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Abstract

Experiments unambiguosly show that neutrinos have tiny – but nonzero – masses, contra-
dicting the prediction of the Standard Model of Particle Physics (SM). Radiative models
are extensions of the SM, in which neutrinos get their masses not from tree-level terms
in the Lagrangian, as for example in the well-known seesaw-type scenarios. Rather, the
masses appear as effective terms at loop level, which become possible by postulating new
particles circulating in the loops.

Radiative models have various appealing features, making them interesting candidate
neutrino mass models. In contrast to the seesaw setting, the new particles do not have to
be exceedingly heavy, rendering them potentially observable in near-future experiments.
Indeed, they explain the high suppression of neutrino masses naturally, as these come
out as the product of multiple (small) couplings. This also leads to neutrino parameters
generically showing a strong energy dependence (“running”). It was shown in previous work
on the Scotogenic model that the running in radiative settings can explain the deviation
of measured neutrino data taken at energies below the electroweak scale from theoretical
predictions at much higher energies.

In this thesis, we study the running of neutrino parameters in another radiative model,
the Zee-Babu model. It is an economical extension of the SM by only two charged scalar
particles, leading to neutrino masses at two-loop order. The main topic of this work is the
computation of the full set of renormalisation group equations (RGEs) in the Zee-Babu
model and in its effective theories (EFTs), which one obtains by subsequently integrating
out the additional scalars. Furthermore, we derive the matching equations relating the
parameters of the different EFTs. We consistently organise the calculations in loop orders,
which is a convenient and powerful method for deciding which effects are relevant for
obtaining a desired accuracy. Finally, we present the results of a numerical evaluation
of the RGEs, yielding the running of neutrino masses and leptonic mixing angles in the
Zee-Babu model for fixed high-energy mixing patterns.
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Chapter 1
Introduction

The Standard Model of Particle Physics (SM) provides the modern understanding for all
of the interactions among known subatomic particles, except for those due to gravity. It
came together in its modern form in the mid-1970s, as the result of almost half a century
of experimental and theoretical research. Since then, the SM has been tested thoroughly
in experiments, and it provided remarkably accurate predicitions [1].

However, physicists agree that the SM cannot be the ultimate description of Nature,
for example due to its inability to describe phenomena such as gravity or Dark Matter [2],
and also because of various theoretical flaws. Furthermore, this view is affirmed strongly
by direct experimental contradictions of the SM coming from the field of neutrino physics.

A revolution in neutrino physics started in June 1998, when the Super-Kamiokande col-
laboration announced the discovery of neutrino oscillations of athmospheric neutrinos [3],
an effect which is absent in the SM as it predicts neutrinos to be massless. This focused
attention on solar neutrinos, for which experiments like SNO [4] soon could show the ex-
istence of flavour conversion. These experimental results have further been confirmed and
refined [5, 6], leading to a clear phenomenological picture of neutrino oscillations [7].

The observation that neutrinos do have tiny masses has led to lively and still ongoing
experimental and theoretical efforts trying to shed light on the origin of these masses. One
of the most important aspects of this question is whether neutrinos are of Majorana or of
Dirac type, i.e., whether neutrinos are or are not their own antiparticles, respectively. This
question might be settled through experiments trying to observe neutrinoless double beta
decay, one example being the GERDA experiment [8]. From a theoretical standpoint, the
odds are good for neutrinos being Majorana particles, as the Dirac case would probably
imply the existence of three right-handed (RH) sterile neutrinos with a highly fine-tuned
mass configuration. Nevertheless, extending the SM by RH neutrinos is a very popular ap-
proach, since, by making these very heavy, one can explain tiny (and in this case Majorana)
neutrino masses by the seesaw mechanism [9–11].

In this thesis, we investigate another type of SM extension, in which neutrino masses do
not appear in the tree-level Lagrangian but are generated at loop order. In such radiative
models, one postulates new particles which circulate in loops, thus generating effective
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2 1. Introduction

mass terms for the neutrinos. Neutrino masses are then given by the product of multiple
(small) couplings, naturally leading to their observed strong suppression. An advantage of
such models compared to seesaw-type settings is that the mass scale of the new particles
can potentially be reached in near-future experiments. Furthermore, running effects may
be capable of explaining the deviation of theoretical predictions for mixing patterns at
very high energy scales from the measured data at energies below the electroweak scale.
Indeed, corrections to neutrino masses and mixings beyond leading order are generically
strong in radiative models, since the corrections to the couplings in the aforementioned
product tend to add up. One popular radiative model is the Scotogenic model [12], in
which neutrino masses are generated at one-loop order. The running in this model has
been studied extensively in previous works, confirming that it can explain the measured
neutrino parameters at low energies, which motivates further research in this field [13,14].

Therefore, in this thesis, we consider another radiative model, the so-called Zee-Babu
model [15]. It is an extension of the SM by only two charged scalar particles, leading
to neutrino masses at two-loop order. Regarding its low-energy properties, the model
has been examined thoroughly [16, 17] in the light of current data, which constrains the
free parameter space but does not rule the model out. However, the running of neutrino
parameters in this model has not yet been studied in the literature. We will help to close
this gap by deriving the full set of renormalisation group equations (RGEs) in the Zee-Babu
model and its effective field theories (EFTs), which follow from successively integrating out
the new particles at energies below their masses. This allows us to study the running of
neutrino parameters in the whole range from very high energies down to energies below
the electroweak scale.

We structure this thesis as follows: In Chapter 2, we review the basic aspects of the SM
with focus on neutrino masses and leptonic flavour mixing. Subsequently, we introduce the
techniques we need for computing RGEs, as well as the concept of integrating out particles
and matching the resulting EFTs. In addition, we discuss popular extensions of the SM
for neutrino masses and introduce the Zee-Babu model. Chapter 3 is devoted to the main
task of this work: the derivation of the two-loop mass matrix, the matching equations, and
the RGEs in the Zee-Babu model as well as in the EFTs derived from it. We structure the
calculations consistently in loop orders, which allows us to compare the relative importance
of different contributions to the running in a systematic way. We present the results of a
numerical evaluation of the RGEs in Chapter 4, yielding first insights into the running of
neutrino masses and leptonic mixing angles in the Zee-Babu model. Finally, we summarise
our work in Chapter 5. In the appendices, we present our conventions on notation as well
as a list of the Feynman rules and RGEs of the Zee-Babu model.



Chapter 2
Theoretical Preliminaries

In this chapter, we introduce the basic concepts and calculational techniques, which we
will use throughout this thesis. We discuss how to describe neutrino masses by extending
the Standard Model of Particle Physics (SM) and present the Zee-Babu model. Further-
more, we shortly summarise the techniques we need to investigate the energy dependence
(“running”) of neutrino masses and mixing parameters.

2.1 Neutrinos in the Standard Model and Beyond
In the SM, neutrinos are – unlike all other fermions – massless particles. We will now review
the most important aspects of the SM with respect to fermion masses, and present current
experimental data which shows that the SM has to be extended: we observe leptonic flavour
mixing, implying nonzero neutrino masses.

2.1.1 The Standard Model of Particle Physics

We present the SM Lagrangian and discuss the Higgs mechanism, through which all
fermions except the neutrinos acquire masses. Furthermore, we show how this leads to
flavour mixing in the quark sector but not in the lepton sector. This is reflected in the
presence of accidental symmetries in the SM, which will be the last topic of this section.

Lagrangian

The SM [18–21] is a gauge theory based on the gauge group

SU(3)C × SU(2)L × U(1)Y , (2.1.1)

and the particle content summarised in Tab. 2.1. We obtain the Lagrangian of the SM by
writing down all renormalisable (cf. Sec. 2.2.1) terms which transform as singlets under

3



4 2. Theoretical Preliminaries

Field name Spin Representation

Bµ 1 (1,1, 0)

WA
µ 1 (1,3, 0)

GB
µ 1 (8,1, 0)

QI,L =

(
uI,L

dI,L

)
1
2

(
3,2,+1

6

)
uI,R

1
2

(
3,1,+2

3

)
dI,R

1
2

(
3,1,−1

3

)
LI,L =

(
νI,L

eI,L

)
1
2

(
1,2,−1

2

)
eI,R

1
2

(1,1,−1)

φ = 1√
2

(
φ+

φ0

)
0

(
1,2,+1

2

)
Table 2.1: Particle content of the Standard Model of Particle Physics. The represen-
tation of the gauge group under which a field transforms is specified by its dimension (for
SU(3)C and SU(2)L, first two bold numbers) and its U(1)Y -hypercharge (third number). For
fields which transform as doublets under SU(2)L, we also provide the names of their compo-
nents. Note that there are eight gauge fields associated with SU(3)C , i.e. B ∈ {1, 2, . . . , 8},
three gauge fields associated with SU(2)L, i.e. A ∈ {1, 2, 3}, and three families of fermions,
i.e. I ∈ {1, 2, 3}.
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the Lorentz group as well as under the gauge group,1

LSM ⊃ Lkin + LYuk − Vscal, (2.1.2)

where

Lkin =
(
QI,L

)
i

(
i /DQI,L

)
i
+ uI,R

(
i /DuI,R

)
+ dI,R

(
i /DdI,R

)
+
(
LI,L

)
i

(
i /DLI,L

)
i
+ eI,R

(
i /DeI,R

)
+
(
Dµφ

†)
i
(Dµφ)i ,

(2.1.3a)

−LYuk = Yu,IJuI,R (QJ,L)i φjεij + Yd,IJdI,R (QJ,L)i φ
†
i + Ye,IJeI,R (LJ,L)i φ

†
i + h.c., (2.1.3b)

Vscal = µ2
φφ
†
iφi + λφ

(
φ†iφi

)2

. (2.1.3c)

Here, we introduced the up- and down-type quark Yukawa matrices Yu and Yd, respec-
tively, the leptonic Yukawa matrix Ye, as well as the Higgs mass parameter µ2

φ and the
Higgs quartic coupling λφ. We use lower case Latin letters i, j, . . . from the middle of the
alphabet to denote SU(2)L-indices, and upper case Latin letters I, J, . . . from the middle
of the alphabet for family indices. Furthermore, we suppress SU(3)C-indices and use Dirac
spinors to describe fermions. We summarise our conventions on notation as well as the
symbols that we use in App. A.

The gauge-covariant derivatives of the fields are defined by:

Dµ ≡ ∂µ + ig1Y Bµ + ig2
σA

2
WA
µ + ig3

λB

2
GB
µ . (2.1.4)

Here, Y denotes the hypercharge of the field on which Dµ acts. Furthermore, σA denote
the three Pauli matrices and λB are the eight Gell-Mann matrices. Note that the terms
proportional to g2 and g3 have to be omitted for fields which transform as singlets under
SU(2)L or SU(3)C , respectively.

Higgs Mechanism

To prepare the discussion in the following paragraphs, let us first review some important
aspects of the Higgs mechanism [22–25]. We can parameterise the Higgs doublet φ by
writing

φ(x) = P (x)
1√
2

(
0

v + φH(x)

)
, (2.1.5)

where v is a real constant and φH(x) a real-valued field with vanishing vacuum expectation
value, which we call the Higgs field. Then, φ acquires a vacuum expectation value (vev) of
the form

〈φ(x)〉 =
1√
2

(
0
v

)
, (2.1.6)

1We suppress the kinetic and Θ-terms of gauge fields as well as peculiarities such as ghost fields because
these are not relevant for our purposes.
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where v was recently determined experimentally [26]:

v = 246 GeV. (2.1.7)

In what follows, we will call this quantity the Higgs vev. P (x) is a special-unitary ba-
sis transformation, which produces the most general complex doublet from the doublet
with vanishing upper and real-valued lower component. We can eliminate P (x) by an
SU(2)L-gauge transformation, which amounts to a specific choice of basis, making the
manifest number of scalar degrees of freedom minimal, namely one. This specific choice of
gauge is called unitarity gauge:

φ(x) =
1√
2

(
0

v + φH(x)

)
. (2.1.8)

The Higgs vev v is related to the parameters µ2
φ and λφ in the scalar potential via

v2 =
−µ2

φ

λφ
, (2.1.9)

which arises from minimising the scalar potential in terms of |φ| ≡
(
φ†iφi

)1/2

.

The specific choice of vacuum given in Eq. (2.1.6) spontaneously breaks the gauge
symmetry of the SM in the following way:

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)em. (2.1.10)

In particular, one of the four generators of the gauge group factor SU(2)L × U(1)Y re-
mains unbroken. This symmetry breaking pattern yields three massive gauge bosons (the
W-bosons W±

µ and the Z-boson) and one massless gauge boson (the photon).
By substituting Eq. (2.1.8) into the kinetic term of the Higgs doublet φ, we find the

mass of the physical Higgs particle described by φH :

m2
H = −2µ2

φ = 2λφv
2. (2.1.11)

Furthermore, by writing the kinetic term of φ in terms of the gauge boson mass eigenstates,
we find that W±

µ couple to the charged fermion currents :

Jµ+
W =

1√
2

(νI,Lγ
µeI,L + uI,Lγ

µdI,L) , Jµ−W =
(
Jµ+
W

)†
. (2.1.12)

Note that the charged fermion currents are the only terms in the SM Lagrangian which
couple different flavours of fermions. This will be of importance in the context of flavour
mixing, which we discuss below.
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Fermion Masses and Physical Parameters

Not all parameters in the Lagrangian of the SM are physical. The defining property of
an unphysical parameter is that there exist no observable effects that depend on this
parameter. In Eqs. (2.1.3) and (2.1.4) we introduced three real gauge couplings g1, g2, and
g3, two real scalar parameters, µ2

φ and λ, as well as 27 complex Yukawa couplings Ye, Yu,
and Yd. We now discuss which of those parameters are physical. This will help us later in
identifying the physical parameters in the Zee-Babu model. For the numerical calculations
in Chap. 4 it is crucial to know which parameters are physical, as we want to deal with
a parameter space which is as small as possible in order to reduce the complexity of the
calculations.

As already noted, g1, g2, g3, µ2
φ, and λφ are real parameters. Otherwise, the Lagrangian

would not be Hermitean, thus violating unitarity. Turning to the Yukawa sector, recall
that any nonsingular complex matrix A can be diagonalised bi-unitarily, i.e., there exist
two unitary matrices U and W such that

A = WDAU
†, (2.1.13)

where DA is diagonal with real and positive elements [27, 28]. Although these diagonal
elements are often referred to in the literature as the “eigenvalues” of A, it is worth em-
phasizing that they are not eigenvalues in the mathematical sense, as Eq. (2.1.13) is no
similarity transformation. We now use this result to study how many of the Yukawa cou-
plings are physical. First, consider the Yukawa couplings Yu and Yd of the quark sector,
which we rewrite as:

Yu = WuDuU
†
u, (2.1.14a)

Yd = WdDdU
†
d . (2.1.14b)

Note that the unitary matrices Uu, Ud, Wu, and Wd act on the family space. Wu and Wd are
unphysical parameters, as we can make them disappear from the theory entirely by redefin-
ing the right-handed quark fields. Indeed, consider the following unitary transformations:

uR ≡ Wuu
′
R, (2.1.15a)

dR ≡ Wdd
′
R. (2.1.15b)

They leave the gauge-kinetic terms as given in Eq. (2.1.3a) invariant and eliminate both
Wu and Wd from the Yukawa terms in Eq. (2.1.3b). Therefore, Wu and Wd disappear from
the theory and are thus unphysical parameters.

The situation is a bit more complicated for the matrices Uu and Ud. When plugging
φ in unitarity gauge into the Yukawa part of the Lagrangian, we find that in the term
proportional to Yu the upper component of the doublet QL survives, while in the term
proportional to Yd, the lower component survives. This allows us to eliminate Uu and Ud
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from the Yukawa part of the Lagrangian by rotating the upper and lower components of
QL individually:

uL ≡ Uuu
′
L, (2.1.16a)

dL ≡ Udd
′
L. (2.1.16b)

The field rotations given by Eqs. (2.1.15) and (2.1.16) define the mass eigenbasis of
the quark fields, the basis vectors of which we denote by primed fields. As in the case of
the right-handed fields, the kinetic terms of the left-handed fields remain diagonal when
rotated to the mass eigenbasis. Thus, in the mass eigenbasis, the free-particle Hamiltonian
of the quark fields is diagonal, which implies that mass eigenstates do not mix during free
propagation. Indeed, in the mass eigenbasis, the Lagrangian contains the flavour-diagonal
terms

LSM ⊃ u′I,L
(
i/∂u′I,L

)
+ u′I,R

(
i/∂u′I,R

)
− v√

2

(
u′I,LDu,IIu

′
I,R + h.c.

)
. (2.1.17)

Analogous terms appear for the down-type quarks. From the terms bilinear in the quark
fields we can read off the masses of the quarks,

mu,I =
vyu,I√

2
, md,I =

vyd,I√
2
, (2.1.18)

where we have defined
yu,I ≡ Du,II , yd,I ≡ Dd,II . (2.1.19)

We will discuss fermion mass terms in Sec. 2.1.2 in more detail.
In contrast to the case of the right-handed quark fields, the rotations of the left-

handed quark fields do not leave the full gauge-kinetic terms invariant. Indeed, rewriting
Eq. (2.1.12) in the mass eigenbasis yields the central result

Jµ+
W ⊃ 1√

2
uI,Lγ

µdI,L =
1√
2
u′I,Lγ

µUCKMd′J,L, (2.1.20)

where we have defined the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix UCKM [29–
31] via:

UCKM = U †uUd. (2.1.21)

Experimentally, one finds that the CKM-matrix is non-diagonal. The important point to
understand here is that the presence of the CKM-matrix leads to mixings between different
families of quarks, which we call flavour mixing. More precisely, there is a mismatch
between the mass eigenbasis, in which the free-particle Hamiltonian is diagonal, and the
flavour eigenbasis, in which the charged quark current is diagonal. We will discuss this in
more detail for the lepton sector below.

We learned that not all entries of the matrices Uu and Ud are unphysical, since we
cannot eliminate these matrices completely by field redefinitions. Rather, there remain as
many physical parameters as we need to parameterise the CKM-matrix. This matrix is
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a 3 × 3 unitary matrix (as it is a product of two unitary matrices), and it can therefore
be parameterised by nine real parameters, three of which are angles and six of which are
phases. However, not all of these parameters are physical, as we still have the freedom of
performing quark field redefinitions which do not change any term in the Lagrangian except
the term appearing on the right-hand side of Eq. (2.1.20). Indeed, we can multiply any of
the six left-handed quark fields u′I,L and d′I,L by an individual complex phase and thereby
eliminate five of the six phases of the CKM-matrix [32]. Since a global phase rotation leaves
Eq. (2.1.20) invariant, we can only eliminate one phase less than the number of quark fields
we have at our disposal. Furthermore, this also fixes the phases of the right-handed fields
u′R and d′R, as we have to rotate them accordingly in order to leave the mass terms as given
in Eq. (2.1.17) invariant.

We arrive at the final result that only eleven of the 36 real parameters contained in the
Yukawa matrices Yu and Yd are physical. These are six real and positive diagonal elements
yu,I and yd,I (which can be traded for the quark masses), three CKM mixing angles , and
one CKM phase.

Let us investigate the same aspects in the lepton sector. In analogy to the quark sector,
we can diagonalise the leptonic Yukawa matrix,

Ye = WeDeU
†
e , (2.1.22)

and eliminate the rotation matrices We and Ue by going to the mass eigenbasis of the
leptons using the rotations

eR ≡ Wee
′
R, (2.1.23a)

eL ≡ Uee
′
L. (2.1.23b)

Note that we did not specify any rotation of the left-handed neutrino fields νL. This is not
necessary in order to eliminate Ue from the Yukawa terms as there is no analogue to the
right-handed quark singlet uR in the lepton sector: there are no right-handed neutrinos in
the SM. Therefore, we have only one leptonic Yukawa term in the SM Lagrangian. When
fixing unitarity gauge, the left-handed neutrinos drop out completely from the Yukawa
terms and therefore acquire no mass term. Indeed, we only find a massterm for the charged
leptons:

LSM ⊃ νI,L
(
i/∂νI,L

)
+ e′I,L

(
i/∂e′I,L

)
+ e′I,R

(
i/∂e′I,R

)
− v√

2

(
e′I,LDe,IIe

′
I,R + h.c.

)
. (2.1.24)

Thus, neutrinos are exactly massless in the SM,

mI = 0, (2.1.25)

where we introduced the notation m1,2,3 for neutrino masses, which we will use in this
thesis. In contrast, the charged leptons acquire masses,

me,I =
vyI√

2
, (2.1.26)



10 2. Theoretical Preliminaries

where the yI denote the diagonal entries of De:

De ≡ diag (ye, yµ, yτ ) . (2.1.27)

As there is no preferred mass eigenbasis of the neutrino fields, we are free to rotate
them using the same matrix Ue as for the left-handed charged leptons:

νL → UeνL. (2.1.28)

We have deliberately not introduced a primed neutrino field, as there is no distinguished
mass eigenbasis for the neutrinos in the SM. Looking at the term of Eq. (2.1.12) containing
the leptons, we find that there appears no analogue to the CKM-matrix:

Jµ+
W ⊃ 1√

2
νI,Lγ

µeI,L =
1√
2
νI,Lγ

µUee
′
I,L →

1√
2
νI,Lγ

µe′I,L. (2.1.29)

In the first step, we rotated to the mass eigenbasis of the charged leptons, which we
compensated by the rotation given in Eq. (2.1.28). We now understand that Eq. (2.1.28)
amounts to the definition of the flavour eigenbasis in the lepton sector: the electron-
neutrino νe,L is defined to be the state which couples to the charged lepton mass eigenstate
e′e,L via W -exchange, and analogously for the flavours µ and τ . As there is no distinguished
mass eigenbasis for the neutrinos, in the lepton sector of the SM there is no mismatch
between the mass eigenbasis and the flavour eigenbasis, leading to the absence of flavour
mixing. Thus, the only physical parameters in the leptonic Yukawa sector are the three
real and positive diagonal elements ye,I (which can be traded for the masses of the charged
leptons).

In summary, the SM Lagrangian contains 18 real parameters: yu,I , yd,I , ye,I , g1, g2, g3,
µ2
φ, λφ, and four CKM parameters. Those parameters are independent “input parameters”

in the sense that they cannot be calculated from the SM but have to be supplied by
experiments [26].

Accidental Symmetries

The SM possesses a global accidental symmetry,2 described by the symmetry group:

Gacc
SM = U(1)B × U(1)e × U(1)µ × U(1)τ . (2.1.30)

Here, U(1)B leads to conservation of baryon number (or, equivalently, of quark number),
and U(1)e,µ,τ describe the conservation of the three lepton family numbers. This symmetry

2The SM is defined via the postulate of its gauge group and its particle content: the Lagrangian is
the sum of all Lorentz-invariant, gauge-invariant, and renormalisable terms which can be formed out of
the particle content. Therefore, the gauge symmetry (as well as the Lorentz symmetry) are fundamental
in the sense that they define the model. In contrast, the Lagrangian following from these fundamental
symmetries may be invariant under further global symmetries. As those symmetries are not imposed a
priori on the model, they appear somehow accidentally and are therefore called accidental symmetries. In
particular, there is no fundamental principle (such as gauge invariance) which may prevent new physics
from breaking these symmetries.
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reflects our discussion in the previous section: in the quark sector, only the total number
of quarks is a conserved quantity, while we have inter-family mixing due to the presence
of the CKM-matrix. In contrast, in the lepton sector, not only the total lepton number,

L ≡ Le + Lµ + Lτ , (2.1.31)

but moreover the individual lepton family numbers are conserved as there is no inter-family
mixing in the SM.

The presence of the conserved quantity L tells us that, in the SM, neutrinos are not
only massless at tree level (which we discussed at length above), but also that neutrino
masses are not generated by loop effects. Indeed, as we will see below, the only type of
mass term, which can be formed using only the SM particle content, is a Majorana mass
term. However, such a term would break L. As global symmetries such as L cannot be
broken by perturbative effects, Majorana mass terms are protected from being generated
at loop order. Thus, neutrinos are massless at all orders of perturbation theory in the SM.
Moreover, it turns out that the subgroup U(1)B−L is non-anomalous. As Majorana mass
terms break B − L, too, neutrino masses may not even be produced by non-perturbative
effects [33].

2.1.2 Mixing in the Lepton Sector

We learned in the previous section that, in the SM, neutrinos are massless particles, imply-
ing the absence of mixing effects. We now show that experiments contradict this prediction:
neutrinos do have masses. To understand the experimental data, we first discuss, which
types of mass terms for neutrinos are generally possible and how mixing effects are param-
eterised in the lepton sector.

Mass Terms for Fermions

There is plenty of experimental evidence that neutrinos are massive particles. However,
we will see that the nature of the neutrino mass terms is not yet known. Therefore, from
a model-building point of view, we have to take into account various possibilities. We will
now investigate, which types of mass terms are possible for fermions in general [34,35]. In
App. B, we summarise the algebraic rules for spinors, which we need in this section.

Mass terms for fermions are terms bilinear in fermion fields. The only non-vanishing
Lorentz-invariant possibility is to combine a left-handed field ψL with a right-handed field
χR as follows:

− LMass = m
(
ψLχR + χRψL

)
. (2.1.32)

From this observation, two possibilities for fermion mass terms arise. If we use the
left- and right-handed components of a single Dirac field ψ = ψL + ψR, we arrive at a
Dirac mass term:

− LDirac = m
(
ψLψR + ψRψL

)
. (2.1.33)
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Note that, if ψ carries a U(1)-charge, the Dirac mass term conserves this charge. In
Sec. 2.1.1 we found that Dirac masses are generated for the quarks and for the charged
leptons in the SM.

The second possibility is to start from a single, say, left-handed field ψL. As the charge-
conjugated field (ψL)c transforms as a right-handed spinor, we can build a mass term using
only ψL, yielding a so-called Majorana mass term:

− LMajorana = m
[
(ψL)cψL + ψL (ψL)c

]
. (2.1.34)

Clearly, the same construction is possible starting from a right-handed field. In contrast to
the Dirac mass term, a Majorana mass term does not conserve U(1)-charges. Particularly,
a Majorana mass term violates fermion number by two units, leading to “clashing arrows”
on fermion lines. We describe in App. C, how Feynman rules can be applied in such a case.

If the fields carry flavour indices, the masses in the above equations get promoted to
mass matrices. While in the case of Dirac mass terms, the mass matrix does not have
any particular symmetry properties, only the symmetric part of Majorana mass matrices
is physical. This follows from Eq. (B.0.9) and we will discuss it in more detail in an
analogous case below, cf. footnote 9.

PMNS-matrix

In order to understand the current experimental data on neutrino masses and mixings,
let us assume that, due to some (yet unspecified) beyond-SM (BSM) mechanism, neutrino
masses are generated. We know from Sec. 2.1.1 that if neutrinos are massive particles,
we have inter-family mixing in the lepton sector and vice-versa. Then, as is the case
for the quark sector, there is also a mismatch between the primed mass eigenbasis and
the unprimed flavour eigenbasis in the lepton sector. Indeed, the rotation as given in
Eq. (2.1.28) would in general not diagonalise the free-particle Hamiltonian of massive
neutrinos. Rather, we would have to use a matrix Uν 6= Ue to transform to the (now
well-defined) mass eigenbasis of the neutrinos:

νL ≡ Uνν
′
L. (2.1.35)

This results, in contrast to Eq. (2.1.29), into the appearance of a CKM-like matrix UPMNS,
the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix [36, 37], when
writing the charged leptonic currents in the mass eigenbasis,

Jµ+
W ⊃ 1√

2
νI,Lγ

µeI,L =
1√
2
ν ′I,Lγ

µ
(
UPMNS

)†
IJ
e′I,L, (2.1.36)

where
UPMNS ≡ U †eUν . (2.1.37)

In the lepton sector, we retain the definition that a neutrino of a given flavour is the state
which couples via W -exchange to the corresponding charged lepton mass eigenstate, cf. the
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discussion below Eq. (2.1.29). Thus, according to this definition, by rotating the charged
leptons eL to their mass eigenbasis and performing the same rotation on the neutrinos νL
according to Eq. (2.1.28), we end up in the flavour eigenbasis. Then, the PMNS-matrix
coincides with Uν , and therefore describes the rotation from the mass eigenbasis of the
neutrinos to the flavour eigenbasis:νeνµ

ντ

 = UPMNS

ν ′1ν ′2
ν ′3

 . (2.1.38)

Recall that we denote the masses corresponding to the mass eigenstates ν ′1,2,3 by m1,2,3.
Let us count how many parameters of UPMNS are physical [38,39]. To this end, we have

to distinguish the cases of Dirac and Majorana mass terms for the neutrinos. If neutrinos
acquire Dirac mass terms through some BSM mechanism, the situation is analogous to
what we had for the CKM-matrix in the quark sector in Sec. 2.1.1. Indeed, for Dirac
mass terms, we are free to rephase all six left-handed fields e′L and ν ′L since this phase
shift can be compensated by shifting the corresponding right-handed fields e′R and ν ′R by
the same phase, leaving the mass terms invariant. Therefore, for Dirac mass terms, the
PMNS-matrix is parameterised by three leptonic mixing angles θ12, θ13, and θ23, as well as
by one phase δ, the so-called Dirac phase. However, for Majorana mass terms, we cannot
freely rephase the neutrino fields ν ′L, as the mass terms are not invariant under a phase
shift. Thus, in that case, we end up with two additional phases φ1 and φ2, the so-called
Majorana phases.

There are infinitely many ways to parameterise the PMNS-matrix. In this thesis we
choose the so-called standard parameterisation [28],

UPMNS = diag
(
eiδe , eiδµ , eiδτ

)
· V · diag

(
e−iφ1/2, e−iφ2/2, 1

)
, (2.1.39)

where

V =

 c12c13 s12c13 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13

 . (2.1.40)

Here, we have used the abbreviations cij ≡ cos (θij) and sij ≡ sin (θij). As described above,
if neutrinos have Majorana mass terms, the phases δe, δµ, δτ can be absorbed into the fields.
For Dirac mass terms, we can additionally absorb the Majorana phases φ1 and φ2.

Experimental Data in the Neutrino Sector

We learned that nonzero neutrino masses lead to a mismatch between the flavour and
mass eigenbases in the lepton sector. Experimentally, this results in neutrino oscillations
[38, 40, 41], which means that a neutrino produced with a definite flavour will change its
identity when propagating. Regarding the neutrino masses m1,2,3, neutrino oscillation
experiments are only sensitive to the mass splittings :

∆m2
ij ≡ m2

i −m2
j . (2.1.41)
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Normal ordering Inverted ordering

best fit (±1σ) 3σ range best fit (±1σ) 3σ range

θ12/
◦ 33.56+0.77

−0.75 31.38→ 35.99 33.56+0.77
−0.75 31.38→ 35.99

θ23/
◦ 41.6+1.5

−1.2 38.4→ 52.8 50.0+1.1
−1.4 38.8→ 53.1

θ13/
◦ 8.46+0.15

−0.15 7.99→ 8.90 8.49+0.15
−0.15 8.03→ 8.93

δ/◦ 261+51
−59 0→ 360 277+40

−46 145→ 391
∆m2

21

10−5 / eV2 7.50+0.19
−0.17 7.03→ 8.09 7.50+0.19

−0.17 7.03→ 8.09
∆m2

32

10−3 / eV2 +2.524+0.039
−0.040 +2.407→ +2.643 −2.514+0.038

−0.041 −2.635→ −2.399

Table 2.2: Neutrino oscillation parameters from a fit to global data as of November 2016
[51,52].

From measurements with solar [42–45] as well as with reactor neutrinos [46, 47] we know
that ∆m2

21 > 0, while the sign of ∆m2
32 is not yet known. This leaves open the possibility for

two different mass orderings, the so-called normal ordering, in which we have ∆m2
32 > 0 and

the inverted ordering in the opposite case. However, measurements involving athmospheric
neutrinos [48] and neutrinos produced in accelerators [49, 50] allow for the determination
of |∆m2

31|. In Tab. 2.2 we summarise the current results of a global fit [51, 52] of neutrino
oscillation experiments.

Besides neutrino oscillation experiments, there are projects which use β-decay [53–55] to
determine the absolute scale of neutrino masses.3 Until now, only an upper bound of about
2 eV could be obtained. Furthermore, experiments looking for neutrinoless double β-decay
are trying to answer the question whether neutrinos are Dirac or Majorana particles [56].

Finally, a third method, including observations of the cosmic microwave background,
is able to obtain an upper bound on the sum of neutrino masses. The most recent upper
bound was obtained by combining results from different measurements including the Planck
experiment [57]:

3∑
i=1

mi < 0.23 eV, at 95% C.L. (2.1.42)

2.2 Renormalisation and Effective Field Theory
In this thesis, we want to investigate the energy dependence (running) of the neutrino mass
matrix in the Zee-Babu model, cf. 2.3.2. This mass matrix is a combination of tree-level
model parameters, so we obtain its running from the running of these parameters. We now
introduce the basic concepts we will need to compute this running, namely the renormal-
isation group (RG) evolution of model parameters and effective field theory (EFT). The
profound conceptual ideas behind these concepts are discussed in all elementary textbooks

3To be precise, the corresponding observable is the so-called effective electron neutrino mass mβ ,
defined by m2

β ≡ m2
1c

2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 [38].
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on QFT [20,25,58] and in much more detail in Refs. [21,59]. We will not review these here
in detail, and focus on the calculational techniques [60].

2.2.1 Renormalisation Group Evolution of Model Parameters

We start with discussing how we can relate parameters in the Lagrangian to experimentally
measurable values, and how we can set up the theory a priori in terms of measureable
parameters. Afterwards, we introduce the calculational tools we will use throughout this
thesis, and finally show how to use them to compute the running of model parameters.

Bare and Renormalised Parameters, Renormalisability

We already discussed in detail the Lagrangian of the SM and identified, which parameters
are physical in the sense that they can be determined experimentally. Now, we have a look
at how these physical parameters relate to the measured values.

Loosely speaking, what experimentalists measure as a particle’s mass or as couplings
between particles, is described perturbatively as the sum of infinitely many Feynman dia-
grams. These describe all possible quantum corrections, which correspond to loop diagrams,
while the lowest order terms are the tree-level propagators and vertices. These tree-level di-
agrams correspond directly to the so-called bare fields, masses, and couplings, appearing in
the Lagrangian. Adding the loop corrections, yields – after the process of renormalisation –
the corresponding dressed or renormalised quantities, which are accessible through exper-
iment.

Generically, the loop corrections one has to compute when renormalising a quantity turn
out to be infinite due to the arbitrarily high momenta, which are allowed to circulate in the
loops, and which have to be summed up in loop integrals. Naturally, at first sight, this is a
conceptually problematic observation. However, there exist numerous regularisation tech-
niques, which enable us to deal with these infinities. All those techniques have in common
that one first introduces some kind of regulator, for example a simple momentum cutoff,
which renders the loop integrals finite at the cost of now having a regulator-dependent the-
ory. Such a regulator has no physical meaning in this context. Indeed, when renormalising
the regulated theory, i.e., when fixing the computed quantities to equal4 measured values,
the regulator drops out at the end of the calculation, given that the theory is physically
sensible. Such theories are called renormalisable theories.

Renormalisation yields finite renormalised parameters, which are directly related to
measurable quantities. On the contrary, the bare parameters are formally infinite and
unphysical, i.e., they are not accessible by experiment.

4Strictly speaking, renormalised quantities are only equal to the measured ones in physical renormali-
sation schemes, cf. below.
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Renormalised Perturbation Theory

We get more insight by introducing the concept of counterterms yielding so-called renor-
malised perturbation theory. The basic idea is to rewrite the Lagrangian (which is written in
terms of bare parameters) in terms of renormalised parameters, thus incorporating renor-
malisation already at the level of the Lagrangian.5 To illustrate this procedure, let us
consider ϕ4-theory as a toy example:

Lϕ = (∂µϕB)† (∂µϕB)−m2
Bϕ
†
BϕB − λB

(
ϕ†BϕB

)2

. (2.2.1)

By adding the subscript B to the field ϕ, the mass parameter m, and the quartic scalar
coupling λ, we indicate that the Lagrangian is written in terms of bare quantities. Note
that we omitted these subscripts in Sec. 2.1. We now introduce the renormalised field,
which we denote simply by ϕ, via the relation

ϕB ≡ Z
1
2
ϕϕ. (2.2.2)

We call the quantity Zϕ the wavefunction renormalisation constant. Furthermore, we
introduce the abbreviation

δZϕ ≡ Zϕ − 1. (2.2.3)

By plugging this into the Lagrangian and using the definitions6

m2
B ≡ Z−1

ϕ

(
m2 + δm2

)
and (2.2.4a)

λB ≡ Z−2
ϕ (λ+ δλ) , (2.2.4b)

with δm2 and δλ being the renormalisation constants corresponding to the mass parameter
and the quartic scalar coupling, we arrive at

Lϕ = Lϕ,ren + Lϕ,ct, (2.2.5)

with the renormalised Lagrangian

Lϕ,ren = (∂µϕ)† (∂µϕ)−m2ϕ†ϕ− λ
(
ϕ†ϕ

)2
, (2.2.6)

and the counterterm Lagrangian

Lϕ,ct = δZϕ (∂µϕ)† (∂µϕ)− δm2ϕ†ϕ− δλ
(
ϕ†ϕ

)2
. (2.2.7)

5Note that this is not the only way of renormalising a theory. One may also use the bare Lagrangian
to compute measurable quantities (up to a given order in perturbation theory), and pin them down to
experimental data afterwards. This is called bare perturbation theory.

6We want to prepare for more general cases and thus renormalise λ additively here. Note that multi-
plicative renormalisation is a special case thereof, but not always applicable, for example when couplings
carry additional indices with particular symmetry properties.
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The terms making up the counterterm Lagrangian are called the counterterms. In slight
abuse of terminology, we will often call the parameters δZϕ, δm2, and δλ themselves
counterterms.

We choose δZϕ, δm2, and δλ real here in order to preserve unitarity. However, in
more general cases, renormalisation constants of couplings do not necessarily have to be
real. Examples we will meet in this thesis are renormalisation constants of Yukawa and
of effective couplings. Furthermore, if fields carry family indices, the renormalised fields
in general are superpositions of the fields of different families, leading to wavefunction
renormalisation constants carrying family indices.

The usage of counterterms is as follows. First, we determine the renormalisation con-
stants. To this end, we treat the counterterms as independent fundamental terms in the
Lagrangian, yielding new vertices with Feynman rules following from Lϕ,ct as usual. This
allows us to determine the counterterms order by order in perturbation theory by applying
so-called renormalisation conditions (defining the renormalisation scheme). All renormal-
isation schemes have in common that the infinite, i.e. regulator-dependent parts, of the
bare quantities are absorbed into the counterterms. This is the way how regulators vanish
from the theory in renormalised perturbation theory.

However, the renormalisation schemes differ in the way how one defines the finite parts
of the counterterms. In the physical renormalisation scheme, one fixes the finite parts by
the condition that the remaining renormalised quantities coincide with the corresponding
measured values. This may be the most intuitive way of carrying out renormalisation, but
the calculations often turn out to be quite cumbersome in practice. In the following section,
we introduce a more convenient renormalisation scheme, the so-called minimal subtraction
(MS) scheme, which we will use throughout this thesis. In other renormalisation schemes
than the physical one, the renormalised quantities are not equal to the measured values.
Thus, one says that renormalised quantities are scheme-dependent. However, renormalised
quantities can be calculated from measured values, which makes them measurable in this
sense, too.

The question of whether a theory is renormalisable or not can now be rephrased in the
counterterm language: is it always possible to absorb all infinities into counterterms? This
is clearly not the case if our theory has the property that diagrams with some arbitrarily
high, but fixed, number of external legs are divergent at some sufficiently high loop order.
In this case, one would be forced to add an arbitrarily high number of counterterms to the
Lagrangian in order to render all Green’s functions finite. Thereby, an infinite number of
parameters would enter the theory, each of which would have to be matched to experiment
(by applying some renormalisation scheme). Thus, the theory would loose all predictive
power and we call it a non-renormalisable theory. In the opposite case, where a finite
number of counterterms is enough to render all Green’s functions finite, the theory is
renormalisable. Although hard to prove in full generality, there is a surprisingly simple
way for deciding whether a theory is renormalisable or not: if all couplings of the theory
have mass dimension greater or equal to zero, the theory is renormalisable [61–66].
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Dimensional Regularisation and the MS Renormalisation Scheme

We now introduce the MS renormalisation scheme which, together with the so-called di-
mensional regularisation (dimreg) technique, provides a powerful method of performing
renormalisation [67].

In dimreg, we write the loop integrals in d instead of four spacetime dimensions and
parameterise d by a regularisation parameter, which we denote by ε:

d ≡ 4− ε. (2.2.8)

Thus, for ε = 0 we have d = 4. The results of loop integrals now depend on d and we can
expand them in a Laurent series in ε. Then, the divergencies in four spacetime dimensions
appear as terms proportional to inverse powers of ε. For practical calculations, we refer the
reader to the excellent appendix of Ref. [25], in which the results of many loop integrals as
well as other important relations in d dimensions are tabulated. Furthermore, the usage
of Passarino-Veltman functions greatly simplifies many computations in dimreg, as their
divergent terms are tabulated in the literature [68, 69].

When writing the Lagrangian in d spacetime dimensions, the mass dimensions of scalar,
spinor, and vector fields ϕ, ψ, and A, respectively, can be read of from their kinetic terms
by requiring the Lagrangian to have mass dimension d (since the action is dimensionless):

[ϕ] =
d− 2

2
, (2.2.9a)

[ψ] =
d− 1

2
, (2.2.9b)

[A] =
d− 2

2
. (2.2.9c)

We use this to rescale the couplings by powers of the renormalisation scale µ in such a way
that their mass dimension remains the same as in four spacetime dimensions:

Q→ µDQεQ. (2.2.10)

For example, for quartic scalar couplings λ we have Dλ = 1, for gauge couplings g one
finds Dg = 1/2, and for Yukawa couplings Y we also obtain DY = 1/2.

Renormalisation is particularly simple using the minimal subtraction (MS) scheme, in
which – as its name suggests – the counterterms are defined by the prescription that they
cancel only the divergences. Thus, in dimreg, the renormalisation constants δZφ and δQ,
respectively, have the simple form:

δZφ =
∞∑
k=1

δZφ,k
1

εk
, δQ =

∞∑
k=1

δQk
1

εk
. (2.2.11)

Here and in the following sections, we use the notation φ to denote any field without
specifying whether it is of scalar, spinor or vector type. There should be no confusion with
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the SM Higgs doublet, which we also denoted by the letter φ in Sec. 2.1.1. Analogously,
Q denotes any coupling of the theory and can be of scalar, vectorial, or a more general
tensorial nature. Note that in MS, the renormalisation constants do not contain any
UV-finite terms, i.e., no terms finite in the limit ε→ 0. Indeed, all finite terms belong to
the renormalised quantities.

Calculating β-functions

The renormalisation scale µ, which appeared above for dimensional reasons, is to be ident-
fied with the energy scale of the processes under consideration [59]. The fact that the
bare Lagrangian is independent of µ has the profound implication that physical, i.e. renor-
malised, quantities in turn do depend on µ: they run with the energy scale at which they
are measured [70–73]. We call this phenomenon the renormalisation group (RG) evolution
of model parameters.

We now present a general equation which allows us to compute the energy dependence,
i.e., the running of some model parameter Q. Recall that we do not specify whether Q is
of scalar, vectorial or some more general tensorial nature, making our result applicable for
all types of couplings we will encounter in Chap. 3. The derivation is quite lengthy and
does not give much insight into the physics involved, which is why we do not repeat it here
in detail. We refer the reader to Refs. [35,60], which we follow closely.

Extending our introductory example of ϕ4-theory to a case where multiple fields φi are
involved, Eq. (2.2.4) reads for a general coupling Q:

QB =

(∏
i∈SL

Zni
φi

)
[Q+ δQ]µDQε

(∏
j∈SR

Z
nj
φj

)
. (2.2.12)

Note that due to their tensorial nature we have to distinguish between renormalisation
constants which multiply Q+δQ from the left and from the right as indicated by the index
sets SL and SR.

We want to compute the so-called β-function of Q, defined by:

βQ ≡ µ
dQ

dµ
. (2.2.13)

To this end, we employ the aforementioned condition that bare quantities do not depend
on the renormalisation scale, i.e.:

dQB

dµ
= 0. (2.2.14)

By setting the total derivative of the right-hand side of Eq. (2.2.12) to zero, one finds after
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some algebra the central equation:

βQ = DQ

〈
dδQ1

dQ

∣∣∣∣Q〉+
∑
k

DPk

〈
dδQ1

dPk

∣∣∣∣Pk〉−DQδQ1

+
∑
i∈SL

ni

[
DQ

〈
dδZφi,1

dQ

∣∣∣∣Q〉+
∑
k

DPk

〈
dδZφi,1

dPk

∣∣∣∣Pk〉
]
Q

+Q
∑
j∈SR

nj

[
DQ

〈
dδZφj ,1

dQ

∣∣∣∣Q〉+
∑
k

DPk

〈
dδZφj ,1

dPk

∣∣∣∣Pk〉
]
.

(2.2.15)

Here, we denoted all running parameters, on which δQ and δZφi depend (in addition to Q
itself), by Pk:

δQ = δQ [Q (µ) , {Pk (µ)}] , (2.2.16a)

δZφi = δZφi [Q (µ) , {Pk (µ)}] . (2.2.16b)

If Q or Pk are complex quantities, we have to treat their complex conjugates Q∗ and P ∗k
as additional independent variables. Furthermore, we introduced the notation

〈
dF

dx

∣∣∣∣ y〉 ≡


dF
dx
y, for scalars x, y,

dF
dxn

yn, for vectors xn, yn,

dF
dxmn

ymn, for matrices xmn, ymn,

(2.2.17)

where repeated indices are implicitly summed. This is easily adapted to the case when x
and y are higher-rank tensors. Note that Eq. (2.2.15) only depends on the 1/ε-coefficients
of the counterterms, cf. (2.2.11). This property will simplify our calculations in Chap. 3.

2.2.2 Effective Field Theory

Imposing renormalisability greatly reduces the number of allowed terms in a Lagrangian.
Indeed, as discussed above, in four spacetime dimensions the Lagrangian is of mass di-
mension four. Then, the condition that all couplings have non-negative mass dimension
is equivalent to the condition that no operator appearing in the Lagrangian has mass
dimension greater than four.

Despite its name, a non-renormalisable theory can be useful as a low-energy approxima-
tion of some more fundamental theory, which we call the full theory or the UV-completion
in this context. The low-energy theory is then called an effective field theory (EFT). In
such cases, there exists a natural cutoff energy, above which the EFT becomes invalid
and where one has to use the full theory instead. In contrast to the unphysical cutoff we
discussed above in the context of regularisation, the cutoff in EFTs is a concrete physical
quantity.
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We can use the EFT viewpoint in two complementary ways, known as the bottom-up
approach and the top-down approach. Both rely on allowing non-renormalisable terms in
the Lagrangian, which we write collectively as:

Leff =
∑
n≥5

Cn
Λn−4

O(n). (2.2.18)

Here, Λ is some high energy scale, Cn are dimensionless couplings and O(n) denotes an
effective operator of mass dimension n. Thus, effective operators of higher mass dimension
are suppressed by higher powers of the high scale Λ. By grouping all calculations in inverse
orders of Λ, and discarding all contributions higher than a fixed order (which determines
the accuracy of the results), finitely many counterterms are sufficient, and we can treat
the effective theory like a renormalisable one [59,74,75].

The two approaches are different in the aspects of where the high scale Λ comes from
and which symmetries and particle content one uses to construct the effective operators.
In the bottom-up approach, we use the particle content and symmetries of a given theory
and treat it as a low-energy approximation to some unknown UV-completion. Λ then
represents the scale above which new physics is expected to become relevant. Using this
approach, one can make, for instance, general and model-independent statements about
extensions of the SM by neutrino masses, cf. Sec. 2.3.1.

On the contrary, in the top-down approach we consider a given and renormalisable
theory which we assume to be a valid description of Nature. In this thesis, we use the
Zee-Babu model as an example of such a theory, cf. Sec. 2.3.2. At low energies, heavy
particles decouple from the theory [76]. at tree level, this is obvious: a heavy particle
cannot be produced as an external state for energies below its mass m, and its propagator
in loops can be expanded as

1

p2 +m2
=

1

m2

(
1− p2

m2
+
p4

m4
− . . .

)
, (2.2.19)

showing that for p2 � m2 there is no propagation of the particle. The Appelquist-Carazzone
decoupling theorem [77] states that this decoupling also takes place after renormalisation,
i.e., when taking into account quantum corrections to the propagator. However, the de-
coupling is not manifest in the MS-scheme we are using, leading to large logarithms in the
IR-limit. Thus, perturbation theory cannot be trusted for energies way below the particle’s
mass, and we obtain meaningless results if we do not take care of the decoupling by hand.
We do this by integrating out the particle at its mass threshold, i.e., at the energy which
equals the particle’s mass. This means to take the particle out of the theory and capture
its residual effects by effective operators [78, 79].7 We say that the effective operators get
switched on at the mass threshold. The resulting EFT has to be matched to the full theory
by employing matching conditions, stating that both the full theory and the EFT yield the
same predictions at the threshold energy.

7The parlance “integrate out” particles, stemming from the path integral formulation, is misleading in
this context.
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2.3 Neutrino Mass Models
We now look at some approaches of extending the SM by neutrino masses. This leads
us to the Zee-Babu model, which we will study in this thesis, focusing on the running of
neutrino masses and mixing angles. To prepare this, we explain at the end of this section
in detail the top-down approach, which we will use to investigate this running.

2.3.1 Extending the Standard Model by Neutrino Masses

In this section, we discuss shortly how the SM may be extended in order to incorporate
neutrino masses, leading us to beyond-SM (BSM) physics. A generic approach to extending
the SM by neutrino masses is to think of it as an effective low energy theory [33]. This
means that we retain the SM gauge group as well as its particle content, but allow also
non-renormalisable terms. We already discussed this bottom-up approach in Sec. 2.2.2.

Allowing terms up to mass-dimension D = 5, we obtain a single effective operator, the
so-called Weinberg operator given by [80,81]:

LD=5 = −κW,IJ(LI,L)ci (LJ,L)j φkφlεikεjl + h.c. (2.3.1)

We can make the scale ΛNP of new physics explicit by introducing the dimensionless cou-
plings CW,IJ via:

κW,IJ ≡
CW,IJ

ΛNP

. (2.3.2)

Upon electroweak symmetry breaking, this operator leads to a Majorana mass term for
the neutrinos:

LD=5 ⊃ −
v2

ΛNP

CW,IJ

2
(νI,L)cνJ,L + h.c. (2.3.3)

Note that this term breaks lepton number by two units, and does also not conserve the
individual lepton family numbers, cf. Sec. 2.1.1.

Seesaw Mechanism

A popular approach for generating a term of the form Eq. (2.3.1) is by introducing a set
of right-handed sterile neutrinos8:

νI,R ∼ (1,1, 0) . (2.3.4)

Then, by gauge symmetry, there is a new Yukawa term allowed in addition to the SM:

− LYuk,ν = Yν,IJνI,R (LJ,L)i φjεij + h.c.→MD,IJνI,RνJ,L + h.c. (2.3.5)

8Although there is no physical reason to do so at this point, let us assume that we have three sterile
neutrinos for simplicity.
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On the right-hand side of this equation, we already wrote down the Dirac mass term for
the neutrinos appearing upon EWSB. The Dirac mass matrix is given by:

MD,IJ =
Yν,IJv√

2
. (2.3.6)

If this new Yukawa term was the only term we added to the SM Lagrangian, we would
impose lepton number symmetry, thus not treating the SM as a low-energy effective theory
(as in the SM, lepton number is only an accidental symmetry). Indeed, gauge symmetry
allows a Majorana mass term for the sterile neutrinos:

− LMaj,ν =
1

2
MR,IJ(νI,R)cνJ,R + h.c. (2.3.7)

Before studying the implications of this term, let us assume that for some reason we
have MR = 0. Then, neutrinos would be Dirac particles, as their masses arised solely from
the Dirac term. The only way of explaining their smallness would be through exceedingly
small Yukawa couplings Yν (compared to the SM Yukawa couplings), as the Higgs-vev v is
fixed by experiment. This represents a fine-tuned and thus quite unsatisfactory scenario
from a theoretical point of view.

In the general case MR 6= 0 we can rewrite the neutrino mass terms in the form

− LM,ν =
1

2

(
(νL)c νR

)( 0 MT
D

MD MR

)(
νL

(νR)c

)
, (2.3.8)

where we used Eq. (B.0.9) to rewrite the Dirac term. The eigenstates we obtain by diago-
nalising this mass matrix contain both left- and right-handed neutrino species, forming six
Majorana particles. However, if the eigenvalues of MR are much greater than those of MD,
i.e., if MR � MD, we can approximately block-diagonalise the mass matrix and obtain a
mass matrix of the form:

Mν = −MT
DM

−1
R MD. (2.3.9)

for three Majorana neutrino eigenstates which coincide with νL (in this approximation).
By making MR large enough, we can explain the tinyness of the neutrino masses Mν .
Note that the mass matrix MR has no connection to the electroweak scale, making it not
unnatural to assume MR being very large. This is the famous seesaw type I mechanism.
There exist various modifications of this idea, leading to further seesaw-type scenarios [38].

Radiative Models

Another popular approach for generating Majorana neutrino masses are so-called radiative
models. In these models, one also introduces additional heavy particles in such a way that
in contrast to the seesaw-mechanism no mass term for the neutrinos is generated at tree
level. Rather, neutrino masses appear as effective terms due to diagrams in which the
additional particles circulate in loops, i.e., neutrino masses are generated by loop-effects.
Thus, the neutrino mass matrix in such models generically is a product of many (small)
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νL νL

η0 η0

N1,2,...

φ0 φ0

Figure 2.1: The one-loop diagram responsible for neutrino mass generation in the Scotogenic
model.

tree-level couplings and loop factors of 1/16π2, leading to a strong suppression. Therefore,
such models have the advantage over seesaw-type models that the additional particles do
not have to be exceedingly heavy for explaining tiny neutrino masses, and thus may be
found in near-future experiments.

One famous example of radiative models is the Scotogenic model, which is an extension
of the SM by right-handed sterile neutrinos N1,2,..., a second SU(2)L-doublet η ≡ (η+, η0),
and a discrete Z2-symmetry, under which all SM particles are even and all new particles
are odd [12]. This symmetry forbids a mass term for the SM neutrinos at tree level. The
lowest-order contribution is through the diagram depicted in Fig. 2.1, leading to radiative
neutrino masses at one-loop level. An interesting property of the Scotogenic model is that
the corrections of the tree-level parameters add up in the product forming the neutrino
mass matrix, leading to strong running of neutrino masses and leptonic mixing angles. It
was shown in Refs. [13,14] that this running can explain the deviation of measured neutrino
data from theoretical predictions at very high energy scales. This motivates to investigate
the running in other radiative models, too.

In this thesis, we study the running in the Zee-Babu model. This is another radiative
model, in which neutrino masses are two-loop effects. We will introduce this model in the
following section.

2.3.2 The Zee-Babu Model

In this section we introduce the Zee-Babu model, which we will study in great detail in this
thesis. First, we present the Lagrangian of the model and discuss related topics such as
symmetry breaking and physical parameters. Afterwards, we show that in the Zee-Babu
model lepton number is violated, which allows Majorana neutrino masses to be generated
at two-loop order.
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Lagrangian

The Zee-Babu model [15] is an economical extension of the SM by only two scalar particles
h+ and k++, both of which transform as singlets under the SU(2)L and SU(3)C gauge
groups and have hypercharges +1 and +2, respectively:

h+ ∼ (1,1,+1) , (2.3.10a)

k++ ∼ (1,1,+2) . (2.3.10b)

Writing down all possible renormalisable and gauge-invariant terms following from this
particle content, we arrive at the Lagrangian density

LZB ⊃ Lkin + LYuk − Vscal. (2.3.11)

Here, Lkin, LYuk, and Vscal denote the gauge-kinetic, Yukawa, and scalar potential terms,
respectively:

Lkin =
(
QI,L

)
i

(
i /DQI,L

)
i
+ uI,R

(
i /DuI,R

)
+ dI,R

(
i /DdI,R

)
+
(
LI,L

)
i

(
i /DLI,L

)
i
+ eI,R

(
i /DeI,R

)
+
(
Dµφ

†)
i
(Dµφ)i

+
(
Dµh

−) (Dµh+
)

+
(
Dµk

−−) (Dµk++
)
,

(2.3.12a)

−LYuk = Ye,IJeI,R (LJ,L)i φ
†
i + Yu,IJuI,R (QJ,L)i φjεij + Yd,IJdI,R (QJ,L)i φ

†
i

+ fIJ(LI,L)ci (LJ,L)j εijh
+ + gIJ(eI,R)ceJ,Rk

++ + h.c.,
(2.3.12b)

Vscal = µ2
φφ
†
iφi + µ2

hh
+h− + µ2

kk
++k−− + λφ

(
φ†iφi

)2

+ λh
(
h+h−

)2

+ λk
(
k++k−−

)2
+ λφh

(
φ†iφi

) (
h+h−

)
+ λφk

(
φ†iφi

) (
k++k−−

)
+ λhk

(
h+h−

) (
k++k−−

)
+ µhk

(
h+h+k−− + h−h−k++

)
.

(2.3.12c)

Comparing this Lagrangian to the SM Lagrangian, Eq. (2.1.3), we find two new Yukawa
matrices f and g as well as new scalar mass parameters µ2

h, µ
2
k, and new quartic scalar

couplings λh, λk, λφh, λφk, and λhk. Most notably, there also appears a trilinear scalar
coupling µhk, which is of importance in the context of neutrino masses.

Let us discuss which parameters of the model are physical, cf. Sec. 2.1.1. We follow [17]
and work in a basis where the charged lepton Yukawa matrix Ye is diagonal with real and
positive elements as given in Eq. (2.1.27). In addition, we define the Yukawa matrix f
to be antisymmetric and the Yukawa matrix g to be symmetric.9 Furthermore, we shift

9We do not necessarily have to impose those symmetry properties on f and g, but it is convenient
to do so as for f only the antisymmetric part and for g only the symmetric part is physical. This can
be seen as follows. First, consider the Yukawa term involving k++. Suppose we started with the term
g̃IJTIJk

++, where we defined TIJ ≡ (eI,R)
c
eJ,R and suppressed the Hermitean conjugate term. Assume

that we do not impose any symmetry properties on g̃IJ = g̃sIJ + g̃aIJ , which we split into its symmetric and
antisymmetric parts. Using Eq. (B.0.9), we find that T is symmetric TIJ = TJI . Therefore, in the sum
over I, J only the symmetric part g̃sIJ survives, g̃IJTIJ = g̃sIJTIJ , and hence the antisymmetric part turns
out to be physically irrelevant. This is the reason why we can define the Yukawa matrix to be symmetric
from the beginning: gIJ ≡ g̃sIJ . Following the same arguments and taking into account the presence of the
antisymmetric symbol ε, we find that only the antisymmetric part of the Yukawa matrix fIJ is physical.
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the phases of the fermion fields in order to remove three phases from the elements of
g. Analogously, by shifting phases of the charged scalars, we remove one phase from f
and set µhk real and positive. This choice turns out to be compatible with the standard
parameterisation of the PMNS-matrix as given in Eq. (2.1.40) [82]. In total, in the lepton
and scalar sectors, we have 22 moduli (3 from Ye, 6 from g, 3 from f and 10 from the
parameters in the scalar potential), as well as 5 phases (3 from g and 2 from f). We will
discuss in Sec. 4.2.2, how these physical parameters are related to the parameters of the
PMNS-matrix.

Upon EWSB, the physical scalar particles φH , h+ and k++ acquire masses given by:

m2
H = −2µ2

φ = 2λφv
2, (2.3.13a)

m2
h = µ2

h +
1

2
λφhv

2, (2.3.13b)

m2
k = µ2

k +
1

2
λφkv

2. (2.3.13c)

Note that we assume m2
h,m

2
k � m2

H , as otherwise the charged particles h+ and k++ should
already have been seen in experiments, cf. Sec. 2.3.3. However, interestingly, the current
bounds on the scalar masses mh and mk are accessible to the second run of the LHC [17].

Neutrino Masses

The central property of the Zee-Babu model is that a Majorana mass term of the form

LMν = −1

2
Mν,IJνI,L (νJ,L)c + h.c. (2.3.14)

for the neutrinos is generated at two-loop order. Indeed, the Yukawa terms proportional
to f and g together with the trilinear term proportional to µhk in the scalar potential
violate lepton number by two units. Using these couplings, we can build the two-loop
diagram shown in Fig. 2.2, which is the lowest-order contribution to neutrino masses in
the Zee-Babu model. We will compute the mass matrix Mν in Sec. 3.2.

There exist several references [15, 16], which investigate, whether the Zee-Babu model
is consistent with neutrino data. Refs. [17, 83] take into account most recent data from
neutrino experiments, to constrain the free parameters of the model. The authors conclude
that this data is not enough to rule the model out. Therefore, the Zee-Babu model still is
a popular candidate neutrino mass model.

2.3.3 The Top-Down Approach of RG Evolution

We discussed in the previous section that the Zee-Babu model is a viable candidate neutrino
mass model, since its predictions are consistent with current experiments. In this thesis,
we will analyse the RG evolution of the parameters in this model. In Ref. [17], the running
in the Zee-Babu model was already studied in the context of the stability of the Higgs
potential. In this thesis, we will go one step further and take into account the full RG
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k++
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〈φ〉〈φ〉
Figure 2.2: The two-loop diagram responsible for neutrino mass generation in the Zee-Babu
model.

evolution of all model parameters. This allows us to investigate the running of neutrino
masses and leptonic mixing angles.

Top-Down Approach

We will investigate the running in a top-down approach, cf. Sec. 2.2.2. This means that we
start with some parameter configuration at a high input energy scale, which we choose to
be the scale of grand unification µGUT ≈ 1016 GeV.10 We will often simply call this scale the
high scale. This approach is interesting, as there exist several theoretically well-motivated
leptonic mixing patterns, for example from GUTs, at the high scale. One example is the
bimaximal mixing pattern, in which θ13 = 0◦ and θ12 = θ23 = 45◦ [84]. The mixing pattern
measured at much lower energies deviates considerably from this prediction, cf. Sec. 2.1.2,
which makes it interesting to study, whether the running can explain this discrepancy. In
this thesis, we will impose a bimaximal mixing pattern at µGUT and run the parameters
down to the electroweak scale µEW ≈ 100 GeV (the low scale), where we check whether the
predicted neutrino observables are consistent with experimental data.

Neutrino experiments take place at energies even lower than µEW. For example, solar
neutrinos have energies in the range 1-10 MeV, while both athmospheric neutrinos and neu-
trinos produced in accelerators are in the GeV range. In the context of neutrino masses,
the paramount reason for studying the running is not to connect the outcomes of mea-
surements taken at different energies, as their current uncertainties are much higher than
the running. Indeed, at µEW the BSM particles are necessarily integrated out, a setting in
which we know that neutrino parameters show barely any running [14, 85]. This makes it
consistent to compare neutrino parameters at the common scale µEW with experimental
results.

Considering the Zee-Babu model, we will show in Sec. 4 that a given mixing pattern does

10Grand unified theories predict the unification of the gauge couplings at this scale. However, in the
Zee-Babu model such a unification does not take place. Thus, in our setting, the GUT-scale is an arbitrary
but motivated choice for a high input scale.
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not fix all model parameters. Rather, we have a large space of parameter configurations,
all of which produce, say, the bimaximal mixing pattern. Therefore, we have much freedom
in initialising the RGEs at µGUT. In order to find out whether the Zee-Babu model is a
physically sensible theory, we will scan this space for configurations which make the model
parameters run into the measured values at the low scale. Furthermore, the parameters
have to stay confined to physically meaningful bounds on the way down from the high
to the low scale. If one does not find such an initial parameter configuration, we can
either rule out the model completely, or gain information about possible modifications of
the model. To come to a conclusive answer, one would have to perform a scan of the
whole free parameter space. Clearly, this is beyond the scope of this thesis, but our results
presented in Chap. 4 provide a useful starting point for a more thorough investigation.

One could ask the question why we would choose a top-down approach in the first place.
Indeed, we saw in Sec. 2.1.2 that, at the low scale, experiments constrain the parameter
configuration quite tightly. In contrast, we have not much more to say about parameter
configurations at the high scale than which ones might be theoretically more appealing
than others. So, why don’t we just fix the measured parameter configuration at the low
scale and run it up using the RGEs of the Zee-Babu model to higher energies in order to
study whether the parameters run out of physically meaningful regions? This approach
is taken for example in Ref. [17], in the context of vacuum stability. However, we do not
choose it for our extended analysis, since it is, strictly speaking, not correct. Indeed, we
saw in Sec. 2.2.2 that if we inspect the running at energy scales below a particle’s mass
threshold, it has to be integrated out of the theory. Thus, at these energies, we have to use
the RGEs of the corresponding EFT. In the Zee-Babu model, the masses of the charged
scalars h+ and k++ are assumed to be substantially larger than µEW, as they have not yet
been seen in experiments. Therefore, it is not correct to use the RGEs of the full Zee-Babu
model at energies near µEW, as here h+ and k++ cannot be treated as propagating degrees
of freedom.

EFT-Structure of the Zee-Babu Model

Let us briefly discuss in more detail the structure of the EFTs derived from the Zee-Babu
model. In a top-down approach, we start with specific initial values of the masses mh

and mk of h+ and k++ at µGUT, and calculate the running of those masses (together with
the other model parameters) using the RGEs of the full theory. This yields the solutions
mh = mh (µ) andmk = mk (µ). From these solutions, we can determine the mass thresholds
µ∗h and µ∗k of h+ and k++.

For example, µ∗k is given by the point at which mk (µ) intersects the angle bisector,
i.e., at the solution of the implicit equation:

µ∗k = mk (µ∗k) . (2.3.15)

At this energy, we say that k++ hits its mass threshold. Below µ∗k, we have to use the
EFT, which results from integrating out k++, and we have to match this EFT to the
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higher-energy theory at µ∗k. Clearly, the same considerations apply when h+ hits it mass
threshold µ∗h given by:

µ∗h = mk (µ∗h) . (2.3.16)

Which of the particles hits its mass threshold first will depend on the parameter configu-
ration at µGUT.

If we integrate out k++ first, we call the resulting theory EFT-h (as h+ remains). In
the opposite case, we use the name EFT-k. Going further down to lower energies after the
first particle was integrated out, the remaining particle will eventually also hit its mass
threshold and be integrated out, too. We will call the theory which results after we have
integrated out both h+ and k++, i.e., which only contains SM particles, EFT-0.

Thus, there are two different routes for getting from the full high-energy theory to
EFT-0. The matching equations which determine the initial values in EFT-0 will therefore
differ depending on which route follows from the initial parameter configuration at µGUT.
Therefore, although those theories do formally have the same Lagrangian, we will distin-
guish between an EFT-0h and an EFT-0k in the context of the matching. Here, EFT-0h
means that we are in EFT-0 and took the route

full theory→ EFT-h→ EFT-0,

while EFT-0k refers to the route

full theory→ EFT-k → EFT-0.

We illustrate this graphically in Fig. 2.3.
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Full Theory
L = LZB

EFT-h
L = Lh

EFT-k

L = L0

EFT-0

EFT-0h EFT-0k

L = Lk

integrate out k++

integrate out k++

integrate out h+

integrate out h+

Figure 2.3: Matching structure of the EFTs derived from the Zee-Babu model. Which route
is taken on the way from the full theory down to EFT-0 depends on the initial parameter
configuration at the high energy scale µGUT. The comparison of the resulting neutrino
parameters with experimental data takes place at the low energy scale µEW, at which both
h+ and k++ are already integrated out (EFT-0).



Chapter 3
Running of the Neutrino Mass Matrix in the
Zee-Babu Model

This chapter makes up the main part of this thesis: the computation of the running of
neutrino masses and leptonic mixing parameters in the Zee-Babu model. In Sec. 2.1.2, we
learned that these are encoded in the neutrino mass matrix Mν . Thus, one central task of
this chapter is the computation of Mν , which is no tree-level parameter in radiative models.
Rather, Mν is an effective quantity given by a product of tree-level parameters. Thus, the
computation of the running of Mν amounts to calculating the running of these parameters,
i.e. the derivation of their RGEs. Eventually, we will end up with a large system of coupled
RGEs, which cannot be solved analytically in full generality. We therefore have to resort
to numerical methods, which we will present in Chap. 4.

In Sec. 2.3.3, we discussed that we have to integrate out the scalars h+ and k++ at their
respective mass thresholds in order to decouple them properly from the theory. Therefore,
we have to consider the RGEs not only in the full Zee-Babu model, but also in the effective
theories EFT-h, EFT-k, and EFT-0. Furthermore, we have to find the matching equations,
which we will employ in order to compute the initial values of the running parameters in
the EFTs from the parameters in the respective higher-energy theories. The derivation of
these matching equations is another central task of this chapter.

We do not have to compute all RGEs by hand, as there exists a computer program
named SARAH, which is able to derive RGEs, given a Lagrangian [86,87]. Unfortunately,
SARAH cannot compute RGEs of effective couplings, which we therefore have to derive
by hand. Nevertheless, SARAH saves us much work: first of all, it gives us the RGEs of
the full theory. In addition, these results are helpful in the EFTs, too, as we can easily
deduce the RGEs of those full-theory couplings, which are still present in the EFTs, from
the corresponding RGEs in the full theory. Indeed, we will find that in these RGEs do not
appear any new terms compared to the full theory. Thus, we obtain these RGEs by just
setting the full-theory couplings, which are not present in the EFTs anymore, to zero.

In summary, we only have to calculate the RGEs of the effective couplings in the
EFTs by hand. As we learned in Sec. 2.2.1, computing the RGE of some coupling using

31
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Eq. (2.2.15) basically amounts to calculating its counterterm and the wavefunction renor-
malisation constants appearing in the expression connecting the bare and renormalised
versions of this coupling, cf. Eq. (2.2.12). Thus, we have to calculate the counterterms of
all relevant effective couplings as well as the respective wavefunction renormalisation con-
stants. Although we will not need them there, we do some preparatory work and calculate
the wavefunction renormalisation constants already in the full theory. This turns out to
be only slightly more effortful than doing the calculations in the EFTs directly, and the
full-theory results may be useful for future reference. In the EFTs, we then only have to
compute the counterterms of the effective couplings from scratch.

Finally note that, in a top-down approach one not only has to care about whether some
high-energy parameter configuration can reproduce the measured neutrino parameters at
the low scale. In addition, one also has to check whether model parameters leave physically
sensible regions on the way from the high scale down to the low scale. Therefore, we will
derive the RGEs of all model parameters, regardless of whether we eventually need them
to compute the mass matrix or not.

3.1 Systematics of the Calculations
In this section, we prepare the subsequent calculations by introducing our approach of
organising them in loop orders. This allows us to decide, which diagrams we have to
compute and which we can safely neglect in order to arrive at a given accuracy of the
running of the neutrino mass matrix. Note that, in principle, we do nothing more special
than renormalising a Lagrangian. However, as the mass matrix in radiative models is a
composite quantity containing various tree-level parameters, it is intricate to keep track of
the relative importance of the running effects. Thus, it will prove useful to systematise the
calculations.

We introduce our technique in general, without sticking to a specific radiative neutrino
mass model, in order to make it applicable for a wide range of models. Afterwards, we
investigate the Zee-Babu model in particular, using this very technique. It will give us
important information about the structure of the running in the EFTs, even before carrying
out the computations in detail.

3.1.1 Expansion in Loop Orders

As is very common in QFT, the calculations presented in this chapter are of a perturbative
nature. This means that the running of neutrino parameters is mathematically expressed
as a superposition of infinitely many quantum effects. Therefore, we need a means of
estimating the relative importance of these effects. Only then we can decide which effects
we have to include in our calculations and which we can safely neglect in order to arrive
at a specific accuracy. In this thesis, we chose to structure our calculations by expanding
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all quantities in loop orders, i.e., in a series in so-called loop factors [88],

α ≡ 1

16π2
� 1, (3.1.1)

and by cutting this expansion at a specific loop order. This may at first seem to be a very
crude measure of the relative importance of the effects involved. Indeed, one should in
principle expand all effects in a series in coupling constants and use this as the measure.
Unfortunately, this approach is not of much use here for several reasons. First, there are
many different coupling constants involved which would lead to multiple nested expansions,
making the calculations cumbersome. Even worse, the relative strengths of the coupling
constants of BSM physics are not known a priori. Therefore, we have no means of deciding
which effects we have to consider before we actually did the calculations and evalutated
the results for a specific parameter configuration. This would make our work unbearably
complicated, as we would have to compute much more diagrams than are actually necessary.
In contrast, the expansion in loop orders turns out to be a very convenient way to structure
the calculations, since we always know beforehand how many loop factors are associated
with a specific effect. Therefore, this approach is very suitable for a first study of radiative
neutrino mass models. The results give important insight into the structure of a model, and
may subsequently be refined easily by taking into account information about the relative
strength of the coupling constants.

Using the loop order expansion, we will find that there are two important aspects
where things are conceptually different in a full theory, i.e., a theory which only contains
renormalisable couplings, compared to an EFT. First, in a full theory, n-loop contributions
to the mass matrix come exclusively from n-loop diagrams. In contrast, in an EFT, n-loop
contributions to the mass matrix may also come from m-loop diagrams with m < n. Such
diagrams then contain effective couplings which are switched on beyond tree-level. This is
a quite trivial observation, since clearly the “missing loops” are implicitly included in the
effective operators. More importantly, in full theories, the loop expansion of the β-function
βλ of a running coupling λ always starts at a loop order Nβ

λ beyond tree-level, i.e. Nβ
λ > 0.

In EFTs however, the loop expansion of the β-function of an effective coupling κ may
start at the same order Nβ

κ as the order Nκ at which the coupling itself is switched on.
This means that we can have Nβ

κ = Nκ.
1 The presence of an effective coupling with this

property in an EFT leads to the effect that the running of the mass matrix in this EFT is
stronger (in terms of loop orders) than in the full theory.

Let us now express this mathematically. We start with the full theory. In general, the
neutrino mass matrix Mν of a model featuring the radiative generation of neutrino masses
at N -th loop order is of the form

Mν =
∞∑
n=N

M (n)
ν =

∞∑
n=N

αnM̃ (n)
ν , (3.1.2)

1If we use the same language in full theories, we would say that any full theory coupling λ is “switched
on” at tree level, i.e. Nλ = 0, and we always have Nβ

λ > Nλ. The same is true for effective couplings
which are switched on an tree-level.
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where a term M
(n)
ν is defined to denote the sum of all n-loop contributions to the neutrino

mass matrix. This means that M
(n)
ν comes intrinsically with a loop factor αn of order n,

which we made explicit on the right-hand side of the above equation. Assume now that
there are several different contributions to the mass matrix at n-loop order which we denote
by M

(n)
ν,k :

M (n)
ν =

∑
k

M
(n)
ν,k . (3.1.3)

In a full theory, every term M
(n)
ν,k simply denotes an n-loop diagram M(n)

ν,k ,

M
(n)
ν,k =M(n)

ν,k , (3.1.4)

each of which evaluates to some combination of the running model parameters (which we
denote collectively by λi here) and in particular comes with a factor of αn (as it contains
n loops):

M(n)
ν,k = αn

∏
i

λi. (3.1.5)

Clearly, this equation may contain some further constants which are not energy-dependent
or more complex combinations of the λi such as loop integrals, but this is not important
for the general point we want to make here since it does not bring any further factors of α
into play. Therefore, we ignore such complications and assume each term to be a simple
product of the λi. Then, in order to connect the running of Mν with the running of the
λi, we calculate the derivative of Mν with respect to the energy parameter µ. Following
Eqs. (3.1.2)–(3.1.5), this will be a sum of terms of the form:

dM
(n)
ν,k

dµ
= αn

∑
j

∏
i 6=j

λiβλj . (3.1.6)

Here,

βλj ≡
dλj
dµ

(3.1.7)

is the β-function of the parameter λj, cf. Sec. 2.2.1. Just as we did for the mass matrix,
those β-functions can be organised in loop orders,

βλj =
∞∑

n=Nβ
λj

β
(n)
λj

=
∞∑

n=Nβ
λj

αnβ̃
(n)
λj
, (3.1.8)

where again β
(n)
λj

denotes all n-loop contributions to βλj and therefore contains a loop factor
αn. As we will discuss below, for full theory couplings there is no zeroth order term here:
Nβ
λj
> 0. Combining Eqs. (3.1.6) and (3.1.8), we arrive at the result that the leading order

effect of the running of the neutrino mass matrix is (at least) of loop order N + 1.
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This result seems rather trivial and the derivation may therefore appear to be overly
complicated. Nevertheless, this rigourous counting of loop orders pays off when it comes
to the EFTs, as here we additionally have to take into account that effective operators
may be switched on at loop orders beyond tree-level. Indeed, it is convenient to structure
the matching (cf. Sec. 2.2.2) of effective couplings to higher-energy theories also by an
expansion of the effective couplings in loop orders. Given an effective coupling κ, we write

κ =
∞∑

n=Nκ

κ(n) =
∞∑

n=Nκ

αnκ̃(n), (3.1.9)

where Nκ ∈ {0, 1, 2, . . . } is the loop order at which κ is switched on. In analogy to the case
of the neutrino mass matrix and the β-functions, we use κ(n) to denote all contributions
to the effective coupling coming from n-th loop order effects in the higher-energy theory.
Therefore, as indicated in the above equation, κ(n) contains a factor of αn. Note that it
is useful in this context to think of full theory couplings λi as being “switched on” at tree
level: Nλi = 0.

In an EFT there will be diagrams, which contain effective couplings, contributing to
the neutrino mass matrix. Considering the analogue of Eq. (3.1.4) in an EFT, it is not true
anymore that each contribution to the mass matrix at n-th loop order is just an n-loop
diagram. Rather, we have

M
(n)
ν,k =M(m)

ν,k , (3.1.10)

with m ≤ n. If m = n,M(m)
ν,k is an n-loop diagram and can therefore only contain couplings

which are present at tree level, i.e., either full-theory couplings which have been already
present in the higher-energy theory, or the tree-level terms κ(0) of effective couplings κ with
Nκ = 0. Otherwise, the diagram would describe an effect of an order higher than n. On
the other hand, for m < n, we have to have effective couplings in the diagram which come
with so many factors of α that the diagram effectively describes a process of loop order n.
Therefore, we can write:

M(m)
ν,k = αm

(∏
i

λi

)(∏
j

κ
(nj)
j

)
. (3.1.11)

Recall that we denote the full-theory couplings by λi. Furthermore, we use an index j to
enumerate the effective couplings. Then, in Eq. (3.1.10) the loop orders only match if we
have:

m+
∑
j

nj = n. (3.1.12)

We now again compute the derivative of the neutrino mass matrix Mν with respect to
µ in order to connect the running of Mν with the running of the model parameters:

dM
(n)
ν,k

dµ
= αm

(∑
j′

∏
i 6=j′

λiβλj′

)(∏
j

κ
(nj)
j

)
+ αm

(∏
i

λi

)(∑
j′

∏
j 6=j′

κ
(nj)
j β

κ
(nj′ )

j′

)
. (3.1.13)



36 3. Running of the Neutrino Mass Matrix in the Zee-Babu Model

The first term on the right-hand side of this equation is the analogue of Eq. (3.1.6), as it
contains the β-functions βλi of the full-theory couplings λi. As explained above, their loop
expansions start beyond tree-level, i.e. Nβ

λi
> 0. Therefore, the first term on the right-hand

side is (at least) of loop order n + 1. In the EFT, however, there appears a second term

on the right-hand side. It contains the β-functions β
κ
(nj)

j

of the effective couplings κ
(nj)
j .

As we have already anticipated, it can happen that the loop expansion of the β-function
of some effective coupling κ starts at the same order Nκ at which κ is switched on, i.e., we
can have:

Nκ = Nβ
κ . (3.1.14)

If an effective coupling with this property is present in an EFT, the second term on the
right-hand side of Eq. (3.1.13) contains terms which are of order n. Thus, in this case, the
running effects are of the same loop order as the corresponding term of the neutrino mass
matrix itself.

Let us now discuss in more detail how we can have Nβ
κ = Nκ in an EFT, in contrast to

Nβ
λ > Nλ in the full theory. More precisely, we now show that Nβ

Q > NQ if NQ = 0, while

Nβ
Q = NQ may be the case if NQ > 0. Using the notation of Sec. 2.2.1, we denote by Q any

coupling of a theory. In particular, we do not specify whether it is a full-theory coupling
or an effective coupling. We learned that the β-function βQ of Q is calculated from the
1/ε-coefficients δQ1 and δZφi,1 of its counterterm and of the wavefunction renormalisation
constants, respectively. These appear in Eq. (2.2.12), which connects the bare coupling
QB with its renormalised counterpart Q. Both δQ1 and δZφi,1 are calculated as a series in
loop orders:

δX1 =
∞∑

n=Nδ
X

δX
(n)
1 . (3.1.15)

Here, X stands either for Q or for some Zφi and, as above, δX
(n)
1 denotes the sum of all

n-loop contributions to δX1.
The expansions of δZφi,1 start beyond tree-level. The same is true for the counterterm

δQ1 of any coupling with NQ = 0, i.e., for full-theory couplings and for effective couplings
which get switched on at tree level. These statements are trivial, since at tree level there
cannot occur any infinities which would have to be absorbed by counterterms. We therefore
have:

N δ
φi
> 0, N δ

Q > 0 if NQ = 0. (3.1.16)

In particular, this means:
N δ
Q > NQ if NQ = 0. (3.1.17)

Using Eq. (3.1.16) in Eq. (2.2.15), we find that each summand contains a quantity of loop
order greater than zero. We therefore have:

Nβ
Q > NQ if NQ = 0, (3.1.18)

which is what we proposed above.
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The difference in the case of the counterterm δκ of some effective coupling κ with
Nκ > 0 is that we may instead have:

N δ
κ = Nκ, (3.1.19)

in contrast to Eq. (3.1.16). Such a situation will typically occur if we have an EFT with
two or more different effective couplings which get switched on at different loop orders. A
nice example for this situation is the EFT-h derived from the Zee-Babu model, where we
have (among others) an effective coupling κ21 with Nκ21 = 0 and another effective coupling
κ11 with Nκ11 = 1. From κ21 we can build a one-loop 1PI diagram which is of loop order
one and has the same external states as those which κ11 connects. The divergence which
comes from this loop diagram therefore has to be cured by the counterterm δκ

(1)
11 , so that

we have δκ
(1)
11 6= 0, i.e. N δ

κ11
= Nκ11 . This is depicted in the following equation:

1PI

LL

eR

h+

φ

=
eRh+

LL φ

h+eR

LL

κ
(0)
21

+

LL

eR

h+

φ

δκ
(1)
11

!
= UV-finite.

(3.1.20)

Upon substituting Eq. (3.1.19) into Eq. (2.2.15) with Q = κ, we can see that the second
and third line of this equation again lead to terms of loop order greater than Nκ, but this
does not have to be the case anymore for the first line. Indeed, the third term in the first
line will always be of the same order as δκ.2 Therefore, if we have an effective operator
obeying Eq. (3.1.19), we find:

Nβ
κ = Nκ. (3.1.21)

If κ gives a contribution to the neutrino mass matrix at leading order, the running effects
of the mass matrix will thus be of this very order, too.

Finally, we would like to point out that such a situation does not occur in the Scotogenic
model [14], for example, as there all effective couplings relevant for neutrino masses in the
EFTs are switched on at the same loop order. Thus, we cannot have situations as in
Eq. (3.1.20).

3.1.2 Application to the Zee-Babu Model

We now apply the results of the previous section to the case of the Zee-Babu model in
order to find out which diagrams we have to calculate.

2This is also the case for the first term if κ is of zeroth order and for the second term if some Pk is of
zeroth order.
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We learned in Sec. 2.3.2 that, in the Zee-Babu model, a Majorana mass term for the
neutrinos of the form

LMν = −1

2
Mν,IJνI,L (νJ,L)c + h.c. (2.3.14)

is generated. We define the Majorana mass matrix Mν,IJ to be symmetric, in order to
drop any unphysical parameters from the very beginning, cf. Sec. 2.1.2. We know that
the leading order contribution to neutrino masses comes from a two-loop diagram, i.e., we
have N = 2. In this thesis, we will consider only these leading order effects, i.e., we are
going to sum up all diagrams contributing to the mass matrix at second loop order. This
yields, according to Eq. (2.3.14):

iM(2)
ν,IJ ≡ νI,L νJ,L

2-loop = −2 · 1

2
iM

(2)
ν,IJPR = −iM (2)

ν,IJPR. (3.1.22)

One of our tasks in this chapter is to find concrete expressions for M
(2)
ν,IJ in the full theory,

as well as in the EFTs derived from it. As we do not want to clutter up the notation, we
are going to consistently drop the superscript “(2)” in what follows.

Now let us consider the running of the neutrino mass matrix. As we have N = 2, in
the full theory, the running of the mass matrix starts beyond two-loop order. As it turns
out, running effects in the full theory start at third order. Therefore, as we particularly
want to investigate the leading order effects of the running in the full theory, we have to
consistently take into account all third order effects in the full theory as well as in the
EFTs.

In the EFTs, we decided to consider effective operators up to mass dimension D = 5.
In Tab. 3.1 we list the subset of those effective couplings which turn out to be relevant for
the generation of neutrino masses in the EFTs of the Zee-Babu model together with the
loop orders at which they get switched on and the loop orders of the leading term of their
respective β-functions. From this table, we can read off that the running in EFT-k and
in EFT-0 will start at third loop order, just as it does in the full theory. Indeed, there
is only one effective coupling, namely κW, present in those EFTs and we have already
discussed above that in this case the running necessarily starts beyond the order at which
this coupling is switched on.

In contrast, in EFT-h, we will find that there are two effective couplings, namely κ11

and κW, the β-functions of which receive contributions at the same loop order as at which
they are switched on. Indeed, we used the calculation of the counterterm of κ11 already as
an example for such a situation in Eq. (3.1.20). This leads to running effects already at
two-loop order in EFT-h, i.e., at the same loop order at which the neutrino masses itself
are generated.

As already noted above, in order to be consistent, we have to consider the running up
to the same order in the full theory and in all EFTs. In particular, it would be inconsistent
to only consider the leading order effects of the running, i.e., to go up to third order in the
full theory, EFT-k and EFT-0, but only up to second order in EFT-h. Therefore, as we
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EFT-h EFT-k EFT-0
κ Nκ Nβ

κ Nκ Nβ
κ Nκ Nβ

κ

κ21 0 1 not present not present
κ11 1 1 not present not present
κW 2 2 2 3 2 3

Table 3.1: Effective couplings relevant for the running of the neutrino mass matrix in the
Zee-Babu model and the EFTs derived from it. We only consider effective operators of mass
dimension D = 5. In EFT-h, three effective couplings, namely κ21, κ11, and κW, are relevant
for the running, while in EFT-k and EFT-0, κW is the only effective coupling we have to
consider. Therefore, in EFT-k and EFT-0 we necessarily have NκW > Nβ

κW . In contrast, in

EFT-h the possibility of Nκ = Nβ
κ exists due to the presence of multiple different effective

couplings being switched on at different orders. As it turns out, EFT-h is indeed an example
for such a constellation: we find Nκ11 = Nβ

κ11 , as well as NκW = Nβ
κW .

decided to take into account all running effects up to third order (otherwise there would
be no running at all in the full theory, in EFT-k, and in EFT-0), we are forced to go up
to third order, in EFT-h, too.

Thus, as can be seen from Eq. (3.1.13), in EFT-h we have to calculate the β-functions
of all tree-level couplings (i.e. of all the λi and of κ21) up to first order and the β-functions
of κ11 and κW up to second order. The latter turned out to be computationally unbearable
within the scope of this work due to the large number of two-loop Feynman diagrams,
which would have to be evaluated in order to calculate counterterms of κ11 and κW at
second order. Nevertheless, we show in Chap. 4 that we obtain meaningful results even
without computing these two-loop diagrams.

3.2 Full Theory
We start with the calculations in the full theory. First, we evaluate the two-loop mass
matrix diagram. This diagram is finite, which was to be expected, given that there is no
counterterm left which could cure an infinity. Afterwards, we present the RGEs calculated
by SARAH. Finally, we compute the wavefunction renormalisation constants, which we
will need in the EFTs for the calculation of the counterterms of the effective couplings.

3.2.1 Mass Matrix

We have already presented the two-loop diagram which generates neutrino masses in the
Zee-Babu model in Sec. 2.3.2. This diagram represents the only contribution to the neutrino
mass matrix at two-loop order. Now, we are going to evaluate this diagram, which will
result in the expression MZB

ν for the mass matrix in the full theory.
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For the two-loop diagram in the Zee-Babu model we find:

iMZB
ν,IJ ≡

νI,L νJ,L

h+ h+

k++

eK,L eK,R eM,R eM,L

〈φ〉〈φ〉

q′q

=

∫
d4q

(2π)4

d4q′

(2π)4

[
+2if †IKPR

] i (−/q +me,K

)
q2 −m2

e,K

[−2igKMPR]
i (−/q′ +me,M)

q′2 −m2
e,M

·
[
−2if †MJPR

]
[−2iµhk]

i

q2 −m2
h

i

q′2 −m2
h

i

(q − q′)2 −m2
k

= −8iα2v2µhkf
†
IKyKgKMI1,KMyMf

†
MJPR.

(3.2.1)

Here, we directly worked in d = 4 dimensions, since the diagram is finite, and we also set
the external momenta to zero as we are only interested in the mass shift induced by this
self-energy diagram. Furthermore, we defined the two-loop integral

α2I1,KM

(
m2
h,m

2
k,m

2
e,K ,m

2
e,M

)
≡
∫

d4q

(2π)4

∫
d4q′

(2π)4

1[
q2 −m2

e,K

] [
q′2 −m2

e,M

]
[q2 −m2

h] [q′2 −m2
h]
[
(q − q′)2 −m2

k

] ,
(3.2.2)

which is symmetric in the flavour indicesK andM . Now we plug this result into Eq. (3.1.22)
and arrive at the induced Majorana mass matrix in the Zee-Babu theory:

MZB
ν,IJ = 8α2v2µhkf

†
IKyKgKMI1,KMyMf

†
MJ (3.2.3)

Note that MZB
ν is symmetric in its flavour indices, which directly follows from the symmetry

properties of f , g, and I1.
One important property of the neutrino mass matrix in the Zee-Babu model is that one

of the neutrinos is exactly massless at two-loop order. Indeed, note that det f = 0, as f
is a 3× 3 antisymmetric matrix. From this we immediately find that detMZB

ν = 0, which
implies that one mass eigenvalue vanishes. This results in only one Majorana phase of the
PMNS-matrix being physical in the Zee-Babu model.

The analytical evaluation of the two-loop integral I1 is rather cumbersome and can be
found in Refs. [89,90]. The results contain minor errors which were corrected in [91]. The
numerical evaluation of the resulting expression is possible but computationally costly, as
one has to resort to high-precision arithmetic since there are delicate cancellations involved.
However, as discussed in Sec. 2.3.2, the lepton masses in the denominator are negligible
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compared to the scalar masses mh and mk, which leads to the simplified expression [16,17]

I1,KM

(
m2
h,m

2
k,m

2
e,K ,m

2
e,M

)
≈ I1

(
m2
h,m

2
k

)
=

1

m2
h

Ĩ

(
m2
k

m2
h

)
, (3.2.4)

where

Ĩ(r) = −
1∫

0

dx

1−x∫
0

dy
1− y

x+ (r − 1)y + y2
log

y(1− y)

x+ ry
. (3.2.5)

Here, we defined the ratio r ≡ m2
k/m

2
h. This simplified expression can easily be evaluated

numerically. We performed a cross-check using the numerical results for the full analytic
expression, and found that the results agree very well for the range of lepton and scalar
masses we considered in Sec. 4.

3.2.2 Renormalisation Group Equations

In this section we present the RGEs of the full theory. As described above, these were
calculated using the computer program SARAH. Additionally, we performed some cross-
checks using the results of Ref. [17] and the counterterms in Sec. 3.2.3.

The system of RGEs is not fully coupled, which allows to solve it in subsequent blocks.
These blocks have to be solved in the correct order, as RGEs may depend on the solutions
of previous blocks. Therefore, we present the RGEs in this ordered block-wise form.

First, we have to determine the running of the gauge couplings g1, g2, and g3, by solving
the equations

αβ(1)
g1

=
51

10
g3

1, (3.2.6a)

αβ(1)
g2

= −19

6
g3

2, (3.2.6b)

αβ(1)
g3

= −7g3
3, (3.2.6c)

where α is the loop factor introduced in Eq. (3.1.1). Note that these equations are not
coupled and can be solved analytically,

gi(t) =
gi(0)√

1− bi
8π2 g2

i (0)t
, (3.2.7)

where bi =
(

51
10
,−19

6
,−7

)
.3

3We use the GUT-normalisation, relating our gauge coupling g1 ≡ g1,GUT to the gauge coupling g′1 via

g1 =
√

5
3g

′
1. This implies b1 = 3

5b
′
1.
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The second block of equations determines the running of the Yukawa couplings:

αβ
(1)
Yu

= Yu

[
3

2
Y †uYu −

3

2
Y †d Yd + T − 17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
, (3.2.8a)

αβ
(1)
Yd

= Yd

[
−3

2
Y †uYu +

3

2
Y †d Yd + T − 1

4
g2

1 −
9

4
g2

2 − 8g2
3

]
, (3.2.8b)

αβ
(1)
Ye

= Ye

[
3

2
Y †e Ye + 2f †f + T − 9

4
g2

1 −
9

4
g2

2

]
+
[
2gg†

]
Ye, (3.2.8c)

αβ
(1)
f = f

[
1

2
Y †e Ye + 4f †f + 4Tr

(
f †f
)
− 9

10
g2

1 −
9

2
g2

2

]
+

[
1

2

(
Y †e Ye

)T]
f, (3.2.8d)

αβ(1)
g = g

[(
YeY

†
e

)T
+ 4g†g + 2Tr

(
g†g
)
− 18

5
g2

1

]
+
[
YeY

†
e

]
g. (3.2.8e)

The third block of equations yields the running of the scalar couplings:

αβ
(1)
λφ

= 4λφT − 2T4 + 24λ2
φ + λ2

φh + λ2
φk

− 9

5
λφg

2
1 +

27

200
g4

1 − 9λφg
2
2 +

9

8
g4

2 +
9

20
g2

1g
2
2,

(3.2.9a)

αβ
(1)
λh

= 16λhTr
(
f †f
)
− 32Tr

(
f †ff †f

)
+ 20λ2

h + 2λ2
φh + λ2

hk

− 36

5
λhg

2
1 +

54

25
g4

1,
(3.2.9b)

αβ
(1)
λk

= 8λkTr
(
g†g
)
− 16Tr

(
g†gg†g

)
+ 20λ2

k + 2λ2
φk + λ2

hk

− 144

5
λkg

2
1 +

864

25
g4

1,
(3.2.9c)

αβ
(1)
λφh

= 2λφhT + 8λφhTr
(
f †f
)
− 16Tr

(
f †fY †e Ye

)
+ 12λφλφh + 8λhλφh

+ 4λ2
φh + 2λφkλhk +

27

25
g4

1 −
9

2
λφhg

2
1 −

9

2
λφhg

2
2,

(3.2.9d)

αβ
(1)
λφk

= 2λφkT + 4λφkTr
(
g†g
)
− 16Tr

(
gg†YeY

†
e

)
+ 12λφλφk + 8λkλφk

+ 4λ2
φk + 2λφhλhk +

108

25
g4

1 −
153

10
λφkg

2
1 −

9

2
λφkg

2
2,

(3.2.9e)

αβ
(1)
λhk

= 8λhkTr
(
f †f
)

+ 4λhkTr
(
g†g
)

+ 8λhλhk + 8λkλhk + 4λφhλφk + 4λ2
hk

− 18λhkg
2
1 +

432

25
g4

1,
(3.2.9f)

αβ(1)
µhk

= µhk

[
8Tr

(
f †f
)

+ 2Tr
(
g†g
)

+ 4λh + 4λhk −
54

5
g2

1

]
. (3.2.9g)

Here, we have used the abbreviations:

T ≡ Tr
(

3Y †uYu + 3Y †d Yd + Y †e Ye

)
, (3.2.10a)

T4 ≡ Tr
(

3Y †uYuY
†
uYu + 3Y †d YdY

†
d Yd + Y †e YeY

†
e Ye

)
. (3.2.10b)
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Finally, we need the running of the scalar mass parameters:

αβ
(1)

µ2φ
= 2µ2

φT + 12λφµ
2
φ + 2λφhµ

2
h + 2λφkµ

2
k −

9

10
µ2
φg

2
1 −

9

2
µ2
φg

2
2, (3.2.11a)

αβ
(1)

µ2h
= 8µ2

hTr
(
f †f
)

+ 4λφhµ
2
φ + 8λhµ

2
h + 2λhkµ

2
k + 8µ2

hk −
18

5
µ2
hg

2
1, (3.2.11b)

αβ
(1)

µ2k
= 4µ2

kTr
(
g†g
)

+ 4λφkµ
2
φ + 2λhkµ

2
h + 8λkµ

2
k + 4µ2

hk −
72

5
µ2
kg

2
1. (3.2.11c)

This makes up the full set of RGEs in the Zee-Babu model.

3.2.3 Calculation of the Wavefunction Renormalisation Constants

In this section we present the calculation of the wavefunction renormalisation constants,
which we will need later when computing the RGEs of the effective couplings in the EFTs.
At this point, we anticipate that we will need δZe, δZL, δZφ, and δZh, corresponding to the
fields eR, LL, φ, and h+, respectively. As explained in Sec. 2.2.1, in the MS-renormalisation
scheme, the counterterms are defined to exactly cancel the divergent terms (and only those)
appearing in dimreg. This prescription makes the calculations rather straightforward, as
we only have to care about these divergent terms. Furthermore, recall from Sec. 3.1 that
we only need the wavefunction renormalisation constants at one-loop level. We will present
only the calculation of the right-handed lepton wavefunction renormalisation constant δZ

(1)
e

in detail. For the rest of the renormalisation constants, we will only give the final result. For
further information we refer the reader to Ref. [35], which is an excellent reference for how
to systematise the calculations. Furthermore, some of the diagrams we have to calculate
already showed up in this reference, which allows us to perform valuable cross-checks.

Calculation of δZ(1)
e

In the MS-renormalisation scheme, δZ
(1)
e has to cancel all divergent terms stemming from

one-particle irreducible diagrams which contribute to the eR-two-point function at one-loop
level:

eR eR
1PI =

eR eR

φ

LL

+
eR eR

k++

eR

+
eR eR

B

eR

+
eR eR

δZ(1)
e !

= UV-finite.

(3.2.12)
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We now present the calculation of the diagrams on the right-hand side of this equation.
Here, we use the computational techniques summarised in Ref. [25] and the Feynman rules
in App. C without further reference.

For the one-loop diagram with φ and LL in the loop we get:

i
(
Σφ
eR

)
JI
≡

eI,R eJ,R

φj

(LK,L)k

p

k

=
[
−iµ ε

2 (Ye)JK δkj
] [
−iµ ε

2

(
Y †e
)
KI
δkj
] ∫ ddk

(2π)d
PL

i(/p+ /k)

(p+ k)2PR
i

k2 −m2
φ

=
iπ2

(2π)4

(
YeY

†
e

)
JI
δjjPL ·

µε

iπ2

∫
ddk

/p+ /k

(p+ k)2 (k2 −m2
φ

)
= 2iα

(
YeY

†
e

)
JI /pPR

1

ε
+ UV-finite.

(3.2.13)

Analogously, for the one-loop diagram with k++ and eR in the loop we get:

i
(
Σk
eR

)
JI
≡

eI,R eJ,R

k++

eK,R

p

k

=
[
−2iµ

ε
2 g†JK

] [
−2iµ

ε
2 gKI

] ∫ ddk

(2π)d
PL
−i(−/p− /k)

(p+ k)2 PR
i

k2 −m2
k

=
4iπ2

(2π)4

(
g†g
)
JI
PL ·

µε

iπ2

∫
ddk

/p+ /k

(p+ k)2 (k2 −m2
k)

= 4iα
(
g†g
)
JI /pPR

1

ε
+ UV-finite.

(3.2.14)
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The one-loop diagram with B and eR in the loop yields:

i
(
ΣB
eR

)
JI
≡

eI,R eJ,R

B

eK,R

p

k

=
[
+iµ

ε
2 g1δJK

] [
+iµ

ε
2 g1δKI

]
·
∫

ddk

(2π)d
γµPR

i(/p+ /k)

(p+ k)2γ
νPR

i
[
−ηµν + (1− ξ1)kµkν

k2

]
k2

=
iπ2

(2π)4 g
2
1δJIPL ·

µε

iπ2

∫
ddk

γµ
(
/p+ /k

)
γν
[
−ηµν + (1− ξ1) kµkν

k2

]
(p+ k)2 k2

= 2iαξ1g
2
1δJI/pPR

1

ε
+ UV-finite.

(3.2.15)

Note that we denote the Minkowski metric by ηµν ≡ (+1,−1,−1,−1).
Upon plugging these expressions into Eq. (3.2.12) we get

i
(

Σφ
eR

∣∣
div

)
JI

+ i
(

Σk
eR

∣∣
div

)
JI

+ i
(

ΣB
eR

∣∣
div

)
JI

+ i/p (δZe)JI PR
!

= 0, (3.2.16)

where we denoted the divergent parts by the subscript “div”. Solving for δZ
(1)
e yields the

final result:

δZ(1)
e = −α

[
2YeY

†
e + 4g†g + 2ξ1g

2
1

] 1

ε
(3.2.17)

This result contains the gauge parameter ξ1. As we will see below, ξ1 will drop out of
physically measurable quantities such as β-functions, as to be expected, reflecting their
gauge invariance.
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Calculation of δZ(1)
L

The defining equation for the one-loop wavefunction renormalisation constant δZ
(1)
L corre-

sponding to the left-handed lepton doublet LL reads:

LL LL

1PI =
LL LL

φ

eR

+
LL LL

h+

LL

+
LL LL

B,WA

LL

+
LL LL

δZ
(1)
L

!
= UV-finite.

(3.2.18)

In the third diagram a summation over A ∈ {1, 2, 3} is understood. This equation yields:

δZ
(1)
L = −α

[
Y †e Ye + 4f †f +

1

2
ξ1g

2
1 +

3

2
ξ2g

2
2

]
1

ε
(3.2.19)

Calculation of δZ(1)
φ

For the one-loop wavefunction renormalisation constant δZ
(1)
φ corresponding to the Higgs-

doublet φ we have to evaluate the following equation:

φ φ
1PI =

φ φ

φ, h+, k++

+
φ φ

eR

LL

+
φ φ

uR, dR

qL

+
φ φ

B,WA

φ

+
φ φ

δZ
(1)
φ

!
= UV-finite.

(3.2.20)
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Again, a summation over A ∈ {1, 2, 3} is implicit. Comparing the coefficients of terms
which depend on the external momentum yields:

δZ
(1)
φ = −α

[
2T − 1

2
(3− ξ1) g2

1 −
3

2
(3− ξ2) g2

2

]
1

ε
(3.2.21)

Analogously, by comparing the coefficients of terms which do not depend on the external
momentum we get:

δµ
2,(1)
φ = α

[(
12λφ −

1

2
ξ1g

2
1 −

3

2
ξ2g

2
2

)
µ2
φ + 2λφhµ

2
h + 2λφkµ

2
k

]
1

ε
(3.2.22)

Calculation of δZ(1)
h

Finally, we will need the one-loop wavefunction renormalisation constant δZ
(1)
h correspond-

ing to the scalar h+:

h+ h+
1PI =

h+ h+

φ, h+, k++

+
h+ h+

k++

h+

+
h+ h+

LL

LL

+
h+ h+

B

h+

+
h+ h+

δZ
(1)
h

!
= UV-finite.

(3.2.23)

By comparing the coefficients of terms which depend on the external momentum, this
equation yields:

δZ
(1)
h = −α

[
8Tr

(
f †f
)

+ 2 (3− ξ1) g2
1

] 1

ε
(3.2.24)

Analogously, by comparing the coefficients of terms which do not depend on the external
momentum we get:

δµ
2,(1)
h = α

[
4λφhµ

2
φ +

(
8λh − 2ξ1g

2
1

)
µ2
h + 2λhkµ

2
k + 8µ2

hk

] 1

ε
(3.2.25)
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3.3 EFT-h
In the previous section we presented the neutrino mass matrix in the full Zee-Babu model,
and we also did some preparatory work for the computations in the EFTs. We will now
discuss EFT-h, which follows from the full theory by integrating out the doubly charged
scalar particle k++. Thus, only the singly charged scalar h+ remains accessible in addition
to the SM, cf. Sec. 2.3.3. The residual effects of k++ are now described by a set of effective
operators, which we will present Sec. 3.3.1. As already anticipated, it turns out that
three effective couplings, namely κ21, κ11, and κW, are relevant for the mass matrix in
EFT-h, as we will present in Sec. 3.3.4. Furthermore, these couplings get switched on at
different loop orders. We will discuss this in detail in Sec. 3.3.3. Finally, we will derive
the RGEs in Sec. 3.3.5. Here, the main work will be the computation of the RGEs of the
effective couplings. For this, we will need their counterterms as well as the wavefunction
renormalisation constants which we have already computed in the full theory. Furthermore,
we will see that some of the counterterms of the effective couplings are not only needed to
compute the RGEs, but also to cancel infinities in the equations for the mass matrix and
the matching. Therefore, we have to compute them first, cf. Sec. 3.3.2.

3.3.1 Effective Operators

EFT-h derives from the full theory by integrating out k++. Therefore, we obtain the
Lagrangian of EFT-h from the Lagrangian of the full theory as given in Eq. (2.3.12) by
omitting the gauge-kinetic term of k++ and by setting all couplings to k++ to zero:

g = 0, µ2
k = 0, λk = 0, λφk = 0, λhk = 0, µhk = 0. (3.3.1)

Furthermore, we add all effective operators of mass dimension D = 5, which follow from the
SM particle content extended by h+ and which are allowed by gauge symmetry. We label
those effective operators O (and the corresponding effective couplings κ) by two indices:
the first one denotes the number of h+-particles involved in the coupling, and the second
one enumerates the different operators and couplings of this type. Furthermore, we use
the notations OW and κW for the Weinberg operator, which is the effective D = 5 operator
coupling only SM particles, cf. Sec. 2.3.1.

One finds the following effective operators with mass-dimension D = 5:

OW = −κW,IJ(LI,L)ci (LJ,L)j φkφlεikεjl + h.c.

O11 = −κ11,IJ

(
LI,L

)
i
eJ,Rφ

†
kε
T
ikh

+ + h.c.

O12 = −κ12φ
†
iφ
†
jεijφ

†
kφkh

+ + h.c.

O13 = −κ13

(
Dµφ

†)
i

(
Dµφ†

)
j
εijh

+ + h.c.

O14 = −κ14φ
†
i

(
Dµφ†

)
j
εij
(
Dµh

+
)

+ h.c.

O21 = −κ21,IJ(eI,R)ceJ,Rh
+h+ + h.c.

O31 = −κ31φ
†
iφ
†
jεij
(
h+h−

)
h+ + h.c.

(3.3.2a)

(3.3.2b)

(3.3.2c)

(3.3.2d)

(3.3.2e)

(3.3.2f)

(3.3.2g)
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As κW and κ21 multiply operators which are symmetric in the flavour indices, only their
symmetric parts can be physical. We define κW and κ21 to denote those symmetric parts,
which conincides with the convention we used for the Majorana mass matrix, and for the
Yukawa coupling g in the full theory. Note that κ11 does not have any particular symmetry
properties.

We will find that only the three effective couplings κ21, κ11, and κW are relevant for the
computation of the neutrino mass matrix. Therefore, we need not consider the matching
or the running of any other effective coupling.

3.3.2 Calculation of the Counterterms

We now present the computation of the counterterms which we will need for the mass
matrix, the matching equations, and the RGEs. Recall from Sec. 3.1 that, in order to
compute the RGEs of the effective couplings consistently up to three-loop order, we need
the the wavefunction renormalisation constants δZe, δZL, δZφ, and δZh, as well as the
counterterm of the effective coupling κ21 at one-loop order. Furthermore, we need the
counterterm of the effective coupling κ11 at one- and two-loop order, and the counterterm
of the effective coupling κW at two- and three-loop order.

As already mentioned above, we will find that in the diagrams we have to calculate
for the mass matrix as well as for the matching, infinities occur. Those will have to be
cancelled by the counterterm of κ11 at one- and the counterterm of κW at two-loop order.
In this chapter, we will calculate the counterterms independently from the equations for
the mass matrix and the matching. This provides us with a useful possibility to cross-check
the results, as δκ

(1)
11 and δκ

(2)
W have to cancel the aforementioned infinities.

Wavefunction Renormalisation Constants

As described at the beginning of this chapter, the counterterms of the wavefunction renor-
malisation constants can be easily deduced from those we already calcuated in the full
theory in Sec. 3.2.3. To this end, we just set those full-theory couplings which are not
existent anymore in EFT-h to zero, i.e., we apply Eq. (3.3.1). In principle, there could be
additional diagrams containing effective couplings relevant here. Fortunately, it turns out
that there are no diagrams of this type to consider at one-loop order. So, we arrive at the
following expressions:

δZ
(1)
φ = −α

[
2T − 1

2
(3− ξ1) g2

1 −
3

2
(3− ξ2) g2

2

]
1

ε

δZ
(1)
h = −α

[
8Tr

(
f †f
)

+ 2 (3− ξ1) g2
1

] 1

ε

δZ(1)
e = −α

[
2YeY

†
e + 2ξ1g

2
1

] 1

ε

δZ
(1)
L = −α

[
Y †e Ye + 4f †f +

1

2
ξ1g

2
1 +

3

2
ξ2g

2
2

]
1

ε

(3.3.3a)

(3.3.3b)

(3.3.3c)

(3.3.3d)
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Calculation of δκ(1)
21

The defining equation for the one-loop counterterm δκ
(1)
21 of the effective coupling κ21 reads:

1PI

eR

eR

h+

h+

=

eR

eR

h+

h+

h+

h+

κ
(0)
21 +

eR
eR h+

h+eR

B κ
(0)
21

eR

+ 2 · h+eR

eR h+

h+eR

B

κ
(0)
21

+ 2 ·

eR h+

h+eR
B

κ
(0)
21

eR h+ +

eR h+

h+eR

Bκ
(0)
21

h+

h+

+

eR

eR

h+

h+

δκ
(1)
21

!
= UV-finite.

(3.3.4)

The factors of two in front of the diagrams involving the B-gauge bosons come from the
symmetry of the diagrams under exchange of the external h+-particles. As the external
eR-particles carry family indices (which we omit in the diagrams for clarity), the two
diagrams in which B connects an external h+- with an external eR-particle give different
contributions.

By evaluating the diagrams in the above equation and collecting the UV-divergent
parts, we get for the one-loop counterterm corresponding to κ21:

δκ
(1)
21 = α

(
4λh + 24g2

1 − 4ξ1g
2
1

)
κ

(0)
21

1

ε
(3.3.5)

Note that δκ
(1)
21 starts beyond tree-level, since κ

(0)
21 gets switched on already at tree level,

as was to be expected from the discussion in Sec. 3.1.
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Calculation of δκ(1)
11 and δκ(2)

11

The defining equation for the one-loop counterterm δκ
(1)
11 of the effective coupling κ11 reads:

1PI

LL

eR

h+

φ

=
eRh+

LL φ

h+eR

LL

κ
(0)
21

+

LL

eR

h+

φ

δκ
(1)
11

!
= UV-finite. (3.3.6)

Note that we have already used this equation in Sec. 3.1 as an example of how counterterms
of effective couplings, which get switched on at some loop order beyond tree-level, can
receive contributions at the same loop order. Here, we use the tree-level effective coupling
κ

(0)
21 in a one-loop diagram, which yields a one-loop contribution to the counterterm of the

one-loop effective coupling κ
(1)
11 . This is the only diagram which contributes at one-loop

order, so that we find:

δκ
(1)
11 = 16αf †Y T

e κ
(0)
21

1

ε
(3.3.7)

Additionally, we have discussed in Sec. 3.1 that, in order to calculate the running of
the neutrino mass matrix consistently up to three-loop order, we also have to compute all
two-loop contributions δκ

(2)
11 to the counterterm of κ11. The defining equation at this order
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reads:

1PI

LL

eR

h+

φ

=

LL

eR

h+

φ

h+

φ

κ
(1)
11 +

LLφ

LL φ

h+eR

eR

κ
(1)
11

+
LLh+

LL h+

φeR

LL

κ
(1)
11

+

LL
LL h+

φeR

B κ
(1)
11

eR

+

LL h+

φeR

Bκ
(1)
11

φ

h+

+ h+LL

LL h+

φeR

B

κ
(1)
11

+
φLL

LL φ

h+eR

B

κ
(1)
11

+

LL h+

φeR
B

κ
(1)
11

eR φ

+

LL φ

h+eR
B

κ
(1)
11

eR h+ +

(
diagrams with

κ
(1)
11 ↔ δκ

(1)
11

)
+

(
two-loop
diagrams

)

+

LL

eR

h+

φ

δκ
(2)
11

!
= UV-finite.

(3.3.8)

Note that for any diagram containing κ
(1)
11 we also have to consider the same diagram with

δκ
(1)
11 instead of κ

(1)
11 , since it gives a contribution at the same order. We have calculated δκ

(1)
11

already in a previous step, cf. Eq. (3.3.7). This situation occurs generically for effective
couplings whose counterterms are of the same loop order as the couplings itself.
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Furthermore, we did not explicitly write down the two-loop diagrams contributing at
two-loop order. These include all those diagrams which can be formed out of the diagram
containing κ

(0)
21 in Eq. (3.3.6) by adding an additional loop using B- or W -gauge bosons. In

principle, the computation these two-loop diagrams is possible but time-consuming. We did
not perform them in this work but stress again that one has to include these contributions
in order to compute the running of the neutrino mass matrix in full consistency at third
loop order. Nevertheless, we will see in Sec. 4 that one can get useful approximate results
by only using the leading order contribution as given in Eq. (3.3.7).

We give the the two-loop contributions stemming from the one-loop diagrams depicted
in the above equation here for future reference. These yield the following subset of terms
belonging to δκ

(2)
11 :

δκ
(2)
11 ⊃ α

(
8f †f − Y †e Ye + 2λφh − 2g2

1 +
5

2
ξ1g

2
1 −

3

2
ξ2g

2
2

)(
κ

(1)
11 + δκ

(1)
11

) 1

ε
(3.3.9)

The diagrams containing the counterterm δκ
(1)
11 generate terms proportional to 1/ε2, which

we can see by using Eq. (3.3.9). These terms will therefore not contribute to the β-
function of κ11, since, according to Eq. (2.2.15), only the 1/ε-terms are relevant here. In
contrast, the missing two-loop diagrams will give contributions to the β-functions, since
they in general do generate additional 1/ε-terms. Thus, we have in fact not computed all
diagrams which we need in order to evaluate the running of the neutrino mass matrix in
EFT-h consistently up to three-loop order. We will discuss in Sec. 4, why we nevertheless
obtain sensible numerical results from our equations.
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Calculation of δκ(2)
W and δκ(3)

W

The defining equation for the two-loop counterterm δκ
(2)
W of the effective coupling κW reads:

1PI

LL

LL

φ

φ

=
eRh+

LL φ

φLL

LL

κ
(0)†
21
eRh+

LL

+
(
φ↔ φ

)

+
eRh+

LL φ

φLL

LL

κ
(1)†
11

+
(
φ↔ φ

)
+
(
LL ↔ LL

)
+

(
φ↔ φ
LL ↔ LL

)

+

(
diagrams with

κ
(1)
11 ↔ δκ

(1)
11

)
+

LL

LL

φ

φ

δκ
(2)
W

!
= UV-finite.

(3.3.10)

The two-loop diagram involving the tree-level effective coupling κ
(0)†
21 factorises, such that

one effectively has to evaluate the product of two one-loop integrals. In order to obtain
the 1/ε-divergent term of this diagram, we therefore do not only need the 1/ε-divergent
terms of the individual one-loop integrals but their constant terms, too, as those are mul-
tiplied by the 1/ε-term of the respective other one-loop integral. One finds that the re-
sulting 1/ε-terms cancel out of the result and only the 1/ε2-term coming from multiplying
both 1/ε-terms survives. Recall that such terms are irrelevant for the computation of
β-functions, as only the 1/ε-terms enter Eq. (2.2.15).

Furthermore, one has to be careful to include all diagrams which arise from the ones
depicted by swapping external particles. We indicated this using obvious notation. Note
that LL carries family indices, and both φ and LL carry SU(2)L-indices, too. Evaluating
the above equation with these remarks in mind amounts to some pages of tedious algebra,
which result in:

δκ
(2)
W = −2α

[
fY †e κ

(1)†
11 −

(
fY †e κ

(1)†
11

)T] 1

ε
− 32α2fY †e κ

(0)†
21 Y ∗e f

1

ε2
(3.3.11)
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In analogy to the situation we already discussed for δκ
(2)
11 , in the case of κW we need

the third-order contribution δκ
(3)
W to compute the third-order running of the mass matrix:

1PI

LL

eR

h+

φ

=

LL

LL

φ

φ

φ

φ

κ
(2)
W

+
LLφ

LL φ

φLL

eR

κ
(2)
W

+
(
φ↔ φ

)
+
(
LL ↔ LL

)
+

(
φ↔ φ
LL ↔ LL

)

+

LL
LL φ

φLL

B,WA κ
(2)
W

LL

+

LL φ

φLL

B,WA
κ
(2)
W

φ

φ

+
φLL

LL φ

φLL

B,WA

κ
(2)
W

+
(
φ↔ φ

)
+
(
LL ↔ LL

)
+

(
φ↔ φ
LL ↔ LL

)

+

(
diagrams with

κ
(2)
W ↔ δκ

(2)
W

)
+

(
two- and three-
loop diagrams

)
+

LL

LL

φ

φ

δκ
(3)
W

!
= UV-finite.

(3.3.12)

These diagrams are of similar type as those in Eq. (3.3.8), with κ
(1)
11 replaced by κ

(2)
W , but

we have to keep in mind that not only B, but also WA can connect the external legs of κW.
Again, there are diagrams with more than one loop which contribute to δκ

(3)
W . We obtain
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these diagrams by attaching an additional gauge boson loop to the one-loop diagrams in
Eq. (3.3.10). The subset of three-loop contributions stemming only from the depicted
one-loop diagrams yields the following terms:

δκ
(3)
W ⊃ α

{
−2

[
κ

(2)
W Y †e Ye +

(
κ

(2)
W Y †e Ye

)T]
+

[
4λφ +

(
3

2
− ξ1

)
g2

1 +

(
3

2
− 3ξ2

)
g2

2

]
κ

(2)
W

}
1

ε

+
(
κ

(2)
W ↔ δκ

(2)
W

) (3.3.13)

Here, the same remarks as those below Eq. (3.3.9) apply.

3.3.3 Matching

Let us now derive the matching equations, describing the relationship between the couplings
of the full theory and the effective couplings κ21, κ11, and κW. We will find that the lowest-
order contributions to these couplings are κ

(0)
21 , κ

(1)
11 , and κ

(2)
W , respectively, a fact we already

made use of when computing the counterterms in the previous section.
In what follows, we denote by µ∗k the threshold energy at which k++ is integrated out,

cf. Sec. 2.3.3. As we have to match three effective couplings to the full theory, we have to
write down three independent matching equations. Those have to be evaluated at µ∗k, which
we will not always make explicit in order to keep the notation sufficiently uncluttered. We
will use the general recipe introduced in Sec. 3.1 in order to consistently keep track of the
loop orders: we recall that a n-loop diagram contains a factor of αn and also expand the
effective couplings in orders of α. Then, the matching amounts to equating the coefficients
of corresponding powers of α. At this point, we want to draw the reader’s attention to a
technique named Covariant Derivative Expansion [78,79], which we used at several points
of the calculations as a useful cross-check of the results.

We will perform the matching in the broken phase. This has several computational
advantages: first, we will again have to evaluate one-loop integrals in this section. However,
the calculations differ from those we performed when computing the counterterms by the
fact that we now need not only the UV-divergent terms of the one-loop integrals anymore.
Indeed, the UV-divergent terms will be cancelled by the counterterms, and the relevant
terms will now be the UV-finite ones. This makes the calculations considerably more
complicated. Therefore, we are interested in saving as much work as possible. Now,
consider an n-point one-loop integral stemming from a loop to which m Higgs particles φ
are attached in the unbroken phase. Considering the same loop in the broken phase, by
replacing φ by its vev 〈φ〉 and evaluating the summand coming with v, such an integral
reduces to an (n−m)-point integral that is considerably easier to evaluate. An additional
advantage of working in the broken phase is that many of the diagrams we have to compute
for the matching will appear again in the equation for the neutrino mass matrix. Clearly,
there we have to work in the broken phase, as otherwise all neutrinos are massless and
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the calculations do not make sense. Thus, working in the broken phase already in the
matching process makes it possible to simply reuse the results of this section later for the
computation of the mass matrix.

First matching equation: κ(0)
21

κ21 gets switched on at tree level as described by the first matching equation which we
present now. Indeed, the lowest order contribution to the process

h+h+ → (eI,R)c (eJ,R)c , (3.3.14)

given in EFT-h by the point-like interaction described by κ21, is mediated in the full theory
at tree level via the following diagram:

iM(0)
ZB,IJ ≡

h+

h+

k++

eI,R

eJ,R

p1

p2

p3

p4

pk

= [−2igIJPR]
i

p2
k −m2

k

[−2iµhk] =
−4iµhkgIJ
p2
k −m2

k

PR

=
4iµhkgIJ
m2
k

PR +O
(
p2
k

m2
k

)
,

(3.3.15)

where pk = p1 + p2 = p3 + p4.
In EFT-h, at lowest order this process is pointlike and described by the effective coupling

κ21:

iM(0)
h,IJ ≡

h+

h+

eI,R

eJ,R

p1

p2

p3

p4

κ
(0)
21

= −4iκ
(0)
21,IJPR. (3.3.16)

We already added a superscript (0) to κ21 here, since we found above that in the full theory
this process occurs at tree level.

The matching equation arising from comparing the zeroth-order coefficients of the α-
expansion of the process h+h+ → (eI,R)c (eJ,R)c in the full theory and in EFT-h reads:

iM(0)
h,IJ

!
= iM(0)

ZB,IJ . (3.3.17)
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This yields for external momenta small compared to mk the following final result:

κ
(0)
21,IJ = −µhkgIJ

m2
k

(3.3.18)

Second matching equation: κ(1)
11

In the broken phase, by replacing φ by its vev v, κ11 gives a pointlike contribution to the
process

h+ → (eI,R)c νJ,L. (3.3.19)

As described above, it is advantageous to use this process in the matching, as we only have
to evaluate a three- instead of a four-point function, which simplifies the evaluation of the
loop integral.

In the full theory, the lowest-order contribution to this process is at one-loop level via
the following diagram (we set d = 4 as it is finite by power counting):

iM(1)
ZB,IJ ≡

eI,R

pe

pν

〈φ〉

νJ,L

ph
k++

h+
h+

p2

eK,R

eK,L

q

p1

=

∫
d4q

(2π)4 [−2igIKPR]
i
(
/p2

+me,K

)
p2

2 −m2
e,K

[
−2if †KJPR

] i

p2
1 −m2

h

[−2iµhk]
i

q2 −m2
k

=
8iαv√

2
gIKyKI2,Kf

†
KJµhkPR.

(3.3.20)

Here we have defined the one-loop integral I2,K via:

iαI2,K

(
m2
h,m

2
k,m

2
e,I ,m

2
e,K

)
≡
∫

d4q

(2π)4

1

[q2 −m2
k] [(q + ph)2 −m2

h]
[
(q + pe)2 −m2

e,K

] . (3.3.21)
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Note that the dependence on m2
e,I enters implicitly through the external momentum pe.

To evaluate this integral, we introduce three Feynman parameters x, y, and z to obtain

iαI2,K =

∫
d4q

(2π)4

1∫
0

dx

1∫
0

dy

1∫
0

dz δ (x+ y + z − 1)
2!

D3
K

=

∫
d4q

(2π)4

1∫
0

dx

1−x∫
0

dy
2!

D3
K

∣∣∣∣
z=1−x−y

,

(3.3.22)

where in the denominator we have:

DK |z=1−x−y = x
[
(pe + q)2 −m2

e,K

]
+y
[
(ph + q)2 −m2

h

]
+(1−x−y)

[
q2 −m2

k

]
≡ `2−∆K .

(3.3.23)
Here, we completed the square,

q2 + 2q(xpe + yph) = (q + xpe + yph)
2 − (xpe + yph)

2, (3.3.24)

in order to obtain a denominator of the form [`2 −∆K ]
3

with ∆K independent of the shifted
momentum `, which is given by:

` ≡ q + xpe + yph. (3.3.25)

∆K reads:

∆K = x2p2
e + y2p2

h + 2xype · ph − xp2
e − yp2

h + xm2
e,K + ym2

h + (1− x− y)m2
k. (3.3.26)

We can simplify this expression by using the relation pν = ph − pe, leading to:

p2
ν = p2

h + p2
e − 2ph · pe. (3.3.27)

Furthermore, we use the fact that the external particles are on-shell, i.e. p2
h = m2

h, p
2
e = m2

e,I ,
and p2

ν = m2
ν,J = 0. Using these relations in Eq. (3.3.26) yields:

∆K = m2
e,I(x

2 + 2xy − x) +m2
h(y

2 + 2xy) + xm2
e,K + (1− x− y)m2

k. (3.3.28)

Note that we have ∆K > 0 on the integration domain, so we do not run into problems
with divergences. Putting everything together, we are left with:

iαI2,K = 2!

1∫
0

dx

1−x∫
0

dy

∫
d4`

(2π)4

1

[`2 −∆K ]3
. (3.3.29)

Here, we switched the order of integrations and shifted the momentum from q to ` using
Eq. (3.3.25). Notie that d4q = d4`. The momentum integral evaluates to∫

d4`

(2π)4

1

[`2 −∆K ]3
= −iα 1

2∆K

, (3.3.30)
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so that we get:

I2,K = −
1∫

0

dx

1−x∫
0

dy
1

∆K

. (3.3.31)

As this integral can easily be evaluated numerically, we stop the calculation of I2 right
here.

In EFT-h, at one-loop level, there are three diagrams contributing to h+ → (eI,R)c νJ,L.
The first one of those is the point-like contribution via κ11:

iM(1)
h,1,IJ ≡ 〈φ〉

νJ,L

eI,R

ph

h+
κ
(1)T
11

pe

pν

=
iv√

2
κ

(1)T
11,IJPR. (3.3.32)

As shown in Sec. 3.3.2, δκ11 also starts at one-loop, so we have to add the same diagram
with δκ11:

iM(1)
h,2,IJ ≡ 〈φ〉

νJ,L

eI,R

ph

h+
δκ

(1)T
11

pe

pν

=
iµ

ε
2v√
2
δκ

(1)T
11,IJPR. (3.3.33)

We did not set d = 4 in the diagram above, as it is not finite in the limit ε → 0. Indeed,
using our previous result Eq. (3.3.7), this diagram will cancel the infinity stemming from
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the third diagram contributing at one-loop order:

iM(1)
h,3,IJ ≡

eI,R

pe

pν

〈φ〉

νJ,L

h+

q

p1

eK,R

eK,L

ph

h+

κ
(0)
21

=

∫
ddq

(2π)d

[
−4iµεκ

(0)
21,IKPR

] i(/p1
+me,K

)
p2

1 −m2
e,K

[
−2iµ

ε
2f †KJPR

] i

q2 −m2
h

=
8iαµ

ε
2v√

2
κ

(0)
21,IKyKI3,Kf

†
KJPR.

(3.3.34)

The one-loop integral I3,K is defined as:

iαI3,K

(
m2
h,m

2
e,K

)
≡ µε

∫
ddq

(2π)d
1

[q2 −m2
h]
[
(q − pν)2 −m2

e,K

] . (3.3.35)

We can evaluate it by performing the same steps as above (we only have to introduce two
Feynman parameters here instead of three). This leads to:

iαI3,K = µε
1∫

0

dx

∫
dd`

(2π)d
1

[`2 −∆K ]2
, (3.3.36)

with ` ≡ q − xpν , and
∆K = xm2

e,K + (1− x)m2
h > 0. (3.3.37)

The momentum integral evaluates to

µε
∫

dd`

(2π)d
1

[`2 −∆K ]2
=
iµεΓ

(
2− d

2

)
(4π)

d
2

(
1

∆K

)2− d
2

= iα

[
2

ε
+ log(4π)− γE − log

(
∆K

µ2

)
+O(ε)

]
,

(3.3.38)
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where we used d = 4 − ε and performed an expansion in ε. The UV-divergent part
proportional to 1/ε will be cancelled by the counterterm δκ

(1)
11 . It will prove convenient to

give names to the first few expansion coefficients of I3 as we will need them later:

I3,K ≡ I(−1)
3,K

1

ε
+ I(0)

3,K + I(1)
3,Kε+O

(
ε2
)
. (3.3.39)

Note that the superscripts do not denote coefficients of an expansion in loop orders here.
Rather, they denote coefficients of a (Laurent-)expansion in the regularisation parameter
ε. We just found:

I(−1)
3,K =

1∫
0

dx 2 = 2, (3.3.40)

I(0)
3,K (µ) = log(4π)− γE −

1∫
0

dx log

(
∆K

µ2

)
. (3.3.41)

Let us have a closer look at I(0)
3,K . We can perform the integral over x analytically:

1∫
0

dx log

(
∆K

µ2

)
=

2m2
e,K

m2
e,K −m2

h

log

(
me,K

µ

)
− 2m2

h

m2
e,K −m2

h

log

(
mh

µ

)
− 1. (3.3.42)

Therefore, we have:

I(0)
3,K (µ) = log(4π)− γE + 1− 2m2

e,K

m2
e,K −m2

h

log

(
me,K

µ

)
+

2m2
h

m2
e,K −m2

h

log

(
mh

µ

)
. (3.3.43)

We will see below that it is not necessary for our purposes to calculate I(1)
3,K , since it drops

out of the final results in any case.
We are now ready to evaluate the matching equations arising from comparing the

coefficients of the α-expansions of the process h+ → (eI,R)c νJ,L in the full theory as well
as in EFT-h. As there is no diagram at tree level in the full theory contributing to this
process, we immediately find:

κ
(0)
11 = 0 (3.3.44)

At first loop order we have:

iM(1)
ZB,IJ

!
= iM(1)

h,1,IJ + iM(1)
h,2,IJ + iM(1)

h,3,IJ . (3.3.45)

Using Eq. (3.3.7), we find that M(1)
h,2,IJ indeed cancels the divergent terms of M(1)

h,3,IJ .
This provides a useful cross-check for the correctness of our calculations. By equating the
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convergent terms, we arrive at our final result:

κ
(1)
11,IJ = −8α

(
f †IKI2,KyKgKJµhk − f †IKI

(0)
3,KyKκ

(0)
21,KJ

)
= −8αf †IK

(
I2,K +

I(0)
3,K

m2
k

)
yKgKJµhk

(3.3.46)

In the second line, we substituted our previous result Eq. (3.3.18). Note that, as already
anticipated above, κ11 gets switched on at first loop order.

Third matching equation: κ(2)
W

In the broken phase, the Weinberg operator gives a pointlike contribution to the neutrino
mass matrix if we replace both φ-legs by the Higgs vev v. Therefore, we use the condition
that the mass matrices in the full theory and in EFT-h have to coincide at the matching
scale as the third matching equation. This is advantageous, as we have already computed
the mass matrix in the full theory. Furthermore, we still have to compute the mass matrix
in EFT-h in any case. Therefore, it makes sense to use this result for the matching, too.

In the full theory, the lowest-order contribution to the mass matrix is at two-loop level,
cf. Eq. (3.2.3):

iMZB
ν,IJ =

νI,L νJ,L

h+ h+

k++

eK,L eK,R eM,R eM,L

〈φ〉〈φ〉

= −8iα2v2µhkf
†
IKyKgKMI1,KMyMf

†
MJPR.

(3.2.3)

In EFT-h, at two-loop level, there are seven diagrams contributing to the neutrino
mass matrix. We will consistently set the external momentum to zero and denote the
loop-momentum by q. The first diagram is the point-like contribution via κW:

iM(2)
h,1,IJ ≡ νJ,L

〈φ〉 〈φ〉

κ
(2)†
W

νI,L = −iv2κ
(2)†
W,IJPR. (3.3.47)

As described in App. C, we had to leave out a symmetry factor of 2 here when deducing
the Feynman rules in the broken from those in the unbroken phase. As shown in Sec. 3.3.2,
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δκW also starts at two-loop, so we have to add the same diagram with δκW:

iM(2)
h,2,IJ ≡ νJ,L

〈φ〉 〈φ〉

δκ
(2)†
W

νI,L = −iv2δκ
(2)†
W,IJPR. (3.3.48)

Note that this vertex does not carry any factors of µ in d dimensions. The next contribution
at two-loop level is a one-loop diagram containing κ

(1)
11 :

iM(2)
h,3,IJ ≡

νJ,L

h+

eK,L eK,R

〈φ〉 〈φ〉

κ
(1)T
11

νI,L

=

∫
ddq

(2π)d

[
−2iµ

ε
2f †IKε12PR

] i (−/q +me,K

)
q2 −m2

e,K

[
−iµ ε

2
v√
2
κ

(1)T
11,KJε12PR

]
i

q2 −m2
h

= iαv2f †IKyKI3,Kκ
(1)T
11,KJPR.

(3.3.49)

Note that we already have met the one-loop integral I3 in a previous diagram, cf. Eq. (3.3.35).
There is the same diagram with κ11 replaced by δκ11:

iM(2)
h,4,IJ ≡

νJ,L

h+

eK,L eK,R

〈φ〉 〈φ〉

δκ
(1)T
11

νI,L

= iαv2f †IKyKI3,Kδκ
(1)T
11,KJPR.

(3.3.50)
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Furthermore, there are two similar diagrams involving κ11 and δκ11, respectively:

iM(2)
h,5,IJ ≡

νI,L νJ,L

h+

eK,R eK,L

〈φ〉

κ
(1)
11

〈φ〉

= −iαv2κ
(1)
11,IKyKI3,Kf

†
KJPR,

(3.3.51)

as well as:

iM(2)
h,6,IJ ≡

νI,L νJ,L

h+

eK,R eK,L

〈φ〉

δκ
(1)
11

〈φ〉

= −iαv2δκ
(1)
11,IKyKI3,Kf

†
KJPR.

(3.3.52)

Finally, there is a two-loop diagram containing κ
(0)
21 , thus contributing at two-loop order:

iM(2)
h,7,IJ ≡

νI,L νJ,L

h+ h+

eK,L eK,R eM,R eM,L

〈φ〉〈φ〉
κ
(0)
21

=

∫
ddq

(2π)d

∫
ddq′

(2π)d

[
−2iµ

ε
2f †IKε12PR

] i (−/q +me,K

)
q2 −m2

e,K

[
−4iµεκ

(0)
21,KMPR

]
·
[
−2iµ

ε
2f †MJε21PR

] i

q2 −m2
h

i

q′2 −m2
h

= 8iα2v2f †IKI3,KyKκ
(0)
21,KMI3,MyMf

†
MJPR.

(3.3.53)

We are now ready to evaluate the matching equations arising from comparing the
coefficients of the α-expansions of the neutrino mass matrix in the full theory as well as
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in EFT-h. As there are no diagrams at tree level or at one-loop level in the full theory
contributing to the mass matrix, we immediately find:

κ
(0)
W = κ

(1)
W = 0 (3.3.54)

Equating the α2-coefficients leads to the equation:

iMZB
ν,IJ

!
=

7∑
i=1

iM(2)
h,i,IJ . (3.3.55)

Plugging in the results of all diagrams we have just calculated, this equation reads:

8α2f †IKyKgKMI1,KMyMf
†
MJµhk = κ

(2)†
W,IJ + δκ

(2)†
W,IJ

− αf †IKyKI3,Kκ
(1)T
11,KJ − αf †IKyKI3,Kδκ

(1)T
11,KJ

+ ακ
(1)
11,IKyKI3,Kf

†
KJ + αδκ

(1)
11,IKyKI3,Kf

†
KJ

− 8α2f †IKI3,KyKκ
(0)
21,KMI3,MyMf

†
MJ .

(3.3.56)

Let us first check that the counterterms δκ
(1)
11 and δκ

(2)
W that we have calculated in

Sec. 3.3.2 indeed cancel the divergences. To this end, we equate only the divergent terms
appearing in this equation:

0 = δκ
(2)†
W,IJ − αf †IKyK I3,K |div κ

(1)T
11,KJ − αf †IKyK I3,K |conv δκ

(1)T
11,KJ

− αf †IKyK I3,K |div δκ
(1)T
11,KJ + ακ

(1)
11,IKyK I3,K |div f

†
KJ

+ αδκ
(1)
11,IKyK I3,K |conv f

†
KJ + αδκ

(1)
11,IKyK I3,K |div f

†
KJ

− 8α2f †IK I3,K |conv yKκ
(0)
21,KM I3,M |div yMf

†
MJ

− 8α2f †IK I3,K |div yKκ
(0)
21,KM I3,M |conv yMf

†
MJ

− 8α2f †IK I3,K |div yKκ
(0)
21,KM I3,M |div yMf

†
MJ .

(3.3.57)

Here, we denoted the UV-divergent part (i.e. the 1/ε-term) of the loop-integral I3 by a
subscript “div” did and analogously for the UV-convergent part (i.e. the terms starting at
ε0), cf. Eq. (3.3.39). We now use the results from Eqs. (3.3.40) and (3.3.41) and substitute
the expressions for the counterterms Eqs. (3.3.7) and (3.3.11). Let us first have a look at
the O (ε−1)-terms we get in the limit d = 4:

0 = 2αf †IKyKκ
(1)T
11,KJ − 2ακ

(1)
11,IKyKf

†
KJ − 2αf †IKyKκ

(1)T
11,KJ + 2ακ

(1)
11,IKyKf

†
KJ

+ 16α2f †IKyKI
(0)
3,Kκ

(0)
21,KMyMf

†
MJ + 16α2f †IKyKκ

(0)
21,KMyMI

(0)
3,Mf

†
MJ

− 16α2f †IKyKI
(0)
3,Kκ

(0)
21,KMyMf

†
MJ − 16α2f †IKyKκ

(0)
21,KMyMI

(0)
3,Mf

†
MJ .

(3.3.58)

We see that the right-hand side indeed adds up to zero. Analogously, we get for the
O (ε−2)-terms:

0 =− 32α2f †IKyKκ
(0)
21,KMyMf

†
MJ + 32α2f †IKyKκ

(0)
21,KMyMf

†
MJ

+ 32α2f †IKyKκ
(0)
21,KMyMf

†
MJ − 32α2f †IKyKκ

(0)
21,KMyMf

†
MJ .

(3.3.59)
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This equation is satisfied, too. The fact that the counterterms indeed cancel the diver-
gences as expected, confirms our results for the counterterms as well as the integrity of the
matching equation.

We now turn to the calculation of the Weinberg operator at the matching scale. Re-
taining only the convergent terms in Eq. (3.3.56) yields:

8α2f †IKyKgKMI1,KMyMf
†
MJµhk = κ

(2)†
W,IJ − αf †IKyK I3,K |conv κ

(1)T
11,KJ

− αf †IKyK I3,K |conv δκ
(1)T
11,KJ + ακ

(1)
11,IKyK I3,K |conv f

†
KJ

+ αδκ
(1)
11,IKyK I3,K |conv f

†
KJ − 8α2f †IK I3,K |conv yKκ

(0)
21,KM I3,M |conv yMf

†
MJ

− 8α2f †IK I3,K |div yKκ
(0)
21,KM I3,M |conv yMf

†
MJ

− 8α2f †IK I3,K |conv yKκ
(0)
21,KM I3,M |div yMf

†
MJ .

(3.3.60)

If we now plug in the result for δκ
(1)
11 as well as the convergent part of the loop integral

I3,K , we find for d = 4:

κ
(2)†
W,IJ = 8α2f †IKyKgKMI1,KMyMf

†
MJµhk + αf †IKyKI

(0)
3,Kκ

(1)T
11,KJ

− 16α2f †IKyKI
(1)
3,Kκ

(0)
21,KMyMf

†
MJ − ακ

(1)
11,IKyKI

(0)
3,Kf

†
KJ

− 16α2f †IKyKκ
(0)
21,KMyMI

(1)
3,Mf

†
MJ + 8α2f †IKI

(0)
3,KyKκ

(0)
21,KMI

(0)
3,MyMf

†
MJ

+ 16α2f †IKyKκ
(0)
21,KMyMI

(1)
3,Mf

†
MJ + 16α2f †IKyKI

(1)
3,Kκ

(0)
21,KMyMf

†
MJ

= αf †IKyKI
(0)
3,Kκ

(1)T
11,KJ − ακ

(1)
11,IKyKI

(0)
3,Kf

†
KJ

+ 8α2f †IKyKgKMI1,KMyMf
†
MJµhk + 8α2f †IKyKI

(0)
3,Kκ

(0)
21,KMI

(0)
3,MyMf

†
MJ .

(3.3.61)

Note that the terms containing I(1)
3,K cancel. We anticipated this result above and therefore

did not calculate the O (ε)-coefficient of the loop integral I3. Our final result for the
Weinberg operator reads:

κ
(2)
W,IJ = α

(
fTIKκ

(1)†
11,KJ − κ

(1)∗
11,IKf

T
KJ

)
yKI(0)

3,K

+ 8α2fIKyK

(
g∗KMI1,KMµhk + I(0)

3,Kκ
(0)∗
21,KMI

(0)
3,M

)
yMfMJ

(3.3.62)
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3.3.4 Mass Matrix

We saw in the previous section that in EFT-h there are seven diagrams inducing the
neutrino mass matrix at two-loop order:

iMh
ν,IJ ≡ νL

〈φ〉 〈φ〉

κ
(2)†
W

νL
+

νL

〈φ〉 〈φ〉

δκ
(2)†
W

νL

+

νL

h+

eL eR

〈φ〉 〈φ〉

κ
(1)T
11

νL

+

νL

h+

eL eR

〈φ〉 〈φ〉

δκ
(1)T
11

νL

+

νL νL

h+

eR eL

〈φ〉

κ
(1)
11

〈φ〉

+

νL νL

h+

eR eL

〈φ〉

δκ
(1)
11

〈φ〉

+

νL νL

h+ h+

eL eR eR eL

〈φ〉〈φ〉
κ
(0)
21

.

(3.3.63)

We already calculated all diagrams appearing in this equation in the previous section
when performing the matching of the effective operators. The evaluation of Eq. (3.3.63) is
therefore analogous to the calculations above. In particular, we saw that the divergences
arising from the loop diagrams get cancelled by the counterterms. Substituting everything
into Eq. (3.1.22), we arrive at the two-loop contribution to the neutrino mass matrix in
EFT-h:

Mh
ν,IJ = v2

[
κ

(2)†
W,IJ + α

(
κ

(1)
11,IKf

†
KJ − f †IKκ

(1)T
11,KJ

)
yKI(0)

3,K

−8α2f †IKI
(0)
3,KyKκ

(0)
21,KMI

(0)
3,MyMf

†
MJ

] (3.3.64)

3.3.5 Renormalisation Group Equations

We now present the RGEs for EFT-h. We discussed at the beginning of this chapter that
the RGEs of the full-theory couplings which are still present in EFT-h can be obtained from
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the RGEs of the full theory presented in Sec. 3.2.2, by setting the couplings which are not
existent anymore to zero, cf. Eq. (3.3.1). Indeed, one finds that no new terms containing
effective couplings appear in the β-functions of full-theory couplings at one-loop order.
We showed in Sec. 3.1 that we need these β-functions only at one-loop order in order to
compute the running of the neutrino mass matrix at three-loop order. This is not true for
the β-functions of the effective couplings: we found that we need β

(1)
κ21 , β

(1)
κ11 , β

(2)
κ21 , β

(2)
κW , and

β
(3)
κW . We will compute these β-functions in what follows using the results of Sec. 3.3.2.

As in the full theory, we present the RGEs in blocks of coupled equations. The first
block again consists of the β-functions of the gauge parameters. In the absence of k++ the
β-function of g1 changes slightly compared to the full theory. The other two β-functions
stay unchanged, as k++ carries only a U(1)-hypercharge but is a singlet under SU(2)L and
SU(3)C :

αβ(1)
g1

=
43

10
g3

1, (3.3.65a)

αβ(1)
g2

= −19

6
g3

2, (3.3.65b)

αβ(1)
g3

= −7g3
3. (3.3.65c)

As discussed above, the running of the Yukawa couplings can be obtained from the equa-
tions of the full theory by setting g = 0. Note that the terms containing the gauge
parameters stay unchanged, because those terms arise solely from diagrams which con-
tribute to the correction of the Yukawa vertices via loops containing gauge bosons and
those diagrams are still present and unchanged in EFT-h. We obtain:

αβ
(1)
Yu

= Yu

[
3

2
Y †uYu −

3

2
Y †d Yd + T − 17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
, (3.3.66a)

αβ
(1)
Yd

= Yd

[
−3

2
Y †uYu +

3

2
Y †d Yd + T − 1

4
g2

1 −
9

4
g2

2 − 8g2
3

]
, (3.3.66b)

αβ
(1)
Ye

= Ye

[
3

2
Y †e Ye + 2f †f + T − 9

4
g2

1 −
9

4
g2

2

]
, (3.3.66c)

αβ
(1)
f = f

[
1

2
Y †e Ye + 4f †f + 4Tr

(
f †f
)
− 9

10
g2

1 −
9

2
g2

2

]
+

[
1

2

(
Y †e Ye

)T]
f. (3.3.66d)

Following the same reasoning, we obtain the β-functions for the remaining scalar couplings:

αβ
(1)
λφ

= 4λφT − 2T4 + 24λ2
φ + λ2

φh −
9

5
λφg

2
1 +

27

200
g4

1 − 9λφg
2
2 +

9

8
g4

2 +
9

20
g2

1g
2
2, (3.3.67a)

αβ
(1)
λh

= 16λhTr
(
f †f
)
− 32Tr

(
f †ff †f

)
+ 20λ2

h + 2λ2
φh −

36

5
λhg

2
1 +

54

25
g4

1, (3.3.67b)

αβ
(1)
λφh

= 2λφhT + 8λφhTr
(
f †f
)
− 16Tr

(
f †fY †e Ye

)
+ 12λφλφh + 8λhλφh + 4λ2

φh +
27

25
g4

1 −
9

2
λφhg

2
1 −

9

2
λφhg

2
2.

(3.3.67c)
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The running of the remaining scalar mass parameters is determined by:

αβ
(1)

µ2φ
= 2µ2

φT + 12λφµ
2
φ + 2λφhµ

2
h −

9

10
µ2
φg

2
1 −

9

2
µ2
φg

2
2, (3.3.68a)

αβ
(1)

µ2h
= 8µ2

hTr
(
f †f
)

+ 4λφhµ
2
φ + 8λhµ

2
h −

18

5
µ2
hg

2
1. (3.3.68b)

Finally, we need the β-functions for the effective couplings. Let us start with βκ21 .
In order to apply the central Eq. (2.2.15), we need to express the bare coupling κ21,B in
terms of the renormalised one which we denote by κ21,R.4 Using the definition of κ21,B in
Eq. (3.3.2f) together with the explanations in Sec. 2.2.1, we find:

κ21,B =
(
ZT
e

)− 1
2 µε (κ21,R + δκ21) (Ze)

− 1
2 (Zh)

−1 . (3.3.69)

Now we can use the results for the wavefunction renormalisation constants δZh and δZe as
given in Eqs. (3.3.3b) and (3.3.3c) as well as the counterterm δκ

(1)
21 as given in Eq. (3.3.5)

in Eq. (2.2.15) to obtain after some algebra the one-loop β-function of κ21:

αβ(1)
κ21

= 2

[
κ

(0)
21 YeY

†
e +

(
κ

(0)
21 YeY

†
e

)T]
+
[
16Tr

(
f †f
)

+ 4λh + 18g2
1

]
κ

(0)
21 (3.3.70)

Analogously, for κ11, we find the relation

κ11,B = (ZL)−
1
2 µε (κ11,R + δκ11) (Ze)

− 1
2 (Zh)

− 1
2 (Zφ)−

1
2 , (3.3.71)

which yields, using the one-loop counterterm δκ
(1)
11 from Eq. (3.3.7), the one-loop β-function

αβ(1)
κ11

= 16f †Y T
e κ

(0)
21 (3.3.72)

The subset of terms we have calculated of the two-loop counterterm δκ
(2)
11 as given in

Eq. (3.3.9) yields the subset of terms of the two-loop β-function:

αβ(2)
κ11
⊃ κ

(1)
11

[
YeY

†
e

]
+

[
10f †f − 1

2
Y †e Ye + T + 4Tr

(
f †f
)

+ 2λφh −
23

4
g2

1 −
9

4
g2

2

]
κ

(1)
11

(3.3.73)

Finally, for the Weinberg operator we have:

κW,B =
(
ZT
L

)− 1
2 µε (κW,R + δκW) (ZL)−

1
2 (Zφ)−1 . (3.3.74)

Using δκ
(2)
W from Eq. (3.3.11) yields the two-loop β-function:

αβ(2)
κW

= −2

[
fY †e κ

(1)†
11 +

(
fY †e κ

(1)†
11

)T]
(3.3.75)

4Recall that the Lagrangian given in Sec. 2.3.2 as well as in Sec. 3.3.1 is defined in terms of bare
parameters. Note further that we consistently omitted the subscripts B there for brevity.
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while the subset of terms of δκ
(3)
W given in Eq. (3.3.11) yield the following terms of the

three-loop β-function:

αβ(3)
κW
⊃ κ

(2)
W

(
2f †f − 3

2
Y †e Ye

)
+

[
κ

(2)
W

(
2f †f − 3

2
Y †e Ye

)]T
+
[
2T + 4λφ − 3g2

2

]
κ

(2)
W

(3.3.76)

These are the final results in EFT-h.

3.4 EFT-k
We now present the same calculations as we did in the previous section in EFT-h in EFT-
k. This effective theory follows from the full theory by integrating out the singly charged
scalar particle h+. Thus, only the doubly charged scalar k++ remains in addition to the SM,
cf. Sec. 2.3.3. The residual effects of h+ are now described by a set of effective couplings,
which we will present Sec. 3.4.1. It turns out that the structure of EFT-k is much simpler,
as only one effective coupling of mass dimension D = 5, namely κW, is relevant for the mass
matrix, which we will present in Sec. 3.4.3. The matching of κW is therefore comparably
simple and will be discussed in in Sec. 3.4.2. Note that there appear no infinite diagrams
contributing to the mass matrix or in the matching equations. Therefore, we need the
counterterms only for the computation of the RGEs, which we present in Sec. 3.4.4.

3.4.1 Effective Operators

EFT-k derives from the full theory by integrating out h+. Therefore, we obtain the La-
grangian of EFT-k from the Lagrangian of the full theory as given in Eq. (2.3.12) by
omitting the gauge-kinetic term of h+ and by setting all couplings to h+ to zero:

f = 0, µ2
h = 0, λh = 0, λφh = 0, λhk = 0, µhk = 0. (3.4.1)

Furthermore, we add all effective operators of mass dimension D = 5, which follow from
the SM particle content extended by k++, and which are allowed by gauge symmetry. In
contrast to EFT-h, one finds only one effective operator of this type, namely the Weinberg
operator κW as given in Eq. (3.3.2a). In particular, there are no effective operators of
mass dimension D = 5 involving k++, as there is no combination of particles which could
compensate the two units of U(1)Y -hypercharge.

3.4.2 Matching

As in Sec. 3.3.3, the matching equation of the Weinberg operator arises from the condition
that the neutrino mass matrices in the full theory and in EFT-k coincide. We know the
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lowest order contribution in the full theory is at two-loop level, cf. Eq. (3.2.3):

iMZB
ν,IJ =

νI,L νJ,L

h+ h+

k++

eK,L eK,R eM,R eM,L

〈φ〉〈φ〉

= −8iα2v2µhkf
†
IKyKgKMI1,KMyMf

†
MJPR.

(3.2.3)

In EFT-k, we only have the contribution of the Weinberg operator Eq. (3.3.47) at this
order, since, in contrast to EFT-h, there are no effective couplings which are switched on
at tree level or at one-loop level:

iM(2)
k,1,IJ ≡ νJ,L

〈φ〉 〈φ〉

κ
(2)†
W

νI,L = −iv2κ
(2)†
W,IJPR. (3.3.47)

We are now ready to evaluate the matching equations arising from comparing the
coefficients of the α-expansions of the neutrino mass matrix in the full theory as well as
in EFT-k. As there are no diagrams at tree level or at one-loop level in the full theory
contributing to the mass matrix, we immediately find:

κ
(0)
W = κ

(1)
W = 0 (3.4.2)

Equating the α2-coefficients leads to the equation:

iMZB
ν,IJ

!
= iM(2)

k,1,IJ . (3.4.3)

Plugging in the results of the above diagrams, this equation yields:

κ
(2)
W,IJ =

1

v2

(
MZB

ν,IJ

)†
= 8iα2µhkfIKyKg

∗
KMI1,KMyMfMJ (3.4.4)

3.4.3 Mass Matrix

In EFT-k the neutrino mass matrix at two-loop order is given only by the Weinberg
operator:

iMk
ν,IJ ≡ νL

〈φ〉 〈φ〉

κ
(2)†
W

νL
= −iv2κ

(2)†
W,IJPR. (3.4.5)

Using this in Eq. (3.1.22), we find:

Mk
ν,IJ = v2κ

(2)†
W,IJ (3.4.6)
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3.4.4 Renormalisation Group Equations

As was done in Sec. 3.3.5, we can deduce the RGEs of all full-theory couplings by applying
Eq. (3.4.1) to the RGEs of the full theory as given in Sec. 3.2.2. In addition, we need the
β-function of the effective coupling κW at three-loop order, cf. Sec. 3.1. To compute it, we
need the wavefunction renormalisation constants δZ

(1)
φ , δZ

(1)
L , as well as the counterterm

δκ
(3)
W . We present their calculations first and use the results afterwards to compute the

β-functions.

Wavefunction Renormalisation Constants and Counterterm

The wavefunction renormalisation constants can be deduced from the ones calculated in
the full theory in Sec. 3.2.3 by applying Eq. (3.4.1). This yields:

δZ
(1)
φ = −α

[
2T − 1

2
(3− ξ1) g2

1 −
3

2
(3− ξ2) g2

2

]
1

ε

δZ
(1)
L = −α

[
Y †e Ye +

1

2
ξ1g

2
1 +

3

2
ξ2g

2
2

]
1

ε

(3.4.7a)

(3.4.7b)

Similarly, the computation of the counterterm δκW of the Weinberg operator is greatly
simplified, as we already computed all relevant diagrams in EFT-h in Sec. 3.3.2. Indeed, let
us first have a look at the analogue of Eq. (3.3.10) in EFT-k. The loop diagrams depicted
there contain κ21 as well as κ11 and are therefore not existent in EFT-k. Furthermore, note
that there are no additional diagrams containing k++ contributing at this order. Therefore,
we find:

δκ
(2)
W = 0 (3.4.8)

This was to be expected, as we already discussed in Sec. 3.1 that counterterms of effective
couplings may only have contributions at the same loop order at which the effective coupling
itself is switched on if we have other, lower-order, effective couplings at our disposal. These
can then be used in loop diagrams to give contributions at the relevant order. This is what
happened in EFT-h for both κ11 and κW. In contrast, in EFT-k, we have only one single
effective coupling κW, which is switched on at two-loop order, thus leading to δκW starting
beyond two-loop order.

All diagrams depicted in Eq. (3.3.12) are also present in EFT-k, with the exception of
the two- and three-loop diagrams. Indeed, in EFT-k, we do not have to consider these two-
and three-loop diagrams, as they contain the effective couplings κ21 and κ11 which are not
present in EFT-k. Furthermore, there are again no additional diagrams containing k++ to
consider here. Therefore, all three-loop contributions to the counterterm of κW in EFT-k
come from the one-loop diagrams depicted in Eq. (3.3.12). Using these observations in
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Eq. (3.3.13) together with Eq. (3.4.8) yields the result:

δκ
(3)
W = α

{
−2

[
κ

(2)
W Y †e Ye +

(
κ

(2)
W Y †e Ye

)T]
+

[
4λφ +

(
3

2
− ξ1

)
g2

1 +

(
3

2
− 3ξ2

)
g2

2

]
κ

(2)
W

}
1

ε

(3.4.9)

RGEs

We are now ready to compute the RGEs of EFT-k.
As was the case in EFT-h, the β-function of the gauge coupling g1 changes slightly,

while the β-functions of g2 and g3 stay unchanged in comparison to the full theory:

αβ(1)
g1

=
49

10
g3

1, (3.4.10a)

αβ(1)
g2

= −19

6
g3

2, (3.4.10b)

αβ(1)
g3

= −7g3
3. (3.4.10c)

For the running of the remaining Yukawa couplings we get:

αβ
(1)
Yu

= Yu

[
3

2
Y †uYu −

3

2
Y †d Yd + T − 17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
, (3.4.11a)

αβ
(1)
Yd

= Yd

[
−3

2
Y †uYu +

3

2
Y †d Yd + T − 1

4
g2

1 −
9

4
g2

2 − 8g2
3

]
, (3.4.11b)

αβ
(1)
Ye

= Ye

[
3

2
Y †e Ye + T − 9

4
g2

1 −
9

4
g2

2

]
+
[
2gg†

]
Ye, (3.4.11c)

αβ(1)
g = g

[(
YeY

†
e

)T
+ 4g†g + 2Tr

(
g†g
)
− 18

5
g2

1

]
+
[
YeY

†
e

]
g. (3.4.11d)

The β-functions of the remaining scalar couplings read:

αβ
(1)
λφ

= 4λφT − 2T4 + 24λ2
φ + λ2

φk

− 9

5
λφg

2
1 +

27

200
g4

1 − 9λφg
2
2 +

9

8
g4

2 +
9

20
g2

1g
2
2,

(3.4.12a)

αβ
(1)
λk

= 8λkTr
(
g†g
)
− 16Tr

(
g†gg†g

)
+ 20λ2

k + 2λ2
φk −

144

5
λkg

2
1 +

864

25
g4

1, (3.4.12b)

αβ
(1)
λφk

= 2λφkT + 4λφkTr
(
g†g
)
− 16Tr

(
gg†YeY

†
e

)
+

+ 12λφλφk + 8λkλφk + 4λ2
φk +

108

25
g4

1 −
153

10
λφkg

2
1 −

9

2
λφkg

2
2.

(3.4.12c)

The running of the remaining scalar mass parameters is given by:

αβ
(1)

µ2φ
= 2µ2

φT + 12λφµ
2
φ + 2λφkµ

2
k −

9

10
µ2
φg

2
1 −

9

2
µ2
φg

2
2, (3.4.13a)

αβ
(1)

µ2k
= 4µ2

kTr
(
g†g
)

+ 4λφkµ
2
φ + 8λkµ

2
k −

72

5
µ2
kg

2
1. (3.4.13b)
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Note that we do not need the running of µ2
φ for the calculation of the running of the

neutrino mass matrix. Nevertheless, as explained above, we calculate the running of all
model parameters in order to check if they run out of physically sensible ranges.
Finally, for the β-function of the Weinberg operator we find, using Eq. (3.3.74) together
with Eqs. (3.4.7), (3.4.8), and (3.4.9) in Eq. (2.2.15):

β(2)
κW

= 0

αβ(3)
κW

= −3

2

[
κ

(2)
W Y †e Ye +

(
κ

(2)
W Y †e Ye

)T]
+
[
2T + 4λφ − 3g2

2

]
κ

(2)
W

(3.4.14a)

(3.4.14b)

At first glance, this result is interesting as it does not contain the Yukawa coupling g. In
contrast, in EFT-h, the function β

(3)
κW does contain the Yukawa coupling f , which entered

solely through δZL. As k++ does not couple to LL, it was to be expected that g would not
appear in β

(3)
κW in EFT-k. Nevertheless, note that the running of κW is influenced indirectly

by the running of g, as this influences the running of Ye, T , and λφ.

3.5 EFT-0
In the last part of this chapter, we will present the neutrino mass matrix and the RGEs in
EFT-0, which we obtain by integrating out both BSM particles h+ and k++. We therefore
end up with the SM particle content described by the Lagrangian given in Eq. (2.1.3). The
residual effects of the charged scalars are described by the Weinberg operator κW as given
in Eq. (3.3.2a). In this respect, EFT-0 does not differ from EFT-k. It follows that the
computations in both EFT-k and EFT-0 are pretty much the same. Therefore, we will
only present the final results without unnccessary detailed remarks.

3.5.1 Matching

Recall from Sec. 2.3.3 that we have to distinguish two cases for the matching in EFT-0,
depending on whether we have derived it from EFT-h or EFT-k. Although in both cases
the resulting EFT-0 is described by the same Lagrangian, the matching conditions are
formally different, leading to different initial parameter configurations. We distinguish
these two cases by the names EFT-0h (if we came from EFT-h) and EFT-0k (if we came
from EFT-k). In both cases, the form of the matching equation coincides with Eq. (3.4.4).
In particular, the Weinberg operator is switched on at two-loop level, which was to be
expected, cf. Eq. (3.4.2).

EFT-0h

In EFT-0h, the matching condition is that the neutrino mass matrix in EFT-h coincides
with the neutrino mass matrix in EFT-0h, which is given solely by the Weinberg operator
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at two-loop level. This leads to:

κ
(2)
W,IJ =

1

v2

(
Mh

ν,IJ

)†
(3.5.1)

Here, Mh
ν,IJ is given in Eq. (3.3.64).

EFT-0k

Analogously, in EFT-0k we have:

κ
(2)
W,IJ =

1

v2

(
Mk

ν,IJ

)†
(3.5.2)

Now, Mk
ν,IJ is given in Eq. (3.4.6).

3.5.2 Mass Matrix

In the previous section, we already used the fact that, in EFT-0, the neutrino mass matrix
M0

ν,IJ at two-loop order is given solely by the Weinberg operator. This yields:

M0
ν,IJ = v2κ

(2)†
W,IJ (3.5.3)

3.5.3 Renormalisation Group Equations

The RGEs of full-theory couplings which are still present in EFT-0 can be obtained from
the RGEs of the full theory by applying both Eqs. (3.3.1) and (3.4.1), leading to the
well-known RGEs of the SM couplings. Furthermore, as already noted, there is no formal
difference between the calculation of the counterterm of the Weinberg operator in EFT-0
compared to EFT-k, so we can re-use the result from Eq. (3.4.9) to compute the β-function
of the Weinberg operator. These considerations lead to the following RGEs in EFT-0.

The running of the gauge couplings is given by the β-functions of the SM:

αβ(1)
g1

=
41

10
g3

1, (3.5.4a)

αβ(1)
g2

= −19

6
g3

2, (3.5.4b)

αβ(1)
g3

= −7g3
3. (3.5.4c)

For the remaining Yukawa-couplings we have:

αβ
(1)
Yu

= Yu

[
3

2
Y †uYu −

3

2
Y †d Yd + T − 17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
, (3.5.5a)

αβ
(1)
Yd

= Yd

[
−3

2
Y †uYu +

3

2
Y †d Yd + T − 1

4
g2

1 −
9

4
g2

2 − 8g2
3

]
, (3.5.5b)

αβ
(1)
Ye

= Ye

[
3

2
Y †e Ye + T − 9

4
g2

1 −
9

4
g2

2

]
. (3.5.5c)



3.5 EFT-0 77

The β-function of the Higgs self-coupling is given by:

αβ
(1)
λφ

= 4λφT − 2T4 + 24λ2
φ −

9

5
λφg

2
1 +

27

200
g4

1 − 9λφg
2
2 +

9

8
g4

2 +
9

20
g2

1g
2
2. (3.5.6)

We obtain for the running of the Higgs mass parameter:

αβ
(1)

µ2φ
= 2µ2

φT + 12λφµ
2
φ −

9

10
µ2
φg

2
1 −

9

2
µ2
φg

2
2. (3.5.7)

Finally, the β-function of κW reads:

β(2)
κW

= 0

αβ(3)
κW

= −3

2

[
κ

(2)
W Y †e Ye +

(
κ

(2)
W Y †e Ye

)T]
+
[
2T + 4λφ − 3g2

2

]
κ

(2)
W

(3.5.8a)

(3.5.8b)

This result coincides with the one given in Refs. [35,88].





Chapter 4
Numerical Results

In this chapter we present the results obtained by processing the equations from the pre-
vious chapter numerically. In particular, we discuss the numerical solution of the RGEs of
the Zee-Babu model in some detail. This yields the running of the neutrino mass matrix
and thus the running of the neutrino masses and leptonic mixing angles. We start with
describing how these parameters can be extracted from the neutrino mass matrix and sub-
sequently turn to the numerical solution of the RGEs. Finally, we present the results for
some sample initial parameter configurations in a top-down approach.

4.1 Evaluation of the Neutrino Mass Matrix
As discussed in Sec. 2.1.2, neutrino masses as well as leptonic mixing angles and phases are
encoded in the neutrino mass matrix Mν . In the Zee-Babu model neutrinos acquire a mass
term of Majorana type, which is why Mν is (complex) symmetric. Such a matrix can be
diagonalised using a single unitary matrix U (in contrast to the bi-unitary diagonalisation
of general complex matrices),

UTMνU = Dν = diag (m1,m2,m3) , (4.1.1)

yielding three real and positive diagonal entries mi representing the neutrino masses. This
is known as Takagi factorisation [27]. We used the algorithm described in Ref. [92] to
perform this factorisation numerically.

Recall from Sec. 3.2.1 that, in the Zee-Babu model, one neutrino is exactly massless at
leading order. Thus, assuming normal ordering, we have

Dν = diag (0,m2,m3) , (4.1.2)

with m2 � m3 according to experimental data [16]. In our numerical treatment, we will
always assume normal ordering. However, the analysis can easily be adapted to the case
of inverted ordering.

79
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We work in a basis where the charged lepton Yukawa matrix Ye is diagonal. We know
from above that in this case the matrix U is in fact the PMNS-matrix UPMNS, which
contains information on the leptonic mixing angles θ12, θ13, and θ23, as well as on the Dirac
and Majorana phases. In our numerical treatment, we focused on the running of the mixing
angles, which can be extracted from the PMNS-matrix via the following equations [28]:

θ13 = arcsin (|U13|) , (4.1.3a)

θ12 =

{
arctan

(
|U12|
|U11|

)
if U11 6= 0,

π
2

otherwise,
(4.1.3b)

θ23 =

{
arctan

(
|U23|
|U33|

)
if U33 6= 0,

π
2

otherwise.
(4.1.3c)

These equations follow from the standard parameterisation of the PMNS-matrix as given
in Eq. (2.1.40).

4.2 Solution of the RGEs
We start the discussion of the numerical solution of the RGEs by describing some ap-
proximations, which make the numerical computations less costly, without reducing the
accuracy of the results significantly. Then, we discuss the problem of finding sensible initial
values for the running parameters in a top-down approach. As we will see, this is a rather
delicate issue, since not all parameters are fixed at the same energy scale.

4.2.1 Simplification and Solution of the RGEs

Due to the large number of coupled equations, the numerical solution of the full set of
RGEs may be numerically expensive. Particularly, the block of β-functions for the Yukawa
couplings represents a large set of coupled RGEs. Fortunately, one can safely neglect the
running of all the SM Yukawa couplings except for the top-quark coupling yt. This is
justified because yt is much larger than all the other SM Yukawa couplings [14, 17, 93].
Thus we can fix those Yukawa couplings at their measured values and keep them constant
during the running. As we basically do not know anything about the strength of the BSM
Yukawa couplings f and g, we cannot neglect their running a priori. Furthermore, based
on the measured values, we neglect terms containing Y 2

e and Y 2
d compared to g2

i on the
right-hand side of the RGEs. The resulting simplified RGEs are summarised in App. D.

The solution of the simplified RGEs turns out to be quite harmless from a numerical
point of view. Indeed, the usage of standard numerical routines for non-stiff ODEs yields
fast and stable results. However, we would like to point out one exception: for parameter
configurations with large differences between the dimensionful parameters µ2

φ, µ2
h, µ

2
k, and

µhk, the running of these parameters is generically very strong. This issue is well-known in
the SM setting as the hierarchy problem, and discussed in great detail in Ref. [94]. Although
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we did not inspect such cases in detail in this thesis, one presumably has to resort to stiff
ODE-solvers in such settings due to the big difference in the dynamics of the running of
different parameters.

4.2.2 Initial Values for the RGEs

We discussed in Sec. 2.3.3 the top-down approach of RG running: we want to investigate
whether we can find a parameter configuration of the Zee-Babu model at the high energy
scale µGUT, which on the one hand corresponds to a bimaximal leptonic mixing pattern
at µGUT, and on the other hand reproduces the available data of neutrino measurements
at the low scale µEW.1 The parameter configurations at the high and low energy scales
are connected via the RGEs. In this section we want to discuss in detail the procedure of
finding suitable initial values for the RGEs of the full theory at µGUT. Note that the initial
values for the RGEs in the EFTs are fixed by the matching equations.

The Connection of the BSM parameters to the Leptonic Mixing Pattern

Let us first discuss how we have to choose the BSM parameters of the Zee-Babu model in
order to end up with a given leptonic mixing pattern specified by the three mixing angles
θ12, θ13, and θ23. We will eventually use the resulting equations to fix a bimaximal mixing
pattern at µGUT.

The mixing pattern is encoded in the neutrino mass matrix which is given in the Zee-
Babu model by Eq. (3.2.3):

MZB
ν,IJ = 8α2v2µhkf

†
IKyKgKMI1,KMyMf

†
MJ . (3.2.3)

It is clear that the BSM parameters contained in this equation, namely f , g, µhk, as well
as the scalar masses mh and mk (through I1), are not fixed completely by a given mass
matrix MZB

ν . This can be seen by counting the number of parameters on both sides of
the above equation: as described in Secs. 2.1.2 and 3.2.1, MZB

ν is parameterised by 2 mass
eigenvalues, 3 angles, and 2 phases, yielding a total of 7 real parameters. In contrast, f ,
g, µhk, mh, and mk constitute 12 moduli and 5 phases, i.e., 17 real parameters. Therefore,
we expect to find that a given mixing pattern does not fix 10 of those 17 BSM parameters.

1We also noted in Sec. 2.3.3 that the parameters have to stay confined to physically meaningful bounds
on the way down from the high to the low scale. For example, the scalar potential has to be bounded
from below at every energy value. Furthermore, all equations derived in this thesis only make sense for
small values of the couplings as otherwise perturbativity would be violated. In Ref. [17] these constraints
are quantified for the Zee-Babu model. However, in our numerical treatment, we focused on a basic
investigation of the running of neutrino masses and leptonic mixing angles and did not consider these
issues in detail. We only remark that particularly vacuum stability seems to be a delicate issue in the
Zee-Babu model, as we found that the quartic scalar self-couplings λφ, λh and λk have the tendency to
attain negative values during the running. Furthermore, we would like to point out that our results are
taylormade for an extended analysis including checks for such range violations, since we deduced the RGEs
of all model parameters in Chap. 3. Thus, using our equations, one can check at every single energy value
if the current parameter configuration is physically reasonable. If not, one can immediately discard the
corresponding intial values.
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To make the basic structure of the mass matrix more evident, let us rewrite Eq. (3.2.3)
in the following form [16,17]:2

MZB
ν = ζf †ωf †. (4.2.1)

Here we have defined:

ζ ≡ 8α2v2µhk, (4.2.2a)

ωIJ ≡ yIgIJI1,IJyJ . (4.2.2b)

Note that, in the definition of ω, no summation over family indices is involved. Thus, we
can solve for g given ω and I1.

As f † is antisymmetric, det f † = 0, and we have an eigenvector v0 of f † with zero
eigenvalue:

v0 =
(
1, −ξ, ξ′

)T
. (4.2.3)

Here, ξ and ξ′ are given by the ratios:

ξ ≡ f †eτ

f †µτ
, ξ′ ≡ f †eµ

f †µτ
. (4.2.4)

Note that our choice of fµτ as normalisation is arbitrary. Clearly, we could have used any
other element of f here.

We multiply Eq. (4.2.1) from the right with v0 to obtain:

MZB
ν v0 = 0. (4.2.5)

This is the central equation of this section: given any valid mass matrix of the Zee-Babu
model, i.e., given any complex symmetric matrix MZB

ν with detMZB
ν = 0, we can solve for

f in terms of the mixing angles θ12, θ13, θ23, and the Dirac phase δ. To this end, consider
the Takagi factorisation of the mass matrix,

MZB
ν = U∗DνU

†, (4.2.6)

with U the PMNS-matrix as described in Sec. 4.1. The following depends on the mass
hierarchy we impose at the high scale, i.e., on the entries of the diagonal matrix Dν . In
this thesis, we consider normal ordering as given in Eq. (4.1.2). Our procedure can be easily

2Note that we cannot employ the Casas-Ibarra parameterisation [38,88,95] here. Indeed, the structure
of the neutrino mass matrix in the Zee-Babu model is more complicated than in the models where the
Casas-Ibarra parameterisation is useful, like in seesaw-type scenarios or the scotogenic model. Indeed, the
structure of the neutrino mass matrix in such models is M ∼ hTΛh, with Λ a given matrix and h one
single Yukawa matrix we want to solve for. In particular, h does not have any symmetry properties. In
contrast, in the Zee-Babu model, two unknown Yukawa matrices f and g are involved. Additionally, f is
defined to be antisymmetric and g is defined to be symmetric. The Casas-Ibarra parameterisation does
not allow to solve for the unknown Yukawa matrices in this case.
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adapted to the case of inverted ordering. Substituting Eqs. (4.2.6), (4.1.2), and (2.1.40)
into Eq. (4.2.5), we obtain:

ξ =
cos θ23

cos θ13

tan θ12 + tan θ13 sin θ23e
iδ, (4.2.7a)

ξ′ =
sin θ23

cos θ13

tan θ12 − tan θ13 sin θ23e
iδ. (4.2.7b)

Therefore, after fixing any real3 fµτ , the Yukawa matrix f is completely determined by the
mixing angles and by the Dirac phase.

Finally, we can fix any three (complex) elements of ω as well as the real parameter ζ
(or, equivalently, µhk) and use Eq. (4.2.1) to solve for the remaining three elements of ω.
For example, if we fix ωee, ωeµ, and ωeτ we find:

ωµµ = −1

ζ
MZB

ν ,ττ − 2ωeµξ − ωeeξ2, (4.2.8a)

ωµτ = +
1

ζ
MZB

ν ,µτ − ωeτξ + ωeµξ
′ + ωeeξξ

′, (4.2.8b)

ωττ = −1

ζ
MZB

ν ,µµ − 2ωeτξ
′ − ωeeξ′2. (4.2.8c)

Having computed ω, the Yukawa matrix g is fixed after choosing scalar masses mh and mk

(and thus fixing I1) by Eq. (4.2.2b).
Note that, as expected, we found that 10 BSM parameters are not fixed by specifying

the leptonic mixing pattern: we are free to choose one real entry of f , 3 complex entries
of ω (and therefore of g) as well as the 3 real parameters µhk, mh, and mk.

Initialising the RGEs in a Top-Down Approach

We discussed in the previous section that imposing a bimaximal mixing pattern at µGUT

only fixes a subset of the elements of the Yukawa matrices f and g, while leaving the
other BSM parameters unconstrained. These unconstrained parameters span the space
which has to be scanned for configurations which lead to the measured neutrino masses
and leptonic mixing angles at the low scale as given in Sec. 2.1.2. However, these are not
the only running parameters which are fixed by experiment at the low scale. Indeed, the
SM parameters listed in Tab. 4.1 also enter the neutrino mass matrix in our setting.

In summary, we are facing the situation that some of the running parameters are
fixed at the high scale, others at at the low scale, and the mixing angles at both scales.
This requirement makes the numerical treatment of the RGEs somewhat more involved
compared to a pure initial value problem, where all quantities are given at the same
energy scale. However, we came up with a heuristic procedure for finding initial values
at µGUT that works rather well: for the SM parameters listed in Tab. 4.1, we start with
the measured values at the low scale and run them up to the high scale using the RGEs

3We know from Sec. 2.3.2 that f contains only two physical phases, allowing us to choose fµτ real.
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Parameter Value Unit√
3/5g1 0.357 -

g2 0.652 -
g3 1.22 -
yt 0.995 -
λφ 0.129 -
µ2
φ −7.81 · 10+3 GeV2

Table 4.1: Measured values [26] of those SM parameters of which we inspect the running
because they enter the neutrino mass matrix. We only specify the values we used in the
numerical calculations and suppress information about the precision of the measurements.

of the full theory.4 Afterwards, we use the resulting high-scale values as initial values
in the top-down run. Clearly, this is not correct, as we should use the RGEs of the
EFTs at low energies. However, this is not possible due to our ignorance of the mass
thresholds of the scalars h+ and k++ in a bottom-up run. Nevertheless, we found that
using the “wrong” RGEs introduces no substantial error in most cases. This can be easily
verified by checking that one hits the measured values (with deviations that lie within the
experimental uncertainties) at the low scale in the subsequent top-down run again.

Now that we found suitable high-scale initial values for all relevant SM couplings, we
are well-prepared to scan the parameter space of the free BSM couplings at the high scale
for values, which lead to the measured neutrino masses and leptonic mixing angles at the
low scale.

4.3 Discussion of the Results
We now present the results of the numerical evaluation of the running of the neutrino
masses and leptonic mixing angles. A full scan of the space of free BSM parameters was
beyond the scope of this thesis as this space has very high dimension. Nevertheless, we
found initial parameter configurations at µGUT from which the running leads to values
at µEW quite close to the measured ones. These results indicate that the running in the
Zee-Babu model might indeed explain the deviation of neutrino data from a bimaximal
mixing pattern. Furthermore, our results may serve as useful seed configurations for a
more extensive parameter scan, which may be able to answer this question conclusively.

As explained in the previous section, there are plenty of free BSM parameters at the
high scale. These are the dimensionless quartic scalar couplings λh, λk, λφh, λφk, and

4For the gauge parameters g1, g2, and g3, as well as for the top-quark coupling yt, this procedure is
trivial as these couplings do not depend on BSM parameters, which are fixed at the high scale. However,
the RGEs of the quartic Higgs coupling λφ and the Higgs mass parameter µ2

φ do depend on the solutions
of (or are coupled to) RGEs of BSM parameters. Thus, in practice, we performed several interlaced top-
down and bottom-up runs. However, this is only a minor practical issue and thus we provide a simplified
explanation in order to convey the general idea more clearly.
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Parameter Value Unit

µhk 11 GeV
mh 180 GeV
mk 255 GeV
∆m2

21 5.5 · 10−5 eV2

∆m2
32 3.9 · 10−3 eV2

Table 4.2: Initial parameter configuration at the high scale leading to the EFT-route
“full theory→ EFT-h→ EFT-0h” and the running displayed in Fig. 4.1.

λhk, as well as the Yukawa couplings fµτ , gee, geµ, and geτ . In addition, there are the
dimensionful quantities µhk, mh, mk, and the two neutrino mass eigenvalues m2 and m3.

We performed a scan of this high-dimensional parameter space, which we chose to
constrain by fixing the aforementioned quartic scalar and Yukawa couplings all to the
same value of 0.1 at µGUT. This choice is motivated by the constraints on perturbativity
and vacuum stability given in Ref. [17]. However, the running is very sensitive to variations
in these initial values, which is why they need to be included in a full parameter scan.

To summarise, we varied only the initial values of the dimensionful scalar parameters
µ2
h, µ

2
k, µhk, as well as the neutrino mass splittings ∆m2

21 and ∆m2
32. Given the latter, also

the neutrino masses m2 and m3 are fixed, since one neutrino is massless in the Zee-Babu
model, m1 = 0, given that we consider the case of normal hierarchy. As was to be expected
from our discussion in the context of the hierarchy problem, the running of the neutrino
parameters is very sensitive to variations of these dimensionful quantities.

EFT-route: “full theory→ EFT-h→ EFT-0h” Fig. 4.1 shows the running of the neutrino
masses and leptonic mixing angles for the initial parameter configuration given in Tab. 4.2.
This configurations leads to the EFT-route

full theory→ EFT-h→ EFT-0h,

i.e., k++ hits its mass threshold before h+ does. Therefore, k++ has to be integrated out
first. This was to be expected, since we adjusted for mk to be significantly larger than mh

at µGUT. This must not be taken as a general rule, though, since there might be alternative
initial values leading to a running in which the scalar mass parameters cross between the
high and the low scale.

As is evident from Fig. 4.1a, we hit the measured 3σ-ranges of the mixing angles θ23

and θ13. This indicates that in the Zee-Babu model the running might indeed explain the
deviation of the measured mixing angles from a bimaximal mixing pattern. The fact that
the mixing angle θ12 shows barely any running and therefore does not hit its measured
value does not have to contradict this assumption, as we only scanned a small part of the
free BSM parameter space. There might well be different initial values featuring a stronger
running of θ12. However, if one finds this not to be the case, one should look for a structural
argument, which explains why in the Zee-Babu model strong running of θ12 is prohibited.
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Figure 4.1: Results of the numerical evaluation of the RGEs of neutrino masses and
leptonic mixing angles for an initial parameter configuration leading to the EFT-route
“full theory → EFT-h → EFT-0h”. The solid vertical line indicates the electroweak scale
µEW, while the dashed vertical lines indicate the mass thresholds of k++ (right line) and h+

(left line). Thus, we are in the full theory for energies above the rightmost dashed vertical
line, in EFT-h between the vertical lines, and in EFT-0h below the left vertical line. In
the case of mixing angles and mass-splittings we indicate the 3σ-ranges from experiments by
coloured rectangles.
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Depending on the initial configuration, the neutrino masses can exhibit very strong
running. From Fig. 4.1d we find that, for our current example configuration, the mass
splittings change by factors of roughly 2 (for ∆m2

21) and 3/2 (for ∆m2
32) due to the running,

which is a rather moderate change compared to other cases. As can be seen from Fig. 4.1c,
we hit the measured 3σ-ranges of both mass splittings.

There is another important issue that we would like to point out. Recall that in Secs. 3.1
and 3.3 we learned that, due to the complex operator structure of EFT-h, the running of
the neutrino mass matrix therein receives contributions already at second loop order. In
contrast, in the full theory as well as in all other EFTs, the running starts at third loop
order. If we wanted to be fully consistent, we would have to compute the running up to
the same loop order in the full theory as well as in all EFTs. We chose to go up to third
loop order (otherwise there was only running in EFT-h), which implies that for EFT-h we
have to consider not only leading but also next-to leading order effects. Although possible
in principle, their computation turned out to be infeasible within the scope of this work.
Thus, we computed only the leading, i.e., second order effects in EFT-h. Fig. 4.1 is based
on these results.

Although necessary for full consistency, the incorporation of third order effects in EFT-
h would most certainly not lead to any substantial changes of the low-energy values of the
running parameters in our example. The justification for this statement is the fact that
the mass thresholds of h+ and k++ lie very close together. Thus, we use the equations of
EFT-h only in a very small energy range (namely the range between the dashed vertical
lines in the plots). In cases where this energy range was bigger, one would clearly have to
include third order effects in EFT-h to make viable predictions as they then might lead to
changes in the low-scale values which are of the same order as those stemming from the
third order effects in the full theory and in EFT-0h. However, in our case the third order
effects only will lead to negligible changes. We remark that the mass thresholds turn out
to lie close together for a wide range of input scalar masses mh and mk, such that our
approach can safely be used for basic studies of the Zee-Babu model. Furthermore, these
are probably the cases most relevant for colliders.

Following the discussion above, one would expect the running in EFT-h to be stronger
compared to the full theory and to the other EFTs, since it sets in at a lower loop order.
From our plots in Fig. 4.1, one might get the impression that this is indeed the case as the
slope of the running neutrino masses is bigger (and even changes sign) in EFT-h. This is
particularly apparent in the plots for the mass splittings. However, we did not quantify this
behaviour in this thesis. Nevertheless, this is a very interesting point, as it would underpin
the usefulness of the loop order expansion as described in Sec. 3.1. More importantly,
from a conceptual point of view, one might learn much more about the running in EFTs
by having a closer look at this issue. In this context, deriving analytical formulae for the
running of the neutrino masses and leptonic mixing angles as was done for example in
Refs. [14, 85] might be a promising starting point.
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Parameter Value Unit

µhk 10 GeV
mh 320 GeV
mk 175 GeV
∆m2

21 6.0 · 10−5 eV2

∆m2
32 4.5 · 10−3 eV2

Table 4.3: Initial parameter configuration leading to the EFT-route “full theory →
EFT-k → EFT-0k” and the running displayed in Fig. 4.2.

EFT-route: “full theory → EFT-k → EFT-0k” Fig. 4.2 represents an example in which
the running leads to the EFT-route

full theory→ EFT-k → EFT-0k. (4.3.1)

The corresponding initial parameter configuration is given in Tab. 4.3. Note that here mh

was chosen to be larger than mk in order to force h+ to be integrated out before k++.
In this setting we did manage to find an initial parameter configuration in which we

hit the 3σ-range of θ23 and ∆m2
21. As mentioned earlier, this motivates a more thorough

parameter scan involving also the scalar and Yukawa couplings. This might then give
enough freedom to hit all measured values at the low scale. Note that the running of the
neutrino masses in this example is rather large compared to the case we discussed before,
cf. Fig. 4.2d.

We would like to point out that the results shown in Fig. 4.2 incorporate the running
at third loop order in full consistency. Recall that, in EFT-k, the leading-order effects of
the running are of third loop order, which is why they can be computed with maintainable
effort. At first sight, we get the impression that the running in EFT-k is indeed not altered
that much as it was the case above in EFT-h.
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Figure 4.2: Results of the numerical evaluation of the RGEs of neutrino masses and
leptonic mixing angles for an initial parameter configuration leading to the EFT-route
“full theory → EFT-k → EFT-0k”. The solid vertical line indicates the electroweak scale
µEW, while the dashed vertical lines indicate the mass thresholds of k++ (left line) and h+

(right line). Thus, we are in the full theory for energies above the rightmost dashed vertical
line, in EFT-k between the vertical lines, and in EFT-0k below the left vertical line. In
the case of mixing angles and mass-splittings we indicate the 3σ-ranges from experiments by
coloured rectangles.





Chapter 5
Conclusions and Outlook

We studied the Zee-Babu model, an economical extension of the SM by only two charged
scalar particles, leading to radiative neutrino masses at two-loop order. Our main result is
the full set of RGEs of the full theory and of the EFTs, which we obtain by subsequently
integrating out the additional scalars according to their mass hierarchy. It turned out to be
quite intricate to keep track of which effects are to be taken into account in the computation,
in order to eventually obtain a given accuracy of the running. This motivated us to refine
a method of organising the calculations of the neutrino mass matrix, the β-functions of
full-theory parameters and of effective couplings, as well as the matching process, in loop
orders. This enables us to decide which effects have to be considered in order to obtain the
running at some fixed target accuracy, i.e., up to some targeted loop order. We presented
this method in a general manner, making it easily applicable to a wide range of models
and moreover yielding valuable insights from a conceptual point of view. In particular, we
learned that the running in EFTs may be stronger than in the full theory in the sense that
it starts at lower loop orders.

The RGEs contain the full information about the running of neutrino masses and
leptonic mixing angles in the Zee-Babu model. We performed a first numerical evaluation
of the running in a top-down approach, meaning to start at some very high energy scale
with a theoretically well-motivated mixing pattern. We then studied, whether the running
can account for deviations from neutrino data taken at energies below the electroweak
scale. Our results indicate that this might indeed be the case, thereby motivating a more
thorough analysis of the running in future work. Moreover, we found that the mixing
angle θ12 shows barely any running for the initial high-energy parameter configurations we
looked at, raising the question whether this is a generic property of the Zee-Babu model.
Furthermore, it would be interesting to compare in more detail the running in the full theory
and in the various EFTs, as both our results from the loop expansion and the numerical
evaluation indicate substantial differences. For both questions, it seems promising to try
to approximate the RGEs in such a way that they become soluble analytically, possibly
giving further insights into the general structure of the running.
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bin immer mit nützlichen Antworten und Anregungen (und manchmal auch amüsanten
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Übergang vom Studium in das Forschungsumfeld sehr erleichtert. Insbesondere haben
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Zum Schluss möchte ich meiner Familie, allen voran meinen Eltern Petra und Herbert,
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Appendix A
Symbols and Notation

We use the following symbols in this thesis:

Symbol Description

µ, ν, · · · ∈ {0, 1, 2, 3} Lorentz indices

i, j, k, · · · ∈ {1, 2} SU(2)L-indices ((anti-)fundamental representation)

A ∈ {1, 2, 3} SU(2)L-index (adjoint representation)

B ∈ {1, . . . , 8} SU(3)C-index (adjoint representation)

I, J,K, · · · ∈ {1, 2, 3} Family indices

ηµν ≡ diag (+1,−1,−1,−1) Minkowski metric

γµ, γ5 Dirac γ-matrices

εij, ε12 ≡ +1 Completely antisymmetric tensor

σA Pauli matrices

λB Gell-Mann matrices

d Number of spacetime dimensions

D Mass dimension of operators

ε ≡ 4− d Regularisation parameter in dimreg

QL ≡ (uL, dL) Left-handed quark doublet

uR Right-handed up-type quarks

dR Right-handed down-type quarks

LL ≡ (νL, eL) Left-handed lepton doublet

eR Right-handed leptons

φ ≡ 1/
√

2 (φ+, φ0) Higgs doublet

φH Physical Higgs particle

v = 246 GeV Higgs vev

Table A.1: Symbols used in this thesis.
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Symbol Description

Bµ U(1)Y -gauge boson

WA
µ SU(2)L-gauge bosons

GB
µ SU(3)C-gauge bosons

h+ Singly charged scalar (Zee-Babu model)

k++ Doubly charged scalar (Zee-Babu model)

Yu Up-quark Yukawa matrix

Yd Down-quark Yukawa matrix

Ye Charged lepton Yukawa matrix

T Quadratic Yukawa trace terms

T4 Quartic Yukawa trace terms

f Yukawa matrix for h+

g Yukawa matrix for k++

yt Top-quark Yukawa coupling

yI Diagonal entries of Ye in mass eigenbasis

me,I Masses of the charged leptons

Mν Neutrino mass matrix

mI Neutrino masses

UPMNS Leptonic mixing matrix

θ12, θ13, θ23 Leptonic mixing angles

δ Dirac phase

φ1, φ2 Majorana phases

µ2
φ, µ2

h, µ
2
k Scalar mass parameters

µhk Trilinear scalar coupling

λφ, λh, λk, λφh, λφk, λhk Quartic scalar couplings

mH Mass of physical Higgs particle

mh Mass of h+

mk Mass of k++

ξ1, ξ2, ξ3 Gauge parameters

µ Energy scale

µEW ≈ 100 GeV Scale of electroweak symmetry breaking (“low scale”)

µGUT ≈ 1016 GeV Scale of grand unification (“high scale”)

µ∗h, µ
∗
k Mass thresholds of h+, k++

α ≡ 1/ (16π2) Loop factor

I1, I2, I3 Loop integrals

Table A.1: Symbols used in this thesis – continued.
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Furthermore, we use the following notational conventions.

• We exclusively use Dirac spinor notation. Notice the conventions introduced in
App. B.

• We suppress colour indices and always make SU(2)L-indices explicit.

• We make family indices explicit whenever it clarifies notation. In unambiguous cases,
we use matrix notation for contracting family indices.

• For charged scalars we use the following abbreviations:

h− ≡
(
h+
)†
, k−− ≡

(
k++

)†
.

• For objects carrying SU(2)L-indices we write:

ψ†i ≡
(
ψ†
)
i
, ψci ≡ (ψc)i , ψTi ≡

(
ψT
)
i
.

We use analogous relations for objects carrying family indices.





Appendix B
Spinor Algebra

We list without proof the most important rules and notational conventions for calculations
with Dirac spinors.

Given a Dirac spinor ψ we define

ψ ≡ ψ†γ0, ψc ≡ Cψ
T
, (B.0.1)

where the charge conjugation matrix C obeys the relations:

C† = C−1, CT = −C, C−1γµC = − (γµ)T , C−1γ5C = γT5 . (B.0.2)

Furthermore, we define the left- and right-handed chirality projectors via:

PL ≡
1− γ5

2
, PR ≡

1 + γ5

2
. (B.0.3)

They obey the following relations:

P 2
L = PL, P 2

R = PR, PLPR = PRPL = 0, PL + PR = 1. (B.0.4)

We denote the projections of ψ onto its left- and right-handed components by:

ψL ≡ PLψ, ψR ≡ PRψ. (B.0.5)

Note that
ψL = ψPR, ψR = ψPL, (B.0.6)

and
(ψL)c = PRψ

c, (ψR)c = PLψ
c. (B.0.7)

Furthermore, we need the important relations(
ψ1ψ2

)†
= ψ2ψ1,

(
ψ1γ

µψ2

)†
= ψ2γ

µψ1,
(
ψ1γ5ψ2

)†
= −ψ2γ5ψ1, (B.0.8)

as well as [96]:

ψ1ψ2 = ψc2ψ
c
1, ψ1γ

µψ2 = −ψc2γµψc1, ψ1γ5ψ2 = ψc2γ5ψ
c
1. (B.0.9)
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Appendix C
Feynman Rules of the Zee-Babu Model

We present the Feynman rules for the lepton and scalar sectors of the Zee-Babu model
and its derived effective theories in d = 4 − ε dimensions, which makes them directly
applicable in dimensional regularisation. The standard techniques for deriving Feynman
rules from a given Lagrangian presented in most of the introductory textbooks on QFT
are only applicable if the interactions of the model conserve fermion number [25, 34, 58].
Diagrammatically, this is reflected by the fact that there are no clashing arrows on fermion
lines, yielding a unique direction for applying the Feynman rules in a diagram. In models
containing Majorana fermions or, more generally, in models with fermion number-violating
interactions such as the Zee-Babu model, the situation is more involved. Fortunately,
there exist several techniques which make the derivation and application of Feynman rules
nearly as convenient as in the case where fermion number is conserved. In this thesis we
use the technique proposed in Ref. [96], which relies on the introduction of an (arbitrary)
fermion flow direction through a diagram which takes the place of the fermion number flow
in fermion number-conserving models. We indicate this direction by a grey arrow next to
fermion lines.

C.1 Unbroken Phase
First, we present the Feynman rules in the unbroken phase, i.e., in the case of vanishing
Higgs vev, v = 0. From these, the Feynman rules in the broken phase can be deduced
easily as described in the following section.

The Feynman rule for the counterterm δc of a coupling c follows by the replacement c→
δc in the Feynman rule for for c, since we renormalise all couplings additively. Therefore,
we do no present the Feynman rules for the counterterms of couplings separately. However,
as the situation is a bit more involved for the wavefunction renormalisation counterterms,
we give their Feynman rules explicitly.
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C.1.1 Propagators and Wavefunction Renormalisation Counterterms

We omit SU(2)L-indices in the following diagrams and Feynman rules, as both the propa-
gators and the wavefunction renormalisation constants are diagonal in the SU(2)L-indices.
Furthermore, note that the iε-terms in the denominators of the propagators play no role
in the calculations in the main part of this thesis, which is why we omit them there con-
sistently.

Fermions

LZB ⊃ fI,L
(
i/∂fJ,L

)
(δIJ + δZf,IJ) = −(fJ,L)c

[
i/∂ (fI,L)c

] (
δIJ + δZT

f,JI

)

fJ,L

p

fI,L
=

i/p

p2 + iε
δIJ

fJ,L

p

fI,L
= i/pδZf,IJPL

fJ,L

p

fI,L
=
−i/p

p2 + iε
δJI

fJ,L

p

fI,L
= −i/pδZT

f,JIPR

The corresponding Feynman rules for right-handed fermions fR follow by the replacement
PL ↔ PR in the above expressions.

Scalars

LZB ⊃ (∂µϕ) (∂µϕ)† (1 + δZϕ)−
(
m2
ϕ + δm2

ϕ

)
ϕ†ϕ

ϕ

p

ϕ
=

i

p2 −m2
ϕ + iε ϕ

p

ϕ
= i
(
p2δZϕ − δm2

ϕ

)

Gauge Bosons

Aµ

p

Aν

= i
−ηµν + (1− ξA) pupν

p2

p2 + iε

Here, we denote by ξA the gauge parameter corresponding to the gauge field Aµ.
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C.1.2 Leptonic Gauge Couplings

eR-gauge-vertices

LZB ⊃ +µ
ε
2 g1eI,Rγ

µeI,RBµ = −µ ε
2 g1(eI,R)cγµ (eI,R)cBµ

Bµ

eI,R

eJ,R

= +iµ
ε
2 g1γ

µδIJPR
Bµ

eI,R

eJ,R

= −iµ ε
2 g1γ

µδIJPL

LL-gauge-vertices

LZB ⊃ +
1

2
µ
ε
2 g1

(
LI,L

)
i
γµ (LI,L)iBµ −

1

2
µ
ε
2 g2

(
LI,L

)
i
γµ (LI,L)j σ

A
ijW

A
µ

= −1

2
µ
ε
2 g1(LI,L)ciγ

µ (LI,L)ci Bµ +
1

2
µ
ε
2 g2(LI,L)ciγ

µ (LI,L)cj
(
σA
)T
ij
WA
µ

Bµ

(LI,L)i

(LJ,L)j

= +
i

2
µ
ε
2 g1γ

µδIJδijPL
Bµ

(LI,L)i

(LJ,L)j

= − i
2
µ
ε
2 g1γ

µδIJδijPR

WA
µ

(LI,L)i

(LJ,L)j

= − i
2
µ
ε
2 g2γ

µδIJσ
A
ijPL

WA
µ

(LI,L)i

(LJ,L)j

= +
i

2
µ
ε
2 g1γ

µδIJ
(
σA
)T
ij
PR
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φ-gauge-vertices

LZB ⊃ −
i

2
µ
ε
2 g1

[
φ†i (∂µφi)−

(
∂µφ

†
i

)
φi

]
Bµ −

i

2
µ
ε
2 g2

[
φ†i (∂µφj)−

(
∂µφ

†
i

)
φj

]
σAijW

A
µ

+
1

4
µεg2

1BµB
µφ†iφi +

1

4
µεg2

2W
A
µ W

A,µφ†iφi +
1

2
µεg1g2BµW

A,µφ†iφjσ
A
ij

Bµ

φi

φj

p2

p1

= − i
2
µ
ε
2 g1 (p1µ + p2µ) δij

WA
µ

φi

φj

p2

p1

= − i
2
µ
ε
2 g2 (p1µ + p2µ)σAij

φi

φj

Bµ

Bν

= +
i

2
µεg2

1ηµνδij

φi

φj

WA
µ

WB
ν

= +
i

2
µεg2

1ηµνδijδAB

φi

φj

WA
µ

Bν

= +
i

2
µεg1g2ηµνσ

A
ij
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C.1.3 Scalar Couplings

LZB ⊃ −λφ
(
φ†iφi

)2

− λh
(
h+h−

)2 − λk
(
k++k−−

)2 − λφh
(
φ†iφi

) (
h+h−

)
− λφk

(
φ†iφi

) (
k++k−−

)
− λhk

(
h+h−

) (
k++k−−

)
− µhk

(
h+h+k−− + h−h−k++

)

φi

φj

φk

φl

= −2iµελφ (δikδjl + δilδjk)

h+

h+

h+

h+

= −4iµελh

k++

k++

k++

k++

= −4iµελk

φi

h+

φj

h+

= −iµελφhδij

φi

k++

φj

k++

= −iµελφkδij

h+

k++

h+

k++

= −iµελhk

h+

h+

k++
= −2iµ

ε
2µhk

h+

h+

k++
= −2iµ

ε
2µhk
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C.1.4 Leptonic Yukawa Couplings

eRLLφ-vertex

LZB ⊃ −µ
ε
2Ye,IJeI,R (LJ,L)i φ

†
i − µ

ε
2Y †e,IJ

(
LI,L

)
i
eJ,Rφi

= −µ ε
2Y T

e,IJ(LI,L)ci (eJ,R)c φ†i − µ
ε
2Y ∗e,IJ(eI,R)c (LJ,L)ci φi

φi

eI,R

(LJ,L)j

= −iµ ε
2Ye,IJδijPL

φj

(LI,L)i

eJ,R

= −iµ ε
2Y †e,IJδijPR

φj

(LI,L)i

eJ,R

= −iµ ε
2Y T

e,IJδijPL
φi

eI,R

(LJ,L)j

= −iµ ε
2Y ∗e,IJδijPR

eReRk
++-vertex

LZB ⊃ −µ
ε
2 gIJ(eI,R)ceJ,Rk

++ − µ ε
2 g†IJeI,R (eJ,R)c k−−, where gIJ = gJI

k++

eI,R

eJ,R

= −2iµ
ε
2 gIJPR

k++

eI,R

eJ,R

= −2iµ
ε
2 g†IJPL

LLLLh
+-vertex

LZB ⊃ −µ
ε
2fIJ(LI,L)ci (LJ,L)j εijh

+ − µ ε
2f †IJ

(
LI,L

)
i
(LJ,L)cj ε

T
ijh
−, where fIJ = −fJI

h+

(LI,L)i

(LJ,L)j

= −2iµ
ε
2fIJεijPL

h+

(LI,L)i

(LJ,L)j

= −2iµ
ε
2f †IJε

T
ijPR
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C.1.5 Effective Couplings

eReRh
+h+-vertex: κ21

LZB ⊃ −µεκ21,IJ(eI,R)ceJ,Rh
+h+ − µεκ†21,IJeI,R (eJ,R)c h−h−, where κ21,IJ = κ21,JI

eI,R

eJ,R

h+

h+

= −4iµεκ21,IJPR

eI,R

eJ,R

h+

h+

= −4iµεκ†21,IJPL

eRLLφh
+-vertex: κ11

LZB ⊃ −µεκ11,IJ

(
LI,L

)
i
eJ,Rφ

†
kε
T
ikh

+ − µεκ†11,IJeI,R (LJ,L)j φkε
T
jkh
−

= −µεκT11,IJ(eI,R)c (LJ,L)cj φ
†
kε
T
jkh

+ − µεκ∗11,IJ(LI,L)ci (eJ,R)c φkε
T
ikh
−

(LI,L)i h+

φkeJ,R

= −iµεκ11,IJε
T
ikPR

eI,R h+

φk
(LJ,L)j

= −iµεκ†11,IJε
T
jkPL

eI,R h+

φk
(LJ,L)j

= −iµεκT11,IJε
T
jkPR

(LI,L)i h+

φkeJ,R

= −iµεκ∗11,IJε
T
ikPL
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LLLLφφ-vertex: κW

LZB ⊃ −µεκW,IJ(LI,L)ci (LJ,L)j φkφlεikεjl − µεκ
†
W,IJ

(
LI,L

)
i
(LJ,L)cj φ

†
kφ
†
l εikεjl,

where κW,IJ = κW,JI

(LI,L)i φk

φl
(LJ,L)j

= −2iµεκW,IJ (εikεjl + εilεjk)PL

(LI,L)i φk

φl
(LJ,L)j

= −2iµεκ†W,IJ (εikεjl + εilεjk)PR

C.2 Broken Phase
The fields which are related by the SU(2)L-gauge symmetry in the unbroken phase are
individual degrees of freedom in the broken phase. The Feynman rules in the broken
phase follow easily from those in the unbroken phase by plugging in the SU(2)L-indices
of the doublet-components which take part in the process at hand. Our conventions are
summarised in Tab. 2.1.

However, in doing so, one has to be careful when dealing with vertices involving the
Higgs doublet φ. Note that we defined the physical Higgs field φH with a prefactor of
1/
√

2, cf. Eq. (2.1.8). Therefore, for every leg associated with a physical Higgs field φH ,
one has to add a factor of 1/

√
2 to the vertex rule. Analogously, for every leg associated

with the Higgs vev v, one has to add a factor of v/
√

2 and remove a factor of µ
ε
2 . In this

case, one additionally may have to leave out symmetry factors which come from equivalent
contractions in the unbroken phase. When in doubt, one can simply write down the
Lagrangian in d = 4 − ε dimensions in the broken phase and in unitarity gauge and read
off the Feynman rules.



Appendix D
RGEs of the Zee-Babu Model and its EFTs

We summarise the simplified RGEs, which we used for the numerical evaluation of the
results. Since the equations are not fully coupled, they do not have to be solved simultane-
ously. Rather, they can be solved in subsequent blocks, which we indicate by enumeration.

D.1 RGEs of the Full Theory
1. The analytical solutions of the RGEs of the gauge couplings:

gi(t) =
gi(0)√

1− bi
8π2 g2

i (0)t
, (D.1.1)

where bi =
(

51
10
,−19

6
,−7

)
.

2. The RGE for the top-quark Yukawa coupling yt:

αβ(1)
yt = yt

[
9

2
y2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
. (D.1.2)

3. The RGEs for the antisymmetric Yukawa matrix f , which couples the left-handed
leptonic doublets:

αβ
(1)
f = f

[
4f †f + 4Tr

(
f †f
)
− 9

10
g2

1 −
9

2
g2

2

]
. (D.1.3)

4. The RGEs for the symmetric Yukawa matrix g, which couples the right-handed lep-
tonic singlets:

αβ(1)
g = g

[
4g†g + 2Tr

(
g†g
)
− 18

5
g2

1

]
. (D.1.4)
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5. The RGEs for the quartic scalar couplings:

αβ
(1)
λφ

= 12λφy
2
t − 6y4

t + 24λ2
φ + λ2

φh + λ2
φk

− 9

5
λφg

2
1 +

27

200
g4

1 − 9λφg
2
2 +

9

8
g4

2 +
9

20
g2

1g
2
2,

(D.1.5a)

αβ
(1)
λh

= 16λhTr
(
f †f
)
− 32Tr

(
f †ff †f

)
+ 20λ2

h + 2λ2
φh + λ2

hk

− 36

5
λhg

2
1 +

54

25
g4

1,
(D.1.5b)

αβ
(1)
λk

= 8λkTr
(
g†g
)
− 16Tr

(
g†gg†g

)
+ 20λ2

k + 2λ2
φk + λ2

hk

− 144

5
λkg

2
1 +

864

25
g4

1,
(D.1.5c)

αβ
(1)
λφh

= 6λφhy
2
t + 8λφhTr

(
f †f
)
− 16Tr

(
f †fY †e Ye

)
+ 12λφλφh + 8λhλφh + 4λ2

φh + 2λφkλhk

+
27

25
g4

1 −
9

2
λφhg

2
1 −

9

2
λφhg

2
2,

(D.1.5d)

αβ
(1)
λφk

= 6λφky
2
t + 4λφkTr

(
g†g
)
− 16Tr

(
gg†YeY

†
e

)
+ 12λφλφk + 8λkλφk + 4λ2

φk + 2λφhλhk

+
108

25
g4

1 −
153

10
λφkg

2
1 −

9

2
λφkg

2
2,

(D.1.5e)

αβ
(1)
λhk

= 8λhkTr
(
f †f
)

+ 4λhkTr
(
g†g
)

+ 8λhλhk + 8λkλhk + 4λφhλφk + 4λ2
hk

− 18λhkg
2
1 +

432

25
g4

1.

(D.1.5f)

6. The RGE for the trilinear scalar coupling µhk:

αβ(1)
µhk

= µhk

[
8Tr

(
f †f
)

+ 2Tr
(
g†g
)

+ 4λh + 4λhk −
54

5
g2

1

]
. (D.1.6)

7. The RGE for the scalar mass parameters:

αβ
(1)

µ2φ
= 6µ2

φy
2
t + 12λφµ

2
φ + 2λφhµ

2
h + 2λφkµ

2
k −

9

10
µ2
φg

2
1 −

9

2
µ2
φg

2
2, (D.1.7a)

αβ
(1)

µ2h
= 8µ2

hTr
(
f †f
)

+ 4λφhµ
2
φ + 8λhµ

2
h + 2λhkµ

2
k + 8µ2

hk −
18

5
µ2
hg

2
1, (D.1.7b)

αβ
(1)

µ2k
= 4µ2

kTr
(
g†g
)

+ 4λφkµ
2
φ + 2λhkµ

2
h + 8λkµ

2
k + 4µ2

hk −
72

5
µ2
kg

2
1. (D.1.7c)
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D.2 RGEs of EFT-h
1. The analytical solutions of the RGEs of the gauge couplings:

gi(t) =
gi(0)√

1− bi
8π2 g2

i (0)t
, (D.2.1)

where bi =
(

43
10
,−19

6
,−7

)
.

2. The RGE for the top-quark Yukawa coupling yt:

αβ(1)
yt = yt

[
9

2
y2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
. (D.2.2)

3. The RGEs for the antisymmetric Yukawa matrix f , which couples the left-handed
leptonic doublets:

αβ
(1)
f = f

[
4f †f + 4Tr

(
f †f
)
− 9

10
g2

1 −
9

2
g2

2

]
. (D.2.3)

4. The RGEs for the quartic scalar couplings:

αβ
(1)
λφ

= 12λφy
2
t − 6y4

t + 24λ2
φ + λ2

φh −
9

5
λφg

2
1 +

27

200
g4

1 − 9λφg
2
2

+
9

8
g4

2 +
9

20
g2

1g
2
2,

(D.2.4a)

αβ
(1)
λh

= 16λhTr
(
f †f
)
− 32Tr

(
f †ff †f

)
+ 20λ2

h + 2λ2
φh

− 36

5
λhg

2
1 +

54

25
g4

1,
(D.2.4b)

αβ
(1)
λφh

= 6λφhy
2
t + 8λφhTr

(
f †f
)
− 16Tr

(
f †fY †e Ye

)
+ 12λφλφh + 8λhλφh + 4λ2

φh +
27

25
g4

1 −
9

2
λφhg

2
1 −

9

2
λφhg

2
2.

(D.2.4c)

5. The RGE for the scalar mass parameters:

αβ
(1)

µ2φ
= 6µ2

φy
2
t + 12λφµ

2
φ + 2λφhµ

2
h −

9

10
µ2
φg

2
1 −

9

2
µ2
φg

2
2, (D.2.5a)

αβ
(1)

µ2h
= 8µ2

hTr
(
f †f
)

+ 4λφhµ
2
φ + 8λhµ

2
h −

18

5
µ2
hg

2
1. (D.2.5b)

6. The RGEs for the effective coupling κ21:

αβ(1)
κ21

=
[
16Tr

(
f †f
)

+ 4λh + 18g2
1

]
κ

(0)
21 . (D.2.6)
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7. The RGEs for the effective coupling κ11:

αβ(1)
κ11

= 16f †Y T
e κ

(0)
21 , (D.2.7a)

αβ(2)
κ11

= 0. (D.2.7b)

(D.2.7c)

8. The RGEs for the effective coupling κW:

αβ(2)
κW

= −2

[
fY †e κ

(1)†
11 +

(
fY †e κ

(1)†
11

)T]
, (D.2.8a)

αβ(3)
κW

= 0. (D.2.8b)

D.3 RGEs of EFT-k
1. The analytical solutions of the RGEs of the gauge couplings:

gi(t) =
gi(0)√

1− bi
8π2 g2

i (0)t
, (D.3.1)

where bi =
(

49
10
,−19

6
,−7

)
.

2. The RGE for the top-quark Yukawa coupling yt:

αβ(1)
yt = yt

[
9

2
y2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
. (D.3.2)

3. The RGEs for the symmetric Yukawa matrix g, which couples the right-handed lep-
tonic singlets:

αβ(1)
g = g

[
4g†g + 2Tr

(
g†g
)
− 18

5
g2

1

]
. (D.3.3)

4. The RGEs for the quartic scalar couplings:

αβ
(1)
λφ

= 12λφy
2
t − 6y4

t + 24λ2
φ + λ2

φk
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5
λφg

2
1 +
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2
2 +

9

8
g4

2 +
9
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g2

1g
2
2,

(D.3.4a)

αβ
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λk

= 8λkTr
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g†g
)
− 16Tr

(
g†gg†g

)
+ 20λ2

k + 2λ2
φk

− 144
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λkg
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1 +
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(D.3.4b)

αβ
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λφk

= 6λφky
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t + 4λφkTr

(
g†g
)
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(
gg†YeY
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+ 12λφλφk + 8λkλφk + 4λ2

φk

+
108

25
g4

1 −
153

10
λφkg

2
1 −

9

2
λφkg

2
2.

(D.3.4c)



D.4 RGEs of EFT-0 113

5. The RGE for the scalar mass parameters:

αβ
(1)

µ2φ
= 6µ2

φy
2
t + 12λφµ

2
φ + 2λφkµ

2
k −

9

10
µ2
φg

2
1 −

9

2
µ2
φg

2
2, (D.3.5a)

αβ
(1)

µ2k
= 4µ2

kTr
(
g†g
)

+ 4λφkµ
2
φ + 8λkµ

2
k −

72

5
µ2
kg

2
1. (D.3.5b)

6. The RGEs for the effective coupling κW:

β(2)
κW

= 0, (D.3.6a)

αβ(3)
κW

=
[
6y2

t + 4λφ − 3g2
2

]
κ

(2)
W . (D.3.6b)

D.4 RGEs of EFT-0
1. The analytical solutions of the RGEs of the gauge couplings:

gi(t) =
gi(0)√

1− bi
8π2 g2

i (0)t
, (D.4.1)

where bi =
(

41
10
,−19

6
,−7

)
.

2. The RGE for the top-quark Yukawa coupling yt:

αβ(1)
yt = yt

[
9

2
y2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
. (D.4.2)

3. The RGEs for the quartic Higgs coupling λφ:

αβ
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λφ

= 12λφy
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4. The RGE for the Higgs mass parameter µ2
φ:

αβ
(1)

µ2φ
= 6µ2

φy
2
t + 12λφµ
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φ −
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10
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2
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5. The RGEs for the effective coupling κW:

β(2)
κW

= 0, (D.4.5a)

αβ(3)
κW

=
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t + 4λφ − 3g2
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