terms: 
triplet of (real) symplectic (Sp(2n)) constant vectors

~Q = ( ~MA,~EA) = (Qc, Q3) =

✓
mA

1 + i mA
2 , e1A + i e2A

mA
3 , eA

3

◆

(A = 1, . . . , n)



Superpotential: 

D term N=1 F-I magnetic and electric charges:

Due to the underlying symplectic structure of N=2 rigid special 
geometry, we can rewrite all expressions by using the symplectic metric

W = (UA mA � XA eA) Qc = (mA, eA)

Q3 = (eA, xA)

and symplectic sectionsW =

✓
0 �1
1 0

◆
V = (XA , UA)

W = (V, Q) = V W Q , K = �i(V, V̄)

VF = (ImU�1
AB)

∂W
∂XA

∂W̄
∂X̄B = Q̄T

c M Qc + i (Q̄c, Qc)



VD = QT
3 M Q3

V = VF + VD = Q̄T
c (M+ iW) Qc + QT

3 M Q3

MT = M MWM = W M > 0

so that

MThe matrix       is a real (positive definite) symmetric
and symplectic                matrix2n ⇥ 2n

F2 , F F̃It is related to the                terms in the Lagrangian

L = gAB(X)FA
µnFB µn + qAB(X) FA

µn F̃B µn

M =

✓
g + qg�1q �qg�1

�g�1q g�1

◆



N=1 supersymmetric vacua require (Porrati, Sagnotti, S.F.)

The first equation implies

since∂W
∂XA = 0 , VD = 0 M > 0

The               condition requiresVD = 0 Q3 = 0

which requires(M+ iW) Qc = 0 iQ̄c W Qc < 0

Q̄c M Qc

Q̄c Mcrit Qc = �iQ̄c WQc

Since                    is positive definite, and at the attractor point we have    

So it is crucial that        is complex. To simplify, we will later 
consider mA real and eA complex, so that the previous 
condition is

Qc

mA
1 e2A < 0



The theory here considered is the generalization to n vector 
multiplets of the theory considered by 
Antoniadis, Partouche, Taylor (1995)

Later, this theory (n=1) was shown to reproduce in some limit 
(Rocek, Tseytlin, 1998) the supersymmetric Born-Infeld action 
(Cecotti, S.F., 1986). The latter was shown (Bagger, Galperin, 
1996) to be the Goldstone action for N=2 partially broken to 

N=1 where the gauging                         is the Goldstone fermion 
of the second broken supersymmetry.

l = Wa

���
q=0



EXTREMAL BLACK HOLE ANALOGIES

In the case of asymptotically flat black holes, the so-called 
Black-Hole Potential for an extremal (single-center) 

black-hole solution is (Kallosh, S.F., 1996)

VBH =
1
2

QT M Q Q = (mA, eA)

VBH

���
crit

=
1
2

Qc M(Xcrit) Q =
1
p

S(Q) =
1

4p
AH

is the asymptotic
black-hole charge

The theory of BH attractors (Kallosh, Strominger, S.F., 1995) 
tells that

where S(Q) is the BH entropy (Bekenstein-Hawking area formula)



In the N=2 case (Ceresole, D’Auria, S.F.; Gibbons, Kallosh, S.F.)

VBH = gi ‚̄ DiZ D ‚̄Z̄ + |Z|2

so that at the BPS attractor point (               )DiZ = 0

VBH = |Zcrit|2 =
1
p

S(Q)

In analogy to the N=2 partial breaking of the rigid case, the BPS 
black hole breaks N=2 down to N=1, and the central charge is 

the quantity replacing the super potential W.
The entropy and BI action are both expressed through W.



In our problem, the attractors occur at                 ,
(because of unbroken space time supersymmetry)

and this is only possible because the Fayet-Iliopoulos charge is 
an SU(2) triplet (charged in the F-term direction) and thus 

allows the attractor equation

Vcrit = 0

(Mcrit + iW) Qc = 0 being satisfied.

We call these vacua Born-Infeld attractors,
for reasons will become soon evident



The superspace action of the theory in question is

The Euler-Lagrange equations for XA are

These are the complete XA equations for the theory in question. 
The first thing to note is that our attractor 

gives a mass to the N=1 chiral multiplet XA, 
but not to the N=1 vector multiplets       .

So N=2 is broken.
Wa

L = Im
⇣
UAB WA

a WB
b eab + W(X)

⌘���
F
+

⇣
XA ŪA � X̄A UA

⌘���
D

UABC WB WC + UAB (mB � D̄2 X̄B)� eA + D̄2 ŪA = 0



Indeed, our action is invariant under a second 
supersymmetry     , which acts on the N=1 chiral super 

fields                      (Bagger, Galperin n=1)
ha

(XA, WA
a )

and because of the mA parameter, the second 
supersymmetry is spontaneously broken.

Note that the mA, e2A parameters are those which allow 
the equations

to have solutions∂W
∂ZA =

⇣
UABmB � eA

⌘
= 0

dXA = haWA
a ,

dWA
a = ha(mA � D̄2X̄A)� i∂aȧXAh̄ȧ



Expanding the fields around their “classical” value cancel the 
linear terms in the action and we obtain (Porrati, Sagnotti, S.F.)

The BI approximation corresponds to have                    ,
(which we solve letting                as operator condition)

D̄2ŪA = 0

UA = 0

The N=2 Born-Infeld generalized lagrangian turns out to be
(Porrati, Sagnotti, S.F.)

with the chiral superfields XA solutions of the above constraints

dL

dXA = 0 ) dABC

h
WBWC + XB(mC � D̄2 X̄C)

i
+ D̄2 ŪA = 0

L N=2
BI = �Im W(X)

���
q2
= Re FAe2A + Im FAe1A



The super field BI constraint allows to write the n chiral 
fermions in terms of the n gauginos, so       is a linear 

combination of the n (dressed) gauginos
lg

In Black-Hole physics, the superpotential is the
N=2 central charge, and

S
entropy

= p|Z|2
crit



SOLUTION OF THE BORN-INFELD ATTRACTOR EQUATIONS

For n=1, the above equation is the BI constraint

X =
�W2

m � D̄2X̄

which also implies the nilpotency 
(Komargodsky, Seiberg; Casalbuoni et al) 

(electric magnetic self-dual BG 
inherited from the linear theory)

Type of constraints

This type of constraints have been recently used in inflationary 
supergravity dynamics to simplify and to provide a more general 
supergravity breaking sector

(Kallosh, Linde, S.F.; Kallosh, Linde; Antoniadis, Dudas, Sagnotti, S.F.)

X Wa = 0 , X2 = 0



by taking the real and imaginary parts of this equation we have

The Born-Infeld action comes by solving the        component 
of the chiral superfield equation

q2

∂L

∂XA

�����
q2

) dABC

h
GB
+GC

+ + FB(mC � F̄C)
i
= 0

and we have setGA
± = FA

µn ±
i
2

F̃A
µn DA = 0

dABC

✓
HB +

mB

2

◆✓
mC

2
� HC

◆
= dABC

⇣
�GBGC + Im FB ImFC

⌘

dABC Im FB mC = �dABC GB G̃C

and we have set Re FA =
mA

2
� HA



CLASSIFICATION OF dABC. 
THEORY OF INVARIANT POLYNOMIALS

(Mumford, Gelfand, Dieudonné, et al)

U (X) =
1
3!

dABCXAXBXC

n=2 case: dABC (4 entries) spin 3/2 representation of SL(2)

It has a unique (quartic) invariant which is also the discriminant of 
the cubic (Cayley hyperdeterminant) 

(Duff, q-bit entanglement in quantum information theory)

I4 = �27 d2
222 d2

111 + d2
221 d2

112 + 18d222d111d211d221 � 4d111d3
122 � 4d222d3

211



CLASSIFICATION OF dABC. 
THEORY OF INVARIANT POLYNOMIALS

(Mumford, Gelfand, Dieudonné, et al)

I4 = �27 d2
222 d2

111 + d2
221 d2

112 + 18d222d111d211d221 � 4d111d3
122 � 4d222d3

211

Four orbits I4 > 0 , I4 < 0 , I4 = 0 , ∂I4 = 0

Two of them (                            ) give trivial models.
The other two (           ) give non-trivial U(1)2 BI theories

I4 < 0 , ∂I4 = 0

I4 � 0

Extremal black-hole analogy:
the model in question corresponds to the T3 model, 

            is the BH Berenstein-Hawking entropy and the four
orbits correspond to large BPS and non-BPS as well as small BH

q
|I4|



An example: Explicit solution of the I4>0 theory

U =
1
3!

X3 � 1
2

XY2 (d111 = 1 , d122 = �1)

Im FX = (m2
X + m2

Y)
�1(mXRX + mYRY)

Im FY = (m2
X + m2

Y)
�1(�mYRX + mXRY)

HX =
1p
2

✓q
S2

X + S2
Y � SX

◆1/2

HY =
1p
2

✓q
S2

X + S2
Y + SX

◆1/2

SX = TX � m2
X

4
+

m2
Y

4
SY = TY +

mX mY
2

RX = �2GXG̃Y

RY = �GXG̃X + GYG̃Y

�H2

X + H2

Y = SX , 2HX HY = SY (HA
equation)

TX = �GXGX + Im FX Im FX + GYGY � Im FY Im FY

TY = 2(GXGY + Im FX Im FY) GX,Y
µn = 0 ! FX = FY = 0Note: for


