
1. Horizon regularity and surface gravity
Consider a static, spherically symmetric metric of the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ g2(r)dΩ2 (1)

where f(r) vanishes at r = r0 linearly, and g(r0) "= 0.
Show that near r = r0 the metric is approximately

ds2 # −κ2ξ2dt2 + dξ2 + g2(r0)dΩ2 (2)

which is regular at ξ = 0, with

κ =
f ′(r0)

2
. (3)

(assume that f ′(r0) > 0). κ is called the surface gravity of the Killing horizon at r0. Observe that we
could rescale t → λt and κ would rescale too. Fixing this ambiguity is typically done by choosing a
particular asymptotic static frame.

By performing a simple change of coordinates, find the form of the surface gravity for a metric of
the form

ds2 = −F (r̄)dt2 +
dr̄2

G(r̄)
+ r̄2dΩ2 . (4)

Is this more or less general than the previous form? How must F (r̄) and G(r̄) behave near r̄0 in order
to approach the form (2)?

Optional:
Check that this result for κ is the same as the one obtained from the general formula for a Killing

horizon generated by a vector k

kµ∇µkν = κkν (5)

(i.e., the non-afineness of the Killing generator of the horizon).

2. Mass, energy density, tension in D dimensions
The mass of an object in GR is obtained by comparing its gravitational field at asymptotic infinity,

where the field is weak, to the one created by a massive source in the linearized approximation to the
Einstein equations.

Then, consider the Einstein equations in the linearized approximation around Minkowski space-
time, gµν = ηµν + hµν . Defining h̄µν = hµν − 1

2hηµν and working in transverse gauge ∇µh̄µν = 0 the
linearized equations take the conventional form

!h̄µν = −16πGTµν . (6)

Solve these equations for a pointlike mass

Ttt = Mδ(D−1)(xk). (7)

You must have obtained a result for htt of the form

htt =
µ

rD−3
(8)

1



where µ is an M -dependent constant (the other hij are also non-zero but we will not use them).
The numerical factors matter here: this result gives you a formula to compute the mass of any
asymptotically flat solution from the asymptotic behavior of the metric in the region where the field
is weak.

Stress tensor of p-branes. Now instead of a pointlike source, consider one that extends along p + 1
spacetime directions xa, a = 0, . . . , p, i.e., a p-brane,

Tab = tab δ(D−p−1)(xk) , (9)

where xk, k = p+1, . . . , D−1 are the directions transverse to the brane. Solve the equations as before
to find

hab =
cab

rD−p−3
(10)

(the other hij are also non-zero but we will not use them). Write tab as a function of cab to find

tab =
Ω(D−p−2)

16πG
[(D − p− 3)cab + cηab] (11)

where c = ηabcab and ηab is the Minkowski metric in p + 1 dimensions.
Finally, use this result to compute the energy density and pressure of a vacuum black brane built

as the direct product of the Schwarzschild solution in D−p dimensions and a p-dimensional Euclidean
space. Observe that even if cii = 0, the black string has non-zero tension.

Optional: Newtonian dark stars in D dimensions
In the Newtonian limit of General Relativity, the gravitational potential energy (energy per unit

mass) is

Φ = −1
2
htt. (12)

Follow John Michell and Simon de Laplace and compute, using Newtonian mechanics, the radius rML

at which the escape velocity of a test particle in this field reaches the speed of light. This is the radius
of a Newtonian ‘dark star’ in higher dimensions. Check that this is exactly the same, in any D, as the
horizon radius of the higher-dimensional Schwarzschild black hole.

3. Boosted black strings
A boosted black string and a static one differ only by a diffeomorphism (namely, a Lorentz boost).

Is it then appropriate to regard them as different solutions? More precisely, under what circumstances
are they indeed different solutions? If we take the (extremal) limit of boost velocity to speed of light,
is the metric still diffeomorphic to the static black string?

4. Quantization of momentum
Use (11) to compute the energy and momentum densities, ttt, ttx of a black string boosted to the

speed of light
ds2 = −dt2 + dx2 +

q

rn
(dt + dx)2 + dr2 + r2dΩ2

(n+1) . (13)

Should you be surprised that they are equal?
If the string is compactified, x ∼ x + 2πR, then in the quantum theory the total momentum must

be quantized
∫

dx ttx = N/R, N ∈ Z. Find how the momentum number N is related to the charge q.
For a ten-dimensional string, use that 16πG = (2π's)7g2's to express the relation between q and N
in terms of the string coupling g and string length 's.
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1. Black Hole thermodynamics from Euclidean Quantum Gravity

In the semiclassical approximation to the Euclidean Quantum Gravity Path Integral, the thermo-
dynamical partition function and free energy are given by

Z[β] = e−βF ≈ e−IE [g(cl)] (1)

where IE [g(cl)] is the Euclidean action of a classical solution g(cl) with periodic boundary conditions in
imaginary time, τ ∼ τ + β. For an asymptotically flat geometry, such as the Schwarzschild solution,
this action is actually infinite and needs renormalization. A conventional way to do it is by subtracting
the action IE [g0] of a reference background spacetime g0. In this case the natural background to take
is the Minkowski vacuum, which can be regarded as the ground state for asymptotically flat boundary
conditions. If we are dealing with vacuum solutions, Rµν = 0, the bulk term (Einstein-Hilbert) in the
action vanishes and the calculation reduces to the boundary term

IE [g(cl)]− IE [g0] = − 1
8πG

∫

∂M

√
h(K −K0) , (2)

where the integral is taken at the asymptotic boundary of spacetime, and one must make sure that at
the boundary ∂M the geometries of the black hole spacetime and of the Minkowski background are
isometric. We shall use this method to compute the free energy of the Schwarzschild black hole.
• To regularize the calculation, consider the boundary to be at a large but finite constant radius

r = R. Eventually the cutoff R will be removed by sending R→∞. The boundary metrics are

ds2(∂M) = hµνdxµdxν =
(

1− 2GM

R

)
dτ2 + R2dΩ2 ,

ds2
0(∂M) = h0

µνdxµdxν = dτ2
0 + R2dΩ2 . (3)

Since the metrics on the angular part already coincide, we see that in order for the two boundary
metrics to be the same we only have to match the length of the circles of Euclidean time,

∫ β

0
dτ

√
hττ =

∫ β0

0
dτ0

√
h0

ττ . (4)

This fixes the value of the τ -periodicity β0 of the background, for a given value of β for the black hole.
• Next, compute the integrands in (2), using

√
hK = nµ∂µ

√
h, where n is the outward radial unit

normal to the boundary. After performing the integrals in (2), the limit R→∞ should yield a finite
result. The free energy, relative to the Minkowski ground state, is IE [g(cl)]− IE [g0] = βF .
• Expressing F as a function of the temperature, use the conventional thermodynamics expressions

E =
∂(βF )

∂β
, S =

(
β

∂

∂β
− 1

)
(βF ) , (5)

to obtain the energy and entropy. Check that these agree with the expected results.

• (Optional). If you have enjoyed this exercise, then you may want to try your hand at AdS-
Schwarzschild black holes in d dimensions, which (in the Euclidean section) are

ds2 =
(

1− µ

rd−3
+

r2

%2

)
dτ2 +

dr2

1− µ
rd−3 + r2

%2

+ r2dΩ(d−2) , (6)
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and are solutions of the equations of the Euclidean action

I = − 1
16πG

∫

M
ddx
√

g

(
R +

(d− 1)(d− 2)
"2

)
− 1

8πG

∫

∂M
dd−1x

√
hK . (7)

Taking AdS space (µ = 0) as the background for subtraction, the calculation is only a little more
involved than the previous one. Hints: (i) the bulk Einstein-Hilbert term in the action does not vanish
on-shell now; (ii) for calculations, it is more practical to use the horizon size r+ as the parameter in
the solution instead of µ.

When you are done, observe that you have obtained an expression for the energy, i.e., mass of the
AdS black hole in d dimensions. If you take the limit "→∞ this should coincide, including all factors,
with the expression for the d-dimensional mass as a function of µ that you obtained in a previous
exercise.
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2. Entropy of astrophysical black holes (Optional, for fun)

The Bekenstein-Hawking entropy

SBH =
c3

!G

AH

4
(8)

is enormous for astrophysical black holes. Here we have taken Boltzmann’s constant kB = 1, so
temperature is measured in units of energy and the entropy is dimensionless. Ignoring rotation (which
would only introduce corrections by factors of order one) we can write

SBH ! 1077

(
M

M!

)2

, (9)

where M! = 2 × 1033 g is the mass of the Sun. In the following, we will try to obtain order-of-
magnitude estimates of the entropy of astrophysical black holes and compare it to the entropies of
other relevant systems. Our assumptions will be rather crude and may be off by one or even two
orders of magnitude, but the comparisons will still be significant.

• Entropy of a star. A very crude estimate (but sufficient for our purposes) of the entropy of
the Sun is the following. For an ideal gas of n particles, the entropy is S ∼ n. Regard the Sun as a
ball of a gas of particles of mass equal to the proton mass, mp ∼ 10−24g. What is then the entropy of
the Sun? What is the entropy of a black hole of the same mass?

• Entropy of a galaxy. Estimate in the same manner the entropy of the galaxy from the following
sources:

1. Luminous matter (stars), if the luminous mass in the galaxy is Mgalaxy ∼ 1011M!.

2. Central black hole. There is significant evidence that our galaxy contains a central black hole
with mass M• ! 3× 106M!.

3. Stellar-mass black holes. The number of black holes of stellar mass ∼ M! in the galaxy is
estimated to be ∼ 108.

Which of these three contributions to the entropy of the galaxy is the largest?

• Entropy of the Universe. Estimate the following contributions to the entropy of the Universe:

1. Luminous matter (stars in galaxies): take the radius of the Universe to be ∼ 1010 ly (ly = light
year), and consider that each galaxy occupies a sphere of radius ∼ 105− 106 ly, with our galaxy
being a typical galaxy.

2. Cosmic microwave background radiation at T ∼ 2K ∼ 10−4eV. The entropy of a gas of photons
at temperature T in a volume V is S ∼ V T 3 (with ! = 1 = c). (Hint: write T in terms of the
wavelength of the radiation). Incidentally, this entropy is essentially the number of photons of
the CMB.

3. Entropy in black holes at galactic centers. Assume that each galaxy has a central black hole of
mass ∼ 106 − 109M!.
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