
Quantum Compression

and Fixed Points of Schwarz Maps

Lukas Rauber

A thesis submitted for the degree of

Master of Science

August 2018

Supervisor:

Prof. Dr. Michael M. Wolf

Zentrum Mathematik, M5

Technische Universität München



Contents

Introduction 1

1. C∗-Algebras 2

1.1. ∗-Algebras and Commutants . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Hermiticity, Positivity and Order . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Ideals and Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4. Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5. Basic operations on C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6. Basic Structure theory of C∗- and von Neumann algebras . . . . . . . . . . 20

1.6.1. Strongly closed concrete ∗-algebras . . . . . . . . . . . . . . . . . . 20
1.6.2. Structure of ∗-algebras on �nite dimensional Hilbert spaces . . . . 22

1.7. n-positivity and complete positivity . . . . . . . . . . . . . . . . . . . . . . 28
1.8. Support Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2. Quantum Information Theory 34

2.1. Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.1. States and E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.3. Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.4. Compound Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2. Channels; Heisenberg and Schrödinger picture . . . . . . . . . . . . . . . . 40
2.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2. Structure theory of von Neumann algebras revisited . . . . . . . . 44

2.3. Maximally entangled states and special isomorphisms . . . . . . . . . . . . 47
2.4. Spectra of positive maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5. Compression of the identity channel is impossible . . . . . . . . . . . . . . 52

3. Fixed points of Schwarz maps 55

3.1. Reduction of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2. The special case ∗-Alg(F) = L (H) . . . . . . . . . . . . . . . . . . . . . . 57
3.3. The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4. Uniqueness of a channel under a given �xed point set . . . . . . . . . . . . 63
3.5. Translation into the Schrödinger Picture . . . . . . . . . . . . . . . . . . . 65

4. Compression of Quantum E�ects 67

4.1. Quantum Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.1. Quantum dimensions of sub-∗-algebras . . . . . . . . . . . . . . . . 71



4.1.2. Is there a di�erence whether we compress e�ects or �only� whole
observables? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2. Algorithmic construction of compression maps . . . . . . . . . . . . . . . . 73
4.3. Lossy Compression: an outlook . . . . . . . . . . . . . . . . . . . . . . . . 75

A. Proof of the von Neumann double commutant theorem 77

A.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.1.1. General Topology in terms of Nets . . . . . . . . . . . . . . . . . . 77
A.1.2. Topological Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . 78
A.1.3. Topologies on L (H) . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1.4. Unitality and Degeneracy . . . . . . . . . . . . . . . . . . . . . . . 79

A.2. Statement and proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Introduction

There exist various schemes for compression of classical (i.e., non-quantum) information,
which we use almost everyday, e.g. the .zip (lossless) and .mp3 (with loss) �le formats. In
the present work we want to analyse the possibilities of compressing quantum information,
i.e. mapping it into a smaller quantum system � thereby possibly allowing classical side
information � and decompressing it while preserving the measurement statistics of a given
set of quantum e�ects.
In Chapter 1 we establish the necessary mathematical foundations for the description of

quantum information in terms of C∗-algebras; in Chapter 2 we recall the basic principles
of quantum information. In Chapter 3 we will investigate the structure of �xed point
spaces of Schwarz maps between von Neumann algebras and formulate a normal form
theorem (Theorem 3.8), which we will employ several times when investigating lossless
quantum compression in Chapter 4. In the last section we �nally give an outlook on the
possibilities of quantum compression with losses.
The present work aims to be self-contained; nearly all mathematical statements will

be proven. As prerequisites, we will rely on the well-known theory of (continuous linear)
operators in Hilbert spaces, together with basic notions from the theory of Topological
Vector Spaces, which are used in the context of the various important topologies the
space of continuous linear operators on a Hilbert space can be equipped with.
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Chapter 1.

C∗-Algebras

In this chapter we recall the basic theory of C∗-Algebras.
As we are mainly concerned with quantum operations, we will focus on concrete C∗-

Algebras, i.e. algebras of operators on a Hilbert space. In view of later applications
in quantum information theory and dimensionality reduction, at several points we only
consider �nite dimensional Hilbert spaces, if it simpli�es matters.

1.1. ∗-Algebras and Commutants

We recall the de�nition of an abstract ∗-algebra, and derive some basic properties.

De�nition 1.1. A ∗-algebra A is an associative algebra (with or without unit) over the
�eld C of complex numbers, together with an involution ∗ : A −→ A , a 7→ a∗, such that
for all x, y ∈ A and λ ∈ C the following relations are satis�ed:

i) (x∗)∗ = x;

ii) (x+ y)∗ = x∗ + y∗;

iii) (λx)∗ = λx∗; (λ denotes the complex conjugate of λ)

iv) (xy)∗ = y∗x∗.

If, in addition, A carries a norm ∥·∥ that renders the normed space (A , ∥·∥) complete
and which satis�es

v) ∥xy∥ ≤ ∥x∥ ∥y∥ for all x, y ∈ A (submultiplicativity) and

vi) ∥x∗x∥ = ∥x∥2 for all x ∈ A (the C∗-property),

then A is called (abstract) C∗-algebra.
If A contains a unit, i.e. an element 1A satisfying 1A x = x1A = x for all x ∈ A ,

then A is called unital.
A ∗-subalgebra B of a ∗-algebra A is a linear subspace with the property that, if x and

y are in B, then also xy and x∗ lie in B. A C∗-subalgebra of a C∗-algebra is a complete
(equivalently, ∥·∥-closed) ∗-subalgebra.
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Chapter 1. C∗-Algebras

Note that if A is unital, we do not require a ∗-subalgebra B of A to have the same
unit as A (or have a unit at all).
As more or less trivial consequences of the de�nition, we note:

Lemma 1.2. In a ∗-algebra A it holds that 0∗ = 0 and, if A is unital, (1A )∗ = 1A .
Moreover, in a C∗-algebra A , we have ∥x∥ = ∥x∗∥ for all x ∈ A .

Proof. From properties (i) and (ii) of De�nition 1.1 it follows that x = x∗∗ = (x∗ + 0)∗ =
x + 0∗ for all x ∈ A , so 0∗ = 0 by uniqueness of the neutral element in a group. The
equality (1A )∗ = 1A follows similarly with (i) and (iv) by x = x∗∗ = (x∗1A )∗ = (1A )∗ x,
as well as x = x∗∗ == (1A x

∗)∗ = x (1A )∗.
Using properties v) and vi), we obtain the inequality ∥x∥2 = ∥x∗x∥ ≤ ∥x∗∥ ∥x∥ for all

x ∈ A , hence ∥x∥ ≤ ∥x∗∥ (the special case x = 0 is valid by the preceding argument).
Since the adjoint map is an involution, we can replace x by x∗ and use (i) to get the
reverse inequality.

As an example, let H be a complex Hilbert space and let L (H) denote the algebra
of all linear continuous1 maps T : H −→ H. Equipped with the usual adjoint operation
∗ : L (H) −→ L (H) and the operator norm, L (H) is a C∗-algebra. Note that although
∗-subalgebras of C∗-algebras ful�l properties v) and vi) in De�nition 1.1, they need not
be C∗-algebras again � consider for instance a separable in�nite-dimensional complex
Hilbert space H with an orthonormal basis (ei)i∈N and the ∗-subalgebra

A := {T ∈ L (H) | rankT and rankT ∗ are �nite} ⊂ L (H).

One easily checks that A is a ∗-algebra, but it is not complete; indeed the Cauchy
sequence Tn :=

∑n
i=1

1
i |ei⟩⟨ei| does not converge in A . However, this phenomenon does

not occur in �nite dimensional Hilbert spaces, because in this case all linear subspaces
are complete.
We will mainly be concerned with ∗-algebras consisting of operators on some Hilbert

space, which justi�es an autonomous de�nition:

De�nition 1.3. A sub-∗-algebra of L (H) for some complex Hilbert space H is called a
concrete ∗-algebra, or a ∗-algebra of operators (in H).

The apparently greater generality of abstract C∗-algebras over concrete ones is in fact
deceptive: According to the Gelfand-Naimark theorem (see for example [Tak, Theorem
9.18 in Ch. I] or [Arv3, Theorem 1.7.3]), every abstract C∗-algebra is isometrically
isomorphic (cf. section 1.4) to a concrete one. We will not prove this theorem, but we
will restrict our statements to concrete C∗-algebras at several points.
Finally, we consider a special class of concrete C∗-algebras, namely von Neumann

algebras. We de�ne:

De�nition 1.4. Let H be a complex Hilbert space. For a subset S ⊆ L (H), we call

S′ := {t ∈ L (H) | ts = st ∀s ∈ S}
1Note that in the case dimH <∞, all linear operators T : H −→ H are continuous.
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Chapter 1. C∗-Algebras

the commutant of S. The double and triple commutant are de�ned as S′′ := (S′)′ and
S′′′ := (S′′)′, respectively. The centre of a concrete ∗-algebra A ⊆ L (H) is by de�nition
Z(A ) := A ∩A ′.
Finally, a subset A ⊆ L (H) is called von Neumann algebra (in H), if A = A ′′ = A ∗.

As the name already suggests, a von Neumann algebras are associative algebras; actu-
ally they are special cases of unital concrete C∗-algebras, which is made clear in part (f)
of the next Proposition, which also summarises some properties of commutants and von
Neumann algebras.

Proposition 1.5 ([Dix, Section I.1.1]). Let H be a complex Hilbert space.

a) The operations of taking the adjoint and taking the commutant of a set, com-
mute, i.e. (S∗)′ = (S′)∗ for all S ⊆ L (H).

b) For two sets S, T ⊆ L (H), the implication S ⊆ T =⇒ T ′ ⊆ S′ holds.

c) For every set S ⊆ L (H) it holds that S ⊆ S′′.

d) The commutant S′ of a set S ⊆ L (H) is a strongly closed2 algebra containing
idH. In particular, if S = S∗, then S′ is a unital C∗-algebra in H.

e) We have S′′′ = S′ for every subset S ⊆ L (H). In particular, if S = S∗, then
S′ is a von Neumann algebra.

f) Every von Neumann algebra A in H is a strongly closed C∗-algebra of oper-
ators in H that contains idH as a unit.

g) For S ⊆ L (H), the set (S ∪ S∗)′′ is the smallest von Neumann algebra con-
taining S, i.e.

(S ∪ S∗)′′ =
∩{

T ⊆ L (H)
∣∣ T ⊇ S ∧ T ′′ = T = T ∗} .

Proof. a) Calculate:

(S∗)′ = {t ∈ L (H) | ts∗ = s∗t ∀s ∈ S}
= {t ∈ L (H) | st∗ = t∗s ∀s ∈ S}
= {t ∈ L (H) | st = ts ∀s ∈ S}∗ =

(
S′)∗ .

b) Assume S ⊆ T ⊆ L (H) and let u ∈ T ′. Since u commutes with every element of
T , it certainly commutes with every element of S (as T ⊇ S); hence u ∈ S′.
c) Let s ∈ S. In order to prove s ∈ S′′, we have to show st = ts for any given t ∈ S′.

But this is exactly the de�nition of S′, so this statement is reasonably trivial.
d) It is fairly evident that S′ is an algebra: Obviously it is a linear subspace of L (H),

and we have for x, y ∈ S′

∀s ∈ S : xys = xsy = sxy (by de�nition of S′),

2For a de�nition of the numerous topologies on L (H), see Appendix A.
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Chapter 1. C∗-Algebras

hence x, y ∈ S′. To prove that S′ is closed w.r.t. the strong operator topology, we take
a net (tδ) ⊆ S′ converging strongly to a limit t ∈ L (H), i.e. tδξ → tξ for all ξ ∈ H, and
show that t lies in S′. As tδ ∈ S′ for every δ, we have tδsξ = stδξ for all s ∈ S and all δ.
The left hand side converges to tsξ, whereas the right hand side converges to stξ, thus
by uniqueness of limits tsξ = stξ for all ξ ∈ H; hence t ∈ S′.
e) By part (c) we have S′ ⊆ (S′)′′ = S′′′. The other inclusion follows by applying (b)

to the inclusion S ⊆ S′′, which yields S′′′ = (S′′)′ ⊆ S′. The auxiliary statement follows
from (a), as (S′)∗ = (S∗)′ = S′.
f) Let A ⊆ L (H) be a von Neumann algebra. Since A = (A ′)′, part (d) tells us that

A is a strongly closed algebra containing idH. The second de�ning property A = A ∗

implies that A is a ∗-algebra. Since the strong operator topology is weaker than the
uniform topology, A is also ∥·∥-closed, hence complete.
g) �⊆�. Let T ⊆ L (H) be such that T ′′ = T = T ∗ and S ⊆ T . By taking adjoints,

S∗ ⊆ T ∗ = T , hence (S ∪ S∗) ⊆ T . Now apply (b) twice to get (S ∪ S∗)′′ ⊆ T ′′ = T .
Conversely, we know from (e) and (c) that (S ∪ S∗)′′ is a von Neumann algebra con-

taining S; so it actually occurs in the intersection on the right hand side, which shows
�⊇�.

Remark 1.6. The converse statement of part (f) also holds true, namely that a concrete
∗-algebra is a von Neumann algebra, i� it contains idH and is closed w.r.t. the strong
(or, equivalently, weak) operator topology. This is a direct consequence of the famous
Double Commutant Theorem of J. von Neumann (see Appendix A for a formal statement
and proof of the double commutant theorem.). Thus, whereas in the general case von
Neumann algebras are more special than concrete C∗-Algebras, the situation is much
simpler, if the underlying Hilbert space is �nite-dimensional, for in �nite dimensions
all subspaces of L (H) are closed w.r.t. to any of the weak, strong or norm topology.
More precisely, the following corollary of the double commutant theorem holds in �nite
dimensions:

Proposition 1.7 (Double Commutant Theorem, �nite dimensional case, cf. [Dix, p.
45]). Let A be a concrete ∗-algebra in the �nite dimensional Hilbert space H. De�ne the
subspace

X := span {Aξ | A ∈ A , ξ ∈ H} ⊆ H

and let P ∈ L (H) denote the orthogonal projection onto X .
Then P is the unit of, and the greatest3 projection in A . Moreover, we have

A ′′ = A + C · idH;

and the following statements are equivalent:

i) A is a von Neumann algebra in H.

ii) P = idH.

3meaning: All other projections Q ∈ A have a proper subspace of X as their image.
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Chapter 1. C∗-Algebras

iii) idH ∈ A .

In other words: All sub-∗-algebras of L (H) are actually unital C∗-algebras for �nite
dimensional H.

Operator Systems

In later applications, we will consider maps de�ned only on linear subspaces of L (H)
that are not necessarily closed under multiplication. We de�ne:

De�nition 1.8. Let A be a unital C∗-Algebra. A linear subspace S ⊂ A is called an
operator system, if it is self-adjoint (i.e. S∗ := {s∗ | s ∈ S} = S) and contains the unit
element of A .

1.2. Hermiticity, Positivity and Order

De�nition 1.9. An element x of a ∗-algebra A is called

� hermitian or self-adjoint, if x∗ = x.

� anti-hermitian, if x∗ = −x.

� positive, if x = y∗y for a y ∈ A . In this case we write x ≥ 0. For a, b ∈ A we write
a ≤ b, if a and b are hermitian and b− a ≥ 0. In this case we occasionally may say
that b majorises a.

� projection, if x2 = x = x∗.

It follows directly from the de�nition, that every projection is positive, that every positive
element is hermitian, and that the set of hermitian elements of a ∗-algebra constitutes
a vector space over R. Although it is not obvious, the positivity of an element x ∈ A
does not depend on whether we regard x as an element of A or as an element of some
subalgebra B ⊆ A .
As is well-known, in the case of concrete C∗-algebras one can characterise positivity of

an operator a ∈ L (H) by several equivalent conditions:

i) For all vectors ψ ∈ H, the number ⟨ψ|aψ⟩ is real and non-negative.

ii) a = h2 for some hermitian operator h ∈ L (H).

iii) a is hermitian and its spectrum is contained in [0, +∞) .

Hence, in a concrete C∗-algebra, the set of positive elements forms a convex cone (i.e.,
it is closed under addition and multiplication with non-negative real numbers). The
same holds for abstract C∗-algebras, though this is harder to show, if one does not use a
representation on a concrete Hilbert space. For a reference, see [Tak, Chapter I.6].
The following proposition summarises properties and calculation rules of hermitian

and positive elements, as well as connections between positivity and the C∗-norm. The
proofs are mostly taken from [Pau, Chapter 2].
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Chapter 1. C∗-Algebras

Proposition 1.10. Let A be a concrete unital C∗-algebra on H, and let S ⊂ A be an
operator system.

i) An element x ∈ A is anti-hermitian, i� ix is hermitian.

ii) For any x ∈ S, there is a unique decomposition x = h + a, where h ∈ S is
hermitian and a ∈ S is anti-hermitian. In this case we have that ∥h∥ ≤ ∥x∥
and ∥a∥ ≤ ∥x∥.

iii) If h ∈ A is hermitian, then we have −∥h∥ · 1A ≤ h ≤ ∥h∥ · 1A .

iv) Every hermitian element h ∈ S can be expressed as the di�erence of two
positive elements in S, namely

h =
1

2
(∥h∥ · 1A + h)− 1

2
(∥h∥ · 1A − h).

v) For two positive elements p1 and p2 in A we have that

∥p1 − p2∥ ≤ max {∥p1∥ , ∥p2∥} .

vi) If a and b are hermitian elements of A with a ≤ b, then for all c ∈ A it
holds that c∗ac ≤ c∗bc.

vii) For any a, c ∈ A we have that a∗c∗ca ≤ ∥c∥2 a∗a.

Proof. (i) We have the following equivalence chain:

ix is hermitian ⇔ ix = (ix)∗ = −ix∗ ⇔ x∗ = −x ⇔ x is antihermitian.

(ii) First we show uniqueness of the decomposition: If we have x = h + a with h
hermitian and a anti-hermitian, by taking adjoints we get x∗ = h − a. Respectively
adding or subtracting these two equations yields h = (x + x∗)/2 and a = (x − x∗)/2,
so h and a are uniquely determined by x. Obviously, h and a add up to x. Since
∥x∗∥ = ∥x∥ (Lemma 1.2), the triangle inequality applied to the de�nitions of h and a
implies ∥h∥ , ∥a∥ ≤ ∥x∥.
(iii) For every vector ξ ∈ H we can use the Cauchy-Schwarz inequality to obtain

⟨ξ|hξ⟩ ≤ ∥ξ∥ ∥hξ∥ ≤ ∥h∥ ∥ξ∥2 =
⟨
ξ
∣∣∣ (∥h∥ 1A ) ξ

⟩
,

hence h ≤ ∥h∥ · 1A . The other operator inequality then follows by multiplication with
−1 and replacing h by −h.
(iv) follows from (iii).
(v) Because the operator p1 − p2 is hermitian, we can calculate its norm by

∥p1 − p2∥ = sup
∥ξ∥≤1

|⟨ξ|(p1 − p2)ξ⟩| = sup
∥ξ∥≤1

∣∣ ⟨ξ|p1ξ⟩︸ ︷︷ ︸
≥0

−⟨ξ|p2ξ⟩︸ ︷︷ ︸
≥0

∣∣
≤ sup

∥ξ∥≤1
max

{
|⟨ξ|p1ξ⟩| , |⟨ξ|p2ξ⟩|

}
= max

p∈{p1,p2}
sup
∥ξ∥≤1

|⟨ξ|pξ⟩|

= max {∥p1∥ , ∥p2∥} .
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Chapter 1. C∗-Algebras

(vi) Setting d := b − a ≥ 0, we have ⟨ξ|c∗bc− c∗ac|ξ⟩ = ⟨ξ|c∗dc|ξ⟩ = ⟨cξ|d|cξ⟩ ≥ 0 for
all ξ ∈ H.
(vii) Again, for ξ ∈ H it holds that

⟨ξ|a∗c∗ca|ξ⟩ = ⟨caξ|caξ⟩ = ∥caξ∥2 ≤ (∥c∥ ∥aξ∥)2 =
⟨
ξ
∣∣∣∥c∥2 a∗a∣∣∣ξ⟩ .

Note. Of course, the calculation rules of proposition 1.10 also hold for abstract C∗-
algebras, which can be proved by representing the elements as operators on a Hilbert
space.

When considering maps between C∗-algebras (e.g. quantum operations), or � more gen-
erally � maps between operator systems, we will demand that the structures of hermitian
or positive elements shall be preserved. This gives rise to the next de�nition.

De�nition 1.11. Let A and B be two C∗-Algebras and S ⊂ A an operator system. A
linear map T : S −→ B is called

� hermiticity-preserving, if it maps hermitian elements to hermitian elements, i.e.

∀x ∈ S : x∗ = x ⇒ (T (x))∗ = T (x)

� positivity-preserving (or just positive), if it maps positive elements to positive ele-
ments, i.e.

∀x ∈ S : x ≥ 0 ⇒ T (x) ≥ 0.

Note. Every positivity-preserving map is hermiticity-preserving by proposition 1.10iv).
Moreover, the set of hermiticity-preserving maps T : S −→ B constitutes an R-vector
space.

Lemma 1.12. A linear map T : S −→ B between an operator system S and a C∗-algebra
B is hermiticity-preserving, if and only if for all x ∈ S we have (T (x))∗ = T (x∗).

Proof. By parts (ii) and (i) of proposition 1.10, we can decompose a general element
x ∈ S as x = h+ ik, where both h and k are hermitian elements of S. We calculate

(T (x))∗ = (T (h) + iT (k))∗ = (T (h))∗ − i (T (k))∗

= T (h)− iT (k) = T ((h+ ik)∗) = T (x∗).

The converse implication is obvious.

Lemma 1.13 ([Pau, Proposition 2.1]). Let S be an operator system and let B be a
C∗-algebra. If ϕ : S −→ B is a positive map, then ϕ is bounded with operator norm
∥ϕ∥ ≤ 2 ∥ϕ(1)∥ .

8



Chapter 1. C∗-Algebras

Proof. First, consider an hermitian element h ∈ S, h ̸= 0. Using the decomposition from
proposition 1.10(iv) of h, by positivity of ϕ and part (v) of proposition 1.10 we have

∥ϕ(h)∥ = 1

2

∥∥ϕ((∥h∥ 1 + h)− (∥h∥ 1− h)
)∥∥

≤ 1

2
max {∥ϕ(∥h∥ 1 + h)∥ , ∥ϕ(∥h∥ 1− h)∥}

=
∥h∥
2

max

{∥∥∥∥ϕ(1± h

∥h∥

)∥∥∥∥} ,
and since 0 ≤ 1± h/ ∥h∥ ≤ 2, positivity of ϕ implies ∥ϕ(h)∥ ≤ ∥h∥ ∥ϕ(1)∥ . Now, we can
decompose a general element x ∈ S according to parts (ii) and (i) of proposition 1.10
into x = a+ ib for hermitian elements a, b ∈ S, and we get

∥ϕ(x)∥ ≤ ∥ϕ(a)∥+ ∥ϕ(b)∥ ≤ (∥a∥+ ∥b∥) ∥ϕ(1)∥ ≤ 2 ∥x∥ ∥ϕ(1)∥ .

We close this section with some statements about positivity in ∗-algebras on a �nite
dimensional Hilbert space. Let H and K be �nite dimensional Hilbert spaces, and A ⊆
L (H) and B ⊆ L (K) ∗-algebras of operators.
First we consider the spectral decomposition

a =
∑
λ∈σ(a)

λeλ

of an hermitian element a ∈ A , where σ(a) denotes the spectrum (i.e., the set of eigen-
values) of a, and eλ ∈ L (H) are the mutually orthogonal eigenprojections. Since we can
express every eλ as a polynomial of a, e.g.

eλ =

 ∏
µ∈σ(a)\{λ}

(a− µ · 1A )

λ− µ

 ,

all the eλ do actually belong to A .4 As a consequence, we state another characterisation
of positive elements and positivity preserving maps.

Lemma 1.14. Let H and K be �nite dimensional Hilbert spaces, and let A ⊆ L (H)
and B ⊆ L (K) be ∗-algebras of operators. Then the following statements hold true:

a) An element a ∈ A is positive, i� for every projection p ∈ A it holds that
tr(pa) ≥ 0.

b) A linear map T : A −→ B is positive, i� for all projections q ∈ A , p ∈ B,
it holds that tr (pT (q)) ≥ 0.

4A generalisation of this is also true for in�nite-dimensionalH: If the ∗-algebra A is strongly (or, equiv-
alently, weakly) closed and a ∈ A is hermitian, then also f(a) ∈ A for every bounded measurable
function f .

9
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Proof. a) If a ∈ A is positive, we can write it as a = b∗b for some b ∈ A . Hence by
cyclic invariance of the trace we get

tr(pa) = tr(p2b∗b) = tr(pb∗bp) = tr ((bp)∗bp) ≥ 0,

since the trace of a positive operator is non-negative. Conversely, assume that tr(pa) ≥ 0
holds for all projections p ∈ A . We decompose a into hermitian and anti-hermitian part
and invoke the spectral theorem for both parts to get

a =
a+ a∗

2
+ i

a− a∗

2i
=
∑
λ∈X

λeλ + i
∑
µ∈Y

µfµ

for some �nite sets X,Y ⊂ R and projections eλ, fµ ∈ A . For every µ0 ∈ Y , the number

tr (fµ0a) =
∑
λ∈X

λtr (fµ0eλ) + iµ0 rank fµ0

is real by assumption. By the already proven part, the �rst sum is also real, hence
µ · rank fµ = 0 for all µ ∈ Y , which shows that the anti-hermitian part of a vanishes.
Now for λ ∈ X we plug in p = eλ in our assumption and get

0 ≤ tr(eλa) = λ rank eλ.

So all eigenvalues of a are non-negative; hence a ≥ 0.
b) �⇒� follows from (a) since T (q) is positive. �⇐�: Suppose that a ∈ A is positive; we

show that T (a) is positive, too. We have σ(a) ⊂ [0, +∞), and by spectral composition
a =

∑
λ∈σ(a) λeλ for some projections eλ ∈ A . We calculate

tr (pT (a)) =
∑
λ∈σ(a)

λ tr (pT (eλ))︸ ︷︷ ︸
≥0

≥ 0,

and by part (a) we get T (a) ≥ 0.

1.3. Ideals and Projections

De�nition 1.15. Let A be a concrete ∗-algebra. A projection lying in the centre Z(A )
of A we may call a central projection. A family of projections (pi)i∈I ⊆ L (H) is called
mutually orthogonal, if pipj = δijpi for all i, j ∈ I.

From Hilbert space theory we know, that there is an order-preserving bijection between
the set of projections in H and the set of closed subspaces of H, given by P 7→ ranP =
PH, where the latter set is partially ordered by inclusion. Using this correspondence,
it is easy to show that two projections are orthogonal, i� their ranges are orthogonal
subspaces.
For strongly closed ∗-algebras, we will see that its structure is substantially determined

by its projections. As a �rst result to be used later on, we show:

10
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Lemma 1.16. For a strongly closed ∗-algebra (B, H) the following two statements are
equivalent:

i) B contains no non-trivial (i.e. ̸= 0 and ̸= 1B) projection.

ii) B = C · 1B.

Proof. �(ii)⇒(i)� is trivial. We prove �(i) ⇒ (ii)� by contraposition. Assume that B
contains an element A /∈ C · 1B. By considering the hermitian or anti-hermitian part of
A, we can safely assume that A is self-adjoint. By spectral calculus, there exists a subset
S of the spectrum of A, such that 0 ̸= χS(A) ̸= 1B, where χS denotes the characteristic
function of S. Since B is weakly closed, the projection P := χS(A) lies in B.

We recall the de�nition of ideals from algebra:

De�nition 1.17. Let A be a ∗-algebra. A subspace I ⊂ A is called a

� left-ideal in A , if A I ⊆ I .

� right-ideal in A , if I A ⊆ I .

� two-sided ideal in A , if I is a left-ideal and a right-ideal in A .

Note. If I is a left-ideal (right-ideal) in A , then I ∗ is a right-ideal (left-ideal) in A ,
which can be easily seen by taking adjoints. In particular, a one-sided ideal is also
two-sided, i� it is self-adjoint.

Obviously, if A is a ∗-algebra and E ∈ A is a projection5, then the subset A E =
{AE | A ∈ A } is a left-ideal in A . The natural question, whether all ideals arise in this
way, is answered by the next proposition in the positive, at least when we consider only
strongly closed ideals.

Proposition 1.18 (cf. [Dix, Corollary 3 in Sec. I.3.4]). Let A be a strongly closed ∗-
algebra of operators on a Hilbert space H. Then every strongly closed left ideal M in A
is of the form

M = {T ∈ A | T = TE} = AE

for a unique projection E ∈ A. M is two-sided, i� E is central.

Proof. Let M ⊆ A be a strongly closed left ideal. Then, the set N := M ∩M∗ is a
strongly closed two-sided ideal in A, thus in particular a ∗-subalgebra of A. By the von
Neumann double commutant theorem (Theorem A.7), N has a unit element E. We set
M̃ := {T ∈ A | T = TE} and show that M = M̃.
Let T ∈ M̃, i.e. T ∈ A with T = TE. Since M is a left-ideal and E ∈ N ⊆ M, we

get T = TE ∈M; so the inclusion M̃ ⊆M holds. Conversely, if T = U |T | is the polar
5Of course, A E is a left-ideal for any E ∈ A . The points is, that the demand of E being a projection
does not hurt (as we will show shortly after) and yields a 1-to-1 relation between (strongly closed)
ideals and projections.

11
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decomposition of an element T ∈M, then |T |∗ = |T | = U∗T ∈M, hence |T | ∈ N. Since
E is the unit element of N, it follows that |T | = |T |E, hence T = U |T | = U |T |E = TE,
and thus T ∈ M̃.
In order to prove uniqueness, assume that F ∈ A is another projection with the

property M = {T ∈ A | T = TF}. Then obviously E and F lie in M, so we have that
E = EF and F = FE, hence E = E∗ = (EF )∗ = F ∗E∗ = FE = F .
Now, assume that M is two-sided. Then we have M∗ = M, hence N = M and for all

A ∈ A, both AE and EA lie in N, thus AE = E(AE) = (EA)E = EA, as E is the unit
of N.

Corollary 1.19. Let A be a strongly closed ∗-algebra of operators, and let I be a strongly
closed two-sided ideal in A. Then for every element A ∈ A the implication A∗A ∈ I =⇒
A ∈ I holds.

Proof. Let E be the central projection from proposition 1.18, such that I = EA. We
write A = EA + B with B := (1A − E)A and use E ∈ A′ and E(1A − E) = 0 to get
A∗A = EA∗A+B∗B. Since A∗A ∈ I holds by assumption, we have A∗A = EA∗A, and
thus B∗B = 0. Hence B = 0 and �nally A = EA ∈ I.

Remark. As noted earlier, in �nite-dimensional C∗-algebras all subspaces (i.e. in partic-
ular all sub-algebras and ideals) are closed in any of the mentioned operator topologies.

We have seen that the left ideals are in 1-1 correspondence to the projections contained
in A. We now tend to the projections contained in the commutant A′. As the next
proposition states, they correspond to the set of invariant subspaces of A. First, we
recall:

De�nition 1.20. Let A be a ∗-algebra of operators in the Hilbert space H. A closed
subspace V ⊆ H is called invariant under A , if A V ⊆ V , i.e. Av lies in V for every
A ∈ A and every v ∈ V .

Lemma 1.21. Let A be a ∗-algebra of operators in the Hilbert space H, let P ∈ L (H)
be an orthogonal projection and V := ranP ⊆ H its range. Then, V is invariant under
A if and only if P ∈ A ′.

Proof. We have the following chain of equivalences:

V is invariant under A ⇐⇒ Av = PAv ∀A ∈ A ∀v ∈ V
⇐⇒ APξ = PAPξ ∀A ∈ A ∀ξ ∈ H
⇐⇒ AP = PAP ∀A ∈ A

⇐⇒ AP = PAP = (PA∗P )∗ = (A∗P )∗ = PA ∀A ∈ A

⇐⇒ P ∈ A ′.

12
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In the remaining part of the section, we analyse the set of projections in a unital C∗-
algebra more closely. As subset of the hermitian elements, it is partially ordered, and it
has a least element and a greatest element, namely 0 and 1A . If we exclude 0 from the
set, one can consider minimal elements, which we will do now. This, later on, leads to
the decomposition of C∗-algebras on �nite-dimensional Hilbert spaces. First, we de�ne:

De�nition 1.22. A non-zero projection P ∈ A is called minimal (in A ), if P majorises
no other projection except 0 and P .

In other words, a minimal projection is a minimal element of the partially ordered set
{P ∈ A | P projection, P ̸= 0}. In the general case, minimal projections need not exist
(if they exist, the algebra is called discrete or of type I, but there are also other types,
see [Dix, Part I, Chapter 8]). At least in the �nite-dimensional case, we are better o�:

Proposition 1.23 ([Arv3, Lemma 1.4.1]). Let A be a ∗-algebra of operators in a �nite-
dimensional Hilbert space H. Then a non-zero projection P ∈ A is minimal, i� PA P =
C ·P . Moreover, every projection P in A is a �nite sum of mutually orthogonal minimal
projections. In particular, there are minimal projections (Pk)

d
k=1 in A , such that 1A =∑d

k=1 Pk and PkPl = δklPk.

Proof. Let P ∈ A be a minimal projection. If E ∈ PA P is a projection, then E = PEP
implies P ≥ E, so E ∈ {0, P} by minimality of P . Hence the only projections in PA P
are 0 and P . Note that B := PA P is a sub-∗-algebra of A . Since B is spanned by its
projections (which can be seen as invoking the spectral theorem for the hermitian and
anti-hermitian part of a general element B ∈ B), we conclude B = C · P . Conversely,
if P is not minimal, then there is another projection Q ∈ A \ {0, P} with 0 ≤ Q ≤ P .
Then PQP = Q implies Q ∈ PA P , and thus PA P ̸= C · P .
We prove the second statement by induction onm := rankP . The casesm =0 (take the

empty sum � de�ned to be 0) and m = 1 (then P itself is minimal) are obvious. Assume
that the statement holds true for all m < m0, and let P ∈ A be a projection with
rankP = m0, m0 ≥ 2. If P itself is minimal, there is nothing to show; otherwise there
exists a projection E ∈ A \ {0, P} with 0 ≤ E ≤ P , hence EP = E. We can decompose
P = EP+(1A −E)P = E+(P−E), where E and (P−E) are orthogonal and both E and
(P −E) have ranks strictly between 0 and m0. Using the induction hypothesis for E and
for (P − E) we can write E =

∑
j Ej and (P − E) =

∑
k Fk for two �nite sets (Ej) and

(Fk) of mutually orthogonal minimal projections. Since E and (P − E) are orthogonal,
each Ej is orthogonal to each Fk, as EjFk = (EjE)((P −E)Fk) = Ej E(P − E)︸ ︷︷ ︸

=0

Fk = 0.

So P =
∑

j Ej +
∑

k Fk is the desired decomposition.

1.4. Homomorphisms

De�nition 1.24. A map ϕ : A −→ B between two C∗-algebras A and B is called a
∗-homomorphism, if it preserves the ∗-algebra structure, i.e. if it is linear, multiplicative
and hermiticity-preserving. A bijective ∗-homomorphism is called ∗-isomorphism. A and

13
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B are called isomorphic (which we may write as A ≃ B), if there exists a ∗-isomorphism
between them.

Remark 1.25. Note that the inverse of a ∗-isomorphism is again a ∗-isomorphism. Ac-
tually, as the norm on a C∗-algebra is already determined by the ∗-algebra structure6,
every ∗-isomorphism is isometric.

Note 1.26. Since a ∗-homomorphism ϕ maps positive elements a∗a to positive elements
ϕ(a∗a) = ϕ(a∗)ϕ(a) = ϕ(a)∗ϕ(a), we see that ∗-homomorphisms are automatically pos-
itive. Moreover, the kernel of a ∗-homomorphism between C∗-algebras is a norm-closed
two-sided ideal.

The converse statement, that every norm-closed two-sided ideal is the kernel of a
homomorphism, will become obvious in de�nition 1.37.
The following result shows, that the structure of the centre of a concrete ∗-algebra is

preserved under ∗-isomorphisms.

Lemma 1.27. Let A and B are strongly closed concrete ∗-algebras, and let ϕ : A −→ B
be a ∗-isomorphism. Then we have Z(B) = ϕ (Z(A )).

Proof. We calculate:

Z(B) = Z(ϕ(A )) = ϕ(A ) ∩ (ϕ(A ))′ =
{
ϕ(A)

∣∣ A ∈ A , ϕ(A) ∈ (ϕ(A ))′
}

=
{
ϕ(A)

∣∣∣ A ∈ A , ∀Ã ∈ A : ϕ(A)ϕ(Ã) = ϕ(Ã)ϕ(A)
}

=
{
ϕ(A)

∣∣∣ A ∈ A , ∀Ã ∈ A : ϕ(AÃ) = ϕ(ÃA)
}

=
{
ϕ(A)

∣∣∣ A ∈ A , ∀Ã ∈ A : AÃ = ÃA
}

=
{
ϕ(A)

∣∣ A ∈ A , A ∈ A ′} = ϕ(A ∩A ′) = ϕ(Z(A )).

In the following we want to distinguish two notions of concrete C∗-algebras being
equivalent: namely as C∗-algebras (i.e., there exists a ∗-isomorphism between them), and
the stronger notion of unitary equivalence, which we will de�ne next.

De�nition 1.28. Two concrete C∗-algebras A and B on Hilbert spaces H and K, re-
spectively, are called unitarily equivalent (written as A ∼= B), i� there is a unitary map
U : H −→ K such that B = UA U∗.

Note that a necessary condition for unitary equivalence is that the underlying Hilbert
spaces are isomorphic. This need not be the case for only ∗-isomorphic algebras. There-
fore, for the purpose of dimension reduction, unitary equivalence is the more important
notion for us.
Two concrete C∗-algebras that are unitarily equivalent, are also ∗-isomorphic, where

the ∗-isomorphism can be unitarily implemented, i.e. be of the form A 7→ UAU∗ for some
unitary U : H −→ K. Moreover, it is easy to see, that if A is a von Neumann algebra
and B is unitarily equivalent to A , then B is also a von Neumann algebra.

6a fact that we have not proved
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Notation. We denote byMd (d ∈ N) the set of d× d matrices with entries in C. If H is
a d-dimensional Hilbert space, then we know that L (H) ∼=Md.

The following theorem is originally due to Wigner; for a mathematically rigorous and
detailed proof see [Bar].

Theorem 1.29 (Wigner). Let H1 and H2 be complex Hilbert spaces, let

T := {z ∈ C | |z| = 1}

denote the unit circle, and let Ri := {Tξ | ξ ∈ Hi \ {0}} be the set of rays7 in Hi (i ∈
{1, 2}). Assume that a mapping T : R1 −→ R2 is given, such that

∀ξ, η ∈ H1 \ {0} : |⟨T (Tξ)|T (Tη)⟩| = |⟨Tξ|Tη⟩| .

Then there exists a linear or an anti-linear8 isometry U : H1 −→ H2 with ∀ξ ∈ H :
Uξ ∈ T (Tξ). If T is surjective, then so is U (so that is, in fact, unitary or anti-unitary).

1.5. Basic operations on C∗-Algebras
In this chapter we recall methods for constructing new C∗-algebras from given ones. As
a tool to keep track, how the underlying Hilbert space (and especially its dimension)
changes, we occasionally may denote a concrete ∗-algebra A of operators on a Hilbert
space H by the pair (A , H). For the same reason, we will distinguish between inner and
outer direct sums.
As we realised in chapter 1.1, every von Neumann algebra is a C∗-algebra. Conversely,

a concrete C∗-algebra (A , H) can fail to be a von Neumann algebra of two potential
reasons: A may not be weakly closed in L (H) � a topological constraint, that however
plays no role in �nite dimensions � or the unit element of A (which exists for �nite
dimensional H by proposition 1.7) may be not the identity operator on H. In the latter
case the situation can be remedied by shrinking the Hilbert space appropriately:

Proposition 1.30. Let (A , H) be a weakly closed concrete C∗-algebra. Let P denote the
unit element of A (which evidently is an orthogonal projection in H), and for A ∈ A ,
let A♭ denote the operator

A♭ : PH −→ PH, ξ 7→ Aξ.

Then the set A ♭ :=
{
A♭
∣∣ A ∈ A

}
is a von Neumann algebra in the Hilbert space PH,

and we have (A , H) ≃
(
A ♭, PH

)
.

Note 1.31. In particular, the class of von Neumann algebras is not stable under ∗-
isomorphisms. The algebra A♭ is sometimes called the reduced von Neumann algebra
(cf. [Dix, Part I, Ch. 2]).
7Here, we de�ne a ray in a Hilbert space to be a vector up to a phase, i.e. up to a complex factor of
modulus one. Note that other authors de�ne a ray as C · ξ for ξ ∈ H.

8An anti-linear isometry is a map f satisfying f(x + αy) = f(x) + ᾱf(y) and ⟨f(x)|f(y)⟩ = ⟨y|x⟩ for
x, y ∈ H, α ∈ C.
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Proof. This is only a reformulation of Lemma A.6ii).

Next, we de�ne the product (or outer direct sum) of C∗-algebras:

De�nition 1.32. Let (Ak, Hk) be concrete unital C∗-algebras for k ∈ {1, . . . ,m}. Con-
sider the Hilbert space direct sum9 H of the Hk and the C∗-algebra A on H consisting
of tuples (Ak)

m
k=1 with Ak ∈ Ak, mapping (ξ1, · · · , ξm) ∈ H to (A1ξ1, · · · , Amξm). Then

A is called the product or the outer direct sum of the Ak, which we denote by

A = A1 × · · · ×Am, or A =
m

×
k=1

Ak.

Proposition 1.33. The outer direct sum is associative, and in the situation of De�nition
1.32 the following statements hold true:

i) If 1Ak
= idHk

for all k, then the commutant and double commutant of A can
be computed factor-wise, i.e.

A ′ =

(
m

×
k=1

Ak

)′

=
m

×
k=1

A ′
k, A ′′ =

m

×
k=1

A ′′
k

In particular, A is a von Neumann algebra, if all the Ak are von Neumann
algebras.

ii) The natural inclusion maps

ιk : Ak −→ A , A 7−→ (0, · · · , 0, A︸︷︷︸
k-th position

, 0, · · · , 0)

are injective ∗-homomorphisms, and the projections

pk : A −→ Ak, (A1, . . . , Am) 7−→ Ak

are surjective ∗-homomorphisms. Moreover, if all Hk are �nite-dimensio-
nal and if we equip H and the Hk with the Hilbert-Schmidt scalar products,
then pk is the adjoint map of ιk, and vice versa. In particular, an element
(A1, . . . , Am) is positive or hermitian, i� all Aj are positive or hermitian,
respectively; and the �embedded factors� ιk(Ak) = ker pk ⊆ A are two-sided
ideals in A .

9I.e. H = H1 × · · · × Hm as a set, and the inner product is given by

⟨(ϕ1, . . . , ϕm)|(ψ1, . . . , ψm)⟩ =
m∑

k=1

⟨ϕk|ψk⟩ for ϕk, ψk ∈ Hk, k ∈ {1, . . . ,m}.
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Proof. i) We only consider the case m = 2 (i.e., two summands); the general case follows
by induction on m. We represent elements of L (H1 ×H2) as matrices and get(

A B
C D

)
∈ (A1 ×A2)

′

⇐⇒ ∀X ∈ A1 ∀Y ∈ A2 :

(
X 0
0 Y

)(
A B
C D

)
=

(
A B
C D

)(
X 0
0 Y

)
⇐⇒ ∀X ∈ A1 ∀Y ∈ A2 :

(
XA XB
Y C Y D

)
=

(
AX BY
CX DY

)
.

The equations in the diagonal entries are equivalent to A ∈ A ′
1 ∧ D ∈ A ′

2 . Setting
X = idH and Y = 0 yields B = 0 = C in the non-diagonal entries. This shows (i).
ii) The statements about the ιk and pk are immediately apparent from the calculation

rules of the product of algebras, and the statement about positivity follows from that
since ∗-homomorphisms are positive (cf. Note 1.26). In order to prove that pk and ιk are
mutually adjoint, let A ∈ Ak, B = (B1, . . . , Bm) ∈ A , and calculate

trH (ιk(A)
∗(B1, . . . , Bm)) = trH (0, . . . , 0, A∗Bk, 0, . . . , 0)

= trHk
(A∗Bk) = trHk

(A∗pk(B)) .

The fact, that the product of C∗-algebras consists of �block algebras� which are two-
sided ideals, motivates the following De�nition:

De�nition 1.34. Let (A , H) be a concrete C∗-algebra, and suppose that Ik, k ∈
{1, . . . ,m}, are two-sided ideals of A , so that Ik ∩Iℓ = {0} for k ̸= ℓ. We say that A
is the (inner) direct sum of the Ik, denoted

A =
m⊕
k=1

Ik,

if every A ∈ A admits a unique decomposition A =
∑m

k=1Bk into elements Bk ∈ Ik.

Proposition 1.35. In the situation of an inner direct sum A =
⊕m

k=1 Ik of concrete C∗-
algebras on a �nite-dimensional Hilbert space H, the projections onto the direct summands
are given by the Hilbert-Schmidt-adjoint of the inclusion maps Ik ↪→ A .
Moreover, even for in�nite dimensional H, if the ideals are strongly (or, equivalently,

weakly) closed, then the projections πk onto the direct summands are given by A 7→ PkA,
where Pk is the unit of the ∗-algebra Ik (cf. Theorem A.7), and equal to the orthogonal
projection onto spanIkH. In particular, the πk are ∗-homomorphisms, and

∑m
k=1 πk =

idA .

Proof. We prove the second assertion �rst. By Proposition 1.18, for each k there exists
a central projection Pk ∈ Z(A ) ∩Ik, such that Ik = PkA = A Pk. Since Pk is the unit
of Ik, it follows by Theorem A.7 that Pk is the projection onto spanIkH.
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For A1, A2 ∈ A we have Aj =
∑m

k=1 πk(Aj), thus

A1A2 =
m∑
k=1

πk(A1A2) =
m∑
k=1

m∑
ℓ=1

πk(A1)πℓ(A2)︸ ︷︷ ︸
∈Ik∩Iℓ

=
m∑
k=1

πk(A1)πk(A2).

By uniqueness of the decomposition we infer πk(A1A2) = πk(A1)πk(A2), and by similar
reasoning it holds that πk(A

∗
1) = πk(A1)

∗. So the πk are ∗-homomorphisms. Moreover,
πk must act as the identity on Ik, which follows by decomposing elements from Ik and
using that Ik ∩Iℓ = {0} for ℓ ̸= k. Hence for A ∈ A we get

A =
m∑
k=1

πk(A)︸ ︷︷ ︸
∈Ik

=
m∑
k=1

Pkπk(A) =
m∑
k=1

πk(Pk)πk(A)

=

m∑
k=1

πk(PkA︸︷︷︸
∈Ik

) =

m∑
k=1

PkA,

hence (again by uniqueness of decomposition) πk(A) = PkA = APk.
Now to the �rst part. Assume that H is �nite dimensional, and let ιk : Ik ↪→ A

denote the inclusion maps. Then for A ∈ A , B ∈ Ik we can calculate

trH ((πk(A))
∗B) = trH ((PkA)

∗B) = trH (A∗PkB) = trH (A∗B) = trH (A∗ιk(B)) .

The next Proposition shows, that outer and inner direct sums are closely related; up
to reducing the individual summands, we have unitary equivalence.

Corollary 1.36. Let (A , H) be a concrete strongly closed C∗-algebra composed of a direct
sum A =

⊕m
k=1 Ak. Then

(A , H) =
m⊕
k=1

(Ak, H) ≃
m

×
k=1

(
A ♭
k , 1Ak

H
)
,

where the last expression is a von Neumann algebra.

Proof. The map

ϕ :

m⊕
k=1

(Ak, H) −→
m

×
k=1

(
A ♭
k , 1Ak

H
)
,

m∑
k=1

Ak 7−→
(
A♭k

)m
k=1

,

implements the ∗-isomorphism in question, as one can easily see from Propositions 1.30
and 1.35. That×m

k=1

(
A ♭
k , 1Ak

H
)
is a von Neumann algebra, follows from Proposition

1.33i).

Next, we de�ne quotients of von Neumann algebras.
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De�nition 1.37. Let A be a von Neumann algebra onH and I ⊆ A a strongly closed two-
sided ideal in A (so in particular, a ∗-subalgebra). Let E denote the greatest projection
in I (cf. the double commutant theorem) and E := ranE. We de�ne the quotient von
Neumann algebra A/I as a von Neumann algebra on the Hilbert space H/E , acting by

(A+ I)(h+ E) := Ah+ E .

Proof of well-de�nedness. For two elements A, Ã ∈ A with A − Ã ∈ I and two vectors
h, h̃ ∈ H with h− h̃ ∈ E we have that

Ah− Ãh̃ = Ah− Ãh+ Ãh− Ãh̃ = (A− Ã)︸ ︷︷ ︸
∈I

h+ Ã (h− h̃)︸ ︷︷ ︸
∈E

= E(A− Ã)h︸ ︷︷ ︸
∈E

+ÃE(h− h̃).

Since I is an ideal and E ∈ I, we have that ÃE ∈ I, thus ÃE(h−h̃) = EÃ(h−h̃) ∈ E .

In order to de�ne m-positivity between C∗-algebras, we need one more notion, namely
the tensor product of von Neumann algebras.

De�nition 1.38. Let A and B be C∗-algebras on Hilbert spaces H and K, respectively.
We consider the tensor product A ⊗B as a C∗-algebra on the tensor product of Hilbert
spaces H⊗K.10
The ∗-algebra-operations are, of course, given by (A1 ⊗ B1) · (A2 ⊗ B2) = (A1A2) ⊗

(B1B2) and (A⊗B)∗ = A∗ ⊗ B∗. Note that for simple tensors we have ∥A⊗B∥ =
∥A∥ · ∥B∥

In the special case B = Mm = L (Cm), clearly H ⊗ Cm is isomorphic as a Hilbert
space to the m-fold direct product Hm =×m

j=1H, where a natural unitary map is given
by (the linear extension of)

m∑
j=1

hj ⊗ ej 7→ (hj)
m
j=1 ,

where ej ∈ Cm is the j-th canonical unit vector.

De�nition 1.39. Let Md denote the von Neumann algebra of all d × d matrices with
entries in C. Let S be an operator system on the Hilbert space H. For any number
n ∈ N, let us agree to regard A ⊗Mn as a C∗-algebra in the Hilbert direct sum Hn by
means of the canonical isomorphism

S ⊗Mn −→ Matn(S),
N∑
k=1

Sk ⊗
(
m

(k)
ij

)
ij
7−→

∑
k

(
m

(k)
ij · Sk

)
ij
,

10If H or K (or both) are in�nite-dimensional, then by H⊗K we mean the closure of the algebraic tensor
product of H and K, which is again a Hilbert space with scalar product uniquely determined by its
values on simple tensors as

⟨ξ1 ⊗ η1|ξ2 ⊗ η2⟩ = ⟨ξ1|ξ2⟩ · ⟨η1|η2⟩ for ξ1, ξ2 ∈ H, η1, η2 ∈ K.

In this case, A ⊗ B means the closure of the algebraic tensor product of A and B with respect to
the uniform topology in L (H⊗K) ∼= L (H)⊗ L (K).
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where N ∈ N, and for k ∈ {1, . . . , N} Sk ∈ S and m(k) = (m
(k)
ij )ij ∈Mn.

1.6. Basic Structure theory of C∗- and von Neumann

algebras

There are several possible accesses to the structure theory of �nite-dimensional C∗-
algebras. First, for �nite-dimensional algebras we have the classical algebraic approach
leading to the Wedderburn theorem, see e.g. [Lan, �3]. Note that this approach does not
use the ∗-structure, so it will be only of limited use to us. Second, in [Arv3, Section 1.4],
the subalgebras of L C (H), the set of compact operators on the Hilbert space H, which
also form a C∗-algebra are classi�ed by quite elementary methods. We will follow this
path, but restrict to the case there dimH < +∞. Third, one can use the spectral theory
of abelian C∗-algebras to classify �nite-dimensional C∗-algebras up to ∗-isomorphisms,
see e.g. [Tak, Chapter I.11].

1.6.1. Strongly closed concrete ∗-algebras

In the �rst place we �nd that the �building blocks� of C∗-algebras are two-sided ideals;
more precisely that every concrete ∗-algebra � given that it is strongly closed � is the
direct sum of its minimal ideals11.

De�nition 1.40. A concrete ∗-algebra (A , H) is called

� non-degenerate if spanAH = H.12

� simple, if it contains no non-trivial strongly closed ideals.13

� a factor, if Z(A ) = C · idH.

� irreducible, if A ̸= {0} and there are no closed non-trivial subspaces V ⊂ H that
are invariant under A .14

The next proposition summarises the relations between the various properties:

Proposition 1.41. Let (A , H) be a strongly closed concrete ∗-algebra.

a) A is non-degenerate ⇐⇒ 1A = idH.

11An ideal is minimal, i� the corresponding central projection is a minimal projection.
12Note that by spanX we mean the set of �nite linear combinations of elements from X, i.e.

spanX =

{
n∑

j=1

cjxj

∣∣∣∣∣ n ∈ N, cj ∈ C, xj ∈ X

}

13The de�nition of simplicity varies from author to author by means of in which topology the ideals
shall be closed. Our choice is used throughout books about von Neumann algebras.

14The demand A ̸= {0} might seem super�uous (at least for H ̸= {0}), but it is not, as the example
A = {0} on H = C1 shows.
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b) A strongly closed ideal I in A is simple, i� the corresponding central projec-
tion 1I (cf. Prop. 1.18) is minimal in Z(A ).

c) A is simple ⇐⇒ Z(A ) = C · 1A

d) A is a factor ⇐⇒ A is non-degenerate and simple.

e) A is irreducible =⇒ A is a factor. Moreover, for H ̸= {0}, the following
statements are equivalent:

i) A is irreducible.

ii) The only projections lying in A ′ are 0 and idH.

iii) A ′ = C · idH.
iv) Every vector is cyclic for A , i.e. A ξ = H for all ξ ∈ H \ {0}.
v) A = L (H).

Proof. a) is a consequence of the von Neumann bicommutant theorem (Theorem A.7):
The �⇐�-direction is obvious, whereas the �⇒� follows from the fact that the unit 1A is
given by the orthogonal projection onto the subspace spanAH, which is equal to H if
A is non-degenerate.
b) Recall that by Proposition 1.18 every strongly closed ideal J in A can be written

as
J = 1J A = {A ∈ A | 1JA = A} .

Let I be a strongly closed ideal in A . If 1I is not minimal in Z(A ), there exists a
projection P ∈ Z(A ) strictly between 0 and 1I which we can use to de�ne another
strongly closed ideal J := PA , so that P = 1J . Since 1IP = P = P1I , we have

J = PA = (P1I)A = P (1IA ) = PI ⊆ I ;

but 1I /∈ J as 1J 1I = P1I = P ̸= 1I . Hence I is not simple.
Conversely, if I is not simple, then there exists a strongly closed ideal J satisfying
{0} ⊊ J ⊊ I, hence 1J is a central projection with 0 ⪇ 1J ⪇ 1I , hence 1I is not
minimal.
c) follows from (b) by setting I = A .
d) By parts (a) and (c), A is non-degenerate and simple, i� 1A = idH and Z(A ) =

C · 1A , which means that A is a factor.
e) We show �rst, that if A is irreducible, then it is non-degenerate. To this aim,

consider the subspace V := ker 1A . V is invariant under A , since for ξ ∈ V and A ∈ A
we have Aξ = A1A ξ = 0 ∈ V . By irreducibility, either V = {0} � in which case
1A = idH, so that A is non-degenerate by part (a) � or V = H. In the latter case we
have 1A = 0, hence A = {0}, which contradicts the irreducibility of A .
We come to the proof of the stated equivalences. �(i) ⇔ (ii)� follows from Lemma

1.21, and �(ii)⇔ (iii)� is Lemma 1.16.
�(iii) ∧ (i) ⇒ (v)�: Since A ′ = C · idH, we have that A ′′ = (C · idH)′ = L (H). On

the other hand, by the double commutant theorem A.7 in Appendix A, A ′′ is equal to
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A + C · idH. By assumption A is irreducible, hence a factor, hence non-degenerate by
part d), hence we have 1A = idH by part a). Thus L (H) = A ′′ = A + C · idH︸ ︷︷ ︸

⊆A

= A .

�(v)⇒ (iv)�: Fix ξ ∈ H \ {0}. Then for η ∈ H there exist maps M ∈ L (H) such that
Mξ = η, for example M = ∥ξ∥−2 · |η⟩⟨ξ| . Thus L (H)ξ = H.
�(iv)⇒ (i)�: Let V ⊆ H be a closed subspace invariant under A , and assume V ̸= {0}.

Then there exists ξ ∈ V \ {0} and by assumption we have H = A ξ ⊆ A V ⊆ V = V,
hence V = H.

The properties of a concrete C∗-algebra of being non-degenerate, being irreducible and
being a factor are not stable under ∗-isomorphisms � for example, one could simply en-
large the underlying Hilbert space to destroy these properties, hence basically destroying
non-degeneracy. A notable example is simplicity:

Corollary 1.42. Let A and B are strongly closed concrete ∗-algebras, that are ∗-
isomorphic. Then A is simple i� B is.

Proof. By Lemma 1.27, Z(B) = ϕ(Z(A )), and as unit elements are unique in an algebra,
we have necessarily ϕ(1A ) = 1B. The claim then follows by part c) of Proposition
1.41.

1.6.2. Structure of ∗-algebras on �nite dimensional Hilbert spaces

In this section, we want to give a complete characterisation of concrete C∗-algebras on
�nite-dimensional Hilbert spaces. With the tools developed so far, we can as a �rst step
reduce the problem to simple algebras, as the next Proposition shows.

Proposition 1.43. Let A be a concrete C∗-algebra on a �nite-dimensional Hilbert space
H. Then, A is the direct sum of �nitely many simple ideals Ak of A , i.e.

A =

n⊕
k=1

Ak

Proof. Consider the C∗-algebra Z := Z(A ) = A ∩A ′, which contains 1A , so that 1Z =
1A . By proposition 1.23 there are mutually orthogonal minimal projections P1, . . . , Pn ∈
Z , such that 1A =

∑n
k=1 Pk. Let Ak := PkA denote the corresponding simple ideals

in A . Then we have obviously Ak ∩ Al = {0} for k ̸= l, and a general A ∈ A can be
decomposed as

A = 1AA =
n∑
k=1

(PkA),

hence A =
⊕n

k=1 Ak.

Now, in order to move forward towards a complete characterisation of concrete C∗-
algebras on �nite-dimensional Hilbert spaces, we need to analyse the structure of simple
algebras further. We will show that, up to ∗-isomorphism, they are full matrix algebras
Md for some d ∈ N. As a technical aid, we de�ne:
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De�nition 1.44. Let A be a ∗-algebra. A doubly indexed collection wij ∈ A \{0} with
i and j running over {1, . . . , d} satisfying

∀i, j, k, l ∈ {1, . . . , d} : w∗
ij = wji ∧ wijwkl = δjkwil

and
∑d

i=1wii = 1A , is called a system of matrix units for A .

Note that from the de�ning equations for matrix units it follows that the wii are
mutually orthogonal self-adjoint projections, with wii ̸= wjj for i ̸= j.

Proposition 1.45. [Tak, Theorem 11.2]Let A be a ∗-algebra of operators on the �nite-
dimensional Hilbert space H. Then the following statements are equivalent:

i) A is simple.

ii) There exist a number d ∈ N0 and a system of matrix units (wij)
d
i,j=1 for A ,

with wii being minimal (in particular non-zero) projections.

iii) A is ∗-isomorphic toMd for some d ∈ N0.

In this case, the numbers d in parts ii) and iii) coincide, and the system of matrix units
(wij) from ii) forms an algebraic basis for A .

Proof. First, let us deal with the trivial case A = {0}. Then A is simple by de�nition
(there are no non-trivial ideals contained in A ), and (ii) and (iii) are ful�lled with d = 0.
So henceforth we assume that A ̸= {0}, in particular 1A ̸= 0.
�(i) ⇒ (ii)�. By Proposition 1.23 we can write 1A =

∑d
j=1 pj for some minimal,

mutually orthogonal projections pj ∈ A .
Note that for i ∈ {1, . . . , d} the subsets Bi := span (A piA ) are manifestly two-sided

ideals in A , and 0 ̸= pi ∈ Bi. Since A is simple, we conclude Bi = A for all i. We
de�ne the subspaces Bij := piA pj ⊆ A for i, j ∈ {1, . . . , d} and observe that

span
(
BijB

∗
ij

)
= span ((piA pj) (piA pj)

∗) = pi span (A pjA )︸ ︷︷ ︸
=A

pi = piA pi = C · pi,

where the last equation follows from minimality of pi (cf. Proposition 1.23). Thus,
every Bij contains non-zero elements. For every i ∈ {1, . . . , d}, �x a normalised element
vi ∈ B1i. Note that by de�nition of B1i, vi = p1vi = vipi = p1vipi. Since v∗i vi is
manifestly positive and lies in B∗

1iB1i = Bi1B
∗
i1 ⊆ C · pi, we have v∗i vi = λipi for some

number λi > 0. The C∗-property gives λi = |λi| = ∥λipi∥ = ∥v∗i vi ∥ = ∥vi∥
2 = 1, hence

v∗i vi = pi. Taking adjoints, we see v∗i ∈ Bi1, hence it follows analogously that vi v
∗
i = p1

for all i.
Now we de�ne for i, j ∈ {1, . . . , d} the elements wij := v∗i vj and verify their property

of being matrix units: for i, j, k, l ∈ {1, . . . , d} we calculate

w∗
ij =

(
v∗i vj

)∗
= v∗j vi = wji,
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wijwkl = v∗i (vjpj) (vkpk)
∗ vl = v∗i vj pjpk︸︷︷︸

=δjkpj

v∗kvl = δjk v
∗
i vj v

∗
j︸︷︷︸

=p1︸ ︷︷ ︸
=vi

vl = δjkwil,

and �nally
d∑
i=1

wii =
d∑
i=1

v∗i vi =
d∑
i=1

pi = 1A .

By construction, the wii = v∗i vi = pi are minimal projections.
�(ii) ⇒ (iii)�. Set pi := wii and Bij := piA pj as in the last part. Before we will

construct the ∗-isomorphism, we show that all Bij are one-dimensional. Indeed, 0 ̸=
wij ∈ Bij , so dimBij ≥ 1. Let a, b ∈ Bij be such that ∥a∥ = ∥b∥ = 1. From the
calculation

BijB
∗
ij = (piA pj) (piA pj)

∗ = pi A pjA︸ ︷︷ ︸
⊆A

pi ⊆ piA pi = C · pi,

where again the last equality is by minimality of pi = wii and Proposition 1.23, we can
infer that ab∗ = λpi and b

∗b = µpj for some λ, µ ∈ C. Since bb∗ is inherently positive,
we even know µ ≥ 0, and by the C∗-property we have 1 = ∥b∥2 = ∥b∗b∥ = µ2 ∥pj∥ = µ2,
hence µ = 1, hence b∗b = pj . Thus, the equation

λb = λ(pib) = (λpi)b = (ab∗)b = a(b∗b) = apj = a

shows that a and b are linearly dependent. As a and b were arbitrary, Bij is indeed
one-dimensional, and we may write it as Bij = C · wij . Moreover, we can decompose

A = 1A A 1A =

(
d∑
i=1

pi

)
A

 d∑
j=1

pj

 =
d∑

i,j=1

piA pj =
d∑

i,j=1

Bij ,

where the last sum is a direct sum in the sense of vector subspaces15. Therefore, the wij
constitute a basis of A , and we may de�ne a ∗-isomorphism A −→Md by (the unique
linear extension of) wij 7−→ Eij , where Eij := |ei⟩⟨ej | ∈ Md are the standard matrix
units inMd.
�(iii) ⇒ (i)�. It su�ces to show that Md is simple, since ∗-isomorphisms preserve

ideals. But this follows directly from Prop. 1.41: By part e),Md = L (Cd) is irreducible,
thus in particular simple.

15To see that the sum is indeed direct (i.e. Bij ∩ Bkl = {0} for (i, j) ̸= (k, l)), one assumes wij = λwkl

for some λ ∈ C and �xed i, j, k, l, and uses the matrix units properties:

wii = wijwji = wijw
∗
ij = |λ|2 wklw

∗
kl = |λ|2 wklwlk = |λ|2 wkk =⇒ i = k

wjj = wjiwij = w∗
ijwij = |λ|2 w∗

klwkl = |λ|2 wlkwkl = |λ|2 wll =⇒ k = l
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Remark. In the �rst part of the proof, instead of constructing the vj and using them to
de�ne the wij , one could have the idea to construct the wij directly from the subsets
Bij . However, if one does so, one would have to rede�ne the phases, because one might
only �nd wijwkl = δjkαijlwil for some phases αijl ∈ {z ∈ C | |z| = 1}.
With the two last results, we are ready to characterise �nite dimensional C∗-algebras

up to ∗-isomorphisms.

Corollary 1.46. Every concrete ∗-algebra A of operators on a �nite dimensional Hilbert
space is ∗-isomorphic to a direct product of full matrix algebra, i.e.

A ≃
n

×
j=1

Mdj for some n ∈ N, dj ∈ N.

Proof. First, decompose A into the direct sum of simple ideals according to Proposition
1.43 as A =

⊕n
j=1 Aj . Every Aj is a simple ∗-algebra, hence by Proposition 1.45 there

exist ∗-isomorphisms ϕj : Aj −→Mdj for some numbers dj ∈ N. Then, by

ϕ : A =

n⊕
j=1

Aj −→
n

×
j=1

Mdj , a =

n∑
j=1

aj 7−→ (ϕj(aj))
n
j=1

a ∗-isomorphism is given as claimed.

Now we want to classify ∗-algebras on �nite-dimensional Hilbert spaces up to unitary
equivalence; thus we need a re�nement for Proposition 1.45, i.e. a classi�cation of simple
algebras up to unitary equivalence. For a �rst step, Proposition 1.41(c) tells us that
simple algebras are factors, up to reduction of the Hilbert space, cf. 1.30. So the next
step is to classify factors:

Proposition 1.47. Let A be a ∗-algebra of operators on the �nite-dimensional Hilbert
space H. Assume that A is a factor. Then A is unitarily equivalent to the ∗-algebra
Md⊗ (C · Iν) on the Hilbert space Cd⊗Cν for some d, ν ∈ N, where Iν denotes the ν× ν
identity matrix. In other words,

(A, H) ∼=
(
Md ⊗ (C · Iν), Cd ⊗ Cν

)
.

In particular it holds that dimH = d · ν and dimA = d2.

Proof. By Proposition 1.45 there exists a system of matrix units (wij)
d
i,j=1 ⊂ A, where

the pi := wii are mutually orthogonal minimal projections. To convey the idea behind
the construction of the unitary that implements the claimed equivalence, we �x an or-
thonormal basis (fj)

ν
j=1 of the subspace ran p1 ⊆ H, and decompose an arbitrary vector

ξ ∈ H as follows:

ξ =
d∑
i=1

wiiξ =
d∑
i=1

wi1 w1iξ︸︷︷︸
∈ran p1

=
d∑
i=1

wi1

ν∑
j=1

|fj⟩⟨fj |w1iξ =
d∑
i=1

ν∑
j=1

⟨fj |w1iξ⟩ · wi1fj .

25



Chapter 1. C∗-Algebras

Hence, the set B := {wi1fj | i ∈ {1, . . . , d}, j ∈ {1, . . . , ν}} spans H. Actually, B is an
orthonormal base, as the calculation

⟨wi1fj |wk1fl⟩ = ⟨fj |w1iwk1fl⟩ = δik ⟨fj |w11fl⟩ = δik ⟨fj |fl⟩ = δikδjl

shows. Thus, we can de�ne a unitary

U : H −→ Cd ⊗ Cν , ξ 7−→
d∑
i=1

ν∑
j=1

⟨wi1fj |ξ⟩ · (ei ⊗ ej) ,

which maps wi1fj to ei ⊗ ej ∈ Cd ⊗ Cν . As usual, ei denotes the i-th standard basis
vector of Cd or Cν , resp., and Eij := |ei⟩⟨ej | ∈ Md shall denote the canonical matrix
unit. It remains to show that U implements the ∗-isomorphism A ∼=Md ⊗ (C · Iν), i.e.
that UAU−1 =Md ⊗ (C · Iν). For i, j, k ∈ {1, . . . , d} and l ∈ {1, . . . , ν} we calculate

UwijU
−1(ek ⊗ el) = Uwijwk1fl = δjkUwi1fl = δjk · (ei ⊗ el)

= (δjkei ⊗ el) = (Eijek ⊗ el) = (Eij ⊗ Iν)(ek ⊗ el).

Thus UwijU
−1 = Eij ⊗ Iν ∈Md⊗ (C · Iν); and since the wij form a basis for A, we have

UAU−1 =Md ⊗ (C · Iν), as claimed.

The last result �nally leads to a complete characterisation of von ∗-algebras of operators
on �nite dimensional Hilbert spaces up to unitary equivalence:

Corollary 1.48. Every ∗-algebra of operators A on a �nite-dimensional Hilbert space H
is unitarily equivalent to a direct product

(A, H) ∼=

(
n

×
j=1

(
Mdj ⊗ (C · Iνj )

)
× {0},

n

×
j=1

(
Cdj ⊗ Cνj

)
× Cκ

)
,

where the trivial algebra {0} acts on Cκ, Iν is the ν × ν identity matrix, n ∈ N and
dj , νj ∈ N. The numbers n and κ are uniquely determined by A and the pairs (dj , νj) are
unique up to permutations. In particular, we have

dimH = κ+

n∑
j=1

djνj and dimA =

n∑
j=1

d2j .

A is non-degenerate, i� κ = 0 (viz. the last factor can be omitted); and A is simple,
i� n = 1.

Proof. As the �rst step, we want to get rid of the so-called null space of A, so we consider
the reduced von Neumann algebra

(
A♭, Y

)
(cf. Proposition 1.30) on the Hilbert subspace

Y = spanAH. We set X := Y ⊥ and κ := dimX, and �x an orthonormal basis (gl)
κ
l=1 of

X. Then the unitary

U1 : H −→ Y × Cκ, H ∋ ξ 7−→

(
ProjY ξ,

κ∑
l=1

⟨gl|ProjX ξ⟩ · el

)
∈ Y × Cκ
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implements the unitary equivalence (A, H) ∼=
(
A♭ × {0}, Y × Cκ

)
, where (el)

k
l=1 denotes

the canonical ONB of Cκ. By construction,
(
A♭, Y

)
is non-degenerate.

Secondly, we use Proposition 1.43 to decompose A♭ into simple ideals Aj ⊆ A♭, i.e.
A♭ =

⊕n
j=1 Aj . This concurrently gives another decomposition of the Hilbert space

Y : recall that 1Aj
∈ A♭ ⊆ L (Y ) are mutually orthogonal minimal projections, so the

subspaces Yj := 1Aj
Y are mutually orthogonal, and since A♭ was non-degenerate, Y is

the direct sum of the Yk. In order to �convert� the inner direct sum to an outer direct
sum, we use the unitary

U2 : Y −→
n

×
j=1

Yk, Y ∋ η =

n∑
j=1

1Ak
η︸ ︷︷ ︸

∈Yk

7−→ (1Ak
η)nk=1 ,

which implements the unitary equivalence
(
A♭, Y

) ∼= (×n
j=1 A ♭

j ,×n
j=1 Yj

)
, cf. Corollary

1.36.
Thirdly, we note that the A ♭

j are simple by Proposition 1.30 and Corollary 1.42, and
non-degenerate by construction. Hence they are factors by part (d) of Proposition 1.41,
and we can invoke Proposition 1.47 to get unitaries

U
(j)
3 : Yj −→ Cdj ⊗ Cνj , j ∈ {1, . . . , n}

implementing the unitary equivalences
(
A ♭
j , Yj

)
∼=
(
Mdj ⊗ (C · Iνj ), Cdj ⊗ Cνj

)
.

Putting all together, we de�ne the unitary U : H −→×n
j=1

(
Cdj ⊗ Cνj

)
× Cκ by the

following commutative diagram:

H

U1

��

U

77
Y × Cκ

(U2, idCκ )

  
×n

j=1 Yj × Cκ

(
(U

(j)
3 )nj=1, idCκ

)
%%

×n
j=1

(
Cdj ⊗ Cνj

)
× Cκ

Thus the stated unitary equivalence is proven. It remains to show that the numbers
κ, n and the dj and νj are uniquely determined by A. But by construction we know
κ = dim

(∩
A∈A kerA

)
, which is preserved under unitary equivalences, as for B ∼= A, say

B = V AV ∗ for some unitary V , we have

κ̃ := dim

( ∩
B∈B

kerB

)
= dim

(∩
A∈A

ker (V AV ∗)

)

= dim

(∩
A∈A

ker (AV ∗)

)
= dim

(∩
A∈A

V (kerA)

)

= dim

(
V

(∩
A∈A

kerA

))
= dim

(∩
A∈A

kerA

)
= κ.
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Furthermore, n is the number of simple ideals Ij contained in A, which is preserved under
∗-isomorphisms, thus in particular by unitary equivalences. Finally, the dj and νj are �
up to permutation, of course � determined by (cf. Proposition 1.47)

d2j = dim Ij and dj · νj = dim span (IjH) ,

which for similar reasons are stable under unitary equivalences.

1.7. n-positivity and complete positivity

For linear maps between C∗-algebras to be quantum operations, one does not only demand
that they are positive; in order to ensure that compound (i.e., �tensor-ed�) operations on
compound quantum systems are positive as well, one must demand a stronger property,
namely complete positivity.

De�nition 1.49. Let A and B be C∗-Algebras and S ⊂ A an operator system. A
linear map T : S −→ B is called n-positive (n ∈ N), if the induced map

ϕ(n) := ϕ⊗ idMn : S ⊗Mn −→ B ⊗Mn (1.7.1)

is positive. If T is n-positive for all n ∈ N, then T is called completely positive (abbre-
viated as c.p.), which for the sake of standardisation in the notation we may also call
∞-positive.
If T : A −→ B is linear and satis�es the Schwarz inequality

∀A ∈ A : T (a)∗T (a) ≤ T (a∗a),

then T is called Schwarz map, or 3/2-positive.

Obviously one can replace the space Mn in 1.7.1 by L (H) for any n-dimensional
Hilbert space H. Note that the three properties 1-positive, positivity-preserving and
positive (in the sense of mappings from operators to operators) are identical.

Note 1.50 (cf. [Pau, Ch. 3]). As the naming already suggests, n-positivity implies m-
positivity for n ≥ m (n,m ∈ N). Schwarz maps are 1-positive, and unital (!) 2-positive
maps, that are de�ned on a C∗-algebra, are Schwarz maps.
Furthermore, the concatenation and convex combination of �nitely many m-positive

maps (m ∈ {1, 3/2, 2, 3, 4, . . . }) are again m-positive; and the tensor product of com-
pletely positive maps is completely positive, if the underlying Hilbert spaces are �nite-
dimensional. Finally, a linear map T : S −→

⊕n
j=1 Aj , which maps into a direct

sum of ideals Aj , is m-positive (m ∈ {1, 3/2, 2, 3, 4, . . . }), i� all the �coordinate maps�
πj ◦ T : S −→ Aj are.

Proof. For n,m ∈ N, the �rst assertion follows directly via the canonical embedding

Mm ↪→Mn, a 7→
(
a 0
0 0

)
.
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The Schwarz property implies positivity, since T (a∗a) ≥ T (a)∗T (a) ≥ 0 for all a ∈ A .
Now, suppose that T : A −→ B is unital and satis�es the Schwarz inequality. For

a ∈ A we have that(
a 1A

0 0

)∗(
a 1A

0 0

)
=

(
a∗ 0
1A 0

)(
a 1A

0 0

)
=

(
a∗a a∗

a 1A

)
is a positive element of A ⊗M2. Since T is 2-positive, also

T (2)

(
a∗a a∗

a 1A

)
=

(
T (a∗a) T (a)∗

T (a) 1B

)
is positive. Hence, for all ξ and η in the underlying Hilbert space we have

0 ≤
⟨(

ξ
η

)∣∣∣∣(T (a∗a) T (a∗)
T (a) 1B

)∣∣∣∣(ξη
)⟩

= ⟨ξ|T (a∗a)|ξ⟩+ ⟨ξ|T (a)∗|η⟩+ ⟨η|T (a)|ξ⟩+ ⟨η|1B|η⟩︸ ︷︷ ︸
≤∥η∥2

≤ ⟨ξ|T (a∗a)|ξ⟩+ 2Re ⟨ξ|T (a)∗|η⟩+ ⟨η|η⟩ ,

and by plugging in η := −T (a)ξ it follows that

0 ≤ ⟨ξ|T (a∗a)|ξ⟩ − 2Re ⟨ξ|T (a)∗T (a)|ξ⟩︸ ︷︷ ︸
∈R, since T (a)∗T (a)≥0

+ ⟨ξ|T (a)∗T (a)|ξ⟩

= ⟨ξ|(T (a∗a)− T (a)∗T (a))|ξ⟩ .

Since ξ was arbitrary, T (a∗a) ≥ T (a)∗T (a).
Now, if T and S are two concatenable m-positive maps (m ∈ N), then

(T ◦ S)(m) = (T ◦ S)⊗ idMm = (T ⊗ idMm) ◦ (S ⊗ idMm) = T (m) ◦ S(m)

shows, that also T ◦ S is also m-positive. For convex combinations, m-positivity is also
quite obvious:

(λT + (1− λ)S)(m) = (λT + (1− λ)S)⊗ idMm = λT (m) + (1− λ)S(m).

If T and S are merely Schwarz maps, then we can use positivity of T to apply it to the
Schwarz inequality for S, before utilising the Schwarz inequality for T :

(T ◦ S)(a∗a) = T (S(a∗a)) ≥ T (S(a)∗S(a)) ≥ T (S(a))∗T (S(a)),

which is the Schwarz inequality for T ◦S. The Schwarz inequality for convex combinations
of Schwarz maps can be shown as follows: Let 0 ≤ λ ≤ 1 and consider R := λT+(1−λ)S
for two Schwarz maps T and S. Then, denoting t = T (a) and s = S(a), we can estimate

R(a)∗R(a) = λ2 t∗t+ (1− λ)2 s∗s+ λ(1− λ) [t∗s+ s∗t]
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For the term in square brackets, we use 0 ≤ (t− s)∗ (t− s) = t∗t+ s∗s− [t∗s+ s∗t] and
get

R(a)∗R(a) ≤
(
λ2 + λ(1− λ)

)
t∗t+

(
(1− λ)2 + λ(1− λ)

)
s∗s

= λ t∗t+ (1− λ) s∗s ≤ λT (a∗a) + (1− λ)S(a∗a)
= R(a∗a).

For complete positivity of tensor products of c.p. maps, assume that Aj ⊆ Mdj ,
Bj ⊆Mej are concrete ∗-algebras, Sj ⊆ Aj are operator system, and let Tj : Sj −→ Bj

be completely positive maps (j ∈ {1, 2}). Fix n ∈ N and denote by V and W the maps
� de�ned on the appropriate spaces16 � which exchange the �rst two tensor factors in a
threefold tensor product. Then

(T1 ⊗ T2)(n) = T1 ⊗ T2 ⊗ idMn = (T1 ⊗ idB2 ⊗ idMn) ◦ (idS1 ⊗ T2 ⊗ idMn)

= (T1 ⊗ idB2 ⊗ idMn) ◦W ◦ (T2 ⊗ idS1 ⊗ idMn) ◦ V
= (T1 ⊗ idMe2

⊗ idMn) ◦W ◦ (T2 ⊗ idMd1
⊗ idMn) ◦ V

= (T1 ⊗ idMe2+n) ◦W ◦ (T2 ⊗ idMd1+n
) ◦ V.

The last line is a concatenation of positive maps, hence (T1 ⊗ T2)(n) is positive.
Finally, let T : S −→ B be a linear map, where A =

⊕m
j=1 Bj , and let πj : B −→ Bj

denote the projection onto the j-th factor. Recall that πj is a ∗-homomorphism by
Proposition 1.35, and that

∑m
j=1 πj = idB. Let n ∈ N. Then the last assertion follows

from

T is n-positive⇐⇒ T ⊗ idMn is positive

=⇒ ((πj ◦ T )⊗ idMn) = (πj ⊗ idMn) ◦ (T ⊗ idMn) is positive ∀j
⇐⇒ (πj ◦ T ) is n-positive ∀j

=⇒
m∑
j=1

(πj ◦ T ) = (idB ◦ T ) = T is n-positive.

We already saw (cf. note 1.26), that ∗-homomorphisms are automatically positive. In
fact, they are an example of completely positive maps, as the next lemma shows.

Lemma 1.51. Every ∗-homomorphism between C∗-algebras is completely positive.

16More precisely,

V : S1 ⊗S2⊗Mn −→ S2 ⊗ S1 ⊗Mn, s⊗ t⊗m 7−→ t⊗ s⊗m

W : B2⊗S1⊗Mn −→ S1 ⊗ B2⊗Mn, b⊗ s⊗m 7−→ s⊗ b⊗m.

It can easily be seen that V and W are (restrictions of) unitarily implemented ∗-isomorphisms, thus
in particular positivity-preserving by Note 1.26.
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Proof. Let ϕ : A −→ B be a ∗-homomorphism between C∗-algebras, and let n ∈ N. We
show, that the map

ϕ(n) := ϕ⊗ idMn : A ⊗Mn −→ B ⊗Mn.

is again a ∗-homomorphism, hence positive by note 1.26. For (Xij) , (Yij) ∈ Matn(A ) we
have

ϕ(n)(X · Y ) = ϕ(n)

(
n∑
k=1

XikYkj

)
ij

=

(
n∑
k=1

ϕ(XikYkj)

)
ij

=

(
n∑
k=1

ϕ(Xik)ϕ(Ykj)

)
ij

(ϕ(Xij))ij · (ϕ(Yij))ij = ϕ(n)(X) · ϕ(n)(Y );

hence ϕ(n) is multiplicative. Involutivity follows by

ϕ(n) (Xij)
∗
ij = (ϕ(Xij))

∗
ij = (ϕ(Xji)

∗)ij =
(
ϕ(X∗

ji)
)
ij
= ϕ(n)

(
X∗
ji

)
ji
= ϕ(n) (Xij)

∗
ij .

For the case, where the domain is just C, positivity and complete positivity are the
same, as the next lemma shows. We will later generalise this statement for commutative
domains and ranges (Corollary 2.9).

Lemma 1.52. Let A be a concrete C∗-algebra, S ⊆ A an operator system. Then every
positive linear functional ϕ : S −→ C is actually completely positive.

Proof. We have to show that ϕ(n) : S ⊗Mn −→ C⊗Mn is positive, so let A ∈ S ⊗Mn

be a positive element, say A =
∑m

k=1 ak ⊗mk with ak ∈ S and mk ∈ Mn. We have to
show that ϕ(n)(A) is a positive semide�nite matrix17, so we calculate for x ∈ Cn (where
the index and bounds of summation are omitted for better readability):⟨

x
∣∣∣ϕ(n)(A)∣∣∣x⟩ =

⟨
x
∣∣∣(ϕ⊗ idMn)

(∑
ak ⊗mk

)∣∣∣x⟩ =
⟨
x
∣∣∣(∑ϕ(ak) ·mk

)∣∣∣x⟩
=
∑

ϕ(ak) · ⟨x|mk|x⟩ = ϕ
(∑

ak ⊗ ⟨x|mk|x⟩
)

= ϕ
(∑(

idH ⊗ ⟨x|
)(
ak ⊗mk

)(
idH ⊗ |x⟩

))
= ϕ

((
idH ⊗ ⟨x|

) (∑
ak ⊗mk

)
︸ ︷︷ ︸

=A

(
idH ⊗ |x⟩

)︸ ︷︷ ︸
=:Vx

)
= ϕ

(
V ∗
xAVx︸ ︷︷ ︸
≥0

)
≥ 0.

In the last line we have introduced the linear operator18 Vx = idH⊗|x⟩ : H
.
= H⊗C −→

H⊗ Cn and used the positivity of ϕ.

17Note that for any C-vector space W , C⊗W is canonically isomorphic to W via z⊗w 7→ z ·w; we will
use this identi�cation in the proof, using the symbol �

.
=� as in C⊗Mn

.
= Mn.

18Speaking strictly, writing Vx = idH ⊗ |x⟩ is a bit abuse of notation: here, �|x⟩� stands actually for
the linear map |x⟩ : C −→ H, z 7→ z · x, just as ⟨x| =

(
|x⟩

)∗
stands for the linear functional

⟨x| : H −→ C, ξ 7→ ⟨x|ξ⟩ .
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In later applications, we want to extend completely positive maps, that are de�ned
only on an operator system, to the whole C∗-algebra. For this case, Arveson proved in
[Arv1] the following extension theorem (see also [Pau]):

Theorem 1.53. Let A be a C∗-Algebra, S ⊆ A an operator system, and H a Hilbert
space. Then every completely positive map ϕ : S −→ L (H) can be extended to a com-
pletely positive map ϕ̃ : A −→ L (H).

Remark 1.54. In theorem 1.53, the C∗-algebra L (H) that ϕ maps into can in general not
be replaced by an arbitrary C∗-algebra.

1.8. Support Projections

This section de�nes support projections and states their most important properties. The
presentation is mostly taken from [Dix].

Proposition 1.55. Let A be a concrete C∗-algebra on a �nite-dimensional Hilbert space
H and ψ : A −→ A a unital Schwarz map. Then there exists a projection P ∈ A � called
the support projection of ψ � satisfying the following conditions:

a) For X ∈ A we have ψ(X) = ψ(PX) = ψ(XP ) = ψ(PXP ).

b) For positive H ∈ A, the equivalence ψ(H) = 0 ⇔ PHP = 0 holds.

Proof. We set M := {T ∈ A | ψ(T ∗T ) = 0} . We claim that M can also be written as
M = {T ∈ A | ∀S ∈ A : ψ(S∗T ) = 0}. Indeed, �⊇� follows by plugging in S = T , and
�⊆� follows via the Schwarz inequality, proposition 1.10vii), and positivity of ψ:

0 ≤ ψ(S∗T )∗ψ(S∗T ) ≤ ψ(T ∗SS∗T︸ ︷︷ ︸
≤∥S∥2T ∗T

) ≤ ∥S∗∥2 ψ(T ∗T ) = 0

=⇒ ψ(S∗T )∗ψ(S∗T ) = 0

=⇒ ψ(S∗T ) = 0.

In particular, M is a left ideal in A, and by proposition 1.18 there exists a projection
E ∈ A, such that M = {T ∈ A | T = TE}. Obviously E ∈ M, hence ψ(SE) = 0 for all
S ∈ A. Furthermore, if we replace S by S∗, we get 0 = 0∗ = ψ(S∗E)∗ = ψ(ES) for
all S ∈ A, where the last equality is by lemma 1.12. The projection P := 1A − E then
satis�es part (a).
As to part (b), we note that for a positive element H = X∗X ∈ A we have the

equivalence chain

ψ(H) = 0⇐⇒ X ∈M⇐⇒ XE = X ⇐⇒ XP = 0⇐⇒ 0 = (XP )∗XP = PHP.
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The following proposition constitutes the crucial step, when we later classify the pos-
sible �xed points sets of Schwarz maps and, in particular, of quantum channels. Part (a)
is [Arv2, Lemma 1 on p. 286].

Proposition 1.56. Let A be a concrete C∗-algebra on the �nite-dimensional Hilbert space
H, and let ψ : A −→ A be an idempotent Schwarz map and P the support projection of
ψ. Then, if we denote the �xed point set of ψ by fixψ, we have:

a) P commutes with all �xed points of ψ, i.e. P ∈ (fixψ)′ .

b) If P = 1A, then fixψ is a ∗-algebra.

Note that P = 1A is automatically ful�lled, if ψ is faithful (i.e. A ̸= 0 ∧ A ≥ 0 =⇒
ψ(A) ̸= 0), since ψ(1A) = ψ(P ) by the properties of support projections.

Proof. a) Let X ∈ A be a �xed point of ψ. Part (vi) of proposition 1.10 and the Schwarz
inequality imply

X∗PX ≤ X∗X = ψ(X)∗ψ(X) = ψ(PX)∗ψ(PX) ≤ ψ(X∗PX),

hence sandwiching with P from both sides (using again Part (vi) of proposition 1.10)
yields

PX∗PXP ≤ PX∗XP ≤ Pψ(X∗PX)P.

Thus, H := Pψ(X∗PX)P − PX∗PXP = P (ψ(X∗PX)−X∗PX)P is positive with
ψ(H) = 0 by idempotence of ψ. Since P is the support projection of ψ, by part (b)
of proposition 1.55 it follows that 0 = PHP = H. Thus, in the above inequality chain
we have actually equality, and in particular PX∗PXP = PX∗XP. Putting all terms
onto the r.h.s., we get 0 = PX∗(1 − P )XP = PX∗(1 − P )2XP = K∗K, where K :=
(1− P )XP . But K∗K = 0 implies K = 0, hence XP = PXP holds for all �xed points
X. Since the set of �xed points is self-adjoint by lemma 1.12, X∗ is a �xed point too,
which implies

XP = PXP = (PX∗P )∗ = (X∗P )∗ = PX,

i.e. P commutes with X.
b) Suppose that P = 1A. Since fixψ is an operator system, by the polarisation identity

A∗B =
1

4

3∑
k=0

i−k(A+ ikB)∗(A+ ikB) for A,B ∈ A

it su�ces to show, that X ∈ fixψ implies X∗X ∈ fixψ. For X ∈ fixψ, the Schwarz
inequality implies X∗X = ψ(X)∗ψ(X) ≤ ψ(X∗X). Hence H := ψ(X∗X) − X∗X is
positive with ψ(H) = 0. Again, it follows that 0 = PHP = H, hence ψ(X∗X) =
X∗X.
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Quantum Information Theory

2.1. Basic notions

In this chapter, we review the basic notions from quantum information. We do not
want to review the whole physical-philosophical theory of how actual quantum-physical
systems may be described mathematically in general and the various interpretations of
quantum theory. Instead, we restrict ourselves to stating the fundamental assumptions
we make in the descriptions of physical systems in terms of states, e�ects, observables, and
operations (also called channels). What follows, is basically the mathematical essence of
�1 in [Kra]; readers interested in the motivations of the de�nitions and axioms, as well
as the technical details may read further in [Lud, Kra].

2.1.1. States and E�ects

The general structure the authors in [Lud, Kra] start with, when they want to describe
physical systems, is that of a statistical model:

De�nition 2.1. A statistical model for a physical system consists of the following:

i) The set of states S , that the system can be prepared in.

ii) The set of e�ects E , representing physical measurements on the system with
exactly two possible outcomes � �yes� and �no�, or equivalently 1 or 0.

There are always two special e�ects: the e�ect 1 ∈ E , which results always
in the outcome �yes�, and the e�ect 0 ∈ E , which never occurs, regardless of
the state of the system being measured on.

iii) A mapping µ : S × E −→ [0, 1], which assigns to a pair (S,E) ∈ S × E
the probability1 of a �yes�-outcomes, if the e�ect E is measured on a system
prepared in the state S. For the special e�ects 0 and 1 we have obviously

1Here we mean �probability� in the statistical sense, i.e. if we prepare a number N of systems in the
state S, measure E on all N systems, getting N1 times the outcome �yes�, and N0 times the outcome
�no�, then for large N we have µ(S,E) ≈ N1/N . Note that the outcome of a single measurement
may not be determined by specifying S and E, but may be inherently random.
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µ(S, 1) = 1 and µ(S, 0) = 0 for all states S.

µ(S,E) = µ(S̃, E) ∀E ∈ E =⇒ S = S̃,

µ(S,E) = µ(S, Ẽ) ∀S ∈ S =⇒ E = Ẽ.

Both S and E carry the structure of a convex set, where a convex combination λS1 +
(1 − λS2) of to states S1 and S2 shall describe a system, which is prepared in S1 or S2
with probability λ or (1 − λ), respectively; the convex combination λE1 + (1 − λ)E2 of
two e�ects E1 and E2 shall correspond of randomly measuring E1 (with probability λ)
or E2 (with probability (1− λ)). This interpretation demands, that µ shall behave well
under convex combinations, i.e.

µ (λS1 + (1− λ)S2, E) = λµ(S1, E) + (1− λ)µ(S2, E)

and
µ (S, λE1 + (1− λ)E2) = λµ(S,E1) + (1− λ)µ(S,E2)

for S, S1, S2 ∈ S and E,E1, E2 ∈ E . This is equivalent to saying that µ is an a�ne
map.

Remark 2.2. There is an alternative viewpoint in that we consider the states as directly
operating on the e�ects; indeed the probability map µ furnishes an embedding S ↪→ E ∗,
where E ∗ denotes the set of a�ne maps E : S −→ [0, 1], given by E(S) := µ(S,E) for
E ∈ E , S ∈ S .

For the cases we want to consider, i.e. classical probability and quantum mechanical
systems, it turns out, that we do not need the full generality of statistical models. Instead
we will be content of the special case where E is a subset of the algebra L (H) of bounded
linear operators in a complex Hilbert space H. In such a representation, S and E are
given as follows:

� E is given by a convex subset of self-adjoint operators in H between 0 and 1, i.e.
E = {E ∈ L (H) | 0 ≤ E ≤ idH} , with idH ∈ E .

� In the spirit of 2.2, S is given by a subset of {S : E −→ [0, 1] | S a�ne} .

Each state S ∈ S can be uniquely extended to a complex-linear map Ŝ : A −→ C,
where A ⊆ L (H) is the C∗-algebra generated by E .2 Moreover, E can be reconstructed
from A as E = E (A ) := {E ∈ A | 0 ≤ E ≤ idH}. Thus we can embed the set of states
into the dual A ∗ of A .

2This can also be seen as a consequence of Proposition 1.10, according to which the set of e�ects spans
the whole algebra linearly: each x ∈ A can decomposed as linear combination of at most 4 positive
elements

x =

3∑
k=0

ikxk =

3∑
k=0

ik ∥xk∥ · yk,

where yk = xk/ ∥xk∥ if xk ̸= 0 and yk = 0 otherwise, so in both cases yk ∈ E (A ).
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Note that S may be only a subset of the a�ne maps from E into [0, 1], because
usually one will demand some kind of continuity of the elements of S , e.g. uniform or
ultraweak continuity. We do not wish to dive into the topological restrictions which can
be demanded of states; instead, we limit ourselves to the case of �nite-dimensional Hilbert
spaces H. In this case we can equip L (H) with the Hilbert-Schmidt scalar product (i.e.
(A,B) 7→ tr(A†B)), A becomes (as a closed linear subspace) a Hilbert space on its own;
so by the Riesz representation theorem, each state s may be written as s(A) = tr(ρA)
for a unique ρ ∈ A . The element ρ is called density matrix. The requirements of s for
being a state translate to the demand that ρ is positive and has trace equal to 1.

Remark. One need not postulate the existence of an underlying Hilbert space as a funda-
mental entity describing a quantum system. Many authors instead regard the e�ects as
more fundamental and postulate a representation on some Hilbert space, which is always
possible by the GNS-construction.

2.1.2. Examples

We show that the C∗-algebra model can describe classical probability as well as quantum
mechanics.

Example 2.3 (Classical Probability). Consider H = CN for a classical system with N
possible states (think for example of tossing a coin (N = 2) or rolling a dice (N = 6)).
We de�ne

A := DN := {diag(λ1, . . . , λN ) | λj ∈ C ∀j ∈ {1, . . . , N}} ⊆ L (H)

as the abelian ∗-algebra consisting of diagonal N × N -matrices. Note that for A =
diag(a1, . . . , aN ) ∈ DN and B = diag(b1, . . . , bN ) ∈ DN , it holds that

A ≥ 0 ⇐⇒ aj ≥ 0 ∀j ∈ {1, . . . , N} and
A ≥ B ⇐⇒ aj , bj ∈ R ∧ aj ≥ bj ∀j ∈ {1, . . . , N}.

Then, the e�ect space is E = {E ∈ DN | 0 ≤ E ≤ IN} and the state space is S =
{tr(σ (·)) | σ ∈ DN , σ ≥ 0, trσ = 1}. For (tr(σ(·)) ∈ S , σ = diag(σ1, . . . , σN ), the num-
bers σj are the probabilities for the respective elementary outcome j (i.e. σ1 = σ2 = 1/2
for throwing a fair coin, σ1 = · · · = σ6 = 1/6 for throwing a fair dice), whereas for
E = diag(ϵ1, . . . , ϵN ) ∈ E , the numbers ϵj stand for the probability of triggering a �yes�-
outcome given the elementary outcome j.

Remark. More generally, one can treat continuous probability distributions by consid-
ering a locally compact measure space (X, µ) and setting H := L2(X, µ) and A :=
{Mf | f ∈ Cb(X)}, where Cb(X) denotes the set of bounded continuous functions X −→
C, and Mf : L2(X, µ) −→ L2(X, µ) acts as multiplication by f ∈ Cb(X). The case of
�nitely many elementary states is contained therein with the choice X = {1, . . . , N} and
choosing µ as the counting measure.
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Example 2.4 (Quantum Mechanics). A k-state quantum system (e.g. a spin-s-particle
with k = 2s + 1 having no other degrees of freedom) can be modelled by the Hilbert
space H = Ck, where the e�ects are E = {E ∈ L (H) | 0 ≤ E ≤ idH} and the state
space is S = {tr(ρ (·)) | ρ ∈ L (H), ρ ≥ 0, trρ = 1}. The matrices ρ are called density
matrices. We may sometimes identify the linear map tr(ρ (·)) with the density matrix
ρ in situations where it causes no confusion. In the beginning of learning Quantum
Mechanics, quantum states are typically described by normalised vectors of the Hilbert
space � up to a phase factor of modulus 1. This view can be embedded in our de�nition,
when we regard the state represented by the unit vector ψ ∈ H by the corresponding
density matrix is ρ = |ψ⟩⟨ψ|, as is well known. Those states are called pure states, and
they can be characterised by an extremality condition:

Proposition 2.5. Consider general form of a �nite-dimensional von Neumann alge-
bra A :=×n

j=1

(
Mdj ⊗

(
CIνj

))
(cf. Corollary 1.48), operating on the Hilbert space

H =×n
j=1

(
Cdj ⊗ Cνj

)
. For a density matrix ρ = (ρ1, . . . , ρn) ∈ S (A ) the following

statements are equivalent:

i) ρ is extremal in the convex set S (A ), i.e. it cannot be written as proper
convex combination ρ = λσ + (1 − λ) τ for σ, τ ∈ S (A ), σ ̸= τ with 0 <
λ < 1.

ii) There exists j0 ∈ {1, . . . , n} and ξ ∈ Cdj0 with ∥ξ∥ = 1, such that ρjo =

|ξ⟩⟨ξ| ⊗
(
Iνj0/νj0

)
and ρj = 0 for j ̸= j0.

3

Proof. �(i) ⇒ (ii)�. If there were two indices i, j with ρi ̸= 0 ̸= ρj (w.l.o.g. i = 1), we
could write ρ as the convex decomposition

ρ = trρ1 ·
(
ρ1
trρ1

, 0, . . . , 0

)
+ (1− trρ1) ·

(0, ρ2, ρ3, . . . , ρn)

1− trρ1
,

which is a valid decomposition in terms of density matrices since 1 = trρ = trρ1 +∑n
j=2 trρj , and ρ ≥ 0 implies ρj ≥ 0 for all j. Hence there exists j0 ∈ {1, . . . , n} such

that ρj = 0 for j ̸= j0.

Writing ρj0 = r ⊗
(
Iνj0/νj0

)
with r ∈ Mdj0

, where we divided by νj0 to assure that

trρj0 = trr, extremality of ρ in S (A ) implies extremality of r in S (Mdj0
). Consider

the spectral decomposition

r =
rank r∑
k=1

λk · |ek⟩⟨ek|

3Note that in the general case of a von Neumann algebra, there may exists no elements at all of the
form |ψ⟩⟨ψ| in A (except 0, of course). For example, consider A = Md ⊗ (CIν) with ν ≥ 2. While
rank (|ψ⟩⟨ψ|) = 1 for ψ ∈ H \ {0}, the elements a⊗ Iν of A have a rank which is a multiple of ν, as
rank (a⊗ Iν) = ν ·rank a. Thus the notion of pure states has to be slightly generalised to mean exactly
the extremal elements of S (A ); and this statement gives the exact structure of these elements in
the general case.
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of r, where λk > 0,
∑

k λk = trr = 1, and the (ek) form an orthonormal system. If rank r
was greater than 1, then we could again decompose convexly into density matrices as

r = λ1 · |e1⟩⟨e1|+ (1− λ1) ·
∑rank r

k=2 λk · |ek⟩⟨ek|
1− λ1

,

in contradiction to extremality of r. Thus with ξ := e1 we have ρjo = |ξ⟩⟨ξ| ⊗
(
Iνj0/νj0

)
.

�(ii)⇒ (i)�. Let ρ have the supposed form as above. Assume that there exist density
matrices σ, τ ∈ S (A ), σ ̸= τ and λ ∈ (0; 1) such that ρ = λσ + (1 − λ) τ. With
respect to the structure of A =×n

j=1

(
Mdj ⊗ Iνj

)
we can write ρ =

(
rj ⊗ Ivj/νj

)n
j=1

,

σ =
(
sj ⊗ Ivj/νj

)n
j=1

and τ =
(
tj ⊗ Iνj/νj

)n
j=1

, with 0 ≤ rj , sj , tj ∈ Mdj . The convex

decomposition then reads as

rj = λ · sj + (1− λ) · tj ∀j ∈ {1, . . . , n},

which for j ̸= j0 means sj = tj = 0 by positivity of the terms of the r.h.s.
Now, regarding j = j0, we write s = sj0 and t = tj0 . Observe that for any η ∈ Cdj0

orthogonal to ξ, we have

0 = ⟨η|ξ⟩ ⟨ξ|η⟩ = λ · ⟨η|s|η⟩︸ ︷︷ ︸
≥0

+(1− λ) · ⟨η|t|η⟩︸ ︷︷ ︸
≥0

,

hence ⟨η|s|η⟩ = 0 = ⟨η|t|η⟩, which means that ξ⊥ ⊆ ker s ∩ ker t. Taking orthogonal
complements in Cdj0 , we get

C · ξ ⊇ (ker s ∩ ker t)⊥ = ran s† + ran t† = ran s+ ran t.

Thus, ran s = C · ξ = ran t, and trs = 1 = trt implies s = t = |ξ⟩⟨ξ| and hence σ = τ , a
contradiction!

2.1.3. Observables

In quantum mechanics, one often does not use basic e�ects, but so-called observables.
In our terms, an observable with �nitely many values is a tuple of m e�ects (Ej)

m
j=1,

where the Ej is the e�ect which occurs when outcome number j is measured. As the
measurement of an observable should give exactly one outcome, the (Ej) have to sum up
to 1. Such an observable is called a positive operator valued measure, or POVM. In the
special case that all the e�ects Ej are projections, it is called a projection-valued measure,
or PVM. This is the case that is treated in most textbooks in quantum mechanics. If we
want, we can regard an e�ect E as a special observable, namely (E, 1− E).
To a PVM (Ej) we may assign a hermitian element O ∈ A h via the spectral theorem,

namely

O =
m∑
j=1

rjEj ,
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where the rj ∈ R are the pairwise di�erent real numbers used to indicate the measurement
result. Conversely, each hermitian element H ∈ A h has a unique spectral decomposition

H =
∑

λ∈σ(H)

λEλ,

where σ(H) ⊂ R denotes the spectrum of H, and the (Eλ) ⊂ A are the mutually
orthogonal eigenprojections (which automatically sum up to idH = 1A ), so that the
(Eλ) constitute a PVM.
There are two ways of constructing a one-to-one correspondence between self-adjoint

operators in L (H) and PVMs, depending on whether we want to keep track of the
numerical values that indicate the measurement results. Firstly, if we discard their
importance, we may identify two self-adjoint operators in L (H) if they have the same
eigenprojections (up to permutation, of course); then there obviously is a one-to-one
correspondence between the equivalent classes [O] of self-adjoint operators and PVMs,
namely O =

∑m
j=1 rjEj ←→ (Ej)

m
j=1 .

Secondly, if we want to include the values indicating the measurement results, we can
do that by denoting R̂m := {(r1, . . . , rm) ∈ Rm | r1, . . . , rm pairwise di�erent} the set of
m-dimensional real vectors having pairwise di�erent entries, and noting that

{O ∈ L (H) | O∗ = O} ∋ O spectral theorem
=

m∑
j=1

rjEj ←→

((rj), (Ej)) ∈ R̂m × {PVMs with m values in L (H)}

is a bijective map.
In practice, only PV measures are really implementable. However, of one performs

a projective measurement on a compound system and subsequently discards one of the
subsystems, the whole process can be described with a POVM on the other subsystem
alone. We come back to this, as we we consider observables as channels in chapter 2.2.1.

2.1.4. Compound Systems

Consider two (distinguishable) systems, described by Hilbert spaces H and K and oper-
ator algebras A ⊆ L (H) and B ⊆ L (H).
As a preliminary consideration, take two distinguishable 6-sided dice (assume for ex-

ample that they are painted white and black, respectively). Accordingly, we take H =
K = C6 and A = B = D6 = {diag(λ1, . . . , λ6) | λj ∈ C} as C∗-algebras describing the
respective systems. The �elementary states� of the compound system are then obviously
the states, where the �rst dice shows j and the second dice shows k (j, k ∈ {1, . . . , 6}),
so we can model the compound system Hilbert space as C6⊗C6 = H⊗K, and the corre-
sponding algebra as D6⊗D6 = A ⊗B. The e�ects of the compound system can then be
given by (convex combinations) of �combinations� E1 ⊗ E2, where Ej ∈ Ej (j ∈ {1, 2}),
This holds also true in the general case, where one or more systems may be quantum:

For distinguishable systems (Aj ,Hj), the compound system is given by
(⊗

j Aj ,
⊗

j Hj
)
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(c.f. the de�nition of tensor products of ∗-algebras in De�nition 1.38). We remind
that if we wanted to consider in�nite-dimensional systems, we would have to take as
compound Hilbert space the Hilbert space tensor product, which is given by the closure
of the algebraic tensor product H ⊗ K. Then also the tensor product of the respective
algebras A ⊗B needs to be closed in L (H⊗K) order to be a C∗-algebra
There are also means for indistinguishable systems, where one must take the statistics

of the particles into account; but we will only consider distinguishable systems.4

Remark. One might have wondered, why we consider proper sub-algebras A ⊂ L (H) as
representing physical systems. As an example, consider a bipartite system represented
by L (H)⊗L (K) of two spatially separated particles. If we want to emphasise that only
the �rst particle is accessible by our measurements, we can emphasise this by restricting
the algebra to A := L (H) ⊗ (C · idK) ⊊ L (H ⊗ K). Another example: We ignore the
spin of a particle in a volume V : The full (i.e. dealing with spin and position) Hilbert
space could be modelled as L2(V )⊗C2s+1, where s ∈ N0/2 denotes the total spin of the
particle. If we lack the ability of (or just the interest in) measuring the direction of the
spin of the particle, we may constrain our observable algebra to L (L2(V ))⊗ (C · idC2s).

2.2. Channels; Heisenberg and Schrödinger picture

Now we come to the modelling of how states can be manipulated. The presentation
roughly follows [Key, 3.2.].
We want to consider measurements of observables and instruments on the same footing.

This is possible if we de�ne a channel (in the Heisenberg picture) as a unital completely
positive map between two von Neumann algebras. The operational meaning is as follows:
If E is an e�ect on (A ,H) and T : A −→ B is the channel, the T (E) shall be the e�ect
on B that corresponds to applying the channel T to the A -system before measuring E.
It follows a justi�cation why a channel shall have the above mentioned properties.

First, as a mapping T̃ : E(A ) −→ E(B), it ought to respect mixtures, i.e. T̃ has to be
a�ne. Thus, it has a unique linear extension to a C-linear map T : A −→ B. Second, if
we measure the e�ect 1 after applying our channel, then regardless of what the channel
actually does5, the event 1 occurs. Therefore T must be unital. Third, since a channel
maps e�ects to e�ects, it has to be positive. We demand that it is possible in compound
systems A ⊗ C , where C is an arbitrary quantum system, to apply the channel only to
the A -system and do nothing on the C -system. This operation is represented by the
mapping T ⊗ idC , sending A ⊗ C systems to B ⊗ C systems. We want to think of
T ⊗ idC as special channel, thus in particular it has to be positive. Since C is arbitrary,
this amounts to the fact that T is completely positive6.
In many circumstances it seems more natural to think of channels as mapping states to

4Note that it is a good approximation, when we treat two identical quantum particles, that are isolated
in disjoint volumes, as distinguishable.

5We tacitly assume that our channel cannot �destroy� the whole system.
6Although the de�nition of complete positivity only demands that T ⊗ idC is positive for the special
choices C ∈ {Md | d ∈ N}, the general case follows from that.
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other states. Such a description is possible by dualisation, as we now show. Let A and
B are concrete C∗-algebras on �nite dimensional Hilbert spaces H and K, respectively,
and let S ⊆ A be an operator system. As (closed) subspaces of L (H) and L (K), A ,
S, and B inherit Hilbert-Schmidt scalar products

A ×A ∋ (a, b) 7−→ tr(a†b) ∈ C,

which renders them Hilbert spaces in their own right. Here and henceforth we may
denote the adjoint of an operator a ∈ L (H) by a† instead of a∗ (for L (K) accordingly).
This helps us to distinguish between the adjoint of an element in a ∗-algebra and the
adjoint of a map between two ∗-algebras, which we de�ne now.

De�nition 2.6. Let T : A −→ B be a linear map. Its adjoint T ∗ : B −→ A is de�ned
using the Hilbert-Schmidt inner product via

tr(b†T (a)) = tr(T ∗(b)†a) ∀a ∈ A ∀b ∈ B.

Note that the trace on the l.h.s. is taken over K, whereas the trace on the r.h.s. is
taken over H. If T is a channel in the Heisenberg picture, thus mapping e�ects to e�ects,
we call T ∗ a channel in the Schrödinger picture, mapping density matrices to density
matrices. That verify this, we de�ne:

De�nition 2.7. A linear map T : A −→ B is called trace-preserving, if it leaves the
trace of an operator invariant, i.e.

tr(T (a)) = tra ∀a ∈ A .

The adjoint map T ∗ enjoys many properties that T also has. In particular:

Proposition 2.8. Let T : A −→ B be a linear map. Its adjoint T ∗ is Hermiticity
preserving, i� T is; and, for all m ∈ N ∪ {∞}, T ∗ is m-positive, i� T is. Moreover, T ∗

is trace-preserving, i� T is unital.

Proof. First, let T be hermitian and b ∈ B. We must show that T ∗(b†) = T ∗(b)†. Indeed,
by Hermiticity of T and cyclicity of the trace it holds for all a ∈ A that

tr(T ∗(b†)†a) = tr(b††T (a)) = tr(T (a)b) = tr(T (a†)†b) = tr(a††T ∗(b)) = tr(T ∗(b)††a),

so that T ∗(b†) = T ∗(b)†.
The statement about positivity is proven as follows: for the case m = 1 (i.e. ordinary

positivity) we have:

T positive
1.14b⇐⇒ tr (pT (q)) ≥ 0 for all projections p ∈ B, q ∈ A

⇐⇒ tr (T ∗(p)q) = tr (qT ∗(p)) ≥ 0 for all projections p ∈ B, q ∈ A

1.14b⇐⇒ T ∗ positive.

41



Chapter 2. Quantum Information Theory

The case m > 1 follows from that, once we have shown that (T ∗)(n) =
(
T (n)

)∗
. Per

de�nition we have (T ∗)(n) = T ∗⊗idMn . We calculate for a ∈ A , b ∈ B, andN,M ∈Mn:

tr
(
(a⊗N)†

(
T (n)

)∗
(b⊗M)

)
= tr

((
T (n)(a⊗N)

)†
(b⊗M)

)
= tr

(
(T (a)⊗N)† (b⊗M)

)
= tr

(
(T (a)†b)⊗ (N †M)

)
= tr

(
T (a)†b

)
tr
(
N †M

)
= tr

(
a†T ∗(b)

)
tr
(
N †M

)
= tr

(
(a†T ∗(b))⊗ (N †M)

)
= tr

(
(a† ⊗N †)(T ∗(b)⊗M)

)
= tr

(
(a⊗N)† (T ∗)(n) (b⊗M)

)
,

hence (T ∗)(n) =
(
T (n)

)∗
by linearity.

For the last assertion we note the equivalence chain

T ∗ trace-preserving ⇐⇒ tr (T ∗(b)) = trb ∀b ∈ B

⇐⇒ ∀b ∈ B : tr (b · 1B) = tr (T ∗(b) · 1A ) = tr (b · T (1A ))

⇐⇒ 1B = T (1A ) ⇐⇒ T unital.

As a mathematical consequence of the previous de�nitions and results, we show that
complete positivity and mere positivity are actually the same, if at least one of the
systems before and after applying the channel is classical.

Corollary 2.9. Let A and B be C∗-Algebras and T : A −→ B a positive map. If A or
B is abelian, then T is completely positive.

Proof. It su�ces to consider the case where B is abelian (otherwise consider �rst T ∗ :
B −→ A and apply Proposition 2.8). So assume that B is abelian. By Corollary 1.46
and Lemma 1.51 we can assume that

B =
n

×
j=1

Mdj for some n ∈ N, dj ∈ N,

which can only be commutative, if dj = 1 for all j, hence B =×n
j=1M1 = Dn. Thus

for all j ∈ {1, . . . , n}, the maps Tj : A −→ C, Tj(A) = ⟨ej |T (A)|ej⟩ are positive linear
functionals, thus even completely positive by Lemma 1.52. The claim follows by Note
1.50.

Remark 2.10. Although the property of m-positivity (m ∈ N) is preserved when passing
to the adjoint channel, the Schwarz property (according to our de�nition)7 is not. As a

7Amore general version of the Schwarz inequality for not necessarily unital maps is T (A)†T (1)−1T (A) ≤
T (A†A), where the inverse is taken on the range.
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counterexample, consider the linear map

E :M1 = C −→Md, z 7−→ z · Id.

Clearly E is unital and positive; and as the domain is abelian, even completely positive
by Corollary 2.9. The adjoint map E∗ :Md −→ C can be calculated for A ∈Md, z ∈ C:

tr
(
z†E∗(A)

)
= tr

(
E(z)†A

)
= tr (zIdA) = tr(z†A),

thus E∗ = tr(·). But for E∗, the Schwarz inequality does not hold if d > 1, since for
example

E∗(Id)†E∗(Id) = d2 ≰ d = E∗(I†dId).

2.2.1. Examples

We give a few examples of what channels can describe operationally:

Example 2.11 (Classical probability). Consider a classical-to-classical channel, i.e. two
classical algebras A := Dn and B := Dm and a completely positive unital map T :
A −→ B. T can be described by the numbers

tij := ⟨ej |T (|ei⟩⟨ei|)|ej⟩ ∈ [0; 1],

such that in terms of the �elementary e�ects� (propositions) |ek⟩⟨ek| we can write

T (|ei⟩⟨ei|) =
m∑
j=1

tij |ej⟩⟨ej | ,

which is nothing else than matrix algebra of stochastic matrices in disguise 8. Indeed,
complete positivity (which in this case reduces to positivity) implies tij ≥ 0, and unitality
of T implies that

∑n
i=1 tij = 1. In other words, the matrix (tij) is a stochastic matrix.

Since we can write tij = tr (|ej⟩⟨ej | · T (|ei⟩⟨ei|)), the number tij is the probability of
�nding a system in the state |ei⟩⟨ei| ∈ B after applying the channel, if it was before in
the state |ej⟩⟨ej | ∈ A . The correspondent channel in the Schrödinger picture can be read
o� the same equation as T ∗ : Dm −→ Dn, T ∗(|ej⟩⟨ej |) =

∑n
i=1 tij |ei⟩⟨ei| .

Example 2.12 (Observables and other mixed channels). In chapter 2.1.3 we de�ned an
observable as a collection (E1, . . . , EN ) ⊂ A , i.e. a POVM, of e�ects on an algebra A .
We now show, that the measurement of observables can also be viewed as applying a
channel: We de�ne the mixed output algebra B := A ⊗DN consisting of the quantum
part A , on which the e�ects are measured, and the classical channel DN indicating
the measurement result. Since the probability of triggering the e�ect Ej on a system

8For classical probability alone, the present framework may seem a bit too much bedevilled, but that
is the price paid for a consistent way of treating classical, quantum mechanical and mixed systems
on the same footing.
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described by a density matrix ρ ∈ A is given by pj := tr(ρEj), a model of the channel
in the Schrödinger picture can be given by9

T ∗ : A −→ A ⊗DN , ρ 7−→
N∑
j=1

(√
Ejρ

√
Ej

)
⊗ |ej⟩⟨ej | .

If one is only interested in the measurement outcome, one can discard the quantum
system after measurement, which in our model amounts to trace over the A -part of the
system:

tr1 ◦ T ∗(ρ) =

N∑
j=1

tr
(√

Ejρ
√
Ej

)
· |ej⟩⟨ej | =

N∑
j=1

pj |ej⟩⟨ej | .

So we get back the well-known formula for probabilities for quantum mechanical mea-
surements.

For a detailed discussion and further examples of basic channels we refer to [Key,
Chapter 3.2]

2.2.2. Structure theory of von Neumann algebras revisited

As a little interlude, with the techniques we have just introduced, we prove a corollary
of Wigners theorem 1.29 on the level of von Neumann algebras. It shows, that bijective
maps between ∗-algebras which are order-preserving in both directions are actually ∗-
isomorphisms or ∗-anti-isomorphisms. First, we prove a result that can be found as a
special case of [PWPR, Theorem II.4].

Lemma 2.13. Let A and B be two ∗-algebras on �nite-dimensional Hilbert spaces,
and let T : A −→ B be a positive, trace-preserving and unital map. If we equip A
and B with the Hilbert-Schmidt scalar products (x, y) 7→ tr(x†y) and the induced norm
∥x∥2 =

√
tr(x†x), then T is contractive w.r.t. these norms, i.e. ∥T (x)∥2 ≤ ∥x∥2 for all

x ∈ A .

Proof. We have to show ∥T∥ ≤ 1, where ∥T∥ denotes the operator norm w.r.t. to the
Hilbert-Schmidt norms on A and B. Since T is a mapping between Hilbert spaces, its
norm equals the square root of its largest singular value, i.e. ∥T∥2 = maxσ(T ∗ ◦ T ),
where σ(T ∗ ◦T ) denotes the spectrum (= set of eigenvalues) of the positive (in the usual
sense of linear algebra) operator T ∗ ◦ T . By Proposition 2.8, T ∗ is positivity-preserving,
unital, and trace-preserving, too. Hence in particular (T ∗ ◦ T )(1A ) = 1A .
We want to show that all eigenvalues of T ∗ ◦ T are ≤ 1, so let λ be an eigenvalue with

corresponding eigenvector V : T ∗(T (V )) = λ · V . Since both T and T ∗ are hermiticity-
preserving, V † is also an eigenvector to λ, hence also Ṽ := (V +V †)/2, which is hermitian.
We de�ne

α := max
{
r > 0

∣∣∣ 1A + rṼ ≥ 0
}
> 0,

9There are some caveats if this formula is used in the very general case of (E1, . . . , EN ) being merely a
POVM, since the state of the system after observing Ej may be changed arbitrarily by conjugating
with some unitary Uj , as some authors suggest (e.g. [Pre, Ch. 3.1.2, esp. p. 11]). However, in the
case where (E1, . . . , EN ) is actually a PVM, such that

√
Ej = Ej , there is no such problem.
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which is well-de�ned, since by Proposition 1.10iii) we have Ṽ ≥ −
∥∥∥Ṽ ∥∥∥ 1A , hence 1A −

rṼ ≥ 1A ·
(
1− r

∥∥∥Ṽ ∥∥∥), where the last term is inherently positive at least for r ∈

(0,
∥∥∥Ṽ ∥∥∥−1

]. Thus we have

0 ≤ (T ∗ ◦ T )(1A + αṼ ) = 1A + αλṼ ,

hence by de�nition of α it follows that αλ ≤ α, viz. λ ≤ 1.

Proposition 2.14. Consider two von Neumann algebras A(i) =×ni

k=1Md
(i)
k

⊗
(
CI

ν
(i)
k

)
,

i ∈ {1, 2}. Let φ : A(1) −→ A(2) be a positive unital bijective linear map, such that its
inverse φ−1 is positive, too.10Then we in fact have n1 = n2 =: n, and there exists a
permutation {1, . . . , n} ∋ k 7−→ σ(k) ∈ {1, . . . , n}, such that:

� For all k ∈ {1, . . . , n}, we have d
(1)
k = d

(2)
σ(k). In particular, A(1) ≃ A(2).

� For each k there exists a unitary Uk : Cd
(1)
k −→ Cd

(2)
σ(k) such that the action of φ can

be stated as

φ

((
Ak ⊗ I

ν
(1)
k

)n
k=1

)
=
(
(U †

σ(k)χk(Aσ(k))Uσ(k))⊗ I
ν
(2)
k

)n
k=1

,

where each χk is either the identity map or the transposition map A 7→ At. In other
words: Each block in A(1) gets mapped onto a correspondent block in A(2), either
by unitary conjugation or by transposition and unitary conjugation.

If, in addition, φ is a Schwarz map, then all χk are identity maps, and φ is a ∗-
homomorphism.

Proof. We consider the state spaces S (A(i)) and the dual map φ∗ : A(2) −→ A(1), which
is positive and trace-preserving and therefore maps S (A(2)) into S (A(1)). We note that
φ∗ is bijective with (φ∗)−1 =

(
φ−1

)∗
, since for X,Y ∈ A(1) we have

tr
[
X† ·

(
φ∗ ((φ−1)∗ (Y )

))]
= tr

[
(φ(X))† ·

(
(φ−1)∗ (Y )

)]
= tr

[(
φ−1(φ(X))

)† · Y ] = tr
[
X†Y

]
,

10Note that positivity of φ−1 does not follow automatically, as the example

φ(a, b) = ((2a+ b)/3, (a+ 2b)/3)

on the commutative algebra C2 shows � its inverse is given by

φ−1(x, y) = ((2x− y)/3, (2y − x)/3), so e.g. φ((0, 3)︸ ︷︷ ︸
≥0

) = (−3, 6) ⩾̸ 0
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hence φ∗ ◦ (φ−1)∗ = idA(1) , and replacing φ with φ−1 shows (φ−1)∗ ◦ φ∗ = idA(2) . In
particular, (φ∗)−1 maps S (A(1)) into S (A(2)), thus φ∗ furnishes an a�ne11 bijection
φ∗ : S (A(2)) −→ S (A(1)) and therefore maps extreme points to extreme points.
Let us denote the extremal points of a set X by ext(X). Then, recalling the character-

isation of extreme points of S (A(i)) from Proposition 2.5, we de�ne for k ∈ {1, . . . , ni}
the �blocks of extremal density matrices�

B
(i)
k :=

{
(0, . . . , 0, |ξ⟩⟨ξ| ⊗ I

ν
(2)
k

/ν
(2)
k︸ ︷︷ ︸

k-th position

,0, . . . , 0) ∈ extS (A(i))
∣∣∣ ξ ∈ Cd

(i)
k , ∥ξ∥ = 1

}
,

which comprise the connected components of extS (A(i)). As the image of a connected
set under a continuous map is connected, for each k ∈ {1, . . . , n2} there has to be an

index k̃ ∈ {1, . . . , n1} such that φ∗(B
(2)
k ) ⊆ B(1)

k̃
. Since the same holds, if we interchange

(2) and (1) by considering (φ−1)∗ instead of φ∗, it must be that the mapping k 7→ k̃ is

bijective, and φ∗(B
(2)
k ) = B

(1)

k̃
. This also establishes n1 = n2 =: n, and � for dimensional

reasons � d
(2)
k = d

(1)

k̃
for all k.

For the remainder of the proof, �x k ∈ {1, . . . , n}, and set d := d
(2)
k , ν := ν

(2)
k . Let

ϕ :Md −→Md denote the �k-th channel of φ� de�ned by the equation

φ∗

0, . . . , 0, A⊗ Iν/ν︸ ︷︷ ︸
k-th position

, 0, . . . , 0


=

0, . . . , 0, ϕ(A)⊗ Iν/ν︸ ︷︷ ︸
k̃-th position

, 0, . . . , 0

 ∀A ∈Md.

Note that ϕ bijective, and that ϕ and ϕ−1 are both positive and trace-preserving. Con-
sider E := ϕ(Id), which is positive with trE = d. By spectral decomposition there exists
an ONB (uℓ)

d
ℓ=1 of Cd so that E =

∑d
ℓ=1 λℓ |uℓ⟩⟨uℓ|. If we apply ϕ−1 to that again, we

get

Id = ϕ−1(E) =
d∑
ℓ=1

λℓ |vℓ⟩⟨vℓ|

for some set of unit vectors (vℓ)
d
ℓ=1 ⊂ Cd (not necessarily orthogonal), that satisfy

ϕ (|vℓ⟩⟨vℓ|) = |uℓ⟩⟨uℓ|. Since obviously |vℓ⟩⟨vℓ| ≤ I, we get by positivity of ϕ that for
all ℓ ∈ {1, . . . , n} it holds that

|uℓ⟩⟨uℓ| = ϕ (|vℓ⟩⟨vℓ|) ≤ ϕ(Id) = E =

d∑
ℓ=1

λℓ |uℓ⟩⟨uℓ| .

11A map f between convex spaces is called a�ne, i� it preserves convex decompositions, i.e.

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).
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Because (uℓ) is an ONB, we can infer 1 ≤ λℓ for all ℓ. But then we have actually equality
in d = trE =

∑d
ℓ=1 λℓ ≥

∑d
ℓ=1 1 = d, so that in fact λℓ = 1 ∀ℓ, and hence E = Id,

which means that ϕ, and thus also ϕ−1, are unital. Moreover, the vℓ are necessarily also
orthonormal, so that ϕ maps orthogonal projectors to orthogonal projectors.
By Lemma 2.13, both ϕ and ϕ−1 are contractive w.r.t. the Hilbert-Schmidt norms

onMd, hence they are isometric w.r.t. the Hilbert-Schmidt norm and (since this norm
comes from a scalar product)

tr
(
ϕ(X)†ϕ(Y )

)
= tr

(
X†Y

)
∀X,Y ∈Md.

Let T := {z ∈ C | |z| = 1} denote the unit circle. We want to de�ne a projective

automorphism W : R −→ R, where R :=
{
Tξ
∣∣∣ ξ ∈ Cd

(2)
k \ {0}

}
, that we want to invoke

Wigner's theorem on. So, let Tξ ∈ R (ξ ∈ Cd
(2)
k \ {0}). Consider ϕ(|ξ⟩⟨ξ|), which is of

the form |η⟩⟨η| for some η ∈ Cd
(i)
k \ {0}, so that we can de�ne W (Tξ) := Tη. (This is well

de�ned, because |η⟩⟨η| = |η̃⟩⟨η̃| holds i� Tη = Tη̃). Now, observe that for ξ, η ∈ Cd
(2)
k \{0}

with ∥ξ∥ = ∥η∥ = 1 we have that

|⟨W (Tξ)|W (Tη)⟩|2 = |tr (|W (Tξ)⟩⟨W (Tξ)| · |W (Tη)⟩⟨W (Tη)|)|
= |tr (ϕ (|ξ⟩⟨ξ|)ϕ (|η⟩⟨η|))|

=
∣∣∣tr(ϕ (|ξ⟩⟨ξ|)† ϕ (|η⟩⟨η|))∣∣∣ = |tr (|ξ⟩⟨ξ| · |η⟩⟨η|)|

= |⟨ξ|η⟩|2 = |⟨Tξ|Tη⟩| ,

so we can apply Wigners theorem 1.29, which shows that ϕ is either of the form ϕ(X) =
UXU † or ϕ(X) = UXtU † for some unitary U ∈ L (Cd). If we argue in that way for each
k, all claims but the last follow.
Finally, if φ is a Schwarz map, the second anti-unitary possibility is ruled out: either,

the block dimension is d = 1, in which case Xt = X , or, in the case d > 1, the transpose
map is not schwarz. Indeed, take for example X = |e1⟩⟨e2| ((ei) the canonical basis in
Cd) and let t : A 7→ At denote the transpose map. We have t(X) = |e2⟩⟨e1| = X† and
hence

t(X)†t(X) = XX† = |e1⟩⟨e1| ≰ |e2⟩⟨e2| = X†X = t(X†X).

2.3. Maximally entangled states and special isomorphisms

De�nition 2.15. If (ej)
n
j=1 is an orthonormal basis in the �nite-dimensional Hilbert

space H, we say that the unit vector Ω := (dimH)−1/2∑n
j=1 ej ⊗ ej ∈ H ⊗ H is a

maximally entangled vector (for H), and that |Ω⟩⟨Ω| ∈ L (H⊗H) is amaximally entangled
state (for H).
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Indeed, Ω is a unit vector, as

∥Ω∥2 = ⟨Ω|Ω⟩ = (dimH)−1
n∑
j=1

n∑
k=1

⟨ej ⊗ ej |ek ⊗ ek⟩︸ ︷︷ ︸
=δjk

=
n

dimH
= 1,

hence |Ω⟩⟨Ω| is a pure density matrix in L (H⊗H). As an element of L (H)⊗L (H) it
has also a interesting representation:

|Ω⟩⟨Ω| = (dimH)−1
n∑

i,j=1

|ei ⊗ ei⟩⟨ej ⊗ ej | = (dimL (H))−1/2
n∑

i,j=1

(|ei⟩⟨ej |)⊗ (|ei⟩⟨ej |) .

Recalling that (|ei⟩⟨ej |)ni,j=1 is an orthonormal base of the Hilbert space12 L (H), we see
that |Ω⟩⟨Ω| is also a maximally entangled vector for L (H).
The dimensions of L (H,K) and H⊗K are both equal to dimH · dimK, so that they

are isomorphic as Hilbert spaces. There is a special choice of isomorphism given by the
so-called Quantum Steering:

Proposition 2.16 (Quantum Steering). Let H and K be �nite dimensional Hilbert
spaces, and let Ω ∈ H ⊗ H be a maximally entangled vector for H. Then, the map-
ping

QSH,K :

{
L (H,K) −→ K⊗H

A 7−→
√
dimH (A⊗ idH) (Ω)

}
is an isomorphism of Hilbert spaces, where L (H,K) is equipped with the Hilbert Schmidt
scalar product.

Proof. Clearly, QSH,K is linear. Let (ej)
n
j=1 denote the ONB of H such that Ω =

n−1/2
∑n

j=1 ej ⊗ ej . Then we calculate for A ∈ L (H,K):

∥∥QSH,K(A)
∥∥2 = ∥∥(A⊗ idH) (

√
nΩ)

∥∥2 = n∑
j,k=1

⟨(Aej)⊗ ej |(Aek)⊗ ek⟩

=
n∑

j,k=1

⟨Aej |Aek⟩ ⟨ej |ek⟩︸ ︷︷ ︸
=δjk

= tr(A†A) = ∥A∥22 ,

where ∥A∥2 =
√

tr(A†A) denotes the Hilbert-Schmidt norm of A. The calculation shows
that QSH,K is isometric, so by dimensional reasoning it is an isomorphism of Hilbert
spaces.

Because every maximally entangled state for H is a maximally entangled vector for
L (H), we can �lift� Proposition 2.16 from H to L (H) and get an isomorphism, called
Choi-Jamioªkowski isomorphism, which has also an important feature with regard to
complete positivity:

12Remember that L (H,K) carries the scalar product (A,B) = tr(A†B)
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Proposition 2.17 (Choi-Jamioªkowski). Let H and K be �nite dimensional Hilbert
spaces, and let Ω ∈ H ⊗ H be a maximally entangled vector for H. Then, the map-
ping

CJH,K :

{
L
(
L (H),L (K)

)
−→ L (K)⊗L (H) = L (K ⊗H)

T 7−→ (dimH)
(
T ⊗ idL (H)

)
(|Ω⟩⟨Ω|) =: T ♯

}

is an isomorphism of Hilbert spaces that additionally satis�es the equivalence

T is completely positive ⇐⇒ T ♯is positive.

In other words, CJH,K is order-preserving, if we equip L (L (H),L (K)) with the partial
order de�ned by complete positivity, i.e.

T ⪰ S :⇐⇒ Sand Tare hermicity-preserving, and T − Sis c.p.

Proof. By replacing H with L (H), K with L (K) and Ω with |Ω⟩⟨Ω|, we have CJH,K =
QSL (H),L (K); hence Proposition 2.16 implies that CJH,K is bijective and isometric.

It remains to show that T is completely positive, i� T ♯ is positive. The �⇒�-direction
is easy: if T is completely positive, then in particular T ⊗ idL (H) is positivity-preserving
by de�nition, and since |Ω⟩⟨Ω| is a positive element of L (H ⊗ H) as one-dimensional
projector, obviously T ♯ = (dimH)

(
T ⊗ idL (H)

)
(|Ω⟩⟨Ω|) ≥ 0.

�⇐�. Let n ∈ N. We assume that T ♯ is positive and we want to show that T ⊗ idMn is
positivity-preserving, so let B ∈ L (H⊗Cn), say (spectral theorem) B =

∑m
k=1 λk |uk⟩⟨uk|

with λk > 0, m = rankB, and (uk) ⊂ H⊗Cn an orthonormal system. Let ϕ : H⊗Cn −→
Cn ⊗H be the unitary map that interchanges the tensor factors, i.e. ϕ(a ⊗ b) = b ⊗ a.
By Proposition 2.16 we can write ϕ(uk) ∈ Cn ⊗H as

ϕ(uk) = (dimH)−1/2QSH,Cn(Ak) = (Ak ⊗ idH) (Ω)

for some (unique) Ak ∈ L (H,Cn). Hence

uk = ϕ(ϕ(uk)) = [ϕ ◦ (Ak ⊗ idH)] (Ω) = [(idH ⊗Ak) ◦ ϕ] (Ω) = [idH ⊗Ak] (Ω),

since ϕ(Ω) = Ω. Inserting this into B and using some decomposition

|Ω⟩⟨Ω| =
∑
i∈I

Xi ⊗ Yi
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with Xi, Yi ∈ L (H) and some �nite index I we get

[T ⊗ idMn ]B = [T ⊗ idMn ]

(
m∑
k=1

λk (idH ⊗Ak) |Ω⟩⟨Ω|
(
idH ⊗A†

k

))

=

m∑
k=1

λk
∑
i∈I

[T ⊗ idMn ]
(
(idH ⊗Ak) (Xi ⊗ Yi)

(
idH ⊗A†

k

))
=

m∑
k=1

λk
∑
i∈I

[T ⊗ idMn ]
(
Xi ⊗

(
AkYiA

†
k

))
=

m∑
k=1

λk
∑
i∈I

(
T (Xi)⊗

(
AkYiA

†
k

))
=

m∑
k=1

λk (idH ⊗Ak)
∑
i∈I

(T (Xi)⊗ Yi)
(
idH ⊗A†

k

)
=

m∑
k=1

λk (idH ⊗Ak) [T ⊗ idMn ] (|Ω⟩⟨Ω|)︸ ︷︷ ︸
≥0 by assumption

(idH ⊗Ak)†

︸ ︷︷ ︸
≥0 by Proposition 1.10(vi)

≥ 0.

Remark. If (ej) ⊂ H and (fj) ⊂ K are orthonormal bases, and eij := |ei⟩⟨ej | and
fij := |fi⟩⟨fj | the corresponding orthonormal bases of L (H) and L (K), then the Choi-
Jamioªkowski-isomorphism acts quite simple on the canonical basis elements:

(|fij⟩⟨ekl|)♯ =
∑
nm

(
|fij⟩⟨ekl| ⊗ idL (H)

)
(enm ⊗ enm)

=
∑
nm

δknδlm (fij ⊗ fnm) = (fij ⊗ ekl) .

2.4. Spectra of positive maps

Here we want to investigate the possible spectra of quantum channels T : L (H) −→
L (H). We assume, that the Hilbert space H is �nite-dimensional; therefore, the spec-
trum σ(T ) of T consists exactly of the eigenvalues of the linear map T . The next
proposition is [Wol, Proposition 6.1]:

Proposition 2.18. Let H be a �nite dimensional Hilbert space, and let T : L (H) −→
L (H) be a positive map. Then the spectrum of T is the same as the spectrum of T ∗. If,
in addition, T is unital, then the following holds:

i) The spectral radius of T is equal to one: r(T ) := maxλ∈σ(T ) |λ| = 1.

ii) The Jordan blocks for eigenvalues λ with |λ| = 1 are of size one.

50



Chapter 2. Quantum Information Theory

Proof. T is in particular Hermiticity preserving, so using lemma 1.12 yields

λ ∈ σ(T )⇐⇒ ∃V ̸= 0 : T (V ) = λV ⇐⇒ ∃V ̸= 0 : T (V )∗ = T (V ∗) = λV ∗ ⇐⇒ λ ∈ σ(T ),

hence σ(T ) = σ(T ). But from linear algebra, σ(T ∗) = σ(T ) (regardless of the actual
scalar product that is used to de�ne the adjoint map T ∗), so the �rst conclusion follows.
Before we prove i) and ii), we note that the set C of unital positive maps T : L (H) −→

L (H) is closed under multiplication. By lemma 1.13, it is also bounded.
Now, let T ∈ C be a unital positive map. Choose a basis B of L (H), such that T

has Jordan normal form J with respect to B. Then, the representation matrix of Tn

w.r.t. B is Jn. If an eigenvalue λ of T had absolute value greater than 1, the the set
{Jn | n ∈ N} ⊂ S would be unbounded, a contradiction. This shows �≤� in (i); equality
holds because idH is an eigenvector to the eigenvalue 1.
Assume, towards a contradiction, that there is a non-trivial Jordan block K = (kij)

for an eigenvalue λ with |λ| = 1, i.e. k11 = λ and k12 = 1. In Jn, this block becomes

Kn =:
(
k
(n)
ij

)
and with xn := k

(n)
12 it follows the recursion formula

xn+1 = (K ·Kn)12 =
∑
j

k1jk
(n)
j2 = k11k

(n)
12 + k12k

(n)
22 = λxn + 1λn,

hence xn = nλn, which again contradicts the boundedness of C.

The following proposition summarises the structure theory of completely positive maps
on �nite dimensional spaces.

Proposition 2.19. Let H and K be �nite dimensional Hilbert spaces, and let T :
L (H) −→ L (K) be a linear map. Then the following statements are equivalent:

i) T is completely positive.

ii) (Choi-Jamioªkowski) The Choi matrix

T ♯ =
(
T ⊗ idL (H)

)
(|Ω⟩⟨Ω|) ∈ L (K ⊗H)

is positive for one (and then all) maximally entangled states Ω ∈ H.

iii) (Kraus form) There exist linear maps Kj : K −→ H, j ∈ {1, . . . , r}, such
that T is of the form

T (X) =

r∑
j=1

K†
jXKj ∀X ∈ L (H).

The Kj are called Kraus operators. They can be chosen orthogonal w.r.t. the
Hilbert-Schmidt inner product. The minimal r in the above representation is
called the Kraus rank of T .

iv) (Stinespring form) There exist e ∈ N and a linear isometry V : K −→ H⊗Ce
such that T is of the form

T (X) = V † (X ⊗ idCe)V ∀X ∈ L (H).

51



Chapter 2. Quantum Information Theory

2.5. Compression of the identity channel is impossible

Proposition 2.20. Let H be a �nite-dimensional Hilbert space, and let positive maps
Tj : L (H) −→ L (H) (j ∈ {1, . . . , n}) be given such that

∑n
j=1 Tj = idL (H). Then every

Tj is a multiple of the identity channel.

Proof. We may assume that dimH ≥ 3. Indeed, in the cases dimH ∈ {0, 1} there is
very little to show, and for dimH = 2 we can consider H̃ := H ⊗ C2 (hence L (H̃) ∼=
L (H)⊗M2) and T̃j := Tj ⊗ idM2 .
The key observation is that for two orthogonal vectors ξ, η ∈ H we have

0 = |⟨ξ|η⟩|2 = ⟨η|ξ⟩ ⟨ξ|η⟩ =
⟨
η
∣∣idL (H) (|ξ⟩⟨ξ|)

∣∣η⟩
=

⟨
η

∣∣∣∣∣∣
 n∑
j=1

Tj (|ξ⟩⟨ξ|)

∣∣∣∣∣∣η
⟩

=
n∑
j=1

⟨η|Tj (|ξ⟩⟨ξ|)|η⟩ ,

where each summand in the last expression is non-negative by positivity of the Tj . Since
they sum up to 0, the summands vanish individually, so that we can note a partial result:

∀j ∈ {1, . . . , n} ∀ξ, η ∈ H : ⟨ξ|η⟩ = 0 =⇒ ⟨η|Tj (|ξ⟩⟨ξ|)|η⟩ = 0.

For the remainder of the proof let us �x an index j ∈ {1, . . . , n}. Since Tj (|ξ⟩⟨ξ|) is

positive we get {ξ}⊥ ⊆ ker (Tj (|ξ⟩⟨ξ|)) = (ran (Tj (|ξ⟩⟨ξ|)))⊥, hence by taking orthogonal
complements ran (Tj (|ξ⟩⟨ξ|)) ⊆ C · ξ, hence the spectral theorem and positivity of Tj
imply Tj (|ξ⟩⟨ξ|) = f(ξ) · |ξ⟩⟨ξ| for some function f : H\ {0} −→ [0, +∞). For non-zero ξ,
taking traces gives

f(ξ) =
tr [Tj (|ξ⟩⟨ξ|)]
∥ξ∥2

, in particular f(zξ) = f(ξ) for z ∈ C \ {0}. (2.5.1)

Now we show that f is actually constant. Take two arbitrary non-zero normalised
vectors ξ, η ∈ H and note that the map p := |ξ⟩⟨ξ| + |η⟩⟨η| can equally be written as

p = 1
2

[
|ξ + η⟩⟨ξ + η|+ |ξ − η⟩⟨ξ − η|

]
. When we apply Tj to both of these �versions� of p

and use (2.5.1), we get

f(ξ) |ξ⟩⟨ξ|+ f(η) |η⟩⟨η| = 1

2

[
f(ξ + η) |ξ + η⟩⟨ξ + η|+ f(ξ − η) |ξ − η⟩⟨ξ − η|

]
.

Sandwiching the equation with ⟨ξ|·|ξ⟩ and using ∥ξ∥ = 1 then yields

f(ξ) + f(η) |⟨ξ|η⟩|2

=
1

2

[
f(ξ + η) (1 + ⟨ξ|η⟩) (1 + ⟨η|ξ⟩) + f(ξ − η) (1− ⟨ξ|η⟩) (1− ⟨η|ξ⟩)

]
which holds for all normalised elements ξ, η ∈ H. Since the right hand side is invariant
under the exchange ξ ↔ η, so must be the left hand side, which means that

f(ξ) + f(η) |⟨ξ|η⟩|2 = f(ξ) |⟨ξ|η⟩|2 + f(η),
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or, rearranging the terms,(
1− |⟨ξ|η⟩|2

)
f(ξ) =

(
1− |⟨ξ|η⟩|2

)
f(η)

holds for all normalised ξ, η ∈ H. If η is a multiple of ξ, then we know f(ξ) = f(η) from

(2.5.1); otherwise we have |⟨ξ|η⟩|2 ̸= 1, so we can divide by
(
1− |⟨ξ|η⟩|2

)
and obtain

f(ξ) = f(η) as well. Thus f is constant, say f ≡ c ≥ 0. By decomposing a general
operator a ∈ L (H) into a linear combination of rank-1-projections13 a =

∑
k zk |ξk⟩⟨ξk|

with zk ∈ C we �nally see that

T (a) =
∑
k

zkc |ξk⟩⟨ξk| = ca, i.e. T = c · idL (H).

An important consequence of this seemingly technical result is the fact, that the iden-
tity channel on a quantum system cannot be compressed, even when using an arbitrarily
large classical side channel.

Corollary 2.21. Consider a quantum system represented by Md, d ∈ N, and a mixed
quantum-classical system Me ⊗ Df (e, f ∈ N). Moreover, assume there exist positive
maps E :Md −→Me ⊗Df and D :Me ⊗Df −→Md such that D ◦ E = idMd

. Then
e ≥ d.

Proof. First, for the case d = 1, the result is trivial, because e = 0 would implyMe⊗Df =
{0} ⊗ Df = {0}, hence E = 0, in contradiction to D ◦ E = idMd

. So assume d ≥ 2.
For j ∈ {1, . . . , f}, let Πj : Cf −→ Cf denote the canonical projection onto the j-th

component � i.e. Πj
(
diag(z1, . . . , zf )

)
= diag(0, · · · , 0, zj , 0, . . . , 0)) � and de�ne

Tj := D ◦ (idMe ⊗Πj) ◦ E.

As composition of positive maps, the Tj are positive, and

f∑
j=1

Tj = D ◦

idMe ⊗

 f∑
j=1

Πj

 ◦ E = D ◦
(
idMe ⊗ idCf

)
◦ E = D ◦ E = idMd

.

By Proposition 2.20, there are numbers cj ≥ 0 such that Tj = cj · idMd
for all j, and

there is at least one index j0 with cj0 > 0. Consequently,

d2 = rankTj0 = rank (D ◦ (idMe ⊗Πj0) ◦ E) ≤ rank (idMe ⊗Πj0) = e2.

13This is indeed possible: First decompose a general a ∈ L (H) into hermitian and anti-hermitian part,
and then invoke the spectral theorem for both parts to get the desired representation.
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Corollary 2.22. Let d, e, f ∈ N. Consider a system A = Md × B consisting of a
d-dimensional quantum system Md and another von Neumann algebra B as factors.
Assume there are positive maps E : A −→Me⊗Df and D :Me⊗Df −→ A satisfying
D ◦ E = idA . Then e ≥ d.

Proof. Let π : A −→Md be the projection onto the �rst factor, and ι := π∗ :Md −→ A
the corresponding embedding. We de�ne positive maps Ẽ := E ◦ ι and D̃ := π ◦D, and
see that

D̃ ◦ Ẽ = π ◦D ◦ E︸ ︷︷ ︸
=idA

◦ι = π ◦ ι = idMd
.

Thus, e ≥ d by Corollary 2.21.
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Fixed points of Schwarz maps

In this chapter, we want to classify those subspaces F ⊆ L (H) that arise as �xed point
spaces of quantum channels � or, more general, Schwarz maps � on �nite dimensional
von Neumann algebras.

Notation 3.1. For a map f , we denote the set of �xed points of f by

fix f := {x ∈ X | f(x) = x} .

3.1. Reduction of the problem

When we are interested in the �xed points of a given positive map, the Cesaro mean of the
map turns out to be a useful tool, because it results in an idempotent map while retaining
the �xed point space. The following proposition gives a summary of the properties of
Cesaro means.

Proposition 3.2. Let A be a von Neumann algebra on a �nite dimensional Hilbert space
H and T : A −→ A a positive unital map. Then the Cesaro-mean

T∞ := lim
N→∞

1

N

N∑
n=1

Tn,

where Tn means the n-fold concatenation of T , i.e. Tn =

n times︷ ︸︸ ︷
T ◦ · · · ◦ T , is well-de�ned (i.e.

the limit exists), unital, and idempotent; its spectrum is contained in {0, 1}, we have
TT∞ = T∞T = T∞, and fixT∞ = fixT. Moreover, T∞ is m-positive (m ∈ N ∪ {3/2}),
if T is; and the operations of taking adjoints taking the Cesaro mean commute, i.e.
(T∞)∗ = (T ∗)∞ .

Proof. Since A is �nite-dimensional, for assuring the existence of the limit it su�ces to
prove pointwise convergence on a basis of A. We consider the Jordan normal form, i.e.
there take a basis of A consisting of (potentially generalised) eigenvectors of T .
First, let A ∈ A be an eigenvector of T . If the corresponding eigenvector is 1 (viz. A

is a �xed point of T ), we obviously have TN (A) = A for all N , hence T∞(A) = A. If
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λ ̸= 1, then

∥TN (A)∥ =
1

N

∥∥∥∥∥
N∑
n=1

Tn(A)

∥∥∥∥∥ =
1

N

∥∥∥∥∥
N∑
n=1

λnA

∥∥∥∥∥ =
∥A∥
N

∣∣∣∣λN+1 − λ
1− λ

∣∣∣∣
≤ ∥A∥

N
· |λ|

N+1 + |λ|
|1− λ|

≤ ∥A∥
N
· 2

|1− λ|
N→∞−→ 0,

where in the last inequality we used |λ| ≤ 1 by Prop. 2.18i). Thus T∞(A) = 0. We
still have to check what happens to generalised eigenvectors, so let A0, . . . , Aν be a
Jordan chain of generalised eigenvectors, i.e. T (A0) = λA0 and T (Ak) = λAk + Ak−1

for k ∈ {1, . . . , ν}. Using induction on n, it is straightforward to show that Tn(Ak) =∑k
j=0

(
n
k−j
)
λn+j−kAj , so we can estimate

∥TN (Ak)∥ =
1

N

∥∥∥∥∥∥
N∑
n=1

k∑
j=0

(
n

k − j

)
λn+j−kAj

∥∥∥∥∥∥ ≤ 1

N

N∑
n=1

k∑
j=0

(
n

k − j

)
|λ|n+j−k ∥Aj∥

=
1

N

N∑
n=1

|λ|n
k∑
j=0

n!

(n− k + j)!︸ ︷︷ ︸
≤nk−j≤nk

· 1

(k − j)!
|λ|j−k ∥Aj∥

≤ 1

N

(
N∑
n=1

|λ|n nk
) k∑

j=0

|λ|j−k

(k − j)!
∥Aj∥

 .

Note that by By Prop. 2.18ii) we have |λ| < 1 for generalised eigenvectors, so by the Root

test, the sums
∑N

n=1 |λ|
n nk converge for N →∞, as n

√
|λ|n nk = |λ| n

√
n
k N→∞−→ |λ| < 1.

Thus also T∞(Ak) = limN→∞ TN (Ak) = 0. Now, the assertions TT∞ = T∞T = T∞

follow by plugging in the basis elements:

� For T (A) = A (i.e. λ = 1), we have T∞(A) = A = T (A), hence T (T∞(A)) =
T∞(T (A)) = T∞(A) = A.

� For eigenvectors A that correspond to eigenvalues λ ̸= 1 we have T∞(A) = 0, hence
T (T∞(A)) = T (0) = 0, and T∞(T (A)) = λT∞(A) = 0.

� For generalised eigenvectors Ak as above we have T
∞(Ak) = 0, hence T (T∞(Ak)) =

0, and T∞(T (Ak)) = T∞(λAk +Ak−1) = 0 + 0 = 0.

The claim about positivity follows, as both positivity and the Schwarz property are stable
under concatenations, convex combinations, and limits (cf. Note 1.50).
The equation (T∞)∗ = (T ∗)∞ is also evident, since (Tn)∗ = (T ∗)n, and the mapping

T 7→ T ∗ is real-linear, hence continuous.

Remark. The mapping T 7→ T∞ can be regarded as a projection onto the set of idempo-
tent positive unital maps.
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As a second step in simplifying the matter, we can restrict the domain of idempotent
unital positive maps to the ∗-algebra generated by its �xed points.

Proposition 3.3. Let A be a von Neumann algebra on a �nite dimensional Hilbert space
H and let T : A −→ A be an idempotent unital positive map. Let F denote the ∗-algebra
generated by fixT . Then F is a von Neumann algebra, and T̃ : F −→ F, de�ned to be the
restriction of T to F, is well-de�ned (i.e. T (F ) lies in F for all F ∈ F), and it holds that
fix T̃ = fixT = ranT .

Proof. By unitality, idH is a �xed point of T , so F contains idH and thus F is a von
Neumann algebra (cf. Prop. 1.7). Since for idempotent linear maps it holds that ranT =
fixT , we have that T (A) ∈ fixT ⊆ F for every A ∈ A.

Remark 3.4. Since T̃ has the same �xed point set as T , when constructing a channel that
shall have a given set of operators as �xed points, it su�ces to consider only channels
that are de�ned on the ∗-algebra F generated by the given operators. If one insists then
on a map L (H) −→ L (H), one can extend it by zero on the Hilbert-Schmidt-orthogonal
complement of F in L (H).
It seems natural to ask, how much �information� on T is lost when restricting to

F := ∗-Alg(fixT ). Although in general, T cannot be reconstructed from TF (cf. example
3.12), but if T is in addition a Schwarz map and F is unitarily equivalent to a direct sum
of full matrix algebras, we will show � once we have proven the structure theorem 3.8 �
that T must have been identically zero on the Hilbert-Schmidt-orthogonal complement
of F.

3.2. The special case ∗-Alg(F) = L (H)
Armed with the results from section 1.8 we can now prove a key result, that can also be
found (for completely positive maps, but for possibly in�nite-dimensional Hilbert spaces)
in [Arv2, p. 18]:

Proposition 3.5. Let H be a �nite-dimensional Hilbert space, and let T : L (H) −→
L (H) be a unital Schwarz map. If fixT generates L (H) as a ∗-Algebra, then already
T = idL (H).

Proof. By proposition 3.2, we can safely assume that T is idempotent. Indeed, if it is
not, we consider the Cesaro mean T∞, which satis�es fixT∞ = fixT , and use the obvious
equivalence T = idL (H) ⇐⇒ fixT = L (H).
Set F := fixT and let P be the support projection of T (cf. proposition 1.55). By

proposition 1.56a), P ∈ F ′ = (∗-Alg(F))′ = L (H)′ = C·idH; and since P is a projection,
either P = 0 or P = idH. But P = 0 would imply T (X) = T (PX) = 0 for all X ∈ L (H),
which would mean F = {0}, a contradiction (unless H = {0}, in which case the assertion
is trivial)! Thus we conclude that P = idH, and part (b) of proposition 1.56 yields the
desired assertion.
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Proposition 3.5 implies, that for given set of �xed points, lossless compression of quan-
tum information is impossible in the generic case (in a suitable sense):

Corollary 3.6. Set H = Cd and let F ⊆ L (H) =Md be a subset containing (at least)
the following elements:

� Id ∈ F , where Id ∈ Matd(C) is the d× d-unit matrix,

� There exists a normal matrix A ∈ F , that has d pairwise di�erent (possibly complex)
eigenvalues {λj}, say

A =
d∑
j=1

λj |ψj⟩⟨ψj | ,

for some orthonormal basis (ψj)
d
j=1 ⊂ Cd.

� There is another B ∈ F , which, with respect to the eigenbasis of A, has non-
vanishing matrix elements on the upper o�-diagonal, i.e.

⟨ψi|B|ψj⟩ ̸= 0 whenever j = i+ 1.

Then the only Schwarz map T :Md −→ Md, which satis�es F ⊆ fixT , is the identity
channel T = idMd

.

Proof. We consider the von Neumann algebra A := ∗-Alg(F) = F ′′ and show A =Md;
then the conclusion follows by proposition 3.5. To this aim we will use the ∗-algebra
structure of A, as well as functional calculus.
Firstly, for each j ∈ {1, . . . , d}, there exists a polynomial fj that satis�es fj(λi) = δij .

For example, one can take

fj(z) =

∏
i ̸=j

(z − λi)

 /

∏
i ̸=j

(λj − λi)

 ,

which is well de�ned, as the λj are pairwise di�erent. By functional calculus1 we get

A ∋ Pj := fj(A) = |ψj⟩⟨ψj | ;

and, by considering linear combinations, A contains all matrices that are diagonal w.r.t.
the ONB (ψj).
Secondly, for j = i+ 1 we get that

A ∋ PiBPj = |ψi⟩⟨ψi|B |ψj⟩⟨ψj | = ⟨ψi|B|ψj⟩︸ ︷︷ ︸
̸=0

|ψi⟩⟨ψj | ,

hence by linearity, Sij := |ψi⟩⟨ψj | ∈ A. For general j > i we can write Sij = Si,i+1 · · · · ·
Sj−1,j , hence Sij ∈ A; and for j < i we get Sij = S∗

ji ∈ A. Thus, A entails all matrix
units w.r.t. the ONB (ψj) , and we conclude A =Md.

1Note that functional calculus de�ned for polynomials of a matrix is enough here. Since Id ∈ F ⊂ A,
the algebra A is stable under this operation.
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The next corollary gives two criteria to check, if an operator system generates whole
L (H) as ∗-algebra.

Corollary 3.7. Let H be a �nite-dimensional Hilbert space and F ⊆ L (H) self-adjoint
with idH ∈ F . Then the following statements are equivalent:

1. ∗−Alg(F) = L (H).

2. F ′ = C · idH.

3. If p ∈ F ′ is a projection, then p = 0 or p = idH.

Proof. We have A := ∗−Alg(F) = F ′′ by �nite dimension of H (since the generated von
Neumann algebra equals the generated ∗-algebra) and Proposition 1.5(g). By part (e) of
the same Proposition, A ′ = F ′′′ = F ′, hence (1)⇔ (2).
(2)⇒ (3) is obvious, and ¬(2)⇒ ¬(3) follows by spectral calculus.

3.3. The general case

Now we want to weaken the condition in proposition 3.5, that T lives on a full L (H)-
algebra. One �nds the following classi�cation theorem, which constitutes our main result
in this chapter:

Theorem 3.8. Let A be a von Neumann algebra on a �nite dimensional Hilbert space
H, and let ψ : A −→ A be an idempotent unital Schwarz map. Suppose that fixψ
generates whole A as a ∗-algebra. Let P denote the support projection of ψ and set
I := (1− P )A ⊆ A and S := PA ⊆ A. Then the following holds:
Both I and S are two-sided ideals in A, we have A = S⊕ I in the sense of de�nition

1.34. There exists a uniquely determined unital Schwarz map Φ : S −→ I such that ψ
can be written as

ψ(S + I) = S +Φ(S) for S ∈ S, I ∈ I,

or, equivalently, ψ(A) = PA+Φ(PA) for all A ∈ A. Moreover:

i) fixψ can be given in terms of Φ as fixψ = {A+Φ(A) | A ∈ S}, and kerψ =
I; in particular dimfixψ = dimS = rankP , and the kernel of ψ is an ideal
in A.

ii) For m ∈ N, ψ is m-positive, i� Φ is. In particular, Φ is completely positive,
i� ψ is.

Remark 3.9. Informally, one can say: Fixed point spaces of m-positive Schwarz maps
in a von Neumann algebra are in one-to-one correspondence with graphs of m-positive
Schwarz maps between direct summands of the von Neumann algebra.
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Proof. Denoting F := fixψ, proposition 1.56a) implies

P ∈ F ′ = (∗-Alg(F))′ = A′,

hence both S and I are two-sided ideals in A, and A = S ⊕ I. For I ∈ I we have
that PI = 0, hence by the properties of support projections ψ(I) = ψ(PI) = 0; thus
I ⊆ kerψ.
We denote the projection from A onto S by

π := ProjS : A −→ S, A 7−→ PA,

Note that π is a surjective ∗-homomorphism. Since I ⊆ kerψ, we have ψ = ϕ ◦ π, where
ϕ := ψ↾S denotes the restriction of ψ to S. We de�ne χ : S −→ S by χ := π ◦ ϕ.
Then, by de�nition, the following diagram is commutative:

A

π
##

ψ

@@S

ϕ
""

χ

@@A

π
##
S

Note that χ ◦ π = π ◦ ψ. The relevant properties of ψ are also shared by χ:

� Schwarz inequality: π is positive; hence for S ∈ S we have S = π(S) and

χ(S)∗χ(S) = χ(π(S))∗ χ(π(S)) = π(ψ(S))∗ π(ψ(S))

= π(ψ(S)∗ψ(S)) ≤ π(ψ(S∗S)) = χ(π(S∗S︸︷︷︸
∈S

)) = χ(S∗S).

� Unitality: χ(1S) = χ ◦ π(1A) = π ◦ ψ(1A) = π(1A) = 1S.

� Idempotence: Since ψ = ϕ ◦π is idempotent, we have that ϕ ◦π ◦ϕ ◦π = ϕ ◦π. By
surjectivity of π it follows that ϕ◦π ◦ϕ = ϕ, hence χ◦χ = π ◦ϕ◦π ◦ϕ = π ◦ϕ = χ.

Next, we claim fixχ = π(fixψ). Indeed, for S ∈ fixχ we can de�ne F := ψ(S) ∈ fixψ
and get S = χ(S) = χ ◦ π(S) = π ◦ ψ(S) = π(F ), hence S ∈ π (fixψ). Conversely, for
F ∈ fixψ we have χ(π(F )) = χ ◦ π(F ) = π ◦ ψ(F ) = π(F ), hence π(F ) ∈ fixχ.
It readily follows that ∗-Alg(fixχ) = ∗-Alg(π(F)) = π(∗-Alg(F)) = π(A) = S.
Now we consider the support projection of χ, denoted by E ∈ S. Since P = 1S, it

obviously holds that E ≤ P , so H := P − E is a positive element of S, and from

ψ(H) = ψ ◦ ψ(H) = ϕ ◦ π ◦ ϕ︸ ︷︷ ︸
=χ

◦π(H) = ϕ ◦ χ(H)

= ϕ
(
χ(1S)− χ(E)

)
= ϕ(0) = 0

it follows with part (b) of proposition 1.55 that 0 = PHP = 1SH1S = H, hence
E = P = 1S. By proposition 1.56b), fixχ is a ∗-algebra. Putting together the above
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results gives fixχ = ∗-Alg(fixχ) = S, so that in fact we have χ = idS, i.e. π ◦ ψ =
π ◦ ϕ ◦ π = χ ◦ π = π, which means that

ProjS(ψ(S)) = S for all S ∈ S.

To adapt the notation to the statement in the theorem, we de�ne Φ : S −→ I by
Φ := ProjI ◦ϕ, which yields the desired representation ψ = (idS+Φ)◦ProjS . Φ is unital
since Φ(1S) = ProjI (ϕ(1S)) = ProjI(1A) = 1I. If we plug in the above form of ψ into
the Schwarz inequality for ψ, we get for S ∈ S that

(S +Φ(S))∗ (S +Φ(S)) ≤ S∗S +Φ(S∗S)

=⇒S∗Φ(S)︸ ︷︷ ︸
=0

+Φ(S)∗S︸ ︷︷ ︸
=0

+Φ(S)∗Φ(S) ≤ Φ(S∗S),

where the �rst two terms of the second line vanish because they lie in S∩I = {0}. Thus
Φ is a Schwarz map as well. Claim i) about the �xed points of ψ follows from (S ∈ S,
I ∈ I)

S + I ∈ fixψ ⇐⇒ S + I = ψ(S + I) = S +Φ(S) ⇐⇒ I = Φ(S).

To prove (ii), note that A = S ⊕ I implies A ⊗Mm = (S ⊗Mm) ⊕ (I ⊗Mm); and
by Note 1.50, ψ is m-positive i� both of (PrS⊗idMm) ◦ (ψ ⊗ idMm) = PrS⊗idMm and
(PrI⊗idMm) ◦ (ψ ⊗ idMm) = Φ ⊗ idMm are positive. The former is always positive,
because it is a ∗-homomorphism; the positivity of the latter is precisely the condition for
Φ being m-positive.

The following corollary is a reformulation of theorem 3.8 regarding concrete block-
algebras. This will be of use when we will translate the characterisation from the Heisen-
berg picture (unital maps) into the Schrödinger picture (trace-preserving maps).

Corollary 3.10. Let Bj := Mdj ⊗ Iνj and A :=×n
j=1 Bj. Let pj : A −→ Bj denote

the j-th coordinate map and ιj : Bj −→ A the canonical embedding of the j-th block into
A. We equip L (H) with the Hilbert-Schmidt scalar product, so that the adjoint of pj is
p∗j = ιj (cf. proposition 1.33).
Let ψ : A −→ A be an idempotent unital Schwarz map with �xed points F := fixψ,

and suppose that A is generated by F as a ∗-algebra. Then the following holds true:
There is a unique decomposition of the set {1, . . . , n} of �block indices� into two disjoint

subsets S and I, and there exist unital Schwarz maps φs,i : Bs −→ Bi (s ∈ S, i ∈ I) with
the following properties:

1. The image under ψ of an element (Bj)
n
j=1 does not depend on the I-blocks, i.e.

ψ ◦ ιi = 0 for i ∈ I.

2. The S-blocks are preserved under ψ, i.e. ps◦ψ◦ιs = idBj for s ∈ S, and ps1◦ψ◦ιs2 =
0 for s1, s2 ∈ S with s1 ̸= s2.

3. ψ maps the S-blocks via the φs,i into the I-blocks, i.e. pi ◦ ψ ◦ ιs = φs,i.
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In other words: Up to permutation of the blocks in such a way that the S-blocks come
�rst, the action of ψ is given by

ψ



S1
. . .

Sk
Ik

. . .

Il


,

=



S1
. . .

Sk
Φ1(S1, · · · , Sk)

. . .

Φl(S1, · · · , Sk)


,

where Sj ∈ Bj (j ∈ S = {1, . . . , k}) and Ij ∈ Bj+k (j ∈ {1, . . . , l}).
Moreover, if ψ is m-positive (m ∈ N), then so are all the φs,i.

Now we are in the position to verify, that we loose no information by restricting the
channel to the ∗-algebra generated by the �xed points, as long as the algebra generated
by the �xed points has no �multiple� blocks:

Proposition 3.11. Let H be a �nite dimensional Hilbert space and B = L (H). Let
Ψ : B −→ B be an idempotent unital Schwarz map, denote by A ⊆ B the ∗-algebra
generated by fixΨ and let ψ : A −→ A the restriction of Ψ to A (cf. proposition 3.3).
Assume that A is unitarily equivalent to a product of matrix algebras, A ∼=×n

j=1Mdj

(i.e. νj = 1 for all j in corollary 1.48). Then the Hilbert-Schmidt-orthogonal complement
C of A in B lies in the kernel of Ψ.

Proof. Let P , S, I and Φ be as in theorem 3.8 and let C denote the Hilbert-Schmidt-
orthogonal complement of A inB. Without loss of generality we may assume that A itself
is block-diagonal, i.e. H = Cd, B = Md and A =×n

j=1Mdj . Decomposing B = Md

into block matrices of sizes di×dj , the diagonal blocks form A, whereas the non-diagonal
blocks belong to C.
Since we have a orthogonal direct sum of vector spaces B = A⊕C = S⊕ I⊕C and Ψ

maps into A = S⊕ I, there are two linear maps α : C −→ S and β : C −→ I such that
Ψ(C) = α(C) + β(C) for all C ∈ C. As Ψ is hermiticity-preserving, so are α and β (note
that C is a hermitian subspace). By the formula from theorem 3.8 and idempotence of Ψ
we get α(C)+β(C) = ψ(α(C)+β(C)) = α(C)+Φ◦α(C) for all C ∈ C; hence β = Φ◦α.
Thus we have to show that α = 0.
Consider an matrix block lying in C, i.e. an index pair i, j ∈ {1, . . . , n} with i ̸= j, and

let X ∈ B such that it has non-zero entries only in the (i, j)-block. Then the Schwarz
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inequality for Ψ reads as Ψ(X)∗Ψ(X) ≤ Ψ(X∗X). Note that X∗X is an element of either
S or I (depending on the value of j), so either Ψ(X∗X) = X∗X+Φ(X∗X) or Ψ(X∗X) =
0, so in either case Ψ(X∗X) ≤ X∗X + Φ(X∗X). We consider the S-component of
the Schwarz inequality: We have Ψ(X)∗Ψ(X) = α(X)∗α(X) + β(X)∗β(X), whose S-
component is α(X)∗α(X), thus in either case case we get 0 ≤ α(X)∗α(X) ≤ X∗X. Since
X∗X lives in the (j, j)-block, so must α(X)∗α(X), and since this block constitutes an
ideal in A, also α(X) and α(X)∗ can be non-zero only in the (j, j)-block (cf. corollary
1.19).
However, X∗ lives in the (j, i)-block, so by the previous argument, α(X∗) lives in

the (i, i)-block. But by Hermiticity α(X∗) = α(X)∗ is zero outside the (j, j)-block and
outside the (i, i)-block, hence is zero.

Note that the condition νj = 1 is necessary, as the following example shows:

Example 3.12. Let H = C2 and B =M2. Fix λ ∈ [0, 1] and de�ne

Ψ :M2 −→M2,

(
a b
c d

)
7−→

(
λa+ (1− λ)d 0

0 λa+ (1− λ)d

)
.

Ψ is obviously unital, idempotent and positive. Its range and �x point set is A := ranΨ =
fixΨ = C · I2 = M1 ⊗ (CI2) , which is an abelian C∗-algebra, so Ψ is even completely
positive (since A is commutative, c.f. Corollary 2.9) and in particular a Schwarz map.
But the matrix

X :=

(
1 0
0 −1

)
∈ B,

which is orthogonal to A, is mapped to Ψ(X) = (λ− (1− λ)) I2 = (2λ − 1)I2, which is
non-zero, unless λ = 1/2.

Question 3.13. In the general case νj ≥ 1, how much �freedom� is there in the choice
of the images Ψ(C), C ∈ C?

3.4. Uniqueness of a channel under a given �xed point set

De�nition 3.14. Let A be a von Neumann algebra on a �nite dimensional Hilbert space,
and let ψ : A −→ A be a unital idempotent Schwarz map. We call a triple (S, I,Φ)
compression triple for ψ, if S and I are ideals in A with A = S ⊕ I, Φ : S −→ I is a
unital Schwarz map, and the action of ψ is given by

ψ(S + I) = S +Φ(S) for all S ∈ S, I ∈ I.

With this notion, theorem 3.8 states that a unital idempotent map ψ admits a com-
pression triple, if the �xed points of ψ generate the whole domain of de�nition of ψ as a
∗-algebra. We now investigate, under which additional constraints the compression triple
is already determined by the �xed point set.
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Proposition 3.15. Let A be a von Neumann algebra on a �nite dimensional Hilbert
space, and let F ⊆ A be a self-adjoint subspace. Assume that A is generated by F as
∗-algebra. Then there is at most one compression triple (S, I,Φ) in A, such that F is
the set of �xed points of a unital Schwarz map ψ : A −→ A.
In particular, the �xed point triple for ψ constructed in theorem 3.8 is unique, and for

given F , there is at most one unital idempotent Schwarz map ψ : A −→ A whose set of
�xed points is F .
Proof. Suppose there are two �xed point triples, i.e. A = S⊕I = S̃⊕ Ĩ, and there exist
unital Schwarz maps Φ : S −→ I and Φ̃ : S̃ −→ Ĩ, such that

F = {S +Φ(S) | S ∈ S} =
{
S̃ + Φ̃(S̃)

∣∣∣ S̃ ∈ S̃
}
.

In the remainder of the proof, we will write elements of A as column vectors with respect
to the direct sum decomposition

A = (S ∩ S̃)⊕ (S ∩ Ĩ)⊕ (I ∩ S̃)⊕ (I ∩ Ĩ).

The following maps can then be represented by 4 × 4 matrices having positive maps as
entries:

Pr
S

=


1

1
0

0

 , Pr
S̃

=


1

0
1

0

 ,

Φ ◦ Pr
S

=


0 0 0 0
0 0 0 0
ϕ11 ϕ12 0 0
ϕ21 ϕ22 0 0

 , Φ̃ ◦ Pr
S̃

=


0 0 0 0

ϕ̃11 0 ϕ̃12 0
0 0 0 0

ϕ̃21 0 ϕ̃22 0

 .

The key observation is now, that the set F is the range of and invariant under both of
the maps Φ ◦ PrS+PrS and Φ̃ ◦ PrS̃+PrS̃, so that we have(

Φ ◦ Pr
S

+Pr
S

)
=

(
Φ̃ ◦ Pr

S̃
+Pr

S̃

)(
Φ ◦ Pr

S
+Pr

S

)
or, equivalently (the second equation follows analogously)

0 =

(
Φ̃ ◦ Pr

S̃
+Pr

S̃
−1
)(

Φ ◦ Pr
S

+Pr
S

)
=

(
Φ ◦ Pr

S
+Pr

S
−1
)(

Φ̃ ◦ Pr
S̃

+Pr
S̃

)
.

If we calculate explicitly, we get

0 =


0 0 0 0

ϕ̃11 −1 ϕ̃12 0
0 0 0 0

ϕ̃21 0 ϕ̃22 −1




1 0 0 0
0 1 0 0
ϕ11 ϕ12 0 0
ϕ21 ϕ22 0 0



=


0 0 0 0

ϕ̃11 + ϕ̃12ϕ11 ϕ̃12ϕ12 − 1 0 0
0 0 0 0

ϕ̃21 − ϕ21 + ϕ̃22ϕ11 ϕ̃22ϕ12 − ϕ22 0 0
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and the same equation with ϕ and ϕ̃ interchanged. The (2, 2)-component of this matrix
equation then reads as ϕ̃12 = (ϕ12)

−1. Moreover, by considering the (2, 1)-components,
the sum ϕ̃11 + ϕ̃12ϕ11 of two positive maps is zero, hence both summands must vanish.
Thus we have ϕ11 = 0 and ϕ̃11 = 0.
As Φ is unital and schwarz, so is ϕ12, and the same holds for ϕ̃12 = (ϕ12)

−1. By
corollary 2.14, ϕ12 a ∗-isomorphism.
Now, the ��xpoint set� F can be written as

F =




S1
S2

ϕ12(S2)
ϕ21(S1) + ϕ22(S2)


∣∣∣∣∣∣∣∣ S1 ∈ S ∩ S̃, S2 ∈ S ∩ Ĩ

 ;

and knowing that ϕ12 is a ∗-isomorphism, we consider the second and third components,
which constitute the ideal X := (S ∩ Ĩ)⊕ (I ∩ S̃), and write

X = Pr
X
(A) = Pr

X
(∗−Alg(F)) = ∗-Alg

(
Pr
X
F
)

= ∗-Alg
{(

S2
ϕ12(S2)

) ∣∣∣∣ S2 ∈ S ∩ Ĩ

}
︸ ︷︷ ︸

This already is a ∗-algebra!

=

{(
S2

ϕ12(S2)

) ∣∣∣∣ S2 ∈ S ∩ Ĩ

}
.

Considering the dimensions we infer that I ∩ S̃ = {0}, and since ϕ12 is a linear isomor-
phism also S ∩ Ĩ = {0}. So we have S = S̃ and hence (S, I,Φ) = (S̃, Ĩ, Φ̃).

3.5. Translation into the Schrödinger Picture

Here we restate the results from chapter 3.3 for channels in the Schrödinger picture.
Recall the de�nitions and properties of adjoint channels from Chapter 2.2.

Proposition 3.16. Let A be a von Neumann algebra on a �nite dimensional Hilbert space
H, and let T : A −→ A be trace-preserving, n-positive and idempotent (n ∈ {2, 3, 4, . . . }∪
{∞}). Suppose that (kerT )⊥ (i.e., the Hilbert-Schmidt-orthogonal complement of kerT
in A) generates whole A as a ∗-algebra. Then there exist two ideals S and I in A and a
trace-preserving n-positive map Γ : I −→ S such that A = S⊕ I, and T can be written
as

T (S + I) = S + Γ(I) for S ∈ S, I ∈ I.

Moreover we have that fixT = ranT = S and kerT = {I − Γ(I) | I ∈ I} .

Proof. Consider the channel in the Heisenberg picture ψ := T ∗, which is unital (since T
is trace-preserving), idempotent, and n-positive (since T is); in particular ψ is a Schwarz
map, and from

fixψ = ranψ = (kerψ∗)⊥ = (kerT )⊥
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it follows that fixψ generates A as a ∗-algebra. By Theorem 3.8 there exist ideals S
and I of A, such that A = S ⊕ I, and a unital n-positive map Φ : S −→ I, such that
ψ(S + I) = S +Φ(S) for S ∈ S, I ∈ I.
Let us denote by ES : S −→ A (resp. EI : I −→ A) the natural embeddings. The

Hilbert-Schmidt-adjoints of ES and EI are the canonical projections PS = ProjS and
PI = ProjI, respectively. From

ψ = (ES + EI ◦ Φ) ◦ PS

we see by taking adjoints

T = ψ∗ = P ∗
S ◦ (E∗S +Φ∗ ◦ E∗I ) = ES ◦ (PS +Φ∗ ◦ PI) = ProjS +Φ∗ ◦ ProjI,

so the asserted formula in the proposition holds, if we de�ne Γ := Φ∗, which is trace-
preserving and n-positive by Proposition 2.8. Furthermore it holds that fixT = ranT =
(kerT ∗)⊥ = (kerψ)⊥ = I⊥ = S (where ·⊥ means taking the Hilbert-Schmidt-orthogonal
complement in A), as well as the following equivalence for I ∈ I, S ∈ S:

S + I ∈ kerT ⇐⇒ 0 = T (S + I) = S +Φ∗(I) ⇐⇒ S = −Φ∗(I).
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Chapter 4.

Compression of Quantum E�ects

This chapter is devoted to the task of �compressing� states of a given quantum system
as small as possible, under the restriction that the measurement statistics of a given set
F of e�ects shall not be altered. More precisely, if H is the Hilbert space representing
the system, we seek a intermediate �storage system� with C∗-algebra A := Md ⊗ Dk
(d, k ∈ N) consisting of a d-level quantum storage and a k-bit classical storage. Since
in real applications, quantum storage is considered by far more expensive than classical
storage, our aim shall be to make d as small as possible. The operation of encoding
and decoding the states shall be accomplished by two channels1 E∗ : A −→ L (H) (for
�encode�) and D∗ : A −→ L (H) (for �decode�). The conservation of the measurement
statistics then reads as E ◦D(f) = f for all f ∈ F , or, equivalently, F ⊆ fix(E ◦D).
In order to measure how many states the quantum system must have at least, we

will assign a �quantum dimension� to F , specifying how much �quantum dimensions� are
required to compress F without losses. We will distinguish, whether we allow for the
classical side channel Dk, and which �grade of positivity� m both the encoding and the
decoding channel shall have.2 Naturally, if one wants to implement quantum compression
physically, only completely positive channels are allowed, i.e. m =∞.
Throughout the whole chapter, let H be a �nite-dimensional Hilbert space.

4.1. Quantum Dimensions

De�nition 4.1. Let F ⊆ L (H), and m ∈ {1, 3/2, 2, 3, 4, . . . } ∪ {∞}. The quantum
dimension of F (of positivity m), denoted qdimm(F), is de�ned as the minimum of all
d ∈ N0, such that there exist k ∈ N and two m-positive unital maps E : L (H) −→
Md ⊗Dk (�Encode�) and D :Md ⊗Dk −→ L (H) (�Decode�) that satisfy D ◦E(f) = f
for all f ∈ F , i.e. F ⊆ fix(D ◦ E).
Not allowing for the classical side channel, we de�ne the proper quantum dimension of
F (of positivity m), denoted pqdimm(F), as the minimum of all d ∈ N0, such that there

1In this informal description, when we say we want to encode and decode the quantum states, we are
speaking of the channels E∗ and D∗ in the Schrödinger picture. In the later discussion, E and D
always refer to channels in the Heisenberg picture, i.e. they map e�ects to e�ects and the input and
output algebras are reversed.

2Recall the di�erent meanings for m-positive from Section 1.7: plainly positive (m = 1), Schwarz map
(m = 3/2), n-positive (m = n ∈ N) or completely positive (m = ∞).
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exist m-positive unital maps E : L (H) −→ Md and D : Md −→ L (H) that satisfy
E ◦D(f) = f for all f ∈ F .
In both cases, a pair (E,D) achieving the above conditions is called admissible for the

given F and m; if it achieves the above conditions for the minimal d, it is called optimal.

We want to note a few more or less obvious properties of the (proper) quantum di-
mension functions.

Proposition 4.2. The (proper) quantum dimension functions (p)qdimm : 2L (H) −→
{0, 1, . . . , dimH} satisfy the following properties:

i) In the de�nition of (proper) quantum dimension, one can restrict the set
of admissible pairs (E,D) of channels to ones, where D ◦ E is idempotent.
Moreover, instead of L (H), the domain of E and the codomain of D need
not be the whole L (H), but may only be a sub-∗-algebra A that contains
F ∪ {idH}.

ii) qdimm(∅) = pqdimm(∅) = 0, and (p)qdimm(F) ≤ dimH for all m and all
F .3

iii) Monotonicity in F : F1 ⊆ F2 =⇒ (p)qdimm(F1) ≤ (p)qdimm(F2).

iv) Monotonicity in m: m1 ≤ m2 =⇒ (p)qdimm1
(F) ≤ (p)qdimm2

(F).

v) We have qdimm(L (H)) = pqdimm(L (H)) = dimH.

vi) Invariance under ∗-isomorphisms: If K is another �nite-dimensional Hilbert
space, A ⊆ L (H) and B ⊆ L (K) are von Neumann algebras with F ∪
{idH} ⊆ A and idK ∈ B, and ϕ : A −→ B is a ∗-isomorphism, then
(q)dimm (ϕ(F)) = (q)dimm(F).

vii) pqdimm(F) = dimH for all m ≥ 3/2, whenever F generates whole L (H) as
a ∗-algebra.

viii) qdimm(F) = dimH for all m ≥ 3/2, whenever F generates whole L (H) as
a ∗-algebra.

Proof. (i) To see that D ◦ E can without loss of generality be made idempotent, de�ne
T as the Cesaro mean of the map D ◦ E, i.e. T := limN→∞N−1

∑N
n=1 (D ◦ E)n (cf.

Proposition 3.2), so that T = T ◦D◦E = D◦E ◦T = T ◦T ; and replace E by Ẽ := E ◦T
and D by D̃ := T ◦D. Then D̃ ◦ Ẽ = T ◦D ◦ E ◦ T = T is idempotent, as demanded,
and has the same �xed points as D ◦ E. For the second part, suppose that E is only
de�ned on a sub-∗-algebra A of L (H) containing F and idH. Obviously, the canonical
embedding ι : A ↪→ L (H) is completely positive as a ∗-homomorphism. Hence the
adjoint map ϕ := ι∗, given by the Hilbert-Schmidt-orthogonal projection from L (H)

3The notation �(p)qdim� means that the respective (in)equality applies for both qdim and pqdim.
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onto A, is completely positive, too, by Proposition 2.8. It is unital since idH ∈ A, and it
�xes F . The extension of E de�ned by Ẽ := E ◦ ϕ then does the job.
(ii), (iii), and (iv) should be clear from the de�nition.
(v) Although this property seems plausible, it is not obvious a priori. For dimH ≥ 2

, these are direct consequences of Proposition 2.20 and Corollary 2.21; for dimH = 1
it su�ces to note that d = 0 is not possible, since �intermediate� system Md ⊗ Dk =
M0 ⊗Dk = {0} is trivial, hence D ◦ E = 0.
(vi) Take an optimal pair (E,D) for F , where E can by (i) assumed to be only de�ned

on A. The pair (Ẽ, D̃) with Ẽ := E ◦ ϕ−1 and D̃ := ϕ ◦D then is admissible for ϕ(F).
This shows (q)dimm (ϕ(F)) ≤ (q)dimm(F). �≥ ” follows by changing the roles of A and
B and considering ϕ−1 instead of ϕ.
(vii) Let (E,D) be an admissible pair for F ⊆ L (H) andm ≥ 3/2. The map T := D◦E

is a unital Schwarz map having F as �xed points; by Proposition 3.5 it is already the
identity map on L (H). Hence E : L (H) −→ Md is injective, hence by dimensional
reasoning d ≥ dimH, which shows pqdimm(F) ≥ dimH. The other inequality �≤�
follows by (ii).
(viii) As in (vii), for any admissible pair (E,D), T := D ◦ E has to be the identity

map. Here we can decompose the intermediate space into ideals

Md ⊗Dk =
k⊕
j=1

Md ⊗ {|ej⟩⟨ej |}︸ ︷︷ ︸
=:Ij

,

which leads to a decomposition E =
∑n

j=1Ej with Ej(X) := E(X) · 1Ij for X ∈ L (H).
By Note 1.50 all Ej are positive (since E is) and add up to E. Hence, setting Tj := D◦Ej ,
we have a set of positive maps Tj adding up to T = idL (H). By Proposition 2.20, all Tj
are a multiple of the identity, hence at least one Tj is injective, hence (since Tj maps into
Ij , which is unitarily equivalent toMd) we can infer (dimH)2 ≤ dim Ij = dimMd = d2.
Thus qdimm(F) ≥ dimH, and �≤� again follows by (ii).

Next, we take one step towards �nding optimal compression channels, in that combine
(proper) quantum dimensions with the theory developed in Chapter 3.

Proposition 4.3. Let F ⊆ L (H) and m ∈ {3/2, 2, 3, 4, . . . }. De�ne A := ∗−Alg(F).
Then for d ∈ N, the following statements are equivalent:

i) There exist k ∈ N and two m-positive unital maps A
D−→ Md ⊗ Dk

E−→ A
with F ⊆ fix(E ◦D).

ii) qdimm(F) ≤ d.

iii) There exists a unital idempotent Schwarz map ψ : A −→ A with F ⊆ fixψ and
a compression triple (S, I,Φ) for ψ with m-positive Φ, and qdimm (S) ≤ d.

Regarding proper quantum dimensions, the following statements are equivalent:
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iv) There exist two m-positive unital maps A
D−→Md

E−→ A with F ⊆ fix(E◦D).

v) pqdimm(F) ≤ d.

vi) There exists a unital idempotent Schwarz map ψ : A −→ A with F ⊆ fixψ and
a compression triple (S, I,Φ) for ψ with m-positive Φ, and pqdimm (S) ≤ d.

Proof. Since there is only a marginal di�erence between proving �(i)⇔ (ii)⇔ (iii)� and
proving �(iv) ⇔ (v) ⇔ (vi)�, we will do both in one go. For the di�erent �compression
algebras�, we will write as B :=Md ⊗Dk for the �rst and B :=Md for the latter case.
�(i)⇔ (ii)� is just a reformulation of De�nition 4.1, making use of Proposition 4.2i).

�(ii) ⇒ (iii)�. By Proposition 4.2i) there exist two unital m-positive maps A
D−→

B
E−→ A, such that ψ := E ◦D is idempotent, and F ⊆ fixψ. From A = ∗−Alg(F) ⊆

∗−Alg(fixψ) ⊆ A it follows that fixψ generates A as ∗-algebra. We invoke Theorem 3.8,
which gives us a decomposition A = S⊕I into two-sided ideals, and an m-positive unital
map Φ : S −→ I, such that ψ(S + I) = S + Φ(S) for S + I ∈ S ⊕ I; in other words,

(S, I,Φ) is a compression triple for ψ. We de�ne an admissible pair
(
Ẽ, D̃

)
for S as

follows:

D̃ : S −→ B, S 7−→ D(S +Φ(S)),

Ẽ : B −→ S, B 7−→ 1S · E(B).

By construction, these maps are unital and m-positive. We easily see that Ẽ ◦ D̃ = idS,
since for S ∈ S we have

(Ẽ ◦ D̃)(S) = 1S · E(D(S +Φ(S)) = 1S · ψ(S +Φ(S)︸ ︷︷ ︸
∈fixψ

) = 1S · (S +Φ(S)︸ ︷︷ ︸
∈I

) = S.

Hence
(
Ẽ, D̃

)
is indeed admissible for S.

�(iii) ⇒ (ii)�. Let
(
Ẽ, D̃

)
be an admissible pair for S, i.e. D̃ : S −→ Md, Ẽ :

Md −→ S. Note that since S is already a ∗-algebra, we indeed can by Proposition
4.2i) assume that the domain of D̃ and the codomain of Ẽ is S, and we immediately get
Ẽ ◦ D̃ = idS. We de�ne

D : A −→ B, A 7−→ D̃(1S ·A),
E : B −→ A, B 7−→ Ẽ(M) + Φ(Ẽ(M)),

which are again unital m-positive maps, and check that (E, D) is admissible for F .
Indeed, for F ∈ F we have by properties of compression triples (De�nition 3.14) F ∈ fixψ,
hence F = 1SF +Φ(1SF ), and the calculation

(E ◦D)(F ) = Ẽ(D̃(1S · F )) + Φ(Ẽ(D̃(1S ·A))) = 1SF +Φ(1SF ) = F

shows F ⊆ fix(E ◦D), as desired.
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4.1.1. Quantum dimensions of sub-∗-algebras

In this section we calculate the quantum dimensions of sub-∗-algebras of L (H). Note
that by Corollary 1.46 they are ∗-isomorphic to direct products of full matrix algebras, so
our task is to determine the (proper) quantum dimensions of algebras of the form×jMdj .
In the case where classical side information is allowed, it will follow that the quantum
dimension of a set F is upper bounded the the size of the largest block contained in the ∗-
isomorphy class of ∗-Alg(F), using the estimate (p)qdimm(F) ≤ (p)qdimm (∗−Alg(F)).
Before we do that, we need a technical means to embed d-level quantum systems in
D-level quantum systems for D ≥ d:

Lemma 4.4. Let d,D ∈ N with d ≤ D. Then there exist unital, completely positive maps
ι :Md −→MD and π :MD −→Md, such that π ◦ ι = idMd

.

Proof. If d = D, then we can take ι = π = idMd
, so let us assume d < D. A �rst �guess�

for ι may be

ι1

(
(aij)

d
i,j=1

)
= (ãij)

D
i,j=1, where ãij =

{
aij for i, j ∈ {1, . . . , d},
0 otherwise.

Obviously, ι1 is completely positive, but not unital, as

ι1(Id) =
d∑
j=1

∣∣eDj ⟩⟨eDj ∣∣ ̸= D∑
j=1

∣∣eDj ⟩⟨eDj ∣∣ = ID,

where (eD1 , . . . , e
D
D) denotes the canonical basis of CD. However, we can �ll in the missing

part by adding to ι1 the map

ι2 : Md ∋ A 7−→
trA

d
· (ID − ι1(Id)) ∈Me,

which is completely positive, since A 7→ trA/d is completely positive and unital, and

(ID − ι1(Id)) =
D∑

j=d+1

∣∣eDj ⟩⟨eDj ∣∣ ≥ 0.

Thus ι := ι1 + ι2 does the job.
Finding a suitable π is easy, for we can take

π
(
(bij)

D
i,j=1

)
= (bij)

d
i,j=1 = V † · (bij)Di,j=1 · V

with the (D × d)-matrix V =
∑d

j=1

∣∣∣eDj ⟩⟨edj ∣∣∣. The map π is unital, completely positive

as it is given in Kraus form, and π ◦ ι = idMd
, as desired.

Proposition 4.5. Let A be a ∗-algebra in H, and let m ∈ N∪{3/2,∞}. If the ∗-isomorphy
class of A is

A ≃
n

×
j=1

Mdj , then qdimm(A) =
n

max
j=1

dj .
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Proof. Without loss of generality we may assume A =×n
j=1Mdj and arrange the order

of the dj such that e := d1 = maxnj=1 dj . For d ≤ e, d ∈ N, let ιd and πd denote the maps
from Lemma 4.4 and set B :=Me ⊗Dn. We identify B with×n

j=1Me via the unitary
equivalence implemented by

U : Ce ⊗ Cn −→
n

×
j=1

Ce, v ⊗ w 7−→ (v · ⟨ej |w⟩)nj=1 .

Then, we simply de�ne the maps

D : A −→ B, (Aj)
n
j=1 7−→

(
ιdj (Aj)

)n
j=1

,

E : B −→ A, (Bj)
n
j=1 7−→

(
πdj (Bj)

)n
j=1

.

Then both D and E are completely positive and unital by construction (cf. 1.33ii).
Hence qdimm(A) ≤ e.
In order to show qdimm(A) ≥ e, assume that there exist f, k ∈ N and two unital

m-positive maps D : A −→ Mf ⊗ Dk and E :Mf ⊗ Dk −→ A such that E ◦D = idA.
Then Corollary 2.22 (A = A, B =×n

j=2Mdj in the notation therein) immediately yields
f ≥ e.

In terms of compression of given points we can note the following result:

Corollary 4.6. Let F ⊂ L (H) be given with idH ∈ F , m ∈ {3/2, 2, 3, 4, . . . }∪{∞}, and
assume that ∗-alg(F) ≃×n

j=1Mdj . Then we have

n
min
j=1

dj ≤ qdimm(F) ≤
n

max
j=1

dj .

Proof. Set A := ∗-Alg(F). The upper bound follows from qdimm(F) ≤ qdimm(A) and
Proposition 4.5. For the lower bound, by Proposition 4.3 there exists an idempotent
Schwarz map ψ : A −→ A with F ⊆ fixψ and a compression triple (S, I,Φ) for ψ, where
qdimm(S) = qdimm(F). Since S is an ideal in A and S ̸= {0} (otherwise ψ would be
identically zero), S ≃×j∈JMdj , where J is an non-empty subset of {1, . . . , n}. Thus
qdimm(F) = qdimm(S) = maxj∈J dj ≥ minnj=1 dj .

4.1.2. Is there a di�erence whether we compress e�ects or �only� whole
observables?

With regard to physical application, the reader might wonder, if it makes a di�erence
whether we preserve observables (in the sense of self-adjoint operators) as required �xed
points, or the set of e�ects associated to them in the sense of section 2.1.3.
Consider a self-adjoint observable (projection valued measure)

O =
∑

λ∈σ(O)

λPλ ∈ L (H),
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which we want to measure (possibly among others), after we apply our compression-
decompression procedure. We denoted O as already decomposed into its spectral frac-
tions, so Pλ are the mutually orthogonal eigenprojections. We ask, if a channel that �xes
O automatically �xes all Pλ.
Recall that the physical interpretation is that for a density matrix ρ, the probability

of measuring λ is Pρ [O
.
= λ] = tr(ρPλ), so the expectation value of O is

Eρ(O) =
∑

λ∈σ(O)

λ · Pρ [O
.
= λ] =

∑
λ∈σ(O)

tr(ρλPλ) = tr

ρ ∑
λ∈σ(O)

λPλ

 = tr(ρO),

as one would expect. The our question amounts to whether we demand that, after
applying our compression-decompression-channel T , only the expectation values should
not change (i.e. Eρ(O) = Eρ(T (O)) for all ρ, thus O ∈ fixT ), or the exact statistics, i.e.
all measurement outcome probabilities Pρ [O

.
= λ] shall be equal. The latter translates

to the requirement {Pλ | λ ∈ σ(O)} ⊂ fixT . Clearly the latter implies the former, since
the �xed points form a linear subspace. On the other hand, the ∗-algebra generated
by them is the same, since every eigenprojections P of a self-adjoint operator O can be
represented by a polynomial of O.

4.2. Algorithmic construction of compression maps

Here we state an explicit algorithm for �nding optimal compression channels for given
�xed points � and thus in particular the compression dimension. For another optimised
version using semide�nite programming, see [BRW, Algorithm 1 on p. 23].

Algorithm 4.7 (Compression with classical side channel). Let the Hilbert space H = Cd,
a self-adjoint subspace F ⊂ L (H) = Md with idH ∈ F , and a �positivity parameter�
m ∈ {3/2, 2, 3, 4, . . . } be given. We want to determine qdimm(F) by constructively �nd
a compression triple4 (S, I,Φ) satisfying A := ∗−Alg(F) = S ⊕ I and F ⊆ F̃ :=
{S +Φ(S) | S ∈ S}, where the dimension of S shall be as small as possible and Φ is
m-positive5.
Step 1. Calculate6 A := ∗−Alg(F) and determine its standard form, i.e. �nd a unitary

matrix U ∈ U(d), such that the conjugated algebra A1 := UAU † decomposes into the direct
product of matrix algebras

A1 =
n

×
j=1

Mdj ⊗ Iνj

for suitable numbers d1, . . . , dn and ν1, . . . , νn. Set F1 := UFU †.

4Recall that this means that ψ := (idS + Φ) ◦ ProjS is an m-positive, unital and idempotent Schwarz
map with �xed point set fixψ = F̃ .

5Note that for m ≥ d this means that Φ is completely positive.
6To �nd out what ∗−Alg(F) is, it may help to remember that by the double commutant theorem it is
equal to F ′′.
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Step 2. Obviously, those blocks with νj > 1 can be easily compressed, namely by
�forgetting� the redundant blocks. More precisely, we set A2 :=×n

j=1Mdj and make
use of the natural ∗-isomorphism V : A1 −→ A2 acting by (A1 ⊗ Iν1 , . . . , An ⊗ Iνn) 7−→
(A1, . . . , An) for Aj ∈ Mdj . The new ��xed points� then have to be F2 := V (F1). Note

that A2 operates on a Hilbert space of dimension
∑n

j=1 dj, whereas A1 operated on Cd,
where d =

∑n
j=1 dj · νj.

Remark. We could have merged Step 1 and Step 2 into one Step consisting of �nding a
∗-isomorphism Ṽ : A −→ A2 such that A =×n

j=1Mdj , and setting F2 = Ṽ (F).
Step 3. For j ∈ {1, . . . , n}, let Bj denote the direct summand in A =

⊕n
j=1 Bj cor-

responding to the Mdj -block algebra7. In this crucial step we want to �nd a selection
of blocks that shall belong to S, with its dimension is as small as possible, so that the
existence of the desired compression triple can be achieved. In other words, we want to
minimise the expression D(I) := maxj∈I dj over the �variable� I ∈ 2{1,...,n} under the
following constraints:{

There is a compression triple (S, I,Φ) for A2 such that

S =
⊕

j∈I Bj, Φ is m-positive, and F2 ⊆ {S +Φ(S) | S ∈ S}
(⋆)

As a �rst step, by dimensional reasoning we can rule out subsets I where
∑

j∈I d
2
j <

dimF2. Then, we can sort the remaining candidates for I according to the number D(I)
and, beginning with one of the I which has the lowest D(I), check via the following
procedure, if I is satis�es the constraints.

1. Set S :=
⊕

j∈I Bj, I :=
⊕

j /∈I Bj and consider the operator system SF := ProjSF2 =
1SF2 ⊆ S. Check, whether the following equivalent conditions are satis�ed or not:

i) ∀S ∈ SF ∃! I ∈ I : S + I ∈ F2

ii) I ∩ F2 = {0}
iii) ProjS, restricted to F2, is injective.

iv) dimF2 = dimSF .

2. If one (and then all) of the above conditions is not satis�ed, then I does not ful�l (⋆),
so we proceed with the next choice of I. Otherwise, we de�ne a map Φ̃ : SF −→ I
in the following way: For S ∈ SF , Φ̃(S) shall be the unique element I ∈ I, such
that S + I ∈ F2 (well-de�ned per condition (i)). Note, that Φ̃ can be written as
Φ̃ = ProjI ◦π−1, where π : F2 −→ SF is given by ProjS on its domain.

3. Check, if Φ̃ is m-positive. If not, I does not ful�l (⋆), so pick the next candidate.

4. Check if Φ̃ can be extended to an m-positive map Φ : S −→ I . If this is not the
case, I does not ful�l (⋆), so try the next candidate. Otherwise, we have found an
optimal candidate I that satis�es (⋆). Go to step 4!

7More formally, Bj = {(A1, . . . , An) ∈ A2 | Ak = 0 for k ̸= j}.
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Step 4. We have found a compression triple (S, I,Φ) for A2 where S =
⊕

j∈I Bj,
Φ : S −→ I is m-positive, and F2 ⊆ {S +Φ(S) | S ∈ S} with the lowest possible d :=
D(I). Since S has quantum dimension d by Proposition 4.5, we have qdimm(F2) = d
by Proposition 4.3.
If one is interested in the actual compression maps, one has to use compression maps

DS : S −→ Md ⊗ De and8 ES : Md ⊗ De −→ S from Proposition 4.5: let D2 :
A2 −→ Md ⊗ De be de�ned by D2 := DS ◦ ProjS, and E2 : Md ⊗ De −→ A2 de�ned
by E2 := (idS +Φ) ◦ ES. To �transform back� Steps 1 and 2 we �nally take D(X) :=
D2

(
V (UXU †)

)
and E(Y ) = U † ·

[
V −1 ◦ E2

]
(Y ) · U.

Proof of the claims made in algorithm 4.7. First we note, that the existence part of (i)
is always ful�lled by construction: For Let S ∈ SF , say S = ProjS F for some element
F ∈ F2, the element I := ProjI F satis�es S + I = F ∈ F2. Now we show that the
statements (i) - (iv) are equivalent. Throughout this proof let us denote the restriction
of the projection onto S by π : F2 −→ SF , π(F ) = ProjS F .
�(i) ⇒ (ii)�. Setting S = 0 in (i), there exists a unique I ∈ I such that I ∈ F2; in

other words: the intersection I∩F2 contains exactly one element, which obviously must
be 0.
�(ii) ⇒ (i)�. Let S ∈ SF be given, and suppose that there are I1, I2 ∈ I such that

S + I1 ∈ F2 and S + I2 ∈ F2. Then their di�erence S + I1 − (S + I2) = I1 − I2 lies in I
and in F2, hence is zero by (ii).
�(ii)⇔ (iii)� follows from

kerπ = {F ∈ F2 | π(F ) = 0} = {F ∈ F2 | F ∈ I} = I ∩ F2.

Finally, �(iii) ⇔ (iv)� is obvious, noting that all vector spaces involved are �nite
dimensional.

4.3. Lossy Compression: an outlook

In this �nal section, we want to give an outlook for what happens, if we weaken the
restriction that chosen e�ects shall be preserved without error. First, we determine
which norms are good candidates to measure the error which is done when compressing
and decompressing the e�ects. In the whole chapter, letH be a �nite-dimensional Hilbert
space (dimH =: d) describing the quantum mechanical system that we want to compress.
Let us assume that we want to preserve the observable Q with minimal error; i.e.

the expected value of Q in all possible states ρ ∈ S (H) shall not di�er too much after
applying our channel T . Note that if Q is an e�ect, then the expectation value of Q is
exactly the probability that the e�ect triggers. Mathematically, we thus want

∀ρ ∈ S(H) : tr (ρQ) ≈ tr (ρT (Q)) .

This motivates the following de�nition for a measuring the error we can make in the
worst case by applying our compression procedure T .

8Recall that Dn denotes the von Neumann algebra of diagonal complex n× n-matrices.
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De�nition 4.8. For A ∈ E(H) we de�ne

∆(A) := max
ρ∈S(H)

|tr (ρA)− tr (ρT (A))| .

Lemma 4.9. For A ∈ E(H) we have ∆(A) =
∥∥(idL (H) − T

)
(A)
∥∥ .

Proof. �≤�. For ρ ∈ S (H) we can estimate

|tr (ρA)− tr(ρT (A))| = |tr (ρ(A− T (A)))| ≤ tr |ρ(A− T (A)|
= ∥ρ(A− T (A))∥1 ≤ ∥ρ∥1 · ∥A− T (A)∥ = ∥A− T (A)∥ ,

where ∥·∥1 denotes the trace norm X 7→ tr |X| = tr
√
X†X, which is a special case

of the Schatten-p-norms (p ∈ [1; +∞]) ∥X∥p =
(
tr([X∗X]p/2

)1/p
, and where we used

a generalised Hölder inequality ∥XY ∥1 ≤ ∥X∥p ∥Y ∥q , if 1/p + 1/q = 1. Note that for
p = +∞ we retain the usual operator norm, which is also the C∗-norm.
�≥�. Set B := A − T (A), which is hermitian, hence by the spectral theorem can be

written

B =

d∑
j=1

λj |ej⟩⟨ej | , λj ∈ R, (ej) ONB of H.

Pick ℓ ∈ {1, . . . , d} such that |λℓ| = maxdj=1 |λj | . We choose ρ := |eℓ⟩⟨eℓ| ∈ S (H) and
evaluate the trace explicitly:

∆(A) ≥ |tr(ρA)− tr(ρT (A))| = |tr(ρB)|
= tr (|eℓ⟩⟨eℓ|B) = |λℓ| = ∥B∥ = ∥A− T (A)∥ .

Lemma 4.9 suggests that the problem of compressing a quantum system while retaining
certain measurement outcomes within some error bounds can be seen as an optimisation
problem. The task is to optimise the numbers ∆(Q) where we can vary the channel T .
In general, we may want to add further restrictions on T (e.g. special structure such as
E ◦ D, where D maps to a Hilbert space of smaller dimension than d), because in the
general case T = idL (H) is a trivial optimal point with ∆ ≡ 0.
Note that the set of quantum channels

{T : L (H) −→ L (H) | T m-positive and unital}

is a compact convex set (m ∈ {1, 3/2, 2, 3, 4, . . . }∪{∞}) within a �nite-dimensional vector
space, so convex optimisation may be an appropriate tool.
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Appendix A.

Proof of the von Neumann double

commutant theorem

A.1. Preliminaries

Before we can prove the von Neumann double commutant theorem, we recall some basic
notions from the subject of topological vector spaces, which we will not prove, and de�ne
certain topologies on L (H).
In the present version of the statement and proof of the von Neumann double com-

mutant theorem, we will consider Hilbert spaces of arbitrary � i.e. possibly in�nite �
dimension. At one point in the proof we may use the concept of nets, so we assume some
degree of familiarity on the part of the reader.

A.1.1. General Topology in terms of Nets

De�nition A.1. A non-empty set D, equipped with a binary relation ⪯, is called di-
rected, if it is partially ordered, i.e. for all x, y, z ∈ D we have that

x ⪯ x, x ⪯ y ∧ y ⪯ x =⇒ x = y, and x ⪯ y ∧ y ⪯ z =⇒ x ⪯ z,

and additionally
∀x, y ∈ D ∃z ∈ D : z ⪰ x ∧ z ⪰ y.

If D is a directed set, X is a non-empty set, and x : D −→ X is a function, then x
is called a net. Usually we will write xδ := x(δ) for δ ∈ D and (xδ)δ∈D := x. If (X, τ)
is a topological space, (xδ)δ∈D ⊆ X a net and x0 ∈ X, we say that (xδ)δ∈D converges
to x0 (with respect to τ) � in symbols xδ → x0 � if for all neighbourhoods U of x0, xδ
eventually lies in U , i.e.

∃δ0 ∈ D ∀δ ⪰ δ0 : xδ ∈ U.
Fact A.2. Let (X, τ) be a topological space, (xδ)δ∈D ⊆ X a net.

i) X is a Hausdor� space, i� every net (xδ)δ∈D ⊆ X has at most one limit
point.

ii) A is open in X (i.e. A ∈ τ), i� for every net (xδ)δ∈D ⊆ X that converges to
some element of A we have xδ ∈ A eventually.

iii) A is closed in X (i.e. X \A ∈ τ), i� it contains all limit points of convergent
nets (xδ) ⊆ A.
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A.1.2. Topological Vector Spaces

For a topological space (X, τ) we will write U(x) for the set containing all neighbourhoods
of x ∈ X, i.e. U(x) := {O ⊆ X | O◦ ∋ x}, where O◦ denotes the interior ofO. A collection
B ⊆ U(x) is called a neighbourhood basis for x ∈ X, if, for every U ∈ U(x), there is a set
B ∈ B which is contained in U .
Recall the following notions from the subject of topological vector spaces: A topological

vector space is a vector space X over a �eld K ∈ {R,C} equipped with a topology τ ,
such that it is Hausdor�, and the addition map + : X × X −→ X and the scalar
multiplication map · : K×X −→ X are continuous (whereX×X and K×X are given the
respective product topologies). Note that in a topological vector space, the translation
maps tx : X −→ X, y 7→ y + x, are homeomorphisms (since they are continuous by
de�nition and their inverse are given by (tx)

−1 = t−x). Thus, tx maps a neighbourhood
basis for y ∈ X onto a neighbourhood basis for (x+ y). Hence one only need to consider
neighbourhood bases for one special point, e.g. 0, since it can be carried over to any
other point x ∈ X via tx.
Let X be a K-vector space. A map p : X −→ [0, +∞) is called semi-norm, if it is

homogeneous (i.e. p(λx) = |λ| p(x) ∀λ ∈ K ∀x ∈ X) and satis�es the triangle inequality
(i.e. p(x+y) ≤ p(x)+p(y) ∀x, y ∈ X). A family P of semi-norms on a vector space X is
called separating, if for each x ∈ X \ {0}, P contains a semi-norm p such that p(x) ̸= 0.
Let P be a separating family of semi-norms on X. We say, that the topology τ on a

topological vector space X is induced by P, if the collection

Upε := {x ∈ X | p(x) < ε} , p ∈ P, ε > 0

forms a neighbourhood basis for 0. A basic fact from the subject of topological vector
spaces is, that a topological vector space is locally convex (i.e. admits a neighbourhood
basis for 0 consisting of convex sets), i� its topology is induced by a separating collection
of semi-norms.
In �nite dimensions all relevant topologies on a vector space are actually the same:

the following result is a special case of [Sch, Ch. I, 3.2 on p.21].

Fact A.3. Let K ∈ {R,C} and let X be an n-dimensional (n ∈ N) topological vector
space over K. Then X is homeomorphic to Kn.

In particular this means that for �nite-dimensional X, there is a unique topology τ
on X that renders (X, τ) a topological vector space; and Kn is the only n-dimensional
topological vector space over K, up to homeomorphisms.
As the von Neumann double commutant theorem regards closures of subsets of topo-

logical vector spaces, we will use the following criterion, which follows directly from the
de�nitions:

Fact A.4. Let X be a topological space, and let B be a neighbourhood basis for x ∈ X.
Then, for A ⊆ X, we have the equivalence

x ∈ A ⇐⇒ ∀B ∈ B : A ∩B ̸= ∅,

where A denotes the (topological) closure of A.
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A.1.3. Topologies on L (H)

On L (H), we consider the following topologies:

� The (operator) norm topology is induced by the operator norm

L (H) ∋ A 7→ ∥A∥ = sup
∥x∥=1

∥Ax∥ .

� The strong operator topology is induced by the family of semi-norms

Pstrong := {L (H) ∋ A 7→ ∥Ax∥ | x ∈ H} .

� The weak operator topology is induced by the family of semi-norms

Pweak := {L (H) ∋ A 7→ |⟨y|Ax⟩| | x, y ∈ H} .

Using nets, one can classify convergence w.r.t. the above topologies as follows:

� A net (Aδ) ⊂ L (H) converges in norm to A ∈ L (H), i� ∥Aδ −A∥ → 0.

� A net (Aδ) ⊂ L (H) converges strongly (i.e., w.r.t. the strong operator topology)
to A ∈ L (H), i� Aδx→ Ax for all x ∈ X.

� A net (Aδ) ⊂ L (H) converges weakly (i.e., w.r.t. the weak operator topology) to
A ∈ L (H), i� ⟨y|Aδx⟩ → ⟨y|Ax⟩ for all x, y ∈ X.

A.1.4. Unitality and Degeneracy

De�nition A.5. We call a ∗-sub-algebra A of L (H) non-degenerate, if

span {Aξ | A ∈ A , ξ ∈ H} = H.

We say that A has trivial null space, if∩
A∈A

kerA = {0}.

Lemma A.6. Let A be a ∗-subalgebra of L (H).

i) A furnishes a decomposition of H into the direct sum of the two orthogonal
closed subspaces

X :=
∩
A∈A

kerA and Y := span {Aξ | A ∈ A , ξ ∈ H}.

In particular, A is non-degenerate, i� it has trivial null space.
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ii) The set

B := {ProjY ◦A ◦ ProjY | A ∈ A } = {A↾Y : Y −→ Y | A ∈ A }

is a non-degenerate ∗-algebra in the Hilbert space Y , which is ∗-isomorphic
to A . Moreover, if A is strongly closed, then so is B.

Proof. i) X is closed as intersection of closed sets, and Y is inherently closed. We show
Y ⊥ = X:

Y ⊥ =
(
spanAH

)⊥
= (spanAH)⊥ = (AH)⊥ =

( ∪
A∈A

ranA

)⊥

=
∩
A∈A

(ranA)⊥ =
∩
A∈A

kerA∗ =
∩
A∈A

kerA = X.

It follows that Y = H is equivalent to X = {0}, so A is non-degenerate, i� it has trivial
null space.
ii) As a closed subspace of H, Y is complete, hence a Hilbert space in its own right.

Consider the restriction map

ϕ :
A −→ L (Y )
A 7−→ A↾Y

,

which is well-de�ned, since for A ∈ A we have

ranA = (kerA∗)⊥ ⊆

( ∩
B∈A

kerB

)⊥

= X⊥ = Y.

By de�nition of B, ϕ is surjective, and it is easy to check that ϕ is a bijective ∗-
homomorphism. Hence B is a ∗-algebra, which is non-degenerate, since it has trivial
null space; indeed,∩

B∈B

kerB = {ξ ∈ Y | Bξ = 0 ∀B ∈ B} = {ξ ∈ Y | A↾Y ξ = 0 ∀A ∈ A }

= {ξ ∈ Y | Aξ = 0 ∀A ∈ A } = Y ∩X = {0}.

Finally, assume in addition that A is strongly closed. We show that B is strongly
closed, too. To that aim, let (Bδ) ⊂ B be a net with Bδ → B ∈ L (Y ) strongly, i.e.
∥(Bδ −B)η∥ → 0 for all η ∈ Y . We set Aδ = ϕ−1(Bδ) ∈ A , and by extending the
strong limit operator B to A ∈ L (H), de�ned by A(ξ + η) = Bη for ξ ∈ X, η ∈ Y .
Then for ξ ∈ X, η ∈ Y we have that ∥(Aδ −A)(ξ + η)∥ = ∥(Bδ −B)η∥ → 0. So Aδ
converges to A strongly, and since A is strongly closed, we infer that A ∈ A . Noting
that B ∋ ϕ(A) = A↾Y = B completes the proof.

80



Appendix A. Proof of the von Neumann double commutant theorem

A.2. Statement and proof

The statement and proof of the present version of the double commutant theorem is
inspired by [Dix, Ch. I.3.4] and [Arv3, Ch. 1.2]. It shall state the following:

Theorem A.7 (J. von Neumann's double commutant theorem). Let A be a ∗-algebra
of operators on the Hilbert space H. Assume that A is strongly closed.
Then A has a unit element P, which is the greatest projection in A and is equal to

the orthogonal projection onto the subspace

Y := span {Aξ | A ∈ A , ξ ∈ H} ⊆ H.

Moreover, the double commutant of A is given by

A ′′ = A + C · idH.

In particular, A is a von Neumann algebra, i� it contains idH.

We �rstly prove Theorem A.7 under the additional assumption of A being non-
degenerate. In this case the �rst part becomes somewhat easier (since P = idH), and the
hard part to prove is the following statement:

Lemma A.8. Let A be a non-degenerate ∗-algebra on the Hilbert space H. Then A ′′ ⊆
A

strong
, i.e. every element in the double commutant of A lies in the strong closure of

A .

Proof. Let X ∈ A ′′. By de�nition of the strong operator topology, the collection

U :=


n∩
j=1

U
pξj
εj (X)

∣∣∣∣∣∣ n ∈ N, εj > 0, ξj ∈ H

 ,

where U
pξ
ε (X) := {A ∈ L (H) | ∥(A−X)ξ∥ < ε}, forms a �nitely ∩-stable neighbour-

hood basis around X ∈ L (H) w.r.t. the strong topology. By Fact A.4 it thus su�ces to
show that X lies in every U ∈ U .
Let us �rst treat the case n = 1, so let ξ ∈ H and ε > 0 be given. We de�ne the closed

subspace Y := A ξ ⊆ H, let P := ProjY ∈ L (H) denote the orthogonal projection onto
Y , and claim that P ∈ A ′. Indeed, for any η ∈ H we can write Pη ∈ Y as the limit
Pη = limk→∞Akξ for a suitable sequence (Ak)k∈N ⊂ A , so we have for all B ∈ A that

BPη = B lim
k→∞

Akξ = lim
k→∞

BAk︸︷︷︸
∈A

ξ ∈ Y ;

hence BPη = PBPη. As η and B were arbitrary, we conclude that BP = PBP for all
B ∈ A . Taking adjoints and replacing B by B∗ yields PB = PBP for all B ∈ A , which
together implies BP = PBP = PB for all B ∈ A , whence P ∈ A ′. In particular we
obtain XP = PX (since X ∈ A ′′).

81



Appendix A. Proof of the von Neumann double commutant theorem

Next, we claim that Pξ = ξ. Indeed, for any A ∈ A we have (since P ∈ A ′)

Aξ︸︷︷︸
∈Y

= PAξ = APξ =⇒ A(idH − P )ξ = 0,

so (idH − P )ξ ∈
∩
A∈A kerA = {0}, for A is non-degenerate and therefore has trivial

null space. This shows ξ = Pξ.
Putting the two proceeding steps together, we get Xξ = XPξ = PXξ ∈ Y = A ξ,

hence there exists A ∈ A satisfying ∥Xξ −Aξ∥ < ε. This completes the case n = 1.
Now, we reduce the general case n > 1 to the case n = 1 by suitably enlarging our

Hilbert space. Consider K := Hn, i.e. the n-fold Cartesian product of H with scalar
product

⟨(x1, · · · , xn)|(y1, · · · , yn)⟩K =
n∑
j=1

⟨xj |yj⟩H .

The elements of L (K) can be represented canonically as matrices (Tij)
n
i,j=1 with Tij ∈

L (H). We consider the ∗-algebra of operators

D := {diag(A, · · · , A) ∈ L (K) | A ∈ A } .

Obviously, D has trivial null space, i� A has. We calculate D ′ and D ′′:

(Cij) ∈ D ′ ⇐⇒ ∀A ∈ A : diag(A, · · · , A) · (Cij) = (Cij) · diag(A, · · · , A)
⇐⇒ ∀A ∈ A : (ACij) = (CijA)

⇐⇒ Cij ∈ A ′ ∀i, j ∈ {1, . . . , n},

so D ′ = Matn(A ′). Moreover,

(Dij) ∈ D ′′ ⇐⇒ ∀ (Bij) ∈ Matn(A
′) : · (Bij) (Dij) = (Dij) · (Bij)

⇐⇒ ∀ (Bij) ∈ Matn(A
′) :

(
n∑
k=1

BikDkj

)
=

(
n∑
k=1

DikBkj

)
.

Choosing (Bij) = (δilδjmidH)ij ∈ Matn(A ′) for �xed l,m ∈ {1, . . . , n}, we see that

(Dij) ∈ D ′′ implies δilDmj = Dilδjm for all i, j, l,m. Taking i = l = 1, we see that
Dmj = D11δjm for all j andm. Hence (Dij) must be of the form diag(E, · · · , E) for some
E ∈ L (H). Considering the last condition in the equivalence chain above, we actually
can infer E ∈ A ′′. Conversely, each operator matrix diag(E, · · · , E) with E ∈ A ′′ ful�ls
that condition; hence we conclude

D ′′ =
{
diag(E, · · · , E)

∣∣ E ∈ A ′′} .
Now, given ξ1, . . . , ξn ∈ H and ε1, . . . , εn > 0, we set ε := minnj=1 εj and ξ :=

(ξ1, · · · , ξn) ∈ K. Applying the already established case n = 1 to Z := diag(X, · · · , X) ∈
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D ′′, there exists an element B = diag(A, · · · , A) ∈ D such that ∥Bξ − Zξ∥K < ε. Writing
this out explicitly, we get (Pythagoras)

n∑
j=1

∥(A−X)ξj∥2 < ε2,

which by positivity of the summands implies ∥(A−X)ξj∥ < ε ≤ εj for all j ∈ {1, . . . , n},
hence A ∈ U

pξj
εj (X) for all j.

Now we can �nally prove the full double commutant theorem:

Proof of von Neumann's double commutant theorem. We denote the subspace under con-
sideration as

Y := span {Aξ | A ∈ A , ξ ∈ H} = span
∪
A∈A

ranA ⊆ H,

and let P := ProjY ∈ L (H) denote the orthogonal projection onto Y .1 By Lemma
A.6ii),

B := {P ◦A ◦ P | A ∈ A } = {A↾Y : Y −→ Y | A ∈ A }

is a strongly closed, non-degenerate ∗-algebra.
We apply lemma A.8 to B and get B′′ ⊆ B, in particular P↾Y = idY ∈ B′′ ⊆ B. Note

that the restriction map ϕ : A −→ B, A 7→ A↾Y is a ∗-isomorphism by Lemma A.6ii), and
that idY is the unit element and the greatest projection of B. Hence I := ϕ−1(idY ) ∈ A
is the unit element and greatest projection of A (cf. Note 1.26). Using the decomposition
H = X⊕Y from Lemma A.6i), we see that I↾Y = idY , and I↾X = 0 (as X = ∩A∈A kerA),
so we obtain P = I ∈ A .
We �nally prove A ′′ = A +C · idH. The �⊇�-direction is clear; so in order to prove �⊆�,

we consider the non-degenerate ∗-algebra of operators Ã := A +C·idH. We claim that Ã
is strongly closed. If idH ∈ A , then Ã = A and there is nothing to show, so we consider
the case idH /∈ A . Note that this means that X ̸= {0}. Consider a net (Aδ + λδidH)δ ⊆
Ã that strongly converges to C ∈ L (H). Using Lemma A.6i) again, we get for ξ ∈ X
that Aδξ = 0 by Lemma A.6i), so λδξ → Cξ for all ξ ∈ X, which is only possible if λδ
converges to some λ ∈ C. But then, Aδ = (Aδ + λδidH) − λδidH converges strongly to
C − λidH, which lies in A by strong closedness. Hence C = (C − λidH)︸ ︷︷ ︸

∈A

+λidH ∈ Ã , so

Ã is strongly closed.
Obviously we have Ã ′ = A ′, hence Ã ′′ = A ′′. So lemma A.8 applied to Ã yields

A ′′ = Ã ′′ ⊆ Ã .

1Mind that, by now, we don't know whether P lies in A .
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