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Abstract

Many physical systems, e.g. plasmas, dust clouds, galaxies or galaxy clusters, con-

tain so many substituents, referred to as particles, that it is neither analytically nor

numerically possible to compute their exact time evolution. However, it is often the

case or at least a reasonable simplification that there are only a few different types of

particles, and for each species there are numerous representants. One can therefore

imagine the initial state of the system as a collection of empirical probability measures

on phase space, i.e. the system at time 0 is construed as realization of independent

random variables where for each species the particles are identically distributed with

respect to a corresponding probability measure. The latter should be thought of as

being given by a smooth probability density and depicting a smearing of the original

point particle distribution. The law of large numbers then suggests that one might

be able to approximately describe the time evolution of the true system by a suitable

time evolution of the smooth densities. This is highly desirable because it would allow

us to reduce the numerical complexity of the problem significantly. Consequently, our

main objective is to motivate and prove what is known in the literature as propagation

of chaos: If the initial distribution of every type of particles is close to some associ-

ated smooth initial probability density, then the true time evolution of the particles

typically stays close to an appropriate time evolution of the densities in a physically

meaningful measure of distance. One can also say that statistical independence of the

particles is almost conserved.

First, we will heuristically derive a coupled system of PDE’s for the time evolution of

the above-mentioned densities in a weak coupling regime, namely the so-called Vlasov

equation, first introduced in similar form by A. Vlasov in 1938. Next, we prove

some basic results on existence and uniqueness of solutions in case the interaction

forces are all bounded and Lipschitz continuous. Fortunately, the proof also quickly

leads us to the result that propagation of chaos holds in a very strong sense under

these assumptions. This extends the corresponding, well-known result for one type

of particles, as, for instance, treated in Spohn’s monograph [37, p. 77-82]. We also

briefly discuss how to generalize the most important existence and uniqueness results

for the Coulomb interaction case to multiple types of particles by giving reference to

the relevant literature. Finally, we prove propagation of chaos for the Coulomb case

with a cut-off depending on the particle number, generalizing a recent paper by Pickl

and Lazarovici ([28]). En route, we increase the degree of detailedness and the level of

mathematical rigor both for the bounded Lipschitz and the Coulomb case compared

to how it is usually treated, developing the required mathematical framework in the

appendix. Most notably, we prove various generalizations of Grønwall’s lemma, a

special high order Markov inequality and an extension of Liouville’s theorem to log-

Lipschitz interaction forces.
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1 Motivation

1.1 Introduction and basic notions

The Vlasov equation is an effective description for the dynamics of physical systems consisting of

many constituents of similar type. More precisely, it is an equation for the time evolution of some

probability measures, typically given by smooth probability densities, on phase space. The solution

of this equation is meant to reflect certain properties of the physical system under consideration,

namely phase-space averages of a large class of classical observables, in an adequate way. Typical

examples where the Vlasov equation finds application are plasmas or stellar systems, the particles

being electrons and ions resp. dust particles, stars or galaxies.

We assume that the constituents, which will be called particles in the following, can be described

by point masses/charges and clustered into a comparably small number of types, each present in a

great many of representants. We will always consider the classical, non-relativistic situation with a

two-body interaction depending only on the relative coordinates of the particles. However, it turns

out that external forces can be added without any complication provided the existence theory of

solutions in chapter 2 works out nicely.

Let n denote the number of particle types. Two particles are regarded as being of the same type

if both they have equal mass and exhibit the same interaction force with any other particle in the

system. For k ∈ {1, . . . , n}, we denote by Nk the number of particles of type k and introduce the

sets Γk := {i ∈ N : 1 +
∑k−1
l=1 Nl ≤ i ≤

∑k
l=1Nl}. Then obviously |Γk| = Nk for all k ∈ [n],

where we use the common notation [d] := {1, . . . , d} for d ∈ N. Finally, N :=
∑n
k=1Nk is the total

number of particles.

We now arrange the numeration of the particles such that these of type k have indices in Γk and

write the trajectory of the system on phase space via

X(t) :=
(
Q(t), P (t)

)
:=
(
Q1(t), . . . , Qn(t), P1(t), . . . , Pn(t)

)
∈ R6N ,

where for k ∈ [n],

Qk(t) : =
(
Q1
k(t), . . . , QNkk (t)

)
:=
(
qmin Γk(t), . . . , qmax Γk(t)

)
∈ R3Nk ,

Pk(t) : =
(
P 1
k (t), . . . , PNkk (t)

)
:=
(
pmin Γk(t), . . . , pmax Γk(t)

)
∈ R3Nk .

The vectors qi(t), pi(t) ∈ R3, i ∈ [N ], represent the position respectively the momentum of the i-th

particle at time t. Let the particles of type k have mass mk > 0. By Newton’s equations, translated

into a first order system (i.e. considered on phase space), the components of the trajectory X(t)

satisfy the coupled system of autonomous, first-order ordinary differential equations (ODEs)

q̇i(t) =
pi(t)

mk
, ṗi(t) =

∑
l∈[n]

∑
j∈Γl
j 6=i

fk,l
(
qi(t)− qj(t)

)
=: Fi(Q(t)), k ∈ [n], i ∈ Γk. (1.1)

Here, for k, l ∈ [n], fk,l denotes the pair interaction force between particles of type k and l.
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1 MOTIVATION

We are interested in the case where all Nk are very large, while n is relatively small. For example,

in a plasma in a fusion reactor, there are a few grams of hydrogen, rather to be considered as a

collection of protons and electrons, leading to n = 2 and N1, N2 ≈ 1023. Unfortunately, for N

that big it is practically impossible to solve (1.1), both analytically and numerically: An analytic

solution typically cannot be obtained even for N = 3, and the largest N -body simulation of a

gravitational system carried out by recent supercomputers yet can handle only N ≈ 1012 particles.

Therefore, we have to come up with some new concepts in order to derive an approximation to the

solution of (1.1) which at least describes some of the true system’s physical properties satisfactorily.

The crucial idea is to consider the system in a probabilistic way, representing the discrete particle

distribution by smooth probability densities and replacing the pair interactions by an external field.

This allows us to apply powerful tools such as multivariable calculus or the law of large numbers

and thus leads to an approximation of the system which is accessible to numerical computation.

Let us for the moment assume that the interaction forces fk,l are bounded and smooth with

fk,l(0) = 0. In this case, we may include the summands fk,l(qi(t) − qi(t)) on the r.h.s. of (1.1).

Since pair-interactions are usually radially symmetric, the latter hypothesis is actually not a big

additional restriction. Moreover, it is easily seen that even the case fk,l(0) 6= 0 should not be a

problem to deal with because one can shift fk,l(0) into a constant external force, i.e. replace fk,l
by f̃k,l := fk,l − fk,l(0), which then obviously satisfies f̃k,l(0) = 0, and compensate for this by

adding the constant external force fk,l(0), which only particles of type k are coupled to, in (1.1).

Of course, for the physically most interesting case, namely the Coulomb interaction, the maps fk,l
are not bounded; they are not even defined in 0 ∈ R3. However, in the motivational part, we want

to stick to the mathematically less troublesome case in order to focus on the physical motivation.

The rigorous treatment will then enter in chapters 2 and 3, where we work our way through from

easy pair interactions, namely bounded Lipschitz forces, towards the Coulomb case.

Under the above-mentioned preliminary assumptions, it is well-known that for every initial con-

dition Z := X(0) ∈ R6N , there is a unique, global solution X(t) to the system (1.1). In order to

emphasize the dependence on the initial condition, we will denote this solution by

Ψt(Z) :=
(
Ψ1
t (Z),Ψ2

t (Z)
)

=
(
Ψ1

1,t(Z), . . . ,Ψ1
n,t(Z),Ψ2

1,t(Z), . . . ,Ψ2
n,t(Z)

)
,

where for k ∈ [n], (Ψ1
k,t(Z),Ψ2

k,t(Z)) = (Qk(t), Pk(t)) and(
Ψ1,1
k,t(Z), . . . ,Ψ1,Nk

k,t (Z)
)

:=
(
Q1
k(t), . . . , QNkk (t)

)
= Ψ1

k,t(Z),(
Ψ2,1
k,t(Z), . . . ,Ψ2,Nk

k,t (Z)
)

:=
(
P 1
k (t), . . . , PNkk (t)

)
= Ψ2

k,t(Z).

For fixed initial condition Z ∈ R6N and k ∈ [n], we now introduce the time-dependent empirical

probability measure for particles of type k on phase space R6, namely the map

µZemp,k : R→ P(R6), t 7→ µZemp,k,t :=
1

Nk

Nk∑
i=1

δ(Ψ1,i
k,t(Z),Ψ2,i

k,t(Z)). (1.2)

Here, P(R6) denotes the space of all probability measures on R6, and for y ∈ R6, δy is the Dirac

measure with mass at y. Let us also decompose the initial state Z = Ψ0(Z) accordingly, denoting

Zik := (Ψ1,i
k,0(Z),Ψ2,i

k,0(Z)). Now, the probabilistic image enters the scene: If we imagine (Zik)i∈N as

independent random variables distributed according to the law µk,0 for some (initial) probability

measure µk,0 on R6, then for Nk → ∞, by the law of large numbers we expect some kind of
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1.1 INTRODUCTION AND BASIC NOTIONS

convergence of the empirical probability measure, i.e.

µZemp,k,0 =
1

Nk

Nk∑
i=1

δ(Ψ1,i
k,0(Z),Ψ2,i

k,0(Z)) =
1

Nk

Nk∑
i=1

δZik
some sense−−−−−−−→ µk,0.

The precise notion of convergence is not important at this stage, however, the interested reader

might want to catch a glimpse at chapter 4.5 already. To get the connection between the empirical

probability measure and the Newtonian equations of motion, note that given the solution Ψt(Z),

we can rewrite (1.1) with initial condition X(0) = Z ∈ R6N via the (now no more autonomous)

first-order system

q̇i(t) =
pi(t)

mk
, ṗi(t) = N ·Fµ

Z
emp

k (qi(t), t), k ∈ [n], i ∈ Γk, (∗)

where, using fk,l(0) = 0 and thus including the summands for j = i in the force term in (1.1),

F
µZemp

k (q, t) =
1

N

∑
l∈[n]

∑
j∈Γl

fk,l
(
q − qj(t)

)
=

n∑
l=1

Nl
N
· 1

Nl

Nl∑
j=1

fk,l
(
q −Ψ1,j

l,t (Z)
)

=
n∑
l=1

Nl
N
· 1

Nl

Nl∑
j=1

ˆ
R6

fk,l(q − q̃) dδ(Ψ1,j
l,t (Z),Ψ2,j

l,t (Z))(q̃, p̃)

=

n∑
l=1

Nl
N
·
ˆ
R6

fk,l(q − q̃) dµZemp,l,t(q̃, p̃)

=:

n∑
l=1

αl · (fk,l ∗q µZemp,l,t)(q).

(1.3)

Here, for l ∈ [n], αl := Nl
N denotes the relative number of particles of type l in the system, and

in a slight abuse of notation, fk,l is also regarded as a function on phase space R6 in the obvious

way. More details on this and the operation ∗q can be found in section 4.3, see particularly remark

4.30. For simplification, we will omit the superscript Z when writing down the empirical measures

from now on, having in mind that just like solutions of (1.1), they depend on the choice of initial

condition.

In order to have a shorter notion at hand for letting Nk → ∞ for all k ∈ [n], we introduce the

number of particles of the type with the least representants, S := min {Nk : k ∈ [n]}, which will

be of substantial importance later on. For large S, we can imagine that the factors αl stabilize;

we regard them as the share of particles of the corresponding type in the system. Since we expect

that as S → ∞, for every k ∈ [n] the initial empirical probability measure µemp,k,0 converges to

µk,0 in some sense, there is hope that for fixed time t, every µemp,k,t converges to a corresponding

probability measure µk,t in the very same sense. This in turn would imply some kind of convergence

of the true force F
µemp

k to a mean field force Fµk . Our goal in this thesis is to find the right notions for

this idea and make things rigorous. However, note that so far, the pre-factor N in (∗) destroys any

hope for convergence in the sense we just described. Hence, heuristically we need a pre-factor N−1

on the r.h.s. of (1.1), i.e. a dampening of the forces proportional to the total number of particles

in the system. Actually, one can readily convince oneself that a scaling of the time coordinate by

the factor N
1
2 yields this pre-factor. That corresponds to considering the system in slow-motion,

therefore decreasing accelerations and consequently the perceived strength of forces. However, this

approach is not desirable for the following reason: As already indicated, our goal will be to prove

that in the scaled system, an appropriate time evolution of the probability measures µk,t, which

3



1 MOTIVATION

is yet to be determined, will stay close to the true time evolution, represented by µemp,k,t, for

finite times t provided they are all close initially, i.e. in the limit S → ∞. However, in unscaled

(physical) time, this would then only hold for very short times, namely for N−
1
2 t, making our

results practically useless since also N → ∞. Fortunately, there is another change of coordinates

yielding the pre-factor N−1 which works out particularly well for a system with gravitational or

electrostatic interactions: Assume that all fk,l are homogeneous of degree -2, i.e. fk,l(λ · ) = λ−2fk,l
for all λ > 0. This is precisely the case for the Coulomb force f(q) ∼ q · |q|−3

. Then obviously

the force Fi acting on any particle i in (1.1) is homogeneous of degree −2, too. Consequently,

describing the original physical system by coordinates X̃(t) = (Q̃(t), P̃ (t)) and making the scaling

X(t) := N−
1
3 X̃(t), we see by the chain rule that

q̇i(t) = N−
1
3 · ˙̃qi(t) = N−

1
3 · p̃i(t)

mk
=
pi(t)

mk
,

ṗi(t) = N−
1
3 · ˙̃pi(t) = N−

1
3 ·Fi(Q̃(t)) = N−

1
3 ·N− 2

3Fi(N
− 1

3 Q̃(t)) = N−1·Fi(Q(t)),

i.e. we obtain precisely the desired pre-factor N−1. This coordinate transform corresponds to

multiplying lengths (and also momenta) in the physical system by a factor N
1
3 and consequently

to enlarging spatial volumes by a factor (N
1
3 )3 = N . Hence, we can interpret the limit S → ∞

with Nk
N → αk for appropriate αk ∈ (0, 1) as a macroscopic limit, increasing the size of the physical

system but leaving the number of particles of each type per unit of volume, i.e. the average particle

densities, constant. Thus, the system which we want to start our investigations from is not (1.1),

but rather

q̇i(t) =
pi(t)

mk
, ṗi(t) =

1

N

∑
l∈[n]

∑
j∈Γl
j 6=i

fk,l
(
qi(t)− qj(t)

)
, k ∈ [n], i ∈ Γk. (1.4)

Note once more that by our temporary working hypothesis, we may include the summands j = i

on the r.h.s. of (1.4). In the literature, physical systems described by a system of ODEs of

this form are usually called weakly coupled, see, for instance, [10]. This refers to the pre-factor

N−1, which at first glance seems artificial and unphysical. However, having in mind the preceding

discussion, it does physically make perfect sense for systems with gravitational and electrostatic

interactions. Sometimes, one also finds the expression weak or long range interactions in this

context, e.g. in [37]. Nevertheless, we are going to analyze (1.4) also for pair interaction forces

fk,l which are not homogeneous of degree −2. We do this not only because it is an interesting

problem from the mathematical perspective, but also because it is reasonable to find concepts and

explore possible theorems for easier, e.g. bounded, forces before turning to the more challenging,

physically interesting case (note that functions which are homogeneous of degree −2 are either

identically 0 or unbounded at the origin).

As already explained, we intend to find an approximation to (1.4) which is accessible to numerical

computation for large S. We are going to use the above-mentioned ideas and regard the point

particle distribution as a realization of probability measures (ultimately, rather smooth probability

densities) on phase space, which in turn induce an external field, to be thought of as an approx-

imation of the true interaction forces. This, in turn will allow us to find some product structure

for what we expect to describe an approximate time evolution of the physical system, therefore

virtually reducing the phase space dimension from 6N to 6n. However, the price we have to pay

is that finally we get from a system of 6N coupled, autonomous first order ODEs to a system of

n coupled, first-order PDEs. But for fixed n, the complexity of the PDE will not change with the

number of particles in the system, so when S is large we clearly obtain a big gain.
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1.2 HEURISTIC DERIVATION OF THE VLASOV EQUATION

1.2 Heuristic derivation of the Vlasov equation

Looking at (1.3), it is a reasonable conjecture that in general, the force field F νlk (q) exerted on a test

particle of type k at position q and generated by an arbitrary mass (charge) distribution of particles

of type l, which is in turn represented by a probability measure νl on one-particle phase space R6,

is in the weakly coupled system (1.4) given by F νlk (q) = (fk,l ∗q νl)(q). One can justify this also

as follows: Assume that νl has a density (Radon-Nikodym derivative) vl w.r.t Lebesgue measure.

This suffices for physical considerations because by a computation analogous to the one carried

out for F
µemp

k in (1.3), the statement already holds for arbitrary discrete probability measures

representing a single-type point particle system. Then the expected number ∆Nl of particles with

position in a small subset A ⊂ R3 (meaning A is contained in a ball with small radius) is in good

approximation given by

∆Nl = νl(A× R3) =

ˆ
A×R3

vl(q, p) dq dp =

ˆ
A

(ˆ
R3

vl(q, p) dp

)
dq ≈ |A| · ρl(q̃),

where ρl(q) :=
´
R3 vl(q, p) dp is the spatial density of particles of type l, which for simplification

is assumed to be continuous (at least, this is true for vl continuous with compact support in the

p-variable), and q̃ ∈ A can be chosen arbitrarily. Consequently, the force exerted on our test

particle by particles of type l in this region is roughly given by fk,l(q− q̃) ·∆Nl. Splitting position

space R3 into small, disjoint sets and summing things up, one is left with a Riemann sum which

in the limit of high granularity converges to

ˆ
R3

fk,l(q − q̃) · ρl(q̃) dq̃ =

ˆ
R6

fk,l(q − q̃) · vl(q̃, p̃) dq̃ dp̃ =

ˆ
R6

fk,l(q − q̃) dνl(q̃, p̃) = (fk,l ∗q νl)(q).

For those readers who do not approve of this derivation of F νlk , the approach to the formula under

consideration by means of the marginals, as introduced in section 4.3 might be more insightful.

Now, we go one step further and assume that we were given time-dependent probability measures

νl,t, l ∈ [n], representing the distribution of particles of the corresponding type at all times. Taking

into account the shares αl of the types w.r.t. the total particle number N , this would impose the

time-dependent external force

F νk (q, t) :=
∑
l∈[n]

αl · (fk,l ∗q νl,t)(q) (1.5)

on a test particle of type k at position q and time t. Hence, under the purely external force F νk ,

the N -particle system would evolve according to

q̇i(t) =
pi(t)

mk
, ṗi(t) = F νk (qi(t), t), k ∈ [n], i ∈ Γk. (1.6)

For nice regularity properties of all fk,l and νl, also the F νk should behave nicely, and therefore it

is reasonable to assume that (1.6) admits a unique, global flow Φνt . As for Ψt, we decompose Φνt
into

Φνt =
(
Φν,1t ,Φν,2t

)
=
(
Φν,11,t , . . . ,Φ

ν,1
n,t,Φ

ν,2
1,t , . . . ,Φ

ν,2
n,t

)
.

By the special structure of (1.6), we immediately see that for k ∈ [n],

Φν,1k,t =

Nk∏
i=1

ϕν,1k,t , Φν,2k,t =

Nk∏
i=1

ϕν,2k,t ,

5



1 MOTIVATION

where ϕνk,t := (ϕν,1k,t , ϕ
ν,2
k,t) denotes the one-particle flow for particles of type k, i.e. the flow for the

first order system

q̇(t) =
p(t)

mk
, ṗ(t) = F νk (q(t), t). (1.7)

This the product structure that has been announced before. Hence, for every k ∈ [n] we obtain a

flow ϕνk,t on R6 which tells us the motion of test particles of type k in the force field created by

the collection of time-dependent probability measures νl,t on phase space. This, in turn, tells us

how an initial test distribution of particles of type k, represented by a probability measure µk,0
on phase space, should evolve in time: Heuristically, the probability measures µk,t count particles,

i.e for every measurable A ⊂ R6 and t ∈ R, µk,t(A) is the expected number of particles of type k

which at time t are located in the subset A of phase space. However, since the particles move in

the external field F νk , i.e. according to the flow ϕνk,t, these are exactly the particles which at time

0 have been in the phase-space region (ϕνk,t)
−1(A), i.e. µk,t is given by the pushforward or image

measure of µk,0 under the flow ϕνk,t:

µk,t = ϕνk,t#µk,0 = µk,0 ◦ (ϕνk,t)
−1, k ∈ [n]. (∗∗)

In case the reader is not yet familiar with the concept of a pushforward measure and/or its charac-

teristic property with respect to integration, she is recommended to briefly scroll to the beginning

of section 4.3 because we will heavily rely on lemma 4.23 in the sequel.

Looking for a reasonable time evolution of some given initial probability measures µk,0, we now

naturally require that for all k ∈ [n], the probability measures evolve precisely according to the

force field which they generate themselves, i.e. for all k ∈ [n], we set µk,t = νk,t in (∗∗). This

already yields the Vlasov equation in integral form for n types of particles, namely

µk,t = µk,0 ◦
(
ϕµk,t

)−1
, k ∈ [n]. (1.8)

This form of the Vlasov equation is yet very general, including the possibility of both discrete and

continuous parts in the probability distributions. In fact, we will see in section 2.1 that the collec-

tion of empirical distributions (µemp,1,t, . . . , µemp,n,t) does indeed solve 1.8 provided fk,l(0) = 0, so

in this case, the Vlasov equation is nothing but a reformulation of (1.4) in terms of the empirical

measure. In particular, (1.8) does not yet seem to be more accessible to numerical computation

than (1.4). However, things change if we focus on initial probability distributions µk,0 which have

smooth probability densities uk,0 w.r.t. Lebesgue measure because under this additional assump-

tion, we can show that the time-evolved measures µk,t, i.e. solutions of the Vlasov equation in in-

tegral form (1.8), stay absolutely continuous w.r.t. Lebesgue measure, and determine a differential

equation for the corresponding densities uk,t: by Liouville’s theorem, ϕµk,t preserves 6-dimensional

Lebesgue measure provided the forces Fµk exhibit some quite weak regularity assumptions, for more

details on this see section 4.9. It follows that for every A ∈ B(R6),

µk,t(A) = µk,0
(
(ϕµk,t)

−1(A)
)

=

ˆ
R6

1(ϕµk,t)
−1(A) ·uk,0 dx

=

ˆ
R6

(
1A ◦ ϕµk,t

)
·
(
uk,0 ◦ (ϕµk,t)

−1 ◦ ϕµk,t
)

dx

=

ˆ
R6

1A ·
(
uk,0 ◦ (ϕµk,t)

−1
)

dx.

(1.9)

Here we used (4.33), which is basically the substitution or transformation formula for a measure

preserving change of coordinates, thus not containing a term for volume distortion. We now
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1.2 HEURISTIC DERIVATION OF THE VLASOV EQUATION

immediately see that µk,t has the density uk,0 ◦ (ϕµk,t)
−1 w.r.t. 6-dimensional Lebesgue measure.

In our notation, we will often identify the probability measures µk,t with their corresponding

probability densities under these circumstances and write ϕuk,t := ϕµk,t and Fuk := Fµk .

Let us now regard the time-dependent densities uk,t : R3×R3 → R as maps uk : R3×R3×R→ R
by the obvious prescription uk(q, p, t) := uk,t(q, p). Then our above calculations show that for all

(q, p, t) ∈ R3 × R3 × R, uk(q, p, t) = uk((ϕµk,t)
−1(q, p), 0), or, equivalently by bijectivity of ϕµk,t,

uk(q, p, 0) = uk(ϕµk,t(q, p), t). Expecting continuous differentiability of uk w.r.t. all arguments,

applying the chain rule we obtain that for all (q, p, t) ∈ R3 × R3 × R,

0 =
d

dt
uk(q, p, 0) =

d

dt
uk(ϕuk,t(q, p), t) =

d

dt
uk(ϕu,1k,t (q, p), ϕ

u,2
k,t (q, p), t)

= ∂tuk(ϕuk,t(q, p), t) +∇quk(ϕuk,t(q, p), t) · ∂tϕ
u,1
k,t (q, p) +∇puk(ϕuk,t(q, p), t) · ∂tϕ

u,2
k,t (q, p)

= ∂tuk(ϕuk,t(q, p), t) +∇quk(ϕuk,t(q, p), t) ·
ϕu,2k,t (q, p)

mk
+∇puk(ϕuk,t(q, p), t) ·Fuk (ϕu,1k,t (q, p), t).

(1.10)

In the last step, we used that ϕuk,t is the one-partice flow for the external force field induced by u

defined by (1.7). But clearly, for any (q, p, t) ∈ R3×R3×R, we can find a flow line for ϕµk,t passing

through (q, p) at time t, namely the one with initial condition (ϕuk,t)
−1(q, p). Consequently, we

obtain that uk satisfies the partial differential equation (PDE)

∂tuk(q, p, t) + p
mk
· ∇quk(q, p, t) + Fuk (q, t) · ∇puk(q, p, t) = 0.

Together with the expression from (1.5) for Fuk , we thus finally arrive at the Vlasov equation

in differential form for n types of particles, i.e. the coupled system of (quasi-linear, first-order)

PDEs which written in short form read

∂tuk + p
mk
· ∇quk + Fuk · ∇puk = 0, Fuk =

∑
l∈[n]

αl · (fk,l ∗q ul,t), k ∈ [n]. (1.11)

In the following chapter, we are going to analyze both the Vlasov equation in differential and

integral form. We will concentrate on the case where the interaction forces fk,l are bounded and

Lipschitz continuous. First, we give precise definitions of being a solution to the Vlasov equation in

its different forms, establish connections between these and digress on some interesting properties of

solutions such as energy conservation. Afterwards, we prove existence and uniqueness of solutions.

We also briefly mention how to proceed in the Coulomb case, giving references to the relevant

literature. Afterwards, in chapter 3 we show that solutions of the Vlasov equation are indeed a

good approximation for the true time evolution of the (weakly coupled) system 1.4 in a physically

reasonable sense. Hence, fortunately it turns out that the Vlasov equation can indeed fulfil the

purpose which we constructed it for. The proof that the Vlasov equation describes some aspects

of the system on a macroscopic scale can therefore be regarded as a rigorous derivation of the

Vlasov equation from the microscopic time evolution, however with the blemish that yet we need

a regularization of the Coulomb force at the singularity.
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2 Solutions to the Vlasov equation

2.1 Rigorous formulation and first results

We now want to develop precise definitions for being a solution to the Vlasov equation (1.8) resp.

(1.11). In the sequel, the parameters n,Nk, N and thus αk are unless otherwise stated fixed and as

introduced in section 1.1. We start with treating the Vlasov equation in integral form. In order to

make sense of the considerations presented in the heuristics from the first chapter and in particular

of (1.8), we need to ensure existence of the flows Φµt for (1.6), i.e. of the one-particle flows ϕµk,t
for (1.7), which is of course closely related to the regularity of the forces Fµk . From the theory of

ODEs, it is well-known that a unique, global solution of (1.7) exists provided all Fµk are continuous

maps which are uniformly in t Lipschitz continuous in q, see also section 4.8 where we prove a

generalization of this statement. On the other hand, from the physical perspective, the forces

should not get arbitrarily large. This suggests restricting to pair interactions fk,l such that all

Fµk ( · , t) ∈ BL(R3;R3), where BL(R3;R3) denotes the space of bounded Lipschitz functions, which

together with a suitable norm is introduced in section 4.4. Note that the special form of equation

(1.8) makes sure that a solution which is initially a collection of probability measures remains a

collection of probability measure for all times provided the flows ϕµk,t exist and are measurable

for every t. Expecting that this quite weak hypothesis is satisfied, one can readily check that

boundedness resp. Lipschitz continuity of all fk,l ensures boundedness resp. Lipschitz continuity

of the Fµk ( · , t) uniformly in t. So, the only thing we still have to care about is continuity of

the mean field forces Fµk w.r.t. time. A condition which is obviously sufficient is that for every

q ∈ R3, the maps t 7→ (fk,l ∗q µk,t)(q) are continuous. Consequently, we see that weak continuity

of the measures µk,t is a good notion to guarantee continuous dependence of all Fµk on t, where

we call a curve µ : I → P(R6) from some subset I ⊂ R into the space of probability measures

weakly continuous if for all g ∈ BL(R6), the map t 7→
´
R6 g dµ(t) is continuous. We denote

by C∗(I; (P(R6))n) the set of all vector valued weakly continuous curves, i.e. every component

of µ ∈ C∗(I; (P(R6))n) is a weakly continuous curve into P(R6). A formal definition of weak

continuity which is slightly more general, as well as some important completeness properties for

spaces of weakly continuous curves, which we will heavily rely on in the existence and uniqueness

proof in section 2.2, can be found in chapter 4.4. Finally, let us mention that lemma 2.9 basically

gives a detailed proof for those arguments above which were only sketched briefly.

We are going to concentrate on solutions of the Vlasov equation on finite time intervals [0, T ] where

T > 0. If we can prove existence and uniqueness of solutions for arbitrary T > 0, we will also have

established global existence and uniqueness: for positive times, this is clear. On the other hand,

it is physically obvious and mathematically checkable from the still due, final definitions both for

being a solution of the integral and differential form of the Vlasov equation that going back in

time is the same as going forward in time with reversed initial momenta: given initial probability

measures µk,0, one can introduce set functions µ̃k,0 by defining µ̃k,0(A1×A2) := µk,0(A1× (−A2))

on products, i.e. for A1, A2 ∈ B(R3). Employing standard measure theoretic arguments which

are also abundantly used in section 4.3, one can readily show that µ̃k,0 extends uniquely to a

9



2 SOLUTIONS TO THE VLASOV EQUATION

probability measure µ̃k,0 on B(R6) = B(R3)⊗B(R3), and that in case µk,0 has probability density

uk,0, it holds that µ̃k,0 has probability density ũk,0(q, p) = uk,0(q,−p) almost everywhere. It is

then easy to prove that a solution µ̃t resp. ũt on [0, T ] to the Vlasov equation with initial state

µ̃0 resp. ũ0 induces a solution µt resp. ut of the Vlasov equation on [−T, 0] to the initial (rather:

final) condition µ0 resp. u0 via µt := µ̃−t resp. ut := ũ−t. The key insights in the formal proof

are the fact that Fµ = F µ̃ and for (ϕ1
t , ϕ

2
t ) a solution of (1.6), also (ϕ1

−t,−ϕ2
−t) is a solution by

the chain rule. Similar arguments are applicable for the differential case, where the substitution

(q, p, t)→ (q,−p,−t) gives a total minus sign in (1.11) and therefore does not change the property

of being a solution. A more sophisticated proof of the ideas sketched here might be a good exercise

at the end of the this section, when we will finally have introduced all the precise definitions.

Anyways, the moral of this short digression is that it suffices to concentrate on forward time

evolution in this work. Hopefully, the following formal definition is by now sufficiently motivated:

Definition 2.1. We say that µ : [0, T ]→ (P(R6))n is a solution to the Vlasov equation in integral

form for bounded Lipschitz pair interactions fk,l ∈ BL(R3;R3) if µ ∈ C∗([0, T ]; (P(R6))n) and

µk,t = µk,0 ◦
(
ϕµk,t

)−1 ∀k ∈ [n], t ∈ [0, T ], (2.1)

where ϕµk,t is the unique, global flow to the ODE

q̇(t) =
p(t)

mk
, ṗ(t) = Fµk (q(t), t) =

∑
l∈[n]

αk · (fk,l ∗q µl,t)(q(t)). (2.2)

We will often write (2.1) in an aggregate way, namely via µt = µ0 ◦ (ϕµt )−1 where ϕµt is the flow

corresponding to the force field Fµ, to be interpreted component-wise.

Remark 2.2. Lemma 2.9, together with our results in chapter 4.8, shows that under the hypothe-

ses µ ∈ C∗([0, T ]; (P(R6))n) and fk,l ∈ BL(R3;R3), existence and uniqueness of global flows ϕµk,t
for (2.2) are secured, so everything is indeed well-defined.

Let us first check that as announced in the motivational part, for a large class of pair interactions

fk,l, the empirical probability measure corresponding to a solution of the weakly coupled system 1.4

is a solution of the Vlasov equation in integral form. This shows that in fact, the Vlasov equation

in the sense of definition 2.1 can be regarded as a generalization of the Newtonian equations of

motion to not necessarily discrete particle distributions.

Lemma 2.3. Provided that fk,l ∈ BL(R3;R3) with fk,l(0) = 0 for all k, l ∈ [n], the empirical

distribution µemp := (µemp,1, . . . , µemp,n) defined by (1.2) and corresponding to solutions of (1.4)

is a solution of the Vlasov equation in integral form in the sense of definition 2.1.

Proof. We fix an initial condition Z = (Z1, . . . , Zn) ∈ R6N and therefore suppress Z in the notation

of the empirical distribution from now on. Let us first prove that µemp ∈ C∗([0, T ]; (P(R6))n). Only

weak continuity is not obvious. However, from continuity (even continuous differentiability) of the

map t 7→ (Ψ1,i
k,t(Z),Ψ2,i

k,t(Z)), where Ψt denotes the unique flow for the weakly coupled system (1.4),

we see that for every k ∈ [n] and g ∈ BL(R6) ⊂ C(R6), the map

[0, T ]→ R, t 7→
ˆ
R6

g dµemp,k,t =
1

Nk

Nk∑
i=1

g
(
Ψ1,i
k,t(Z),Ψ2,i

k,t(Z)
)

10



2.1 RIGOROUS FORMULATION AND FIRST RESULTS

is continuous. This already proves weak continuity of µemp.

Next, recall from (1.3) that for all k ∈ [n], q ∈ R3 and t ∈ [0, T ],

1

N

∑
l∈[n]

∑
j∈Γl

fk,l
(
q −Ψ1,j

l,t (Z)
)

=
∑
l∈[n]

αl · (fk,l ∗q µemp,l,t)(q) = F
µemp

k (q, t).

For k ∈ [n], let ψk,t = (ψ1
k,t, ψ

2
k,t) denote the unique global flow for the (non-autonomous) ODE

q̇(t) =
p(t)

mk
, ṗ(t) = F

µemp

k (q(t), t), (∗)

with initial time 0. Note that global existence and uniqueness is again provided by remark 2.2.

Then for initial conditions from Zk = (Z1
k , . . . , Z

Nk
k ), ψk,t coincides with the component of the

trajectory for the corresponding particle, i.e. ψk,t(Z
i
k) = (Ψ1,i

k,t(Z),Ψ2,i
k,t(Z)) for all i ∈ [Nk]:

Clearly, one has ψk,0(Zik) = Zik = (Ψ1,i
k,0(Z),Ψ2,i

k,0(Z)), and by (∗),

d

dt
ψ1
k,t(Z

i
k) =

ψ2
k,t(Z

i
k)

mk
,

d

dt
ψ2
k,t(Z

i
k) = F

µemp

k

(
ψ1
k,t(Z

i
k), t

)
=

1

N

∑
l∈[n]

∑
j∈Γl

fk,l
(
ψ1
k,t(Z

i
k)−Ψ1,j

l,t (Z)
)
.

It follows that (Ψ1
t (Z),Ψ2

t (Z)) still satisfies (1.4) if we replace the component (Ψ1,i
k,t(Z),Ψ2,i

k,t(Z))

by (ψ1
k,t(Z

i
k), ψ2

k,t(Z
i
k)). By uniqueness, it follows that (Ψ1,i

k,t(Z),Ψ2,i
k,t(Z)) = (ψ1

k,t(Z
i
k), ψ2

k,t(Z
i
k)).

Consequently, for all k ∈ [n], t ∈ [0, T ],

µemp,k,t =
1

Nk

Nk∑
i=1

δ(Ψ1,i
k,t(Z),Ψ2,i

k,t(Z)) =
1

Nk

Nk∑
i=1

δψk,t(Zik) =
1

Nk

Nk∑
i=1

δZik ◦ ψ
−1
k,t = µemp,k,0 ◦ ψ−1

k,t .

This proves that µemp does indeed solve (2.1).

Remark 2.4. For the case that all forces fk,l are radially symmetric, solutions of (2.1) conserve to-

tal energy: Under this assumption, fk,l admit potentials Vk,l, i.e. differentiable maps Vk,l : R3 → R
such that −∇Vk,l = fk,l, which we can construct as follows: Let fk,l(q) = gk,l(|q|) · q|q| , then clearly

gk,l : [0,∞) → R is also bounded and Lipschitz continuous, and for Gk,l an indefinite integral of

gk,l, −Gk,l ◦ | · | is a potential for fk,l, as an easy computation with the chain rule shows. Let us

define the kinetic energy T (t) and the potential energy V (t) by

T (t) : =
1

2

∑
k∈[n]

αk ·
1

2mk

ˆ
R6

p2 dµk,t(q, p),

V (t) : =
1

2

∑
k,l∈[n]

αkαl

ˆ
R6×R6

Vk,l(q − q̃) dµk,t(q, p) dµl,t(q̃, p̃).

Then formally, using µk,t = µk,0 ◦ (ϕµk,t)
−1 and lemma 4.23 (integration w.r.t. the image measure),

d

dt
T (t) =

∑
k∈[n]

αk ·
1

2mk

ˆ
R6

d

dt

(
ϕµ,2k,t (q, p)

)2
dµk,0(q, p)

=
∑
k∈[n]

αk ·
1

mk

ˆ
R6

ϕµ,2k,t (q, p) ·Fµk
(
ϕµ,1k,t (q, p), t

)
dµk,0(q, p)

=
∑
k∈[n]

αk ·
1

mk

ˆ
R6

p ·Fµk (q, t) dµk,t(q, p).
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2 SOLUTIONS TO THE VLASOV EQUATION

On the other hand,

d

dt
V (t) =

1

2

∑
k,l∈[n]

αkαl

ˆ
R6×R6

d

dt

(
Vk,l
(
ϕµ,1k,t (q, p)− ϕµ,1l,t (q̃, p̃)

))
dµk,0(q, p) dµl,0(q̃, p̃)

= −1

2

∑
k,l∈[n]

αkαl

ˆ
R6×R6

fk,l
(
ϕµ,1k,t (q, p)− ϕµ,1l,t (q̃, p̃)

)
·
ϕµ,2k,t (q, p)

mk
dµk,0(q, p) dµl,0(q̃, p̃)

+
1

2

∑
k,l∈[n]

αkαl

ˆ
R6×R6

fk,l
(
ϕµ,1k,t (q, p)− ϕµ,1l,t (q̃, p̃)

)
·
ϕµ,2l,t (q̃, p̃)

ml
dµk,0(q, p) dµl,0(q̃, p̃)

= −
∑
k∈[n]

αkαl

ˆ
R6×R6

fk,l(q − q̃) ·
p

mk
dµk,t(q, p) dµl,t(q̃, p̃)

= −
∑
k∈[n]

αk ·
1

mk

ˆ
R6

p ·

∑
l∈[n]

αl ·
ˆ
R6

fk,l(q − q̃) dµl,t(q̃, p̃)

dµk,t(q, p)

= −
∑
k∈[n]

αk ·
1

mk

ˆ
R6

p ·Fµk (q, t) dµk,t(q, p).

We used that −∇Vk,l = fk,l and that fk,l = fl,k is radially symmetric and therefore in particular

antisymmetric, i.e. fk,l(q−q̃) = −fl,k(q̃−q), in order to see that we may simultaneously interchange

the roles of k, q, p and l, q̃, p̃ at the cost of a minus-sign in the third line of the calculation. It follows

directly that d
dt (T (t) + V (t)) = 0 and thus E(t) := T (t) + V (t) = T (0) + V (0) = const.

However, it remains to justify some of the previous formal computations. Of course, we assume

that the integrals occurring in T (0) and V (0) exist and are finite - otherwise the whole discussion

would not make sense at all. We only sketch the relevant arguments briefly since we will not need

the result in our further investigations. Some of the mentioned arguments will probably be much

clearer after having studied section 2.2 because methods we use to derive the estimates there are in

the same spirit. In particular, it will be clear that the constant C in the following paragraph can be

chosen as 1
m+‖f‖∞, to be explained later. From the ODEs which the flows ϕµk,t satisfy and uniform

boundedness of all fk,l and therefore of all Fµk ( · , t) uniformly in t, by Grønwall’s lemma, one can

prove that |ϕµ,2k,t (q, p)| ≤ |p| + C|t| for all (q, p) ∈ R6. Consequently, using that p ∈ L1(R6; dµk,0)

(which in turn follows from our assumption p ∈ L2(R6; dµk,0) by Hölder’s inequality because

µk,0 is a finite measure), we can conclude that ϕµ,2k,t ·F
µ
k ( · , t) ∈ L1(R6; dµk,0) for all k ∈ [n], i.e.

T (t) is well-defined for all times. Now, a short computation, using the mean value theorem of

differentiation, shows that we can bound difference quotients (with respect to t and for |h| < 1)

of the integrand (ϕµ,2k,t )2 by 2(|p| + C(|t| + 1)) ·C uniformly in (q, p), and hence by dominated

convergence (constant maps are integrable w.r.t finite measures), interchanging integration and

differentiation in the first step of the computation of d
dt T (t) is justified. Similar arguments apply

for V (t). The crucial observation there is that since the fk,l = −∇Vk,l are radially symmetric and

bounded, the potentials Vk,l are by construction Lipschitz continuous with ‖Vk,l‖L ≤ ‖fk,l‖∞ < C,

and hence for all (q, p), (q̃, p̃) ∈ R6, k, l ∈ [n],∣∣Vk,l(ϕµ,1k,t (q, p)− ϕµ,1l,t (q̃, p̃)
)∣∣ ≤ |Vk,l(q − q̃)|+ C ·

(∣∣ϕµ,1k,t (q, p)− q
∣∣+
∣∣ϕµ,1l,t (q̃, p̃)− q̃

∣∣)
≤ |Vk,l(q − q̃)|+ 2C ·C(|pt|+ Ct2).

In the last step, we used a Grønwall type estimate for ϕµ,1k,t , which one directly gets from the

bound on |ϕµ,2k,t |. Existence of V (0) and T (0) then guarantee that V (t) is well-defined for all times,

and as for T (t), with the mean value theorem one can find an integrable (constant) majorant for
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2.1 RIGOROUS FORMULATION AND FIRST RESULTS

difference quotients of the integrand w.r.t. time. Finally, the application of Fubini’s theorem is

justified because we have already argued that all (double) integrals exist.

Now, let us turn to the definition of a solution of the Vlasov equation in differential form. Recapping

the heuristics in section 1.2, every solution of the Vlasov equation in differential form should induce

a solution of the Vlasov equation in integral form for bounded Lipschitz pair interactions. We try

with the probably most intuitive approach:

Definition 2.5. A classical solution of the Vlasov equation in differential form with bounded

Lipschitz pair interactions is a map u ∈ C(R3×R3×[0, T ]; ([0,∞))n)∩ C1(R3×R3×(0, T ); ([0,∞))n)

such that uk( · , t) ∈ L1(R3 × R3) with ‖uk( · , t)‖1 = 1 for all k ∈ [n], t ∈ [0, T ] and the system of

coupled PDEs

∂tuk + p
mk
· ∇quk + Fuk · ∇puk = 0, Fuk =

∑
l∈[n]

αl · (fk,l ∗q ul,t), k ∈ [n] (2.3)

is satisfied.

Lemma 2.6. For bounded Lipschitz interaction forces fk,l, every classical solution of the Vlasov

equation in differential form is also a solution of the Vlasov equation in integral form in the

following sense: For u = (u1, . . . , un) a solution of (2.3) and µ = (µ1, . . . , µn) : [0, T ]→ (P(R6))n

where µk,t is the probability measure with probability density uk( · , t) w.r.t. Lebesgue measure for

all k ∈ [n], t ∈ [0, T ], µ solves (2.1)

Proof. We first claim that µ is weakly continuous. Indeed, let k ∈ [n], g ∈ BL(R6) and t ∈ [0, T ],

then for every x ∈ R6 and (tn)n∈N ⊂ [0, T ] with tn
n→∞−−−−→ t, by continuity of uk, it holds

that limn→∞ uk(x, tn) = uk(x, t). Denoting hn := uk( · , tn) and h := uk( · , t), we see that

h, hn ∈ L1(R6) with ‖hn‖ = 1 = ‖h‖ for all n ∈ N, and hn
n→∞−−−−→ h pointwise everywhere in

R6. By theorem 1.9 in [29] with p = 1 (or a direct proof using Fatou’s lemma), we obtain that

hn → h in L1(R6), i.e. limn→∞
´
R6 |hn − h| dx = 0. Consequently,

lim
n→∞

∣∣∣∣ˆ
R6

g dµk,tn −
ˆ
R6

g dµk,t

∣∣∣∣ ≤ lim
n→∞

ˆ
R6

∣∣g(x) ·uk(x, tn)− g(x) ·uk(x, t)
∣∣dx

≤ lim
n→∞

‖g‖∞ ·
ˆ
R6

∣∣hn(x)− h(x)
∣∣dx = 0.

Hence, limn→∞
´
R6 g dµk,tn =

´
R6 g dµk,t, which proves weak continuity of µ. By lemma 2.9, the

corresponding mean field forces Fuk are continuous and uniformly in t Lipschitz continuous in q.

From section 4.8, we thus obtain that (2.2) does indeed have unique, global flows ϕuk,t for all

k ∈ [n] which are also homeomorphisms for fixed t ∈ [0, T ]. Moreover, section 4.9 shows that

these ϕuk,t are measure preserving w.r.t 6-dimensional Lebesgue measure. Using the chain rule and

the fact that ϕuk,t is the flow for (1.7), for (q, p) ∈ R6 and t ∈ (0, T ), with the short notation

uk,t(q, p) := uk(q, p, t), we obtain

d

dt
(uk,t ◦ ϕuk,t)(q, p) =

d

dt
uk(ϕuk,t(q, p), t)

= ∂tuk(ϕuk,t(q, p), t) +
ϕu,2k,t (q, p)

mk
· ∇quk(ϕuk,t(q, p), t) + Fuk (ϕu,1k,t (q, p), t) · ∇quk(ϕuk,t(q, p), t) = 0,
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2 SOLUTIONS TO THE VLASOV EQUATION

where in the last step we employed (2.3). Consequently,

(uk,t ◦ ϕuk,t)(q, p) = (uk,0 ◦ ϕuk,0)(q, p) = uk,0(q, p) ∀t ∈ [0, T ].

Hence, for every k ∈ [n] and A ∈ B(R6), using that ϕuk,t is bijective and measure preserving and

thus applying (4.9),

µk,0(A) =

ˆ
R6

1A ·uk,0 dx =

ˆ
R6

(
1ϕuk,t(A) ◦ ϕuk,t

)
·
(
uk,t ◦ ϕuk,t

)
dx =

ˆ
R6

1ϕuk,t(A) ·uk,t dx

= µk,t
(
ϕuk,t(A)

)
.

Since ϕuk,t is invertible with continuous and therefore in particular measurable inverse, we conclude

that µk,0((ϕuk,t)
−1(A)) = µk,t(A), i.e. µk,t = µk,0 ◦ (ϕuk,t)

−1. This proves that µ is a solution of the

Vlasov equation in integral form, as claimed.

Remark 2.7. One might ask under which conditions a solution µ of the Vlasov equation in integral

form yields a solution to the Vlasov equation in differential form. Imagine that µk,0 has densities

uk,0 ∈ C1(R6) for all k ∈ [n] and that fk,l ∈ BL(R3;R3) ∩ C1(R3;R3). Then for every t ∈ [0, T ],

Fuk ∈ BL(R3;R3) ∩ C1(R3;R3), as an easy computation in the spirit of lemma 2.9 using the mean

value theorem of differentiation and the dominated convergence theorem (the derivatives of the fk,l
are uniformly bounded by the Lipschitz constant for the fk,l) shows. By standard ODE theory, it

follows that ϕuk,t, (ϕ
u
k,t)
−1 = ϕuk,−t ∈ C1(R6;R6) for all t ∈ [0, T ]. Hence, continuity of uk(q, p, t)

is obvious, and the chain rule shows that the densities uk(q, p, t) = (uk,0 ◦ (ϕuk,t)
−1))(q, p) are in

fact continuously partially differentiable on R3 × R3 × (0, T ). By the computation (1.10) and the

arguments thereafter, we may conclude that u := (u1, . . . , un) is a classical solution of the Vlasov

equation in differential form.

Finally, let us briefly mention how to proceed in the case where all fk,l are proportional to the

Coulomb force, i.e. fk,l(q) = ckcl · k(q) where ck, cl are the coupling constants (masses, charges)

and k(q) = ±q · |q|−3
. Looking at (1.1), we see that for a gravitational system, we need the minus

sign, whereas for the electrostatic case, we need the plus sign. In the literature, for n = 1, this

system is then usually referred to as Vlasov-Poisson system, and we will adapt this term also

for n > 1 in the above-described scenario. This time, we cannot hope to find a good notion for the

Vlasov equation in integral form which includes probability measures with a discrete part because

the Coulomb force is well-defined only almost everywhere, which means that we cannot make sense

of integrating k w.r.t. a probability measure which has a discrete part in case the atom, i.e. the

support of the δ-measure, sits in the singularity at some time. This is of course closely related to

the fact that there are initial conditions for which (1.1) resp. (1.4) do not have (global) solutions

for the Coulomb interaction case. Consequently, it suffices to define solutions for the differential

form. Unfortunately, by contrast to what we saw for bounded Lipschitz forces, it is not clear

that the force fields Fu induced by formal solutions of (1.11) give rise to unique, global flows ϕut
(more details on this will be given in section 2.3). Hence, it is reasonable to take care that a

solution u will also admit a reasonable flow ϕut explicitly in the definition. However, there are

quite a few different approaches in the literature, which are also all formulated for a single type

of particles only. Thus, some research concerning the generalization to multiple particle types and

the relationship between the typical definitions remains to be done. Hopefully, the discussion on

the bounded Lipschitz case, together with the generalization of Liouville’s theorem given in section

4.9 prepare for a rigorous and yet comprehensive discussion. In the eyes of the author of this work,

by far the best reference for the Vlasov-Poisson system is [33]. Some further remarks concerning

the Vlasov-Poisson system will be made in section 2.3.
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2.2 EXISTENCE AND UNIQUENESS: THE BOUNDED LIPSCHITZ CASE

2.2 Existence and uniqueness: the bounded Lipschitz case

In this section, we want to prove that in case all interaction forces are bounded Lipschitz functions,

given any initial distribution µ0 ∈ (P(R6))n, there is a unique, global solution µ for the Vlasov

equation in integral form (2.1), i.e. we can say that the IVP is well-posed. We are thus looking

for µ ∈ C∗([0, T ]; (P(R6))n) satisfying µt = µ0 ◦ (ϕµt )
−1

. We can regard a solution to this IVP

as fixed point of a map G which takes a weakly continuous curve ν and maps it to the curve

t 7→ ν0 ◦ (ϕνt )−1. Hence, one is immediately tempted to check whether the Banach Fixed Point

Theorem is applicable, since this would yield existence and uniqueness of solutions immediately.

However, we have to choose a metric wisely in order to make the space C∗([0, T ]; (P(R6))n) com-

plete. Indeed, in section 4.4, we introduce the bounded Lipschitz distance dBL as a metric on spaces

of finite measures and derive a quite natural family of metrics dBL on C∗([0, T ]; (P(R6))n) which

make
(
C∗([0, T ]; (P(R6))n), dBL

)
a complete metric space. Hence, our first big goal is to prove

that the restriction of G to a suitable, closed subspace is in fact a contraction for an appropriate

choice dBL in this family. On the other hand, the aim of this work is to prove that solutions of

the Vlasov equation with initial probabilities close to the initial distribution of particles stay good

approximations to the empirical distribution for finite times. Since the latter has turned out to be

a solution of (2.1) as well for a large class of pair interactions (see lemma 2.3), we want to show

that if two solutions of the Vlasov equation are close initially, then also their time evolutions do not

move apart too fast. This will be the second important result of this section. The motivation for

both main statements and their proofs stems from chapter 5 in [37]. However, besides extending

the result to multiple particle types, the treatment here is more systematic and detailed.

Remark 2.8. From the discussion in remark 2.7, we know that for nice initial probability densities

and pair interaction forces, a solution of the Vlasov equation in integral form yields a classical

solution of the Vlasov equation in differential form. On the other hand, lemma 2.6 shows that

every classical solution of the Vlasov equation in differential form yields a solution to the Vlasov

equation in integral form. Thus, proving that a unique solution of the Vlasov equation in integral

form does always exist also proves that for nice initial conditions and pair interactions, there is a

unique classical solution for the Vlasov equation in differential form given by the time-dependent

probability density of the corresponding solution of the Vlasov equation in integral form. In

particular, all our results for solutions of the Vlasov equation in integral form apply to the solution

of the Vlasov equation in differential form as well.

In the remainder of this section, unless mentioned otherwise, | · | will denote the maximum norm on

Rd. Moreover, we are going to use the following shorthand notations: f ∈ BL(R3; (R3)n
2

) means

that fk,l ∈ BL(R3;R3) for all k, l ∈ [n], and we will write

‖f‖∞ : = max
{
‖fk,l‖∞ : k, l ∈ [n]

}
,

‖f‖L : = max
{
‖fk,l‖L : k, l ∈ [n]

}
,

‖f‖BL : = max {‖f‖∞ , ‖f‖L}.

Note that this is coherent with the picture of regarding f := (f1,1, . . . , fn,n) as a map R3 → (R3)n
2

and computing ‖f‖∞,L,BL in the usual sense resp. in the sense of definition 4.36 when using the

maximum norm on product spaces. Likewise, we denote ϕµt :=
(
ϕµ1,t, . . . , ϕ

µ
n,t

)
: R6 → (R6)n and

Fµ := (Fµ1 , . . . , F
µ
n ) : R3× [0, T ]→ (R3)n, with ‖ϕµt ‖∞,L,BL and ‖Fµ( · , t)‖∞,L,BL being defined in

the same spirit. Last but not least, we introduce m := min {mk : k ∈ [n]}, the mass of the lightest

particles.
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2 SOLUTIONS TO THE VLASOV EQUATION

Let us mention that one can readily check that in all of the following arguments, it is not important

that the physical dimension equals 3, i.e actually, the proof works for arbitrary dimensions d of

the underlying physical space, by contrast to the Vlasov-Poisson system, for which the relationship

between the spatial dimension and the order of the singularity is crucial.

We first collect some estimates on the external forces Fµk coming from a particle distribution

µ ∈ C∗([0, T ]; (P(R6))n). This, in turns, gives us estimates on the induced flows ϕµt . In what

follows, dBL denotes the bounded Lipschitz distance between (vector valued) measures. A short

introduction to dBL with a digression on its most important elementary properties is given in

section 4.4.

Lemma 2.9. Let µ, ν ∈ C∗
(
[0, T ]; (P(R6))n

)
. Then

(i) for all t ∈ [0, T ], Fµ( · , t) ∈ BL
(
R3; (R3)n

)
with ‖Fµ( · , t)‖BL ≤ ‖f‖BL. More precisely,

‖Fµ( · , t)‖∞ ≤ ‖f‖∞ and ‖Fµ( · , t)‖L ≤ ‖f‖L for all t ∈ [0, T ].

(ii) Fµ ∈ Cb(R3 × [0, T ]; (R3)n).

(iii) for all t ∈ [0, T ], ‖Fµ( · , t)− F ν( · , t)‖∞ ≤ ‖f‖BL·dBL(µt, νt).

Proof. We will often use without explicit mentioning that µk,t, νk,t are probability measures on R6

for all k ∈ [n], t ∈ [0, T ]. Moreover, note that for all three claims it suffices to prove the statement

component-wise. For (i), we compute for t ∈ [0, T ], k ∈ [n] and q, q′ ∈ R3

∣∣Fµk (q, t)
∣∣ ≤ n∑

l=1

αl ·
ˆ
R6

∣∣fk,l(q − q̃)∣∣dµl,t(q̃) ≤ n∑
l=1

αl ·
ˆ
R6

‖fk,l‖∞ dµl,t ≤ ‖f‖∞·
n∑
l=1

αl = ‖f‖∞ ,

where we used
∑n
l=1 αl = 1, and similarly

∣∣Fµk (q, t)− Fµk (q′, t)
∣∣ ≤ n∑

l=1

αl ·
ˆ
R6

∣∣fk,l(q − q̃)− fk,l(q′ − q̃)∣∣ dµl,t(q̃, p̃)
≤

n∑
l=1

αl ·
ˆ
R6

‖f‖L· |(q − q̃)− (q′ − q̃)|dµl,t(q̃, p̃)

≤ ‖f‖L · |q − q
′| .

For (ii), observe that continuity of Fµ in the first component q ∈ R3 is clear by (i). That Fµ is

also continuous w.r.t. t holds because all µk are weakly continuous: It is easy to check that for

g ∈ BL(R3;R3) and q ∈ R3, the map gq : R6 → R3, (q̃, p̃) 7→ g(q− q̃) satisfies gq ∈ BL(R6;R3) with

‖gq‖BL = ‖g‖BL. Consequently, the maps t 7→ (fk,l ∗q µk,t)(q) are continuous, and hence Fµk (q, · )
as a finite sum of continuous maps, too. Finally,

∣∣Fµk (q, t)− F νk (q, t)
∣∣ =

∣∣∣∣∣
n∑
l=1

αl ·
ˆ
R6

fk,l(q − q̃)
(
dµl,t(q̃, p̃)− dνl,t(q̃, p̃)

)∣∣∣∣∣
≤

n∑
l=1

αl ·
(
‖fk,l‖BL· dBL(µl,t, νl,t)

)
= ‖f‖BL· dBL(µt, νt).
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Lemma 2.10. Under the same hypotheses, ϕµt is Lipschitz continuous with

‖ϕµt ‖L ≤ e(
1
m+‖f‖L) t ∀t ∈ [0, T ].

Proof. For t ∈ (0, T ), x, y ∈ R6 and k ∈ [n], using ‖F νk ( · , t)‖L ≤ ‖f‖L by lemma 2.9 (i) and

applying corollary 4.19 to the C1-curve γ(t) := ϕµk,t(x)− ϕµk,t(y), we obtain

∂+
t

∣∣ϕµk,t(x)− ϕµk,t(y)
∣∣ ≤ ∣∣∂t(ϕµ,1k,t (x), ϕµ,2k,t (x)

)
− ∂t

(
ϕµ,1k,t (y), ϕµ,2k,t (y)

)∣∣
= max

{∣∣ 1
mk

ϕµ,2k,t (x)− 1
mk

ϕµ,2k,t (y)
∣∣, ∣∣Fµk (ϕµ,1k,t (x), t

)
− Fµk

(
ϕµ,1k,t (y), t

)∣∣}
≤ 1

m

∣∣ϕ2,µ
k,t (x)− ϕ2,µ

k,t (y)
∣∣+
∣∣Fµk (ϕ1,µ

k,t (x), t
)
− Fµk

(
ϕ1,µ
k,t (y), t

)∣∣
≤ 1

m

∣∣ϕµk,t(x)− ϕµk,t(y)
∣∣+ ‖f‖L·

∣∣ϕ1,µ
k,t (x)− ϕ1,µ

k,t (y)
∣∣

≤
(

1
m + ‖f‖L

)
·
∣∣ϕµk,t(x)− ϕµk,t(y)

∣∣.
Now, theorem 4.3 (Grønwall’s lemma) with ϕµk,0 = idR6 and thus |ϕµk,0(x) − ϕµk,0(y)| = |x− y|
yields ∣∣ϕµk,t(x)− ϕµk,t(y)

∣∣ ≤ e( 1
m+‖f‖L) t · |x− y| ∀t ∈ [0, T ].

Lemma 2.11. Again under the hypotheses of lemma 2.9,

‖ϕµt − ϕνt ‖∞ ≤ ‖f‖BL·
ˆ t

0

e(
1
m+‖f‖L) (t−s) · dBL(µs, νs) ds ∀t ∈ [0, T ].

Proof. Let k ∈ [n]. Another time using corollary 4.19, for t ∈ (0, T ) and x ∈ R6,

∂+
t

∣∣ϕµk,t(x)− ϕνk,t(x)
∣∣ ≤ 1

m

∣∣ϕ2,µ
k,t (x)− ϕ2,ν

k,t (x)
∣∣+
∣∣Fµk (ϕ1,µ

k,t (x), t
)
− F νk

(
ϕ1,ν
k,t (x), t

)∣∣
≤ 1

m

∣∣ϕµk,t(x)− ϕνk,t(x)
∣∣+ (I).

With the triangle inequality and lemma 2.9 (i), (iii),

(I) ≤
∣∣Fµk (ϕ1,µ

k,t (x), t
)
− Fµk

(
ϕ1,ν
k,t (x), t

)∣∣+
∣∣Fµk (ϕ1,ν

k,t (x), t
)
− F νk

(
ϕ1,ν
k,t (x), t

)∣∣
≤ ‖f‖L·

∣∣ϕ1,µ
k,t (x)− ϕ1,ν

k,t (x)
∣∣+ ‖f‖BL· dBL(µt, νt)

≤ ‖f‖L· |ϕ
µ
t (x)− ϕνt (x)|+ ‖f‖BL· dBL(µt, νt).

Taking the maximum over all components and using lemma 4.15, we arrive at

∂+
t

∣∣ϕµt (x)− ϕνt (x)
∣∣ ≤ ( 1

m + ‖f‖L
)
·
∣∣ϕµt (x)− ϕνt (x)

∣∣+ ‖f‖BL· dBL(µt, νt). (2.4)

Since the l.h.s. is right-continuous (lemma 4.18) and the r.h.s. is measurable and bounded (lemma

4.44), we may integrate on both sides and use our fundamental theorem of calculus for right-

continuous maps (lemma 4.14). With
∣∣ϕµ0 (x)− ϕν0(x)

∣∣ = 0, we obtain∣∣ϕµt (x)− ϕνt (x)
∣∣ ≤ ( 1

m + ‖f‖L
)
·
ˆ t

0

∣∣ϕµs (x)− ϕνs (x)
∣∣ds+ ‖f‖BL ·

ˆ t

0

dBL(µs, νs) ds.

By Grønwall’s lemma in integral form (theorem 4.80), it follows that for all t ∈ [0, T ],∣∣ϕµt (x)− ϕνt (x)
∣∣ ≤ e( 1

m+‖f‖L) t ·
ˆ t

0

e−( 1
m+‖f‖L)s ·

(
‖f‖BL· dBL(µs, νs)

)
ds

= ‖f‖BL·
ˆ t

0

e(
1
m+‖f‖L) (t−s) · dBL(µs, νs) ds.

17



2 SOLUTIONS TO THE VLASOV EQUATION

We are now ready to introduce the announced map G.

Theorem 2.12. Define

G : C∗
(
[0, T ]; (P(R6))n

)
→ C∗

(
[0, T ]; (P(R6))n

)
, µ 7→ µ0 ◦ (ϕµt )−1.

Then for µ, ν ∈ C∗
(
[0, T ]; (P(R6))n

)
, it holds that

dBL

(
(G[µ])t, (G[ν])t

)
≤ 2eKt ·

[
dBL(µ0, ν0) + ‖f‖BL·

ˆ t

0

e−Ks · dBL(µs, νs) ds

]
∀t ∈ [0, T ],

(2.5)

where K := 1
m + ‖f‖L

Proof. Let µ, ν ∈ C∗([0, T ]; (P(R6))n), h ∈ BL(R6) with ‖h‖BL ≤ 1, and t ∈ [0, T ]. Then for any

k ∈ [n], with lemma 4.23 and the previous lemmata 2.10 and 2.11, we obtain∣∣∣∣ˆ
R6

h
(
d(G[µ])k,t − d(G[ν])k,t

)∣∣∣∣
=

∣∣∣∣ˆ
R6

hd
(
µk,0 ◦ (ϕµk,t)

−1
)
−
ˆ
R6

hd
(
νk,0 ◦ (ϕνk,t)

−1
)∣∣∣∣

=

∣∣∣∣ˆ
R6

h ◦ ϕµk,t dµk,0 −
ˆ
R6

h ◦ ϕνk,t dνk,0

∣∣∣∣
≤
∣∣∣∣ˆ

R6

(
h ◦ ϕµk,t − h ◦ ϕ

ν
k,t

)
dµk,0

∣∣∣∣+

∣∣∣∣ˆ
R6

(h ◦ ϕνk,t) (dµk,0 − dνk,0)

∣∣∣∣
≤
ˆ
R6

∣∣ϕµk,t(x)− ϕνk,t(x)
∣∣ dµk,0(x) +

∥∥h ◦ ϕνk,t∥∥BL
· dBL(µk,0, νk,0)

≤ ‖f‖BL·
ˆ t

0

e(
1
m+‖f‖L) (t−s) · dBL(µs, νs) ds+

(
1 + e(

1
m+‖f‖L) t

)
· dBL(µ0, ν0)

≤ 2eKt ·
[
dBL(µ0, ν0) + ‖f‖BL·

ˆ t

0

e−Ks · dBL(µs, νs) ds

]
.

Note that we used our observation from remark 4.64 (d) to see that
∥∥h ◦ ϕνk,t∥∥L

≤ 1 + e(
1
m+‖f‖L) t.

It follows that

dBL

(
(G[µ])t, (G[ν])t

)
≤ 2eKt ·

[
dBL(µ0, ν0) + ‖f‖BL·

ˆ t

0

e−Ks · dBL(µs, νs) ds

]
∀t ∈ [0, T ]

and hence the claim.

One can now hope that one of the metrics dBL from section 4.4 will make G a contraction. However,

despite the fact that it looks difficult to find such a metric, it is also not necessary in this generality.

What we really need in order to obtain a solution of the Vlasov equation 2.1 is that for a fixed

initial condition η ∈ (P(R6))n, Aη :=
{
ν ∈ C∗([0, T ]; (P(R6))n) : ν0 = η

}
is a closed subset of

C∗
(
[0, T ]; (P(R6))n

)
w.r.t. the chosen dBL, and the restriction of G onto Aη is a contraction w.r.t.

this metric. Observe that in this case, the summand dBL(µ0, ν0) in (2.5) vanishes for µ, ν ∈ Aη.

Let us for α > 0 define the metric

d
α

BL : C∗
(
[0, T ]; (P(R6))n

)
× C∗

(
[0, T ]; (P(R6))n

)
→ [0,∞),

(µ, ν) 7→ sup
{
e−αt · dBL(µt, νt) : 0 ≤ t ≤ T

}
.
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Then for η ∈ (P(R6))n, Aη ⊂ C∗([0, T ]; (P(R6))n) is indeed closed w.r.t. d
α

BL: for an arbitrary

sequence (µn)n∈N ⊂ Aη with µn
n→∞−−−−→ µ w.r.t. d

α

BL, by definition of d
α

BL, η = µn,0
n→∞−−−−→ µ0 w.r.t.

dBL, so we see that µ0 = η and thus µ ∈ Aη.

Let µ, ν ∈ Aη. By definition of d
α

BL, for every s ∈ [0, T ], e−αs · dBL(µs, νs) ≤ d
α

BL(µ, ν), so we

obtain that for all s ∈ [0, T ], dBL(µs, νs) ≤ eαs · dαBL(µ, ν). Using (2.5), we compute for t ∈ [0, T ]

and α−K > 0

e−αt · dBL

(
(G[µ])t, (G[ν])t

)
≤ 2‖f‖BL· e

(K−α) t ·
ˆ t

0

e−Ks · eαs · dαBL(µ, ν) ds

= d
α

BL(µ, ν) · 2‖f‖BL·
ˆ t

0

e(α−K)(s−t) ds

= d
α

BL(µ, ν) ·
2‖f‖BL

α−K

(
1− e−(α−K) t

)
≤

2‖f‖BL

α−K
· dαBL(µ, ν).

Consequently, for α > K big enough,
2‖f‖BL

α−K < 1 and therefore G|Aη is a contraction. We have

therefore almost proved the following theorem:

Theorem 2.13. For every η ∈ (P(R6))n, there is a unique solution µ of the Vlasov equation 2.1

satisfying µ0 = η.

Proof. We just need to apply the Banach Fixed Point theorem (see e.g. [2, p. 350 f.]) to the

contraction G : Aη → Aη with the induced metric d
α

BL|Aη , noting that Aη is complete w.r.t. d
α

BL:

by theorem 4.41, (P(R6), dBL) is complete, and lemma 4.45 shows that C∗([0, T ];P(R6)) is complete

w.r.t. d
α

BL. Consequently,
(
C∗([0, T ]; (P(R6))n), d

α

BL

)
is complete as a product of complete metric

spaces w.r.t. the product metric. But we have argued before that Aη ⊂ C∗([0, T ]; (P(R6))n) is

closed w.r.t. d
α

BL, so it is itself complete w.r.t. d
α

BL|Aη as closed subset of a complete metric

space.

There is also another very important application of lemma 2.12, which we will heavily rely on

when we prove propagation of chaos for the case of bounded Lipschitz interactions in chapter 3.1,

namely the announced fact that solutions to the Vlasov equation (2.1) which are initially close do

not move away from each other too quickly:

Theorem 2.14. Let µ, ν ∈ C∗([0, T ]; (P(R6))n) be solutions of the Vlasov equation in the sense of

definition 2.1. Then for all t ∈ [0, T ],

dBL(µt, νt) ≤ 2eKt
(

1 + 2‖f‖BL· te
2‖f‖BL
K eKt

)
· dBL(µ0, ν0).

Proof. Since µ, ν are solutions of the Vlasov equation, by construction of the map G in theorem

2.14, G[µ] = µ and G[ν] = ν, in particular, (G[µ])t = µt and (G[ν])t = νt for all t ∈ [0, T ].

Consequently, lemma 2.12 yields

dBL

(
µt, νt

)
≤ 2eKt · dBL(µ0, ν0) + 2‖f‖BL·

ˆ t

0

eK(t−s) · dBL(µs, νs) ds ∀t ∈ [0, T ].
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2 SOLUTIONS TO THE VLASOV EQUATION

By Grønwall’s lemma in integral form (see theorem 4.80), we obtain that

dBL(µt, νt) ≤ 2eKt · dBL(µ0, ν0) +

ˆ t

0

2eKs · dBL(µ0, ν0) · 2‖f‖BL· e
K(t−s) · e

´ t
s

2‖f‖BLe
K(t−τ) dτ ds

≤
(

2eKt + 2eKt · 2‖f‖BL· te
2‖f‖BL
K eKt

)
· dBL(µ0, ν0),

where we used that for s ∈ [0, T ],

ˆ t

s

eK(t−τ) dτ = − 1

K

[
1− eK(t−s)] ≤ 1

K
eK(t−s)

and consequently

ˆ t

0

e
´ t
s

2‖f‖BLe
K(t−τ) dτ ds ≤

ˆ t

0

e
2‖f‖BL
K eK(t−s)

ds ≤ t · e
2‖f‖BL
K eKt .

2.3 Existence and uniqueness: references for the Coulomb case

We have already briefly discussed at the end of section 2.1 that for k the Coulomb interaction

force, one should only consider a differential form of the Vlasov equation. However, since the

Coulomb force is neither bounded nor Lipschitz continuous, the mean field force k ∗q ul,t generated

by particles of type l might not be well-defined if the spatial density ρul,t :=
´
R3 ul,t( · , p) dp gets

unbounded. Moreover, even for bounded spatial densities, k ∗q ul,t is in general only bounded

and log-Lip-continuous in q (see theorem 4.54). However, by our results from sections 4.8 and 4.9,

provided that also continuity of all k∗q ρul,t and thus of the mean field forces Ful w.r.t. time is given,

this suffices to guarantee the existence of unique, global, measure-preserving flows ϕul,t, which are

not only desirable from the physical point of view but also helped us a lot in finding connections

between the different definitions of solutions to the Vlasov equation and proving existence and

uniqueness of solutions for the case of bounded Lipschitz interactions in section 2.2. Hence, what

one typically does is demand that a formal solution to the Vlasov equation in differential form

(1.11) has additional properties that ensure existence of unique, global, measure preserving flows

along which the components ul,t of a solution then turn out to be constant. Using a more elaborate

version of the version of Fatou’s lemma employed in the proof of lemma 2.6, it might be possible

to deduce continuity of the Ful in time from boundedness of the ρul,t and continuity of ul in time,

however, this idea requires a thorough analysis an will not pursued further here.

In the literature, there have been two main approaches to local (in time) existence and uniqueness

of solutions of the Vlasov-Poisson system for one type of particles: The first approach, pursued

mainly by Illner, Neunzert and Horst (see [24],[21],[22]), first regularizes the Coulomb force k by

introducing cut-off forces fε with fε → k pointwise as ε → 0. For reasonable regularizations,

namely such that fε is bounded and Lipschitz continuous, by our results in section 2.2, there are

unique, global solutions uε to the regularized Vlasov-Poisson system. Then, one shows that in case

the ρu
ε

(and thus the mean-field forces Fu
ε

) remain uniformly bounded as ε→ 0, the uε converge

pointwise to some limiting function v as ε → 0, and v turns out to be a solution to the Vlasov-

Poisson system in the sense that it is a formal solution of 1.11 (with fk,l replaced by ckcl k) which

induces global, measure preserving flows. However, global-in-time a-priori bounds on the spatial

density are difficult to obtain, so with these ideas only the existence of local-in-time solutions could

be established. The other approach is via an iterative scheme, introduced in [7], which one might

compare with the construction of the solution of first-order ODEs by the Euler method. However,
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only for spherically symmetric initial conditions, global existence could be proved in this way. In

the early 1990s, by different methods, eventually proofs for global existence under quite general

assumptions were achieved. The first one, developed by Pfaffelmoser ([32]) and refined by Schaeffer

([35]), is based on getting control on the growth of the support in the momentum component of the

densities corresponding to local in time solutions v (and thus only works for initial distributions

v0 which have compact support in the momentum component), obtaining control on the forces F vt
and thus allowing to extend local solutions v to global solutions (the thoughts are somehow similar

to what one does in the theory of ODEs). A different path was taken by Lions and Perthame

([30]), who obtained control on moments of the spatial densities ρvt corresponding to local in time

solutions to the Vlasov-Poisson system and bounded the growth of ‖ρvt ‖∞ by Sobolev theory; then

local extension can be employed again. Finally, basing on the approach of Lions and Perthame,

uniqueness of solutions under quite general conditions could be verified by Loeper, see [31]. A

highly recommendable aggregation of this development which is also very comprehensive can be

found in the already mentioned [33].

Going through the cited literature, it should be straightforward to generalize all the results to

the case of multiple particle types. In the above-mentioned paper of Lions and Perthame ([30],

page 417 in the journal), it is even mentioned explicitly that all arguments work out for “dif-

ferent species of particles”. However, a rigorous, detailed proof would be highly desirable, in

particular since their arguments are ingenious, but often lack traceability and detailedness. Since

doing all this, in the ideal case also with comparing different definitions for solutions as we did

in section 2.1, is not the scope of this thesis for length and time issues, we will be happy with

just postulating that the results for one type of particles translate to the ones for multiple par-

ticle types, since we will need some of these in section 3.2. So, we will take for granted that if

uk,0 ∈ C∞c (R3×R3; [0,∞)) for all k ∈ [n], a unique, global solution v to the Vlasov-Poisson systems

described before does exist, in particular, the spatial densities are uniformly bounded for finite times

in the sense that on every compact time interval [0, T ], max
{

supt∈[0,T ]‖ρvk,t‖∞ : k ∈ [n]
}
<∞, and

they induce continuous force fields (which are by theorem 4.54 uniformly in t log-Lip-continuous

in q) and therefore unique, global flows ϕvk,t (which by our results in section 4.9 are measure pre-

serving). We will also need that the regularized solutions induce uniformly bounded densities,

i.e. supε∈(0,1) max
{

supt∈[0,T ]‖ρu
ε

k,t‖∞ : k ∈ [n]
}
< ∞ for the regularization of the Coulomb force

that we introduce in section 3.2, for one type of particles this is also a consequence of [30], and

is in fact easy to prove once the solution theory for the unregularized Vlasov-Poisson system for

multiple particle types is done. Anyway, we are confident that a sophisticated analysis of the issue

for multiple particle types will confirm the statements listed here.
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3 Propagation of chaos

In this chapter, we want to prove that under appropriate assumptions and in physically reason-

able senses, propagation of chaos holds for bounded Lipschitz and gravitational/electrostatic pair

interactions. Unfortunately, for the latter case we need to cut the Coulomb force off at a certain

radius around the origin, however, this cut-off radius may be shrinked to 0 as S →∞.

3.1 The bounded Lipschitz case

As the section header indicates, in this short paragraph we assume that the pair interactions fk,l
occurring in the weakly coupled system (1.4) are radially symmetric and bounded Lipschitz, i.e.

we make statements about solutions of the Vlasov equation in the sense of definition 2.1. Note

that by lemma 2.6, we also get the conclusions of this section for solutions of the Vlasov equation

in differential form in the sense of definition 2.5. Let us briefly mention that just like in section

2.2, the arguments we give here are actually independent of the (physical) dimension d, by strict

contrast to the Coulomb case which we will tackle in the next section and where the relation

between the order of the singularity and the dimension is highly relevant.

Let µ0 := (µ1,0, . . . , µn,0) ∈ (P(R6))n a collection of (initial) probability measures on phase space

R6 and (Zik)i∈N i.i.d. random variables distributed to the law µk,0 for every k ∈ [n]. Recall that this

means there is some probability space (Ω,A,P) and a collection of random variables Zik : Ω→ R6

where (k, i) ∈ [n]×N such that for every k ∈ [n], (Zik)i∈N are independent with P◦
(
Zik
)−1

= µk,0 for

all i ∈ N. From section 4.5, in particular corollary 4.47, we know that the empirical distributions

µωemp,k,0 :=
1

Nk

Nk∑
i=1

δZik(ω)

then converge almost surely to µk,0 in the bounded Lipschitz distance in the sense that

P
[{
ω ∈ Ω : dBL(µωemp,k,0, µk,0)

Nk→∞−−−−−→ 0
}]

= 1 ∀k ∈ [n].

Note that as S → ∞, by definition of S, we have Nk → ∞ for all k ∈ [n]. Consequently, from

the definition of dBL on (P(R6))n (see definition 4.38 and remark 4.39 (d), with the notation

µωemp,0 := (µωemp,1,0, . . . , µ
ω
emp,n,0) ∈ (P(R6))n, we see that{

ω ∈ Ω : dBL(µωemp,0, µ0)
S→∞−−−−→ 0

}
⊃
⋂
k∈[n]

{
ω ∈ Ω : dBL(µωemp,k,0, µk,0)

Nk→∞−−−−−→ 0
}
.

Since in a finite measure space and thus in a probability space, the intersection of countably many

(and hence in particular of a finite number of) sets of full measure has again full measure (this is

an easy consequence of σ-additivity by looking at complements and using De Morgan’s laws), we

obtain that

P
[{
ω ∈ Ω : dBL(µωemp,0, µ0)

}
S→∞−−−−→ 0

]
= 1.
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On the other hand, we have seen in theorem 2.14 that for ν, η solutions of the Vlasov equation in

the sense of definition 2.1 and fixed t ∈ [0, T ]

dBL(νt, ηt) ≤ h(t) · dBL(ν0, η0),

where h : [0, T ]→ [0,∞) is a continuous (and non-decreasing) map. In particular,

sup
0≤t≤T

dBL(νt, ηt) ≤ h(T ) · dBL(ν0, η0)→ 0 as dBL(ν0, η0)→ 0,

which shows that{
ω ∈ Ω : sup

0≤t≤T
dBL(νt, ηt)

S→∞−−−−→ 0

}
⊃
{
ω ∈ Ω : dBL(ν0, η0)

S→∞−−−−→ 0
}
.

Additionally, we have already checked in lemma 2.3 that for radially symmetric pair interactions,

the empirical measure µωemp defined by

µωemp,k,t :=
1

Nk

Nk∑
i=1

δ(Ψ1,i
k,t(Z(ω)),Ψ2,i

k,t(Z(ω)),

where Ψt is the (unique) global flow for (1.4), is a solution to the Vlasov equation in the sense of

definition 2.1 with initial condition µωemp,0 (note that Ψ0 = idR6N ). Combining these three results,

we immediately see that for fixed T > 0 and µ a solution of the Vlasov equation in integral form

(2.1) with initial condition µ0, under the above-mentioned hypotheses,

P
[{
ω ∈ Ω : sup

0≤t≤T
dBL(µωemp,t, µt)

S→∞−−−−→ 0

}]
= 1. (3.1)

Thus, we say that propagation of chaos holds almost surely. In particular, from the definition of dBL

(cf. also remark 4.39 (e) in section 4.5) we see that averages of bounded Lipschitz observables on

phase space w.r.t. the true time evolution of an initial state chosen according to some probability

measure µ0 on phase space converge to the expectation value of the observable w.r.t. the solution

of the Vlasov equation with initial state µ0 almost surely as S → ∞. Actually, we saw that

solutions to the Vlasov equation stay close deterministically, so the only thing that can go wrong

is that the initial conditions of particles are chosen in a bad way. In particular, it is not necessary

that initial conditions are chosen independently when considering different species; independence

is only important within one type of particles because this is necessary to guarantee almost sure

convergence of the initial empirical measure to the initial probability distributions. We will see

that this changes dramatically in the next chapter.

3.2 The Coulomb case with cut-off

This section is heavily motivated by and oriented at the approach in [28]. Practically all definitions

and theorems (albeit adaptions have been made to the multiple species case) are taken from there,

as are the ideas for and significant parts of the proofs. However, the extension to multiple particle

types is not obvious, so in some places we need additional arguments and ideas. Moreover, it

might have struck the reader’s eye that in the mentioned paper, at some places not all details of

the proofs are given, so in what follows we will provide a solid justification for those arguments

whose proof is only sketched or omitted in the reference.
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One would hope that the results from the previous section can somehow be extended to a system

with Coulomb interactions. However, this case cannot be handled with the results from section

2.2 because the Coulomb kernel k it is not bounded Lipschitz (in fact, it is neither bounded

nor Lipschitz continuous). Moreover, spending some thoughts on what might possibly go wrong,

it turns out that almost sure convergence of the empirical measure to the solution of the Vlasov

equation for finite times cannot hold, mainly for the following reason: Imagine a repulsive situation

in the case n = 1 where the initial probability densitity u0 is C∞c , but unfortunately the initial

conditions for the empirical distribution µemp,0 are such that the particles accumulate in balls

of very small radius, however, the distribution of the balls is such that the empirical distribution

converges to the probability measure given by the smooth probability density u0 (“macroscopically,

the small balls cannot be spotted”). Then it is clear that as S → ∞, the initial potential energy

goes to∞ as well, and the particles will move to infinity very quickly as time evolves. On the other

hand, the solution to the Vlasov-Poisson equation without cut-off is quite regular, more precisely,

as mentioned in section 2.3, the spatial densities and thus the interaction forces are bounded

uniformly in time, and so is the situation for the regularized Vlasov-Poisson system. Hence, one

cannot expect that the empirical distribution associated with the true time evolution to (1.4) with

Coulomb interactions and the solution to the Vlasov-Poisson system are still close even after very

short time. In other words, what makes the difference to the case with bounded Lipschitz pair

interactions is that the true time evolution and the solution to the Vlasov equation can drift apart

rapidly even if they are close initially, i.e. the deterministic part of the convergence gets lost.

Spending some more time on this issue, one gets the feeling that in general, the initial conditions

under which the empirical measure and the measure induced by the solution to the Vlasov-Poisson

system do not stay close even after very short time are not a subset of probability 0. However,

the painted situation is at least a conspiracy because as S → ∞, the probability for an atypical

initial condition as described above goes to 0. Hence, we cannot expect a result of almost sure

convergence such as in section 3.1, but rather convergence in probability, by which we mean that

for every ε > 0,

P
[{
ω ∈ Ω : sup

0≤t≤T
dBL(νωemp,t, νt) > ε

}]
S→∞−−−−→ 0,

at least for nice initial densities, where νωemp,t denotes the empirical measure associated with a

solution to (1.4) with Coulomb forces and νt denotes the probability measure whose associated

probability density is the solution v to the Vlasov-Poisson system (and the sample for νemp,0 is

chosen by the law ν0, of course). However, there is still a problem, namely that there is no existence

and uniqueness result for solutions of (1.4) with Coulomb interactions available, and consequently

we cannot really write down the corresponding flow Ψt(Z(ω)) resp. the empirical measures νωemp,t.

Moreover, the Coulomb singularity is very strong and thus difficult to deal with because if particles

get very close, the error in the mean field approximation is huge. Consequently, it might be a good

idea to make things at least a bit simpler for the start (and it seems that this is also the state

of the art regarding the Coulomb case because results concerning propagation of chaos for the

unmodified Coulomb case are apparently non-existent). Thus, we impose an S-dependent cut-off

on the Coulomb force such that in the limit S → ∞, the regularized Coulomb force converges to

the true Coulomb force. More precisely, for δ > 0 and S ∈ N we define

f : R3 → R3, q 7→

{
q
|q|3 , |q| > S−δ,

S3δ · q, else.
(3.2)
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The cut-off is chosen in this way mainly because it is radially symmetric, bounded, continuous, and

in fact Lipschitz continuous (see lemma 4.71 and the corollary thereafter) with minimal bounded

Lipschitz norm in the sense that every other Lipschitz continuous, radially symmetric regulariza-

tion f̃ of the Coulomb force satisfying f̃ = k on Bc
S−δ(0) has the property that ‖f‖∞ ≤ ‖f̃‖∞,

‖f‖L ≤ ‖f̃‖L. Note that between 0 ∈ R3 and the sphere of radius S−δ, we just interpolated

linearly, and one can easily see that ‖f‖L ≤ C ·S3δ, see also lemma 4.73. It is probably not a big

surprise that the exact form of the cut-off will not be crucial for what follows, however, there are

a few properties of the cut-off which are indeed important, which we generalize to a notion that

we will make use of frequently in the sequel, also for other orders of the singularity:

Definition 3.1. Let d ∈ N, α, δ > 0, S ∈ N. We say that a map h : Rd → Rd satisfies a

Sα
δ -condition with constant c > 0 if

|h(q)| ≤ c ·min
{
Sαδ, |q|−α

}
∀q ∈ Rd.

In the sense of this definition, it is obvious that the regularized Coulomb force (3.2) satisfies a

S2
δ -condition.

In the rest of this section, f will always denote the regularized Coulomb force, and its dependency

on S and δ will be suppressed in the notation. The fact that we choose this regularization, which

is not even differentiable, might at first be charged with causing difficulties, and in fact, we see

that a few results, such as the validity of Liouville’s theorem for such interactions or computing

Lipschitz constants of convolutions because one may a priori not differentiate, require additional

effort. However, it is a modification which one can superbly do explicit calculations with, in

particular regarding integration, so it is really worth the additional effort in some areas.

Note that having in mind our scaling of the spatial coordinates from section 1.1 which delivered

us the weak-coupling factor N−1, the total density (respecting particles of all types) in the scaled

system is proportional to N and therefore roughly proportional to S in case the shares αk = Nk
N of

particles of type k converge. Hence, the average distance between particles in the scaled system is

proportional to S−
1
3 . Therefore, cutting off the Coulomb force S-dependently at this distance and

proving propagation of chaos would already be a highly desirable result. Unfortunately, it turns

out that we cannot yet pass this bar, however, we can get arbitrarily close in the sense that for the

cut-off radius decreasing with S−δ for 0 < δ < 1
3 , we can prove that propagation of chaos holds

typically. This is the goal of the current section.

We will rely on the results sketched resp. desired in the short discussion in section 2.3. Hence, we

introduce the following definition, which according to this discussion we expect to be satisfied at

least if all uk,0 are smooth with compact support, but also for other initial densities.

Definition 3.2. We say that u0 : R3 × R3 → ([0,∞))n satisfies hypothesis A if for every

T > 0, a unique solution v to the Vlasov-Poisson system with initial condition v0 = u0 exists

on R3 × R3 × [0, T ], and this solution induces measure preserving, global flows φvk,t and bounded

spatial densities in the sense that sup0≤t≤T supk∈[n]‖ρvk,t‖∞ < ∞. Moreover, the unique, global

solutions uS to the regularized Vlasov-Poisson system with initial condition u0 are supposed to

induce uniformly in the cut-off parameter (which corresponds to S for the cut-pff we introduced)

bounded densities for the regularized Vlasov-Poisson system, which, in our setting, means that for
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fixed T > 0,

sup
S∈N

sup
0≤t≤T

sup
k∈[n]

‖ρu
S

k,t‖∞ <∞.

We will denote by Ψ the flow to (1.4) with fk,l := ckcl · f , i.e. for

q̇i(t) =
pi(t)

mk
, ṗi(t) =

1

N

∑
l∈[n]

∑
j∈Γl
j 6=i

ckcl f
(
qi(t)− qj(t)

)
, k ∈ [n], i ∈ Γk, (3.3)

which describes a regularized gravitational or electrostatic system, and by µemp the corresponding

empirical measures. µt denotes the (curve of) probability measures induced by the solution u to

the Vlasov-Poisson system with regularized Coulomb force f , i.e.the solution to

∂tuk + p
mk
· ∇quk + Fuk · ∇puk = 0, Fuk =

∑
l∈[n]

αl · ckcl · (fk,l ∗q ul,t), k ∈ [n] (3.4)

which induces a corresponding solution to the Vlasov equation in integral form, i.e. for µk,t the

probability measure given by the density uk,t,

µk,t = µk,0 ◦
(
ϕµk,t

)−1 ∀k ∈ [n], t ∈ [0, T ], (3.5)

where ϕµk,t is the unique, global flow to the ODE

q̇(t) =
p(t)

mk
, ṗ(t) = Fµk (q(t), t) =

∑
l∈[n]

αk · ckcl · (f ∗q µl,t)(q(t)). (3.6)

Moreover, v is supposed to be a solution to the unmodified Vlasov-Poisson system, i.e. it satisfies

(3.4),(3.5),(3.6) with the regularized force f replaced by the Coulomb kernel k. From now on, we

will leave out the S-dependence entirely in the notation unless it is explicitly necessary.

We also define the regularized resp. regularized mean field force field F resp. F t : R3N → R3N

and (heuristically speaking) the associated gradients G resp. Gt : R3N → R3N component-wise as

follows: given a solution u for the regularized Vlasov-Poisson system, for Z ∈ R3N , k ∈ [n] and

i ∈ [Nk],

F ik(Z) =
1

N

n∑
l=1

Nl∑
j=1

ckcl · f(Z1,i
k − Z

1,j
l ), F

i

k,t(Z) =

n∑
l=1

αl · ckcl (f ∗q ul,t)(Z1,i
k ),

Gik(Z) =
1

N

n∑
l=1

Nl∑
j=1

ckcl · g(Z1,i
k − Z

1,j
l ), G

i

k,t(Z) =

n∑
l=1

αl · ckcl (g ∗q ul,t)(Z1,i
k ),

(3.7)

where g is defined in lemma 4.73. Just like for f, g, u, we suppress the S-dependency of F,Ft, G

and Gt. Let us briefly mention some elementary bounds on these forces:

Lemma 3.3. Under our general hypothesis A, given T > 0 there are constants C1,2,3,4 > 0 such

that for 0 ≤ t ≤ T , ‖F‖∞ ≤ C1 ·S2δ, ‖Ft‖∞ ≤ C2, ‖G‖∞ ≤ C3 ·S3δ and ‖Gt‖ ≤ C4 · (1 + ln(S)).

Proof. The claims for F,G are clear from the definitions, see (3.2) and (4.24). Note that f satisfies

a S2
δ -condition and g satisfies a S3

δ -condition. Moreover, f ∗q ul,t = f ∗ ρul,t for all l ∈ [n], t ∈ [0, T ]

and likewise for g, and hence, recalling that by hypothesis A we get bounds on ρul,t uniformly in

t ∈ [0, T ], the statements for F t, Gu also directly follow from lemma 4.51.
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In fact, under the depicted scenario, we will be able to quantify the rate of convergence, namely

that the probability for a bounded Lipschitz distance which is bigger than S−δ for δ ∈ (0, 1
3 ) goes

to 0 with some negative power of S. More precisely, the following is true, motivated and to be

compared with theorem 4.4. from [28]:

Theorem 3.4 (Particle approximation of the Vlasov-Poisson system). Let u0 satisfy our general

hypothesis A and assume that the r-th moments of all uk,0 exist, i.e.

ˆ
R3

|x|r ·uk,0(x) dx <∞ ∀k ∈ [n].

Moreover, let δ ∈ (0, 1
3 ), γ ∈ (0,min

{
1
6 , δ
}

) and T > 0. Let νt be the probability measure given by

the n-tuple of densities vt where vt is the solution to unmodified the Vlasov-Poisson system with

initial state u0, and µemp,t the empirical distribution associated with (3.3) and with initial state Z

such that (Zik)(k,i)∈[n×N] are independent and for k ∈ [n], (Zik)i∈N are identically distributed with

corresponding probability density uk,0. Then there are constants c, C > 0 such that for S ∈ N large

enough,

P
[{
ω ∈ Ω : sup

0≤t≤T
dBL(µωemp,t, νt) > S−γ+1−3δ

}]
≤ C ·

(
e−cS

1−6γ

+ S1− r2
)
.

Note that r can be chosen arbitrarily large if u0 has compact support, so for nice initial conditions,

the rate of convergence is determined by γ, δ and r, and for δ ↗ 1
3 , the bound after which

convergence starts goes to infinity. By contrast to [28], we restrict to the bounded Lipschitz

distance because all the arguments which generalize the result to the p-th Wasserstein distance

can directly be taken from [28], and it is convenient not to introduce another hurdle to get into the

topic. At the end of the introductory and motivational part of this section, let us mention that in

fact, some people think that one might be able to prove theorems concerning existence of global

solutions to (3.3) by proving propagation of chaos with a better (stricter) cut-off than the one

we use in(3.2) because one can then “transfer” the existence of solutions from the Vlasov-Poisson

system to (3.3).

On the way to theorem 3.4, we will concentrate mostly on the building blocks of the proof and

leave the technical, but not too insightful aggregation, which consists of tracing and adjusting the

constants, mostly to [28]. Let us make one final remark that might further enhance understanding

of what is going on here: in section 3.1, we used that solutions to the Vlasov equation with bounded

Lipschitz forces which are close initially stay close deterministically. However, at the beginning of

this section, we have given a hopefully convincing argument that this is not true for the Coulomb

interaction case, albeit things supposedly go wrong only with small probability for large S, and

that we get into trouble as soon as particles get too close. In particular, we need to ensure that

particles from different species are also independent because otherwise it might happen that the

probability densities for types k and l are similar and all the particles of type k are picked next to a

corresponding particle of type l, which would imply large interaction forces, which make the mean

field description likely to be faulty. We will soon see where in the proof this additional assumption

enters.

From now on, the parameters n, Nk and thus αk resp. ck as defined in section 1.1 resp. in the

microscopic model (3.3) will be fixed, as will S ∈ N, δ ∈ (0, 1
3 ), at least preliminarily. We also only

consider the case S ≥ 3, which implies that also ln(S) ≥ 1 and thus makes some estimates look
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3.2 THE COULOMB CASE WITH CUT-OFF

a bit more pleasant. Constants will typically be denoted by C1, C2, . . . ,, but might change their

value from time to time.

Our goal consists of proving that the time evolution of the empirical distribution µemp,t induced

by the flow Ψ of (3.3) where f is given by (3.2) is close to the curve of (n-tuples of) measures

µt induced by a solution of the Vlasov-Poisson system equation u with the regularized Coulomb

force, where the initial distribution of point particles for µemp,k,0 does of course take place in an

independent manner with the law µk,0. Let us give the central idea of the proof of theorem 3.4,

namely to split for ω ∈ Ω

dBL(µωemp,t, µt) ≤ dBL(µωemp,t,µ
ω
emp,t) + dBL(µωemp,t, µt) + dBL(µt, νt). (3.8)

Only µemp,t has not been explained yet; it denotes the empirical measure of the time evolution

according to the flows ϕk,t, i.e. associated to the flow

Φt(Z) :=

(
n∏
k=1

Φ1
k,t(Zk),

n∏
k=1

Φ2
k,t(Zk)

)
:=

(
n∏
k=1

Nk∏
i=1

ϕ1
k,t(Z

i
k),

n∏
k=1

Nk∏
k=1

ϕ2
k,t(Z

i
k)

)
, (3.9)

where the ϕk,t := ϕuk,t are from (3.5). Let us start with discussing the second summand in (3.8).

One would hope that we can apply the methods of section 2.2 because by definition of µemp, both

µemp and µ evolve according to the same flow: for k ∈ [n], µemp,k,t = µemp,k,0 ◦ (ϕk,t)
−1 and

µk,t = µk,0 ◦ (ϕk,t)
−1), so for any h ∈ BL(R6)

∣∣∣∣ˆ
R6

h
(
dµemp,k,t − dµk,t

)∣∣∣∣ =

∣∣∣∣ˆ
R6

h
(

d
(
µemp,k,0 ◦ ϕ−1

k,t

)
− d
(
µk,0 ◦ ϕ−1

k,t

))∣∣∣∣
=

∣∣∣∣ˆ
R6

(h ◦ ϕk,t)
(
dµemp,k,0 − dµk,0

)∣∣∣∣
≤
∥∥h ◦ ϕk,t∥∥BL

· dBL(µemp,k,0, µemp,0).

(3.10)

Consequently, we only need a bound on ‖ϕk,t‖L by remark 4.37 (d). Fortunately, the mean field

interaction coming from the regularized Coulomb interaction is indeed Lipschitz continuous because

from our general assumption A, we know that the spatial densities are uniformly in S bounded,

and hence by corollary 4.55, ‖f ∗ ρk,t‖L and thus the F k,t := ck ·
∑n
l=1 αlcl · (f ∗q ρl,t) are Lipschitz

continuous with ‖Fk,t‖L ≤ C · (1 + ln(S)) uniformly in t on any fixed [0, T ]. In lemma 2.10, we saw

that for time-independent forces, we can bound ‖ϕk,t‖L by an exponential bound with exponential

growth proportional to the Lipschitz constant of the force, which in case of generalization to

time-dependent forces would amount approximately to ln(S). Unfortunately, it turns out that

this growth is too fast to obtain good estimates as S → ∞, so we need to improve. The crucial

idea is to punish deviations in space, which are rather easy to control, harder than deviations in

momentum. Thus, we introduce the auxiliary flows φk,t :=
(
φ1
k,t, φ

2
k,t

)
, where

φ1
k,t :=

√
ln(S) ·ϕ1

k,t, φ2
k,t := ϕ2

k,t.

Then clearly, ‖ϕk,t‖L ≤ ‖φk,t‖L, i.e. we can try to control ‖φk,t‖L instead. Indeed, this works out
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3 PROPAGATION OF CHAOS

very well: For x, y ∈ R6, k ∈ [n] and t ∈ (0, T ),

∂+
t |φk,t(x)− φk,t(y)| ≤

∣∣∂+
t

(
φ1
k,t(x)− φ1

k,t(y)
)∣∣+

∣∣∂+
t

(
φ2
k,t(x)− φ2

k,t(y)
)∣∣

=
√

ln(S) ·
∣∣∂+
t

(
ϕ1
k,t(x)− ϕ1

k,t(y)
)∣∣+

∣∣∂+
t

(
ϕ2
k,t(x)− ϕ2

k,t(y)
)∣∣

≤
√

ln(S) · 1
m

∣∣ϕ2
k,t(x)− ϕ2

k,t(y)
∣∣+
∣∣Ft(ϕ1

k,t(x)
)
−Ft

(
ϕ1
k,t(y)

)∣∣
≤
√

ln(S) · 1
m ·
∣∣ϕ2
k,t(x)− ϕ2

k,t(y)
∣∣+
∥∥Ft∥∥L

·
∣∣ϕ1
k,t(x)− ϕ1

k,t(y)
∣∣

≤
√

ln(S) · 1
m ·
∣∣φk,t(x)− φk,t(y)

∣∣+ C ln(S) ·
√

ln(S)
− 1

2 ·
∣∣φk,t(x)− φk,t(y)

∣∣
≤
√

ln(S) ·
(

1
m + C

)
· |φk,t(x)− φk,t(y)| .

By Grønwall’s lemma, we obtain, using ϕk,0 = idR6 and thus |φk,0(x)−φk,0(y)| ≤
√

ln(S) · |x− y|,∣∣φk,t(x)− φk,t(y)
∣∣ ≤√ln(S) · e(

1
m+C)

√
ln(S) t· |x− y| ,

showing that ‖φk,t‖L ≤
√

ln(S) · e(
1
m+C)

√
ln(S) t and consequently the same bound holds for

‖ϕk,t‖L. Thus, for h ∈ BL(R6) with ‖h‖BL ≤ 1, we have by remark 4.64 (d) that

‖h ◦ ϕk,t‖BL ≤
(

1 +
√

ln(S)
)
· e(

1
m+C)

√
ln(S) t.

Inserting this in (3.10) and assuming S ≥ 3 shows that

dBL(µemp,t, µt) ≤ C
√

ln(S) · e(
1
m+C) ·

√
ln(S) t· dBL(µemp,0, µ0).

We have therefore shown the following result:

Lemma 3.5. Under our general notation, it holds that

dBL(µemp,t, µt) ≤ C
√

ln(S) · e(
1
m+C) ·

√
ln(S) t· dBL(µemp,0, µ0).

Remark 3.6. This result is the first building block on the way to theorem 3.4. It is of entirely

deterministic nature and corresponds to proposition 9.2 in [28]. Note that by this estimate, the

bounded Lipschitz distance between the empirical measure evolving according to the regularized

mean field force and the solution to the regularized Vlasov-Poisson system grows slower than any

positive power of S.

Now, let us turn to the more involved control on the first term in (3.8). To get an estimate on

dBL(µemp,t, µemp,t), it suffices to show that typically, the trajectories Ψt(Z) of the true system and

the trajectories of a system evolving to the mean field flow Φt defined by (3.9) stay close. We will

prove this by the following theorem:

Theorem 3.7. Let T > 0, δ ∈ (0, 1
3 ) and assume that u0 satisfies hypothesis A. Then for every

γ > 0, there is some Cγ > 0 such that provided (Zik)(k,i)∈[n]×N are independent and for k ∈ [n],

(Zik)i∈N are identically distributed by the law uk,0 for all k ∈ [n],

P
[{
ω ∈ Ω : sup

0≤t≤T

∣∣Ψt(Z(ω))− Φt(Z(ω))
∣∣ ≥ S−δ}] ≤ Cγ ·S−γ .

Indeed, this directly yields an estimate for the bounded Lipschitz distance of the corresponding

empirical measures:
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3.2 THE COULOMB CASE WITH CUT-OFF

Corollary 3.8. Under the hypotheses of theorem 3.7,

P
[{
ω ∈ Ω : sup

0≤t≤T
dBL(µωemp,t,µ

ω
emp,t) ≥ S−δ

}]
≤ Cγ ·S−γ .

Proof. Recall that for µ, ν ∈ (P(R6))n, dBL(µ, ν) = max {dBL(µk, νk) : k ∈ [n]}. Hence it suffices

to prove that for every N ∈ N and X = (X1, . . . , XN ), Y = (Y1, . . . , YN ) ∈ R6N , defining

µ := 1
N

∑N
i=1 δXi and ν := 1

N

∑N
i=1 δYi , dBL(µ, ν) ≤ |X − Y | (as before, we use the maximum

norm on Rd unless otherwise stated). Note that for every i ∈ [N ], dBL(δXi , δYi) = |Xi − Yi|.
Indeed, for any g ∈ BL(R6) with ‖g‖BL = 1,∣∣∣∣ˆ

Rd
g (dδXi − dδYi)

∣∣∣∣ = |g(Xi)− g(Yi)| ≤ ‖g‖BL· |Xi − Yi| = |Xi − Yi| .

Consequently, by the triangle inequality,

dBL(µ, ν) ≤ 1

N

N∑
i=1

dBL(δXi , δYi) ≤
1

N

N∑
i=1

|X − Y | = |X − Y | .

So, we have to estimate the deviation between trajectories which evolve according to the flow Ψt

for (3.3) and trajectories which evolve according to the mean field flow Φt induced by the solution

u to the Vlasov equation with cut-off Coulomb interactions (3.6). By hypothesis, (Zik)(k,i)∈[n]×N
are independent random variables such that for every k ∈ [n], (Zik)i∈N are identically distributed

with corresponding probability densities uk,0 on phase space R6. Then for k ∈ [n] and i ∈ [Nk],

the random variables defined by the stochastic process Zik(ω, t) := ϕk,t(Z
i
k(ω)) are measurable

(continuous) functions of Zik. In particular, (Zik( · , t))(k,i)∈[n]×N are still independent (see [19, p.

71]), and the law corresponding to Zik(ω, t) has the probability density given by the solution uk,t
of the Vlasov equation: For B ∈ B(R6) and i ∈ [Nk], by (3.5),

P
({
ω ∈ Ω : Zik(ω, t) ∈ B

})
= P

({
ω ∈ Ω : Zik(ω) ∈ (ϕk,t)

−1(B)
})

= µk,0
(
(ϕk,t)

−1(B)
)

= µk,t(B)

=

ˆ
B

uk,t dx.

Thus, we are in a setting to apply various forms of the law of large numbers, which in fact we will

soon do.

Recall that we want to bound the probability that |Ψt(Z(ω)− Φt(Z(ω))| is large. As for obtaining

the estimate on the second term in 3.8, it turns out that deviations in space are much easier

to control than deviations in the momentum component. Hence, we again use the anisotropic

scaling which punishes deviations in position much more than these in momentum here as well.

Consequently, the quantity which we intend to get some control on is

P
({

ω ∈ Ω : sup
0≤t≤T

∆(ω, t)

}
≥ S−δ

)
,

where the stochastic process ∆ is defined via

∆ : Ω× [0, T ]→ R,

(ω, t) 7→
√

ln(S) ·
∣∣Ψ1

t (Z(ω))− Φ1
t (Z(ω))

∣∣+
∣∣Ψ2

t (Z(ω))− Φ2
t (Z(ω))

∣∣. (3.11)

For fixed ω ∈ Ω, by corollary 4.19 and remark 4.2 (f), it follows that the map ∆ω : [0, T ] → R,

t 7→ ∆(ω, t) is continuous and right-sided differentiable on (0, T ) with right-continuous right-sided
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3 PROPAGATION OF CHAOS

derivative because t 7→ Ψt(Z(ω)), t 7→ Φt(Z(ω)) are continuously differentiable. On the other hand,

∆t : Ω → R, ω 7→ ∆(ω, t) is measurable for every t ∈ [0, T ] as a composition of measurable and

continuous maps (recall from lemma 2.10 that Ψt,Φt are even Lipschitz continuous). Consequently,

∆ is Carathéodory in the sense of definition 4.34.

Our first idea might be to directly find a Grønwall-type estimate for P
(
sup0≤t≤T ∆(ω, t) ≥ S−δ

)
because for t = 0 it actually takes the value 0 (Ψ0 = Φu0 = idR6N ). However, since expectation

values are in general better-behaved (“smoother”) than probabilities, we take an approach via the

expectation value of another, associated stochastic process: We define

J : Ω× [0, T ]→ R, (ω, t) 7→ min

{
1, sup

0≤s≤t

[
eλ
√

ln(S) (T−s) ·
(
Sδ·∆(ω, s) + Sδ−

1
3

)]}
,

where λ > 0. Later, λ will be chosen appropriately to optimize our result. In order to keep the

arguments in the sequel comprehensive, we introduce even more stochastic processes Ω×[0, T ]→ R,

namely

I(ω, t) : = eλ
√

ln(S) (T−t) ·
(
Sδ·∆(ω, t) + Sδ−

1
3

)
,

R(ω, t) : = sup
0≤s≤t

I(ω, s).

With this notation, obviously J = min {1, R}. The following observations are crucial:

Remark 3.9.

(1) Since ∆(ω, t) ≥ 0 for all (ω, t) ∈ Ω× [0, T ], we see that I ≥ 0 and therefore 0 ≤ J ≤ 1.

(2) S ≥ 1, so ln(S) ≥ 0 and therefore eλ
√

ln(S) (T−s) ≥ 1 for all s ∈ [0, T ] (note that λ > 0). Thus,

J(ω, t) < 1 implies that ∆(ω, s) < S−δ for all 0 ≤ s ≤ t.

(3) The map Jω : [0, T ]→ R, t 7→ J(ω, t) is obviously non-decreasing for every ω ∈ Ω.

(4) J is Carathéodory, and Jω is right-continuously right-sided differentiable on (0, T ) for all

ω ∈ Ω: We have already seen that ∆ is Carathéodory and ∆ω is continuous and right-sided

differentiable with right-continuous right-sided derivative for every ω ∈ Ω. Combining this

with remark 4.2 (f) (right-sided differentiation rules) and lemma 4.21 (right-sided derivative

of the supremum), we obtain continuity and right-continuous right-sided differentiability for

Iω and Rω. With corollary 4.17 (right-sided derivative of the minimum), we see that Jω is

continuous and right-sided differentiable on (0, T ) with right-continuous right-sided derivative.

On the other hand, for t ∈ [0, T ], ∆t, It : Ω→ R are measurable as compositions of continuous

maps with the measurable map Z. In particular, I is Carathéodory. Using lemma 4.35, we see

that Rt is measurable, and therefore Jt is measurable.

For fixed time t ∈ [0, T ], let us define At ⊂ Ω as the subset of initial states which have the property

that the trajectories of the microscopic and the mean field flow stay close for all times between 0

and t:

At := {ω ∈ Ω : |J(ω, t)| < 1}. (3.12)

Note that At = J−1
t ((−∞, 1)) ⊂ Ω is measurable by (4). By (2) in our above remark, ω ∈ At

guarantees that ∆(ω, s) < S−δ for all s ∈ [0, t], so the description is indeed suitable. However,
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3.2 THE COULOMB CASE WITH CUT-OFF

it turns out that being in At is not sufficient to give good bounds on the the growth of ∆t and

hence of Jt. Actually, in order to obtain sufficient control, we also need that the microscopic and

mean field force and the respective gradients are close on mean field trajectories. We define the

corresponding sets

Bt : =
{
ω ∈ Ω :

∣∣F (Φ1
t (Z(ω))

)
−Ft

(
Φ1
t (Z(ω))

)∣∣ < S−
1
3

}
,

Ct : =
{
ω ∈ Ω :

∣∣G(Φ1
t (Z(ω))

)
−Gt

(
Φ1
t (Z(ω))

)∣∣ < 1
}
,

(3.13)

where F,Ft, G,Gt : R3N → R3N are defined in (3.7). That Bt, Ct ⊂ Ω are measurable for ev-

ery t ∈ [0, T ] follows directly from measurability of Z and (Lipschitz-) continuity of the maps

F,Ft, G,Gt,Φt : R3N → R3N and | · | : R3N → R (for F,G this is clear, for Ft,Gt it follows from

lemma 2.9, and for Φt from applying lemma 2.10 component-wise).

We first show that as S → ∞, both P [Bc
t ] and P [Cc

t ] decay faster than any negative power of S

uniformly in t ∈ [0, T ], i.e. for any γ > 0, there is some Cγ > 0 independent of S such that

max
{
P [Bc

t ] ,P [Cc
t ]
}
≤ C ·S−γ ∀t ∈ [0, T ].

This implies that

P [Bt ∩ Ct] = 1− P [Bc
t ∪ Cc

t ] ≥ 1− (P [Bc
t ] + P [Cc

t ]) ≥ 1− 2Cγ ·S−γ .

In other words, initial conditions in Bt ∩ Ct are typical provided that each particle type occurs

in a sufficiently large number (and all particles are independently chosen initially). In order to

prove this, we use a version of the law of large numbers (basically a high order Markov inequality,

stated and proved in section 4.7) which fits exactly our purposes. The following theorem will

find immediate application: By our discussion in section 4.3, for every k ∈ [n] and i ∈ [Nk], the

probability density corresponding to Z1,i
k (ω, t) = ϕ1

k,t(Z
i
k) = π1(ϕk,t(Z

i
k)) is given by ρuk,t. Hence,

the Y ik in the following theorem should be regarded as ϕ1
k,t ◦ Zik.

Theorem 3.10. Let (Ω,A,P) a probability space and (Y ik )(k,i)∈[n]×N be independent random vec-

tors Y ik : Ω → R3 such that for fixed k ∈ [n], (Y ik )i∈N are identically distributed with associated

probability density ρk ∈ L∞(R3). Moreover, for α ∈ {2, 3} and k, l ∈ [n], let hαk,l ∈ BL(R3;R3)

satisfy a Sαδ -condition with constant |ck,l| > 0. Let δ ∈ (0, 1
3 ), β ∈ R and define

D :=

ω ∈ Ω : max
k∈[n]

max
i∈[Nk]

∣∣∣∣∣∣ 1

N

n∑
l=1

Nl∑
j=1

(
hαk,l(Y

i
k (ω)− Y jl (ω))− (hαk,l ∗ ρl)(Y ik (ω))

)∣∣∣∣∣∣ ≥ S−β
.

Provided that β < 1−δ
2 in case α = 2 and β < 1−3δ

2 in case α = 3, the probability of D goes to 0

with an arbitrary negative power of S, i.e. for all γ > 0, there is some Cγ > 0 only depending on

γ, α, maxk∈[n] ‖ρk‖∞ and maxk,l∈[n] |ck,l| such that

P [D] ≤ Cγ ·S−γ ∀S ∈ N. (3.14)

Proof. For k, l ∈ [n] and i ∈ [Nk] let

Dik,l : =

ω ∈ Ω :

∣∣∣∣∣∣ 1

N

Nl∑
j=1

(
hαk,l(Y

i
k (ω)− Y jl (ω))− (hαk,l ∗ ρl)(Y ik (ω))

)∣∣∣∣∣∣ ≥ n−1·S−β
.
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Since hαk,l is by assumption Lipschitz-continuous, so is hαk,l ∗ρl for k, l ∈ [n] by lemma 2.9, and thus

these maps are in particular measurable. As measurability is preserved under taking finite linear

combinations and countable suprema and therefore in particular finite maxima, measurability of

D,Dik,l ⊂ Ω is shown.

If we regard hαk,l as a pair interaction, we interpret Dik,l as the subset of initial conditions for which

the microscopic and the mean field force on the i-th particle of type k coming from particles of

type l are not close. Let

Dl :=
⋃
k∈[n]

⋃
i∈[Nk]

Dik,l.

Then Dl contains all initial conditions for which the microscopic and the mean field force created by

particles of type l differ strongly on at least one particle. Since (Y jl )j∈N are identically distributed,

we obtain

P [Dl] ≤
n∑
k=1

Nk∑
i=1

P
[
Dik,l

]
≤ n ·max

k∈[n]

Nk∑
i=1

P
[
Dik,l

]
≤ n ·max

k∈[n]

(
Nk ·P

[
D1
k,l

])
.

Next, we claim that D ⊂
⋃
l∈[n]Dl: Heuristically, the deviation between the true interaction and

the mean field force can only be large if the share generated by at least one type of particles does

so. Indeed, assume that ω 6∈
⋃
l∈[n]Dl =

⋃
l∈[n]

⋃
k∈[n]

⋃
i∈[Nk]Dik. Then for all k, l ∈ [n] and

i ∈ [Nk], ω 6∈ Dik,l, i.e.∣∣∣∣∣∣ 1

N

Nl∑
j=1

(
hαk,l(Y

i
k (ω)− Y jl (ω))− (hαk,l ∗ ρl)(Y ik (ω))

)∣∣∣∣∣∣ < n−1·S−β .

It follows that for all k ∈ [n], i ∈ [Nk],∣∣∣∣∣∣ 1

N

n∑
l=1

Nl∑
j=1

(
hαk,l(Y

i
k (ω)− Y jl (ω))− (hαk,l ∗ ρl)(Y ik (ω))

)∣∣∣∣∣∣
≤ n ·max

l∈[n]

∣∣∣∣∣∣ 1

N

Nl∑
j=1

(
hαk,l(Y

i
k (ω)− Y jl (ω))− (hαk,l ∗ ρl)(Y ik (ω))

)∣∣∣∣∣∣
< n·n−1·S−β = S−β ,

i.e. ω 6∈ D. To estimate P
[
D1
k,l

]
, we check that the assumptions of our high order Markov inequality

(theorem 4.57) are satisfied. For fixed k, l ∈ [n] and i ∈ [Nk], let us define

Xj
k,l : Ω→ R3, ω 7→ hαk,l(Y

1
k (ω)− Y jl (ω))− (hαk,l ∗ ρl)(Y 1

k (ω)).

We have already argued that the Xj
k,l are measurable, and as measurable functions of the i.i.d

variables (Y jl )j∈N, (Xj
k,l)j∈N are also i.i.d. By boundedness of hk,l, also hk,l ∗ ρk are bounded, and

thus clearly ‖Xj
k,l‖∞ <∞. Note that by construction,

D1
k,l =

ω ∈ Ω :

∣∣∣∣∣∣ 1

Nl

Nl∑
j=1

Xj
k,l

∣∣∣∣∣∣ ≥ n−1·S−β
. (3.15)
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3.2 THE COULOMB CASE WITH CUT-OFF

Since Y 1
k and Y jl are independent with associated probability densities ρk resp. ρl, for every m ∈ N,

E
[(
Xj
k,l

)m]
=

ˆ
R3×R3

(
hαk,l(x− y)− (hαk,l ∗ ρl)(x)

)m · ρk(x) ρl(y) dx dy.

In particular, for m = 1, with Fubini’s theorem,

E
[
Xj
k,l

]
=

ˆ
R3×R3

(
hαk,l(x− y)− (hαk,l ∗ ρl)(x)

)
· ρk(x) ρl(y) dx dy

=

ˆ
R3

(ˆ
R3

hαk,l(x− y) · ρl(y) dy −
ˆ
R3

(hαk,l ∗ ρl)(x) · ρl(y) dy

)
· ρk(x) dx

=

ˆ
R3

(
hαk,l ∗ ρl)(x)− (hαk,l ∗ ρl)(x)

)
· ρk(x) dx

=

ˆ
R3

0 dx = 0.

Moreover, using lemma 4.51, there are constants C, C̃α > 0 depending only on maxk,l∈[n] ck,l,

maxk∈[n] ‖ρk‖∞ such that for m ≥ 2 and α ∈ {2, 3},∣∣∣E [(Xj
k,l

)m]∣∣∣ ≤ ˆ
R3

∣∣∣∣ˆ
R3

(
hαk,l(x− y)− (hαk,l ∗ ρl)(x)

)m · ρl(y) dy

∣∣∣∣ · ρk(x) dx

≤
ˆ
R3

∣∣∣((hαk,l − (hαk,l ∗ ρl)(x)
)m ∗ ρl) (x)

∣∣∣ · ρk(x) dx

≤ sup
x∈R3

∥∥(hαk,l − (hαk,l ∗ ρl)(x)
)m ∗ ρl∥∥∞

≤ C · C̃mα S(αm−3)δ · (1 + δα,3 ln(S))m

= CS−3δ ·
(
C̃α S

αδ · (1 + δα,3 ln(S)
)m
.

This shows that we can apply theorem 4.57 in order to estimate (3.15), and using S ≤ Nk for all

k ∈ [n], we obtain for α = 2 and S large enough

P
[
D1
k,l

]
≤M2M+1C̃2M

2 (S2δ)2M (nSβ)2MN−2M
l

(
Nl CS

−3δ
)M ≤C ·SM(4δ+2β−3δ)N−Ml

≤CSM(4δ+2β−3δ−1+ 1
M )N−1

l =C ·S−M(1−δ−2β− 1
M )N−1

l

because for M ≥ 1, N−M+1
l ≤ S−M+1 and Nl S

−3δ ≥ S1−3δ S→∞−−−−→ ∞, i.e. for δ < 1
3 and S big

enough, Nl CS
−3δ ≥ 1 and hence max

{
1, (Nl CS

−3δ
}

= Nl CS
−3δ. Consequently, for α = 2, we

finally arrive at

P [D] ≤
n∑
l=1

P [Dl] ≤ n2·max
k∈[n]

{
Nl ·P

[
D1
k,l

]}
≤C ·S−M(1−δ−2β− 1

M ).

Since for β < 1−δ
2 , ε := 1− δ − 2β > 0 and hence we see that

lim
M→∞

M(1− δ − 2β − 1
M ) ≥ lim

M→∞
M · ε2 = +∞,

we must only choose M large enough to guarantee M(1− δ−2β− 1
M ) ≥ γ in order to prove (3.14)

with Cγ = C for S large enough. Clearly, this proves the claim for all S ∈ N with a modified

constant Cγ .

For α = 3, we obtain from an analogous calculation that

P
[
D1
k,l

]
≤ C · (1 + ln(S))2M ·S−M(1−3δ−2β− 1

M )N−1
l
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3 PROPAGATION OF CHAOS

and consequently

P [D] ≤
n∑
l=1

P [Dl] ≤ n2·max
k∈[n]

{
Nl ·P

[
D1
k,l

]}
≤C · (1 + ln(S))2M ·S−M(1−3δ−2β− 1

M ).

Since for β < 1−3δ
2 , 1− 3δ − 2β := 4ε > 0, for M large enough, 1− 3δ − 2β − 1

M > 3ε and hence

by lemma 4.76,

lim
M→∞

S−M(1−3δ−2β− 1
M ) · (1 + ln(S))

2M ≤ lim
M→∞

S−3Mε · (1 + ln(S))2M

= lim
M→∞

S−Mε ·
(

1 + ln(S)

Sε

)2M

≤ S−Mε

for S large enough. Consequently, choosing M > γ
ε , the claim follows for S large enough, and

hence again for all S ∈ N with a modified constant.

Lemma 3.11. For u0, (Zik)(k,i)∈[n]×N as in theorem 3.7, T > 0 and γ > 0 arbitrary, there is

Cγ > 0 such that for all 0 ≤ t ≤ T and S ∈ N,

P [Bt] ≤ Cγ ·S−γ , P [Ct] ≤ Cγ ·S−γ ,

where Bt, Ct were defined in (3.13)

Proof. Let f ∈ BL(R3;R3) the regularized Coulomb force and g ∈ BL(R3;R3) the local Lipschitz

field to f defined in lemma 4.73. Then f satisfies a S2
δ -condition, and g satisfies a S3

δ -condition by

lemma 4.73. Observe that for ω ∈ Ω,∣∣F (Φ1
t (Z(ω)

)
−Ft

(
Φ1
t (Z(ω))

)∣∣ = max
k∈[n]

max
i∈[Nk]

∣∣∣F ik,t(Φ1
t (Z(ω))

)
−Fik,t

(
Φ1
t (Z(ω))

)∣∣∣
= max
k∈[n]

max
i∈[Nk]

∣∣∣∣∣∣ 1

N

n∑
l=1

Nl∑
j=1

ckcl f
(
Z1,i
k (ω, t)− Z1,j

l (ω, t)
)
−

n∑
l=1

αl · ckcl (f ∗q ul,t)(Z1,i
k (ω, t))

∣∣∣∣∣∣
= max
k∈[n]

max
i∈[Nk]

∣∣∣∣∣∣ 1

N

n∑
l=1

Nl∑
j=1

ckcl f
(
Z1,i
k (ω, t)− Z1,j

l (ω, t)
)
− 1

N

n∑
l=1

Nl∑
j=1

ckcl (f ∗q ul,t)(Z1,i
k (ω, t))

∣∣∣∣∣∣
= max
k∈[n]

max
i∈[Nk]

∣∣∣∣∣∣ 1

N

n∑
l=1

Nk∑
j=1

(
ckcl f

(
Z1,i
k (ω, t)− Z1,j

l (ω, t)
)
− (ckcl f ∗q ul,t) (Z1,i

k (ω, t)
)∣∣∣∣∣∣ ,

where we used that αl = Nl
N = 1

N ·
∑Nl
j=1 1. Note that by our general hypothesis A, the spatial

densities ‖ρuk,t‖∞ are bounded uniformly in S ∈ N, t ∈ [0, T ] by a constant only depending on T

and u0. Consequently, since 1−δ
2 >

1− 1
3

2 = 1
3 , by theorem 3.10 with α = 2, β = 1

3 and hαk,l = ckcl f ,

P [Bt] = P
[{
ω ∈ Ω :

∣∣F (Φ1
t (Z(ω))

)
−Ft

(
Φ1
t (Z(ω))

)∣∣ ≥ S− 1
3

}]
≤ Cγ ·S−γ ,

where Cγ does depend only on u0 and T . By almost the same calculation, replacing f by g, since
1−3δ

2 > 0, with α = 3 and β = 0 we obtain P [Ct] ≤ Cγ ·S−γ .

Now let us turn to the proof of the main theorem. Note that for every ω ∈ Ω,

J(ω, 0) = min
{

1, eλ
√

ln(S)T ·
(
Sδ · 0 + Sδ−

1
3

)}
S→∞−−−−→ 0 (3.16)
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3.2 THE COULOMB CASE WITH CUT-OFF

is deterministically small because δ − 1
3 < 0 and S is large (see also lemma 4.76). Consequently,

E [J0] is also bounded by the r.h.s. of (3.16). Our method is to control the right-sided time

derivative of the map [0, T ] → R, t 7→ E [Jt] in order to obtain that E [Jt] stays small. If this is

the case, then since Jt ≥ 0, we get that P [Jt ≥ 1] is small, which in turn shows that P
[
∆t ≥ S−δ

]
is small for every 0 ≤ t ≤ T , i.e. the true and mean field trajectories typically stay close.

Proof of theorem 3.7. Let us compute the right-sided derivative of E [Jt]. We will split Ω into three

parts determined by the sets At, Bt and Ct such that we can get control either on the size of the

sets or the rate of change of Jt on these sets:

∂+
t E [Jt] = ∂+

t

(ˆ
Ω

J(ω, t) dP(ω)

)
=

ˆ
Ω

∂+
t J(ω, t) dP(ω) = E

[
∂+
t J
]

= E
[
∂+
t J | Ac

t

]
+ E

[
∂+
t J | (At \ (Bt ∩ Ct))

]
+ E

[
∂+
t J | (At ∩ Bt ∩ Ct)

]
.

However, we need to justify the interchange of integration and right-sided differentiation (we have

already discussed that for every ω ∈ Ω, J(ω, · ) is right-continuously right-sided differentiable).

Taking a closer look at the calculations in the following proof, we see that we can bound
∣∣∂+
t J(ω, t)

∣∣
uniformly in ω (and even uniformly in t ∈ [0, T ]) by some constant (which grows with S, however,

this is not a problem here): from (3.18), by Grønwall’s lemma (theorem 4.3) we obtain a bound

on ∆ which does not depend on ω ∈ Ω. Again using (3.18), this yields a bound on ∂+
t ∆(ω, t), and

from (3.17), we finally obtain a uniform bound on ∂+
t I(ω, t) and therefore on ∂+

t J(ω, t). Clearly,

the bound can be chosen to be uniform in, say, t ∈ [0, T + 1]. Since P is a probability measure,

we may apply theorem 4.10, and hence interchanging integration and right-sided differentiation is

justified.

Now, we can start with the detailed estimates. Fix t ∈ (0, T ).

(a) For ω ∈ Ac
t , it holds that J(ω, t) = 1. We have already observed that J(ω, t) is non-decreasing

in t, however, J(ω, t) is already maximal, showing that ∂+
t J(ω, t) = 0 and consequently

E
[
∂+
t J | Ac

t

]
= 0.

(b) This time, let ω ∈ At \ (Bt ∩ Ct). By corollary 4.17 and lemma 4.21, together with the right-

sided differentiation rules mentioned in remark 4.2 (f), we obtain 0 ≤ ∂+
t J(ω, t) ≤ ∂+

t I(ω, t)

with

∂+
t I(ω, t) = eλ

√
ln(S) (T−t) ·

(
−λ
√

ln(S) ·
(
Sδ ·∆(ω, t) + Sδ−

1
3

)
+ Sδ · ∂+

t ∆(ω, t)
)
. (3.17)

Moreover,

∂+
t ∆(ω, t) ≤

√
ln(S) ·

∣∣Ψ2
t

(
Z(ω))− Φ2

t (Z(ω))
)∣∣+

∣∣F (Ψ1
t (Z(ω))

)
−Ft

(
Φ1
t (Z(ω))

)∣∣
≤
√

ln(S) ·∆(ω, t) + ‖F‖∞ +
∥∥Ft∥∥∞. (3.18)

Since ω ∈ At \ (Bt ∩ C), ∆(ω, t) < S−δ (see remark 3.9 (2)), with lemma 3.3 we can conclude

that

∂+
t ∆(ω, t) ≤

√
ln(S) ·S−δ + C1S

2δ + C2 ≤ C3 ·S2δ

for S ≥ 1 and C3 > 0 large enough because the map
√

ln(S) ·S−δ is bounded on [1,∞) (see

lemma 4.76). Therefore,

∂+
t I(ω, t) ≤ eλ

√
ln(S) (T−t) ·

(
λ
√

ln(S) ·
(
Sδ ·S−δ + Sδ−

1
3

)
+ Sδ ·C3S

2δ
)

≤ eλ
√

ln(S)T ·
(
C4 ·S3δ

)
,
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where we used that also the map S 7→ λ
√

ln(S) · (S−3δ +S−
1
3−δ) is bounded on [1,∞) (this is

a direct consequence of lemma 4.76).

Now, let γ > 0 be arbitrary, choose ε > 0 and define γ̃ := γ + 3δ + ε. According to lemma

3.11, we can find Cγ̃ > 0 such that P [Bc
t ∪ Cc

t ] ≤ Cγ̃ ·S−γ̃ , and with the observation that

At \ (Bt ∩ Ct) ⊂ Ω \ (Bt ∩ Ct) = Bc
t ∪ Cc

t , it follows that

E
[
∂+
t J | (At \ (Bt ∩ Ct))

]
≤ eλ
√

ln(S)T ·C4S
3δ ·Cγ̃S−γ−3δ−ε ≤ C5 ·S−γ

because S 7→ eλ
√

ln(S)T ·S−ε is bounded for S ∈ [0,∞), also by lemma 4.76.

(c) Finally, let ω ∈ At ∩ Bt ∩ Ct. We want to proceed as in (b), however, this time we need to get

much better estimates for ∂+
t ∆(ω, t) because we expect that initial conditions in At ∩ Bt ∩ Ct

are typical. The part in (b) where our estimate was bad was the difference between the true

force and the mean field force (last step of (3.18)). Let us try to do better here, using that

ω ∈ Bt ∩ Ct. By the triangle inequality,∣∣F (Ψ1
t (Z(ω)))−Ft(Φ1

t (Z(ω)
∣∣

≤
∣∣F (Ψ1

t (Z(ω)))− F (Φ1
t (Z(ω)))

∣∣+
∣∣F (Φ1

t (Z(ω)))−Ft(Φ1
t (Z(ω)))

∣∣. (3.19)

The second summand is bounded by S−
1
3 because ω ∈ Bt, see definition 3.13 and lemma 3.11.

On the other hand, for the first summand, we compute for every k ∈ [n], i ∈ [Nk]∣∣F ik,t(Ψ1
t (Z(ω)))− F ik,t(Φ1

t (Z(ω)))
∣∣

≤
n∑
l=1

Nl∑
j=1

|ck,l| ·
∣∣f(Ψ1,i

k,t(Z(ω))−Ψ1,j
l,t (Z(ω))

)
− f

(
Φ1,i
k,t(Z(ω))− Φ1,j

l,t (Z(ω))
)∣∣.

Now, we observe that by definition of ∆ (see 3.11),∣∣(Ψ1,i
k,t(Z(ω))−Ψ1,j

l,t (Z(ω))
)
−
(
Φ1,i
k,t(Z(ω))− Φ1,j

l,t (Z(ω))
)∣∣

≤
∣∣Ψ1,i

k,t(Z(ω))− Φ1,i
k,t(Z(ω))

∣∣+
∣∣Ψ1,j

l,t (Z(ω))− Φ1,j
l,t (Z(ω))

∣∣
≤ 2√

ln(S)
·∆(ω, t).

Since ω ∈ At, by remark 3.9 (2) we know that ∆(ω, t) < S−δ, and for S large enough

(S ≥ e16), |
(
Ψ1,i
k,t(Z(ω))−Ψ1,j

l,t (Z(ω))
)
−
(
Φ1,i
k,t(Z(ω))− Φ1,j

l,t (Z(ω))
)
| < 1

2S
−δ. With lemma

4.73 and lemma 3.11 again, this time for Ct,∣∣F ik,t(Ψ1
t (Z(ω)))− F ik,t(Φ1

t (Z(ω)))
∣∣

≤ 1

N

n∑
l=1

Nl∑
j=1

|ck,l| · g
(
Φ1,i
k,t(Z(ω))− Φ1,j

l,t (Z(ω))
)
· 2√

ln(S)
·∆(ω, t)

≤ 2√
ln(S)

·∆(ω, t) ·
(
1 +

∣∣(g ∗ ρk,t)(Φ1,i
k,t(Z(ω)

∣∣)
≤ 2√

ln(S)
·∆(ω, t) · (1 + ‖g‖∞) ≤ 2√

ln(S)
·∆(ω, t) · (C · (1 + ln(S)))

≤ C7 ·∆(ω, t) ·
√

ln(S)
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for S ≥ 3, where we used ω ∈ Ct in the second step and lemma 3.3 in the third step. Putting

everything together, we arrive at

∂+
t I(ω, t) ≤ eλ

√
ln(S) (T−t) ·

[(
−λ
√

ln(S)
)
·
(
Sδ ·∆(ω, t) + Sδ−

1
3

)
+Sδ ·

(√
ln(S) ·∆(ω, t) + S−

1
3 + C7∆(ω, t)

√
ln(S)

)]
= eλ
√

ln(S) (T−t) ·Sδ
√

ln(S) ·
[
(−λ+ 1 + C7) ·∆

(
ω, t) + (−λ+ 1√

ln(S)

)
·S− 1

3

]
.

Choosing λ ≥ C7 + 1 and S big enough, wee see that ∂+
t I(ω, t) ≤ 0 and therefore

E
[
∂+
t J | At ∩ Bt ∩ Ct

]
= 0.

Consequently, only (b) gives a positive contribution, and aggregating all results we get

∂+
t E [Jt] ≤ Cγ ·S−γ .

for all t ∈ [0, T ] and arbitrary γ > 0. In particular, by Grønwall’s lemma 4.3,

E [JT ]− E [J0] ≤ TCγ ·S−γ .

Since Ψ0 = Φ0 = idR6N , ∆(ω, 0) = 0 for all ω ∈ Ω and hence

I(ω, 0) = eλ
√

ln(S)T ·Sδ− 1
3 = SλT ·

1
ln(S)

+δ− 1
3
n→∞−−−−→ 0

by lemma 4.76. We could now directly apply Grønwall’s lemma and get that E [Jt]
S→∞−−−−→ 0 and

therefore P
(
∆t ≥ S−δ

)
≤ P [Jt ≥ 1] ≤ E [Jt]

S→∞−−−−→ 0, where we applied the common Markov

inequality. However, note that the bound which we obtained for the growth of E [Jt] is much

better than the one for E [J0], so we try to get even more: Choose S large enough such that

E
(
J0

)
= eλ
√

ln(S)T ·Sδ− 1
3 ≤ 1

2 ; this is possible by lemma 4.76. By the Markov inequality, this time

applied to the non-negative random variable JT − J0, it follows that

P
[{
ω ∈ Ω : JT (ω)− J0(ω) ≥ 1

2

}]
≤ 2E [JT − J0] ≤ 2TCγ ·S−γ .

On the other hand, for JT (ω)−J0(ω) < 1
2 , with J0(ω) < 1

2 , we obtain JT (ω) < 1 and consequently

JT (ω)− J0(ω) ≥ eλ
√

ln(S)T ·Sδ · sup
0≤t≤T

∆(ω, t) ≥ Sδ · sup
0≤t≤T

∆(ω, t),

i.e. sup0≤t≤T ∆(ω, t) ≤ 1
2S
−δ. Consequently, sup0≤t≤T ∆(ω, t) can only be larger than S−δ if

JT (ω)− J0(ω) ≥ 1
2 , and consequently for S large enough,

P
[{
ω ∈ Ω : sup

0≤t≤T
∆(ω, t) ≥ S−δ

}]
≤ 2C ·S−γ .

This, together with corollary 3.8, constitutes the second, hardest building block. There are still

two other, smaller building blocks. One of them is only an application of theorem 4.48 with ε

chosen as a suitable function of S, which together with the first building block gives corollary 9.4

in [28] and the proof of which can almost literally be taken from the paper because we can reduce

everything to components. Moreover, as in proposition 9.1 in [28], we can estimate the difference

between solutions of the Vlasov-Poisson system and corresponding solutions to the Vlasov-Poisson

equation with cut-off, i.e. (3.4) with f replaced by the Coulomb kernel resp. without modification,
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for the same initial conditions. Note that is is there where the measure preserving property of the

flow of a solution to the Vlasov-Poisson equation, i.e. the results of section 4.9, are crucial. The

computation is in fact similar to the one executed for building block 1 and can be taken from [28]

without noteworthy modification. We just state the result here, which of course again relies on the

validity of our assumptions stated in section 2.3.

Theorem 3.12. Let T > 0 and u0 = (u1,0, . . . , un,0) satisfy our general assumptions A from

definition 3.2. Then there is some C > 0 such that for S ≥ 3,

dBL(µt, νt) ≤ S−δ · eC
√

ln(S)·t ∀t ∈ [0, T ].

Note that this is again an entirely deterministic result.

Consequently, we have collected all the building blocks for theorem 3.4. Actually, since for all the

terms occurring in (3.8), we have shown convergence in probability as announced in the beginning

of the section, it follows that solutions of (1.4) with regularized Coulomb interactions converge

in probability to the solution of the Vlasov-Poisson system, measured in the bounded Lipschitz

distance. As already mentioned in the beginning of this chapter, a more precise analysis for the

rate of convergence can be obtained by following the proof of corollary 9.4 and the proof of theorem

4.4. thereafter in [28] almost literally because the results we got in the building blocks are virtually

the same for n particles (provided the initial conditions for all particles are given by realizations of

independent random variables) as they are for n = 1. In summary, propagation of chaos holds in

probability, more precisely with the rate of convergence as stated in theorem 3.4. This is certainly

an interesting result, and the techniques used for obtaining it are rather new and thus maybe not

yet exhausted, so we might hope that in future, cutoffs and estimates can be improved further.

This is also highly desirable because yet, the physical significance of the results is rather low

because still the average particle distance in the system is such that they “feel” the cut-off, i.e. the

regularized microscopic model deviates too heavily from the true microscopic model. Nevertheless,

the results are a milestone on the hopefully successful way to extend the yet achieved results to

cut-offs which converge to the true interaction at a much faster rate and therefore finally give a

complete and convincing derivation of the Vlasov equation from the microscopic time evolution,

therefore theoretically justifying the application of the Vlasov equation in the scenarios in which

it is already used.
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4 Appendix: Mathematical Resources

4.1 One-sided differentiability

In the course of the main text, we have frequently encountered situations with a need for bounds on

various time-dependent quantities. However, in these cases, the quantity of interest is in general not

differentiable, which a priori prevents us from applying useful results from single-variable calculus

such as the well-known Grønwall’s lemma in differential form (see e.g. [14, p. 708 f.]) or the mean

value theorem of differentiation (cf. [3, p. 169]). Hence, we seek for a notion slightly more general

than differentiability for which important results from the theory of differentiable functions of one

variable are - possibly in a weaker form - still valid. It turns out that one-sided differentiability

provides a convenient generalization of differentiability to tackle this task. Therefore, in this

section, we want to derive some auxiliary results on one-sided differentiable functions. The main

results will be a remarkable generalization of the above-mentioned Grønwall’s lemma and a weak

version of the mean value theorem of differentiation, leading to a result concerning the interchange

of one-sided differentiation and integration.

In the following section, we will sometimes talk about differentiability of maps defined on non-

open subsets of R. In this case, we follow the convention from definition 4.59, which defines

differentiability on an arbitrary subset of R by existence of a differentiable extension on an open

subset of R.

Definition 4.1. We call a subset I ⊂ R right-open if for every t ∈ I, there is some δ > 0 such

that [t, t+ δ] ⊂ I. Let I ⊂ R right-open and f : I → Rd a map.

(i) We say that f is right-continuous in t ∈ I if for all (hn)n∈N ⊂ R+ such that t + hn ∈ I
for all n ∈ N and limn→∞ hn = 0,

lim
n→∞

f(t+ hn) = f(t).

In short form, we will also write limn→∞ f(tn) = f(t) ∀ (tn)n∈N ↘ t.

(ii) We call f right-sided differentiable in t ∈ I if there is some a ∈ Rd such that for all

(hn)n∈N ⊂ R+ satisfying t+ hn ∈ I for all n ∈ N and limn→∞ hn = 0,

lim
n→∞

1

hn

(
f(t+ hn)− f(t)− hn · a

)
= 0.

In this case, we call f ′,+(t) := ∂+
t f(t) := d

dt+ f(t) := a the right-sided derivative of f in

t ∈ I.

If f is right-continuous in all t ∈ I, we say that f is right-continuous. Analogously, we call f

right-sided differentiable if this property holds for all t ∈ I.

In the sequel, unless specified otherwise, I will always denote a right-open subset of R.
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Remark 4.2.

(a) By the definition of a right-open set, we see that the conditions for right-continuity and right-

sided differentiability are always non-empty.

(b) It is straightforward to check that I ⊂ R is a right-open interval if and only if there are a, b ∈ R
with a < b such that

I ∈ {R, (−∞, b), [a, b), (a, b), [a,∞), (a,∞)}.

(c) Obviously, every continuous function on I is right-continuous, and by our notion of differentia-

bility on I (definition 4.59) and remark 4.60, every differentiable function on I is right-sided

differentiable, with its right-sided derivative coinciding with the (classical) derivative. More-

over, it is readily checked that the right-sided derivative is unique provided it exists.

(d) Just as it is the case for continuous functions from I to Rd, we can characterize right-continuity

by an appropriate ε-δ-criterion: f is right-continuous on I if and only if

∀ε > 0 ∀t ∈ I ∃δ > 0 : s ∈ [t, t+ δ] ∩ I ⇒ |f(s)− f(t)| < ε.

The proof can almost literally be taken from the corresponding proof for (classical) continuity

in any elementary calculus textbook.

(e) Let us define a right-sided analogue for the little-o-notation: For δ > 0 and g : (0, δ)→ R, we

say g ∈ o(h+) if for all (hn)n∈N ⊂ (0, δ) with limn→∞ hn = 0, it holds that g(hn)
hn

n→∞−−−−→ 0. Note

that this definition can be regarded as being independent of δ because convergence is only deter-

mined by the backmost elements of a sequence. Now, we observe that f : I → Rd is right-sided

differentiable in t ∈ I iff there is some (then unique) a ∈ Rd such that for δ > 0 small enough

(namely such that [t, t + δ) ⊂ I) and r defined by r : (0, δ) → R, h 7→ f(t + h) − f(t) − h · a,

we have r ∈ o(h+).

(f) The common limit theorems for sums and products of sequences directly imply that sums

and products of right-continuous resp. right-sided differentiable functions f, g : I → R are

right-continuous resp. right-sided differentiable, and in the latter case, the corresponding

differentiation rules hold. In particular, the right-sided derivative is a linear operator. However,

note that in general, the analogue to the chain rule for compositions of right-sided differentiable

functions fails to hold: one can easily convince oneself that it is necessary that the inner function

is non-decreasing in order to ensure bare existence of the considered limit. On the other hand,

for g right-sided differentiable at t and f differentiable at g(t), it is clear from the proof of

the classical result (see e.g. [2, p. 305 f.]) that f ◦ g is right-sided differentiable at t, with

(f ◦ g)′,+(t) = f ′(g(t)) · g′,+(t).

(g) All the definitions can easily be modified with “left” replacing “right”, and usually the results in

the following remain valid when formulated accordingly, which can be seen either by adapting

the definition/proof in the obvious way or applying our results to f(− · ) : −I → R, which is

obviously right-continuous resp. right-sided differentiable iff f is left-continuous resp. left-sided

differentiable.

Directly from the first definitions, we can prove the announced generalization of Grønwall’s lemma:
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Theorem 4.3 (Grønwall’s lemma, generalized differential form). Let t0, T ∈ R, T > t0, and

f : [t0, T ] → R a continuous map which is right-sided differentiable on (t0, T ). Moreover, assume

that g, h : [t0, T ]→ R are continuous functions such that

f ′,+(t) ≤ g(t) · f(t) + h(t) ∀t ∈ (t0, T ).

Then for all t ∈ [t0, T ],

f(t) ≤ exp

(ˆ t

t0

g(s) ds

)
·
[
f(t0) +

ˆ t

t0

exp

(
−
ˆ s

t0

g(τ) dτ

)
·h(s) ds

]
. (4.1)

Corollary 4.4. Under the hypotheses of theorem 4.3 with the additional assumption that g, h ≥ 0,

f(t) ≤ exp

(ˆ t

t0

g(s) ds

)
·
(
f(t0) +

ˆ t

t0

h(s) ds

)
∀t ∈ [t0, T ]. (4.2)

Proof. Clear.

Proof of theorem 4.3. Let u(t) denote the r.h.s. of (4.1) for t ∈ [t0, T ], which is well-defined

because all involved integrands are continuous and thus bounded on the compact interval [t0, T ];

in particular, they are integrable on any sub-interval of [t0, T ]. Using continuity of g and h and

the (classical) fundamental theorem of calculus, one can readily check that u is differentiable and

the (unique) solution to the initial value problem

u′(t) = g(t) · f(t) + h(t), u(t0) = f(t0) (4.3)

on [t0, T ] in the sense of definition 4.61. It remains to prove that f(t) ≤ u(t) for all t ∈ (t0, T ),

since there is nothing to prove for t = t0, and the case t = T follows from continuity of f and u

(conservation of weak inequalities under taking limits, an argument that will abundantly and often

hiddenly be used in the sequel). For ε > 0, let hε : [t0, T ] → R, t 7→ h(t) + ε, and uε denote the

solution of (4.3) with f(t0) replaced by f(t0) + ε and h replaced by hε. By looking at uε, namely

the r.h.s of (4.1) with the said substitutions, we immediately deduce from continuity of all involved

functions that for fixed t ∈ [t0, T ],

u(t) = lim
ε↘0

uε(t).

Hence we need only prove that for all ε > 0 and t ∈ (t0, T ), f(t) ≤ uε(t). Assume for contradiction

that for some ε > 0, there exists t ∈ (t0, T ) such that f(t) > uε(t). Define

τ := inf
{
t ∈ (t0, T ) : f(t) > uε(t)

}
∈ [t0, T ).

Note that actually τ > t0 because f(t0) < f(t0) + ε = uε(t0) and f, uε are continuous. Now, the

crucial observation is that continuity of f, uε also implies that f(τ) = uε(τ): on the one hand, by

definition of τ , f(t) ≤ uε(t) for all t < τ , so f(τ) ≤ uε(τ). On the other hand, we can rule out

that f(τ) > uε(τ) because otherwise due to continuity of f, uε we could find some δ > 0 such that

f(s) > uε(s) for all s ∈ (τ − δ, τ + δ), contradicting the infimum property of τ . Consequently,

f(τ) = uε(τ), and thus by definition of the infimum there is a sequence (tn)n∈N ⊂ (τ, T ) such that

tn ↘ τ and f(tn) > uε(tn) for all n ∈ N. For n ∈ N, define an := tn − τ > 0. Then clearly

tn = τ + an ∈ (τ, T ) for all n ∈ N, and an ↘ 0 as n → ∞. We use (an)n∈N as a tester for the

right-sided derivative of f at τ :
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f ′,+(τ) = lim
n→∞

1

an

(
f(τ + an)− f(τ)

)
≥ lim
n→∞

1

an

(
uε(τ + an)− uε(τ)

)
= u′ε(τ)

= g(τ) ·uε(τ) + (h(τ) + ε) = g(τ) · f(τ) + h(τ) + ε

> g(τ) · f(τ) + h(τ),

yielding the desired contradiction.

Note that the initial condition uε(t0) = f0 + ε allowed us to dispense with the requirement of

right-sided differentiability in t0 with the corresponding bound on the right-sided derivative there.

The method which we used in the proof of Grønwall’s lemma suggests that we can even show a

more general result, which will be very useful for estimating the growth of functions with other

bounds on their right-sided derivatives:

Theorem 4.5. Let t0 ∈ R, a, b > 0, p0 ∈ R and F ∈ C([p0 − b, p0 + b]× [t0, t0 + a]). Define

α := min
{
a, b ‖F‖−1

∞
}
> 0. Consider the IVP

u′(t) = F (u(t), t), u(t0) = p0. (∗)

By Peano’s existence theorem (see e.g. [20, p. 10]), there exists a solution of (∗) (in the sense

of definition 4.61) defined on [t0, t0 + α]. Even more is true: By [20, p. 25], (∗) has a maximal

solution u0 on [t0, t0+α] in the sense that every other solution u(t) of (∗) defined on [t0, δ] for some

δ > 0 satisfies u(t) ≤ u0(t) for all t ∈ [t0, t0 + min {α, δ}]. Now, assume that v : [t0, t0 +α]→ R is

a continuous map which is right-sided differentiable on (t0, t0 + α) satisfying v(t0) = p0 and

v′,+(t) ≤ F (v(t), t) ∀t ∈ (t0, t0 + α).

Under these hypotheses, it holds that

v(t) ≤ u0(t) ∀t ∈ [t0, t0 + α].

Proof. W.l.o.g. let F 6≡ 0 (we could handle this easily with the previous Grønwall’s lemma). By

continuity of v, u0, it suffices to prove the claim for every 0 < α′ < α. Consequently, let 0 < α′ < α

and N ∈ N such that

N ≥ 1 + α′

b− α′ ‖F‖∞
,

which is well-defined because α ≤ b ‖F‖−1
∞ and therefore b ≥ α ‖F‖∞ > α′ ‖F‖∞. Then for any

n ≥ N , the IVP

u′n(t) = F (un(t), t) +
1

n
, un(t0) = p0 +

1

n
(∗∗)

has a solution un on [t0, t0 +α′]: Let t̃0 := t0, p̃0 := p0 + 1
n , ã := a, b̃ := b− 1

n . In our notation, we

omit the n-dependence of the parameters for the sake of readability. We also define Fn := F + 1
n

on [t0, t0 + ã]× [p̃0 − b̃, p̃0 + b̃] (for the corresponding n, of course). Observe that b̃ > 0 because

1

n
≤ 1

N
≤
b− α′ ‖F‖∞

1 + α′
=

b

1 + α′
−
α′ ‖F‖∞
1 + α′

< b,

and that [t̃0, t̃0 + ã]× [p̃0− b̃, p̃0 + b̃] = [t0, t0 +a]× [p0− b+ 2
n , p0 + b] ⊂ [t0, t0 +α]× [p0− b, p0 + b].

Consequently, Fn is well-defined and continuous with ‖Fn‖∞ ≤ ‖F‖∞+ 1
n . Using α′ < α ≤ b‖F‖−1

∞
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and therefore b−1 ‖F‖∞ < (α′)
−1

, we obtain

b̃ · ‖Fn‖−1
∞ =

b− 1
n

‖F‖∞ + 1
n

≥
b− b−α′‖F‖∞

1+α′

‖F‖∞ +
b−α′‖F‖∞

1+α′

=
b+ α′b− b+ α′ ‖F‖∞

‖F‖∞ + α′ ‖F‖∞ + b− α′ ‖F‖∞
= α′.

This finally shows that α′ ≤ min
{
ã, b̃ · ‖Fn‖−1

∞
}

. Since (∗∗) is nothing but the IVP

u′n(t) = Fn(un(t), t), un(t̃0) = p̃0,

Peano’s existence theorem does indeed provide us a solution un on [t0, t0 + α′] for n ≥ N .

By theorem I.2.4 in [20, p. 4] (which is itself basically a consequence of the Arzelà-Ascoli theorem,

to be found on the very same page), there is a subsequence (nk)k∈N of (n)n≥N and a solution u of

(∗) such that

sup
{
|unk(t)− u(t)| : t ∈ [t0, t0 + α′]

} k→∞−−−−→ 0.

In particular, for all t ∈ [t0, t0 + α′], unk(t)
k→∞−−−−→ u(t).

Recall that we want to prove v(t) ≤ u0(t) for all t ∈ (t0, α
′). Since u(t) ≤ u0(t), it suffices to

show that v(t) ≤ u(t) for all t ∈ (t0, t0 + α′), which in turn is true provided v(t) ≤ un(t) for all

n ≥ N and all t ∈ (t0, t0 + α′). Assume for contradiction that there is some n ≥ N and some

t ∈ (t0, t0 + α′) such that v(t) > un(t). Let

τ := inf
{
t ∈ (t0, t0 + α′) : v(t) > un(t)

}
∈ [t0, t0 + α′).

By proceeding as in the proof of theorem 4.3, we may conclude that τ > t0 and

v′,+(τ) ≥ u′,+n (τ) = F (un(τ), τ) +
1

n
= F (v(τ), τ) +

1

n
> F (v(τ), τ),

which yields the desired contradiction.

Remark 4.6.

(a) Going through the proof of the previous theorem with v := u0, one obtains that u0 ≤ u, i.e.

in fact we constructed the maximal solution u0 = u as pointwise (even uniform) limit of the

subsequence unk in the proof. Moreover, we could apply the theorem to see that actually the

whole sequence (un)n≥N is non-increasing and therefore converges pointwise (even uniformly)

to u0 = u.

(b) Grønwall’s lemma is indeed a special case of theorem 4.5, with F (z, t) := g(t) · z+h(t) defined

on [−C,C]× [t0, T ] for C > 0 large enough, since the unique (F is Lipschitz continuous in z)

and therefore maximal solution u(t) to the IVP

u′(t) = g(t) ·u(t) + h(t) = F (u(t), t), u(t0) = u0

on [t0, T ] is given by the r.h.s. of (4.1).

(c) A less general version of this theorem, which requires right-sided differentiability of v with the

corresponding bound on v′,+0 also in t0 and uniqueness of the solution for (∗), can be found

in [38, p. 425 f.]. We are going to adapt the nomenclature and sometimes call theorem 4.5

comparison theorem from now on.
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Let us finally mention one small adaption of theorem 4.5:

Corollary 4.7. Under the hypotheses of theorem 4.5, let us slightly change the assumptions in the

sense that we do not require u0 to be a maximal solution anymore, and instead assume that v is

right-sided differentiable also in t0, with

v′,+(t) < F (v(t), t) ∀t ∈ [t0, t0 + α).

Then the conclusions of theorem 4.5 remain true.

Proof. Again, we assume for contradiction that for some solution u of the IVP (∗) and some

t ∈ (t0, t0 + α), v(t) > u(t). Defining τ accordingly, this time we only get τ ∈ [t0, t0 + α), and we

arrive at the contradiction

v′,+(τ) ≥ u′,+(τ) = F (u(τ), τ) = F (v(τ), τ).

The following theorem provides an analogue for the mean value theorem of differentiation for right-

sided differentiable functions. One can actually prove it from scratch (see e.g. [27]), however, with

our general version of Grønwall’s lemma at hand, the proof can be given in a much shorter way:

Theorem 4.8. Let g : [a, b]→ R be continuous and right-sided differentiable on (a, b), then there

are ξ, ξ′ ∈ (a, b) such that

g′,+(ξ) ≤ g(b)− g(a)

b− a
≤ g′,+(ξ′).

In particular, for all s, t ∈ [a, b] with s > t,

inf
{
g′,+(τ) : τ ∈ (t, s)

}
≤ g(s)− g(t)

s− t
≤ sup

{
g′,+(τ) : τ ∈ (t, s)

}
.

Proof. We first claim that if g satisfies g(a) = g(b) = 0, then there is some ξ ∈ (a, b) with

g′,+(ξ) ≥ 0. Indeed, assume for contradiction that g′,+(t) < 0 for all t ∈ (a, b). Applying corollary

4.4 with g ≡ h ≡ 0, we obtain g(t) ≤ g(a) = 0 for all t ∈ [a, b]. However, g ≡ 0 on [a, b] yields

g′,+(t) = 0 for all t ∈ (a, b) and hence cannot be the case. Thus, we find some ξ ∈ (a, b) with

g(ξ) < 0. Using corollary 4.4 again, this time on the interval [ξ, b], now shows that g(b) ≤ g(ξ) < 0,

yielding the desired contradiction. Note that by considering −g instead, we see that there is also

some ξ′ ∈ (a, b) with g′,+(ξ′) ≥ 0.

Inspired by the proof of the mean value theorem for differentiable functions, we now define

η : [a, b]→ R, t 7→ g(t)− g(a)− g(b)− g(a)

b− a
· (t− a).

Then obviously η(a) = η(b) = 0, and η is continuous and right-sided differentiable on (a, b)

with η′,+(t) = g′,+(t) − g(b)−g(a)
b−a (see the discussion in remark 4.2 (f)). Hence, from the initial

claim we obtain existence of some ξ ∈ (a, b) such that η′,+(ξ) ≤ 0, which shows the inequality

g′,+(ξ) ≤ g(b)−g(a)
b−a . Likewise for the other inequality.

From this version of the mean value theorem (or, alternatively, from theorem 4.5), we can prove

the (intuitively clear) statement that maps with smaller right-sided derivative do not outrun maps

with larger right-sided derivative:
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Corollary 4.9. Let f, g : [a, b] → R be continuous and right-sided differentiable on (a, b) with

f(a) ≤ g(a) and f ′,+(t) ≤ g′,+(t) for all t ∈ (a, b). Then f(t) ≤ g(t) for all t ∈ [a, b].

Proof. Define h(t) := f(t)− g(t) on [a, b], then h is continuous, right-sided differentiable on (a, b),

and

h′,+(t) = f ′,+(t)− g′,+(t) ≤ 0 ∀t ∈ (a, b).

By theorem 4.8, for all s, t ∈ [a, b] with s > t,

h(s)− h(t) ≤ (s− t) · sup
{
h′,+(τ) : τ ∈ (t, s)

}
≤ 0.

Hence, h is non-increasing, and with h(a) = f(a) − g(a) ≤ 0, we obtain h ≤ 0, which yields

f ≤ g.

Another important application of theorem 4.8 is that it allows us to prove interchangeability of

right-sided differentiation and integration under quite general assumptions:

Theorem 4.10. Let (Ω,A, µ) be a measure space, I ⊂ R right-open and f : Ω× I → R such that

(i) f( · , t) ∈ L1(Ω,dµ) for every t ∈ I,

(ii) f(ω, · ) : I → R is right-sided differentiable for all ω ∈ Ω, and

(iii) there is some g ∈ L1(Ω,dµ) such that for all ω ∈ Ω, there exists δω > 0 with

sup
{∣∣∂+

s f(ω, s)
∣∣ : s ∈ [t, t+ δω] ∩ I

}
≤ g(ω).

Then the map I → R, t 7→
ˆ

Ω

f(ω, t) dµ(ω) is right-sided differentiable with

∂+
t

(ˆ
Ω

f(ω, t) dµ(ω)

)
=

ˆ
Ω

∂+
t f(ω, t) dµ(ω) ∀t ∈ I.

Proof. Let t ∈ I and fix ω ∈ Ω. W.l.o.g. we may assume that [t, t+ δω] ⊂ I (I is right-open!). Let

(hn)n∈N ⊂ (0, δω] with hn ↘ 0. By theorem 4.8, for every n ∈ N,∣∣∣∣ 1

hn

(
f(ω, t+ hn)− f(ω, t)

)∣∣∣∣ ≤ sup
{∣∣∂+

s f(ω, s)
∣∣ : s ∈ [t, t+ hn]

}
≤ sup

{∣∣∂+
s f(ω, s)

∣∣ : s ∈ [t, t+ δω] ∩ I
}

≤ g(ω).

It follows that g is an integrable majorant for the sequence of measurable functions (gn)n∈N, where

gn := 1
hn

(f( · , t+ hn)− f( · , t)). By linearity of the integral and the dominated convergence

theorem (cf. [29, p. 19]), it follows that

∂+
t

(ˆ
Ω

f(ω, t) dµ(ω)

)
= lim
n→∞

ˆ
Ω

1

hn

(
f(ω, t+ hn)− f(ω, t)

)
dµ(ω)

=

ˆ
Ω

lim
n→∞

1

hn

(
f(ω, t+ hn)− f(ω, t)

)
dµ(ω)

=

ˆ
Ω

∂+
t f(ω, t) dµ(ω).
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Finally in this section, we prove that a version of the fundamental theorem of calculus still holds

for one-sided differentiable funtioos. However, in advance we must ensure that integrating a right-

continuous function makes sense:

Lemma 4.11. Let f : R→ R be right-continuous. Then f is (Borel-) measurable.

Proof. From measure theory, we know that it suffices to find a sequence of simple functions (fn)n∈N
which converges to f pointwise (see e.g. [8, p. 106]). Let us define

fn :=

n2+1∑
i=−n2−1

f
(
i+1
n

)
·1[ in ,

i+1
n ), n ∈ N.

Then (fn)n∈N is obviously a sequence of simple functions. Note that for all x ∈ R and n ∈ N,

x ∈
[ bnxc

n , bnxc+1
n

)
because of the obvious inequality byc ≤ y < byc+ 1 for y ∈ R, i.e. x ∈

[
i
n ,

i+1
n

)
for i = bnxc. Hence for n ≥ |x|, |bnxc| ≤ n2 + 1 (distinguish the cases x ≥ 0 and x < 0), and thus

|fn(x)− f(x)| =
∣∣∣f ( bnxc+1

n

)
− f(x)

∣∣∣ n→∞−−−−→ 0

by right-continuity because bnxc+1
n ↘ x as n→∞.

For a right-continuous map f defined on an interval, it is easy to extend f to a right-continuous and

hence measurable map f defined on R, and hence f is measurable as restriction of a measurable

function to a measurable set. Consequently, the following makes sense:

Lemma 4.12 (Fundamental theorem of calculus analogue for right-sided differentiable maps). Let

a, b ∈ R and f : [a, b]→ R be bounded and right-continuous on [a, b). Define

F : [a, b]→ R, t 7→
ˆ t

a

f(s) ds :=

ˆ
[a,t]

f(s) ds.

Then F is continuous and right-sided differentiable on [a, b) with right-sided derivative F ′,+ = f .

Proof. The expression on the r.h.s is well-defined because f is bounded and right-continuous and

therefore measurable by the previous discussion; in particular, it is integrable on bounded intervals

contained in [a, b]. Let us first prove continuity of F : for t ∈ [a, b] and (hn)n∈N ⊂ R such that

(hn)n∈N → 0 and t+ hn ∈ [a, b] for all n ∈ N, define fn := f ·1[t,t+hn], then fn
n→∞−−−−→ 0 pointwise

almost everywhere and |fn| ≤ |f | ·1[a,b] for all n ∈ N, therefore (f is integrable!) showing that

|f | ·1[a,b] is an integrable majorant. It follows by dominated convergence that

lim
n→∞

F (t+ hn) = lim
n→∞

ˆ t+hn

a

f(s) ds = lim
n→∞

(ˆ t

a

f(s) ds+

ˆ
R
fn(s) ds

)
= F (t) +

ˆ
R

0 ds = F (t).

Note that we used that integrals over singletons are zero because {t} is a Lebesgue null set for every

t ∈ R. Now, let t ∈ (a, b) and ε > 0. Choose δ > 0 such that for all s ∈ [t, t+ δ], |f(s)− f(t)| < ε;

this is possible by right-continuity of f (see remark 4.2 (iii)). Then for all 0 < h < δ,∣∣∣∣ 1h(F (t+ h)− F (t)
)
− h · f(t)

∣∣∣∣ =

∣∣∣∣∣ 1h
(ˆ t+h

t

(f(s)− f(t)) ds

)∣∣∣∣∣ ≤ 1

h

ˆ t+h

t

|f(s)− f(t)| ds ≤ ε.

Since ε > 0 was arbitrary, this yields the claim.
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Remark 4.13. Right-continuity alone does not imply boundedness and/or integrability, as can

be seen from considering the function

f : [−1, 1]→ R, t 7→
∞∑
n=1

n ·1[− 1
n ,−

1
n+1 )(t),

which is obviously right-continuous on (−1, 1), but not bounded/integrable on any neighbourhood

of 0 ∈ R.

Lemma 4.14. Let a, b ∈ R and f : [a, b]→ R be continuous and right-sided differentiable on (a, b)

with right-continuous and bounded right-sided derivative. Then for t ∈ [a, b],

f(t) = f(a) +

ˆ t

a

f ′,+(s) ds. (4.4)

Proof. Let g : [a, b] → R denote the r.h.s. of (4.4). Then f and g are continuous (for g this

follows from lemma 4.12) and obviously agree for t = a. Again by lemma 4.12, g is also right-sided

differentiable on (a, b) with g′,+ = f ′,+, i.e. for h := f − g, we have h′,+ ≡ 0 on (a, b). By applying

Grønwall’s theorem or the weak mean value theorem to both h and −h, we find that h ≡ 0 and

consequently f ≡ g on [a, b].

4.2 Some one-sided differentiable maps

In this section, we want to prove that for a large class of curves γ, the maps t 7→ |γ(t)| and

t 7→ supa≤s≤t γ(s) are right-sided differentiable. Moreover, we calculate bounds on the right-sided

derivatives in terms of the right-sided derivative of γ. This makes the results from the previous

section applicable to many proofs in the main text.

Lemma 4.15. Let I ⊂ R be right-open and f, g : I → R continuous and right-sided differentiable

with right-continuous right-sided derivatives. Define

h : I → R, t 7→ max {f(t), g(t)}.

Then h is also continuous and right-sided differentiable with right-continuous right-sided derivative,

and

h′,+(t) =


f ′,+(t), f(t) > g(t)

g′,+(t), f(t) < g(t)

max {f ′,+(t), g′,+(t)}, f(t) = g(t)

∀t ∈ I.

Proof. Let t ∈ I. We need to distinguish 3 cases:

(i) If f(t) 6= g(t) we may assume w.l.o.g. that f(t) < g(t). Then by right-openness of I and

continuity of f and g, there is some δ > 0 such that f(s) < g(s) for all s ∈ [t, t + δ] ⊂ I.

Hence, for all these s, h(s) = g(s) and therefore (locality of the right-sided derivative) clearly

h′,+(t) = g′,+(t). Note that this reasoning also shows that h′,+(s) = g′,+(s) for all s ∈ [t, t+δ),

so we also obtain right-continuity of h′,+ in t.

(ii) Next, consider the case f(t) = g(t) and f ′,+(t) 6= g′,+(t). W.l.o.g. let f ′,+(t) < g′,+(t). By

right-continuity of the right-sided derivatives, there is some δ > 0 such that f ′,+(s) < g′,+(s)

49



4 APPENDIX: MATHEMATICAL RESOURCES

for all s ∈ [t, t + δ] ⊂ I. From corollary 4.9, we deduce that f(s) ≤ g(s) for all s ∈ [t, t + δ],

i.e. h(s) = g(s) for these s. Again, it follows that h′,+(t) = g′,+(t) and h′,+(s) = g′,+(s) for

s ∈ [t, t+ δ), i.e. h′,+ is right-continuous in t.

(iii) Finally, suppose that f(t) = g(t) and f ′,+(t) = g′,+(t). Then for s > t,

f(s) = f(t) + f ′,+(t) · (s− t) + r1(s− t),
g(s) = g(t) + g′,+(t) · (s− t) + r2(s− t) = f(t) + f ′,+(t) · (s− t) + r2(s− t),

where r1, r2 ∈ o(h+) (see remark 4.2 (e)). This shows that for every s > t,

h(s) = f(t) + f ′,+(t) · (s− t) + r̃(s− t),

where r̃(s − t) := max {r1(s− t), r2(s− t)}. It follows that r̃ ∈ o(h+), so by uniqueness of

the right-sided derivative we obtain that h′,+(t) = f ′,+(t) = g′,+(t). But we have already

seen that h′,+(s) ∈ {f ′,+(s), g′,+(s)} for all s ∈ I (in any of the three distinguished cases), so

it follows from right-continuity of f ′,+ and g′,+ that h′,+ is right-continuous in t.

Lemma 4.16. Let I ⊂ R be right-open and f1, . . . , fn : I → R be right-sided differentiable with

right-continuous right-sided derivatives. Then

h : I → R, t 7→ max {fi(t) : i ∈ [n]}

is right-sided differentiable with right-continuous right-sided derivative, and

h′,+(t) = max
{
f ′,+i (t) : i ∈ [n], fi(t) = h(t)

}
∀t ∈ I.

Proof. For n = 1, there is nothing to prove, and for n = 2, the assertion is precisely the state-

ment of lemma 4.15, written in an aggregate form. Hence we only need to execute the induction

step n → n + 1. Let us assume that we have shown the assumption for n ≥ 2. Then since

max {fi : i ∈ [n]} and fn+1 are right-sided differentiable with right-continuous right-sided deriva-

tives, we can again apply lemma 4.15 and obtain

h′,+(t) = ∂+
t max

{
max {fi(t) : i ∈ [n]}, fn+1(t)

}
=


∂+
t max {fi(t) : i ∈ [n]}, max {fi(t) : i ∈ [n]} > fn+1(t)

f ′,+n+1(t), max {fi(t) : i ∈ [n]} < fn+1(t)

max
{
∂+
t max {fi(t) : i ∈ [n]}, f ′,+n+1(t)

}
, max {fi(t) : i ∈ [n]} = fn+1(t)

= max
{
f ′,+i (t) : fi(t) = h(t)

}
.

Corollary 4.17. Under the hypotheses of lemma 4.16, define

h : I → R, t 7→ min {fi(t) : i ∈ [n]}.

Then h is right-sided differentiable with right-continuous right-sided derivative, and

h′,+(t) = min
{
f ′,+i (t) : i ∈ [n], fi(t) = h(t)

}
∀t ∈ I.

Proof. By lemma 4.16, using the identity inf A = − sup(−A) for A ⊂ R, we obtain that for t ∈ I,

h′,+(t) = ∂+
t min {fi(t) : i ∈ [n]} = ∂+

t

(
−max {−fi(t) : i ∈ [n]}

)
= −max

{
−f ′,+i (t) : i ∈ [n], −fi(t) = max

{
−f ′,+i (t) : i ∈ [n]

}}
= min

{
f ′,+i (t) : i ∈ [n], fi(t) = h(t)

}
.

50



4.2 SOME ONE-SIDED DIFFERENTIABLE MAPS

We want to apply all that we have seen yet to the maximum norm on Rd:

Lemma 4.18. Let I ⊂ R be right-open and f1, . . . , fd : I → R be right-sided differentiable functions

with right-continuous right-sided derivatives. Define f := (f1, . . . , fd) : I → Rd. Then

h : I → R, t 7→ |f(t)| := max {|fi(t)| : i ∈ [d]}

is right-sided differentiable with right-continuous right-sided derivative, and∣∣h′,+(t)
∣∣ ≤ max

{∣∣f ′,+i (t)
∣∣ : |fi(t)| = h(t)

}
.

Proof. Apply lemma 4.16 to f1, . . . , f2d, where fd+i := −fi for i ∈ [d].

We will typically need this lemma in the following form:

Corollary 4.19. Let I ⊂ R be open and γ : (a, b)→ Rd a C1-curve. Then

∂+
t |γ(t)| ≤ |γ̇(t)| ∀t ∈ (a, b).

Proof. Clear.

Remark 4.20. The corollary can also be found in [38, p. 424], without requiring as much pre-

liminary work for the proof as we did here. However, in the course of the main text we also need

the more general version of lemma 4.15 for right-sided differentiable curves with right-continuous

right-sided derivatives, namely for the stochastic process Jω appearing in section 3.2, so it makes

sense to use the approach we pursued here.

Finally, let us check right-sided differentiability for one further class of functions:

Lemma 4.21. Let I := [a, b] ⊂ R a closed interval and g : I → R continuous and right-sided

differentiable on [a, b) with right-continuous right-sided derivative. Let

h : [a, b]→ R, t 7→ sup {g(s) : a ≤ s ≤ t}.

Then h is continuous. Moreover, it is right-sided differentiable on [a, b) with

h′,+(t) =

{
0, g(t) < h(t)

max {0, g′,+(t)}, g(t) = h(t)
.

In particular,

0 ≤ h′,+(t) ≤ max
{

0, g′,+(t)
}

∀t ∈ [a, b).

Proof. Note that h is well-defined (finite) and the supremum is actually a maximum since g is

continuous and [a, t] ⊂ R is compact and non-empty for all t ∈ [a, b]. We also observe that h is

non-decreasing with h(t) ≥ g(t) for all t ∈ [a, b].

First, we show left-continuity of h on (a, b]. Afterwards, we prove that h is right-sided differentiable

on [a, b); since this implies that h is right-continuous on [a, b), we also obtain continuity. For the

left-continuity of h, let t ∈ (a, b]. We distinguish between two cases:
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(1) If g(t) = h(t), given ε > 0 choose δ > 0 such that for all s ∈ I with |t− s| ≤ δ, |g(t)− g(s)| ≤ ε.
Then for all s ∈ [t− δ, t] ∩ I,

h(s) ≥ g(s) ≥ g(t)− ε = h(t)− ε.

Since h is non-decreasing, also h(s) ≤ h(t) holds, so altogether |h(t)− h(s)| ≤ ε for all

s ∈ [t− δ, t] ∩ I.

(2) In case g(t) < h(t), we can find some δ > 0 such that for all s ∈ I with |t− s| ≤ δ,

|g(t)− g(s)| ≤ 1
2 (h(t)− g(t)). Consequently,

sup
{
g(s) : t− δ ≤ s ≤ t

}
≤ g(t) + 1

2 (h(t)− g(t)) = h(t)− 1
2 (h(t)− g(t)) < h(t).

Therefore,

h(t) = max
{
h(t− δ), sup {g(s) : t− δ ≤ s ≤ t}

}
= h(t− δ).

But h is non-decreasing, so h(s) = h(t − δ) for all s ∈ [t − δ, t] ∩ I; in particular, h is left-

continuous in t.

Now, let us show that h is right-sided differentiable on the right-open interval [a, b). This time, we

distinguish between four cases:

(i) For the case g(t) < h(t), by right-openness of [a, b) and continuity of g there is some δ > 0

such that g(τ) < h(t) for all τ ∈ [t, t+ δ] ⊂ [a, b). Consequently, sup {g(s) : t ≤ s ≤ τ} ≤ h(t)

and therefore

h(τ) = max {h(t), sup {g(s) : t ≤ s ≤ τ}} = h(t) ∀τ ∈ [t, t+ δ].

This also implies that h′,+ ≡ 0 on [t, t+ δ).

(ii) If g(t) = h(t) and g′,+(t) < 0, by right-continuity of g′,+, there is some δ > 0 such that for

all s ∈ [t, t+ δ] ⊂ [a, b), g′,+(s) ≤ 0. Hence, by corollary 4.9, g(s) ≤ g(t) for all s ∈ [t, t+ δ],

showing that sup {g(s) : t ≤ s ≤ t+ δ]} ≤ g(t) = h(t) and thus

h(τ) = max
{
h(t), sup {g(s) : t ≤ s ≤ τ}

}
= h(t) ∀τ ∈ [t, t+ δ].

It follows that h′,+ ≡ 0 on [t, t+ δ).

(iii) For g(t) = h(t) and g′,+(t) > 0, by right-continuity of g′,+ there are some η, δ > 0 such that

g′,+ > η on [t, t+δ] ⊂ [a, b). With theorem 4.8, it follows that g is strictly increasing on [t, t+δ],

showing that sup {g(s) : t ≤ s ≤ τ} = g(τ) and thus h(τ) = g(τ) for all τ ∈ [t, t+ δ] ⊂ [a, b) .

This proves that h′,+ ≡ g′,+ on [t, t+ δ).

(iv) Finally, assume that g(t) = h(t) and g′,+(t) = 0. Then for s ∈ I with s > t, we have

g(s) = g(t) + g′,+(t) · (s− t) + r(s− t) = g(t) + r(s− t),

where r ∈ o(h+). Let ε > 0 be arbitrary and choose δ > 0 such that [t, t + δ] ⊂ [a, b) and∣∣∣ r(s−t)s−t

∣∣∣ < ε for all s ∈ (t, t+ δ]. Then for τ ∈ (t, t+ δ],

sup
{
g(s) : t < s ≤ τ

}
≤ sup

{
g(t) + (s− t) ·

∣∣∣ r(s−t)s−t

∣∣∣ : t < s ≤ τ
}
≤ h(t) + ε(τ − t).
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Consequently

h(t) ≤ h(τ) = max {h(t), sup {g(s) : t < s ≤ τ}} ≤ h(t) + ε(τ − t) ∀τ ∈ [t, t+ δ].

It follows that for every a ∈ (0, δ],∣∣∣∣1a (h(t+ a)− h(a)
)∣∣∣∣ ≤ 1

a
· (εa) = ε,

which proves that h′,+(t) = 0 = g′,+(t) since ε > 0 was arbitrary and the right-sided derivative

is unique. But we have seen in all four cases that h′,+(τ) ∈ {0, g′,+(τ)} for all τ ∈ [a, b), which

by right-continuity of g′,+ proves that g′,+ is right-continuous in t in this case as well.

4.3 Aspects in measure theory

In this section, we collect and derive concepts and results related to measure theory which put

methods from the main text into a more general or abstract setting and thus turn out to be useful

there because it gives some structure to the involved thoughts.

Definition 4.22 (Pushforward measure). Let (Ω1,A1, µ) a measure space, (Ω2,A2) a measurable

space and f : Ω1 → Ω2 a measurable map. We define the pushforward or image measure of µ

under f as

f#µ := µ ◦ f−1 : A2 → [0,∞), A 7→ µ(f−1(A)).

Lemma 4.23. Under the hypotheses of lemma 4.22, f#µ is indeed a measure on (Ω2,A2). More-

over, for every g : Ω2 → R measurable, g ∈ L1(Ω2; d(f#µ)) if and only if g ◦ f ∈ L1(Ω1; dµ), and

in this case,
ˆ

Ω2

g d(f#µ) =

ˆ
Ω2

g d(µ ◦ f−1) =

ˆ
Ω1

(g ◦ f) dµ. (4.5)

Proof. See [8, p. 190 f.].

Definition 4.24. Let (Ω,A,P) a probability space and X : Ω → Rd a random variable. We

say that X has probability density u (w.r.t. Lebesgue measure) if and only if the pushforward

measure X#P has probability density u w.r.t. Lebesgue measure, i.e. if u ∈ L1(Rd) and for any

B ∈ B(Rd),

PX(B) := (X#P)(B) =

ˆ
B

u(x) dx.

From measure theory, it is well-known that for µ a measure on Rd which has a density u w.r.t.

Lebesgue measure and g : Rd → R measurable, g ∈ L1(Rd; dµ) if and only if g ·u ∈ L1(Rd), and in

this case,
ˆ
Rd
g dµ =

ˆ
Rd
g ·udx.

The proof is a standard argument, called algebraic induction: first observe that by definition

this is true for indicator functions, then generalize to simple functions by linearity, and finally use

53



4 APPENDIX: MATHEMATICAL RESOURCES

monotone convergence and splitting into positive and negative part to show the claim for integrable

functions. We will often use this result without further mentioning in the sequel.

Our first important observation is a tight relationship between the expectation value of functions

of translates of a random variable and convolutions. In case the reader is not yet familiar with

convolutions or the notation, she should consider having a close look at definition 4.49.

Lemma 4.25. Let (Ω,A,P) be a probability space, X : Ω→ Rd a random variable and h : Rd → R
measurable. For y ∈ Rd, define

hy : Rd → R, x 7→ h(y − x).

Then the random variable hy ◦X has an expectation value if and only if hy ∈ L1(Ω; d(X#P)), and

in this case,

E [hy ◦X] = (h ∗ (X#P))(y). (4.6)

In particular, if X has probability density u, then

E [hy ◦X] = (h ∗ u)(y). (4.7)

Proof. Note that hy ◦X is indeed measurable because we can write it as composition of the two

measurable maps h,X and a (continuous and therefore measurable) euclidean motion. With lemma

4.23, we conclude that the l.h.s. of (4.6) is defined if and only if hy ∈ L1(Ω; d(X#P)), and under

these circumstances,

E [hy ◦X] =

ˆ
Ω

hy ◦X dP =

ˆ
Rd
hy d(X#P) =

ˆ
Rd
h(y − x) d(X#P)(x) = (h ∗ (X#P))(y).

This clearly implies (4.7), too.

Next, we want to consider marginals, which we need to formalize the operation ∗q occurring in the

main text.

Definition 4.26. Let (Ω,A, µ) be a measure space and assume that there are measurable spaces

(Ωi,Ai), i ∈ {1, 2} such that Ω = Ω1 × Ω2 and A = A1 ⊗A2, where

A1 ⊗A2 = σ ({B1 ×B2 : B1 ∈ A1, B2 ∈ A2})

is the σ-algebra generated by measurable rectangles, called product-σ-algebra. Then

π1(µ) : Ω1 → [0,∞], B1 7→ µ(B1 × Ω2), π2(µ) : Ω2 → [0,∞], B2 7→ µ(Ω1 ×B2)

are easily checked to be measures on Ω1 resp. Ω2. We call them first resp. second marginals

of µ.

Lemma 4.27. Under the hypotheses of definition 4.26, let f ∈ L1(Ω1; d(π1(µ))) and define

f̃ : Ω = Ω1 × Ω2 → R, (ω1, ω2) 7→ f(ω1).

Then f̃ ∈ L1(Ω; dµ), and ˆ
Ω

f̃ dµ =

ˆ
Ω1

f d(π1(µ)).
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Proof. First note that f̃ is A-measurable because for any B ⊂ R measurable,

f̃−1(B) = f−1(B)× Ω2 ∈ A1 ×A2 ⊂ A1 ⊗A2.

For B ∈ A1 and f = 1B an indicator function on Ω1, we have

f̃(ω1, ω2) = 1B(ω1) = 1B×Ω2
(ω1, ω2) ∀(ω1, ω2) ∈ Ω1 × Ω2 = Ω

and henceˆ
Ω

f̃ dµ = µ(B × Ω2) =
(
π1(µ)

)
(B) =

ˆ
Ω1

1B(ω1) d(π1(µ))(ω1) =

ˆ
Ω1

f d(π1(µ)).

By algebraic induction, the claim follows.

Lemma 4.28. Let d = d1 + d2 and µ be a finite measure on Rd = Rd1 ⊗ Rd2 which has Lebesgue

density u ∈ L1(Rd). Then π1(µ) has Lebesgue density ρ ∈ L1(Rd1), where

ρ(q) :=

ˆ
Rd2

u(q, p) dp for a.e. q ∈ Rd1 . (4.8)

Proof. By Fubini’s theorem (cf. [8, p. 185]), ρ ∈ L1(Rd1) is finite a.e., and for B ∈ B(Rd1),

(
π1(µ)

)
(B) = µ(B × Rd2) =

ˆ
Rd
1B×Rd2 ·udx =

ˆ
Rd1

(ˆ
Rd2

1B×Rd2 (q, p) ·u(q, p) dp

)
dq

=

ˆ
Rd1

1B(q) ·
(ˆ

Rd2
u(q, p) dp

)
dq =

ˆ
B

ρ(q) dq.

We will mainly need the previous results in the context of random variables:

Corollary 4.29. Let (Ω,A,P) a measure space and X : Ω→ Rd a random variable with probability

density u. Let d = d1 + d2 as above and define the random variable

π1 ◦X : Ω→ Rd1 , ω 7→ π1(X(ω)),

where π1 : Rd = Rd1 ×Rd2 → Rd1 , (q, p) 7→ q. Then π1(X) is distributed by the law π1(X#P). In

particular, it has probability density ρ w.r.t. Lebesgue measure, where ρ is defined by (4.8).

Proof. For B ∈ B(Rd1),

((π1 ◦X)#P)(B) = (P ◦ (π1 ◦X)−1)(B) =
(
(P ◦X−1) ◦ π−1

1

)
(B) = (X#P)(B × Rd2)

= (π1(X#P))(B).

The second claim now immediately follows from lemma 4.28.

To conclude the discussion of marginals, let us introduce a shorthand notation which we heavily

make use of in chapters 1–3:

Remark 4.30. On phase space R6 ∼= R3 × R3, for µ a finite measure on R6 and f : R3 → R3

measurable, we will often write f ∗q µ := f ∗ π1(µ), i.e. if f ∗ π1(µ) : R3 → R3 exists, then

(f ∗q µ)(q) =

ˆ
R3

f(q − q̃) d(π1(µ))(q̃) =

ˆ
R6

f̃(q − q̃, p̃) dµ(q̃, p̃),
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where we used the notation and statement of lemma 4.27. In particular, if µ has Lebesgue density

u ∈ L1(R6), by lemma 4.28,

(f ∗q µ)(q) =

ˆ
R3

f(q − q̃) · ρ(q̃) dq̃ = (f ∗ ρ)(q).

Our next measure theoretic topic is a short introduction to measure preserving maps, which we

will depend on when discussing our generalization of Liouville’s theorem in section 4.9.

Definition 4.31. Let (Ω,A, µ) a measure space. A measurable map Φ : Ω→ Ω is called measure

preserving (w.r.t. µ) if µ agrees with its pushforward under Φ, i.e. if

(Φ#µ)(B) = µ(B) ∀B ∈ A.

Remark 4.32. In case Φ is an invertible map with Φ−1 measurable, too, then Φ is measure

preserving if and only if Φ−1 is measure preserving: Assume that Φ is measure preserving, then

for every B ∈ A,

(Φ−1#µ)(B) = µ
(
(Φ−1)−1(B)

)
= µ(Φ(B)) = (Φ#µ)(Φ(B)) = (µ ◦ Φ−1)(Φ(B)) = µ(B).

By interchanging the roles of Φ and Φ−1, the other direction follows, too.

Lemma 4.33. A measurable map Φ on a σ-finite measure space (Ω,A, µ) is measure preserving

if and only if for every f ∈ L1(Ω; dµ), f ◦ Φ ∈ L1(Ω; dµ) withˆ
Ω

(f ◦ Φ) dµ =

ˆ
Ω

f dµ. (4.9)

Proof. The crucial observation is the identity 1C ◦ Φ = 1Φ−1(C) for all C ⊂ Ω, which is readily

checked.

”
⇐“: For B ∈ A with µ(B) <∞, clearly 1B ∈ L1(Ω; dµ), and by (4.9) and our observation,

(Φ#µ)(B) = µ(Φ−1(B)) =

ˆ
Ω

1Φ−1(B) dµ =

ˆ
Ω

(1B ◦ Φ) dµ =

ˆ
Ω

1B dµ = µ(B). (∗)

In case µ(B) =∞, let (Sn)n∈N ⊂ A with µ(Sn) <∞ for all n ∈ N and Sn ↗ Ω (existence of such

a sequence is precisely provided by the assumption of σ-finiteness), then also B ∩ Sn ↗ B, and

from continuity of a measure from below, we conclude

(Φ#µ)(B) = lim
n→∞

(Φ#µ)(B ∩ Sn) = lim
n→∞

µ(B ∩ Sn) = µ(B).

”
⇒“: Note that for Φ measure preserving w.r.t. µ, by the computation (∗), (4.9) holds for indicator

functions. Then apply algebraic induction.

The final part of this section introduces a definition which aggregates some important properties

of the stochastic processes ∆, J, I introduced in chapter 3.2.

Definition 4.34. Let (Ω,A) a measurable space and X,Y topological spaces. We equip X,Y with

their Borel-σ-algebras, which makes them measurable spaces as well. A map c : Ω × X → Y is

called Carathéodory function if
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(i) cω : X → Y, x 7→ c(ω, x) is continuous for all ω ∈ Ω, and

(ii) cx : Ω→ Y, ω 7→ c(ω, x) is measurable for all x ∈ X.

Lemma 4.35. Under the hypotheses of definition 4.34, assume additionally that X is separable

and Y = R. Then the map

f : Ω→ R, ω 7→ sup
x∈X

c(ω, x)

is measurable. In particular, this holds if X ⊂ R is an interval (and X is equipped with the subspace

topology induced by the standard topology on R, of course).

Proof. Let C ⊂ X a countable, dense subset. We first claim that

sω := sup
x∈X

c(ω, x) = sup
x∈C

c(ω, x) ∀ω ∈ Ω.

Indeed, fix ω ∈ Ω. Since X ⊃ C, “≥ ” is clear. On the other hand, if sω < ∞, let ε > 0 be

arbitrary, then by definition of the supremum there is some y ∈ X such that c(ω, y) > sω − ε.
By continuity of the map c(ω, · ), ((c(ω, · ))−1((sω − ε, sω + ε)) ⊂ X is open, and it is non-empty

because it contains y. Since C ⊂ X is dense, there is some z ∈ ((c(ω, · ))−1
(sω − ε, sω + ε)) ∩ C.

Consequently, supx∈C c(ω, x) ≥ c(ω, z) > sω − ε. But ε > 0 was arbitrary, so we also obtain

sω ≤ supx∈C c(ω, x). For sω =∞, one can argue in a similar fashion.

Since C ⊂ X is countable, we can write C =
⋃
n∈N {xn} for an appropriate sequence (xn)n∈N ⊂ X

and for n ∈ N define the map cn : Ω → R, ω 7→ c(ω, xn). Then by hypothesis, cn is measurable

for all n ∈ N, and

f(ω) = sup
x∈X

c(ω, x) = sup
x∈C

c(ω, x) = sup
n∈N

c(ω, xn) = sup
n∈N

cn(ω).

By [15, p. 17], f is measurable as the pointwise supremum of measurable functions X → R.

4.4 Bounded Lipschitz topics

Let d, d′ ∈ N and denote by M(Rd) be the space of finite, signed measures on Rd. This means

that any σ ∈M(Rd) can be written via σ = µ− ν where µ, ν ∈M+(Rd) are finite (classical/non-

negative) measures. We are going to need the following definitions:

Definition 4.36. We call a map f : Rd → Rd′ Lipschitz continuous if

‖f‖L := sup
x,y∈Rd
x6=y

|f(x)− f(y)|
|x− y|

<∞. (∗)

The class of bounded Lipschitz functions is then defined by

BL(Rd;Rd
′
) :=

{
f : Rd → Rd

′
: ‖f‖∞ <∞, ‖f‖L <∞

}
.

As usual, we write BL(Rd) in case d′ = 1.

57



4 APPENDIX: MATHEMATICAL RESOURCES

Remark 4.37.

(a) Since all norms on Rd and Rd′ are equivalent, the definition of BL(Rd;Rd′) does not depend on

the choice of norms on Rd resp. Rd′ . Unless mentioned otherwise, we will use the maximum

norm both on Rd and Rd′ in the sequel because it blends particularly well with treating product

spaces.

(b) In the literature, there are different conventions regarding the definition of Lipschitz continuity;

what we call Lipschitz continuity is sometimes also considered as global Lipschitz continuity,

by contrast to local Lipschitz continuity where (∗) is computed for fixed x and the bound on

the r.h.s. of (∗) may depend on x ∈ Rd.

(c) Note that by construction, |f(x)− f(y)| ≤ ‖f‖L· |x− y| for all x, y ∈ Rd. From this, we

see that every Lipschitz continuous map f is uniformly continuous (“δ = ε · ‖f‖−1
L ”) and in

particular continuous. Consequently, BL(Rd;Rd′) ⊂ Cb(Rd;Rd
′
).

(d) For d′′ ∈ N, f ∈ BL(Rd;Rd′) and g ∈ BL(Rd′ ;Rd′′), one has g ◦ f ∈ BL(Rd;Rd′′), with

‖g ◦ f‖BL ≤ max {‖g‖∞ , ‖f‖L· ‖g‖L}.

Indeed, it is clear that ‖g ◦ f‖∞ ≤ ‖g‖∞, and for x, y ∈ Rd,

|(g ◦ f)(x)− (g ◦ f)(y)| = |g(f(x))− g(f(y))| ≤ ‖g‖L · |f(x)− f(y)| ≤ ‖g‖L · ‖f‖L · |x− y| ,

which proves that ‖g ◦ f‖L ≤ ‖f‖L · ‖g‖L.

(e) Be aware that unlike one might expect from the notation, actually ‖ · ‖L is only a seminorm on{
f ∈ Abb(Rd;Rd′) : ‖f‖L <∞

}
, since for every c ∈ Rd′ , the map gc(x) := c obviously satisfies

‖gc‖L = 0.

(f) However, one can easily convince oneself that BL(Rd;Rd′) becomes a complete normed space

w.r.t. the norm ‖ · ‖BL := max {‖ · ‖∞ , ‖ · ‖L} and therefore with all the equivalent norms

‖ · ‖BL′ := |(‖ · ‖∞ , ‖ · ‖L)|∼ where | · |∼ is any norm on R2: that ‖ · ‖BL satisfies all require-

ments for a norm is obvious. Since ‖ · ‖BL is obviously stronger than ‖ · ‖∞, it is well-known

that any Cauchy sequence (fn)n∈N ⊂ BL(Rd;Rd′) ⊂ Cb(Rd;Rd
′
) w.r.t. ‖ · ‖BL converges uni-

formly to some f ∈ Cb(Rd;Rd
′
). The only thing that remains to prove is that f is Lipschitz-

continuous with ‖f − fn‖L
n→∞−−−−→ 0. Indeed, for every ε > 0, we can choose N ∈ N such that

‖fm − fn‖L ≤ ε for all m,n ≥ N . By uniform convergence and continuity of | · |, we obtain

that for all x, y ∈ Rd with x 6= y and all n ≥ N ,∣∣(f − fn)(x)− (f − fn)(y)
∣∣

|x− y|
= lim
m→∞

∣∣(fm − fn)(x)− (fm − fn)(y)
∣∣

|x− y|
≤ lim
m→∞

‖fm − fn‖L ≤ ε.

This proves that

‖f − fn‖L = sup
x,y∈Rd
x 6=y

∣∣(f − fn)(x)− (f − fn)(y)
∣∣

|x− y|
≤ ε.

Hence, we have indeed shown that ‖f − fn‖L
n→∞−−−−→ 0. Moreover, for, say, ε = 1 and

n ∈ N large enough such that ‖f − fn‖L < 1, we deduce from the triangle inequality that

‖f‖L ≤ ‖f − fn‖L + ‖fn‖L ≤ 1 + ‖fn‖L, i.e. ‖f‖L <∞, as claimed.
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Definition 4.38. For σ ∈M(Rd), we define the bounded Lipschitz norm

‖σ‖BL := sup
f∈BL(Rd)
‖f‖BL=1

ˆ
Rd
f dσ. (4.10)

Remark 4.39.

(a) Note that ‖ · ‖BL is well-defined: denoting by |σ| the total variation measure of σ (i.e. for

σ = µ − ν where µ, ν ∈ M+(Rd), |σ| = µ + ν) and using that |σ| is a finite, non-negative

measure, for every f ∈ BL(Rd) with ‖f‖BL = 1 we have

ˆ
Rd
|f | d|σ| ≤

ˆ
Rd
‖f‖∞ d|σ| = |σ|(Rd),

which shows that |‖σ‖BL| ≤ |σ|(Rd) < ∞. Since it is readily checked that f ∈ BL(Rd) if and

only if −f ∈ BL(Rd), with ‖f‖BL = ‖−f‖BL, it follows that

‖σ‖BL = sup
f∈BL(Rd)
‖f‖BL=1

∣∣∣∣ˆ
Rd
f dσ

∣∣∣∣ , (4.11)

in particular, ‖ · ‖BL ≥ 0. Moreover, it is clear that we could equivalently take the supremum

over all f ∈ BL(Rd) with ‖f‖BL ≤ 1 in (4.10).

(b) As the name suggests, ‖ · ‖BL actually defines a norm onM(Rd): We have already shown that

‖ · ‖BL :M(Rd)→ [0,∞). Absolute homogenicity and the triangle inequality are obvious using

(4.11). The only non-trivial task is to prove that ‖σ‖BL = 0 implies σ = 0. Let us briefly

sketch this: For C ⊂ Rd a closed set and n ∈ N, define

gn : Rd → R, x 7→ 1
n ·max {0, 1− n ·dist(x,C)}.

One can then check that ‖gn‖∞ = 1
n and ‖gn‖L = 1 for all n ∈ N; for the latter equality, use

that |x− y| ≥ |dist(x,C)− dist(y, C)|, which is itself a consequence of the triangle inequality

for the metric d. This shows that fn ∈ BL(Rd) with ‖fn‖BL = 1 for all n ∈ N. Moreover, since

C ⊂ Rd is closed, n · gn
n→∞−−−−→ 1C pointwise on Rd. Now, let us assume that ‖σ‖BL = 0, then

by (4.11),

ˆ
Rd
n · gn dσ = n

ˆ
Rd
gn dσ = 0 ∀n ∈ N.

Since 1Rd is an integrable majorant for (n · gn)n∈N (recall that |σ| is finite), dominated conver-

gence yields

0 = lim
n→∞

ˆ
Rd
n · gn dσ =

ˆ
Rd

lim
n→∞

(n · gn) dσ =

ˆ
Rd
1C dσ = σ(C).

But the closed sets are a ∩ - stable generator of B(Rd), and the zero measure and σ coincide

on closed sets, so we may conclude (see [12, p. 39]) that σ = 0 (actually, we may only use this

directly for σ ∈M+(Rd), however, using the Hahn decomposition (which precisely corresponds

to writing σ = µ− ν for µ, ν ∈M+(Rd)), we can easily generalize this statement to arbitrary

signed measures).
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(c) Note that for f ∈ BL(Rd), g := ±‖f‖−1
BL · f satisfies g ∈ BL(Rd) with ‖g‖BL = 1, and hence

for every σ ∈M(Rd), ∣∣∣∣ˆ
Rd
g dσ

∣∣∣∣ ≤ sup
f̃∈BL(Rd)

‖f̃‖BL=1

ˆ
Rd
f̃ dσ = ‖σ‖BL.

Consequently, by absolute homogenicity,∣∣∣∣ˆ
Rd
f dσ

∣∣∣∣ = ‖f‖BL·
∣∣∣∣ˆ

Rd
g dσ

∣∣∣∣ ≤ ‖f‖BL· ‖σ‖BL ∀f ∈ BL(Rd). (4.12)

(d) We can generalize ‖ · ‖BL in a straightforward way to product spaces using the product metric:

for n ∈ N and σ ∈ (M(Rd))n,

‖σ‖BL := max {‖σi‖BL : i ∈ [n]}.

(e) Let (Ω,A,P) a probability space and (Xn)n∈N , X : Ω → Rd be random variables distributed

by the laws (µn)n∈N resp. µ, i.e. Xn#P = µn, X#P = µ. Let f ∈ BL(Rd), then by the

observation we just made, for ‖µn − µ‖BL → 0, we obtain

E [f(Xn)] = E [f(X)] + E [f(Xn)− f(X)] = E [f(X)] +

ˆ
Rd
f d(µn − µ)

n→∞−−−−→ E [f(X)]

since ∣∣∣∣ˆ
Rd
f d(µn − µ)

∣∣∣∣ ≤ ‖f‖BL· ‖µn − µ‖BL
n→∞−−−−→ 0.

Consequently, ‖ · ‖BL induces a metric on (signed) finite measures which is highly relevant from

the physical point of view because convergence of (probability) measures in ‖ · ‖BL characterizes

convergence of expectation values of classical observables, e.g. on phase space. From the

mathematical point of view, the Portemanteau theorem (see e.g. [26, p. 254]) states that

for ‖µn − µ‖BL
n→∞−−−−→ 0, µn

w−−→ µ, i.e µn converges to µ weakly in the sense of probability

measures.

(f) Unfortunately, (M(Rd), ‖ · ‖BL) is not complete: It is well-known (see e.g. [12, p. 119]) that

(M(Rd), ‖ · ‖tot) is complete, where ‖ · ‖tot denotes the total variation norm, i.e. for σ = µ− ν
with µ, ν ∈M+(Rd),

‖σ‖tot := |σ|(Rd) = µ(Rd) + ν(Rd).

Moreover, ‖ · ‖BL and ‖ · ‖tot are not equivalent: We have already seen that ‖ · ‖BL ≤ ‖ · ‖tot

(this is hidden in remark 4.39 (a)). On the other hand, consider the sequence of Dirac measures

(δ 1
n

)n∈N ⊂M(Rd), then clearly∥∥δ 1
n
− δ0

∥∥
tot

= δ 1
n

(Rd) + δ0(Rd) = 2 ∀n ∈ N.

Moreover, for f ∈ BL(Rd) with ‖f‖BL = 1, ‖f‖L ≤ 1, and hence we obtain that for all

n ∈ N, |f( 1
n ) − f(0)| ≤ | 1n − 0| = 1

n . Consequently, ‖δ 1
n
− δ0‖BL ≤ 1

n

n→∞−−−−→ 0. This already

implies that
(
M(Rd), ‖ · ‖BL

)
is not complete: Assume for contradiction it was, then since

id :
(
M(Rd), ‖ · ‖tot

)
→
(
M(Rd), ‖ · ‖BL

)
is bounded and surjective (in fact, bijective), it

would be an easy consequence of the open mapping theorem, also known as Banach-Schauder

theorem (see e.g. [11, p. 83]) that id is invertible with bounded inverse, which leads to the

desired contradiction because this would mean that ‖ · ‖tot, ‖ · ‖BL were equivalent.
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Definition 4.40. On the subspace of probability measures P(Rd) ⊂M(Rd) on Rd, ‖ · ‖BL induces

a metric dBL via

dBL : P(Rd)× P(Rd)→ [0,∞), (µ, ν) 7→ dBL(µ, ν) := ‖µ− ν‖BL.

We call dBL the bounded Lipschitz distance or bounded Lipschitz metric.

In the light of items (e) and (f) in the preceding remarks, the following result, which is highly

important for our purposes, comes as quite a big surprise:

Theorem 4.41. The topological space P(Rd) of probability measures with the topology stemming

from weak convergence is metrizable by ‖ · ‖BL, i.e. for µ ∈ P(Rd), (µn)n∈N ⊂ P(Rd),

µn
w−−→ µ ⇔ dBL(µn, µ)

n→∞−−−−→ 0.

Moreover, (P(Rd), dBL) is complete.

Proof. Observe first that Rd is a complete, separable, metric space (w.r.t. the metric induced

by | · |, which we always use). Then, for the first statement, see [9, p. 193, thm. 8.3.2], noting

that by [9, p. 13, corollary 6.3.5], the Borel-σ-algebra and the Baire-σ-algebra on Rd coincide and

hence M+
σ (Rd) = M+(Rd) in the notation of the book. For the second part, see [9, p. 232–233,

thm. 8.10.43], using that by [9, p. 70, thm. 7.1.7], every Borel measure on Rd is Radon, i.e.

Pr(Rd) = P(Rd).

Remark 4.42. The only reason why the counterexample from (f) in remark 4.39 does not work

when we replace M(Rd) by P(Rd) is that P(Rd) is not a vector space anymore, and hence the

open mapping theorem does not apply. It might be enlightening to find a Cauchy sequence w.r.t.

‖ · ‖BL inM(Rd) which does not converge; unfortunately, the author of this thesis was not able to

find any. Another good reference for theorem 4.41 is [39, p. 73].

We have just seen that we can test weak convergence of (probability) measures by bounded Lip-

schitz functions. This suggests that one might use BL(Rd) also as test space for other weak

properties.

Definition 4.43. For I ⊂ R, consider a curve µ : I →M(Rd), t 7→ µ(t) =: µt. We say that µ is

weakly continuous if for all f ∈ BL(Rd), the map

I → R, t 7→
ˆ
Rd
f dµt

is continuous.

One would wish that the bounded Lipschitz norm of a weakly continuous curve is a continuous

map, however, it is not obvious whether this is true. At least, one can show the following:

Lemma 4.44. Let µ : I → M(Rd) be weakly continuous. Then the map I → R, t 7→ ‖µt‖BL is

lower semi-continuous. In particular, for µ, ν ∈ C∗([0, T ]; (P(R6))n), t 7→ dBL(µt, νt) is measurable

and bounded.
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Proof. Let µ : I → M(Rd) a weakly continuous curve, t ∈ I and ε > 0. By definition of ‖ · ‖BL,

there is some g ∈ BL(Rd) with ‖g‖BL = 1 such that

‖µt‖BL ≤
ˆ
Rd
g dµt +

ε

2
.

By weak continuity of µ, there is some δ > 0 such that for all s ∈ I with |s− t| < δ,∣∣∣∣ˆ
Rd
g dµt −

ˆ
Rd
g dµs

∣∣∣∣ ≤ ε

2
.

Consequently, for these s,

‖µs‖BL ≥
ˆ
Rd
g dµs ≥

ˆ
Rd
g dµt −

ε

2
≥ ‖µt‖BL − ε.

This already shows that t 7→ ‖µt‖BL is lower semi-continuous. However, every lower semi-

continuous map is measurable (one can readily show that the preimage of sets of the form (a,∞)

is open for every a ∈ R). Moreover, the computation

dBL(µt, νt) = ‖µt − νt‖BL ≤ ‖µt − νt‖tot ≤ ‖µt‖tot + ‖νt‖tot = 2 ∀t ∈ [0, T ]

shows that [0, T ]→ R, t 7→ dBL(µt, νt) is also bounded. The claim now follows since the maximum

of several measurable, bounded maps is again measurable and bounded.

The following lemma will be crucial for our existence and uniqueness proof in section 2.2:

Lemma 4.45. Let dBL be the bounded Lipschitz metric onM(Rd) and A ⊂M(Rd) a closed subset

w.r.t. this metric, i.e. (A, dBL|A) is itself a complete metric space. Moreover, let f : I → R+ a

continuous map. Then

C∗(I;A) := {µ : I → A : µ weakly continuous}

is complete w.r.t. the metric

dBL(µ, ν) := sup
{
f(t) · dBL(µ(t), ν(t)) : t ∈ I

}
.

Proof. Let (µn)n∈N be a Cauchy sequence in C∗(I;A), i.e. dBL(µm, µn)
m,n→∞−−−−−→ 0. Then for

every fixed t ∈ I, f(t) · dBL(µm(t), µn(t))
m,n→∞−−−−−→ 0. Since f(t) 6= 0, we conclude that (µn(t))n∈N

is a Cauchy sequence in A. By closedness of A w.r.t. dBL, there is some µ(t) ∈ A such that

µn(t)
n→∞−−−−→ µ(t). Consequently, we define the expected limit curve µ : I → R, t 7→ µ(t). All we

need to prove is that µ is weakly continuous and dBL(µ, µn)
n→∞−−−−→ 0.

Let ε > 0 be arbitrary and choose N ∈ N such that for all m,n ≥ N , dBL(µm, µn) ≤ ε. It follows

by continuity of the metric dBL that for all t ∈ I,

f(t) · dBL(µ(t), µn(t)) = f(t) · lim
m→∞

dBL(µm(t), µn(t)) = lim
m→∞

f(t) · dBL(µm(t), µn(t)) ≤ ε,

which shows that dBL(µ, µn) ≤ ε. This already proves that µn
n→∞−−−−→ µ w.r.t. dBL.

Now, let g ∈ BL(Rd) and t ∈ I. By an easy distinction of cases, one can show that there is some

δ1 > 0 such that

[t− δ1, t+ δ1] ∩ I ∈
{
{t}, [t− δ1, t], [t, t+ δ1], [t− δ1, t+ δ1]

}
.
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In any case, m := inf {f(s) : s ∈ [t− δ1, t+ δ1] ∩ I} > 0 since the continuous function f attains its

minimum on any non-empty, compact interval contained in I. Let us choose N ∈ N such that for

all n ≥ N , dBL(µ, µn) ≤ mε
3 . In particular, for s ∈ [t− δ1, t+ δ1] ∩ I, f(s) · dBL(µ(s), µn(s)) ≤ mε

3 .

It follows that

dBL(µ(s), µn(s)) ≤ 1

f(s)
· dBL(µ, µn) ≤ 1

f(s)
· mε

3
≤ mε

3m
=
ε

3
.

By weak continuity of µn, we can find some δ2 > 0 such that for all s ∈ I with |s− t| ≤ δ2,∣∣∣∣ˆ
Rd
g dµn(s)−

ˆ
Rd
g dµn(t)

∣∣∣∣ ≤ ε

3
.

Let δ := min {δ1, δ2} > 0. Then for all s ∈ I with |s− t| < δ,∣∣∣∣ˆ
Rd
g dµ(t)−

ˆ
Rd
g dµ(s)

∣∣∣∣
≤
∣∣∣∣ˆ

Rd
g dµ(t)−

ˆ
Rd
g dµn(t)

∣∣∣∣+

∣∣∣∣ˆ
Rd
g dµn(t)−

ˆ
Rd
g dµn(s)

∣∣∣∣+

∣∣∣∣ˆ
Rd
g dµn(s)−

ˆ
Rd
g dµ(s)

∣∣∣∣
≤ dBL(µ(t), µn(t)) +

ε

3
+ dBL(µ(s), µn(s)) ≤ ε

3
+
ε

3
+
ε

3
= ε.

This proves weak continuity of µ.

4.5 The empirical probability measure

Let (Ω,A,P) be a probability space andX, (Xn)n∈N : Ω→ Rd be i.i.d. random variables distributed

by the law µ = P ◦X−1. Let F : Rd → [0, 1] be the distribution function of X, i.e. for x ∈ Rd,

FX(x) := P [X ≤ x] := P
[
{ω ∈ Ω : X(ω) ≤ x}

]
= µ ((−∞, x]) ,

where for a, b ∈ Rd we write a ≤ b iff aj ≤ bj for all j ∈ [d]. Then for any N ∈ N, a fixed ω ∈ Ω

determines a unique element (X1(ω), . . . , XN (ω)) ∈ (Rd)N , which we call sample of length N .

Our interpretation is that w.r.t. the distribution of the random variable X, N vectors in Rd are

randomly chosen. For ω ∈ Ω, the empirical distribution function of the sample, Fωemp,N , is

defined via

Fωemp,N : Rd → [0, 1], x 7→ 1

N

N∑
i=1

1(−∞,x](Xi(ω)).

Then Fωemp,N is the distribution function belonging to the random variable whose law is given by

µωemp,N : Rd → R, ω 7→ 1

N

N∑
i=1

δXi(ω),

which we call empirical (probability) measure. We observe that for f : Rd → R bounded and

measurable and ω ∈ Ω,

ˆ
Rd
f dµωemp,N =

1

N

n∑
i=1

f(Xi(ω)),
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and since f ◦X, (f ◦Xi)i∈N : Ω→ R are also i.i.d. bounded random variables, we obtain from the

strong law of large numbers (see e.g. [19, 295]) that

P
[{
ω ∈ Ω :

ˆ
R6

f dµωemp,N
N→∞−−−−→ E [f ◦X] =

ˆ
Rd
f dµ

}]
= 1.

In particular,
´
Rd f dµωemp,N

N→∞−−−−→
´
Rd f dµ almost surely for all f ∈ BL(Rd). However, the subset

of Ω where this convergence does not happen might in general depend on f ∈ BL(Rd). Conse-

quently, having in mind that a countable union of null sets is still a null set, the following, quite

surprising statement can be interpreted in the sense that the set of bounded Lipschitz functions is

almost separable (in fact, BL(C) where C ⊂ Rd is totally bounded is separable).

Theorem 4.46 (Varadarajan). The empirical measures µemp,N converge weakly to µ almost surely

in the following sense:

P
[{
ω ∈ Ω : µωemp,N

w−−−−→
N→∞

µ
}

= 1
]
.

Proof. See [13, p. 399].

We have already seen in theorem 4.41 that weak convergence on Rd is metrizable by the bounded

Lipschitz distance, i.e. as N →∞,

µωemp,N
w−−→ µ ⇔ dBL(µωemp,N , µ)→ 0.

Hence, theorem 4.46 states that the bounded Lipschitz distance between a probability measure

and its empirical measure with sample length N converges to 0 almost surely as N →∞:

Corollary 4.47. It holds that

P
[{
ω ∈ Ω : dBL(µωemp,N , µ)

N→∞−−−−→ 0
}]

= 1.

Recall from probability theory that almost sure convergence of random variables does imply con-

vergence in probability. In the context of empirical measures, one might thus expect results which

give bounds on the probability that the bounded Lipschitz distance between a probability measure

and its empirical measure is bigger than a certain constant, i.e. which tell us the rate of convergence

of the empirical measures for typical initial conditions. In fact, we are going to use the following

statement, which, heuristically speaking, shows that the rate of convergence gets faster as the tails

of the distribution get smaller, measured in terms of moments:

Theorem 4.48. Let µ a probability measure on Rd and assume that for some q > 2, the q-th

moment Mq :=
´
Rd |x|

q
dµ(x) is finite. Then there are some c, C > 0 such that for all N ≥ 1 and

ε ∈ (0, 1),

P
[{
ω ∈ Ω : dBL(µωemp,N ), µ) ≥ ε

}]
≤ c · exp

(
−cNεmax {d,2}

)
+ CN · (Nε)ε−q.

In particular, for every ε ∈ (0, 1),

P
[{
ω ∈ Ω : dBL(µωemp,N , µ) ≥ ε

}] N→∞−−−−→ 0.

64



4.6 CONVOLUTION ESTIMATES

Proof. If we replace dBL by the first Wasserstein distance, then everything follows immediately

from [17]. Hence, the only thing which needs clarification is that the bounded Lipschitz distance is

bounded by the first Wasserstein distance W1. However, this is a direct consequence of [9, p. 234],

observing that in the notation of the book, W1(µ, ν) = W (µ, ν) = ‖µ− ν‖∗0 ≥ ‖µ− ν‖0 = dBL(µ, ν)

since for ‖ · ‖∗0, the supremum over all Lipschitz-continuous functions f with ‖f‖L ≤ 1 is taken,

whereas in ‖ · ‖0, one only allows f where both ‖f‖∞, ‖f‖L ≤ 1. Often, this or similar results on

the connection between the first Wasserstein distance, which is defined in terms of measures and

marginals, and metrics on measures defined by comparing these in terms of integration against

suitable test functions, are called Kantorovic-Rubinshtein duality.

4.6 Convolution estimates

This section mainly serves for finding estimates on the supremum norm and the Lipschitz semi-

norm of convolutions of the Coulomb force and functions which satisfy Sαδ -conditions (see definition

3.1) with bounded probability densities in R3.

Definition 4.49. Let σ ∈ M(Rd) be a signed measure on Rd and f : Rd → R a measurable

function such that for all x ∈ Rd, fx := f(x− · ) ∈ L1(Rd; dσ). Then the map

f ∗ σ : Rd → R, x 7→
ˆ
Rd
fx dσ =

ˆ
Rd
f(x− y) dσ(y)

is well-defined and called convolution of f and µ. For u ∈ L1(Rd), let σu denote the signed

measure which has Lebesgue-density u, i.e. for all B ∈ B(Rd), σu(B) :=
´
B
u(y) dy. Then we

define the convolution of f and u via f ∗ u := f ∗ σu, i.e.

(f ∗ u)(x) =

ˆ
Rd
f(x− y) dσu(y) =

ˆ
Rd
f(x− y) ·u(y) dy.

Remark 4.50. Of course, for f : Rd → Rd′ with |fx| ∈ L1(Rd; dσ) for all x ∈ Rd, we see that

every component (fx)i ∈ L1(Rd; dσ) for all x ∈ Rd, and consequently we can define the convolution

f ∗ σ component-wise, i.e. (f ∗ σ)i := fi ∗ σ for all i ∈ [d′].

Lemma 4.51. Let h : R3 → R satisfy a Sαδ -condition for α ∈ [2, 3], and ρ ∈ L1(R3) ∩ L∞(R3).

Define

|||ρ||| := max {1, ‖ρ‖1 + ‖ρ‖∞}.

Then there exists some Cα > 0 such that

‖h ∗ ρ‖∞ ≤ Cα |||ρ||| · (1 + δα,3 ln(S)),

where δ denotes the Kronecker delta. Moreover, there is some c > 0 such that for any α ∈ [2, 3]

and m ≥ 2,

‖hm ∗ ρ‖∞ ≤ 8πcm |||ρ||| ·S(αm−3)δ.

In particular, there are C̃α, C > 0 such that for m ≥ 2 and x ∈ R3,∥∥(h− (h ∗ ρ)(x)
)m ∗ ρ∥∥∞ ≤ C · C̃mα S(αm−3)δ · (1 + δα,3 ln(S))m.
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Proof. Recall from definition 3.1 that since h satisfies a Sαδ -condition, it holds that there is some

c > 0 such that

|h(q)| ≤ c ·min
{
Sαδ, |q|−α

}
∀q ∈ R3.

In particular, |h(q)| ≤ cSαδ for |q| ≤ S−δ and |h(q)| ≤ c |q|−α for |q| ≥ S−δ. Let y ∈ R3 be

arbitrary. For α ∈ [2, 3) we compute

|(h ∗ ρ)(y)| ≤
ˆ
B1(y)

|h(y − q)| · |ρ(q)| dq +

ˆ
Bc

1(y)

|h(y − q)| · |ρ(q)| dq

≤ ‖ρ‖∞ · 4πc
ˆ 1

0

r−α+2 dr + c‖ρ‖1

≤ Cα |||ρ||| ,

where Cα = c ·max
{

4π
3−α , 1

}
≥ c. Note that as one might expect, Cα ↗ ∞ as α ↗ 3. On the

other hand, for α = 3, we have

|(h ∗ ρ)(y)| ≤
ˆ
B
S−δ (y)

|h(y − q)| · |ρ(q)| dq +

ˆ
B1(y)\B

S−δ (y)

. . . +

ˆ
Bc

1(y)

. . .

≤ 4π

3

(
S−δ

)3
cS3δ ‖ρ‖∞ + ‖ρ‖∞ · 4πc

ˆ 1

S−δ
r−1 dr + c‖ρ‖1

≤ 4π

3
c ‖ρ‖∞ + 4πc ‖ρ‖∞ · δ ln(S) + c‖ρ‖1

≤ C3 |||ρ||| · (1 + ln(S)) ,

where C3 = c ·max
{

4π
3 , 4πδ, 1

}
≥ c. Moreover, for α ∈ [2, 3] and m ≥ 2, we have that αm ≥ 4

and therefore

|(hm ∗ ρ)(y)| =
ˆ
B
S−δ (y)

|h(y − q)|m · |ρ(q)| dq +

ˆ
Bc

S−δ
(y)

. . .

≤ 4πcm ‖ρ‖∞ ·
[

1

3

(
S−δ

)3 (
Sαδ

)m
+

ˆ ∞
S−δ

r−mα+2 dr

]
≤ 4πcm ‖ρ‖∞ ·

(
1

3
+

1

αm− 3

)
S(αm−3)δ

≤ 8πcm |||ρ||| ·S(αm−3)δ.

Since y ∈ R3 was arbitrary, this already proves the desired bounds on ‖hm ∗ ρ‖∞ for m ≥ 1. By

the binomial theorem, using that |(1 ∗ ρ)(z)| = ‖ρ‖1 ≤ |||ρ||| for all z ∈ R3, it follows that for all

x, y ∈ R3, m ≥ 2,∣∣((h− (h ∗ ρ)(x)
)m ∗ ρ) (y)

∣∣ ≤ m∑
j=0

(
m

j

)
|(h ∗ ρ)(x)|m−j ·

∣∣(hj ∗ ρ)(y)
∣∣

≤ Cmα |||ρ|||
m

(1 + δα,3 ln(S))m· |||ρ|||+mCm−1
α |||ρ|||m−1

(1 + δα,3 ln(S))m−1·Cα |||ρ|||

+ 8π |||ρ||| ·
m∑
j=2

(
m

j

)
Cm−jα |||ρ|||m−j (1 + δα,3)m−j · cjS(αj−3)δ

≤ 8πCmα |||ρ|||
m+1 · (1 + δα,3 ln(S))m ·

m∑
j=0

(
m

j

)
S(αm−3)δ

≤ 8π· 2mCmα |||ρ|||
m+1 · (1 + δα,3 ln(S))m ·S(αm−3)δ

= C · C̃mα S(αm−3)δ · (1 + δα,3 ln(S))m,
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where C̃α := 2Cα |||ρ||| and C := 8π |||ρ|||. Note that we used S ≥ 1, α ≥ 2 and δ ≥ 0.

In the following two lemmata, for once | · | := | · |2 denotes the euclidean norm on Rd and | · |∞
denotes the maximum norm on Rd (note that this does not make a difference for d = 1). Recall

the elementary inequality

|x|∞ ≤ |x|2 ≤
√
d · |x|∞ ∀x ∈ Rd.

We denote

V : R3 \ {0} → R, q 7→ 1

|q|
, k : R3 \ {0} → R3, q 7→ − q

|q|3

the Coulomb potential resp. the Coulomb force.

Lemma 4.52. Let ρ ∈ L1(R3) ∩ L∞(R3). Then V ∗ ρ and k ∗ ρ are bounded for all i ∈ [3].

Proof. For every y ∈ R3,

|(V ∗ ρ)(y)| ≤
ˆ
R3

|ρ(y)|
|q − y|

dy ≤ ‖ρ‖∞ ·
ˆ
B1(y)

1

|q − y|
dy +

ˆ
Bc

1(y)

|ρ(y)| dy ≤ 4π ‖ρ‖∞ ·
1

2
+ ‖ρ‖1.

Likewise, for i ∈ [3] and y ∈ R3,

|(ki ∗ ρ)(y)| ≤
ˆ
R3

|ρ(y)|
|q − y|2

dy ≤ 4π ‖ρ‖∞ + ‖ρ‖1.

Remark 4.53. One can optimize the estimates by choosing a radius R dependent on ‖ρ‖∞ , ‖ρ‖1
instead of the radius 1 for the splitting, however, we will not need this here.

The following theorem shows that convolutions of bounded densities with the Coulomb potential

are well-behaved in the sense that they allow for an interchange of integration (convolution) and

differentiation. Moreover, it states that a convolution of the Coulomb force with a bounded density,

i.e. the mean field Coulomb force coming from a reasonable solution to the Vlasov-Poisson system,

is log-Lip-continuous in the sense of definition 4.63.

Theorem 4.54. Let ρ ∈ L1(R3) ∩ L∞(R3). Then V ∗ ρ ∈ C1(R3) with

∇(V ∗ ρ) = (∇V ) ∗ ρ = k ∗ ρ,

and (k ∗ ρ) is log-Lip-continuous.

Proof. We basically follow the proof in [18, pp. 74-81]. For h ∈ R \ {0} and i ∈ [3], let us define

I(h) : =
1

h

(
(V ∗ ρ)(q + hei)− (V ∗ ρ)(q)

)
− (ki ∗ ρ)(q)

=
1

h

[ˆ
R3

ρ(y)

|q + hei − y|
dy −

ˆ
R3

ρ(y)

|q − y|
dy

]
+

ˆ
R3

ρ(y)(qi − yi)
|q − y|3

dy

=
1

h

ˆ
B2|h|(q)

ρ(y)

|q + hei − y|
dy − 1

h

ˆ
B2|h|(q)

ρ(y)

|q − y|
dy +

ˆ
B2|h|(q)

ρ(y)(qi − yi)
|q − y|3

dy

+

ˆ
Bc

2|h|(q)

ρ(y) · 1

h

(
1

|q + hei − y|
− 1

|q − y|
+

qi − yi
|q − y|3

)
dy

=: I1(h) + I2(h) + I3(h) + I4(h).
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First, we prove that I(h) ∈ o(|h|). The following computations also show that I1,2,3,4(h) are

well-defined, the deeper reason being | · |−1
, | · |−2 ∈ L1(R3) + L∞(R3). We estimate

|I2(h)| ≤ 1

|h|

ˆ
B2|h|(q)

|ρ(y)|
|q − y|

dy ≤
4π ‖ρ‖∞
|h|

· 1
2
· (2 |h|)2 = 8π ‖ρ‖∞ · |h| ,

|I1(h)| ≤ 1

|h|

ˆ
B3|h|(q)

|ρ(y)|
|q − y|

dy ≤
4π ‖ρ‖∞
|h|

· 1
2
· (3 |h|)2 = 18π ‖ρ‖∞ · |h| ,

where we used that B2|h|(q+hei) ⊂ B3|h|(q). Next, since |qi−yi||q−y|3 ≤
|q−y|
|q−y|3 = 1

|q−y|2 for all q, y ∈ R3

with q 6= y,

|I3(h)| ≤
ˆ
B2|h|(q)

|ρ(y)| |qi − yi|
|q − y|3

dy ≤ 4π ‖ρ‖∞ · 2 |h| = 8π ‖ρ‖∞ · |h| .

This already proves that I1, I2, I3 ∈ o(|h|). It remains to show the same for I4. We aim to apply

a version of the mean value theorem for differentiation. Note that for y ∈ Bc
2|h|(q), |q − y| ≥ 2 |h|

and hence by the reverse triangle inequality, for every θ ∈ [0, 1],

|q + θhei − y| ≥ |q − y| − |θhei| ≥ 2 |h| − |h| = |h| .

Hence, the line joining q and q + hei has a safety distance |h| from the singularity. Applying

corollary 4.75 with f = V and consequently ∂if = ki, y = ei, we obtain that there is some

θ ∈ (0, 1) such that∣∣∣∣∣ 1h
(

1

|q + hei − y|
− 1

|q − y|

)
+

qi − yi
|q − y|3

∣∣∣∣∣ =

∣∣∣∣∣h2 · 3(qi + θhei − yi)2 − |q + θhei − y|2

|q + θhei − y|5

∣∣∣∣∣
≤ |h|

2
· 4

|q + θhei − y|3
.

For |q − y| ≥ 2 |h|, one has

|q + θhei − y| ≥ |q − y| − |θhei| ≥ |q − y| − |h| ≥ |q − y| − 1
2 |q − y| =

1
2 |q − y| ∀θ ∈ [0, 1].

Consequently, for |h| < 1
2 ,

|I4(h)| ≤
ˆ
Bc

2|h|(y)

|ρ(y)| · |h|
2
· 4(

1
2 |q − y|

)3 dy

≤ 16 |h| ·

(
‖ρ‖∞ ·

ˆ
B1(y)\B2|h|(y)

1

|q − y|3
dq +

ˆ
Bc

1(q)

|ρ(y)| dy

)
≤ 16 |h| ·

(
− ln(2 |h|) · ‖ρ‖∞ + ‖ρ‖1

)
.

Since t · ln(t)→ 0 as h↘ 0 (L’Hospital’s rule), we see that |I4(h)| → 0 as h→ 0. Altogether, this

shows I4 ∈ o(h) and therefore existence of ∂i (V ∗ ρ) with ∂i (V ∗ ρ) = ∂iV ∗ ρ = ki ∗ ρ.

Let us now prove that k ∗ ρ is log-Lip-continuous. Let i ∈ [3] and q, q̃ ∈ R3 with q 6= q̃, then for

ε := |q − q̃|,

(ki ∗ ρ)(q̃)− (ki ∗ ρ)(q) =

ˆ
R3

ρ(y)(qi − yi)
|q − y|3

dy −
ˆ
R3

ρ(y)(q̃i − yi)
|q̃ − y|3

dy

=

ˆ
B2ε(q)

ρ(y)(qi − yi)
|q − y|3

dy −
ˆ
B2ε(q)

ρ(y)(q̃i − yi)
|q̃ − y|3

dy +

ˆ
Bc

2ε(q)

ρ(y) ·

(
qi − yi
|q − y|3

− q̃i − y
|q̃ − y|3

)
dy

=: J1 + J2 + J3.
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Again using that
∣∣∣ zi|z|3 ∣∣∣ ≤ |z|−2

for all z ∈ R3 \ {0} and B2ε(q) ⊂ B3ε(q̃), we obtain

|J1| ≤ 4π ‖ρ‖∞ · 2ε, |J2| ≤ 4π ‖ρ‖∞ · 3ε.

Moreover, for |q − y| ≥ 2ε = 2 |q − q̃|, we have

|q̃ − y| ≥ |q − y| − |q − q̃| ≥ |q − y| − 1
2 |q − y| =

1
2 |q − y| ,

and therefore∣∣∣∣∣ qi − yi|q − y|3
− q̃i − yi
|q̃ − y|3

∣∣∣∣∣ ≤
∣∣∣∣∣ qi − yi|q − y|3

− q̃i − yi
|q − y|3

∣∣∣∣∣+

∣∣∣∣∣ q̃i − yi|q − y|3
− q̃i − yi
|q̃ − y|3

∣∣∣∣∣
≤ 1

|q − y|3
· |qi − q̃i|+ |q̃i − yi| ·

∣∣∣∣∣ 1

|q − y|3
− 1

|q̃ − y|3

∣∣∣∣∣
≤ 1

|q − y|3
· |q − q̃|+ |q̃ − y| · |q̃ − y| − |q − y|

|q − y| |q̃ − y|
·

(
1

|q − y|2
+

1

|q − y| |q̃ − y|
+

1

|q̃ − y|2

)

≤ 1

|q − y|3
· |q − q̃|+ |(q̃ − y)− (q − y)|

|q − y|
·

(
1

|q − y|2
+

1
1
2 |q − y|

2 +
1

1
4 |q − y|

2

)

=
1

|q − y|3
· (|q − q̃|+ 7 |q − q̃|) =

1

|q − y|3
· 8 |q − q̃| ,

were we used that for a, b ∈ R \ {0},

1

a3
− 1

b3
=
b3 − a3

a3b3
=

(b− a)(b2 + ab+ a2)

a3b3
=
b− a
ab
· b

2 + ab+ a2

a2b2
=
b− a
ab
·
(

1

a2
+

1

ab
+

1

b2

)
.

Hence, for ε < 1
2 ,

|J3| ≤ 8 ‖ρ‖∞ |q − q̃| ·
ˆ
B1(q)\B2ε(q)

1

|q − y|3
dy + 8 |q − q̃| ·

ˆ
Bc

1(q)

|ρ(y)| dy

≤ 8
(
4π ‖ρ‖∞ ·

(
− ln(2ε)

)
+ ‖ρ‖1

)
· |q − q̃| .

Putting everything together and re-substituting ε = |q − q̃|, we finally arrive at∣∣(ki ∗ ρ)(q)− (ki ∗ ρ)(q̃)
∣∣ ≤ 52π ·max {‖ρ‖∞ , ‖ρ‖1} · |q − q̃| · (1 + |ln(|q − q̃|)|)

= C |q − q̃| · (1 + |ln(|q − q̃|)|)

for all |q − q̃| < 1
2 . Since ki ∗ ρ is also bounded (see lemma 4.52), ki ∗ ρ is log-Lip-continuous for

every i ∈ [3] by remark 4.64.

Corollary 4.55. Let ρ ∈ L1(R3) ∩ L∞(R3) and f the regularized Coulomb force defined in (3.2)

Then f ∗ ρ is bounded and Lipschitz-continuous, with

‖f ∗ ρ‖∞ ≤ C · |||ρ||| , ‖f ∗ ρ‖L ≤ C |||ρ||| · (1 + ln(S))

for some C > 0.

Proof. The first assertion follows directly from lemma 4.51 because f satisfies a S2
δ - condition. For

the second claim, note that it suffices to prove

|(f ∗ ρ)(q)− (f ∗ ρ)(q̃)| ≤ C |||ρ||| · (1 + ln(S)) · |q − q̃| ∀q, q̃ ∈ R3 : |q − q̃| < 1
2S
−δ
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because for |q − q̃| > 1
2S
−δ, one can join q and q̃ by a straight line, split it into segments of

length at most 1
2S
−δ, use the triangle inequality to apply (∗) on every segment and finally put

everything together again. However, from lemma 4.73, we know that for |q − q̃| < 1
2S
−δ, one has

|f(q)− f(q̃)| ≤ g(q) · |q − q̃| where g satisfies a S3
δ - condition. Consequently, for q, q̃ ∈ R3 with

|q − q̃| < 1
2S
−δ, one has |(q − y)− (q̃ − y)| = |q − q̃| < 1

2S
−δ for all y ∈ R3 and thus∣∣(f ∗ ρ)(q)− (f ∗ ρ)(q̃)

∣∣ ≤ ˆ
R3

|ρ(y)| · |f(q − y)− f(q̃ − y)| dy ≤
ˆ
R3

|ρ(y)| · g(q − y) · |q − q̃| dy

=

(ˆ
R3

|ρ(q − y)| · g(y) dy

)
· |q − q̃| = ((g ∗ |ρ|)(q)) · |q − q̃|

≤ C(1 + ln(S)) · |q − q̃| ,

where again we used lemma 4.51.

Remark 4.56. Heuristically, the factor of 1 + ln(S) in the Lipschitz constant for the mean field

coming from the regularized Coulomb force is in the limit S → ∞ converted to the log-Lip-

regularity of mean field induced by the true Coulomb interaction.

4.7 A high order Markov inequality

In this section, we prove an upper bound for the probability of deviations of the sample mean from

the expectation value that decays with arbitrary power of the sample length:

Theorem 4.57. Let (Xn)n∈N be i.i.d. bounded random variables on a probability space (Ω,A,P)

satisfying E [X1] = 0 and ∣∣E [Xm
1 ]
∣∣ ≤ C1 ·Cm2 ∀m ≥ 2 (4.13)

for some constants C1,2 > 0. For N ∈ N, we define the sample mean of length N ,

X :=
1

N

N∑
i=1

Xi.

Then for every ε > 0 and M ∈ N,

P [|X| ≥ ε] ≤ CM,N · ε−2MN−2M , (4.14)

where CM,N := M2M+1C2M
2 ·max

{
1, (NC1)M

}
.

Remark 4.58. Since we suppose that X1 is bounded, the moments of arbitrary order m exist and

are bounded by ‖X1‖m∞. Thus, equation (4.13) gives us the chance to use better estimates for the

moments, which we utilize in the main text. Note also that no matter how large C1 is, P [|X| ≥ ε]
decays at least as fast as N−M for N →∞.

Proof. The map R+
0 → R, x 7→ x2M is strictly increasing for all M ∈ N. Therefore, the Markov

inequality (cf. [19, p. 138 f.]) yields for any ε > 0

P [|X| ≥ ε] ≤ ε−2M ·E
[
X2M

]
= ε−2M ·E

( 1

N

N∑
i=1

Xi

)2M
 = ε−2MN−2M ·E

( N∑
i=1

Xi

)2M
 .

70



4.7 A HIGH ORDER MARKOV INEQUALITY

By the multinomial theorem,(
N∑
i=1

Xi

)2M

=
∑
a∈NN0
|a|=2M

[(
2M

a

)
·
N∏
i=1

Xai
i

]
=:

∑
a∈NN0
|a|=2M

[(
2M

a

)
·Xa

]
,

where for a ∈ NN0 ,
(

2M
a

)
:= (2M)!∏N

i=1 ai!
(multiindex-notation).

Since (Xi)i∈[N ] are independent, also (Xai
i )i∈[N ] are independent random variables for every a ∈ NN0

(cf. [19, p. 71]), and hence we obtain that for all a ∈ NN0 ,

E [Xa] = E

[
N∏
i=1

Xai
i

]
=

N∏
i=1

E [Xai
i ] =

N∏
i=1

E [Xai
1 ] , (4.15)

where in the last step we used that the Xi are identically distributed.

Let G :=
{
a ∈ NN0 : |a| = 2M

}
. For a ∈ G and i ∈ [N ], we define s, si : G→ N0 by

si(a) :=

{
1, ai = 1

0, else
, s(a) :=

N∑
i=1

si(a).

Therefore, s counts the number of indices i ∈ [N ] where ai = 1. Similarly, we set t, ti : G→ N0,

ti(a) :=

{
1, ai ≥ 1

0, ai = 0
, t(a) :=

N∑
i=1

ti(a).

We see that t counts the number of indices where ai ≥ 1. Note that it is always true that

si(a) ≤ ti(a), so s(a) ≤ t(a) for all a ∈ NN0 . Let us split

G = s−1(N0) = s−1({0}) t s−1(N) =: G tG0.

For a ∈ G0, s(a) > 0, i.e. there is some i0 ∈ [N ] such that si0(a) = 1, which shows that ai0 = 1

and therefore, using (4.15) with E [X1] = 0,

E [Xa] = E
[
X
ai0
1

]
·
N∏
i=1
i 6=i0

E [Xai
1 ] = E [X1] ·

N∏
i=1
i6=i0

E [Xai
1 ] = 0. (4.16)

Next, note that G0 ⊃ {a ∈ G : t(a) > M}: Assume for contradiction that a ∈ G, t(a) > M and

a 6∈ G0. Then s(a) = 0, so si(a) = 0 for all i, which implies ai ∈ N0 \ {1} for all i ∈ [N ]. It follows

that

|a| =
N∑
i=1

ai =

N∑
i=1
ai 6=0

ai ≥
N∑
i=1
ai 6=0

2 = 2t(a) > 2M,

which yields the desired contradiction. Using that t(a) ≥ 1 for all a ∈ G, we conclude

G = G \G0 ⊂ G \ {a ∈ G : t(a) > M} =

M⋃
l=1

{a ∈ G : t(a) = l} =:

M⋃
l=1

Al.
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Now, for arbitrary a ∈ G, we estimate, using (4.13) and E
[
X0
]

= E [1] = 1,

∣∣E [Xa]
∣∣ =

N∏
i=1

∣∣E [Xai
1 ]
∣∣ ≤ N∏

i=1
ai 6=0

C1 ·Cai2 = C
t(a)
1 ·C |a|2 = C

t(a)
1 ·C2M

2 .

Combining (4.15) and (4.16), we therefore arrive at

E

( N∑
i=1

Xi

)2M
 ≤ ∣∣∣∣∣ ∑

a∈G0

(
2M

a

)
E [Xa]

∣∣∣∣∣+

∣∣∣∣∣∣
∑
a∈G

(
2M

a

)
E [Xa]

∣∣∣∣∣∣ ≤
∑
a∈G

(
2M

a

)
C
t(a)
1 ·C2M

2

≤
M∑
l=1

∑
a∈Al

(
2M

a

)
Cl1 ·C2M

2 = C2M
2 ·

M∑
l=1

Cl1 ·
∑
b∈Bl

∣∣γ−1
l (b)

∣∣ ·(2M

b

)

≤ C2M
2 ·

M∑
l=1

Cl1N
l· l2M ≤MC2M

2 ·max
{

1, (NC1)M
}
·M2M .

There are several nontrivial arguments which we used in this computation:

(i) For l ∈ N, consider the map

γl : Al =
{
a ∈ NN0 : |a| = 2M, t(a) = l

}
→
{
b ∈ Nl0 : |b| = 2M, bi 6= 0 ∀i ∈ [l]

}
:= Bl,

(a1, . . . , aN ) 7→ (ai1 , . . . , ail),

where {i1, . . . , il} = {i ∈ [N ] : ai 6= 0} and i1 < . . . < il. Let a ∈ Al and ai1 < . . . < ail such

that aik 6= 0 for all k ∈ [l]. Then

a! =

N∏
i=1

ai! =

N∏
i=1
ai 6=0

ai! =

l∏
k=1

aik ! =

l∏
k=1

((γl(a))k)! = (γl(a))!

and thus

(
2M

a

)
=

(
2M

γl(a)

)
.

(ii) For l ∈ N and b ∈ Bl,
∣∣γ−1
l (b)

∣∣ ≤ N l because the map{
(i1, . . . , il) ⊂ [N ]l : i1 < . . . < il

}
→ γ−1

l (b), (i1, . . . , il) 7→ (a1, . . . , aN )

where

aj :=

{
bk, j = ik for some (and therefore a unique) k ∈ [l]

0, else

is obviously well-defined and surjective (even bijective) and thus

N l =
∣∣[N ]l

∣∣ ≥ ∣∣{(i1, . . . , il) ⊂ [N ]l : i1 < . . . < il
}∣∣ ≥ ∣∣γ−1

l (b)
∣∣ .

(iii) By the multinomial theorem,

l2M =

(
l∑

k=1

1

)2M

=
∑
b∈Nl0
|b|=2M

((
2M

b

)
·
l∏
i=1

1bi

)
=

∑
b∈Nl0
|b|=2M

(
2M

b

)
≥
∑
b∈Bl

(
2M

b

)
.

Putting everything together, we finally arrive at

P [|X| ≥ ε] ≤ ε−2MN−2M ·MC2M
2 ·max

{
1, (NC1)M

}
·M2M = CM,N · ε−2MN−2M ,

as claimed.
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4.8 Global existence of flows

In this section, we prove a useful result which grants global existence (and also uniqueness) of

flows for a large class of ODEs. Let us first agree on some terminological issues, mainly concerning

differentiability and therefore the property of being a solution at the boundary of an interval:

Definition 4.59. Let d, d′ ∈ N. We call a map f : Rd ⊃ U → Rd′ (continuously) differentiable if

there is some Ũ ⊃ U open and a (continuously) differentiable f̃ : Ũ → Rd′ such that f̃ |U = f . In

this case, we define f ′ := (f̃)′|U .

Remark 4.60. Let I ⊂ R be right-open and f : I → Rd (continuously) differentiable in the

sense of the previous definition. Then f is (right-continuously) right-sided differentiable on I, with

f ′,+ = (f̃)′|U . The proof is straightforward, requiring only the definitions 4.1 and 4.59 and thus

left to the reader as an easy exercise.

Definition 4.61. Let (x0, t0) ∈ Rd × R and U ⊂ Rd a neighbourhood of x0, I ⊂ R an interval

containing t0. Let F ∈ C(U × I;Rd). We call a map x : I ⊃ J → U a (local) solution to the

initial value problem

ẋ(t) = F (x(t), t), x(t0) = x0 (4.17)

if t0 ∈ J , x(t0) = x0 and x ∈ C1(J ;U) in the sense of definition 4.59 with ẋ(t) = F (x(t), t) for all

t ∈ J . It is called global solution if J = I.

Definition 4.62. Let F ∈ C(Rd × R;Rd). A map Φ : Rd × R× R→ Rd is called the global flow

associated with the ODE ẋ(t) = F (x(t), t) if

(i) for every t0 ∈ R, Φ(· , t0, t0) = idRd and

(ii) for every (x0, t0) ∈ Rd × R, the map Φx0,t0 : R → Rd, t 7→ Φ(x0, t, t0) is continuously

differentiable with

d

dt
Φx0,t0(t) = F (Φx0,t0(t), t), (4.18)

i.e. Φx0,t0 is a global solution to the IVP (4.17).

Definition 4.63. Let d, d′ ∈ N and G : Rd → Rd′ a map. We say that G is log-Lip-continuous

if there is some C > 0 such that for all x, y ∈ Rd with x 6= y,

|G(x)−G(y)|
|x− y|

≤ C ·
(
1 +

∣∣ln (|x− y|)
∣∣) . (4.19)

In this case, we sometimes say that C is a (uniform) log-Lip-bound for G.

Remark 4.64.

(a) As for Lipschitz-continuity, the definition of log-Lip-continuity does not depend on the choice

of norms on Rd and Rd′ (however, the property of being a log-Lip-bound for G certainly does!),

and taking the maximum norm on Rd′ , we see that G is log-Lip-continuous if and only if every

component Gi : Rd → R, i ∈ [d′], is log-Lip-continuous.
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(b) Every Lipschitz-continuous map is clearly log-Lip-continuous. However, it is immediate that

in general, the reverse direction fails to hold.

(c) Obviously, (∗) is equivalent to the statement

|G(x)−G(y)| ≤ C · θ(|x− y|) ∀x, y ∈ Rd,

where θ is defined in lemma 4.77. Using that θ(t) ↘ 0 as t ↘ 0 (which is proved in the

very same lemma), we see that every log-Lip-continuous function is in particular continuous,

therefore justifying the nomenclature.

(d) If G is bounded, an equivalent definition of log-Lip-continuity is given by existence of some

C ′ > 0 such that for all x, y ∈ Rd with, say, 0 < |x− y| ≤ 1
2 ,

|G(x)−G(y)| ≤ C ′ · θ(|x− y|). (∗)

Indeed, log-Lip-continuity ofG certainly implies (∗). On the other hand, assuming boundedness

of G and the validity of (∗) for 0 < |x− y| < 1
2 , then for all x, y ∈ Rd with |x− y| ≥ 1

2 ,

|G(x)−G(y)| ≤ 2 ‖G‖∞ ≤ 2 ‖G‖∞ ·
|x− y|

1
2

= 4 ‖G‖∞ · |x− y|

≤ 4 ‖G‖∞ · |x− y| ·
(
1 +

∣∣ln (|x− y|)∣∣)
= 4 ‖G‖∞ · θ(|x− y|).

In the literature, one usually finds that for F ∈ C(Rd × R;Rd) with F ( · , t) Lipschitz continuous

for every t, local solutions to (4.61) exist and are unique, and if the Lipschitz constant can be

chosen uniformly in t, the solutions can be shown to exist globally, see e.g. [34, p. 113] (note that

Lipschitz continuity implies linear boundedness by a computation which in similar form will be

given below for the log-Lip case). Thus, patching these solutions together in the way suggested

by (4.18), one obtains existence and uniqueness of a global flow Φ. We want to show that this is

also true when F ∈ C(Rd × R;Rd) is only log-Lip-continuous uniformly in t, which in the light of

remark 4.64 (b) is clearly a generalization. The reason why we aim for this result is the following:

it turns out that in general, the mean field Coulomb force generated by bounded spatial densities is

only log-Lip-continuous in the spatial argument, see also theorem 4.54. Consequently, the following

theorem, together with the corresponding generalization of Liouville’s theorem in the next section,

a posteriori provides the basis of all the heuristics in chapter 1 and prepares for a thorough analysis

of the Vlasov-Poisson system as suggested in section 2.3.

Theorem 4.65. Let F ∈ C(Rd × R;Rd) such that F is - uniformly in the second variable - log-

Lip-continuous in the first variable, i.e. there is some C > 0 such that for all x, y ∈ Rd and

t ∈ R,

|F (x, t)− F (y, t)| ≤ C · θ(|x− y|).

Then there exists a unique, global flow Φ associated with the ODE

ẋ(t) = F (x(t), t). (4.20)

Proof. We first prove local existence and uniqueness of solutions to the IVP (4.17) and then argue

that in fact, the local solutions extend to global solutions. By local uniqueness, one can then

aggregate these to a global flow with standard ODE arguments (actually, (4.18) already suggests

how to do this).
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(1) Let (x0, t0) ∈ Rd × R. By Peano’s existence theorem, for δ > 0 small enough there is

at least one solution x : [t0 − δ, t0 + δ] → Rd of the IVP ẋ(t) = F (x(t), t), x(t0) = x0.

On the other hand, letting ω := C · θ, our assumption of uniform log-Lip-continuity reads

|F (x, t)− F (y, t)| ≤ ω(|x− y|) for all x, y ∈ Rd and t ∈ R. Now, lemma 4.77 shows that ω

and thus C ·ω satisfies all the hypotheses of Osgood’s condition, cf. [40, p. 146-147]. Hence,

we also obtain that there is at most one local solution of the IVP, i.e. altogether we get local

existence and uniqueness.

(2) Next, we want to prove that the local solutions from (1) are in fact global. In any introductory

course on ordinary differential equations, one proves that provided there is local uniqueness of

solutions, one can define maximal intervals of existence for a solution x(t) where x(t0) = x0,

which are open and denoted by Imax(x0, t0) := (α(x0, t0), β(x0, t0)) satisfy α, β : Rd × R→ R
with α(x0, t0) < t0 − δ < t0 + δ < β(x0, t0). Since F is continuous and defined on all of

Rd×R, one can employ a standard argument (basically local extension using Peano’s existence

theorem) which shows that provided β(x0, t0) <∞, |x(t)| → ∞ as t↗ β(x0, t0). Therefore, if

we could show that |x(t)| actually stays bounded as t↗ β(x0, t0) for every β(x0, t0) ∈ R, then

we would see that β(x0, t0) = +∞. So, let us assume for contradiction that β(x0, t0) < ∞,

then |x(t)| → ∞ as t↗ β(x0, t0). Choose τ ∈ [t0, β(x0, t0)) such that for all t ∈ [τ, β(x0, t0)),

|x(t)| ≥ 1 and consequently θ(|x(t)|) ≥ 1. Let C̃ := supt∈[t0,β(x0,t0)] |F (0, t)|+ C, then C̃ <∞
by continuity of F (the set 0 × [τ, β(x0, t0) ⊂ Rd × R is compact!). Consequently, for every

t ∈ [τ, β(x0, t0)), with corollary 4.19 and the triangle inequality, we obtain

∂+
t |x(t)| ≤ |ẋ(t)| = |F (x(t), t)| ≤ |F (x(t), t)− F (0, t)|+ |F (0, t)|

≤ C · θ(|x(t)− 0|) + |F (0, t)| ≤ C̃ · θ(|x(t)|).

Now, on [τ, β(x0, t0)] consider the IVP

u̇(t) = C̃ · θ(u(t)), u(τ) = |x(τ)| . (∗)

By our comparison theorem 4.5, |x(t)| ≤ u(t) for all t ∈ [τ, β(x0, t0)). But from lemma 4.78,

we can easily deduce that the unique solution to (∗) is

u(t) = exp
(

exp
(
C̃(t− τ) + ln

(
1 + ln

(
|x(τ)|

)))
− 1
)

∀t ∈ [τ, β(x0, t0)).

In particular, u(t) and thus |x(t)| remains bounded as t ↗ β(x0, t0), which gives the desired

contradiction.

By similar arguments, we can show that in fact, α(x0, t0) = −∞. Hence, we see that the

solution x(t) exists globally, as claimed.

Remark 4.66. From local uniqueness, one can easily prove that Φ( · , t, t0) is bijective for all

t, t0 ∈ R, and that (Φ( · , t, t0)
−1

= Φ( · , t0, t), a result which will frequently be used in the following

section. This relation does also show that Φ and Φ−1 have the same regularity properties. In

general, the regularity of Φ in x ∈ Rd is only as good as the regularity of F in x ∈ Rd, i.e. under

the hypotheses of the previous theorem, Φ depends continuously on x ∈ Rd. If F is continuously

differentiable w.r.t. x ∈ Rd, then so is Φ, a fact which will be needed in section 4.9. The proof of

these statements can be found, for instance, in chapter V of [20].
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4.9 Liouville’s theorem

Liouville’s theorem states that in the sense of definition 4.31, the flows associated to a large class of

ODEs, including the typical evolution equations in classical mechanics, are measure preserving (see

definition 4.31) w.r.t. Lebesgue measure on phase space. One can find various versions of Liouville’s

theorem in textbooks on (mathematical) physics, see e.g. [5, p. 68f.] for a “classical derivation”

and [16, p. 343] for a derivation within the formalism of symplectic manifolds. However, in the

proofs which one usually encounters, it is required that the ODE is autonomous and the r.h.s.

is at least continuously differentiable, which is in general not the case for the forces we typically

encounter in this thesis. Note that the latter assumption is often hidden in the requirement that

the Hamiltonian of the corresponding physical system be smooth or at least a C2-function. In

order to make Liouville’s theorem applicable to a system where the pair interaction is a Coulomb

force with cut-off as introduced in section 3.2, which is only Lipschitz-continuous, or a mean field

Coulomb force, which is time-dependent and in general not even Lipschitz continuous, we need to

prove the statement in a more general setting.

So, let us consider a physical system governed by the evolution equations

q̇(t) = F1(p(t), t), ṗ(t) = F2(q(t), t),

where F1,2 : Rd × R → Rd. As usual, we combine these equations to an ODE on phase space

R2d = Rd × Rd, letting x(t) := (q(t), p(t)) and obtaining ẋ(t) = F (x(t), t) with

F : R2d × R→ R2d, (q, p, t) 7→
(
F1(p, t), F2(q, t)

)
.

Observe that typically, F1 is smooth and linearly bounded in p uniformly in t because it has the

form F1(p1, . . . , pd, t) =
(
p1
m1
, . . . , pdmd

)
where mi, i ∈ [d], are the particle masses. On the other

hand, the forces which are relevant in the main text are, as already discussed above, continuous,

bounded and (log-) Lipschitz continuous in q uniformly in t. Let us take the weakest of all these

conditions, namely that F1, F2 and hence F are continuous with F1( · , t), F2( · , t) and therefore

F ( · , t) satisfying a log-Lip-condition uniformly in t. From our results in section 4.8, we already

know that also under this quite weak assumption, the ODE ẋ(t) = F (x(t), t) admits a unique,

global flow. Now, the crucial observation is that by construction of F , for all j ∈ [2d], the j-th

component (F ( · , t))j of F is independent of xj . With this in mind, we are ready to formulate the

desired generalization of Liouville’s theorem. Note that the dimension d in the theorem corresponds

to 2d in the preceding discussion.

Theorem 4.67. Let d ∈ N and F ∈ C(Rd × R;Rd) such that F satisfies a log-Lip-condition uni-

formly in t. Moreover, assume that for all j ∈ [d] and t ∈ R, the j-th component Fj(· , t) : Rd → R
of F ( · , t) does not depend on the j-th coordinate, i.e. for all y ∈ Rd−1, the map

Fj,t,y : R→ R, s 7→
(
F (y1, . . . , yj−1, s, yj , . . . , yd−1, t)

)
j

is constant. Let Φ : Rd × R × R → Rd denote the unique global flow associated with the ODE

ẋ(t) = F (x(t), t), the existence of which is guaranteed by theorem 4.65. Then for every t, t0 ∈ R,

the map Φt,t0 : Rd → Rd, x 7→ Φ(x, t, t0) is measure preserving w.r.t. d-dimensional Lebesgue

measure.

Proof. The proof is divided into two steps: First, we show the claim in case we additionally have

F ∈ C1(Rd×R;Rd) for all t ∈ R, and second we relax these assumptions to match our hypotheses.
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For the whole proof, t0 ∈ R will be fixed, so in the following, we will omit the t0-dependence of Φ

in our notation.

(1) As announced, suppose that F ∈ C1(Rd × R;Rd). Then by [20, p. 95-98], the formal compu-

tation

∂t(DxΦ(x, t)) = Dx(∂tΦ(x, t)) = Dx(F (Φ(x, t), t)) = DxF (Φ(x, t), t) ·DxΦ(x, t) (4.21)

is justified in the sense that the mixed partial derivatives ∂t∂xiΦ(x, t) and ∂xi∂tΦ(x, t) exist

and agree for all i ∈ [d]. Now, fix t ∈ R, then as we have already discussed in remark

4.66, Φt : Rd → Rd, x 7→ Φ(x, t) is bijective and continuous with continuous inverse and

consequently a diffeomorphism on Rd. By comparing the substitution rule (also known as

transformation formula)ˆ
Rd
f dx =

ˆ
Φ−1
t (Rd)

(f ◦ Φt) · |det(DΦt)| dx =

ˆ
Rd

(f ◦ Φt) · |det(DΦt)| dx,

where f ∈ L1(Rd), see e.g. [4, p. 195], with the characterization (4.9) of measure-preserving

maps, we see that we need only show that |det(DΦt(x))| = 1 for all x ∈ Rd. Since Φt0 = idRd ,

we have det(DΦt0(x)) = det(1d×d) = 1 for all x ∈ Rd, so it suffices to prove that for all

x ∈ R, the map s 7→ det(DΦs(x)) is differentiable with d
ds det(DΦs(x)) ≡ 0. Indeed, since

Φs is a diffeomorphism, DΦs(x) ∈ GL(d,R) for all x ∈ Rd, s ∈ R. Moreover, we just saw

in (4.21) that for fixed x ∈ Rd, the map s 7→ DΦs(x) = DxΦ(x, s) is differentiable with

derivative ∂sDΦs(x) = DxF (Φs(x), s) ·DΦs(x) Using Jacobi’s formula (theorem 4.69) for the

time derivative of a determinant, we obtain

d

ds
det(DΦs(x)) = det(DΦs(x)) · tr

(
∂s(DΦs(x)) · (DΦs(x))−1

)
= det(DΦs(x)) · tr (DxF (Φs(x), s))

= det(DΦs(x)) ·
d∑
i=1

∂xiFi(Φs(x), s) = 0,

where in the last step we finally used that by assumption, Fi is independent of xi.

(2) Now, let F ∈ C(Rd×R;Rd) satisfy a log-Lip-condition uniformly in t, i.e. there is some C > 0,

which w.l.o.g. may be assumed to satisfy C ≥ 1, such that

|F (x, t)− F (y, t)| ≤ C · θ(|x− y)| ∀x, y ∈ Rd, t ∈ R,

where θ : R → R is defined in 4.77. The following proof is inspired by [6, p. 61-66], but the

fact that we do not even have Lipschitz continuity of F ( · , t) requires some major adjustments.

However, the central idea of the proof, namely to approximate F by smooth maps Fn, apply

step (1) to the flows corresponding to the smooth maps and show that the property of being

measure preserving survives in the limit n→∞ because the flows associated with Fn converge

to the flows associated with F in an adequate sense as n→∞, remains unchanged.

Let us again fix t ∈ R. First, we need to argue that Φt is measurable. In fact, Φt is even

continuous: This follows from the discussion in remark 4.66 with continuity of F w.r.t. the

x-component, however, it yields some insights to prove this by hand here: For x, y,∈ Rd with

x 6= y, one has (corollary 4.19)

∂+
t

∣∣Φt(x)− Φt(y)
∣∣ ≤ ∣∣F (Φt(x), t)− F (Φt(y), t)

∣∣ ≤ C · θ(∣∣Φt(x)− Φt(y)
∣∣) ∀t ∈ R.
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By the comparison theorem 4.5 and lemma 4.78, noting that the solution x(t) of the IVP

ẋ(t) = C· θ(x(t)), x(t0) = |x− y| = |Φt0(x)− Φt0(y)| given in the lemma is the unique and

therefore also the maximal solution, it follows that |Φt(x)− Φt(y)| ≤ x(t)→ 0 as |x− y| → 0.

We want to prove that Φt preserves d-dimensional Lebesgue measure λd. Since it is common

knowledge that E := {E ⊂ R : E compact} is a ∩ - stable generator of B(Rd), by [12, p. 39] it

suffices to prove that λd|E = λd ◦ Φ−1
t |E . Moreover, again from remark 4.66, we know that Φt

is invertible with continuous and therefore measurable inverse. With remark 4.32, we conclude

that we may prove λd(E) = λd(Φt(E)) for all E ∈ E instead.

For this, let E ⊂ Rd be compact, then E is bounded by the Heine-Borel theorem, i.e. there

is some r > 0 such that E ⊂ Br(0) :=
{
x ∈ Rd : |x| ≤ r

}
(as usual, we equip Rd with the

maximum norm | · |). We claim that there is some R > 0 such that for all G ∈ C1(Rd ×R;Rd)
with ‖F −G‖∞ ≤ 1, there is a unique global flow Ψ associated to the ODE ẋ(t) = G(x(t), t)

satisfying Ψ(Br(0) × [t0, t]) ⊂ BR(0). Indeed, there is always a unique local solution (G is

continuous and continuously differentiable and in particular locally Lipschitz w.r.t. the first

variable, so the Picard-Lindelöf theorem applies), and for s ∈ [t0, t] and ψ a local solution with

ψ(s) ∈ Bc
1(0),

|G(ψ(s), s)| ≤ |G(ψ(s), s)− F (ψ(s), s)|+ |F (ψ(s), s)− F (0, s)|+ |F (0, t)|
≤ 1 + C · θ(|ψ(s)|) + sup

s∈[t0,t]

|F (0, s)| ≤ C · θ(|ψ(s))| .

Thus, it is easy to see from the same argument as in the second part of the proof of theorem 4.65

that ψ does in fact exist globally, and from the same estimate, one can deduce that for

R := exp
(
exp

(
C(t− t0) + ln(1 + r)

)
− 1
)
,

ψ(s) ∈ BR(0) for all s ∈ [t0, t] (it certainly suffices to consider the parts of the trajectories which

are contained inBc
1(0)). We conclude that a unique, global flow Ψ for the ODE ẋ(t) = G(x(t), t)

does indeed exist. However, reviewing the argumentation which we just applied shows that

actually, the behaviour of G on Bc
R(0)× [t0, t] is not relevant for trajectories starting in Br(0),

so the conclusions hold for any G ∈ C1(Rd × R) which allows for a global flow and satisfies

sup
{∣∣G(x, s)− F (x, s) : (x, s) ∈ BR(0)× [t0, t]

∣∣} ≤ 1. We will need this later on.

Let i ∈ [d]. Since BR(0) × [t0, t] ⊂ Rd+1 is compact and Fi : Rd × R ∼= Rd+1 → R is by

assumption continuous and does not depend on the i+ 1st coordinate, lemma 4.70 guarantees

for all n ∈ N the existence of smooth functions (even polynomials) F̃ni : Rd × R → R not

depending on xi such that

sup
{∣∣Fi(x, s)− F̃ni (x, s)

∣∣ : (x, s) ∈ BR(0)× [t0, t]
}
< 1

n ∀i ∈ [d].

Define F̃n := (F̃n1 , . . . , F̃
n
d ) : Rd × R→ Rd, then F̃n is by construction smooth and

sup
{∣∣F (x, s)− F̃n(x, s)

∣∣ : (x, s) ∈ BR(0)× [t0, t]
}
< 1

n .

However, a global flow to the ODE with r.h.s. F̃n only exists if F̃n does not grow to fast at

infinity; we ensure this by making F̃n compactly supported in the x-component as follows: Let

η ∈ C∞(Rd; [0, 1]) such that

η|BR(0) ≡ 1, η|(B2R(0))
c ≡ 0.
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Existence of such a map is a standard exercise in various lectures. For (x, s) ∈ Rd × R, let

Fn(x, s) := η(x) · F̃n(x, s), then by construction, Fn( · , s) and F̃n( · , s) coincide on BR(0)

for all s ∈ R and n ∈ N. Fn is by construction smooth and compactly supported in the

first argument, in particular, the derivatives w.r.t the first argument are bounded uniformly

in s ∈ [t0, t]. Therefore, Fn is Lipschitz-continuous in x uniformly in t and thus satisfies the

hypotheses of theorem 4.65. It follows that the ODE ẋ(t) = Fn(x(t), t) admits a unique, global

flow Φn. Moreover, it is clear that

sup
{∣∣Fn(x, s)− F (x, s)

∣∣ : (x, s) ∈ BR(0)× [t0, t]
}
<

1

n
≤ 1.

From our above discussion, we deduce that Φns (Br(0)) ⊂ BR(0) for all s ∈ [t0, t], n ∈ N. We

now claim that Φnt is close to Φt in the sense that

sup
{
|Φt(x)− Φnt (x)| : x ∈ Br(0)

} n→∞−−−−→ 0. (4.22)

Indeed, for any x ∈ Br(0) and n ∈ N, we have already argued that Φns (x),Φs(x) ∈ BR(0) for

all s ∈ [t0, t], and for these s,

∂+
s

∣∣Φns (x)− Φs(x)
∣∣ ≤ ∣∣Fn(Φns (x), s)− F (Φs(x), s)

∣∣
≤
∣∣Fn(Φns (x), s)− F (Φns (x), s)

∣∣+
∣∣F (Φns (x), s)− F (Φs(x), s)

∣∣
≤ 1

n
+ C · θ

(∣∣Φns (x)− Φs(x)
∣∣).

Also, we have that
∣∣Φnt0(x)− Φt0(x)

∣∣ = |x− x| = 0. Using theorem 4.5, we may conclude that

|Φnt (x)− Φt(x)| ≤ un(t) were un(t) is the unique and therefore maximal solution to the IVP

u̇n(t) = C · θ(un(t)) +
1

n
, un(0) = 0.

By lemma 4.79, limn→∞ un(t) = 0. In particular, given δ > 0 arbitrary, there is some N ∈ N
such that for all n ≥ N , 0 ≤ un(t) ≤ δ. Consequently, for n ≥ N , |Φnt (x)− Φt(x)| ≤ δ, i.e.

indeed,

sup
{∣∣Φnt (x)− Φt(x)

∣∣ : x ∈ Br(0)
}
≤ δ ∀n ≥ N,

which proves (4.22).

It remains to transfer the property of being measure preserving from the Φnt to Φt. In the

following, we will write |E| := λd(E). For δ > 0 and U ⊂ Rd, let

Bδ(U) :=

{
x ∈ Rd : dist(x, U) := inf

u∈U
|x− u| < δ

}
.

Then Bδ(U) ↘ U as δ ↘ 0: for 0 ≤ δ1 ≤ δ2, Bδ1(U) ⊂ Bδ2(U) and
⋂
δ>0Bδ(U) = U .

Since E is compact, so is Φt(E), and thus in particular, Φt(E) is closed and bounded. Hence,

Bδ(Φt(E)) is also bounded for every δ > 0, and it is easily checked to be open and hence

measurable. This implies that |Bδ(Φt(E))| <∞ for any δ > 0, and continuity of the measure

from above implies that |Bδ(Φt(E))| ↘ |Φt(E)| as δ ↘ 0. In particular, we can find some

δ > 0 such that |Bδ(Φt(E))| ≤ |Φt(E)|+ ε. By (4.22), we may find some N ∈ N such that for

all n ≥ N ,

sup
{∣∣Φt(x)− Φnt (x)

∣∣ : x ∈ E
}
≤ sup

{∣∣Φt(x)− Φnt (x)
∣∣ : x ∈ BR(0)

}
< δ.
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This shows that for all n ≥ N , Φnt (E) ⊂ Bδ(Φt(E)). Consequently, using that Φnt is measure

preserving,

|Φt(E)|+ ε ≥ |Bδ(Φt(E))| ≥ |Φnt (E)| = |E| .

Since ε > 0 was arbitrary, we obtain |Φt(E)| ≥ |E|. However, all arguments that we have used

yet do also to (Φ( · , t, t0))−1 = Φ( · , t0, t), too, so we may also conclude that

|E| =
∣∣Φ−1
t (Φt(E))

∣∣ ≥ |Φt(E)| .

This finally proves that |Φt(E)| = |E|, i.e. Φt is indeed measure preserving.

4.10 Miscellanea

In this section, we collect various auxiliary results which do not really fit into one of the previous

sections. We start with proving Cramer’s rule:

Lemma 4.68 (Cramer’s rule). Let A ∈ GL(d,R) and b ∈ Rd. Then for i ∈ [d], the i-th component

xi of the unique solution x ∈ Rd to the equation A ·x = b is given by

xi =
1

detA
·det

 | · · · | | | · · · |
a1 · · · ai−1 b ai+1 · · · ad
| · · · | | | · · · |

 ,

where A has the columns a1, . . . , ad ∈ Rd.

Proof. Let i ∈ [d]. Writing out the equation A ·x = b, we obtain x1 · a1 + . . .+ xd · ad = b, i.e.

x1 · a1 + . . .+ xi−1 · ai−1 + (xi · ai − b) + xi+1 · ai+1 + . . .+ xd · ad = 0.

This shows that the d vectors a1, . . . , ai−1, xi · ai − b, ai+1, . . . , ad ∈ Rd are linearly dependent.

In particular, the d × d matrix containing these vectors as columns has zero determinant. By

multilinearity of det, we obtain

0 = det

 | · · · | | | | · · · |
a1 · · · ai−1 xi · ai − b ai+1 · · · ad
| · · · | | | | · · · |


= xi ·det

 | · · · |
a1 · · · ad
| · · · |

− det

 | · · · | | | · · · |
a1 · · · ai−1 b ai+1 · · · ad
| · · · | | | · · · |

 ,

which after solving for xi yields the desired result.

With Cramer’s rule at hand, we get a useful expression, sometimes called Jacobi’s formula, for the

time derivative of the determinant map composed with a smooth curve in the space of invertible

square matrices:

Theorem 4.69. Let I ⊂ R open and A : I → GL(d,R) a C1-curve. Then

d

dt
det(A(t)) = det(A(t)) · tr

(
Ȧ(t) · (A(t))

−1)
, (4.23)

where Ȧ(t) :=
(
ȧij(t)

)
ij

and tr denotes the trace operator.
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Proof. Using multilinearity of the determinant map, we compute (cf. [3, p. 178])

d

dt
det(A(t)) =

d

dt
det

 | · · · |
a1(t) · · · ad(t)

| · · · |


=

d∑
i=1

det

 | · · · | | | · · · |
a1(t) · · · ai−1(t) ȧi(t) ai+1(t) · · · ad(t)

| · · · | | | · · · |


= det(A(t)) ·

d∑
i=1

1

det(A(t))
·det

 | · · · | | | · · · |
a1(t) · · · ai−1(t) ȧi(t) ai+1(t) · · · ad(t)

| · · · | | | · · · |


= det(A(t)) ·

d∑
i=1

xi,i(t).

In the last step, we used Cramer’s rule (lemma 4.68), with xi,i(t) denoting the i-th component

of the unique vector xi(t) ∈ Rd which satisfies A(t) ·xi(t) = ȧi(t). Writing the d equations

A(t) ·xi(t) = ȧi(t) as matrix equation, we get that xi,i(t) is the (i, i)-th component of the (by

invertibility of A(t) unique) solution X(t) to the equation A(t) ·X(t) = Ȧ(t). Therefore,

d

dt
det(A(t)) = det(A(t)) ·

d∑
i=1

[
(A(t))

−1 · Ȧ(t)
]
i,i

= det(A(t)) · tr
(
(A(t))

−1 · Ȧ(t)
)
.

The claim now follows from the invariance of tr under cyclic permutations.

Next, we prove that the familiar Stone-Weierstraß theorem “preserves” the number of relevant

variables in the following sense:

Lemma 4.70. Let C ⊂ Rd be compact, i ∈ [d] and f : C → R, x 7→ f(x) a continuous map which

does not depend on the i-th component xi of x ∈ C. Let ε > 0. Then there is some polynomial

p : Rd → R which also does not depend on xi such that supx∈C |f(x)− p(x)| < ε.

Proof. If C = ∅, there is nothing to show. Let z ∈ C and consider the map

π̂i : Rd → Rd−1, (x1, . . . , xd) 7→ (x1, . . . , xi−1, xi+1, . . . , xd).

Then π̂i is obviously continuous, and therefore π̂i(C) ⊂ Rd−1 is compact. Define

f̂i : π̂i(C)→ R, (y1, . . . , yd−1) 7→ f(y1, . . . , yi−1, zi, yi, . . . , yd−1).

Note that by assumption, f̂i does not depend on the choice of z ∈ C. Then f̂i is clearly continuous,

and by the Stone-Weierstrass theorem, cf. [2, p. 394 f.], we can find a polynomial p̂i : Rd−1 → R
such that

sup
y∈π̂i(C)

∣∣f̂i(y)− p̂i(y)
∣∣ < ε.

Let us finally set

p : Rd → R, (x1, . . . , xd) 7→ p̂i(x1, . . . , xi−1, xi+1, . . . , xd).

Then p is obviously a polynomial which does not depend on xi, and it is clear by construction that

sup
x∈C

∣∣f(x)− p(x)
∣∣ = sup

y∈π̂i(C)

∣∣f̂i(y)− p̂i(y)
∣∣ < ε.
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Let us now briefly digress on properties of the Coulomb potential with and without cut-off which

are important in section 3.2. We want to prove that away from the singularity, the Coulomb force

is Lipschitz continuous, and find good bounds on the local Lipschitz constants. By rotational

symmetry of the Coulomb force, it is convenient to use | · | := | · |2 with |x|2 := (x2
1 +x2

2 +x2
3)

1
2 the

euclidean norm for once in the following two lemmata.

Lemma 4.71. Let

k : R3 \ {0} → R3, q 7→ q

|q|3

the Coulomb force. Then there is some C > 0 such that for all q, q̃ ∈ R3 with q, q̃ 6= 0,

|k(q)− k(q̃)| ≤ C(
min {|q| , |q̃|}

)2·max {|q| , |q̃|}
· |q − q̃| .

Proof. For i, j ∈ [3] and q 6= 0,

∂ikj(q) = ∂i
qj

|q|3
=
δij · |q|3 − qj · 3 |q|2 · qi|q|

|q|6
=
δij · |q|2 − 3qiqj

|q|5
.

Since |ab| ≤ 1
2

(
a2 + b2

)
for all a, b ∈ R, we obtain

|∂ikj(q)| ≤
|q|2 + 3

2 |q|
2

|q|5
=

5

2 |q|3
∀q ∈ R3 \ {0}.

Now, let q, q̃ ∈ R3 \ {0}; w.l.o.g we may assume that |q| ≤ |q̃|. Then for any two C1-curves

γ1,2 : [0, 1] → R3 \ {0} with γ1(0) = q, γ1(1) = γ2(0), γ2(1) = q̃, by the fundamental theorem of

calculus, we obtain∣∣kj(q̃)− kj(q)∣∣ ≤ ∣∣kj(γ2(1))− kj(γ2(0))
∣∣+
∣∣kj(γ1(1))− kj(γ1(0))

∣∣
=

∣∣∣∣ˆ 1

0

d

dt

(
kj(γ2(t))

)
dt

∣∣∣∣+

∣∣∣∣ˆ 1

0

d

dt

(
kj(γ1(t))

)
dt

∣∣∣∣ .
Switching to appropriate spherical coordinates, for r = |q|, R = |q̃| and some ϕ ∈ [0, π] we may

write q = (r, 0, 0) and q̃ = (R cos(ϕ), R sin(ϕ), 0). Choose

γ1(t) :=

 r + t(R− r)
0

0

 , γ2(t) :=

 R cos(tϕ)

R sin(tϕ)

0

 .

Then obviously γ1(0) = q, γ1(1) = γ2(0) = (R, 0, 0), γ2(1) = q̃ and γ1,2 ∈ C1([0, 1];R3 \ {0}).
Moreover, by the chain rule and the Cauchy-Schwarz-inequality, we obtain∣∣∣∣ˆ 1

0

d

dt

(
kj(γ1(t))

)
dt

∣∣∣∣ =

∣∣∣∣ˆ 1

0

∇kj(γ1(t)) · γ̇1(t) dt

∣∣∣∣ ≤ ˆ 1

0

∣∣∇kj(γ1(t))
∣∣ · |γ̇1(t)| dt

≤ 5
√

3

2

ˆ 1

0

(
r + t(R− r)

)−3· (R− r) dt =
5
√

3

2

[
−1

2

(
r + t(R− r)

)−2
]1

0

=
5
√

3

4

(
1

r2
− 1

R2

)
=

5
√

3

4

R2 − r2

r2R2
=

5
√

3

4

(R− r)(R+ r)

r2R2

≤ 5
√

3

2r2R
· (R− r) .
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On the other hand,∣∣∣∣ˆ 1

0

d

dt

(
kj(γ2(t))

)
dt

∣∣∣∣ =

∣∣∣∣ˆ 1

0

∇kj(γ2(t)) · γ̇2(t) dt

∣∣∣∣ ≤ ˆ 1

0

∣∣∇kj(γ2(t))
∣∣ · |γ̇2(t)| dt

≤ 5
√

3

2

ˆ 1

0

R−3 ·Rϕdt ≤ 5
√

3

2rR2
· rϕ.

Observe that |q − q̃|2 = r2 +R2 − 2rR cos(ϕ), so using the trigonometric identity

cos(ϕ) = cos
(
ϕ
2 + ϕ

2

)
= cos2

(
ϕ
2

)
− sin2

(
ϕ
2

)
= 1− 2 sin2

(
ϕ
2

)
,

we see that

|q − q̃|2 = r2 +R2 − 2rR
(
1− 2 sin2

(
ϕ
2

))
= (R− r)2 + 4rR sin2

(
ϕ
2

)
.

In particular, R− r ≤ |q − q̃| and

rϕ = π
√
r2 · 2

π
ϕ
2 ≤ π

√
rR · sin

(
ϕ
2

)
= π

2

√
4rR sin2

(
ϕ
2

)
≤ π

2 |q − q̃| ,

where we employed the elementary inequality 2
πφ ≤ sinφ for φ ∈ [0, π2 ], which can be proved by

concavity of sin on [0, π2 ]. The cases ϕ = 0 and r = R, ϕ = π show that actually, both inequalities

are sharp. Putting everything together, we finally arrive at

|k(q)− k(q̃)| ≤
√

3 ·max {|kj(q)− kj(q̃)| : i ∈ [3]} ≤
√

3 ·

(
5
√

3

2 |q|2 |q̃|
· |q − q̃|+ 5

√
3π

4 |q| |q̃|2
· |q − q̃|

)

≤ C

|q|2 |q̃|
· |q − q̃|

where C = 3( 5
2 + 5π

4 ).

Remark 4.72. In the previous proof, we used that (with | · | ≡ | · |2)) |∇kj(q)| ≤ 5
√

3
2 |q|

−3
. With

a slightly more involved calculation, one can show that actually, |∇kj(q)| ≤ 2 |q|−3
and hence

further improve C.

Note that in the proof we just saw, the particular form of ∇kj was not important, the only thing

we needed was that |∇kj(q)| ≤ C |q|−3
for all q ∈ R3\{0}. Hence, we can do a similar computation

for the Coulomb force with cut-off. Of course, since the (almost everywhere defined) gradient of

the Coulomb force with cut-off f defined in (3.2) is bounded by our above estimate for the gradient

of the Coulomb force k (recall that |∇f(q)| = S3δ ≤ |q|−3
on BS−δ(0) \ {0}), we can always use

the estimate from the previous lemma. Better estimates can only be achieved if we have good

control on the distance of q and q̃, since then, knowing that, say, q is near the cut-off region, we

can “localize” the paths γ1, γ2 and see that a large part of them is contained in the cut-off region,

which leads to a “cut-off local Lipschitz bound”:

Lemma 4.73. Let f : R3 → R3 be the Coulomb force with cut-off defined in (3.2). Then there is

some g : R3 → R satisfying a S3
δ -condition such that for all q ∈ R3 and all ξ ∈ R3 with |ξ| ≤ 1

2S
−δ,

|f(q + ξ)− f(q)| ≤ g(q) · |ξ| . (∗)

Proof. We distinguish between two cases:
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(i) Let |q| ≤ S−δ. If |q + ξ| ≥ |q|, by using the same paths as in the proof of lemma 4.71, if

necessary with an additional splitting when moving radially outwards and crossing the sphere

of radius S−δ, and using the rough estimate |∇f(q)| ≤ CS3δ for all q ∈ B2S−δ(0) with q 6= 0

and |q| 6= S−δ, we obtain that in this case,

|f(q + ξ)− f(q)| ≤ CS3δ · |ξ| .

For |q + ξ| < |q|, we can interchange the roles of q and q + ξ and see that the statement

remains true.

(ii) If |q| > S−δ, then |q + ξ| ≥ |q| − |ξ| ≥ 1
2 |q|, and using that the gradient of the Coulomb force

with cut-off is, where existent, bounded by the gradient of the Coulomb force without cut-off,

by virtually the same computation as in lemma 4.71, again possibly with a splitting of the

radial path at the radius S−δ, we obtain

|f(q + ξ)− f(q)| ≤ C

( 1
2 |q|)3

· |ξ| ≤ 8C

|q|3
· |ξ| .

This shows that for

g(q) := 8C ·

{
S3δ, |q| ≤ S−δ

|q|−3
, |q| > S−δ,

(4.24)

(∗) holds, and obviously g satisfies a S3
δ -condition.

Next, we want to derive a special form of the mean value theorem of differentiation in multi-variable

calculus:

Lemma 4.74. Let a, b ∈ R with a < b, f ∈ C2([a, b]) and x ∈ [a, b]. Then for all h > 0 such that

[x, x+ h] ⊂ [a, b], there is some θ ∈ (0, 1) such that

1

h

(
f(x+ h)− f(x)

)
− f ′(x) =

h

2
f ′′(x+ θh).

Proof. We use Taylor’s theorem with the Lagrangian form of the remainder (see e.g. [2, p. 341]):

for some ξ ∈ (x, x+ h),

1

h

(
f(x+ h)− f(x)

)
− f ′(x) =

1

h

(
f(x) + hf ′(x) +

h2

2
f ′′(ξ)− f(x)

)
− f ′(x) =

h

2
f ′′(ξ).

Letting θ := ξ−x
h ∈ (0, 1) yields the desired result.

Corollary 4.75. Let d ∈ N, U ⊂ Rd open and f ∈ C2(U ;R). Then for i ∈ [d], x, y ∈ U such that

{x+ ty : t ∈ [0, 1]} ⊂ U , there is some θ ∈ (0, 1) such that

1

h

(
f(x+ hy)− f(x)

)
−∇f(x) · y =

h

2

d∑
i,j=1

∂i∂jf(x+ θy) · yiyj .

Proof. Apply lemma 4.74 to the map f ◦ γ, where γ : [0, 1] → Rd, t 7→ x + ty, and use the chain

rule.

Morover, we need some results on a few functions which are relevant in the main text.
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Lemma 4.76. For C, ε > 0, consider the maps u, v, w : [1,∞)→ R where

u(s) :=

√
ln(s)

sε
, v(s) :=

1 + ln(s)

sε
, w(s) :=

eC
√

ln(s)

sε
.

Then u, v, w are bounded.

Proof. Clearly, boundedness of v implies boundedness of u. By L’Hospital’s rule,

lim
s→∞

v(s) = lim
s→∞

s−1

ε · sε−1
= ε−1 · lim

s→∞
s−ε = 0.

Since v is non-negative and continuous, boundedness follows immediately.

Observe that for all s ≥ 1,

v(s) = eC
√

ln(s) = e
ln(s) · C√

ln(s) = s
C√
ln(s) ,

so using lims→∞
C√
ln(s)
− ε = −ε < 0 we obtain that C√

ln(s)
− ε < − ε2 for s big enough, and hence

lim
s→∞

v(s) = lim
s→∞

eC
√

ln(s)

sε
= lim
s→∞

s
C√
ln(s)
−ε

= 0.

With the same arguments which were applied to v, we see that w is bounded as well.

Lemma 4.77. Consider the map

θ : R→ R, t 7→
{

0, t ≤ 0

t · (1 + |ln(t)|) , t > 0.

Then θ ∈ C(R), θ(t) > 0 for t > 0, θ is monotonously increasing and lim
ε↘0

ˆ 1

ε

1

θ(t)
dt =∞.

0

1

2

3

4

5

0 1 2

t

θ(t)
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Proof. Note that for t ∈ (0, 1), |ln(t)| = − ln(t). By L’Hospital’s rule,

lim
t↘0

t · |ln(t)| = lim
t↘0

− ln(t)
1
t

= lim
t↘0

− 1
t

− 1
t2

= lim
t↘0

t = 0.

Hence, θ is continuous in 0. Continuity in all other points is clear. That θ(t) > 0 for t > 0 is

obvious. For t < 0, θ(t) is constant and therefore its derivative equals 0. For t ∈ (0, 1) resp.

t ∈ (1,∞),

d

dt
θ(t) =

d

dt

(
t · (1− ln(t)

)
= − ln(t) > 0 resp.

d

dt
θ(t) =

d

dt

(
t · (1 + ln(t)

)
= 2 + ln(t) > 0,

which by continuity shows that θ is non-decreasing.

Now, consider the map

h : R→ R, t 7→
{

0, t ≤ 0

t+ t · ln(t), t > 0

By the same arguments as above, h is continuous with derivative h′(t) = 2 + ln(t) for t > 0, so we

see that h′(t) < 0 on (0, e−2), and since h(0) = 0 we obtain h(t) < 0 for t ∈ (0, e−2). Consequently,

t ≤ −t · ln(t) on this interval, and thus t · (1− ln(t)) = t−t · ln(t) ≤ −2t · ln(t) on (0, e−2). It follows

that for ε ∈ (0, 1),

ˆ 1

ε

1

θ(t)
dt =

ˆ 1

ε

1

t · (1 + |ln(t)|)
dt =

ˆ 1

ε

1

t · (1− ln(t))
dt ≥

ˆ e−2

ε

1

t− t · ln(t))
dt

≥
ˆ e−2

ε

1

2t · (− ln(t))
dt =

1

2

[
− ln(− ln(t))

]e−2

ε

=
1

2

(
ln(− ln(ε))− ln(2)

) ε↘0−−−→ +∞.

Lemma 4.78. For C > 0 and t0, x0 ∈ R, consider the IVP

ẋ(t) = C · θ(x(t)), x(t0) = x0, (4.25)

where again θ : R→ R is defined in lemma 4.77. Then (4.25) has a unique global solution, which

is for t ≥ t0 given by

x(t) =


x0, x0 ≤ 0,

e1−e−C(t−t0)+ln(1−ln(x0))

, x0 ∈ (0, 1), t ≤ t0 + 1
C · ln(1− ln(x0)),

ee
C(t−t0)−ln(1−ln(x0))−1, x0 ∈ (0, 1), t ≥ t0 + 1

C · ln(1− ln(x0)),

ee
C(t−t0)+ln(1+ln(x0))−1, x0 ≥ 1.

(4.26)

In particular, for all t ≥ t0, lim
x0↘0

x(t) = 0.

Proof. We only sketch the proof because most of the calculations are straightforward. First,

observe that since C · θ ≥ 0, every solution of (4.25) is non-decreasing. Next, it is obvious that θ

is locally Lipschitz-continuous on R \ {0}, so from the Picard-Lindelöf theorem (see e.g. [40, p.

68]) we deduce that the only possibility for non-uniqueness to appear is at x(t) = 0. However, for
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0 ≤ x < y ≤ 1, one has by concavity of the map C · θ on (0, 1) (θ′′(t) = − 1
t < 0 for t ∈ (0, 1)) that

|G(y)−G(x)| = |C · θ(y)− C · θ(x)| = C · θ(y)− θ(x)

y − x
· (y − x)

≤ C · θ(y − x)− θ(0)

y − x
· (y − x) = C · θ(y − x).

This argument was inspired by a similar computation in [1]. With lemma 4.77, it follows that

G satisfies all the presuppositions of Osgood’s criterion (see e.g. [40, p. 146-147]), i.e. we obtain

uniqueness of solutions. For x0 ≤ 0, θ(x0) = 0, so x0 is an equilibrium point and therefore

x(t) = x0 the unique solution. For x0 ∈ (0, 1), we restrict θ to (0, 1) and use the separation of

variables formula, noting that an indefinite integral of 1
x(1−ln(x)) is given by − ln(1 − ln(x)). One

then checks that for t ↗ t̃ := t0 + 1
C · ln(1 − ln(x0)), x(t) ↗ 1. Hence, for t ≥ t̃, we continue

the solution with a solution of the IVP for θ restricted to [1,∞). Since an indefinite integral of
1

x(1+ln(x)) is given by ln(1 + ln(x)), the rest of (4.26) follows from easy computations. Finally, note

that as x0 ↘ 0, t̃↗∞ and ln(x0)↘ −∞, and consequently x(t)↘ 0 for fixed t ≥ t0 because we

can use the second row of (4.26).

Next, we want to investigate some sort of stability of the IVP in the previous lemma.

Lemma 4.79. Consider the IVP

ẋ = C · θ(x(t)) +
1

n
, x(t0) = 0. (4.27)

Then for every n ∈ N, there is a unique, global solution xn to (4.27), and xn → 0 uniformly on

compact sets as n→∞, i.e. for all T > t0, sup {|xn(s)| : s ∈ [t0, T ]} n→∞−−−−→ 0.

Proof. Let Gn : Rd × R → Rd, (x, t) 7→ C · θ(x) + 1
n , G : Rd × R → Rd, (x, t) 7→ C · θ(x). From

lemma 4.78, we know that the unique (and therefore maximal) solution of the IVP ẋ(t) = G(x(t), t),

x(t0) = 0 is given by x(t) = 0. Moreover, for x, y ∈ (0, 1), |Gn(y)−Gn(x)| = |G(y)−G(x)|, for

the same reasons as in lemma 4.78, solutions to the IVP (4.27) are unique (however, we could

also work with the maximal solutions without difficulties here). Clearly, solutions to (4.27) are

obviously non-decreasing, and since 1
n ≤ 1 ≤ θ(x) for x ≥ 1, they are easily seen to exist globally:

existence on (−∞, 1] is clear because C · θ|(−∞,1] is bounded, and for existence on [1,∞) use that

C · θ + 1
n ≤ (C + 1) · θ on [1,∞), the comparison theorem 4.5 and lemma 4.78.

Obviously, Gn converges to G uniformly, so by theorem 3.2 in [20, p. 14f.], there is a subsequence

(nk)n∈N such that xnk(t)→ x(t) uniformly on [t0, T ] as k →∞, where x(t) is a solution of the IVP

ẋ(t) = G(x(t), t), x(t0) = 0, i.e. by uniqueness xnk(t) → x(t) = x(t) = 0 uniformly in t ∈ [t0, T ]

for any T > t0. But since the r.h.s of the IVP (4.27) decreases as n increases, again using the

comparison theorem, we see that the whole sequence (xn(t))n∈N is actually non-increasing, and

thus we obtain xn(t)→ 0 uniformly on [t0, T ], as claimed.

Finally, we shall state a very general version of Grønwall’s lemma in integral form, which comple-

ments its differential counterpart formulated in theorem 4.3.
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4 APPENDIX: MATHEMATICAL RESOURCES

Theorem 4.80 (Grønwall’s lemma, integral form). Let t0, T ∈ R with t0 < T and suppose that

f : [t0, T ] → R and g, h : [t0, T ] → [0,∞) are measurable such that g, f · g, h · g ∈ L1([t0, T ]). If

additionally the inequality

f(t) ≤ h(t) +

ˆ t

t0

g(s) · f(s) ds ∀t ∈ [t0, T ]

is satisfied, then it holds that

f(t) ≤ h(t) +

ˆ t

t0

g(s) ·h(s) · exp

(ˆ t

s

g(τ) dτ

)
ds ∀t ∈ [t0, T ].

In particular, for h non-decreasing and g continuous,

f(t) ≤ h(t) · exp

(ˆ t

t0

g(s) ds

)
∀t ∈ [t0, T ].

Remark 4.81. In case f, g, h : [t0, T ] → R are measurable and bounded, the hypotheses of the

first part of the theorem are clearly satisfied.

Proof of theorem 4.80. For the first claim, see [23], theorem A, with g ≡ 1 in the notation of the

book and dα = g dx where now g denotes the function in theorem 4.80. Note that the theorem is a

reformulation of lemma 4 in [25], however, the form in [23] fits better in the context of this thesis.

However, the paragraph about the integral form for locally finite measures in the Wikipedia entry

about Grønwall’s inequality is the more readable reference, and it provides a nice sketch of the

proof as well. For the second claim, using the fundamental theorem of calculus (and non-negativity

of g, h), we obtain that for all t ∈ [t0, T ],

f(t) ≤ h(t) + h(t) ·
ˆ t

t0

g(s) · exp

(ˆ t

s

g(τ) dτ

)
= h(t) + h(t) ·

ˆ t

t0

− d

ds
exp

(ˆ t

s

g(τ) dτ

)
ds

= h(t)− h(t) ·
[
1− exp

(ˆ t

t0

g(s) ds

)]
= h(t) · exp

(ˆ t

t0

g(s) ds

)
.
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