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Course Outline

Semiclassical Black Holes and Black Hole Thermodynamics

• Schwarzschild and Reissner Nordström Black Holes, Near Horizon Geometry

• Surface gravity, Area, Kruskal extension, Euclidean Temperature,

• Rindler Spacetime, Bogoliubov Transformations, Hawking Temperature,

• Bekenstein-Hawking Entropy, Wald Entropy, Entropy Function

• Extremal Black Holes, String Effective Actions and Subleading Corrections,

Quantum Black Holes and Black Hole Statistical Mechanics

• Type-II String Theory on K3, D-Branes,

• Five-Dimensional D1-D5 System and Exact Counting Formula, Strominger-Vafa

Black Hole and Leading Entropy,

• 4D-5D Lift, Exact Counting Formula for Four-Dimensional Dyonic Black Holes,

• Siegel Modular Forms, Wall-Crossing Phenomenon, Contour Prescription

• Asymptotic Expansions

A good introductory textbook on general relativity from a modern perspective

see [1]. For a more detailed treatment [2] which has become a standard reference

among relativists, and [3] remains a classic for various aspects of general relativity. For

quantum field theory in curved spacetime see [4]. For relevant aspects of string theory

see [5, 6, 7, 8]. For additional details of some of the material covered here relating to

N = 4 dyons see [9].
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1. Introduction

One of the important successes of string theory is that one can obtain a statistical

understanding of the thermodynamic entropy[10, 11] of certain supersymmetric black

holes in terms microscopic counting[12]. The entropy of black holes supplies us with

very useful quantitative information about the fundamental degrees of freedom of quan-

tum gravity.

Much of the earlier work was in the thermodynamic limit of large charges. In

recent years there has been enormous progress in understanding the entropy and other

thermodynamic properties of black holes within string theory going well beyond the

thermodynamic limit. It has now become possible to begin exploring finite size effects in

perturbation theory in inverse size and even nonperturbatively, with highly nontrivial

agreements between thermodynamics and statistical mechanics. These lectures will

describe some of this progress in our understanding of the quantum structure of black

holes.

2. Black Holes

A black hole is at once the most simple and the most complex object.

It is the most simple in that it is completely specified by its mass, spin, and charge.

This remarkable fact is a consequence of a the so called ‘No Hair Theorem’. For an

astrophysical object like the earth, the gravitational field around it depends not only

on its mass but also on how the mass is distributed and on the details of the oblate-ness

of the earth and on the shapes of the valleys and mountains. Not so for a black hole.

Once a star collapses to form a black hole, the gravitational field around it forgets all

details about the star that disappears behind the even horizon except for its mass, spin,

and charge. In this respect, a black hole is very much like a structure-less elementary

particle such as an electron.

And yet it is the most complex in that it possesses a huge entropy. In fact the

entropy of a solar mass black hole is enormously bigger than the thermal entropy

of the star that might have collapsed to form it. Entropy gives an account of the

number of microscopic states of a system. Hence, the entropy of a black hole signifies

an incredibly complex microstructure. In this respect, a black hole is very unlike an

elementary particle.

Understanding the simplicity of a black hole falls in the realm of classical grav-

ity. By the early seventies, full fifty years after Schwarzschild, a reasonably complete

understanding of gravitational collapse and of the properties of an event horizon was

achieved within classical general relativity. The final formulation began with the sin-
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gularity theorems of Penrose, area theorems of Hawking and culminated in the laws of

black hole mechanics.

Understanding the complex microstructure of a black hole implied by its entropy

falls in the realm of quantum gravity and is the topic of present lectures. Recent

developments have made it clear that a black hole is ‘simple’ not because it is like an

elementary particle, but rather because it is like a statistical ensemble. An ensemble is

also specified by a few a conserved quantum numbers such as energy, spin, and charge.

The simplicity of a black hole is no different than the simplicity that characterizes a

thermal ensemble.

To understand the relevant parameters and the geometry of black holes, let us first

consider the Einstein-Maxwell theory described by the action

1

16πG

∫
R
√
gd4x− 1

16π

∫
F 2√gd4x, (2.1)

where G is Newton’s constant, Fµν is the electro-magnetic field strength, R is the Ricci

scalar of the metric gµν . In our conventions, the indices µ, ν take values 0, 1, 2, 3 and

the metric has signature (−,+,+,+).

2.1 Schwarzschild Metric

Consider the Schwarzschild metric which is a spherically symmetric, static solution

of the vacuum Einstein equations Rµν − 1
2
gµν = 0 that follow from (2.1) when no

electromagnetic fields are excited. This metric is expected to describe the spacetime

outside a gravitationally collapsed non-spinning star with zero charge. The solution for

the line element is given by

ds2 ≡ gµνdx
µdxν = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2,

where t is the time, r is the radial coordinate, and Ω is the solid angle on a 2-sphere.

This metric appears to be singular at r = 2GM because some of its components vanish

or diverge, g00 → ∞ and grr → ∞. As is well known, this is not a real singularity.

This is because the gravitational tidal forces are finite or in other words, components of

Riemann tensor are finite in orthonormal coordinates. To better understand the nature

of this apparent singularity, let us examine the geometry more closely near r = 2GM .

The surface r = 2GM is called the ‘event horizon’ of the Schwarzschild solution. Much

of the interesting physics having to do with the quantum properties of black holes comes

from the region near the event horizon.

To focus on the near horizon geometry in the region (r − 2GM) � 2GM , let us

define (r− 2GM) = ξ , so that when r → 2GM we have ξ → 0. The metric then takes
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the form

ds2 = − ξ

2GM
dt2 +

2GM

ξ
(dξ)2 + (2GM)2dΩ2, (2.2)

up to corrections that are of order ( 1
2GM

). Introducing a new coordinate ρ,

ρ2 = (8GM)ξ so that dξ2 2GM

ξ
= dρ2,

the metric takes the form

ds2 = − ρ2

16G2M2
dt2 + dρ2 + (2GM)2dΩ2. (2.3)

From the form of the metric it is clear that ρ measures the geodesic radial distance.

Note that the geometry factorizes. One factor is a 2-sphere of radius 2GM and the

other is the (ρ, t) space

ds2
2 = − ρ2

16G2M2
dt2 + dρ2. (2.4)

We now show that this 1 + 1 dimensional spacetime is just a flat Minkowski space

written in funny coordinates called the Rindler coordinates.

2.2 Historical Aside

Apart from its physical significance, the entropy of a black hole makes for a fascinating

study in the history of science. It is one of the very rare examples where a scientific

idea has gestated and evolved over several decades into an important conceptual and

quantitative tool almost entirely on the strength of theoretical considerations. That we

can proceed so far with any confidence at all with very little guidance from experiment

is indicative of the robustness of the basic tenets of physics. It is therefore worthwhile

to place black holes and their entropy in a broader context before coming to the more

recent results pertaining to the quantum aspects of black holes within string theory.

A black hole is now so much a part of our vocabulary that it can be difficult to

appreciate the initial intellectual opposition to the idea of ‘gravitational collapse’ of

a star and of a ‘black hole’ of nothingness in spacetime by several leading physicists,

including Einstein himself.

To quote the relativist Werner Israel ,

“There is a curious parallel between the histories of black holes and continental

drift. Evidence for both was already non-ignorable by 1916, but both ideas were stopped

in their tracks for half a century by a resistance bordering on the irrational.”

On January 16, 1916, barely two months after Einstein had published the final form

of his field equations for gravitation [13], he presented a paper to the Prussian Academy
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on behalf of Karl Schwarzschild [14], who was then fighting a war on the Russian front.

Schwarzschild had found a spherically symmetric, static and exact solution of the full

nonlinear equations of Einstein without any matter present.

The Schwarzschild solution was immediately accepted as the correct description

within general relativity of the gravitational field outside a spherical mass. It would

be the correct approximate description of the field around a star such as our sun. But

something much more bizzare was implied by the solution. For an object of mass M,

the solution appeared to become singular at a radius R = 2GM/c2. For our sun,

for example, this radius, now known as the Schwarzschild radius, would be about

three kilometers. Now, as long the physical radius of the sun is bigger than three

kilometers, the ‘Schwarzschild’s singularity’ is of no concern because inside the sun

the Schwarzschild solution is not applicable as there is matter present. But what if

the entire mass of the sun was concentrated in a sphere of radius smaller than three

kilometers? One would then have to face up to this singularity.

Einstein’s reaction to the ‘Schwarzschild singularity’ was to seek arguments that

would make such a singularity inadmissible. Clearly, he believed, a physical theory

could not tolerate such singularities. This drove his to write as late as 1939, in a

published paper,

“The essential result of this investigation is a clear understanding as to why the

‘Schwarzschild singularities’ do not exist in physical reality.”

This conclusion was however based on an incorrect argument. Einstein was not

alone in this rejection of the unpalatable idea of a total gravitational collapse of a

physical system. In the same year, in an astronomy conference in Paris, Eddington,

one of the leading astronomers of the time, rubbished the work of Chandrasekhar who

had concluded from his study of white dwarfs, a work that was to earn him the Nobel

prize later, that a large enough star could collapse.

It is interesting that Einstein’s paper on the inadmissibility of the Schwarzschild

singularity appeared only two months before Oppenheimer and Snyder published their

definitive work on stellar collapse with an abstract that read,

“When all thermonuclear sources of energy are exhausted, a sufficiently heavy star

will collapse.”

Once a sufficiently big star ran out of its nuclear fuel, then there was nothing to

stop the inexorable inward pull of gravity. The possibility of stellar collapse meant

that a star could be compressed in a region smaller than its Schwarzschild radius and

the ‘Schwarzschild singularity’ could no longer be wished away as Einstein had desired.

Indeed it was essential to understand what it means to understand the final state of

the star.
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It is thus useful to keep in mind what seems now like a mere change of coordinates

was at one point a matter of raging intellectual debate.

2.3 Rindler Coordinates

To understand Rindler coordinates and their relation to the near horizon geometry of

the black hole, let us start with 1 + 1 Minkowski space with the usual flat Minkowski

metric,

ds2 = −dT 2 + dX2. (2.5)

In light-cone coordinates,

U = (T +X) V = (T −X), (2.6)

the line element takes the form

ds2 = −dU dV. (2.7)

Now we make a coordinate change

U =
1

κ
eκu, V = −1

κ
e−κv, (2.8)

to introduce the Rindler coordinates (u, v). In these coordinates the line element takes

the form

ds2 = −dU dV = −eκ(u−v)du dv. (2.9)

Using further coordinate changes

u = (t+ x), v = (t− x), ρ =
1

κ
eκx, (2.10)

we can write the line element as

ds2 = e2κx(−dt2 + dx2) = −ρ2κ2dt2 + dρ2. (2.11)

Comparing (2.4) with this Rindler metric, we see that the (ρ, t) factor of the Schwarzschild

solution near r ∼ 2GM looks precisely like Rindler spacetime with metric

ds2 = −ρ2κ2 dt2 + dρ2 (2.12)

with the identification

κ =
1

4GM
.

This parameter κ is called the surface gravity of the black hole. For the Schwarzschild

solution, one can think of it heuristically as the Newtonian acceleration GM/r2
H at
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the horizon radius rH = 2GM . Both these parameters–the surface gravity κ and the

horizon radius rH play an important role in the thermodynamics of black hole.

This analysis demonstrates that the Schwarzschild spacetime near r = 2GM is not

singular at all. After all it looks exactly like flat Minkowski space times a sphere of

radius 2GM . So the curvatures are inverse powers of the radius of curvature 2GM and

hence are small for large 2GM .

2.4 Kruskal Extension

One important fact to note about the Rindler metric is that the coordinates u, v do

not cover all of Minkowski space because even when the vary over the full range

−∞ ≤ u ≤ ∞, −∞ ≤ v ≤ ∞

the Minkowski coordinate vary only over the quadrant

0 ≤ U ≤ ∞, −∞ < V ≤ 0. (2.13)

If we had written the flat metric in these ‘bad’, ‘Rindler-like’ coordinates, we would

find a fake singularity at ρ = 0 where the metric appears to become singular. But we

can discover the ‘good’, Minkowski-like coordinates U and V and extend them to run

from −∞ to ∞ to see the entire spacetime.

Since the Schwarzschild solution in the usual (r, t) Schwarzschild coordinates near

r = 2GM looks exactly like Minkowski space in Rindler coordinates, it suggests that

we must extend it in properly chosen ‘good’ coordinates. As we have seen, the ‘good’

coordinates near r = 2GM are related to the Schwarzschild coordinates in exactly the

same way as the Minkowski coordinates are related the Rindler coordinates.

In fact one can choose ‘good’ coordinates over the entire Schwarzschild spacetime.

These ‘good’ coordinates are called the Kruskal coordinates. To obtain the Kruskal

coordinates, first introduce the ‘tortoise coordinate’

r∗ = r + 2GM log

(
r − 2GM

2GM

)
. (2.14)

In the (r∗, t) coordinates, the metric is conformally flat, i.e., flat up to rescaling

ds2 = (1− 2GM

r
)(−dt2 + dr∗2). (2.15)

Near the horizon the coordinate r∗ is similar to the coordinate x in (2.11) and

hence u = t + r∗ and v = t − r∗ are like the Rindler (u, v) coordinates. This suggests
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that we define U, V coordinates as in (2.8) with κ = 1/4GM . In these coordinates the

metric takes the form

ds2 = −e−(u−v)κdU dV = −2GM

r
e−r/2GMdU dV (2.16)

We now see that the Schwarzschild coordinates cover only a part of spacetime because

they cover only a part of the range of the Kruskal coordinates. To see the entire

spacetime, we must extend the Kruskal coordinates to run from −∞ to ∞. This

extension of the Schwarzschild solution is known as the Kruskal extension.

Note that now the metric is perfectly regular at r = 2GM which is the surface

UV = 0 and there is no singularity there. There is, however, a real singularity at r = 0

which cannot be removed by a coordinate change because physical tidal forces become

infinite. Spacetime stops at r = 0 and at present we do not know how to describe

physics near this region.

2.5 Event Horizon

We have seen that r = 2GM is not a real singularity but a mere coordinate singularity

which can be removed by a proper choice of coordinates. Thus, locally there is nothing

special about the surface r = 2GM . However, globally, in terms of the causal structure

of spacetime, it is a special surface and is called the ‘event horizon’. An event horizon

is a boundary of region in spacetime from behind which no causal signals can reach the

observers sitting far away at infinity.

To see the causal structure of the event horizon, note that in the metric (2.11) near

the horizon, the constant radius surfaces are determined by

ρ2 =
1

κ2
e2κx =

1

κ2
eκue−κv = −UV = constant (2.17)

These surfaces are thus hyperbolas. The Schwarzschild metric is such that at r � 2GM

and observer who wants to remain at a fixed radial distance r = constant is almost

like an inertial, freely falling observers in flat space. Her trajectory is time-like and is

a straight line going upwards on a spacetime diagram. Near r = 2GM , on the other

hand, the constant r lines are hyperbolas which are the trajectories of observers in

uniform acceleration.

To understand the trajectories of observers at radius r > 2GM , note that to stay

at a fixed radial distance r from a black hole, the observer must boost the rockets to

overcome gravity. Far away, the required acceleration is negligible and the observers

are almost freely falling. But near r = 2GM the acceleration is substantial and the

observers are not freely falling. In fact at r = 2GM , these trajectories are light like.
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This means that a fiducial observer who wishes to stay at r = 2GM has to move at the

speed of light with respect to the freely falling observer. This can be achieved only with

infinitely large acceleration. This unphysical acceleration is the origin of the coordinate

singularity of the Schwarzschild coordinate system.

In summary, the surface defined by r = contant is timelike for r > 2GM , spacelike

for r < 2GM , and light-like or null at r = 2GM .

In Kruskal coordinates, at r = 2GM , we have UV = 0 which can be satisfied in

two ways. Either V = 0, which defines the ‘future event horizon’, or U = 0, which

defines the ‘past event horizon’. The future event horizon is a one-way surface that

signals can be sent into but cannot come out of. The region bounded by the event

horizon is then a black hole. It is literally a hole in spacetime which is black because no

light can come out of it. Heuristically, a black hole is black because even light cannot

escape its strong gravitation pull. Our analysis of the metric makes this notion more

precise. Once an observer falls inside the black hole she can never come out because to

do so she will have to travel faster than the speed of light.

As we have noted already r = 0 is a real singularity that is inside the event horizon.

Since it is a spacelike surface, once a observer falls insider the event horizon, she is sure

to meet the singularity at r = 0 sometime in future no matter how much she boosts

the rockets.

The summarize, an event horizon is a stationary, null surface. For instance, in

our example of the Schwarzschild black hole, it is stationary because it is defined as a

hypersurface r = 2GM which does not change with time. More precisely, the time-like

Killing vector ∂
∂t

leaves it invariant. It is at the same time null because grr vanishes at

r = 2GM . This surface that is simultaneously stationary and null, causally separates

the inside and the outside of a black hole.

2.6 Black Hole Parameters

From our discussion of the Schwarzschild black hole we are ready to abstract some

important general concepts that are useful in describing the physics of more general

black holes.

To begin with, a black hole is an asymptotically flat spacetime that contains a

region which is not in the backward lightcone of future timelike infinity. The boundary

of such a region is a stationary null surface call the event horizon. The fixed t slice of

the event horizon is a two sphere.

There are a number of important parameters of the black hole. We have introduced

these in the context of Schwarzschild black holes. For a general black holes their actual

values are different but for all black holes, these parameters govern the thermodynamics

of black holes.
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1. The radius of the event horizon rH is the radius of the two sphere. For a

Schwarzschild black hole, we have rH = 2GM .

2. The area of the event horizon AH is given by 4πr2
H . For a Schwarzschild black

hole, we have AH = 16πG2M2.

3. The surface gravity is the parameter κ that we encountered earlier. As we have

seen, for a Schwarzschild black hole, κ = 1/4GM .

3. Black Hole Entropy

3.1 Laws of Black Hole Mechanics

One of the remarkable properties of black holes is that one can derive a set of laws

of black hole mechanics which bear a very close resemblance to the laws of thermody-

namics. This is quite surprising because a priori there is no reason to expect that the

spacetime geometry of black holes has anything to do with thermal physics.

(0) Zeroth Law: In thermal physics, the zeroth law states that the temperature T

of body at thermal equilibrium is constant throughout the body. Otherwise heat

will flow from hot spots to the cold spots. Correspondingly for stationary black

holes one can show that surface gravity κ is constant on the event horizon. This

is obvious for spherically symmetric horizons but is true also more generally for

non-spherical horizons of spinning black holes.

(1) First Law: Energy is conserved, dE = TdS+µdQ+ΩdJ , where E is the energy, Q

is the charge with chemical potential µ and J is the spin with chemical potential

Ω. Correspondingly for black holes, one has dM = κ
8πG

dA + µdQ + ΩdJ . For a

Schwarzschild black hole we have µ = Ω = 0 because there is no charge or spin.

(2) Second Law: In a physical process the total entropy S never decreases, ∆S ≥ 0.

Correspondingly for black holes one can prove the area theorem that the net area

in any process never decreases, ∆A ≥ 0. For example, two Schwarzschild black

holes with masses M1 and M2 can coalesce to form a bigger black hole of mass

M . This is consistent with the area theorem since the area is proportional to the

square of the mass and (M1 + M2)2 ≥ M2
1 + M2

2 . The opposite process where a

bigger black hole fragments is however disallowed by this law.

Thus the laws of black hole mechanics, crystallized by Bardeen, Carter, Hawking,

and other bears a striking resemblance with the three laws of thermodynamics for a

body in thermal equilibrium. We summarize these results below in Table(1).
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Table 1: Laws of Black Hole Mechanics

Laws of Thermodynamics Laws of Black Hole Mechanics

Temperature is constant Surface gravity is constant

throughout a body at equilibrium. on the event horizon.

T= constant. κ =constant.

Energy is conserved. Energy is conserved.

dE = TdS + µdQ+ ΩdJ. dM = κ
8π
dA+ µdQ+ ΩdJ.

Entropy never decrease. Area never decreases.

∆S ≥ 0. ∆A ≥ 0.

Here A is the area of the horizon, M is the mass of the black hole, and κ is the

surface gravity which can be thought of roughly as the acceleration at the horizon1.

3.2 Hawking temperature

This formal analogy is actually much more than an analogy. Bekenstein and Hawking

discovered that there is a deep connection between black hole geometry, thermodynam-

ics and quantum mechanics.

Bekenstein asked a simple-minded but incisive question. If nothing can come out

of a black hole, then a black hole will violate the second law of thermodynamics. If we

throw a bucket of hot water into a black hole then the net entropy of the world outside

would seem to decrease. Do we have to give up the second law of thermodynamics in

the presence of black holes?

Note that the energy of the bucket is also lost to the outside world but that does

not violate the first law of thermodynamics because the black hole carries mass or

equivalently energy. So when the bucket falls in, the mass of the black hole goes up

accordingly to conserve energy. This suggests that one can save the second law of

thermodynamics if somehow the black hole also has entropy. Following this reasoning

and noting the formal analogy between the area of the black hole and entropy discussed

in the previous section, Bekenstein proposed that a black hole must have entropy

proportional to its area.

This way of saving the second law is however in contradiction with the classical

properties of a black hole because if a black hole has energy E and entropy S, then it

must also have temperature T given by

1

T
=
∂S

∂E
.

1We have stated these laws for black holes without spin and charge but more general form is known.
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For example, for a Schwarzschild black hole, the area and the entropy scales as S ∼M2.

Therefore, one would expect inverse temperature that scales as M

1

T
=

∂S

∂M
∼ ∂M2

∂M
∼M. (3.1)

Now, if the black hole has temperature then like any hot body, it must radiate. For

a classical black hole, by its very nature, this is impossible. Hawking showed that

after including quantum effects, however, it is possible for a black hole to radiate. In

a quantum theory, particle-antiparticle are constantly being created and annihilated

even in vacuum. Near the horizon, an antiparticle can fall in once in a while and the

particle can escapes to infinity. In fact, Hawking’s calculation showed that the spectrum

emitted by the black hole is precisely thermal with temperature T = ~κ
2π

= ~
8πGM

.

With this precise relation between the temperature and surface gravity the laws of

black hole mechanics discussed in the earlier section become identical to the laws of

thermodynamics. Using the formula for the Hawking temperature and the first law of

thermodynamics

dM = TdS =
κ~

8πG~
dA,

one can then deduce the precise relation between entropy and the area of the black

hole:

S =
Ac3

4G~
.

3.3 Euclidean Derivation of Hawking Temperature

Before discussing the entropy of a black hole, let us derive the Hawking temperature in

a somewhat heuristic way using a Euclidean continuation of the near horizon geometry.

In quantum mechanics, for a system with HamiltonianH, the thermal partition function

is

Z = Tre−βĤ , (3.2)

where β is the inverse temperature. This is related to the time evolution operator

e−itH/~ by a Euclidean analytic continuation t = −iτ if we identify τ = β~. Let us

consider a single scalar degree of freedom Φ, then one can write the trace as

Tre−τĤ/~ =

∫
dφ < φ|e−τEĤ/~|φ >

and use the usual path integral representation for the propagator to find

Tre−τĤ/~ =

∫
dφ

∫
DΦe−SE [Φ].
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Here SE[Φ] is the Euclidean action over periodic field configurations that satisfy the

boundary condition

Φ(β~) = Φ(0) = φ.

This gives the relation between the periodicity in Euclidean time and the inverse tem-

perature,

β~ = τ or T =
~
τ
. (3.3)

Let us now look at the Euclidean Schwarzschild metric by substituting t = −itE. Near

the horizon the line element (2.11) looks like

ds2 = ρ2κ2dt2E + dρ2.

If we now write κtE = θ, then this metric is just the flat two-dimensional Euclidean

metric written in polar coordinates provided the angular variable θ has the correct

periodicity 0 < θ < 2π. If the periodicity is different, then the geometry would have

a conical singularity at ρ = 0. This implies that Euclidean time tE has periodicity

τ = 2π
κ

. Note that far away from the black hole at asymptotic infinity the Euclidean

metric is flat and goes as ds2 = dτ 2
E + dr2. With periodically identified Euclidean time,

tE ∼ tE + τ , it looks like a cylinder. Near the horizon at ρ = 0 it is nonsingular and

looks like flat space in polar coordinates for this correct periodicity. The full Euclidean

geometry thus looks like a cigar. The tip of the cigar is at ρ = 0 and the geometry is

asymptotically cylindrical far away from the tip.

Using the relation between Euclidean periodicity and temperature, we then con-

clude that Hawking temperature of the black hole is

T =
~κ
2π
. (3.4)

3.4 Bekenstein-Hawking Entropy

Even though we have “derived” the temperature and the entropy in the context of

Schwarzschild black hole, this beautiful relation between area and entropy is true quite

generally essentially because the near horizon geometry is always Rindler-like. For all

black holes with charge, spin and in number of dimensions, the Hawking temperature

and the entropy are given in terms of the surface gravity and horizon area by the

formulae

TH =
~κ
2π
, S =

A

4G~
.

This is a remarkable relation between the thermodynamic properties of a black hole on

one hand and its geometric properties on the other.
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The fundamental significance of entropy stems from the fact that even though it is

a quantity defined in terms of gross thermodynamic properties, it contains nontrivial

information about the microscopic structure of the theory through Boltzmann relation

S = k log(d),

where d is the the degeneracy or the total number of microstates of the system of for a

given energy, and k is Boltzmann constant. Entropy is not a kinematic quantity like en-

ergy or momentum but rather contains information about the total number microscopic

degrees of freedom of the system. Because of the Boltzmann relation, one can learn

a great deal about the microscopic properties of a system from its thermodynamics

properties.

The Bekenstein-Hawking entropy behaves in every other respect like the ordinary

thermodynamic entropy. It is therefore natural to ask what microstates might account

for it. Since the entropy formula is given by this beautiful, general form

S =
Ac3

4G~
,

that involves all three fundamental dimensionful constants of nature, it is a valuable

piece of information about the degrees of freedom of a quantum theory of gravity.

4. Wald Entropy

In our discussion of Bekenstein-Hawking entropy of a black hole, the Hawking tem-

perature could be deduced from surface gravity or alternatively the periodicity of the

Euclidean time in the black hole solution. These are geometric asymptotic properties

of the black hole solution. However, to find the entropy we needed to use the first law

of black hole mechanics which was derived in the context of Einstein-Hilbert action

1

16π

∫
R
√
gd4x.

Generically in string theory, we expect corrections (both in α′ and gs) to the ef-

fective action that has higher derivative terms involving Riemann tensor and other

fields.

I =
1

16π

∫
(R +R2 +R4F 4 + · · · ).

How do the laws of black hole thermodynamics get modified?
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4.1 Bekenstein-Hawking-Wald Entropy

Wald derived the first law of thermodynamics in the presence of higher derivative terms

in the action. This generalization implies an elegant formal expression for the entropy

S given a general action I including higher derivatives

S = 2π

∫
ρ2

δI

δRµναβ

εµαενβ
√
hd2Ω,

where εµν is the binormal to the horizon, h the induced metric on the horizon, and the

variation of the action with respect to Rµναβ is to be carried out regarding the Riemann

tensor as formally independent of the metric gµν .

As an example, let us consider the Schwarzschild solution of the Einstein Hilbert

action. In this case, the event horizon is S2 which has two normal directions along r

and t. We can construct an antisymmetric 2-tensor εµν along these directions so that

εrt = εtr = −1.

L =
1

16π
Rµναβg

ναgµβ,
∂L

∂Rµναβ

=
1

16π

1

2
(gµαgνβ − gναgµβ)

Then the Wald entropy is given by

S =
1

8

∫
1

2
(gµαgνβ − gναgµβ)(εµνεαβ)

√
hd2Ω

=
1

8

∫
gttgrr · 2 =

1

4

∫
S2

√
hd2Ω =

AH
4
,

giving us the Bekenstein-Hawking formula as expected.

4.2 Wald entropy for extremal black holes

For non-spinning extremal black holes, the geometry is spherically symmetric. More-

over, the near horizon geometry becomes AdS2 × S2 just as in the case of Reissner-

Nordström black hole.

ds2 = −(1− r+/r)(1− r−/r)dt2 +
dr2

(1− r+/r)(1− r−/r)
+ r2(dθ2 + sin2 θdφ2) . (4.1)

Here (t, r, θ, φ) are the coordinates of space-time and r+ and r− are two parameters

labelling the positions of the outer and inner horizon of the black hole respectively

(r+ > r−). The extremal limit corresponds to r− → r+. We take this limit keeping the

coordinates θ, φ, and

σ :=
(2r − r+ − r−)

(r+ − r−)
, τ :=

(r+ − r−)t

2r2
+

, (4.2)
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fixed. In this limit the metric and the other fields take the form:

ds2 = r2
+

(
−(σ2 − 1)dτ 2 +

dσ2

σ2 − 1

)
+ r2

+

(
dθ2 + sin2(θ)dφ2

)
. (4.3)

This is the metric of AdS2×S2, with AdS2 parametrized by (σ, τ) and S2 parametrized

by (θ, φ). Although in the original coordinate system the horizons coincide in the

extremal limit, in the (σ, τ) coordinate system the two horizons are at σ = ±1. The

AdS2 space has SO(2, 1) ≡ SL(2,R) symmetry– the time translation symmetry is

enhanced to the larger SO(2, 1) symmetry. All known extremal black holes have this

property. Henceforth, we will take this as a definition of the near horizon geometry

of an extremal black hole. In four dimensions, we also have the S2 factor with SO(3)

isometries. Our objective will be to exploit the SO(2, 1) × SO(3) isometries of this

spacetime to considerably simply the formula for Wald entropy.

Consider an arbitrary theory of gravity in four spacetime dimensions with metric

gµν coupled to a set of U(1) gauge fields A
(i)
µ (i = 1, . . . , r for a rank r gauge group)

and neutral scalar fields φs (s = 1, . . . N) . Let xµ (µ = 0, . . . , 3 be local coordinates

on spacetime and L be an arbitrary general coordinate invariant local lagrangian. The

action is then

I =

∫
d4x
√
−det(g)L . (4.4)

For an extermal black hole solution of this action, the most general form of the near

horizon geometry and of all other fields consistent with SO(2, 1) × SO(3) isometry is

given by

ds2 = v1

(
−(σ2 − 1)dτ 2 +

dσ2

σ2 − 1

)
+ v2(dθ2 + sin2(θ)dφ2) , (4.5)

F (i)
στ = ei , F

(i)
θφ =

pi
4π

sin (θ) , φs = us . (4.6)

We can think of ei and pi (i = 1, . . . , r) as the electric and magnetic fields respectively

near the black hole horizon. The constants va (a = 1, 2) and us (s = 1, . . . , N) are to

be determined by solving the equations of motion. Let us define

f(u, v, e, p) :=

∫
dθdφ

√
− det(g)L|horizon . (4.7)

Using the fact that
√
− det(g) = sin(θ) on the horizon, we conclude

f(u, v, e, p) := 4πv1v2L|horizon (4.8)

Finally we define the entropy function

E(q, u, v, e, p) = 2π(eiqi − f(u, v, e, p)) , (4.9)
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where we have introduced the quantities

qi :=
∂f

∂ei
(4.10)

which by definition can be identified with the electric charges carried by the black hole.

This function called the ‘entropy function’ is directly related to the Wald entropy as

we summarize below.

1. For a black hole with fixed electric charges {qi} and magnetic charges {pi}, all

near horizon parameters v, u, e are determined by extremizing E with respect to

the near horizon parameters:

∂E
∂ei

= 0 i = 1, . . . r ; (4.11)

∂E
∂va

= 0, a = 1, 2; (4.12)

∂E
∂us

= 0, s = 1, . . . N . (4.13)

Equation (4.11) is simply the definition of electric charge whereas the other two

equations (4.12) and (4.13) are the equations of motion for the near horizon

fields. This follows from the fact that the dependence of E on all the near horizon

parameters other than ei comes only through f(u, v, e, p) which from (4.8) is

proportional to the action near the horizon. Thus extremization of the near

horizon action is the same as the extremization of E . This determines the variables

(u, v, e) in terms of (q, p) and as a result the value of the entropy function at the

extremum E∗ is a function only of the charges

E∗(q, p) := E(q, u∗(q, p), v∗(q, p), e∗(q, p), p) . (4.14)

2. Once we have determined the near horizon geometry, we can find the entropy

using Wald’s formula specialized to the case of extermal black holes:

Swald = −8π

∫
dθdφ

∂S

∂Rrtrt

√
−grrgtt . (4.15)

With some algebra it is easy to see that the entropy is given by the value of the

entropy function at the extremum:

Swald(q, p) = E∗(q, p) . (4.16)
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5. Exercises-I

Exercise 1.1: Reissner-Nordström (RN) black hole

The most general static, spherically symmetric, charged solution of the Einstein-

Maxwell theory (2.1) gives the Reissner-Nordström (RN) black hole. In what follows

we choose units so that G = ~ = 1. The line element is given by

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2, (5.1)

and the electromagnetic field strength by

Ftr = Q/r2.

The parameter Q is the charge of the black hole and M is the mass. For Q = 0 this

reduces to the Schwarzschild black hole.

1. Identify the horizon for this metric and examine the near horizon geometry to

show that it has two-dimensional Rindler spacetime as a factor.

2. Using the relation to the Rindler geometry determine the surface gravity κ as for

the Schwarzschild black hole and thereby determine the temperature and entropy of

the black hole. Show that in the extremal limit M → Q the temperature vanishes

but the entropy has a nonzero limit.

3. Show that for the extremal Reissner-Nordström black hole the near horizon geom-

etry is of the form AdS2 × S2.

Exercise 1.2 Uniformly accelerated observer and Rindler coordinates

Consider an astronaut in a spaceship moving with constant acceleration a in Minkowski

spactime with Minkowski coordinates (T, ~X). This means she feels a constant normal

reacting from the floor of the spaceship in her rest frame:

d2 ~X

dt2
= ~a ,

dT

dτ
= 1 (5.2)

where τ is proper time and ~a is the acceleration 3-vector.

1. Write the equation of motion in a covariant form and show that her 4-velocity

uµ := dXµ

dτ
is timelike whereas her 4-acceleration aµ is spacelike.

2. Show that if she is moving along the x direction, then her trajectory is of the form

T =
1

a
sinh(aτ) , X =

1

a
cosh(aτ) (5.3)

which is a hyperboloid. Find the acceleration 4-vector.
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3. Show that it is natural for her to use her proper time as the time coordinate and

introduce a coordinate frame of a family of observers with

T = ζ sinh(aη) , X = ζ cosh(aη) . (5.4)

By examining the metric, show that v = η − ζ and u = η + ζ are precisely the Rindler

coordinates introduced earlier with the acceleration parameter a identified with the

surface gravity κ.

Exercise 1.3 Perturbative half-BPS states

Consider a heterotic string wrapping w times around a circle carrying momentum n

along the circle. Recall that the heterotic strings consists of a right-moving superstring

and a left-moving bosonic string. In the NSR formalism in the light-cone gauge, the

worldsheet fields are:

• Right moving superstring X i(σ−) ψ̃i(σ−) i = 1 · · · 8

• Left-moving bosonic string X i(σ+), XI(σ+) I = 1 · · · 16,

where X i are the bosonic transverse spatial coordinates, ψ̃i are the worldsheet fermions,

and XI are the coordinates of an internal E8 × E8 torus. A BPS state is obtained by

keeping the right-movers in the ground state ( that is, setting the right-moving oscillator

number Ñ = 1
2

in the NS sector and Ñ = 0 in the R sector).

1. Using Virasoro constraints show that the mass of these states satisfies a BPS

bound.

2. Show that the degeneracy d(n,w) of such perturbative BPS-states with winding w

and momentum n depend only on the T-duality invariant Q2/2 = nw := N . and

hence we can talk about d(N).

3. Calculate the canonical partition function Z(β) := Tr
(
e−βL0

)
:=
∑
e−β(N−1)d(N).

Exercise 1.4 Cardy formula

The degeneracy d(N) can be obtained from the canonical partition function by the

inverse Laplace transform

d(N) =
1

2πi

∫
dβeβNZ(β). (5.5)

We would like to find an asymptotic expansion of d(N) for large N . This is given by

the ‘Cardy formula’ which utilizes the modular properties of the partition function.

1. Show that Z(β) is related to the modular form ∆(τ) of weight 12 by Z(β) =

1/∆(τ), with β := −2πiτ .

2. Using the modular properties of Z(β), show that for large N the degeneracy scales

as d(N) ∼ exp (4π
√
N).
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6. Exercises II

Exercise 2.1: Elements of String Compactifications

The heterotic string theory in ten dimensions has 16 supersymmetries. The bosonic

massless fields consist of the metric gMN , a 2-form field B(2), 16 abelian 1-form gauge

fields A(r) r = 1, . . . 16, and a real scalar field φ called the dilaton. The Type-IIB

string theory in ten dimensions has 32 supersymmetries. The bosonic massless fields

consist of the metric gMN ; two 2-form fields C(2), B(2); a self-dual 4-form field C(4); and

a complex scalar field λ called the dilaton-axion field.

One of the remarkable strong-weak coupling dualities is the ‘string-string’ duality

between heterotic string compactified on T 4× T 2 and Type-IIB string compactified on

K3× T 2. One piece of evidence for this duality is obtained by comparing the massless

spectrum for these compactifications and certain half-BPS states in the spectrum.

1. Show that the heterotic string compactified on T 4×S1×S̃1 leads a four dimensional

theory with N = 4 supersymmetry with 22 vector multiplets.

2. Show that the Type-IIB string compactified on K3× S1 × S̃1 leads a four dimen-

sional theory with N = 4 supersymmetry with 22 vector multiplets.

3. Show that the Kaluza-Klein monopole in Type-IIB string associated with the circle

S̃1 has the right structure of massless fluctuations to be identified with the half-

BPS perturbative heterotic string in the dual description.

Exercise 2.2: Wald entropy for extremal black holes

The entropy function formalism developed in §4 allows one to compute the entropy

of various extermal black holes very efficiently by simply solving certain algebraic equa-

tions (instead of partial differential equations). It also allows one to incorporate effects

of higher derivative corrections to the two-derivative action with relative ease.

1. Using the Einstein-Hilbert action (2.1) show that the Wald entropy of the Schwarzschild

black hole equals its Bekenstein-Hawking Entropy.

2. Using the two-derivative effective action (9.15) of string theory compute the Bekenstein-

Hawking Entropy of extremal quarter-BPS black holes in string theory with charge

vectors Q and P .
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7. Tutorial IA: Extremal Black Holes

7.1 Reissner-Nordström Metric

From the metric (5.1) we see that the event horizon for this solution is located at where

grr = 0, or

1− 2M

r
+
Q2

r2
= 0.

Since this is a quadratic equation in r,

r2 − 2QMr +Q2 = 0,

it has two solutions.

r± = M ±
√
M2 −Q2.

Thus, r+ defines the outer horizon of the black hole and r− defines the inner horizon

of the black hole. The area of the black hole is 4πr2
+.

Following the steps similar to what we did for the Schwarzschild black hole, we can

analyze the near horizon geometry to find the surface gravity and hence the tempera-

ture:

T =
κ~
2π

=

√
M2 −Q2

2π(2M(M +
√
M2 −Q2)−Q2)

(7.1)

S = πr2
+ = π(M +

√
M2 −Q2)2. (7.2)

These formulae reduce to those for the Schwarzschild black hole in the limit Q = 0.

7.2 Extremal Black Holes

For a physically sensible definition of temperature and entropy in (7.1) the mass must

satisfy the bound M2 ≥ Q2. Something special happens when this bound is saturated

and M = |Q|. In this case r+ = r− = |Q| and the two horizons coincide. We choose Q

to be positive. The solution (5.1) then takes the form,

ds2 = −(1−Q/r)2dt2 +
dr2

(1−Q/r)2
+ r2dΩ2, (7.3)

with a horizon at r = Q. In this extremal limit (7.1), we see that the temperature of

the black hole goes to zero and it stops radiating but nevertheless its entropy has a

finite limit given by S → πQ2. When the temperature goes to zero, thermodynamics

does not really make sense but we can use this limiting entropy as the definition of the

zero temperature entropy.
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For extremal black holes it more convenient to use isotropic coordinates in which

the line element takes the form

ds2 = H−2(~x)dt2 +H2(~x)d~x2

where d~x2 is the flat Euclidean line element δijdx
idxj and H(~x) is a harmonic function

of the flat Laplacian

δij
∂

∂xi
∂

∂xj
.

The extremal Reissner-Nordström solution is obtained by choosing

H(~x) =

(
1 +

Q

r

)
,

and the field strength is given by F0i = ∂iH(~x).

One can in fact write a multi-centered Reissner-Nordström solution by choosing a

more general harmonic function

H = 1 +
N∑
i=1

Qi

|~x− ~xi|
. (7.4)

The total mass M equals the total charge Q and is given additively

Q =
∑

Qi. (7.5)

The solution is static because the electrostatic repulsion between different centers bal-

ances gravitational attraction among them.

Note that the coordinate ρ in the isotropic coordinates should not be confused

with the coordinate r in the spherical coordinates. In the isotropic coordinates the

line-element is

ds2 = −
(

1 +
Q

ρ

)2

dt2 + (1 +
Q

ρ
)−2(dρ2 + ρ2dΩ2),

and the horizon occurs at ρ = 0. Contrast this with the metric in the spherical coordi-

nates (7.3) that has the horizon at r = M . The near horizon geometry is quite different

from that of the Schwarzschild black hole. The line element is

ds2 = − ρ
2

Q2
dt2 +

Q2

ρ2
(dρ2 + ρ2dΩ2)

= (− ρ
2

Q2
dt2 +

Q2

ρ2
dr2) + (Q2dΩ2).
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The geometry thus factorizes as for the Schwarzschild solution. One factor the 2-sphere

S2 of radius Q but the other (r, t) factor is now not Rindler any more but is a two-

dimensional Anti-de Sitter or AdS2. The geodesic radial distance in AdS2 is log r. As a

result the geometry looks like an infinite throat near r = 0 and the radius of the mouth

of the throat has radius Q.

Extremal RN black holes are interesting because they are stable against Hawking

radiation and nevertheless have a large entropy. We now try to see if the entropy can

be explained by counting of microstates. In doing so, supersymmetry proves to be a

very useful tool.

7.3 Supersymmetry, BPS representation, and Extremality

Some of the special properties of external black holes can be understood better by

embedding them in supergravity. We will be interested in these lectures in string

compactifications with N = 4 supersymmetry in four spacetime dimensions. The

N = 4 supersymmetry algebra contains in addition to the usual Poincaré generators,

sixteen real supercharges Qi
α where α = 1, 2 is the usual Weyl spinor index of 4d Lorentz

symmetry. and the internal index i = 1, . . . , 4 in the fundamental 4 representation of

an SU(4), the R-symmetry of the superalgebra. The relevant anticommutators for our

purpose are

{Qa
α, Q̄β̇b} = 2Pµσ

µ

αβ̇
δij

{Qa
α, Q

b
β} = εαβZ

ab {Q̄α̇a, Q̄β̇b} = Z̄abεα̇β̇ (7.6)

where σµ are (2 × 2) matrices with σ0 = −1 and σifori = 1, 2, 3 are the usual Pauli

matrices. Here Pµ is the momentum operator and Q are the supersymmetry generators

and the complex number Zab is the central charge matrix.

Let us first look at the representations of this algebra when the central charge is

zero. In this case the massive and massless representation are qualitatively different.

1. Massive Representation, M > 0, P µ = (M, 0, 0, 0)

In this case, (7.6) becomes {Qa
α, Q̄β̇b} = 2Mδαβ̇δ

a
b and all other anti-commutators

vanish. Up to overall scaling, these are the commutation relations for eight com-

plex fermionic oscillators. Each oscillator has a two-state representation, filled or

empty, and hence the total dimension of the representation is 28 = 256 which is

CPT self-conjugate.

2. Massless Representation M = 0, P µ = (E, 0, 0, E)

In this case (7.6) becomes {Q1
α, Q̄β̇1} = 2Eδαβ̇ and all other anti-commutators

vanish. Up to overall scaling, these are now the anti-commutation relations of
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two fermionic oscillators and hence the total dimension of the representation is

24 = 16 which is also CPT-self-conjugate.

The important point is that for a massive representation, with M = ε > 0, no matter

how small ε, the supermultiplet is long and precisely at M = 0 it is short. Thus the

size of the supermultiplet has to change discontinuously if the state has to acquire

mass. Furthermore, the size of the supermultiplet is determined by the number of

supersymmetries that are broken because those have non-vanishing anti-commutations

and turn into fermionic oscillators.

Note that there is a bound on the mass M ≥ 0 which simply follows from the

fact the using (7.6) one can show that the mass operator on the right hand side of

the equation equals a positive operator, the absolute value square of the supercharge

on the left hand side. The massless representation saturates this bound and is ‘small’

whereas the massive representation is long.

There is an analog of this phenomenon also for nonzero Zab. As explained in the

appendix, the central charge matrix Zab can be brought to the standard form by an

U(4) rotation

Z̃ = UZUT , U ∈ U(4) , Z̃ab =

(
Z1ε 0

0 Z2ε

)
, ε =

(
0 1

−1 0

)
. (7.7)

so we have two ‘central charges’ Z1 and Z2. Without loss of generality we can assume

|Z1| ≥ |Z2|. Using the supersymmetry algebra one can prove the BPS bound M −
|Z1| ≥ 0 by showing that this operator is equal to a positive operator (see appendix for

details). States that saturate this bound are the BPS states. There are three types of

representations:

• If M = |Z1| = |Z2|, then eight of of the sixteen supersymmetries are preserved.

Such states are called half-BPS. The broken supersymmetries result in four com-

plex fermionic zero modes whose quantization furnishes a 24-dimensional short

multiplet

• If M = |Z1| > |Z2|, then and four out of the sixteen supersymmetries are pre-

served. Such states are called quarter-BPS. The broken supersymmetries result in

six complex fermionic zero modes whose quantization furnishes a 26-dimensional

intermediate multiplet.

• If M > |Z1| > |Z2|, then no supersymmetries are preserved. Such states are called

non-BPS.The sixteen broken supersymmetries result in eight complex fermionic

zero modes whose quantization furnishes a 28-dimensional long multiplet.
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The significance of BPS states in string theory and in gauge theory stems from the

classic argument of Witten and Olive which shows that under suitable conditions, the

spectrum of BPS states is stable under smooth changes of moduli and coupling con-

stants. The crux of the argument is that with sufficient supersymmetry, for example

N = 4, the coupling constant does not get renormalized. The central charges Z1 and Z2

of the supersymmetry algebra depend on the quantized charges and the coupling con-

stant which therefore also does not get renormalized. This shows that for BPS states,

the mass also cannot get renormalized because if the quantum corrections increase the

mass, the states will have to belong a long representation . Then, the number of states

will have to jump discontinuously from, say from 16 to 256 which cannot happen under

smooth variations of couplings unless there is some kind of a ‘Higgs Mechanism’ or

there is some kind of a phase transition2

As a result, one can compute the spectrum at weak coupling in the region of moduli

space where perturbative or semiclassical counting methods are available. One can

then analytically continue this spectrum to strong coupling. This allows us to obtain

invaluable non-perturbative information about the theory from essentially perturbative

commutations.

8. Tutorial IB: BPS states in string theory

8.1 BPS dyons in theories with N = 4 supersymmetry

The massless spectrum of the toroidally compactified heterotic string on T 6 contains

28 different “photons” or U(1) gauge fields – one from each of the 22 vector multiplets

and 6 from the supergravity multiplet. As a result, the electric charge of a state is

specified by a 28-dimensional charge vector Q and the magnetic charge is specified by a

28-dimensional charge vector P . Thus, a dyonic state is specified by the charge vector

Γ =

(
Q

P

)
(8.1)

where Q and P are the electric and magnetic charge vectors respectively. Both Q and P

are elements of a self-dual integral lattice Π22,6 and can be represented as 28-dimensional

2Such ‘phase transitions’ do occur and the degeneracies can jump upon crossing certain walls in

the moduli space. This phenomenon called ‘wall-crossing’ occurs not because of Higgs mechanism but

because at the walls, single particle states have the same mass as certain multi-particle states and

can thus mix with the multi-particle continuum states. The wall-crossing phenomenon complicates

the analytic continuation of the degeneracy from weak coupling from strong coupling since one may

encounter various walls along the way. However, in many cases, the jumps across these walls can be

taken into account systematically.
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column vectors in R22,6 with integer entries, which transform in the fundamental rep-

resentation of O(22, 6;Z). We will be interested in BPS states.

• For half-BPS state the charge vectors Q and P must be parallel. These states

are dual to perturbative BPS states.

• For a quarter-BPS states the charge vectors Q and P are not parallel. There is

no duality frame in which these states are perturbative.

There are three invariants of O(22, 6;Z) quadratic in charges given by P 2, Q2, Q · P .

These three T-duality invariants will be useful in later discussions.

8.2 Spectrum of half-BPS states

An instructive example of BPS of states is provided by an infinite tower of BPS states

that exists in perturbative string theory.

Consider a perturbative heterotic string state wrapping around S1 with winding

number w and quantized momentum n. Let the radius of the circle be R and α′ = 1,

then one can define left-moving and right-moving momenta as usual,

pL,R =

√
1

2

( n
R
± wR

)
. (8.2)

The Virasoro constraints are then given by

L̃0 −
M2

4
+
p2
R

2
= 0 (8.3)

L0 −
M2

4
+
p2
L

2
= 0, (8.4)

where N and Ñ are the left-moving and right-moving oscillation numbers respectively.

The left-moving oscillator number is then

L0 =
∞∑
n=1

(
8∑
i=1

nai−na
i
n +

16∑
I=1

nβI−nβ
I
−n)− 1 := N − 1, (8.5)

where ai are the left-moving Fourier modes of the fields X i, and βI are the Fourier

modes of the fields XI . From the Virasoro constraint (8.3) we see that a BPS state

with Ñ = 0 saturates the BPS bound

M =
√

2pR, (8.6)
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and thus
√

2pR can be identified with the central charge of the supersymmetry algebra.

The right-moving ground state after the usual GSO projection is indeed 16-dimensional

as expected for a BPS-state in a theory with N = 4 supersymmetry. To see this, note

that the right-moving fermions satisfy anti-periodic boundary condition in the NS sector

and have half-integral moding, and satisfy periodic boundary conditions in the R sector

and have integral moding. The oscillator number operator is then given by

L̃0 =
∞∑
n=1

8∑
i=1

(nãi−nã
i
n + rψ̃i−rψ̃

i
r −

1

2
) := Ñ − 1

2
. (8.7)

with r ≡ −(n− 1
2
) in the NS sector and by

L̃0 =
∞∑
n=1

8∑
i=1

(nãi−nã
i
n + rψ̃i−rψ̃

i
r) (8.8)

with r ≡ (n− 1) in the R sector.

In the NS-sector then one then has Ñ = 1
2

and the states are given by

ψ̃i− 1
2
|0 >, (8.9)

that transform as the vector representation 8v of SO(8). In the R sector the ground

state is furnished by the representation of fermionic zero mode algebra {ψi0, ψ
j
0} = δij

which after GSO projection transforms as 8s of SO(8). Altogether the right-moving

ground state is thus 16-dimensional 8v ⊕ 8s.

We thus have a perturbative BPS state which looks pointlike in four dimensions

with two integral charges n and w that couple to two gauge fields g5µ and B5µ re-

spectively. It saturates a BPS bound M =
√

2pR and belongs to a 16-dimensional

short representation. This point-like state is our ‘would-be’ black hole. Because it

has a large mass, as we increase the string coupling it would begin to gravitate and

eventually collapse to form a black hole.

Microscopically, there is a huge multiplicity of such states which arises from the

fact that even though the right-movers are in the ground state, the string can carry

arbitrary left-moving oscillations subject to the Virasoro constraint. Using M =
√

2pR
in the Virasoro constraint for the left-movers gives us

N − 1 =
1

2
(p2
R − p2

L) := Q2/2 = nw. (8.10)

We would like to know the degeneracy of states for a given value of charges n and

w which is given by exciting arbitrary left-moving oscillations whose total worldsheet

– 29 –



energy adds up to N . Let us take w = 1 for simplicity and denote the degeneracy

by d(n) which we want to compute. As usual, it is more convenient to evaluate the

canonical partition function

Z(β) = Tr
(
e−βL0

)
(8.11)

≡
∞∑
−1

d(n)qn q := e−β . (8.12)

This is the canonical partition function of 24 left-moving massless bosons in 1 + 1

dimensions at temperature 1/β. The micro-canonical degeneracy d(n) is given then

given as usual by the inverse Laplace transform

d(n) =
1

2πi

∫
dβeβnZ(β). (8.13)

Using the expression (8.5) for the oscillator number s and the fact that

Tr(q−sα−nαn) = 1 + qs + q2s + q3s + · · · = 1

(1− qs)
, (8.14)

the partition function can be readily evaluated to obtain

Z(β) =
1

q

∞∏
s=1

1

(1− qs)24
. (8.15)

It is convenient to introduce a variable τ by β := −2πiτ , so thatq := e2πiτ . The

function

∆(τ) = q
∞∏
s=1

(1− qs)24, (8.16)

is the famous discriminant function. Under modular transformations

τ → aτ + b

cτ + d
a, b, c, d ∈ Z , with ad− bc = 1 (8.17)

it transforms as a modular form of weight 12:

∆(
aτ + b

cτ + d
) = (cτ + d)12∆(τ) , (8.18)

This remarkable property allows us to relate high temperature (β → 0) to low temprea-

ture (β → ∞) and derive a simple explicit expression for the asymptotic degeneracies

d(n) for n very large.
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8.3 Cardy Formula

We would like to evaluate this integral (8.13) for large N which corresponds to large

worldsheet energy. We would therefore expect that the integral will receive most of its

contributions from high temperature or small β region of the integrand. To compute

the large N asymptotics, we then need to know the small β asymptotics of the partition

function. Now, β → 0 corresponds to q → 1 and in this limit the asymptotics of Z(β)

are very difficult to read off from (8.15) because its a product of many quantities that

are becoming very large. It is more convenient to use the fact that Z(β) is the inverse

of ∆(τ) which is a modular form of weight 12 we can conclude

Z(β) = (β/2π)12Z(
4π2

β
). (8.19)

This allows us to relate the q → 1 or high temperature asymptotics to q → 0 or low

temperature asymptotics as follows. Now, Z(β̃) = Z
(

4π2

β

)
asymptotics are easy to

read off because as β → 0 we have β̃ →∞ or e−β̃ = q̃ → 0. As q̃ → 0

Z(β̃) =
1

q̃

∞∏
n=1

1

(1− q̃n)24
∼ 1

q̃
. (8.20)

This allows us to write

d(N) ∼ 1

2πi

∫ (
β

2π

)12

eβN+ 4π2

β dβ. (8.21)

This integral can be evaluated easily using saddle point approximation. The function

in the exponent is f(β) ≡ βN + 4π2

β
which has a maximum at

f ′(β) = 0 or N − 4π2

βc
= 0 or βc =

2π√
N
. (8.22)

The value of the integrand at the saddle point gives us the leading asymptotic expression

for the number of states

d(n) ∼ exp (4π
√
n). (8.23)

This implies that the black holes corresponding to these states should have nonzero

entropy that goes in general as

S ∼ 4π
√
nw. (8.24)

We would now like to identify the black hole solution corresponding to this state and

test if this microscopic entropy agrees with the macroscopic entropy of the black hole.
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The formula that we derived for the degeneracy d(N) is valid more generally in

any 1 + 1 CFT. In a general the partition function is a modular form of weight −k

Z(β) ∼ Z

(
4π2

β

)
βk.

which allows us to high temperature asymptotics to low temperature asymptotics for

Z(β̃) because

β̃ ≡ 4π2

β
→∞ as β → 0. (8.25)

At low temperature only ground state contributes

Z(β̃) = Tr exp(−β̃(L0 − c/24))

∼ exp(−E0β̃) ∼ exp(
β̃c

24
),

where c is the central charge of the theory. Using the saddle point evaluation as above

we then find.

d(N) ∼ exp (2π

√
cN

6
). (8.26)

In our case, because we had 24 left-moving bosons, c = 24, and then (8.26) reduces to

(8.23).
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9. Tutorial IIA: Elements of String Theory

9.1 N = 4 string compactifications and BPS spectrum

Superstring theories are naturally formulated in ten-dimensional Lorentzian spacetime

M10. A ‘compactification’ to four-dimensions is obtained by takingM10 to be a prod-

uct manifold R1,3 × X6 where X6 is a compact Calabi-Yau threefold and R1,3 is the

noncompact Minkowski spacetime. We will focus in these lectures on a compactifica-

tion of Type-II superstring theory when X6 is itself the product X6 = K3 × T 2. A

highly nontrivial and surprising result from the 90s is the statement that this compact-

ification is quantum equivalent or ‘dual’ to a compactification of heterotic string theory

on T 4 × T 2 where T 4 is a four-dimensional torus [15, 16]. One can thus describe the

theory either in the Type-II frame or the heterotic frame.

The four-dimensional theory in R1,3 resulting from this compactification has N = 4

supersymmetry3. The massless fields in the theory consist of 22 vector multiplets in

addition to the supergravity multiplet. The massless moduli fields consist of the S-

modulus λ taking values in the coset

SL(2,Z)\SL(2;R)/O(2;R), (9.1)

and the T-moduli µ taking values in the coset

O(22, 6;Z)\O(22, 6;R)/O(22;R)×O(6;R). (9.2)

The group of discrete identifications SL(2,Z) is called S-duality group. In the heterotic

frame, it is the electro-magnetic duality group [17, 18] whereas in the type-II frame, it

is simply the group of area- preserving global diffeomorphisms of the T 2 factor. The

group of discrete identifications O(22, 6;Z) is called the T-duality group. Part of the

T-duality group O(19, 3;Z) can be recognized as the group of geometric identifications

on the moduli space of K3; the other elements are stringy in origin and have to do with

mirror symmetry.

At each point in the moduli space of the internal manifold K3 × T 2, one has a

distinct four- dimensional theory. One would like to know the spectrum of particle

states in this theory. Particle states are unitary irreducible representations, or super-

multiplets, of the N = 4 superalgebra. The supermultiplets are of three types which

3This supersymmetry is a super Lie algebra containing ISO(1, 3)×SU(4) as the bosonic subalgebra

where ISO(1, 3) is the Poincaré symmetry of the R1,3 spacetime and SU(4) is an internal symmetry

called R-symmetry in physics literature. The odd generators of the superalgebra are called super-

charges. With N = 4 supersymmetry, there are eight complex supercharges which transform as a

spinor of ISO(1, 3) and a fundamental of SU(4).
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have different dimensions in the rest frame. A long multiplet is 256- dimensional, an

intermediate multiplet is 64-dimensional, and a short multiplet is 16- dimensional. A

short multiplet preserves half of the eight supersymmetries (i.e. it is annihilated by four

supercharges) and is called a half-BPS state; an intermediate multiplet preserves one

quarter of the supersymmetry (i.e. it is annihilated by two supercharges), and is called

a quarter-BPS state; and a long multiplet does not preserve any supersymmetry and is

called a non-BPS state. One consequence of the BPS property is that the spectrum of

these states is ‘topological’ in that it does not change as the moduli are varied, except

for jumps at certain walls in the moduli space [19].

An important property of the BPS states that follows from the superalgebra is that

their mass is determined by the charges and the moduli [19]. Thus, to specify a BPS

state at a given point in the moduli space, it suffices to specify its charges. The charge

vector in this theory transforms in the vector representation of the T-duality group

O(22, 6;Z) and in the fundamental representation of the S-duality group SL(2,Z). It

is thus given by a vector Γiα with integer entries

Γiα =

(
Qi

P i

)
where i = 1, 2, . . . 28; α = 1, 2 (9.3)

transforming in the (2, 28) representation of SL(2,Z) × O(22, 6;Z). The vectors Q

and P can be regarded as the quantized electric and magnetic charge vectors of the

state respectively. They both belong to an even, integral, self-dual lattice Π22,6. We

will assume in what follows that Γ = (Q,P ) in (9.3) is primitive in that it cannot be

written as an integer multiple of (Q0, P0) for Q0 and P0 belonging to Π22,6. A state is

called purely electric if only Q is non-zero, purely magnetic if only P is non- zero, and

dyonic if both P and Q are non-zero.

To define S-duality transformations, it is convenient to represent the S-modulus as

a complex field S taking values in the upper half plane. An S-duality transformation

γ ≡
(
a b

c d

)
∈ SL(2;Z) (9.4)

acts simultaneously on the chargesand the S-modulus by(
Q

P

)
→
(
a b

c d

)(
Q

P

)
; S → aS + b

cS + d
(9.5)

To define T-duality transformations, it is convenient to represent the T-moduli by

a 28× 28 of matrix µAI satisfying

µt Lµ = L (9.6)
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with the identification that µ ∼ kµ for every k ∈ O(22;R) × O(6;R). Here L is the

(28× 28) matrix

LIJ =

−C16 0 0

0 0 I6

0 I6 0

 , (9.7)

with Is the s × s identity matrix and C16 is the Cartan matrix of E8 × E8 . The

T-moduli are then represented by the matrix

M = µtµ (9.8)

which satisifies

Mt =M, MtLM = L (9.9)

In this basis, a T-duality transformation can then be represented by a (28×28) matrix

R with integer entries satisfying

RtLR = L, (9.10)

which acts simultaneously on the charges and the T-moduli by

Q→ RQ; P → RP ; µ→ µR−1 (9.11)

Given the matrix µAI , one obtains an embedding Λ22,6 ⊂ R22,6 of Π22,6 which allows

us to define the moduli-dependent charge vectors Q and P by

QA = µAI QI PA = µAI PI . (9.12)

Note that while QI are integers QA are not. In what follows we will not always write

the indices explicitly assuming that it will be clear from the context. In any case, the

final answers will only depend on the T-duality invariants which are all integers. The

matrix L has a 22-dimensional eigensubspace with eigenvalue −1 and a 6- dimensional

eigensubspace with eigenvalue +1. Given Q and P , one can define the ‘right-moving’

charges4 QR and PR as the projections of Q and P respectively onto the subspace with

eigenvalue +1. and the ‘left-moving’ charges as the projections

QR,L =
(1± L)

2
Q ; PR,L =

(1± L)

2
P (9.13)

The right-moving charges since for the heterotic string, QR are related to the right-

moving momenta. The central charges Z1 and Z2 defined in §A.2 are given in terms of

these right-moving charges by

4The right- moving charges couple to the graviphoton vector fields associated with the right-moving

chiral currents in the conformal field theory of the dual heterotic string.
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If the vectors Q and P are nonparallel, then the state is quarter-BPS. On the other

hand, if Q = pQ0 and P = qQ0 for some Q0 ∈ Π22,6 with p and q relatively prime

integers, then the state is half-BPS.

An important piece of nonperturbative information about the dynamics of the

theory is the exact spectrum of all possible dyonic BPS- states at all points in the

moduli space. More specifically, one would like to compute the number d(Γ)|λ,µ of

dyons of a given charge Γ at a specific point (λ, µ) in the moduli space. Computation

of these numbers is of course a very complicated dynamical problem. In fact, for a

string compactification on a general Calabi-Yau threefold, the answer is not known.

One main reason for focusing on this particular compactification on K3×T 2 is that in

this case the dynamical problem has been essentially solved and the exact spectrum of

dyons is now known. Furthermore, the results are easy to summarize and the numbers

d(Γ)|λ,µ are given in terms of Fourier coefficients of various modular forms.

In view of the duality symmetries, it is useful to classify the inequivalent duality

orbits labeled by various duality invariants. This leads to an interesting problem in

number theory of classification of inequivalent duality orbits of various duality groups

such as SL(2,Z)×O(22, 6;Z) in our case and more exotic groups like E7,7(Z) for other

choices of compactification manifold X6. It is important to remember though that a

duality transformation acts simultaneously on charges and the moduli. Thus, it maps

a state with charge Γ at a point in the moduli space (λ, µ) to a state with charge Γ′

but at some other point in the moduli space (λ′, µ′). In this respect, the half-BPS and

quarter-BPS dyons behave differently.

• For half-BPS states, the spectrum does not depend on the moduli. Hence d(Γ)|λ′,µ′ =

d(Γ)|λ,µ. Furthermore, by an S-duality transformation one can choose a frame

where the charges are purely electric with P = 0 and Q 6= 0. Single-particle

states have Q primitive and the number of states depends only on the T-duality

invariant integer n ≡ Q2/2. We can thus denote the degeneracy of half-BPS

states d(Γ)|S′,µ′ simply by d(n).

• For quarter-BPS states, the spectrum does depend on the moduli, and d(Γ)|λ′,µ′ 6=
d(Γ)|λ,µ. However, the partition function turns out to be independent of moduli

and hence it is enough to classify the inequivalent duality orbits to label the

partition functions. For the specific duality group SL(2,Z) × O(22, 6;Z) the

partition functions are essentially labeled by a single discrete invariant [20, 21, 22].

I = gcd(Q ∧ P ) , (9.14)
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The degeneracies themselves are Fourier coefficients of the partition function.

For a given value of I, they depend only on5 the moduli and the three T-duality

invariants (m,n, `) ≡ (P 2/2, Q2/2, Q · P ). Integrality of (m,n, `) follows from

the fact that both Q and P belong to Π22,6. We can thus denote the degeneracy

of these quarter-BPS states d(Γ)|λ,µ simply by d(m,n, l)|λ,µ. For simplicity, we

consider only I = 1 in these lectures.

9.2 String-String duality

It will be useful to recall a few details of the string-string duality between heterotic

compactified on T 4×S1× S̃1 and Type-IIB compactified on K3×S1× S̃1. Two pieces

of evidence for this duality will be relevant to our discussion.

• Low energy effective action

Both these compactifications result inN = 4 supergravity in four dimensions. With

this supersymmetry, the two-derivative effective action for the massless fields receives

no quantum corrections. Hence, if the two theories are to be dual to each other, they

must have identical 2-derivative action.

This is indeed true. Even though the field content and the action are very different

for the two theories in ten spacetime dimensions, upon respective compactifications,

one obtains N = 4 supergravity with 22 vector multiplets coupled to the supergravity

multiplet. This has been discussed briefly in one of the tutorials. For a given number of

vector multiplets, the two-derivative action is then completely fixed by supersymmetry

and hence is the same for the two theories. This was one of the properties that led to

the conjecture of a strong-weak coupling duality between the two theories.

For our purposes, we will be interested in the 2-derivative action for the bosonic

fields. This is a generalization of the Einstein-Hilbert-Maxwell action (2.1) which cou-

ples the metric, the moduli fields and 28 abelian gauge fields:

I =
1

32π

∫
d4x
√
−detGS [RG +

1

S2
Gµν(∂µS∂νS −

1

2
∂µa∂νa) +

1

8
GµνTr(∂µML∂νML)

−Gµµ′Gνν′F (i)
µν (LML)ijF

(j)
µ′ν′ −

a

S
Gµµ′Gνν′F (i)

µνLijF̃
(j)
µ′ν′ ] i, j = 1, . . . , 28. (9.15)

The expectation value of the dilaton field S is related to the four-dimensional string

coupling g4

S ∼ 1

g2
4

, (9.16)

5There is an additional dependence on arithmetic T-duality invariants but the degeneracies for

states with nontrivial values of these T-duality invariants can be obtained from the degeneracies

discussed here by demanding S-duality invariance [22].

– 37 –



and a is the axion field. The metric Gµν is the metric in the string frame and is related

to the metric gµν in Einstein frame by the Weyl rescaling

gµν = SGµν (9.17)

• BPS spectrum

Another requirement of duality is that the spectrum of BPS states should match

for the two dual theories. Perturbative states in one description will generically get

mapped to some non-perturbative states in the dual description. As a result, this

leads to highly nontrivial predictions about the nonpertubative spectrum in the dual

description given the perturbative spectrum in one description.

As an example, consider the perturbative BPS-states in the heterotic string dis-

cussed in the tutorial. A heterotic string wrapping w times on S1 and carrying momen-

tum n gets mapped in Type-IIA to the NS5-brane wrapping w times on K3× S1 and

carrying momentum n. One can go from Type-IIA to Type-IIB by a T-duality along

the S̃1 circle. Under this T-duality, the NS5-brane gets mapped to a KK-monopole

with monopole charge w associated with the circle S̃1 and carrying momentum n. This

thus leads to a prediction that the spectrum of KK-monopole carrying momentum in

Type-IIB should be the same as the spectrum of perturbative heterotic string discussed

earlier. We will verify this highly nontrivial prediction in the next subsection for the

case of w = 1.

9.3 Kaluza-Klein monopole and the heterotic string

The metric of the Kaluza-Klein monopole is given by the so called Taub-NUT metric

ds2
TN =

(
1 +

R0

r

)(
dr2 + r2(dθ2 + sin2 θdφ2)

)
+R2

0

(
1 +

R0

r

)−1

(2 dψ + cos θdφ)2

(9.18)

with the identifications:

(θ, φ, ψ) ≡ (2π − θ, φ+ π, ψ +
π

2
) ≡ (θ, φ+ 2π, ψ + π) ≡ (θ, φ, ψ + 2π) . (9.19)

Here R0 is a constant determining the size of the Taub-NUT spaceMTN . This metric

satisfies the Einstein equations in four-dimensional Euclidean space. The metric (9.18)

admits a normalizable self-dual harmonic form ω, given by

ωKK =
r

r +R0

dσ3 +
R0

(r +R0)2
dr ∧ σ3 , σ3 ≡

(
dψ +

1

2
cos θdφ

)
. (9.20)

We are interested in the Type-IIB string theory compactified on K3 × S̃1 × S1 in

the presence of a Kaluza-Klein monopole, with S̃1 identified with the asymptotic circle
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of the Taub-NUT space labeled by the coordinate ψ in (9.18). Thus, we want analyze

the massless fluctuations of Type-IIB string on K3× S1×MTN space. Let y and ỹ be

the coordinates of S1 and S̃1 respectively with y ∼ y + 2πR and ỹ ∼ ỹ + 2πR̃. When

the radius R of the S1 is large compared to the size of the K3 and the radius R̃ of

the S̃1 circle, we obtain an ‘effective string’ wrapping the S1 with massless spectrum

that agrees with the massless spectrum of a fundmental heterotic string wrapping S1.

These massless modes can be deduced as follows:

• The center-of-mass of the KK-monopole can be located anywhere in R3 and its

position is specified by a vector ~a. Thus, we have

r := |~x− ~a| , cos θ :=
x3 − a3

r
, tanφ :=

x1 − a1

x2 − a2
. (9.21)

if (x1, x2, x3) are the coordinates of R3. We can allow these coordinates to fluc-

tuate in the t and y directions and hence we will obtain three non-chiral massless

ai(t, y) scalar fields along the effective string associated with oscillations of the

three coordinates of the center-of-mass of the KK monopole.

• There are two additional non-chiral scalar fields b(t, y) and c(t, y) obtained by

reducing the two 2-form fields B(2) and C2 of Type-IIB along the harmonic 2-

form (9.20):

B(2) = b(t, y) · ωKK C(2) = c(t, y) · ωKK (9.22)

• There are 3 right-moving arR(t+ y) , r = 1, 2, 3 and 19 left-moving scalars asL(t−
y) , s = 1, . . . , 19 obtained by reducing the self-dual 4-form field C(4) of type

IIB theory. This works as follows. The field C(4) can be reduced taking it as a

tensor product of the harmonic 2-form (9.20) and a harmonic 2-form ωK3
α for α =

1, . . . , 22 on K3. This gives rise to rise to a chiral scalar field on the world-volume.

The chirality of the scalar field is correlated with whether the corresponding

harmonic 2-form ωK3
α is self-dual or anti-self-dual. Since K3 has three self-dual

ωK3+
r and nineteen anti-selfdual harmonic 2-forms ωK3−

s , we get 3 right-moving

and 19 left-moving scalars:

C(4) =
3∑
r=1

asR(t+ y) · ωK3−
s ∧ ωKK +

19∑
s=1

asL(t− y) · ωK3−
s ∧ ωKK . (9.23)

The KK-monopole background breaks 8 of the 16 supersymmetries of Type-II on K3×
S1. Consequently, there are eight right-moving fermionic fields

Sa(t+ y) a = 1, . . . , 8
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which arise as the goldstinos of these eight broken supersymmetries. This is precisely

the field content of the 1 + 1 dimensional worldsheet theory of the heterotic string

wrapping S1 as we discussed in the tutorial (8.2).

10. Tutorial IIB: Some calculations using the entropy function

10.1 Entropy of Reisnner-Nordström black holes

Consider the Einstein-Maxell theory given by the action (2.1) and a solution given by

ds2 = v1

(
−(σ2 − 1)dτ 2 +

dσ2

σ2 − 1

)
+ v2

(
dθ2 + sin2(θ)dφ2

)
Fστ = e , Fθφ =

p

4π
sin (θ) (10.1)

Substituting into the action we obtain the entropy function

E(q, v, e, q, p) ≡ 2π (eiqi − f(v, e, p))

= 2π

[
eq − 4πv1 v2

{
1

16π

(
− 2

v1

+
2

v2

)
+

1

2v2
1

e2 − 1

32π2v2
2

p2

}]
.(10.2)

The extermization equations

∂E
∂e

= 0 ,
∂E
∂v1

= 0 ,
∂E
∂v2

= 0 (10.3)

can be easily solved to obtain

v1 = v2 =
q2 + p2

4π
, e =

q

4π
(10.4)

and

Swald(q, p) = E∗(q, p) =
q2 + p2

4
. (10.5)

10.2 Entropy of dyonic black holes

In this case, the fields near the horizon take the form

ds2 =
v1

16

(
−(σ2 − 1)dτ 2 +

dσ2

σ2 − 1

)
+
v2

16

(
dθ2 + sin2θdφ2

)
F (i)
στ =

1

4
ei , F

(i)
θφ =

1

16π
pi , Mij = uij, S = us, a = ua . (10.6)
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Substituting into the action we get

f(uS, ua, uM , ~v, ~e, ~p) ≡
∫
dθdφ

√
− detGL

=
1

8
v1 v2 uS

[
− 2

v1

+
2

v2

+
2

v2
1

ei(LuML)ijej −
1

8π2v2
2

pi(LuML)ijpj +
ua

πuSv1v2

eiLijpj

]
.

(10.7)

Hence the entropy function becomes

E(q, uS, ua, uM , v, e, p) := 2π (eiqi − f(uS, ua, uM , v, e, p))

= 2π

[
eiqi −

1

8
v1 v2 uS

{
− 2

v1

+
2

v2

+
2

v2
1

ei(LuML)ijej

− 1

8π2v2
2

pi(LuML)ijpj +
ua

πuSv1v2

eiLijpj

}]
. (10.8)

Eliminating ei from (10.2) using the equation ∂E/∂ei = 0 we get:

E(q, uS, ua, uM , v, e(u, v, q, p), p) (10.9)

= 2π

[
uS
4

(v2 − v1) +
v1

v2uS
qTuMq +

v1

64π2v2uS
(u2

S + u2
a)p

TLuMLp−
v1

4πv2uS
ua q

TuMLp

]
.

We can simplify the formulæ by defining new charge vectors:

Qi = 2qi, Pi =
1

4π
Lijpj . (10.10)

In terms of ~Q and ~P the entropy function E is given by:

E =
π

2

[
uS(v2 − v1) +

v1

v2uS

(
QTuMQ+ (u2

S + u2
a)P

TuMP − 2uaQ
TuMP

) ]
. (10.11)

Substituting (10.19) into (10.11) and using (10.15), 10.16, we get:

E =
π

2

[
uS(v2 − v1) +

v1

v2

{
Q2

uS
+
P 2

uS
(u2

S + u2
a)− 2

ua
uS

Q · P
}]

. (10.12)

Note that we have expressed the right hand side of this equation in an T-duality

invariant form. Written in this manner, eq.10.12 is valid for general ~P , ~Q satisfying

P 2 > 0, Q2 > 0, (Q · P )2 < Q2P 2 . (10.13)

We now need to find the extremum of E with respect to uS, ua, uMij, v1 and v2. In

general this leads to a complicated set of equations. We can simplify the analysis
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by using the O(22, 6;R) symmetries (9.11) of the two-derivative action (9.15) which

induces the following transformations on the various parameters:

ei → Ωijej, pi → Ωijpj, uM → ΩuMΩT ,

qi → (ΩT )−1
ij qj , Qi → (ΩT )−1

ij Qj, Pi → (ΩT )−1
ij Pj . (10.14)

The entropy function (10.11) is invariant under these transformations. Since at its

extremum with respect to uMij the entropy function depends only on ~P , ~Q, v1, v2, uS
and ua it must be a function of the O(22, 6) invariant combinations:

Q2 = QiLijQj, P 2 = PiLijPj, Q · P = QiLijPj , (10.15)

besides v1, v2, uS and ua. Let us for definiteness take Q2 > 0, P 2 > 0, and (Q · P )2 <

Q2P 2. In that case with the help of an SO(22, 6) transformation we can make

(Ir − L)ijQj = 0, (Ir − L)ijPj = 0 , (10.16)

where Ir denotes the r× r identity matrix. This is most easily seen by diagonalizing L

to the form (
−I22 0

0 I6

)
. (10.17)

In this case Q and P satisfying (10.16) will have

Qi = 0, Pi = 0, for 1 ≤ i ≤ 22 . (10.18)

Let us now see that for P and Q satisfying this condition, every term in (10.11) is

extremized with respect to uM for

uM = Ir . (10.19)

Clearly a variation δuMij with either i or j in the range [7, r] will give vanishing con-

tribution to each term in δE computed from (10.11). On the other hand due to the

constraint (9.9) on M , any variation δMij (and hence δuMij) with 1 ≤ i, j ≤ 6 must

vanish, since in this subspace satisfying (9.9) requires M to be both symmetric and

orthogonal. Thus each term in δE vanishes under all allowed variations of uM .

We should emphasize that (10.19) is not the only possible value of uM that ex-

tremizes E . Any uM related to (10.19) by an O(22, 6) transformation that preserves

the vectors ~Q and ~P will extremize E . Thus there is a family of extrema representing

flat directions of E . However as we have argued in §4, the value of the entropy is

independent of the choice of uM .
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It remains to extremize E with respect to v1, v2, uS and ua. Extremization with

respect to v1 and v2 give:

v1 = v2 = u−2
S

(
Q2 + P 2(u2

S + u2
a)− 2uaQ · P

)
. (10.20)

Substituting this into (10.12) gives:

E =
π

2

1

uS

{
Q2 − 2uaQ · P + P 2(u2

S + u2
a)
}
. (10.21)

It is convenient to write it in a manifestly SL(,Z) invariant way as

E =
π

2

1

λ2

|Q+ λP |2 . (10.22)

if we write λ = ua + iuS.

Finally, extremizing with respect to ua, uS we get

uS =

√
Q2P 2 − (Q · P )2

P 2
, ua =

Q · P
P 2

, v1 = v2 = 2P 2 . (10.23)

The black hole entropy, given by the value of E for this configuration, is

SBH = π
√
Q2P 2 − (Q · P )2 . (10.24)
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11. Spectrum of quarter-BPS dyons

In this section we will derive the spectrum of quarter-BPS dyons in the simplest string

compactification with N = 4 in four spacetime dimensions. Surprisingly, the partition

function for counting these dyons turns out to involve interesting mathematical objects

called Siegel modular forms which are a natural generalizations for the group Sp(2,Z)

of usual modular forms of the group Sp(1,Z) ∼ SL(2,Z).

11.1 Siegel modular forms

Let Sp(2,Z) be the group of (4× 4) matrices g with integer entries satisfying gJgt = J

where

J ≡
(

0 −I2

I2 0

)
(11.1)

is the symplectic form. We can write the element g in block form as(
A B

C D

)
, (11.2)

where A,B,C,D are all (2 × 2) matrices with integer entries. Then the condition

gJgt = J implies

ABt = BAt, CDt = DCt, ADt −BCt = 1 , (11.3)

Let H2 be the (genus two) Siegel upper half plane, defined as the set of (2×2) symmetric

matrix Ω with complex entries

Ω =

(
τ z

z σ

)
(11.4)

satisfying

Im(τ) > 0, Im(σ) > 0, det(Im(Ω)) > 0 . (11.5)

An element g ∈ Sp(2,Z) of the form (11.2) has a natural action on H2 under which it

is stable:

Ω→ (AΩ +B)(CΩ +D)−1. (11.6)

The matrix Ω can be thought of as the period matrix of a genus two Riemann surface6

on which there is a natural symplectic action of Sp(2,Z).

A Siegel form F (Ω) of weight k is a holomorphic function H2 → C satisfying

F [(AΩ +B)(CΩ +D)−1] = {det (CΩ +D)}kF (Ω). (11.7)

6See [23, 24, 25] for a discussion of the connection with genus-two Riemann surfaces.
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A Siegel modular form can be written in terms of its Fourier series

F (Ω) =
∑

a(n, r,m) qnyrpm . (11.8)

The Siegel modular form which makes its appearance in the present physics problem

of counting N = 4 dyons is the Igusa form Φ10 which is the unique (cusp) form7 of

weight 10. This Siegel modular form is a very interesting mathematical object and

has a number of useful properties directly relevant for the present physical application.

In particular, it can be constructed very explicitly in two different ways in terms of

familiar modular forms and theta functions by using two different ‘lifts’8

• Additive lift

Consier the function ψ(τ, z)

ψ(τ, z) = η18(τ)ϑ2
1(τ, z) . (11.9)

which is a weak Jacobi form of weight 1 and index 10 (see §B.2 for definitions).

It admits a Fourier expansion

ψ(τ, z) =
∑
n,r

c10(n, r)qnyr q := e2πiτ y := e2πiz . (11.10)

From the properties of weak Jacobi forms, it follows that the Fourier coeffi-

cients c10(n, r) depend only on the combination 4n− r2 and hence we can write

c10(n, r) = C10(4n − r2) for some function C10. The additive lift then gives the

Fourier expansion of the Igusa cusp form in terms of the Fourier coefficients of

ψ(τ, z) as

Φ10(Ω) =
∑
n,m,l

a(m,n, l)pmqnyl , p := e2πiσ , (11.11)

where a(m,n, l) are defined by

a(n, r,m) =
∑

d|(n,r,m)
d≥1

dk−1C10(
4mn− r2

d2
) (11.12)

This lift is ‘additive’ in that it gives a sum representation of the Igusa form.

7It is called a ‘cusp’ form because it vanishes at ‘cusps’ which correspond to z = 0 and its images.
8These constructions are called lifts because they allow us to construct the Igusa cusp form which

is a function of three variables using the Fourier expansions of a weak Jacobi forms which are functions

of only two variables.
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• Multiplicative lift

Consider the function χ(τ, z)

χ(τ, z) = 8

(
ϑ2(τ, z)2

ϑ2(τ)2
+
ϑ3(τ, z)2

ϑ3(τ)2
+
ϑ4(τ, z)2

ϑ4(τ)2

)
, (11.13)

which is weak Jacobi form of weight 0 and index 1 with a Fourier expansion

χ(τ, z) =
∑
n,r

c0(n, l)qnyl q := e2πiτ , y := e2πiz . (11.14)

This function arises in physics applications as the elliptic genus of the K3 surface

(see appendix (C) for details). Once again, c0(n, l) depend only on the combina-

tion d := 4n− l2 and hence we can write

c0(n, l) = C0(4n− l2) (11.15)

which defines the function C0(d). The multiplicative lift gives a product repre-

sentation of the Igusa cusp form in terms of C0(d):

Φ10(Ω) = pqy
∏

(s,t,r)>0

(1− psqtyr)C0(4st−r2), (11.16)

in terms of C0 given by (C.10, 11.14). Here the notation (s, t, r) > 0 means that

either s > 0, t, r ∈ Z, or s = 0, t > 0, r ∈ Z, or s = t = 0, r < 0.

This lift is ‘multiplicative’ in that it gives a product representation of the Igusa

form.

11.2 Summary of Results

Siegel forms occur naturally in the context of counting of quarter-BPS dyons. The

partition function for these dyons depends on three (complexified) chemical potentials

(σ, τ, z), conjugate to the three T-duality invariant integers (m,n, `) respectively and

is given by

Z(Ω) =
1

Φ10(Ω)
. (11.17)

Note that this is very analogous to the case of half-BPS states discussed in the tutorials

where the partition function was

Z(τ) =
1

∆(τ)
. (11.18)

was the inverse of a modular form ∆(τ) of weight 12 of the group Sp(1,Z).
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Given the partition function (11.18), one can extract the black hole degeneracies

from the Fourier coefficients. However, there is one complication that also turns out to

have interesting physical implications. The Igusa cusp form has double zeros at z = 0

and its images. The partition function is therefore a meromorphic Siegel form (11.7) of

weight −10 with double poles at these divisors. As a result, different Fourier contours

would give different answers for the degeneracies and there appears to be an ambiguity

in the choice of the Fourier contour.

This ambiguity turns out to have a very nice physical interpretation. The spectrum

of quarter-BPS dyons actually has a moduli dependence. For a given charge vector Γ,

there are single-centered black hole solutions that exist everywhere in the moduli space.

However, in addition, there can be two-centered solutions such that one center carries

charge Γ1 and the other Γ2 with Γ = Γ1 + Γ2. A simple example is when one charge

center has charge (Q, 0) and the other has charge (0, P ). The distance between these

two centers is fixed in terms of the charges and the moduli fields.

As one changes the moduli, the distance between the two centers can go to infinity

and the two-centered solution can decay at certain walls i. e. surfaces of co-dimension

one. Thus, on one side of the wall, we have only a single-centered black hole whereas on

the other side one has the single-centered black hole as well as the two-centered black

hole. Hence the degeneracy on one side of the wall is different from the degeneracy

on the other side of the all. Upon crossing the wall, the degeneracy jumps. This

phenomenon is known as the ‘wall- crossing phenomenon’. The moduli space is thus

divided up into chambers separated by walls. The degeneracy is different from chamber

to chamber.

This dependence of the degeneracy on the chamber in the moduli space is nicely

captured by the dependence of the Fourier coefficients on the choice of the contour. As

we will explain below, the choice of the contour depends on the moduli in a precise way.

As the moduli are varied, the contour is deformed. The dependence of the contour on

the moduli is such that as the moduli hit a wall in the moduli space, the contour hits

a pole of the partition function. The poles are thus nicely correlated with the walls.

Crossing the wall in the moduli space corresponds to crossing a pole in the contour

space. The jump in the degeneracy upon crossing the wall is given by the residue at

the pole that is crossed by the contour.

To see this more precisely, note that the three quadratic T- duality invariants of a

given dyonic state can be organized as a 2× 2 symmetric matrix

Λ =

(
Q ·Q Q · P
Q · P P · P

)
=

(
2n `

` 2m

)
, (11.19)

where the dot products are defined using the O(22, 6;Z) invariant metric L. The matrix
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Ω in (11.18) and (11.4) can be viewed as the matrix of complex chemical potentials con-

jugate to the charge matrix Λ. The charge matrix Λ is manifestly T-duality invariant.

Under an S-duality transformation (9.4), it transforms as

Λ→ γΛγt (11.20)

There is a natural embedding of this physical S-duality group SL(2,Z) into Sp(2,Z):

(
A B

C D

)
=

(
(γt)−1 0

0 γ

)
=


d −c 0 0

−b a 0 0

0 0 a b

0 0 c d

 ∈ Sp(2,Z). (11.21)

The embedding is chosen so that Ω→ (γT )−1Ωγ−1 and Tr(Ω ·Λ) in the Fourier integral

is invariant. This choice of the embedding ensures that the physical degeneracies ex-

tracted from the Fourier integral are S-duality invariant if we appropriately transform

the moduli at the same time as we explain below.

To specify the contours, it is useful to define the following moduli-dependent quan-

tities. One can define the matrix of right-moving T-duality invariants

ΛR =

(
QR ·QR QR · PR
QR · PR PR · PR

)
. (11.22)

which depends both on the integral charge vectors N,M as well as the T-moduli µ One

can then define two matrices naturally associated to the S-moduli λ = λ1 + iλ2 and the

T- moduli µ respectively by

S =
1

λ2

(
|λ|2 λ1

λ1 1

)
, T =

ΛR

| det(ΛR)| 12
. (11.23)

Both matrices are normalized to have unit determinant. In terms of them, we can

construct the moduli-dependent ‘central charge matrix’

Z = | det(ΛR)|
1
4

(
S + T

)
, (11.24)

whose determinant equals the BPS mass

MQ,P = | detZ|. (11.25)

We define

Ω̃ ≡
(
σ −z
−z τ

)
(11.26)
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related to Ω by an SL(2,Z) transformation

Ω̃ = ŜΩŜ−1 where Ŝ =

(
0 1

−1 0

)
(11.27)

so that, under a general S-duality transformation γ, we have the transformation Ω̃ →
γΩ̃γT as Ω→ (γT )−1Ωγ−1.

With these definitions, Λ,ΛR,Z and Ω̃ all transform as X → γXγT under an S-

duality transformation (9.4) and are invariant under T-duality transformations. The

moduli-dependent Fourier contour can then be specified in a duality-invariant fashion

by [26]

C = {ImΩ̃ = ε−1Z; 0 ≤ Re(τ),Re(σ),Re(z) < 1}, (11.28)

where ε → 0+. For a given set of charges, the contour depends on the moduli

λ, µ through the definition of the central charge vector (11.24). The degeneracies

d(m,n, l)|λ,µ of states with the T-duality invariants (m,n, l), at a given point (λ, µ)

in the moduli space are then given by9

d(m,n, l)|λ,µ=

∫
C
e−iπTr(Ω·Λ) Z(Ω) d3Ω . (11.29)

This contour prescription thus specifies how to extract the degeneracies from the

partition function for a given set of charges and in any given region of the moduli space.

In particular, it also completely summarizes all wall-crossings as one moves around in

the moduli space for a fixed set of charges. Even though the indexed partition function

has the same functional form throughout the moduli space, the spectrum is moduli

dependent because of the moduli dependence of the contours of Fourier integration

and the pole structure of the partition function. Since the degeneracies depend on the

moduli only through the dependence of the contour C, moving around in the moduli

space corresponds to deforming the Fourier contour.

With this understanding of the wall crossing and the contour prescription, we have

completely specified how to extract dyon degeneracies from the Fourier coefficients of

the partition function. The partition function in turn is constructed explicitly in terms

of Fourier coefficients of known objects such as ψ or χ. We will not here analyze

wall-crossing in any further detail which can be found in [20, 27, 26].

To summarize, given the partition function the degeneracies are extracted as above.

It remains to derive the partition function. The the logic of the derivation is as follows:

9The physical degeneracies have an additional multiplicative factor of (−1)`+1 which we omit here

for simplicity of notation in later chapaters.
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1. We derive the degeneracy for a special charge configuration in one corner of the

moduli space.

2. Using constraints from wall-crossing, we extend this answer for the same set of

charges to all over the moduli space.

3. Using duality symmetries, we extend this answer to all possible values of charges.

With this general strategy in mind, we turn to the derivation of the dyon partition

function for a special representative set of charges in a certain weakly coupled region

of the moduli space.

12. Derivation of the microscopic partition function

The product representation of the Igusa form is particularly useful for the physics

application because it is closely related to the generating function for the elliptic genera

of symmetric products of K3 introduced earlier. This is a consequence of the fact that

the multiplicative lift of the Igusa form is obtained starting with the elliptic genus

of a single copy K3 as the input. The generating function for the elliptic genera of

symmetric products of K3 is defined by

Ẑ(σ, τ, z) :=
∞∑

m=−1

χm+1(τ, z)pm (12.1)

where χm(τ, z) is the elliptic genus of Symm(K3) with χ0(τ, z) ≡ 1 and χ1(τ, z) ≡
χ(τ, z). A standard orbifold computation [28] gives

Ẑ(σ, τ, z) =
1

p

∏
s>0,t≥0,l

r

(1− psqtyr)C0(4st−r2)
(12.2)

in terms of the Fourier coefficients C0 of the elliptic genus of a single copy of K3. As

we will explain in the next section, this partition function captures the degeneracies of

five-dimensional Strominger-Vafa black holes with charges D1-D5-P.

Comparing the product representation for the Igusa form (11.16) with (12.2), we

get the relation:

Z(Ω) =
1

Φ10(σ, τ, z)
=
Ẑ(σ, τ, z)

ψ(τ, z)
. (12.3)

This relation of the Igusa form to the elliptic genera of symmetric products of K3 and

the degeneracies of five-dimensional D1-D5-P black holes has a deeper physical signif-

icance and allows for a microscopic derivation of the counting formula as we explain

below.
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12.1 A representative charge configuration

Consider four-dimensional BPS-states in Type IIB on K3×S1× S̃1 with the following

charge configuration:

• 1 KK-monopole associated with the circle S̃1.

• 1 D5-branes wrapping K3× S1

• m D1-branes wrapping S1

• n units of momentum along the circle S1

• l units of momentum along the circle S̃1

We would like to compute d(m,n, l) which is the number of quantum states with

these quantum numbers counting bosons with +1 and fermions with -1. Let F be the

spacetime fermion number then we could try to compute

Tr
m,n,l

[
(−1)F

]
. (12.4)

However, this vanishes. If a state breaks 2n supersymmetries, then it has 2n real

fermion zero modes which are the Goldstinoes of the broken symmetry. Quantization

of each pair leads to Bose-Fermi degeneracy so the trace above vanishes. This can be

remedied by inserting (2h)n where h is the ‘helicity’, that is, the third component of

angular momentum in the rest frame. For states paired by a complex fermion the effect

of this insertion is to ‘soak up’ the fermion zero mode since this mode has spin half.

Thus, we compute

d(m,n, l) = Tr
m,n,l

[
(−1)F (2h)6

]
(12.5)

since for a quarter-BPS state, out of the 16 supersymmetries 12 are broken. In practice,

this means we just ignore the 12 fermionic zero modes from broken supersymmetry and

evaluate simply Tr(−1)F over the remaining modes. The index thus defined receives

contribution only from the BPS states.

It turns out that we can relate these unknown degeneracies d(m,n, l) of 4d-states

to known degeneracies of the D1-D5-P configuration in five dimensions which are much

easier to compute. This is known as the 4d-5d lift [29]. The main idea is to use the

fact that the geometry of the Kaluza-Klein monopole (9.18) in the charge configuration

above asymptotes to R3×S̃1 at asymptotic infinity r →∞ but reduces to flat Euclidean

space R4 near the core of the monopole at r → 0. Thus at asymptotic infinity we

have a KK-monopole in four-dimensional flat Minkowski spacetime which near the

core looks like a five-dimensional flat Minkowski spacetime. Our charge configuration
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then reduces essentially to the five-dimensional Strominger-Vafa black hole [12] with

angular momentum [30] discussed in the previous subsection.

Our strategy will be to compute the grand canonical partition function introducing

chemical potentials (σ, τ, z) conjugate to the charges (m,n, l) and the ‘fugacities’

p := e2πiσ , q := e2πiτ , y := e2πiz . (12.6)

The partition function is then

Z(σ, τ, z) =
∑
m,n,l

pmqnyl(−1)l d(m,n, l) . (12.7)

The factor of (−1)l is introduced for convenience which can be absorbed by z → z+1/2.

Since d(m,n, l) is a topological quantity protected from quantum corrections, the

dyon partition function it does not depend on the coupling or the moduli such as the

radius R̃. We can focus on the region near the core by taking the radius of the circle S̃1

goes to infinity so that in this limit we have a weakly coupled problem. In this limit,

the charge l corresponding to the momentum around this circle gets identified with the

angular momentum l in five dimensions. The total partition function at weak coupling

at large radius R̃ is thus a product of three factors

Z(Ω) = ZD1(p, q, y)ZKK(q)ZCM(q, y) . (12.8)

The three factors arise as follows.

1. The factor ZD1(σ, τ, z) counts the bound states of the D1-brane bound to a single

D5-brane, carrying arbitrary momentum and angular momentum.

2. The factor ZKK(τ) counts the bound states of momentum n with the Kaluza-

Klein monopole. The KK-monopole cannot carry any momentum along the S̃1

directions nor does it carry any D1-brane charge. Hence the partition function

depends only τ .

3. The factor ZCM(τ, z) counts the bound states of the center of mass motion of the

Strominger-Vafa black hole in the Kaluza-Klein geometry [23, 31]. It carries no

D1-brane charge and hence depends only τ and z.

At weak coupling, these three systems reduce to decoupled bosonic and fermionic

oscillators and our computation is reduced to something very similar to the warm-up

exercise. Each oscillator carries certain quantum numbers (s, t, r) which can contribute

to the total charge (m,n, l) of our interest. Each bosonic oscillator contributes

∞∑
k=0

e2πik(sσ,tτ,rz =
(
1− psqtyr

)−1
. (12.9)
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Each fermionic oscillator contributes

1∑
k=0

e2πik(sσ,tτ,rz(−1)k =
(
1− psqtyr

)
(12.10)

where the (−1)k is present because of (−1)F . The partition function will be thus of

the general form

Z(Ω) ∼
∏
s,t,r

r

(1− psqtyr)f(s,t,r)
, (12.11)

where f(s, t, r) is the difference between the number of bosonic oscillators and the num-

ber of fermionic oscillators for given charges (s, t, r) . All physics is now contained in

these numbers. In the remaining subsections we discuss systematically various contri-

bution to the partition function to determine f(s, t, r) for our system.

12.2 Motion of the D1-brane relative to the D5-brane

As a warm up, let us first consider D1-brane (or fundamental Type-II string) in flat

space wrapped around a circle S1 or radius R with coordinate y ∼ y + 2πR. The

fluctuations of the D1-brane consists of 8 transverse bosons φi(t, y) as well as 8 left-

chiral fermions Sa(t + y) and 8 right-chiral fermions S̃a(t − y) where t is the time

coordinate, i = 1, . . . , 8, and a = 1, . . . , 8. The fluctuations are of the form

φi(t, y) = φi0 + pi0t+
∑
n>0

φine
− n
R

(t−y) +
∑
n>0

φ̃ine
− n
R

(t+y) + c.c. (12.12)

For the fermions we have similarly

Sa(t− y) =
∑
n>0

Sane
− n
R

(t−y) + c.c. (12.13)

S̃a(t+ y) =
∑
n>0

S̃ane
− n
R

(t+y) + c.c. (12.14)

We can quantize this system as usual. Then φin and φ̃in are bosonic oscillators with

frequencies n/R and occupation numbers N i
n and Ñ i

n respectively. Similarly, San and

S̃an are fermionic oscillators with frequencies n/R and occupation numbers M i
n and M̃ i

n

respectively. The total left-moving momentum along S1 is

P =
1

R

8∑
i=1

∞∑
n=1

n(N i
n − Ñ i

n) +
1

R

8∑
a=1

∞∑
n=1

n(Ma
n − M̃a

n) (12.15)

and the total energy is

E =
1

R

8∑
i=1

∞∑
n=1

n(N i
n + Ñ i

n) +
1

R

8∑
a=1

∞∑
n=1

n(Ma
n + M̃a

n) (12.16)
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To obtain a BPS state we want to minimize the energy given fixed momentum P . This

implies

Ñ i
n = 0 , M̃ i

n = 0 E = P . (12.17)

We would like to know how many BPS states there are for a given charge P . This is a

combinatorial problem of finding d(P ) which is the number of ways to choose a set of

integers {N i
n,M

a
n} satisfying the constraint

1

R

(
∞∑
n=1

(
8∑
i=1

nN i
n +

8∑
a=1

n(Ma
n

))
= P . (12.18)

As usual it is easier to pass to the canonical ensemble. computing

Z(τ) :=
∑

{N i
n,M

a
n}

qN ≡
∑
P

d(N)qN , q := e2πiτ , (12.19)

ignoring the constraint. Here we have use for convenience N = RP which is an integer

or equivalently can absorb R into τ . One can then obtain d(N) by inverse Laplace

transform using

Z(τ) :=
∑
P

d(N)qN , d(N) =

∫ 1

0

e−2πiNτZ(τ)dτ . (12.20)

The partition function is readily evaluated and is given by

Z(τ) =

∏∞
n=1(1 + qn)8∏∞
n=1(1− qn)8

(12.21)

From this one can find that

d(N) ∼ e2π
√

2N , (12.22)

which follows also from the Cardy formula using the fact that for 8 free bosons and 8

free fermions the central charge is 12.

After this warm-up exercise, let us turn to the problem of motion of m D1-branes

bound to a single D5-brane. Now, a priori the D1-brane can again oscillate in all 8

transverse directions. However, if we switch on a 2-form field along 2-cycles of K3, then

open strings connecting D1-branes and D5-branes become tachyonic. Condensation into

ground state binds the D1-branes to the D5-branes and as a result they can oscillate

only along the directions along the K3.

We are interested in a configuration with m units of D1-brane charge n units of

momentum, and l units of angular momentum. If m is divisible by s then we have

to consider both the configuration with m D1-branes winding number 1 as well as the
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configuration with m/s D1-branes with winding number s. Similarly, the momentum

and angular momentum can be shared among these m or m/s D1-branes. As usual,

it is more convenient to relax all constraints on the charges and compute instead the

canonical partition function. So, we introduce chemical (complexified) chemical po-

tentials σ, τ, z conjugate to the integers m,n, l and compute the unrestricted sum by

summing over all possible charges (r, s, t). The degeneracies dD1(m,n, l) can then be

extracted by an inverse Fourier transform.

Consider a D1-brane wound r times along the S1, carrying momentum s along the

S1 with angular momentum JL = t/2. Let

ZD1 =
1

p

∏
s>0,t≥0,l

r

(1− psqtyr)c(s,t,r)
. (12.23)

Now, a D1-brane wrapping s times around a circle R is like a D1-brane wrapping once

on a circle of effective radius Re = 2πRs. If we want it to carry physical momentum t,

then since
t

R
=

ts

nR
=

ts

Re

(12.24)

Because of conformal invariance, the partition function does not depend on the overall

scale R. We thus conclude that the partition function for winding s and physical

momentum t is the same as the partition function for winding 1 and physical momentum

st. In other words,

c(s, t, r) = c0(st, r) . (12.25)

These coefficients are nothing but the c0(n, l) defined in (11.14) of the elliptic genus

χ(τ, z) of a single copy of K3. Hence c(s, t, r) = c0(st, r) = C0(4st − r2) from (11.15).

Indeed, our computation of ZD1 is one way to derive the generating function Ẑ for the

elliptic genera of symmetric products of K3. In summary,

ZD1(σ, τ, z) = Ẑ(σ, τ, z) . (12.26)

Comment: The problem of counting microstates of m D1-branes bound to a

D5-brane is the counting problem that arises in computing the microstates of the well-

known Strominger-Vafa black hole in five dimensions. The microscopic configuration

there consists of Q5 D5-branes wrapping K3 × S1, Q1 D1-branes wrapping the S1,

with total momentum n along the circle. We have chosen Q5 = 1 and Q1 = m but

more generally, we can simply replace m by Q1Q5. The bound states are described by

an effective string wrapping the circle carrying left-moving momentum n. The central

charge of the system can be computed at weak coupling and is given by 6m. Applying

Cardy’s formula then gives

dm(n) = exp(2π
√
mn). (12.27)

– 55 –



This implies a microscopic entropy S = log d = 2π
√
Q1Q5n. The corresponding BPS

black hole solutions with three charges in five dimensions can be found in supergravity

and the resulting entropy matches precisely with the macroscopic entropy.

12.3 Dynamics of the KK-monopole

In the previous subsection we have worked out the low-energy massless fluctuations of

the KK-monopole. If we excite only the left-movers then we have 24 bosons carrying

momentum t. The KK-monopole cannot support any momentum along theS1 circle.

Summing over all momenta gives rise to the partition function

ZKK(τ) =
1

q

∞∏
t=1

1

(1− qt)24
=

1

η24(τ)
(12.28)

The factor of 1/q comes because the ground state carries some ‘zero point’ momentum

−1. Altogether, we recognize this as precisely the partition function of the left-moving

BPS oscillations of the heterotic string as expected from duality.

12.4 D1-D5 center-of-mass oscillations in the KK-monopole background

Now it remains for us to find the contribution to the partition function from the os-

cillations of the center of mass of the D1-D5 system moving in the background the

KK-monopole. This is easy to evaluate using the fact that for large radius near the

center of the KK-monopole, the Taub-NUT space is essentially flat Euclidean space

R4. The partition function of four bosons and four fermions is simply

ZCM(τ, z) =
η6(τ)

θ2
1(τ, z)

. (12.29)

Putting this all together we find the desired result

Z(Ω) =
Ẑ(σ, τ, z)

ψ(τ, z)
=

1

Φ10(Ω)
. (12.30)
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13. Comparison of entropy and degeneracy

Now we turn to the comparison of the macroscopic entropy with microscopic degeneracy

both to the leading order and to the first subleading order.

13.1 Subleading corrections to the Wald entropy

We have already computed the leading order entropy in the tutorial (10.2). We would

now like to see how to take the effects of higher order corrections. Let us suppose the

Lagrangian is of the form

L = L0 + εL1 , (13.1)

where the term of order ε is a small correction from higher-derivative terms. The

entropy function defined using this Lagrangian will also be of the form

E = E0 + εE1 . (13.2)

The solutions of the extremization equations will also have an expansion

e∗(q, p) = e∗(0) + εe∗(1) + . . . ;

u∗(q, p) = u∗(0) + εu∗(1) + . . . ; v∗(q, p) = v∗(0) + εv∗(1) + . . . . (13.3)

To compute the entropy we have to compute the value of the entropy function E∗ at

the extermum

E∗(q, p) = E0(q, u∗, v∗, e∗, p) + εE1(q, u∗, v∗, e∗, p) . (13.4)

If we are interested in the first subleading correction to order ε we simply expand these

functions to obtain

E∗(q, p) = E0(q, u∗0, v
∗
0, e
∗
0, p) + εE1(q, u∗0, v

∗
0, e
∗
0, p) +O(ε2) . (13.5)

The important point is that to O(ε) one could have had terms like

∂E0

∂e
,

∂E0

∂v
,

∂E0

∂u
, (13.6)

evaluated at the leading order extremum values u∗0, v
∗
0, e
∗
0. However, these all vanish

because to the leading order, the extremum values of near horizon fields are found

precisely by setting all terms in (13.6) to zero. Hence, to find the first subleading

correction, it is not necessary to solve the extermization equations all over again. It

suffices to evaluate the correction to the entropy E1 at the extremum values found using

the zeroth order entropy function E0. This greatly simplify practical computations.
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To illustrate these ideas, we apply them to the heterotic action for the dyonic black

holes of our interest. The heterotic supergravity action (9.15) is only the leading 2-

derivative supergravity approximation to the full string effective action. The theory

has a 4-derivative correction to the effective action given by the lagrangian

∆L = φ(λ, λ̄)
(
RµναβR

µναβ − 4RµνR
µν
)
, (13.7)

where φ(λ, λ̄) is a nontrivial function of axion-dilaton λ := a+ iS:

φ(λ, λ̄) = − 1

64π2
[12 log(S) + 24 log (η(a− iS)) + 24 log (η(a+ iS))] (13.8)

It is easy to check that this induces a correction to the entropy function of the form

E1 = 64π2φ(λ, λ̄) . (13.9)

Consequently, the Wald entropy corrected to this order is then given by

Swald = π
√
Q2P 2 − (Q · P )2 + 64π2φ

(
a =

Q · P
P 2

, S =

√
Q2P 2 − (Q · P )2

P 2

)
+ . . .

(13.10)

13.2 Asymptotic expansion of the microscopic degeneracy

Given the exact formula for the degeneracies, one can try to extract the asymptotic

degeneracies in the limit with m,n are both large and positive. Since the Fourier

integral now involves three variables, the calculation is more involved than the Cardy

formula that we encountered for modular forms of single variable. The answer however

is simple. The statistical entropy log(d) is obtained by minimizing the following function

with respect to λ

EB(λ) =
π

2λ2

|Q+ λP |2 − 64π2φ(λ, λ̄) +O(Q−2) , (13.11)

where φ is the same function introduced in (13.8). As a result the statistical entropy

matches beautifully with the thermodynamic Wald entropy given by (13.10). We should

emphasize that the origin of the function φ in the two computations is of totally different

origin. In the computation of the Wald entropy Swald(Q,P ) it arises from specific

terms in the effective action of massless fields in string theory. In the computation of

the statistical entropy log d(Q,P ), on the other hand, it arises from the asymptotic

expansion of the Fourier coefficients of the partition function for quarter-BPS dyons

which for some reason is related the Igusa cusp form. This thus points to a highly

nontrivial internal consistency in the structure of string theory and gives us some

confidence that we may be on the right track in the search for a quantum theory of

gravity.
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A. N = 4 supersymmetry

We summarize here some facts about the representation of the N = 4 superalgebra.

For more details see REFWessBagger.

A.1 Massless supermultiplets

There are two massless representations that will be of interest to us.

1. Supergravity multiplet:

It contains the metric gµν , six vectors A
(ab)
µ , and two gravitini ψaµα.

2. Vector Multiplet:

It contains a vector Aµ, six scalar fields X(ab), and the gaugini χaα,

The low energy massless spectrum of a supergravity theory consists of the supergravity

multiplet and nv vector multiplets. Supersymmetry then completely fixes the form of

the two derivative action. The compactification of heterotic string theory on T 6 leads

to a theory in four spacetime dimensions with N = 4 supersymmetry and 28 abelian

gauge fields which corresponds to 28− 6 = 22 vector multiplets.

A.2 General BPS representations

In the rest frame of the dyon, the N = 4 supersymmetry algebra takes the form

{Qa
α, Q

†b
β̇
} = Mδαβ̇ δ

ab , {Qa
α, Q

b
β} = εαβZ

ab , {Q†aα̇ , Q
†b
β̇
} = εα̇β̇Z̄

ab (A.1)

where a, b = 1, . . . 4 are SU(4) R-symmetry indices and α, β are Weyl spinor indices. In

a given charge sector, the central charge matrix encodes information about the charges

and the moduli. To write it explicitly, we first define a central charge vector in C6

Zm(Γ) =
1
√
τ2

(Qm
R − τPm

R ) , m = 1, . . . 6 , (A.2)

which transforms in the (complex) vector representation of Spin(6). Using the equiv-

alence Spin(6) = SU(4), we can relate it to the antisymmetric representation of Zab
by

Zab(Γ) =
1
√
τ2

(QR − τPR)mλmab , m = 1, . . . 6 (A.3)
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where λmab are the Clebsch-Gordon matrices. Since Z(Γ) is antisymmetric, it can be

brought to a block-diagonal form by a U(4) rotation

Z̃ = UZUT , U ∈ U(4) , Z̃ab =

(
Z1ε 0

0 Z2ε

)
, ε =

(
0 1

−1 0

)
(A.4)

where Z1 and Z2 are non-negative real numbers. A U(2) rotation in the 12 plane and

another U(2) rotation in the 34 plane will not change the block diagonal form. Since

ε is the invariant tensor of SU(2), the U(2) × U(2) transformation can only change

independently the phases of Z1 and Z2. We will therefore treat more generally Z1 and

Z2 as complex numbers.

We now split the SU(4) index as a = (r, i), where r, i = 1, 2 and i represents the

block number. Defining the following fermionic oscillators

Aiα =
1√
2

(Q1i
α + εαβQ† 2i

β ), Biα =
1√
2

(Q1i
α − εαβQ

† 2i
β ) , Qa = Ua

b Q
b (A.5)

the supersymmetry algebra takes the form

{Ai†α̇ ,A
j
β} = (M + Zi) δα̇β δ

ij , {Bi†α̇ ,B
j
β} = (M − Zi) δα̇β δij (A.6)

with all other anti-commutators being zero.

Let us conclude by giving an explicit representation for λmab. An SU(4) rotation

which rotates the supercharges, Q′ = UQ, acts on the Clebsch-Gordon matrices as

UλmUT = Rm
n(U)λm (A.7)

where Rm
n is an SO(6) rotation matrix. The Clebsch-Gordon matrices λmab are given

by the components (CΓm)ab where Γm are the Dirac matrices of Spin(5) in the Weyl

basis satisfying the Clifford algebra {Γm,Γn} = 2δmn, and C is the charge conjugation

matrix. The Gamma matrices are given explicitly in terms of Pauli matrices by

Γ1 = σ1 × σ1 × 1 , Γ4 = σ2 × 1× σ1 (A.8)

Γ2 = σ1 × σ2 × 1 , Γ5 = σ2 × 1× σ2 (A.9)

Γ3 = σ1 × σ3 × 1 , Γ6 = σ2 × 1× σ3, (A.10)

where the The charge conjugation matrix is defined by CΓmC−1 = −Γm∗

C = σ1 × σ2 × σ2, Γ = σ3 × 1× 1, CΓm =

(
λmab 0

0 λ̄m
ȧḃ

)
(A.11)

where the un-dotted indices transform in the spinor representation of Spin(6) or the

4 of SU(4) whereas the the dotted indices transform in the conjugate spinor represen-

tation of Spin(6) or the 4̄ of SU(4). The matrices λmab thus defined have the required

antisymmetry and transform properties as in (A.7).
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B. Modular Cornucopia

We assemble here together some properties of modular forms and Jacobi forms.

B.1 Modular forms

Let H be the upper half plane, i.e., the set of complex numbers τ whose imaginary part

satisfies Im(τ) > 0. Let SL(2,Z) be the group of matrices(
a b

c d

)
(B.1)

with integer entries such that ad− bc = 1.

A modular form f(τ) of weight k on SL(2,Z) is a holomorphic function on H, that

transforms as

f(
aτ + b

cτ + d
) = (cτ + d)kf(τ) ∀

(
a b

c d

)
∈ SL(2,Z), (B.2)

for an integer k (necessarily even if f(0) 6= 0). It follows from the definition that f(τ)

is periodic under τ → τ + 1 and can be written as a Fourier series

f(τ) =
∞∑

n=−∞

a(n)qn , q := e2πiτ , (B.3)

and is bounded as Im(τ)→∞. If a(0) = 0, then the modular form vanishes at infinity

and is called a cusp form. Conversely, one may weaken the growth condition at ∞ to

f(τ) = O(q−N) rather than O(1) for some N ≥ 0; then the Fourier coefficients of f

have the behavior a(n) = 0 for n < −N . Such a function is called a weakly holomorphic

modular form.

The vector space over C of holomorphic modular forms of weight k is usually

denoted by Mk. Similarly, the space of cusp forms of weight k and the space of weakly

holomorphic modular forms of weight k are denoted by Sk and M !
k respectively. We

thus have the inclusion

Sk ⊂Mk ⊂M !
k . (B.4)

The growth properties of Fourier coefficients of modular forms are known:

1. f ∈M !
k ⇒ an = O(eC

√
n) as n→∞ for some C > 0;

2. f ∈Mk ⇒ an = O(nk−1) as n→∞;

3. f ∈ Sk ⇒ an = O(nk/2) as n→∞.
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Some important modular forms on SL(2,Z) are:

1. The Eisenstein series Ek ∈Mk (k ≥ 4). The first two of these are

E4(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn
= 1 + 240q + . . . , (B.5)

E6(τ) = 1− 504
∞∑
n=1

n5qn

1− qn
= 1− 504q + . . . . (B.6)

2. The discriminant function ∆. It is given by the product expansion

∆(τ) = q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 + ... (B.7)

or by the formula ∆ = (E3
4 − E2

6) /1728.

The two forms E4 and E6 generate the ring of modular forms, so that any modular form

of weight k can be written (uniquely) as a sum of monomials Eα
4E

β
6 with 4α+ 6β = k.

We also have Mk = C · Ek ⊕ Sk and Sk = ∆ ·Mk−12, so that any f ∈ Mk also has a

unique expansion as
∑

0≤n≤k/12

αnEk−12n ∆n (with E0 = 1). From either representation,

we see that a modular form is uniquely determined by its weight and first few Fourier

coefficients.

B.2 Jacobi forms

Consider a holomorphic function ϕ(τ, z) from H× C to C which is “modular in τ and

elliptic in z” in the sense that it transforms under the modular group as

ϕ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)k e

2πimcz2

cτ+d ϕ(τ, z) , ∀
(
a b

c d

)
∈ SL(2;Z) (B.8)

and under the translations of z by Zτ + Z as

ϕ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϕ(τ, z), ∀ λ, µ ∈ Z , (B.9)

where k is an integer and m is a positive integer.

These equations include the periodicities ϕ(τ + 1, z) = ϕ(τ, z) and ϕ(τ, z + 1) =

ϕ(τ, z), so ϕ has a Fourier expansion

ϕ(τ, z) =
∑
n,r

c(n, r) qn yr , (q := e2πiτ , y := e2πiz) . (B.10)
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Equation (B.9) is then equivalent to the periodicity property

c(n, r) = C(4nm− r2; r) , where C(d; r) depends only on r ( mod 2m) . (B.11)

The function ϕ(τ, z) is called a holomorphic Jacobi form (or simply a Jacobi form)

of weight k and index m if the coefficients C(d; r) vanish for d < 0, i.e. if

c(n, r) = 0 unless 4mn ≥ r2 . (B.12)

It is called a Jacobi cusp form if it satisfies the stronger condition that C(d; r) vanishes

unless d is strictly positive, i.e.

c(n, r) = 0 unless 4mn > r2 , (B.13)

and conversely, it is called a weak Jacobi form if it satisfies the weaker condition

c(n, r) = 0 unless n ≥ 0 (B.14)

rather than (B.12).

B.3 Theta functions

In this section, we collect definitions and useful properties of theta function. The Jacobi

theta function is defined by

θ[ab ](v|τ) =
∑
n∈Z

q
1
2

(n−a)2e2πi(v−b)(n−a) , (B.15)

where a, b are real and q = e2πiτ . It satisfies the modular properties

θ[ab ](v|τ + 1) = e−iπa(a−1)θ[a
a+b− 1

2
](v|τ) (B.16)

θ[ab ]

(
v

τ
| − 1

τ

)
= e2iπab+iπ v

2

τ θ[ab ](v|τ) (B.17)

The Jacobi-Erderlyi theta functions are the values at half periods,

θ1(z|τ) = θ[
1
2
1
2

](z|τ), θ2(z|τ) = θ[
1
2
0 ](z|τ), θ3(z|τ) = θ[00](z|τ), θ4(z|τ) = θ[01

2
](z|τ)

(B.18)

In particular,

θ1(v/τ,−1/τ) = i
√
−iτeiπv2/τθ1(v, τ) (B.19)

The Dedekind η function is defined as

η(τ) = q
1
24

∞∏
n=1

(1− qn) . (B.20)
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It satisfies the modular property

η

(
−1

τ

)
=
√
−iτη(τ) (B.21)

It is related to the Jacobi-Erderlyi theta functions by the identities

∂

∂v
θ1(v)|v=0 = 2π η3(τ) (B.22)

θ2(0|τ)θ3(0|τ)θ4(0|τ) = 2η3 (B.23)

The partition function of a single left-moving boson is given by

Zboson(τ) := Tr(qL0) =
1

η(τ)
. (B.24)

C. A few facts about K3

C.1 K3 as an Orbifold

“Kummer’s third surface” or K3 has played an important role in many developments

concerning duality. Let us recall some of its properties. K3 is a four dimensional

manifold which has SU(2) holonomy. To understand what this means, consider a

generic 4d real manifold. If you take a vector in the tangent space at point P , parallel

transport it, and come back to point P , then, in general, it will be rotated by an SO(4)

matrix:

Vi(P )→ Oij Vi(P ) Oij ∈ SO(4). (C.1)

Such a manifold is then said to to have SO(4) holonomy. In the case of K3, the

holonomy is a subgroup of SO(4), namely SU(2). The smaller the holonomy group,

the more “symmetric” the space. For example, for a torus, the holonomy group consists

of just the identity because the space is flat and Riemann curvature is zero; so, upon

parallel transport along a closed loop, a vector comes back to itself. For a K3, there

is nonzero curvature but it is not completely arbitrary: the Riemann tensor is non-

vanishing but the Ricci tensor Rij vanishes. Therefore, K3 can alternatively be defined

as the manifold of compactification that solves the vacuum Einstein equations.

Only other thing about K3 that we need to know is the topological information.

A surface can have nontrivial cycles which cannot be shrunk to a point. For example,

a torus has two nontrivial 1-cycles. The number of nontrivial k-cycles which cannot

be smoothly deformed into each other is given by the k-th Betti number bk of the

surface. The number of non-trivial k-cycles is in one to one correspondence with the
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number of harmonic k-forms on the surface given by the k-th de-Rham cohomology

[5, 6]. A harmonic k-form Fk satisfies the Laplace equation, or equivalently satisfies

the equations

d∗Fk = 0, dFk = 0 (C.2)

A manifold always has a harmonic 0-form, viz., a constant, and a harmonic 4-form,

viz., the volume from, assuming we can integrate on it. K3 has no harmonic 1-forms

or 3-forms, but has 22 harmonic 2-forms. So, the Betti numbers for K3 are:

b0 = 1, b1 = 0, b2 = 22, b3 = 0, b4 = 1. (C.3)

Out of the 22 2-forms, 19 are anti-self-dual, and 3 are self-dual. In other words,

bs2 = 3, ba2 = 19. (C.4)

This is all the information one needs to compute the massless spectrum of compactifi-

cations on K3.

K3 has a simple description as a Z2 orbifold of a 4-torus. Let (x1, x2, x3, x4) be the

real coordinates of the torus T4. Let us further take the torus to be a product T4 =

T2×T2. Let us introduce complex coordinates (z1, z2), z1 = x1 + ix2 and z2 = x3 + ix4.

The 2-torus with coordinate z1 is defined by the identifications z1 ∼ z1 +1 ∼ z1 + i, and

similarly for the other torus. The tangent space group is Spin(4) ≡ SU(2)1 × SU(2)2,

and the vector representation is 4v ≡ (2,2). If we take a subgroup SU(2)1 × U(1) of

Spin(4), then the vector decomposes as

4v = 2+ ⊕ 2̄−. (C.5)

The coordinates(z1, z2) transform as the doublet 2+ and (z̄1, z̄2) as the 2̄−. The Z2 =

{1, I} is generated by

I : (z1, z2)→ (−z1,−z2). (C.6)

This Z2 is a subgroup and in fact the center of SU(2)1. Consequently, as we shall see,

the resulting manifold has SU(2), indeed a Z2 holonomy. For a torus coordinatized

by z1, there are 4 fixed points of z1 → −z1 Altogether, on T4/Z2, there are 16 fixed

points.
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Let us calculate the number of harmonic forms on this orbifold. To begin with, we

have on the torus T4, the following harmonic forms:

1 1

4 dxi

6 dxi ∧ dxj

4 dxi ∧ dxj ∧ dxl

1 dxi ∧ dxj ∧ dxk ∧ dxl. (C.7)

The first column gives the number of forms indicated in the second column where

the indices i, j, k, l take values 1, · · · 4. Under the reflection I, only the even forms

1, dxi ∧ dxj, and dxi ∧ dxj ∧ dxk ∧ dxl survive.

0-form 1 1

1 4 0

2 6
1+I
2
−→ 6

3 4 0

4 1 1

, (C.8)

where the second column give the number of forms on the torus and the third column

the number of forms that survive the projection. Let us look at the 2-forms from the

torus that survive the Z2 projection. By taking the combinations

dxi ∧ dxj ± 1

2
εijkldxk ∧ dxl

we see that three of these 2-forms are self-dual and the remaining three are anti-self-

dual.

At the fixed point of the orbifold symmetry there is a curvature singularity. The

singularity can be repaired as follows. We cut out a ball of radius R around each

point, which has a boundary S3/Z2, replace it with a noncompact smooth manifold

that is also Ricci flat and has a boundary S3/Z2, and then take the limit R→ 0. The

required noncompact Ricci-flat manifold with boundary S3/Z2 is known to exist and

is called the Eguchi-Hanson space. The Betti number of the Eguchi Hanson space are

b0 = b4 = 1 ad ba2 = 1. Therefore, each fixed point contributes an anti-self-dual 2-form

which corresponds to a nontrivial 2-cycle in the Eguchi-Hanson space that would be

stuck at the fixed point in the limit R→ 0.

Altogether, we get b0 = 1, bs2 = 3, ba2 = 3 + 16 = 19, b4 = 1, and b1 = b3 = 0

giving us the cohomology of K3. It obviously has SU(2) holonomy. Away from the

fixed point, a parallel transported vector goes back to itself, because all the curvature is
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concentrated at the fixed points. As we go around the fixed point a vector is returned

to its reflected image (for instance, (dz1, dz2)→ −(dz1, dz2)), i. e., transformed by an

element of SU(2).

In string theory there is no need to repair the singularity by hand. We shall see

in §5.3 and §5.4 that the twisted states in the spectrum of Type-II string moving on

an orbifold automatically take care of the repairing. The twisted states somehow know

about the Eguchi-Hanson manifold that would be necessary to geometrically repair the

singularity.

C.2 Elliptic genus of K3

Consider a two-dimensional superconformal field theories (SCFT) with (2, 2) or more

worldsheet supersymmetry10. We denote the superconformal field theory by σ(M)

when it corresponds to a sigma model with a target manifold M. Let H be the

Hamiltonian in the Ramond sector, and J be the left- moving U(1) R-charge. The

elliptic genus χ(τ, z;M) is then defined [32, 33, 34] as a trace over the Hilbert space

HR in the Ramond sector

χ(τ, z;M) = Tr
HR

(
qHyJ(−1)F

)
. (C.9)

where F is the fermion number. An elliptic genus so defined satisfies the modular

transformation property (B.8) as a consequence of modular invariance of the path inte-

gral. Similarly, it satisfies the elliptic transformation property (B.9) as a consequence

of spectral flow. Furthermore, in a unitary SCFT, the positivity of the Hamiltonian

implies that the elliptic genus is a weak Jacobi form.

A particularly useful example in the present context is σ(K3), which is a (4, 4)

SCFT whose target space is a K3 surface. The elliptic genus is a topological invariant

and is independent of the moduli of the K3. Hence, it can be computed at some

convenient point in the K3 moduli space, for example, at the orbifold point where the

K3 is the Kummer surface. At this point, the σ(K3) SCFT can be regarded as a Z2

orbifold of the σ(T 4) SCFT which is an SCFT with a torus T 4 as the target space. A

simple computation using standard techniques of orbifold conformal field theory yields

[35] the formula for the elliptic genus we introduced earlier in (C.10):

χ(τ, z) = 8

(
ϑ2(τ, z)2

ϑ2(τ)2
+
ϑ3(τ, z)2

ϑ3(τ)2
+
ϑ4(τ, z)2

ϑ4(τ)2

)
. (C.10)

The first term can be seen to arise from the untwisted projected partition function, the

second from the twisted, unprojected partition function and the third from the twisted,

projected partition function.

10An SCFT with (r, s) supersymmetries has r left- moving and s right-moving supersymmetries.
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Note that for z = 0, the trace (C.9) reduces to the Witten index of the SCFT and

correspondingly the elliptic genus reduces to the Euler character of the target space

manifold. In our case, one can readily verify from (??) and (C.10) that χ(τ, 0;K3)

equals 24 which is the Euler character of K3.

C.3 Type IIB string on K3

Consider II-B compactified on K3. The resulting theory in the remaining 6-dimensional

Minkowski space has (0, 2) chiral supersymmetry. To discuss the spectrum let us re-

call that massless states are labeled by the representations of the little group in six

dimensions which is Spin(4) = SU(2) × SU(2). With (0, 2) supersymmetry, only two

massless supermultiplets are possible. In terms of representations of the little group

the supermultiplets are given by

1. The gravity multiplet:

a graviton (3,3),

five self-dual 2-forms 5(1,3),

gravitini 4(2,3),

2. The tensor multiplet:

an anti-self-dual 2-form (3,1),

fermions 4(2,1), five scalars (1,1).

The gravitini are right-handed whereas the fermions in the tensor multiplets are left-

handed.

We can explicitly work out the spectrum of Type-IIB on a K3 that is a Z2 orbifold.

Let us take Xm,m = 6, 7, 8, 9 to be the coordinates of the internal torus and X i, i =

2, 3, 4, 5, to be the noncompact light-cone coordinates. It is convenient to decompose

the little group in ten dimensions SO(8) as

Spin(8) ⊃ Spin(4)I × Spin(4)E

≡ SU(2)1I × SU(2)2I × SU(2)1E × SU(2)2E, (C.11)

where the subscript I is for internal, E is for external. With this embedding, the

representations decompose as

8v = (4v,1)⊕ (1,4v) ≡ (2,2,1,1)⊕ (1,1,2,2),

8s = (2s,2s)⊕ (2c,2c) ≡ (2,1,2,1)⊕ (1,2,1,2),

8c = (2s,2c)⊕ (2c,2s) ≡ (2,1,1,2)⊕ (1,2,2,1). (C.12)

The orbifold group is a Z2 subgroup of SU(2)LI which acts as −1 on the doublet

representation 2.
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• Untwisted sector

The states in the untwisted sector are obtained by keeping the Z2 invariant states of

the original 10-dimensional states.

(8v ⊕ 8c)⊗ (8v ⊕ 8c). (C.13)

For example, the bosons (labeled by SU(2)1E × SU(2)2E quantum numbers are

[4(1,1)⊗ 4(1,1)]⊕ [(2,2)⊗ (2,2)]

[2(1,2)⊗ 2(1,2)]⊕ [2(2,1)⊗ 2(2,1)] (C.14)

This gives rise to a graviton, 25 scalars, 5 self-dual and 5 anti-self-dual 2-forms. The

fermions can be obtained similarly which give the superpartners required by supersym-

metry. Together, we get the gravity multiplet and five tensor multiplets.

• Twisted Sector

There are 16 twisted sectors coming from the 16 fixed points. The bosonic fields and

fermionic fields are twisted according to their transformation property under the Z2.

We see from that four fermions that transform as 2(2,1) and four bosons that transform

as (2,2) are Z2 invariant and are not twisted where as the four other are twisted. The

ground state energy is zero because there are equal number of bosons and fermions

that are twisted. The untwisted fermions have zero modes. The zero mode algebra

gives rise to a four dimensional representation (2,1)⊕ 2(1,1). Therefore the massless

representation is

[(2,1)⊕ 2(1,1)]⊗ [(2,1)⊕ 2(1,1)] (C.15)

which gives precisely the particle content of a tensor multiplet. Therefore, the twisted

sector contributes 16 tensor multiplets.

The massless spectrum of Type-IIB on a K3 orbifold thus consists of a gravity mul-

tiplet and 21 tensor multiplet together from the untwisted and the untwisted sector.

There are 105 scalars that parametrizes the moduli spaceO(21, 5; Z)\O(21, 5; R)/O(21; R)×
O(5; R).
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