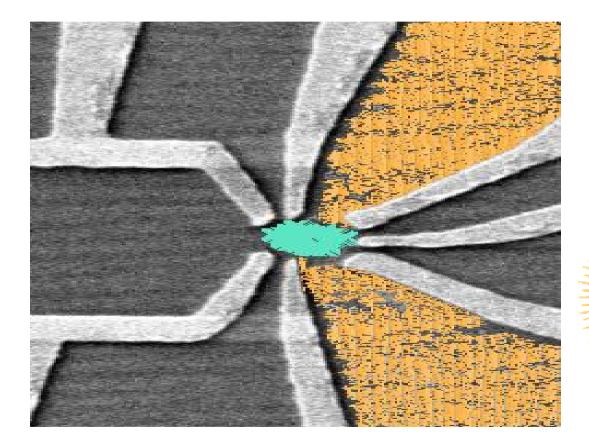
Quantum Impurities Out of Equilibrium



P. Mehta and N. A.

Munich - August 2006

Outline

- Non-equilibrium and Steady State (Quantum impurities)
 - -Time dependent description
 - The steady State open systems
 - *Time independent description* Scattering theory, Lippmann-Schwinger equation
 - Scattering eigenstates and Non-equilibrium Steady State Dynamics
- . Scattering States in integrable Impurity Models
 - Traditional Bethe-Ansatz : closed systems -inadequate
 - Equilibrium, Thermodynamics
 - Scattering Bethe-Ansatz : open systems -new approach (SBA)
 - Non-equilibrium Steady States
 - Scattering states of electrons off magnetic impurities
 - Equilibrium, Thermodynamics
 - The Interacting Resonance Level Model (SBA)
 - The Kondo Model (SBA)
 - . Conclusions

Non-equilibrium and Strong Correlations

• Nonequilibrium systems are relatively poorly understood compared to their equilibrium counterpart.

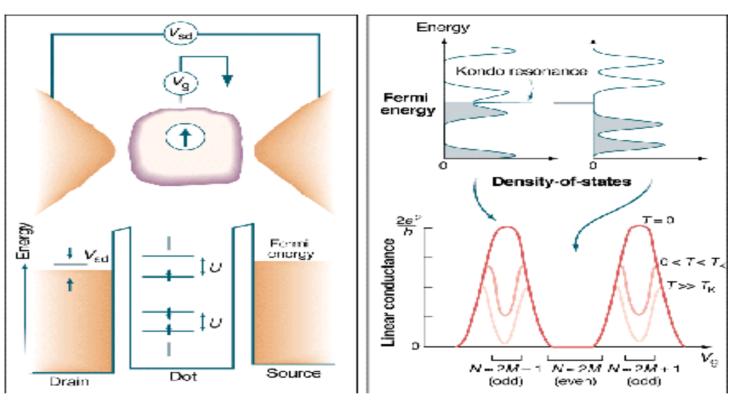
- No unifying theory such as Boltzmann's statistical mechanics
- Many of our standard physical ideas and concepts are not applicable (Scaling? RG? Universality?)
- Non-equilibrium systems are all different- it is unclear what if anything they all have in common.

Strongly correlated systems are -in general- poorly understood.

- Perturbative approaches fail
- New degrees of freedom emerge
- New collective Behavior

Quantum Impurities – Theory and Experiment Interplay : non-equilibrium and strong correlations

Kondo Impurities – Strong Correlations out of Equilibrium

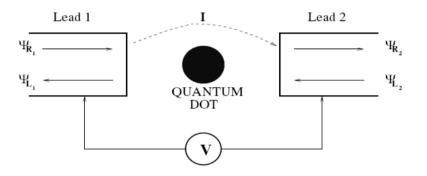


Inoshita:Science 24 July 1998: Vol. 281. no. 5376, pp. 526 - 527

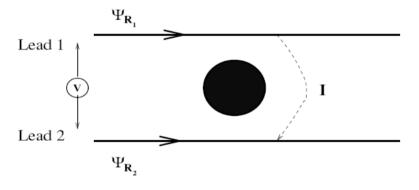
- Can control the number of electrons on the dot using gate voltage
- For odd number of electrons- quantum dot acts like a quantum impurity (Kondo, Interacting Resonant Level Model)
 - •Quantum impurity models exhibit new collective behaviors such as the Kondo effect

Quantum Impurities out of Equilibrium

The Quantum Impurity:



The Quantum Impurity unfolded:



Preview:

- **Describe:** Steady State
- Construct: Scattering states eigenstates -Boundary conditions set by leads: $x_i \to -\infty$
- **Compute:** Current in scattering states

Non-equilibrium: Time-dependent Description

- * $t \leq t_o$, system described by: ρ_0
- * at t_o , couple leads to impurity
- * $t \ge t_o$, evolve with $H(t) = H_0 + e^{\eta t} H_1$

At T > 0:

1. initial condition: ρ_0

2. evolution: $U(t, t_o) = T\{e^{-i \int_{t_o}^t dt' H(t')}\}$

•
$$\rho(t) = U^{\dagger}(t, t_o) \ \rho_0 \ U(t, t_o)$$

$$\langle \hat{O}(t) \rangle = Tr\{\rho(t)\hat{O}\}$$

At T = 0:

1. initial condition: $|\phi\rangle_{baths}$

2. evolution: $U(t, t_o) = T\{e^{-i \int_{t_o}^t dt' H(t')}\}$

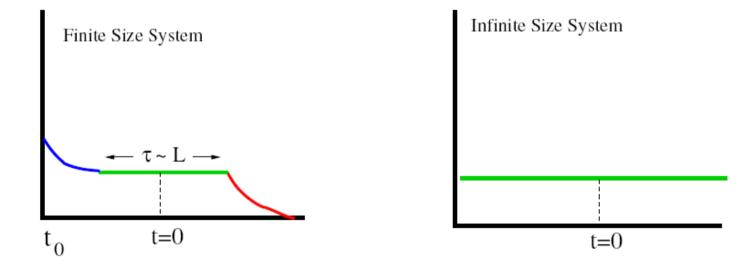
•
$$|\psi(t)\rangle = U(t, t_o) |\phi\rangle_{baths}$$

 $\langle \hat{O}(t) \rangle = \langle \psi(t) | \hat{O} | \psi(t) \rangle_s$

The Steady State

When will a steady state occur?

- Leads good thermal baths, size $L \to \infty$
- $\Rightarrow \exists \lim_{t_o \to -\infty}$, no IR div. (Doyon, N.A. 2005)



• Hence

 $\langle \hat{O}(t) \rangle = \langle \psi | \hat{O} | \psi \rangle_s = \langle \hat{O} \rangle$ $|\psi \rangle_s = |\psi(0)\rangle = U(0, -\infty) |\phi\rangle_{baths}$

- $|\psi\rangle_s$ eigenstate of: $H = H_0 + H_1$ (Gellman-Low thm)
- $|\psi\rangle_s$ scattering state BC imposed asymptotically

Non-equilibrium: Time-independent Description

- steady states are time independent
- time independent scattering formalism
- $|\psi\rangle_s$ eigenstate: $H = H_0 + H_1$, initial condition \Rightarrow boundary condition

• Lippmann Schwinger equation Boundary condition $|\phi\rangle_{\text{baths}}$

 $|\psi\rangle_s = |\phi\rangle_{baths} + \frac{i}{E - H_0 \pm i\eta} H_1 |\psi\rangle_s$

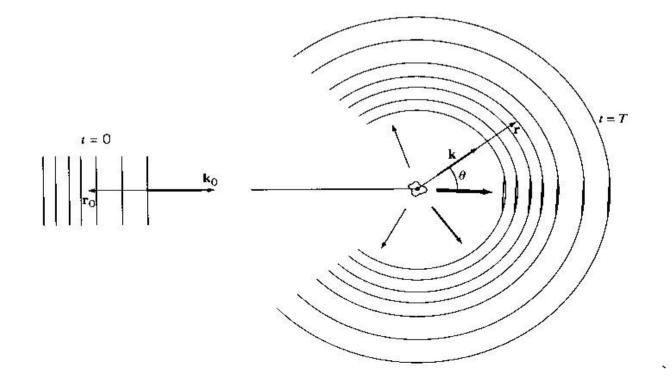
• $|\psi\rangle_s$ scattering state

scattering states describe Non-equilibrium

Scattering States (QM)

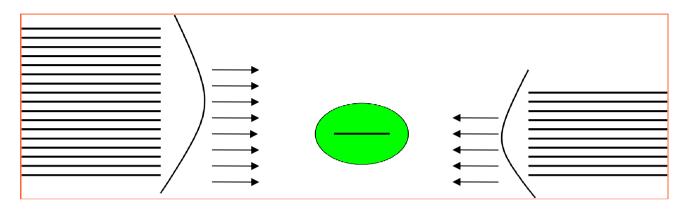
- . Since we are in a steady-state, can go to a time-independent picture.
- Scattering by a localized potential is given by the Lippman-Schwinger equation:

$$|\psi_p^{\pm}\rangle = |\phi_p\rangle + \frac{H_1}{E - \hat{H}_o \pm i\epsilon} |\psi_p^{\pm}\rangle$$

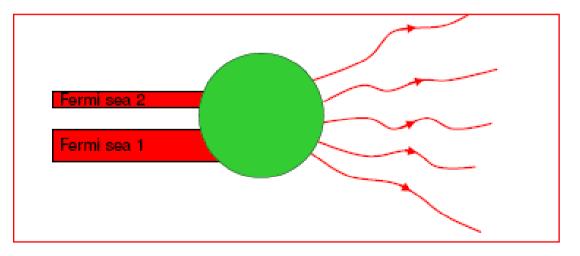


The Scattering state (Many body)

A scattering eigenstate is determined by the *incoming asymptotics*: the baths



The scattering eigenstate in unfolded geometry:



How to construct the scattering States?

The Scattering Bethe-Ansatz

- Can we use Bethe-Ansatz for scattering states ?
 - Traditional Bethe-Ansatz inapplicable:
 - Periodic Boundary Conditions
 - Equilibrium, Closed Systems: Thermodynamics
 - ∗ New technology ⇒ Scattering eigenstates
 - Asymptotic Boundary Conditions

Scattering Bethe-Ansatz

- * Consistency of non-eq BC and integrability (YBE)?
- ★ Integrability out-of-quilibrium?
- Explicit construction the IRL model: (integrability: Filyov-Wiegmann 1980)

$$H_{\text{IRL}} = \sum_{i=1,2,\vec{k}} \epsilon_k c^{\dagger}_{i\vec{k}} c_{i\vec{k}} + \epsilon_d d^{\dagger} d$$

+
$$\frac{V}{\sqrt{2}} \sum_{i=1,2,\vec{k}} (c^{\dagger}_{i\vec{k}} d + h.c.) + 2U \sum_{i=1,2,\vec{k}} c^{\dagger}_{i\vec{k}} c_{i\vec{k}} d^{\dagger} d$$

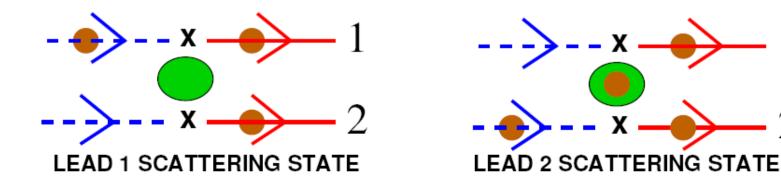
IRL: The Scattering State I

Diagonalize the Hamiltonian by means of Scattering Bethe-Ansatz:

Single-particle scattering states: $(\delta_p = 2 \arctan\left[\frac{t^2}{2(p-\epsilon_d)}\right]$, phase-shift)

$$\begin{aligned} |1p\rangle &= \int dx \, e^{ipx} \left[\frac{2}{1+e^{i\delta_p}} \left([2\theta(-x) + (e^{i\delta_p} + 1)\theta(x)]\psi_1^{\dagger}(x) \right. \\ &+ \left[(e^{i\delta_p} - 1)\theta(x)]\psi_2^{\dagger}(x) \right) + \sqrt{2}e_p d^{\dagger}\delta(x) \right] |0\rangle \qquad = \alpha_{1p}^{\dagger} |0\rangle \end{aligned}$$

$$\begin{split} |2p\rangle &= \int dx \, e^{ipx} \left[\frac{2}{1+e^{i\delta_p}} \left([2\theta(-x) + (e^{i\delta_p} + 1)\theta(x)]\psi_2^{\dagger}(x) \right. \\ &+ \left[(e^{i\delta_p} - 1)\theta(x)]\psi_1^{\dagger}(x) \right) + \sqrt{2}e_p d^{\dagger}\delta(x) \right] |0\rangle \quad = \alpha_{2p}^{\dagger} |0\rangle \end{split}$$



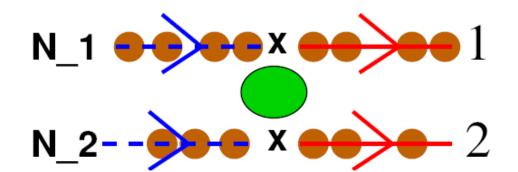
IRL: The Scattering State II

Multi-particle scattering state: N_1 lead-1, N_2 lead-2:

$$|\{p\}\rangle_{s} = \int dx \ e^{i\Sigma_{j}p_{j}x_{j}} \ e^{i\Sigma_{s
$$\Pi_{u=1}^{N_{1}}\alpha_{1p_{u}}^{\dagger}(x_{u})\Pi_{v=N_{1}+1}^{N_{1}+N_{2}}\alpha_{2p_{v}}^{\dagger}(x_{v})|0\rangle$$$$

with:

$$e^{2i\Phi(p,k)} = \frac{i + \frac{U}{2}\frac{p-k}{k+p-2\epsilon_d}}{i - \frac{U}{2}\frac{p-k}{k+p-2\epsilon_d}}$$



IRL: Current & Dot Occupation

• Current and dot-occupation:

$$\hat{I} = \frac{i}{\sqrt{2}} V \sum_{j=1,2} (-1)^j (\psi_j^{\dagger}(0)d - h.c)$$
$$\hat{n}_d = d^{\dagger}d$$

• Expectation values: \hat{I}, \hat{n}_d in Scattering State: $|\{p\}\rangle_{L\to\infty}^{\mu_1,\mu_2}$

$$\langle I \rangle_s^{\mu_1,\mu_2} = \int dp \left[\rho_1(p) - \rho_2(p) \right] \frac{\Delta^2}{(p - \epsilon_d)^2 + \Delta^2}$$

$$\langle n_d \rangle_s^{\mu_1,\mu_2} = \int dp \left[\rho_1(p) + \rho_2(p) \right] \frac{\Delta}{(p - \epsilon_d)^2 + \Delta^2}$$

Apparent simplicity is misleading: In the Bethe basis:

-Excitations undergo phase shifts only

-Choice of momenta incorporates interactions and boundary conditions

Need determine: $\rho_1(p), \rho_2(p)$

The Boundary Conditions I

Boundary condition: $|\psi\rangle_{s} \rightarrow ~$ wave function of <u>two free baths</u> :

$$|\psi\rangle \to |\phi\rangle_{baths} = \int e^{i\Sigma_j p_j x_j} \Pi_{u=1}^{N_1} \psi_1^{\dagger}(x_u) \Pi_{v=1}^{N_2} \psi_2^{\dagger}(x_v) |0\rangle$$

However $|\{p\}\rangle$ tends to:

$$|\{p\}\rangle \rightarrow |\{p\}\rangle_o = \int e^{i\Sigma_j p_j x_j} e^{i\Sigma_{s$$

Both $|\phi\rangle_{baths}$ and $|\{p\}\rangle_o$ are eigenstates of H_0 . so $|\phi\rangle_{baths} = \sum_{\{p\}} A_{\{p\}} |\{p\}\rangle_o$

Non-trivial S-matrix

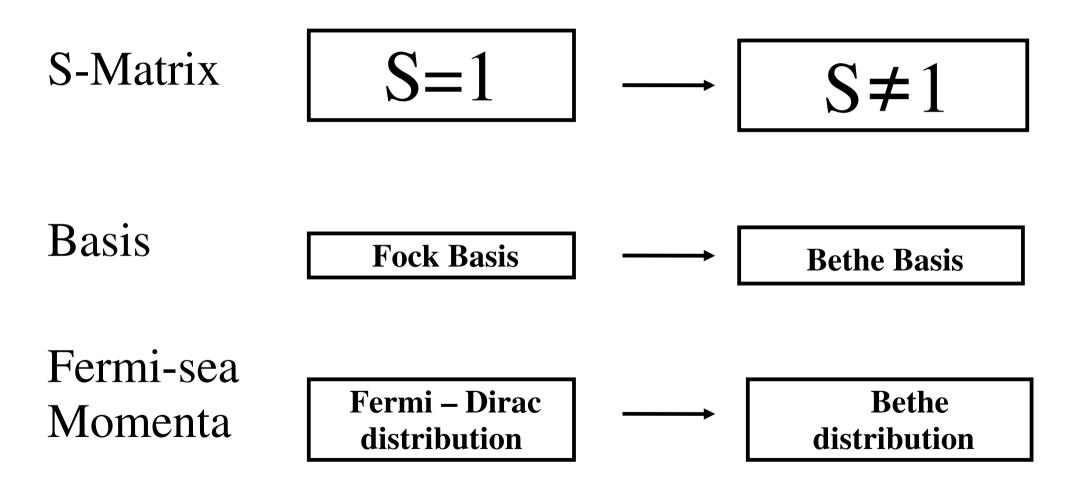
$$S(p,k) = e^{2i\Phi(p,k)} = \frac{i + \frac{U}{2}\frac{p-k}{k+p-2\epsilon_d}}{i - \frac{U}{2}\frac{p-k}{k+p-2\epsilon_d}}$$

New basis of states in free leads

example: $e^{ik_1x_1+k_2x_2}[A\theta(x_1-x_2)+(SA)\theta(x_2-x_1)]$

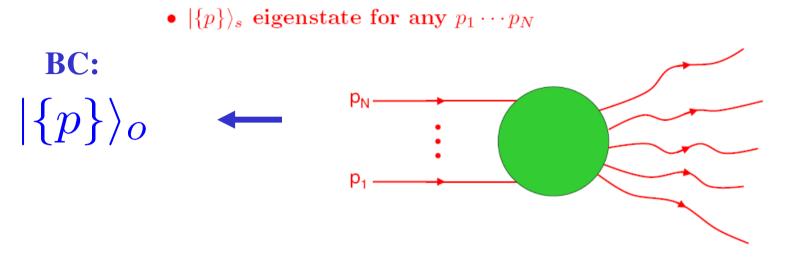
eigenfunction of: $h_0 = -i(\partial_1 + \partial_2)$ for any S (infinite degeneracy)

Bethe Anstaz basis vs. Fock basis



-Energy levels are infinitely degenerate (linear spectrum)
-Choose momenta of incoming particles to look like two free Fermi seas

The Scattering State III



- $\{p\}$ **BA** momenta (not Fock momenta)
- Choice of BA momenta: determined by problem.

Non-eq BC: far from impurity $\rightarrow 2$ free leads

• Momentum distributions in leads - need to solve TBA eqns

The Boundary Conditions II

How to choose the momenta $\{p\}$?

Auxiliary problem: in \mathcal{H}_o match ground state in Fock basis with ground state in Bethe basis on a <u>ring of length L</u>:

$$e^{ip_jL} = \prod_{l=1}^N S(p_j, p_l)$$

Or:

$$p_j = \frac{1}{L} \sum_{l=1}^{N} \ln S(p_j, p_l) + \frac{2\pi}{L} I_j$$

The BA eqns describe the free leads on a ring (in the Bethe basis)

The Boundary Conditions III

•Non-eq BC \rightarrow momentum distributions $\rho_1(p), \ \rho_2(p)$:

- TBA eqns with upper cut-offs $k_o^j = k_o(\mu^j)$, lower cut-off, D:

$$\rho_1(p) = \frac{1}{2\pi} \theta(k_o^1 - p) - \sum_{j=1,2} \int_{-D}^{k_o^j} \mathcal{K}(p,k) \rho_j(k) \, dk$$
$$\rho_2(p) = \frac{1}{2\pi} \theta(k_o^2 - p) - \sum_{j=1,2} \int_{-D}^{k_o^j} \mathcal{K}(p,k) \rho_j(k) \, dk$$
$$\mathcal{K}(p,k) = \frac{U}{2\pi} \frac{(k - \tilde{\epsilon}_d)}{(k - \tilde{\epsilon}_d)}$$

with: $\mathcal{K}(p,k) = \frac{U}{\pi} \frac{(k-\epsilon_d)}{(p+k-2\tilde{\epsilon}_d)^2 + \frac{U^2}{4}(p-k)^2}$

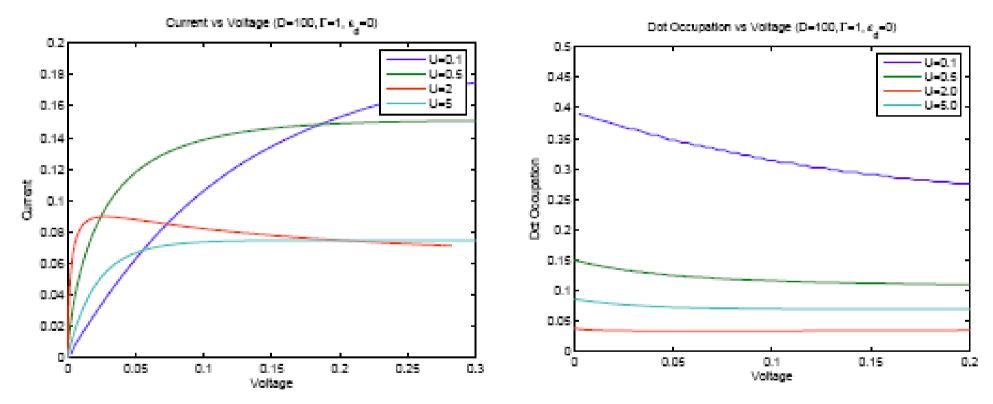
TBA eqns describe the free leads on a ring (in the Bethe basis)

Comment:

These TBA eqns valid for: $\epsilon_d \geq 0$ otherwise, eqns become more complicated

IRL: Current vs. Voltage

- Solve the TBA equations (numerically, analytically)
- Compute Exactly current as a function of Voltage:



• Can easily generalize to finite temperature case

. Universality out of equilibrium: change in D can be compensated by change in U and Δ

IRL: Current vs. Voltage

- TBA eqns for momentum distributions: Non-eq BC
- $\rho_i(p)$ parametrized by D lower cut-off (bandwidth)
- For Universality: (physical scales $\ll D$)
 - lower cut-off: $D \to \infty$
 - vary U, Δ , keeping low-E physics unchanged
 - U, Δ on RG trajectory
- New scale emerges T_k characterizing RG trajectory
- Universality out-of-equilibrium

Explicitly, for $U \to \infty$, we find: (Wiener-Hopf..)

$$\langle I \rangle_s = \frac{\Delta}{2\pi} \left(\frac{T_k}{\Delta} \right) \left[\tan^{-1} \frac{\mu_1 - \epsilon_d}{T_k} - \tan^{-1} \frac{\mu_2 - \epsilon_d}{T_k} \right]$$
$$\langle n_d \rangle_s = \frac{1}{2} + \frac{1}{2\pi} \left(\frac{T_k}{\Delta} \right) \left[\tan^{-1} \frac{\mu_1 - \epsilon_d}{T_k} + \tan^{-1} \frac{\mu_2 - \epsilon_d}{T_k} \right]$$

Low-energy scale: $T_k = D\left(\frac{\Delta}{D}\right)^{\frac{2\pi}{\pi+\zeta(U)}}$ held fixed in scaling limit:

$$D \to \infty, \ \zeta = -i \ln \frac{(1 - \left[\frac{U}{2}\right]^2) + 2i \frac{U}{2}}{1 + \left[\frac{U}{2}\right]^2} \to \pi$$

Traditional vs Scattering BA

The construction of $|\psi\rangle_s$ is an example of the SBA approach:

	SBA	TBA
System	Infinite	Finite
Boundary condition	asymptotic (open)	periodic
Wavefunctions	used explicitly	not used
Thermodynamics	difficult	easy
Scattering Properties	possible	not possible
Nonequilibrium Generalization	Yes	No

Many applications:

- Scattering S-matrix of electrons off magnetic impurities
- elastic and inelastic cross sections
- Calculation single particle Green's functions, spectral functions
- Calculation of finite temperature resistivity (resistance minimum)