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Abstract

In this thesis we address the problem of two-variable causal inference. This task refers to
inferring an existing causal relation between two random variables (i.e. X → Y or Y → X )
from purely observational data. We begin by outlining a few basic definitions in the context
of causal discovery, following the widely used do-Calculus [Pea00]. We continue by briefly
reviewing a number of state-of-the-art methods, including very recent ones such as CGNN
[Gou+17] and KCDC [MST18].

The main contribution is the introduction of a novel inference model where we assume a
Bayesian hierarchical model, pursuing the strategy of Bayesian model selection. In our model
the distribution of the cause variable is given by a Poisson lognormal distribution, which allows
to explicitly regard discretization effects. We assume Fourier diagonal covariance operators,
where the values on the diagonal are given by power spectra. In the most shallow model these
power spectra and the noise variance are fixed hyperparameters. In a deeper inference model
we replace the noise variance as a given prior by expanding the inference over the noise variance
itself, assuming only a smooth spatial structure of the noise variance. Finally, we make a
similar expansion for the power spectra, replacing fixed power spectra as hyperparameters by
an inference over those, where again smoothness enforcing priors are assumed.

Based on our assumptions we describe an algorithmic forward model in order to produce
synthetic causal data. These synthetic datasets are being used as benchmarks in order to
compare our model to existing State-of-the-art models, namely LiNGAM [Hoy+09], ANM-
HSIC [Moo+16], ANM-MML [Ste+10], IGCI [Dan+10] and CGNN [Gou+17]. We explore
how well the above methods perform in case of high noise settings, strongly discretized data
and very sparse data. Our model (BCM) shows to perform generally reliable in case of the
synthetic data sets. While it is able to provide an accuracy close to the ANM methods in case
of high noise and strongly discretized data, which deliver the best performance here, it is able
to outperform other methods in case of very sparse (10 samples) synthetic data. We further
test our model on the TCEP benchmark set, which is a widely used benchmark with real
world data. Here our model can provide an accuracy comparable to state-of-the-art algorithms
and is able to outperform other methods in a setting where only a small number of samples
(20 samples) are available.
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A.1.2. The Term β†F†ê−τβFβ . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.2. Derivatives of γζ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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D.1. TCEP benchmark dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

V



List of Symbols

β a function, β ∈ R[0,1]

δz The Dirac delta distribution centered at z ∈ R, i.e. δz =
δ(· − z)

η logarithmic noise variance, ς(x)2 = eη(x)

ε N-vector of noise samples (ε1, ..., εN )T
λ nbins-vector of Poisson means, λ = (λ1, ..., λnbins)T

Λ(z) N ×N matrix, with entries Λ(z)ij = (F†êτf δzF)xixj
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1. Introduction

1.1. Motivation and Significance of the Topic

Causal Inference regards the problem of drawing conclusions about how some entity we can
observe does - or does not - influence or is being influenced by another entity. Having knowledge
about such law-like causal relations enables us to predict what will happen ( =̂ the effect) if
we know how the circumstances ( =̂ the cause) do change. For example, one can draw the
conclusion that a street will be wet (the effect) whenever it rains (the cause). Knowing that
it will rain, or indeed observing the rainfall itself, enables one to predict that the street will
be wet. Less trivial examples can be found in the fields of epidemiology (identifying some
bacteria as the cause of a sickness) or economics (knowing how taxes will influence the GDP
of a country).

As [PJS17] remark, the mathematical formulation of these topics has only recently been
approached. Especially within the fields of data science and machine learning specific tasks
from causal inference have been attracting much interest recently. [HHH18] propose that causal
inference stands as a third main task of data science besides description and prediction. Judea
Pearl, best known for his Standard Reference Causality: Models, Reasoning and Inference,
recently claimed that the task of causal inference will be the next ”big problem” for Machine
Learning [Pea18]. Such a specific problem is the two variable causal inference, also addressed
as the cause-effect problem by [PJS17]. Given purely observational data from two random
variables, X and Y , which are directly causally related, the challenge is to infer the correct
causal direction. In the example of rain and wetness of a street, this would mean, we are
given two-dimensional observation samples corresponding to (Rainfall, Wetness of street).
The samples itself could be (”it rains”, ”the street is wet”), (”it doesn’t rain”, ”the
street is wet”), (”it doesn’t rain”, ”the street is dry”). We now have to conclude the
true causal direction which is obviously Rainfall → Wetness of street.

Having only observational data means we can not intervene into the data, e.g. use a garden
hose to see if the street gets wet when we simulate rainfall. In such a setting, inferring the
true direction might seem to be a futile task. Indeed, inferring the true direction in the above
example would be impossible if we only had observed the samples (”it rains”, ”the street
is wet”), (”it doesn’t rain”, ”the street is dry”). It was just the sample (”it doesn’t
rain”, ”the street is wet”) that allowed us to discard the hypothetical direction Wetness
of street → Rainfall. If we know that either one or the other direction have to be true, we
can therefore conclude the true causal direction. Interestingly, this is an incorporation of a
fundamental asymmetry between cause and effect which does always hold and can be exploited
to tackle such an inference problem. Given two random variables, X and Y which are related
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causally, X → Y (”X causes Y ”), there exists a fundamental independence between the
distribution of the cause P(X) and the mechanism which relates the cause X to the effect
Y . This independence however does not hold in the reverse direction. Most of the proposed
methods for the inference of such a causal direction make use of this asymmetry in some
way, either by considering the independence directly [Dan+10], [Moo+16], or by taking into
account the algorithmic complexity for the description of the factorization P(X)P(Y |X) and
comparing it to the complexity of the reverse factorization P(Y )P(X|Y ).

1.2. Structure of the Work

The rest of the thesis will be structured as following. In Chapter 2 we will first outline and
specify our problem setting. We will attempt to define a self-contained framework of definitions
for the necessary models of causality, following the do-Calculus introduced by [Pea00]. We
also will review existing methods here, namely Additive Noise Models, Information Geometric
Causal Inference and Learning Methods.

Chapter 3 will describe our inference model which is based on a hierarchical Bayesian model.
In Section 3.2 we will introduce a first, shallow inference model. Here we assume covariance op-
erators, determining distributions for the causal mechanism and the cause variable distribution
itself, as well as the noise variance, to be given.

In Section 3.3 we will relax the fixed assumptions by allowing the noise variance to be
determined by a field itself which only is governed by a prior distribution controlling the slope
of the field. This will be expanded in 3.4 by allowing for arbitrary power spectra which are
assumed to be random variables distributed by smoothness enforcing priors.

In Chapter 4 we will accompany the theoretical framework with experimental results. As
the computational implementation of the deeper models (3.3, 3.4) showed to be problematic,
we will limit the considerations here to an implementation of the shallow inference model
proposed in 3.2. To that end we begin by outlining a ”forward model” which allows to sample
causally related data in 4.1. We describe a specific algorithm for the inference model in 4.2,
which is then tested on various benchmark data (4.4). To provide a reference, the performance
is compared to state-of-the-art methods introduced in 2.2.

We conclude by assessing that our model generally can show competitive classification accuracy
and propose possibilities to further advance the model.

1.3. Related Work
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2. Problem Setting and Related Work

2.1. Problem Setting

We begin by briefly defining key concepts in causal inference using the do-Calculus, introduced
by [Pea00]. This outline attempts to be as short as possible as necessary for the present thesis,
however still self contained.

Definition 1. A causal structure of some random variables V = {X1, ..., Xn} is a
directed acyclic graph ( DAG) D = (V, E) with the elements of V as nodes and the edges E
representing functional relations between the variables.

Returning to the example of rain causing a street to be wet from the beginning, one could
describe this situation by a causal structure with two vertices (R for rainfall and W for wetness
of the street) and one directed edge (R,E). 1 To make this more illustrating, we expand the
model by considering a sprinkler next to the street, with a state S either being on or off, as
another possible cause for the street to be wet, and we consider the cloudiness of the sky (C)
as a ”reason” for the rainfall. The causal structure is therefore given by the DAG D = (V, E)
with V = {C,R, S,W} and E = {(C,R), (R,W ), (S,W )}. The full graph structure is depicted
in Fig. 2.1.

C
Cloudiness

of sky

R
Rainfall

S
State of

Sprinkler

W
Wetness
of street

Figure 2.1.: An example for a DAG representing a causal structure, the nodes are random variables
and the arrows give the directed edges, representing functional relations.

Definition 2. A pair M = (D,ΘD) of a graph D = (V, E) and its parameters ΘD
defines a causal model. The parameters ΘD assign to each Xi ∈ V an equation of the
form

xi = f(pai, ui) (2.1)

1Using the standard notation for directed graphs here, where an edge (a, b) indicates the direction ”a to b”.
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and a probability distribution P(Ui) where Pai denote the parents of Xi w.r.t. to the
graph D and Ui are unobserved disturbances having influences on Xi. xi, pai, ui denote
realizations of Xi, Pai and Ui respectively.

In the above example (Fig. 2.1), the vertices C, S do not have any (observed) parental nodes,
so their values are only determined by unobserved noise (c = fc(uc) and s = fs(us)). We think
of the rainfall as an effect of the sky’s cloudiness, so the corresponding equation would be
r = fr(c, ur), where we allow for some unobserved nuisance. The wetness of the street finally
does have two separate observed causes - the rainfall and the sprinkler. This corresponds to an
equation of the form w = fw(r, s, uw), again allowing for some unobserved ”noise” influencing
the measured state of the street wetness. Now we can define an intervention in the model
which represents an external manipulation of some variable:

Definition 3. Given some causal model M, with a random variable Xi ∈ V the atomic
intervention do(Xi = xi) is defined by setting the value of Xi to xi, removing the equation
regarding xi = f(pai, ui) from the parameters of the model and substituting X = xi in all
other equations.

Assuming for a moment here we had the power to make it rain, we could set the variable
R =rainfall in our example. This would remove the equation r = fr(c, ur) from the parameters
and set w = (R = rainfall, s, uw)

Using this do-formalism we can provide a definition for one variable being the cause of another
one:

Definition 4. Given two random variables X,Y with a joint probability distribution
P(X,Y ) and a corresponding conditional distribution P(Y |X) we say X causes Y
(denoted by X → Y ) iff P(y|do(x)) 6= P(y|do(x′)) for some x, x′ being realizations of X
and y being a realization of Y

For a last time returning to the above example, the probability for the street being wet, when
we force rainfall, P(w|do(R = it rains) will probably be much higher than the corresponding
one for manipulating the system such that it doesn’t rain, P(w|do(R = it doesn’t rain). In
contrast to this, watering the street with a garden hose and thus making it wet will most
likely not influence the probability of rain, P(r|do(w = the street is wet) = P(r|do(w =
the street is dry)

Fig. 2.2 shows some possibilities in which way two variables can be causally related. In case
(c) there is no causal relation at all. Note that case (d) is not consistent with our definition
of causality as it cannot be modeled with a DAG. Case (e) corresponds to a confounding
variable, i.e. a variable that influences both of the other ones. A standard example in the
statistical literature would be the human birth rate and the stork population, where one can
find a significant correlation [Mat00]. As it is however unlikely that one of these variables
directly causes the other one, there might be some confounding variable as industrialization or
environmental health (and therefore standards of living) which is causing the other ones [ST05].
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Figure 2.2.: Models for causal relations in the 2 variable case, reproduced from [Moo+16]

X Y

(a) X → Y

P(Y ) 6=P(Y |do(X=x))=P(Y |X=x)
P(X)=P(X|do(Y=y))6=P(X|Y=y)

X Y

(b) Y → X

P(Y )=P(Y |do(X=x))6=P(Y |X=x)
P(X) 6=P(X|do(Y=y))=P(X|Y=y)

X Y

(c) no causal relation between X and Y

P(Y )=P(Y |do(X=x))=P(Y |X=x)
P(X)=P(X|do(Y=y))=P(X|Y=y)

X Y

(d) X → Y and Y → X

P(Y )6=P(Y |do(X=x))6=P(Y |X=x)
P(X)6=P(X|do(Y=y))6=P(X|Y=y)

X Y

Z

(e) (Hidden) confounder , Z → X and Z → Y

P(Y )=P(Y |do(X=x)) 6=P(Y |X=x)
P(X)=P(X|do(Y=y)) 6=P(X|Y=y)

X Y

S

(f) V-collider , X → S and Y → S

P(Y |S=s)6=P(Y |do(X=x),S=s)=P(Y |X=x,S=s)
P(X|S=s)6=P(X|do(Y=y),S=s)=P(X|Y=y,S=s)
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Case (f) is often referred to as a V-Collider [Spi16] and illustrates the problem of selection
bias. A car mechanic, only working with cars which do not start (S = 0), observes whether
the start engine is broken (X = 0) and if the battery is empty (Y = 0). As in most cases one
of these might be the case, but not the other one as well, he might draw the conclusion that
X and Y are causally related (if X = 1, then usually Y = 0 and vice versa if Y = 1 then
X = 0), if he does not consider his conditioning on the selection bias S = 0 [Moo+16]. I.e.
the mechanic considers only P(X|Y ),P(Y |X) instead of P(X|Y, S),P(Y |X,S) Not taking
such a selection bias into account can thus lead to conclude a non-existing causal relation.

In this work we however only consider case (a) and (b), i.e. X being a cause of Y and Y
being a cause of X and deciding which is the true one. Having access to the distributions
P((X)|do(Y )) and P(Y |do(X)) would render this an easy task, as one could simply check via
the definition 4 which direction holds. However, such distributions are usually not available,
as manipulation of the systems of interest is often not possible. Instead we assume to have
continuous observations in form of samples (xi, yi) being drawn from P(X,Y ) and want to
know which of the cases, (a) or (b) in Fig. 2.2 holds for the underlying process. We state the
problem as following:

Problem 1. Prediction of causal direction for two variables
Input: A finite number of sample data d ≡ (x,y), where x = (x1, ..., xN ),y = (y1, ..., yN )
Output: A predicted causal direction DX→Y ∈ {−1, 1} where −1 represents the prediction
”Y → X” and 1 represents ”X → Y ”

2.2. Related Work

Approaches to tasks in causal inference from purely observational data are often divided into
three groups ([SZ16; MST18]), namely constraint-based, score-based and asymmetry-based
methods. Sometimes this categorization is extended by considering learning methods as a
fourth, separate group. Two of these categories, constraint-based methods and score-based
methods are basically searching for the true DAG representing some structure and rely on
tests of conditional independence using conditioning on external variables. As such are not
available in the two-variable case, those models are of little interest for the present task.

A third category exploits an inherent asymmetry between cause and effect. This asymmetry can
be framed in different terms. One way is to use the concept of algorithmic complexity - given a
true direction X → Y , the factorization of the joint probability into P(X,Y ) = P(X)P(Y |X)
will be less complex than the reverse factorization P(Y )P(X|Y ) This approach is often used
by Additive Noise Models (ANMs). Another way is to state that the mechanism relating cause
and effect should be independent of the cause [Dan+10]. This formulation is employed by the
concept of Information Geometric Causal Inference.

We will also consider Causal Generative Neural Networks (CGNN) as an example of learning
methods. For the following, let X ,Y be some measurable spaces. We consider some random
variables X and Y on X and Y.
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2.2.1. Additive Noise Models - Principles

A large family of inference models assume additive noise, i.e. in the case X → Y , Y is
determined by some function f , mapping X to Y , and some collective noise variable EY , i.e.
Y = f(X) +EY , where X is independent of EY . Hypothetically, the same can be done in the
backwards direction: X = g(Y ) + EX . [Moo+16] show that the resulting joint distribution
P(X,Y ) of such an ANM is either induced by the forward or the backward model, but generally
not by both. If this is the case the model is said to be identifiable.

2.2.2. LiNGAM - an ICA-based Approach

An early adoption of this principle, LiNGAM (Linear Non-Gaussian Additive Noise Model,
[Shi+06]) models the structure with linear functions, i.e. writing x = cxy + ex or y = cyx+ ey.
This can be modeled using a vector calculus(

x
y

)
= C

(
x
y

)
+
(
ex
ey

)
(2.2)

As the restriction in the given problem setting allows only one direction of X → Y, Y → X to
be true, one of cx, cy can be set to zero, meaning C is a triangular matrix. Introducing the
mixing matrix A ≡ (1− C)−1, the above relation can be re-written as(

x
y

)
= A

(
ex
ey

)
(2.3)

The authors assume non-Gaussian error terms ex, ey which makes it possible to employ the
technique of independent component analysis (ICA) to estimate the mixing matrix A which
yields an estimation of the component matrix C = 1−A−1. Finally a strictly lower triangular
permutation is sought, the permutation matrix gives the causal ordering of the variables.

The model is proposed for a multi-variable case, the two-variable case is actually just a special
case here. Even though we do not make the two main assumptions (namely linear relations
and non-Gaussianity of the errors) in the course of specifying our model, it is mentioned
at this place as LiNGAM has become a standard reference for causal inference benchmarks
[Ste+10; MST18].

2.2.3. Additive Noise Models with Regression and Residuum Independence
Scoring

More recent approaches usually deal with the possibility of non-linear causal mechanisms.
As mentioned above, there is a fundamental asymmetry between cause and effect which
incorporates in the fact that the distribution P(X) of the cause is independent from the
true causal mechanism f itself. This functional mechanism is represented by the conditional
distribution P(Y |X). A way to exploit this is to make a regression f̂ for f and calculate the
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residual f̂(X)− Y . If f̂ would be an exact regression of f and X → Y , this residual would
now be fully independent of X.

However the regression is only somewhat precise (Gaussian Process Regression is usually
employed here [Hoy+09; Moo+16]) and not the whole distribution P(X) but only a finite
number of samples (x1, ..., xN ) is given. Therefore one cannot expect to measure complete inde-
pendence between (x1, ..., xN ) and (f̂(x1)−y1, ..., f̂(xN )−yN ) but only a higher independence
score in the true direction. A number of proposed methods use the (empirical) Hilbert Schmidt
Independence Criterion (HSIC) to estimate the the independence. This measure is defined
using the formulation of Reproducing Kernel Hilbert Spaces (RKHS), in which probability
distributions can be bijectively embedded as elements.

An explicit introduction of this framework would not be in scope within this thesis, however we
want to give a consistent, self-contained overview of the key concept used by recent publications
in causal inference. The following outline is based on [Gre+05] and [Gre+07].

For a measurable space X , the RKHS H is a Hilbert space of functions f : X → R with an
inner product 〈·, ·〉H, in which the evaluation functionals δx : f 7→ f(x) are continuous for all
x ∈ X . As guaranteed by the Riesz representation theorem theorem, one can always represent
such an evaluation at some x ∈ X by taking the inner product with a unique element of the
Hilbert space:

f(x) = δx(f) = 〈kx, f〉H (2.4)

The function kx therefore defines a kernel via kx(y) = 〈ky, kx〉H ≡ k(x, y) and thus fully
specifies the RKHS, allowing us to write Hk A probability distributions P over X can be
embedded into such a RKHS HX by the mean embedding:

Definition 5. For a kernel k : X × X → R, a random variable X ∼ P in X , the mean
embedding µk(P) is defined by:

µk(P) ≡ EX∼P [k(·, X)] (2.5)

given samples (x1, ..., xN ) from X an estimation of the mean embedding is given by

µ̂k(P) ≡ 1
N

N∑
i=1

k(·, xi) (2.6)

An inner product with the mean embedding is therefore given by Eq. 2.4 via

〈f, µk(P)〉Hk ≡ EX∼P [f(X)] (2.7)

Now one can define the HSIC [Gre+05]
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Definition 6. Given kernels k : X ×X → R and y : Y ×Y → R, the HSIC is defined as

HSIC(X,Y )k,l ≡||µk⊗l(P(X,Y ))− µk⊗l(P(X)P(Y )||Hk⊗l =
=EX,X′∼P(X)

Y,Y ′∼P(Y )
[k(X,X ′)l(Y, Y ′)

+ EX,X′∼P(X)[k(X,X ′)]EY,Y ′∼P(Y )[l(Y, Y ′)]
− 2EX∼P(X)

Y∼P(Y )
[EX′∼P(X)[k(X,X ′)]EY ′∼P(Y )[l(Y, Y ′)]] (2.8)

An estimation based on finite sample data x = (x1, ..., xN ),y = (y1, ..., yN ) , is given by
ĤSIC(x,y)k,l = (N − 1)−2tr(KHLH), with the Gram matrices Kij = k(xi, xj), Lij =
l(xi, xj) and the centering matrix Hij = δij −N−1 .

This method, in the following called ANM-HSIC, performed strongly in recent benchmarks
([Moo+16; Gou+17; MST18]). The authors [Moo+16] use squared exponential (also called
Gaussian) kernels here, i.e. k(x, y) = e−γ(x−y)2 , where they allow the bandwidth γ to be
estimated from the data itself.

2.2.4. Empirical Bayes - Additive Noise with MML Scoring

Other models, also based on the additive noise model, i.e. the assumption Y = f(X) +E, use
Bayesian model selection. Here one compares the probability P(X → Y |d) to the probability of
the competing direction P(Y → X|d), where again d denotes the observed samples, d = (x,y).
The ratio of these model probabilities

OX→Y = P(X → Y |d)
P(Y → X|d) (2.9)

is often referred to as the odds ratio or Bayes factor (see e.g. [BS09]).

Using Bayes Theorem

P(X → Y |d) = P(X → Y )P(d|X → Y )
P(d) (2.10)

and the fact that the prior probabilities of the competing models should be equal (P(X →
Y ) = P(Y → X)) we can express 2.9 in terms of the marginal likelihoods:

OX→Y = P(d|X → Y )
P(d|Y → X) (2.11)

Such a model is employed by [Ste+10] which assume a Gaussian mixture model for the
distribution of the cause P(X) and a Gaussian Process with a squared exponential kernel
for the causal mechanism. Here, the authors include a regression step for the function f
representing the causal mechanism. Numerical quantities for the resulting terms are given by
an expansion based on the concept of Minimum Message Length (MML). We will therefore
refer to this approach as ANM-MML.
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2.2.5. Kernel Deviance Measures

In a very recent (April 2018) publication, [MST18] introduced the method of Kernel Conditional
Deviance. Here again the asymmetry in the algorithmic complexity between the factorizations
of the joint probability P(X,Y ), P(X)P(Y |X) and P(Y )P(X|Y ) is considered. The authors
reason that in case the true causal direction is X → Y , it holds that

K(P(Y |xi)) = K(P(Y |xj)) ∀i, j, (2.12)

which however is not true in the other direction:

K(P(X|yi)) 6= K(P(X|yj)) ∀i, j (2.13)

Above, K(P) denotes the Kolmogorov complexity of P which is, loosely speaking, the length
of a program that encodes the distribution P[GV08]. As this is not further specified, the
Kolmogorov complexity itself is uncomputable and to be understood in a conceptional way.
Based on this thought and using the variance in the of the conditional mean embedding of
distributions in the RKHS, one derives at the estimator

SKCDC
X→Y = 1

N

N∑
i=1

||µY |X=xi ||HY −
1
N

N∑
j=1
||µY |X=xj ||HY

 (2.14)

and equivalently in the other direction SKCDC
Y→X , with roles of X and Y , resp. x and y switched.

The direction predicted is the one with the lower deviance, i.e. X → Y if SKCDC
X→Y < SKCDC

Y→X ,
Y → X otherwise. The authors measure the performance of their algorithm in a experimental
setup, describing mostly perfect predictions in case of synthetic data and very good (≈ 74%)
accuracy for the real world TCEP-benchmark.

2.2.6. Information Geometric Causal Inference

The concept that the distribution of the cause variable P(X) and the causal mechanism
relating cause and effect, represented by the conditional distribution P(Y |X), represent
independent mechanisms of nature is also the foundation of the approach of Information
Geometric Causal Inference (IGCI). This approach has been introduced by [Dan+10], where,
instead of approximating algorithmic complexity, the orthogonality of independent distributions
in information space is exploited. The authors show that their approach even works in a
deterministic, noise-free scenario. In such a scenario, one has X = f(Y ) and because of the
bijectivity one also can state Y = f−1(X). The concept of IGCI is the thought that given
independence between P(X) and f , the covariance of P(X) and | log(f ′)| being considered
as random variables, should vanish. Here the covariance w.r.t. some reference distribution is
considered, in the simplest case, the uniform distribution on [0, 1]. The authors arrive at the
score

CIGCI
X→Y ≡

∫
dx log(|f ′(x)|)P(x)−

∫
dy log(|g′(y)|)P(y) = −CIGCI

Y→X (2.15)
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and infer X → Y whenever CIGCI
X→Y > 0 and Y → X otherwise. The authors show that Eq.

2.15 is is equivalent to the difference of Shannon entropies, i.e.

CIGCI
X→Y = S(P(X))− S(P(Y )) (2.16)

with the Shannon entropy

S(U) ≡ −
∫

dxU(x) logU(x) (2.17)

which they estimate on finite sample data x,y ∈ [0, 1]N via:

Ŝ(x) ≡ ψ(N)− ψ(1) + 1
N − 1

N−1∑
i=1

log |xi+1 − xi| (2.18)

where ψ(x) = d
dx log Γ(x), the Digamma function. In 2.18, the samples are assumed to be in

non-decreasing order, i.e. xi ≤ xi+1. Further, the convention log(0) = 0 is assumed, so that
repeated samples with xi+1 − xi = 0 do not contribute to Ŝ(x).

As a main drawback we consider the restriction to noiseless (or almost noiseless, the authors
show that their work can be extended to models with small noise) case. Also the independence
with respect to certain reference distributions is essential, as pointed out by the authors
themselves. Furthermore, as [SZ16] remarks, the introduced method also relies on P(X) and
| log(f ′)| being complex enough that they can be assessed for empirical results.

2.2.7. Learning Methods - CGNN

A recent publication [Gou+17] introduced a neural network-based approach for causal inference.
The authors use neural networks with one hidden layer and a ReLU activation function (see
e.g. [Bis06] for a detailed introduction on neural networks), taking samples from one variable,
e.g. X, as the input and fitting the output to the other variable Y . The loss function is the
(empirical) Maximum Mean Discrepancy, introduced by [Gre+07]:

Definition 7. Given a kernel k : X × X → R and random variables X,Y on X , the
MMD can be defined as

MMDk(X,Y ) = ||EXk(·, X)− EY k(·, Y )||Hk (2.19)

and can be estimated from samples x = (x1, ..., xN ) ←↩ X, y = (y1, ..., yN ′) ←↩ Y as the
empirical MMD, given by:

M̂MDk(x,y) = 1
N2

N∑
ij

k(xi, xj) + 1
N2

N ′∑
ij

k(yi, yj)−
2

NN ′

N∑
i

N ′∑
j

k(xi, yj) (2.20)

The authors use a Gaussian kernel where the bandwidth γ is a hyperparameter to be set.
After a training phase, in which the neural network is being tuned to predict the distribution
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for Y given the samples from X, the empirical MMD between the given samples y and the
samples ŷ(x) predicted by neural network is being measured. The same is done for the reverse
direction, Y → X. The direction with the smaller MMD is then the preferred one. A known
advantage of this method is that neural networks are universal approximators, meaning that
basically every function can be approximated. The authors find that their method performs
quite well, outperforming all other methods in the real-world data TCEP-benchmark.
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3. Bayesian Inference Model

3.1. Our Contribution and the Formalism of IFT

Our contribution incorporates the concept of Bayesian model selection. As already briefly
outlined in 2.2.4, this concept compares two competing models, in our case X → Y and
Y → X, and asks for the ratio of the marginalized likelihoods,

OX→Y = P(d|X → Y,M)
P(d|Y → X,M)

Where M denotes the hyperparameters which are assumed to be the same for both models.

In the setting of the present causal inference problem, such an approach has already been used
by [Ste+10]. In contrast to the above publication we will use the formalism of information
field theory (IFT), introduced by [EFK09].

IFT considers signal fields s which reflect a physical state ψ, s = s[ψ] and follows some
probability s←↩ P(s). Such signal fields usually have infinite degrees of freedom, this makes
them an adequate choice to model our distribution of the cause variable and the function
relating cause and effect.

Throughout the following we will consider X → Y as the true underlying direction which we
derive our formalism on. The derivation for Y → X will follow analogously by switching the
variables.

3.2. A Shallow Inference Model

We will begin with deriving in 3.2.1 the distribution of the cause variable, P(X|X → Y,M)
where M defines a set of assumptions and hyperparameters we impose on the model and
are yet to be specified. In 3.2.2 we continue by considering the conditional distribution
P(Y |X,X → Y,M). Combining those results, we compute then the full Bayes factor in 3.2.3.
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P(β|Pβ) = N (β|0,F†PβF)

β

P(x|β) ∝ eβ(x)

x ∈ RN

P(f |Pf ) = N (f |0,F†PfF)

f

P(ε|ς) = N (ε|0, ς21)

ε ∈ RN

y = f(x) + ε

Figure 3.1.: Overview over the most shallow Bayesian hierarchical model considered, for the case
X → Y

3.2.1. Distribution of the Cause Variable

Basic Considerations

Without imposing any constraints, we reduce our problem to the interval [0, 1] by assuming
that X = Y = [0, 1]. This can always be ensured by rescaling the data. Now we make the
assumption that in principle, the cause variable X follows a lognormal distribution.

P(x|β) ∝ eβ(x) (3.1)

with β ∈ R[0,1], being some signal field which follows a zero-centered normal distribution,
β ∼ N (β|0, B).
Here we write B for the covariance operator Eβ∼P(β)[β(x0)β(x1)] = B(x0, x1). We note
that this is equivalent to the definition of β as a Gaussian Process which would be β(x) =
GP(0, B(x, x′)) using the notation of [RW06].

We postulate statistical homogeneity 1 ). for the covariance, that is

Eβ∼P(β)[β(x)] = E[β(x+ t)] (3.2)
Eβ∼P(β)[β(x)β(y)] = E[β(x+ t)β(y + t)] (3.3)

i.e. first and second moments should be independent on the absolute location. The Wiener-
Khintchine Theorem now states that the covariance has a spectral decomposition, i.e. it

1This property is called stationarity in the context of stochastic processes (see e.g. [Cha16]
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is diagonal in Fourier space, under this condition (see e.g. [Cha16]). Denoting the Fourier
transform by F , i.e. in the one dimensional case, F [f ](q) = (2π)−

1
2
∫

dx e−iqxf(x). Therefore,
the covariance can be completely specified by a one dimensional function:

(FBF−1)(k, q) = δ(k − q)Pβ(k) (3.4)

Here, Pβ(k) is called the power spectrum in the formalism of IFT [EFK09].

A Poisson Lognormal Approach for Handling Discretization

Building on these considerations we now regard the problem of discretization. Measurement
data itself is usually not purely continuous but can only be given in a somewhat discretized
way (e.g. by the measurement device itself or by precision restrictions imposed from storing
the data). Another problem is that many numerical approaches to inference tasks, such as
Gaussian Process regression, use finite bases as approximations in order to efficiently obtain
results [Moo+16; Ste+10]. Here, we aim to directly confront these problems by imposing a
formalism where the discretization is inherent.

So instead of taking a direct approach with the above formulation, we use a Poissonian approach
and consider an equidistant grid {z1, ..., znbins} in the [0, 1] interval. This is equivalent to
defining bins, where the zj are the midpoints of the bins. We now take the measurement counts,
ki which gives the number of x-measurements within the i-th bin. For these measurement
counts we now take a Poisson lognormal distribution as an Ansatz, that is, we assume that
the measurement counts for the bins are Poisson distributed, where the means follow a
lognormal distribution. We can model this discretization by applying a response operator
R : R[0,1] → Rnbins to the lognormal field. This is done in the most direct way via employing a
delta distribution

Rjx ≡ δ(x− zj) (3.5)
(3.6)

In order to allow for a more compact notation we will use an index notation from now on,
e.g. fx = f(x) for some function f or Oxy = O(x, y) for some operator O. Whenever the
indices are suppressed, an integration (in the continuous case) or dot product (in the discrete
case) is understood, e.g. (Of)x ≡ Oxyfy =

∫
dyOxyfy =

∫
dyO(x, y)f(y) In the following we

will use bold characters for finite dimensional vectors, e.g. λ ≡ (λ1, ..., λnbins)T . By inserting
such a finite dimensional vector in the argument of a function, e.g. β(x) we refer to a vector
consisting of the function evaluated at each entry of x, that is (β(z) ≡ (β(z1), ..., β(znbins)).
Later on we will use the notation ·̂ which raises some vector to a diagonal matrix (x̂ij ≡ δijxi).
We will use this notation analogously for fields, e.g. (β̂uv ≡ δ(u− v)β(u)). Now we can state
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the probability distribution for the measurement counts kj :

P(kj |λj) =
λ
kj
j e
−λj

kj !
(3.7)

λj = E(k|β)[kj ] = ρeβzj =
∫
dxRjxe

βx = ρ(Reβ)j (3.8)

λ = ρReβ = ρeβ(z) (3.9)

P(k|λ) =
∏
j

λ
kj
j e
−λj

kj !
=
∏
j

(Rjeβ)kje−Rjeβ

kj !
=

(
∏
j(Rjeβ)kj )e−1†Reβ∏

j kj !
(3.10)

P(x|k) = 1
N ! (3.11)

Eq. 3.11 follows from the consideration that given the counts (k1, ..., knbins) for the bins,
only the positions of the observations (x1, ..., xN ) is fixed, but the ordering is not. The N
observations can be ordered in N ! ways.

Now considering the whole r-vector of bin counts k at once, we get

P(k|β) = e
∑

j
kjβ(zj)e−ρ

†eβ(z)∏
j kj !

= ek
†β(z)−ρ†eβ(z)∏

j kj !
(3.12)

(3.13)

Marginalizing β we get

P(x|Pβ, X → Y ) = 1
N !

∫
D[β]P(x|β,X → Y )P(β|Pβ)

= 1
N ! |2πB|

− 1
2

∫
D[β]e

k†β(z)−ρ†eβ(z)∏
j kj !

e−
1
2β
†B−1β =

= |2πB|−
1
2

N !
∏
j kj !

∫
D[β]e−γ[β] (3.14)

where

γ[β] ≡ −k†β(z) + ρ†eβ(z) + 1
2β
†B−1β. (3.15)

We approach this integration by a saddle point approximation. In the following we will denote
the functional derivative by ∂, i.e. ∂fz ≡ δ

δf(z) .

Taking the first and second order functional derivative of γ w.r.t. β we get (

∂βγ[β] = −k† + ρ(eβ(z))† + β†B−1 (3.16)

∂β∂βγ[β] = ρ̂eβ(z) +B−1 (3.17)
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The above derivatives are still defined in the space of functions R[0,1], that is

k†u ≡
nbins∑
j=1

kj(R̃j)u

(ρ̂eβ(z))uv = ρ
nbins∑
j=1

(R̃j)u(R̃j)veβ(u)

i.e. a diagonal operator with eβ(z) as diagonal entries.

Let β0 denote the function that minimizes the functional γ, i.e.

δγ[β]
δβ

∣∣∣∣
β=β0

= 0 (3.18)

We expand the functional γ up to second order around β0:∫
D[β]e−γ[β] =

∫
D[β]e−γ[β0]−( δγ[β]

δβ
|β=β0 )†β− 1

2β
†( δ

2γ[β]
δβ†β

|β=β0 )β+O(β3)

≈ e−γ[β0]

∣∣∣∣∣∣2π
(
δ2γ[β]
δβ2 |β=β0

)−1
∣∣∣∣∣∣

1
2

= e+k†β0−ρ†eβ0− 1
2β
†
0B
−1β0

∣∣∣∣ 1
2π (ρ̂eβ0 +B−1)

∣∣∣∣− 1
2

(3.19)

where we dropped higher order terms of β, used that the gradient at β = β0 vanishes and
evaluated the remaining Gaussian integral.

Plugging the result (3.19) into (3.14) and using

|2πB|−
1
2

∣∣∣∣ 1
2π (ρ̂eβ0 +B−1)

∣∣∣∣− 1
2

=
∣∣∣B(ρ̂eβ0 +B−1)

∣∣∣− 1
2 =

∣∣∣ρBêβ0 + 1
∣∣∣− 1

2 (3.20)

we get:

P(x|Pβ, X → Y ) ≈ 1
N !

e+k†β0−ρ†eβ0− 1
2β
†
0B
−1β0∣∣∣ρBêβ0 + 1

∣∣∣ 1
2 ∏

j kj !
(3.21)

H(x|Pβ, X → Y ) ≈ H0 + 1
2 log |ρBêβ0 + 1̂|+ log(

∏
j

kj !)− k†β0 + ρ†eβ0 + 1
2β
†
0B
−1β0

(3.22)

where H(·) ≡ − log(P(·)) is called the information Hamiltonian and H0 collects all terms
which do not depend on the data d.

17



3.2.2. Functional Relation of Cause and Effect

Similarly to β, we suppose a Gaussian distribution for the function f , relating Y to X:

R[0,1] 3 f ∼ N (0|f, F ) (3.23)

Proposing a Fourier diagonal covariance F once more, determined by a power spectrum Pf :

(FFF−1)(k, q) = δ(k − q)Pf (k) (3.24)

we assume additive Gaussian noise, using the notation f(x) ≡ (f(x1), ..., f(xN ))T and ε ≡
(ε1, ..., εN )T , we have

y = f(x) + ε (3.25)
ε ∼ N (ε|0, E) (3.26)
E ≡ diag(ς2, ς2, ...) = ς21 ∈ RN×N (3.27)

that is each independent noise sample is drawn from a zero-mean Gaussian distribution with
given variance ς2.

Knowing the noise e , the cause x and the causal mechanism f completely determines y via
3.25. Therefore, P(y|x, f, ε, X → Y ) = δ(y − f(x)− ε), where δ(·) denotes the Dirac delta
distribution. We can now state the conditional distribution for the effect variable measurements
y, given the cause variable measurements x. Marginalizing out the dependence on the relating
function f and the noise ε we get:

P(y|x, Pf , ς,X → Y ) =
∫
D[f ] dNεP(y|x, f, ε, X → Y )P(ε|ς)P(f |Pf )

=
∫
D[f ] dNεδ(y − f(x)− ε)N (ε|0, E)N (f |0, F )

(3.28)

We will now use the Fourier representation of the delta distribution, specifically δ(x) =∫ dq
2πe

iqx

δ(y − f(x)− ε) =
∫ dNq

(2π)N e
iq†(y−ε−f(x)) =

∫ dNq
(2π)N e

iq†(y−ε−f(x)) (3.29)

Once more we employ a vector of response operators, mapping RR to RN ,

Rx ≡ (R1x, ..., RNx)T = (δ(x− x1), ..., δ(x− xN ))T (3.30)

This allows to represent the evaluation f(x) = R † f , i.e. as a linear dot-product. Using the
well known result for Gaussian integrals with linear terms (see e.g. [GBR13]),∫

D[u]e−
1
2u
†Au+b†u =

∣∣∣∣ A2π
∣∣∣∣− 1

2
e

1
2 b
†Ab (3.31)
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we are able to analytically do the path integral over f ,

P(y|x, Pf , ς,X → Y ) = |2πF |−
1
2

∫
D[f ] dNε dNq

(2π)N e
iq†(y−ε−R†f)− 1

2f
†F−1fN (ε|0, E)

=
∫

dNε dNq
(2π)N e

iq†(y−ε)+(−i)2 1
2q
†R†FRqN (ε|0, E) (3.32)

Now we do the integration over the noise variable, ε, by using the equivalent of Eq. 3.31 for
the vector-valued case:

P(y|x, Pf , ς,X → Y ) = |2πE|−
1
2

∫
dNε dNq

(2π)N e
iq†(y−ε)− 1

2q
†R†FRq− 1

2ε
†E−1ε

=
∫ dNq

(2π)N e
iq†y− 1

2q(R†FR+E)q (3.33)

In the following we will write RN×N 3 F̃ = R†FR, with entries F̃ij = F (xi, xj).2 The
integration over the Fourier modes q, again via the multivariate equivalent of 3.31, will give
the preliminary result:

P(y|x, Pf , ς,X → Y ) =
∫ dNq

(2π)N e
iq†y− 1

2q(F̃+E)q

= (2π)−
N
2

∣∣∣F̃ + E
∣∣∣− 1

2 e−
1
2y
†(F̃+E)−1y (3.34)

3.2.3. Computing the Bayes factor

Now we are able to calculate the full likelihood of the data d = (x,y) given our assumptions
Pβ, Pf , ς for the direction X → Y and vice versa Y → X. As we are only interested in the
ratio of the probabilities and not in the absolute probabilities itself, it suffices to calculate the
Bayes factor:

OX→Y = P(d|Pβ, Pf , ς,X → Y )
P(d|Pβ, Pf , ς, Y → X)

= exp[H(d|Pβ, Pf , ς, Y → X)−H(d|Pβ, Pf , ς,X → Y )] (3.35)

Above we used again the information Hamiltonian H(·) ≡ − logP(·)

Making use of (3.21) and (3.34) we get, using the calculus for conditional distributions on the
Hamiltonians, H(A,B) = H(A|B) +H(B)

H(d|Pβ, Pf , ς,X → Y ) = H(x|Pβ, X → Y ) +H(y|x, Pf , ς,X → Y )

= H0 + log(
∏
j

kj !) + 1
2 log |ρBêβ0 + 1| − k†β0+

+ ρ†eβ0 + 1
2β
†
0B
−1β0 + 1

2y
†(F̃ + E)−1y + 1

2

∣∣∣F̃ + E
∣∣∣ (3.36)

2This type of matrix, i.e. the evaluation of covariance or kernel at certain positions, is sometimes called a
Gram matrix.
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Where we suppressed the dependence of F̃ , β0 on x (for the latter, the dependence is not
explicit, but rather implicit as β0 is determined by the minimum of the x-dependent functional
γ).

We omit stating H(d|Pβ, Pf , ς, Y → X) explicitly as the expression is just given by taking
(3.36) and switching x and y or X and Y , respectively.

3.3. Inference of the Noise Variance

3.3.1. Unknown Variance of the Noise

So far we assumed the variance of the noise to be known and identical, εi ∼ N (εi|0, ς2). We
want to relax this condition, allowing the noise variance to be a priori unknown and position
dependent by substituting ς2 = ς(x)2 → eη(x), where η ∈ R[0,1]

ε ∼ N (ε|0, E(x)) (3.37)

E(x) = diag(eη(x1), eη(x2), ..., eη(xN )) = êη(x) (3.38)

⇒ |E| =
N∏
i

eη(xi) = e1
†η(x) (3.39)

We further argue that there exists a spatial correlation in the noise level, meaning that points
x, x′ which are close are affected by a similar noise variance eη(x), eη(x′). We incorporate this
consideration by constraining the derivative ∇eη(x) with a prior:

P(η|ση) = Z[ση]−1e
− 1

2ση

∫
dq|∇η(q)|2 ∝ e−

1
2ση

η†∇†∇η (3.40)

where we dropped the normalization factor Z[ση] =
∫
D[η]e−

1
2ση

η†∇†∇η =
∣∣∣∇†∇2πση

∣∣∣− 1
2 as it

depends only on the hyper parameter ση which we can set to a canonical value.

We remark that it would be possible to introduce a similar inference structure for the function
η as for the functions β and f . This would mean a functional normal distribution for η with a
Fourier diagonal covariance matrix given by a power spectrum Pη which itself can be assumed
to be set as a fixed hyperparameter (or to be just constrained by some prior distribution and
made part of the inference). However at this point we choose to refrain from this step in order
to avoid the resulting model from being unnecessary complex.
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P(β|Pβ) = N (β|0,F†PβF)

β

P(x|β) ∝ eβ(x)

x ∈ RN

P(f |Pf ) = N (f |0,F†PfF)

f

ση ∈ R+

P(η|ση) ∝ e
− 1

2ση
η†∇†∇η

η

P(ε|ς) = N (ε|0, êη(x)

ε ∈ RN

y = f(x) + ε

Figure 3.2.: Overview over the Bayesian hierarchical model, for the case X → Y . The power spectra
Pβ , Pf are given as hyperparameters, but the noise variance is part of the inference.

3.3.2. Marginalization of the Noise Variance

Marginalizing out the noise variance in (3.34) gives

P(y|x, Pf , ση, X → Y ) =
∫
D[f, η] dNεP(y|x, τf , η,X → Y )P(ε|η)P(f |Pf )P(η|ση) ∝

∝
∫
D[η]

∣∣∣∣F̃ + êη(x)
∣∣∣∣− 1

2
exp

(
−1

2y
†(F̃ + êη(x))−1y − 1

2ση
η∇†∇η

)
(3.41)

again omitting the normalization factors depending only on ση and the 1√
2πN

factor.

In order to tackle the integration we again employ the Laplace approximation, introducing
the energy functional γη : R[0,1] → R:

γη[η] ≡ 1
2 log

∣∣∣∣F̃ + êη(x)
∣∣∣∣+ 1

2y
†(F̃ + êη(x))−1y + 1

2ση
η∇†∇η (3.42)

We now need to compute the first and second order derivatives of γη(η) w.r.t. η. Especially

the derivatives of the logarithmic determinant log
(∣∣∣∣F̃ + êη(x)

∣∣∣∣) are non-obvious, so we will
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explicitly derive these. We begin by remarking that for some non-singular matrix or operator
A, we have the identity [SN10]

log |A| = tr log(A) (3.43)

Applying the chain rule here gives the formula:

∂|A[t]|
∂t

= |A[t]|tr
[
A−1

(
∂A[t]
∂t

)]
(3.44)

We further make the abbreviation:

G[η] ≡ (F̃ [τf ] + êη(x))−1 (3.45)

Finally we will use the relation:

0 = ∂1

∂t
= ∂A[t]A[t]−1

∂t
= ∂A[t]

∂t
A[t]−1 +A[t]∂A[t]−1

∂t

⇒∂A[t]−1

∂t
= −A[t]−1∂A[t]

∂t
A[t]−1 (3.46)

We therefore get:

∂ηu log
∣∣∣∣F̃ + êη(x)

∣∣∣∣ = tr
(
G[η] ∂ηu(F̃ + êη(x))

)
= tr

(
G[η] ̂eη(x)δxu

)
(3.47)

∂ηv∂ηu log
∣∣∣∣F̃ + êη(x)

∣∣∣∣ = tr
(

(∂ηvG) ̂eη(x)δxu +G[η](∂ηv ̂eη(x)δxu)
)

= tr
(
−G[η] ̂eη(x)δxvG[η] ̂eη(x)δxu + δuvG[η] ̂eη(x)δxu

)
(3.48)

The derivatives of the other terms are rather straight-forward:

∂ηuy
†(F̃ + êη(x))−1y = −y†G[η] ̂eη(x)δxuG[η]y (3.49)

∂ηv∂ηuy
†(F̃ [τf ] + êη(x))−1y = y†

(
2G[η] ̂eη(x)δxuG[η] ̂eη(x)δxvG[η]−G[η] ̂eη(x)δxuδuvG[η]

)
y

(3.50)

∂ηu
1

2ση
η∇†∇η = 1

ση
(η∇†∇)u

∂ηv∂ηu
1

2ση
η∇†∇η = 1

ση
(∇†∇)uv (3.51)

We thus have the gradient:

∂ηuγη[η] = 1
2tr

(
G[η] ̂eη(x)δxu

)
− 1

2y
†G[η] ̂eη(x)δxuG[η]y + 1

ση
(η∇†∇)u (3.52)
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and the curvature

∂ηv∂ηuγη[η] =tr
(
−G[η] ̂eη(x)δxvG[η] ̂eη(x)δxu + δuvG[η] ̂eη(x)δxu

)
+ 1

2y
†
(

2G[η] ̂eη(x)δxuG[η] ̂eη(x)δxvG[η]−G[η] ̂eη(x)δxuδuvG[η]
)
y

+ 1
ση

(∇†∇)uv ≡

≡Γη[η] (3.53)

We write the the density in 3.41 in an exponential form, using the energy defined in 3.42:

P(y|x, Pf , ση, X → Y ) ∝
∫
D[η]e−γη [η] (3.54)

And expand up to second order in η around η0 = argmin
η∈R[0,1]

γη[η]:

P(y|x, Pf , ση, X → Y ) ∝
∫
D[η]e−γη [η0]−( δγη [η]

δη
|η=η0 )†η− 1

2η
†( δ

2γη [η]
δη†η

|η=η0 )η+O(η3)

≈e−γη [η0]
∣∣∣∣∣2π(δ

2γη[η]
δη2 |η=η0)−1

∣∣∣∣∣
1
2

=e
− 1

2 log
∣∣∣F̃+êη0(x)

∣∣∣− 1
2y
†(F̃+êη0(x))−1y− 1

2ση
η0∇†∇η0

∣∣∣∣ 1
2πΓη[η0]

∣∣∣∣− 1
2

(3.55)

Using the result above, we can state the information Hamiltonian for the causal direction
X → Y :

H(d|Pβ, Pf , ση, X → Y ) = H(x|Pβ, X → Y ) +H(y|x, Pf , ση, X → Y )

= H0 + log(
∏
j

kj !) + 1
2 log |ρBêβ0 + 1| − k†β0 + ρ†eβ0

+ 1
2 log

∣∣∣∣ 1
2πΓη[η0]

∣∣∣∣+ 1
2β
†
0B
−1β0 + 1

2 log
∣∣∣∣F̃ + êη0(x)

∣∣∣∣
+ 1

2y
†(F̃ + êη0(x))−1y + 1

2ση
η0∇†∇η0 (3.56)

3.4. Inference of Power Spectra

3.4.1. Unknown Power Spectra

So far we assumed the power spectra Pβ, Pf to be given. We can approach a deeper model
selection by expanding our inference on the power spectra itself and just assuming a somewhat
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smooth structure for the power spectra as a prior distribution. Assuming smoothness on a
logarithmic scale gives:

Pβ/f (q) = eτβ/f (q) (3.57)

H(τβ/f |σβ/f ) = − log(Z[σβ/f ])1
2

∫
d log(q)σ−2

β/f

(
∂2τβ/f (q)
∂(log q)2

)2

(3.58)

P(τβ/f |σβ/f ) = Z[σβ/f ]−1e
− 1

2σβ/f
τ†
β/f

∆†∆τβ/f (3.59)

here,

Z[σβ/f ] ≡
∫
D[τ ]e

− 1
2σβ/f

τ†∆†∆τ
=
∣∣∣∣∣ ∆†∆
2πσβ/f

∣∣∣∣∣
− 1

2

(3.60)

serves as a normalization factor.

3.4.2. Marginalization of the Cause Distribution Power Spectrum

We can now perform a marginalization of the power spectrum Pβ = eτβ in (3.14). We can use
that B = (F†êτβF) and thus |B| = |F†||êτβ ||F| = |êτβ |

P(x|σβ, X → Y ) =
∫
D[τβ]P(x|τβ, σβ, X → Y )P(τβ|σβ) ∝

∝
∫
D[β, τβ] |2πê

τβ |−
1
2∏

j kj !
e
k†β(z)−ρ†eβ(z)− 1

2β
†F†ê−τβFβ− 1

2σβ
τ†
β

∆†∆τβ (3.61)

where we used B−1 = (F†êτβF)−1 = F†ê−τβF

3.4.3. Marginalization of the Power Spectrum for the Causal Mechanism

We perform a similar marginalization over τf for the likelihood of y, given x. We begin by
noting:

F̃ij = F (xi, xj) = (F†êτfF)(xi, xj)

=
∫ 1

2π dq dq′eixiqe−ixjq′eτf (q)δ(q − q′)

=
∫ 1

2π dqeiq(xi−xj)eτf (q)

= F [eτf ](xi − xj) (3.62)
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From (3.41) we now get

P(y|x, σf , η)X→Y =
∫
D[τf ]P(y|x, τf , η)X→Y P(τf |σf ) ∝

∝
∫
D[τf ]|êη(x)|

1
2

∣∣∣∣F̃ + êη(x)
∣∣∣∣− 1

2
e
− 1

2y
†(F̃+êη(x))−1y− 1

2σf
τ†
f

∆†∆τf

(3.63)

H(y, τf |x, σf , η)X→Y +H′ −
1
2 log |êη(x)|+ 1

2 log
∣∣∣∣F̃ + êη(x)

∣∣∣∣
+ 1

2y
†(F̃ + êη(x))−1y − 1

2σf
τ †f∆†∆τf (3.64)

where we again collected data-independent factors as 1√
2πN

and Z[σf ]−1 in H′.

This leads to the marginalized likelihood for y given x for the deep model,

P(y|x, Pf , ση, X → Y ) =
∫
D[f, η] dNεP(y|x, τf , η,X → Y )P(ε|η)P(f |σf )P(η|ση) ∝

∝
∫
D[η]

∣∣∣∣F̃ + êη(x)
∣∣∣∣− 1

2
exp

(
−1

2y
†(F̃ + êη(x))−1y + 1

21
†η(x)

− 1
2σf

τ †f∆†∆τf −
1

2ση
η∇†∇η

)
(3.65)

3.4.4. Evidence for the Deep Hierarchical Model

We summarize the background assumptions (which includes the model, the hyper parameters
and the causal direction) into a hypothesis H1 and H−1 respectively:

H1 ≡ (σβ, σf , ση, X → Y )
H−1 ≡ (σβ, σf , ση, Y → X) (3.66)

For the full evidence, given the Hypothesis H1:

P(d|H1) =P(x|σβ, X → Y )P(y|x, σf , ση,X → Y ) ∝

∝
∫
D[β, τβ, τf , η]

∣∣∣∣F̃ [τf ] + êη(x)
∣∣∣∣− 1

2 |2πêτβ |−
1
2∏

j kj !
×

× exp
(
k†β(z)− ρ†eβ(z) − 1

2β
†F†ê−τβFβ

−1
2y
†(F̃ [τf ] + êη(x))−1y + 1

21
†η(x)−

− 1
2σβ

τ †β∆†∆τβ −
1

2σf
τ †f∆†∆τf −

1
2ση

η∇†∇η
)

(3.67)
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σβ ∈ R+

P(τβ|σβ) ∝ e
− 1

2σβ
τ†
β

∆†∆τβ

τβ

P(β|τβ) = N (β|0,F†êτβF)

β

P(x|β) ∝ eβ(x)

x ∈ RN

σf ∈ R+

P(τf |σf ) ∝ e
− 1

2σf
τ†
f

∆†∆τf

τf

P(f |τf ) = N (f |0,F†êτfF)

f

ση ∈ R+

P(η|ση) ∝ e
− 1

2ση
η†∇†∇η

η

P(ε|η) = N (ε|0, êη(x))

ε ∈ RN

y = f(x) + ε

Figure 3.3.: Overview over the Bayesian hierarchical model for the case X → Y . Here, besides
the model itself, only strength parameters for the smoothness of the fields are fixed as
Hyperparameters (H1).
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3.4.5. Simultaneous Laplace Approximation

The energy

Once more we want to tackle the integration of Eq. 3.67 via a Laplace approximation. In
this case however, we cannot divide the integration over β, τβ into two separate ones, same
as for the integration over η, τf . We will therefore simultaneously find the arguments which
maximize the expression under the integral. To do so we rewrite the above expression into an
exponential form under the integrals, separating the integrations over β, τβ and η, τf :

P(d|H1) = 1∏
j kj !

[∫
D[β, τβ] exp

(
−1

2 log
∣∣∣2πêτβ ∣∣∣+ k†β(z)− ρ†eβ(z)

−1
2β
†F†ê−τβFβ − 1

2σβ
τ †β∆†∆τβ

)] [∫
D[η, τf ] exp

(
−1

2 log
∣∣∣∣F̃ [τf ] + êη(x)

∣∣∣∣
−1

2y
†(F̃ [τf ] + êη(x))−1y + 1

21
†η(x)− 1

2σf
τ †f∆†∆τf −

1
2ση

η∇†∇η
)]
≡

≡ 1∏
j kj !

[∫
D[β, τβ]e−γξ[β,τβ ]

] [∫
D[η, τf ]e−γζ [η,τf ]

]
(3.68)

Above we exploited that the probability density under the integrals factorizes into terms
depending on either β, τβ or η, τf , i.e. either on fields that determine the cause distribution
or the causal mechanism, but not on both. We write R[0,1] ⊕ RR+ 3 ξ ≡ (β, τβ) and
R[0,1] ⊕ RR+ 3 ζ ≡ (η, τf ).

We introduced the energy functionals:

γξ[β, τβ] ≡1
2 log

∣∣∣2πêτβ ∣∣∣− k†β(z) + ρ†eβ(z) + 1
2β
†F†ê−τβFβ + 1

2σβ
τ †β∆†∆τβ (3.69)

γζ [η, τf ] ≡1
2 log

∣∣∣∣F̃ [τf ] + êη(x)
∣∣∣∣+ 1

2y
†(F̃ [τf ] + êη(x))−1y − 1

21
†η(x)

+ 1
2σf

τ †f∆†∆τf + 1
2ση

η∇†∇η (3.70)

We consider the fields that minimize the energies:

ξ0 ≡ argmin
ξ∈R[0,1]⊕RR+

γξ[ξ] (3.71)

ζ0 ≡ argmin
ζ∈R[0,1]⊕RR+

γζ [ζ] (3.72)

Again we perform a second-order expansion of γξ, γζ around ξ0, ζ0 w.r.t. ξ and ζ respectively.
In the following we will denote the curvatures by Γξ[ξ] ≡ δ2

δξ†δξ
γξ[ξ] and Γζ [ζ] ≡ δ2

δζ†δζ
γζ [ζ].

Omitting terms of higher order and exploiting the vanishing gradient (and thus first order) we

27



end up with:

P(d|H1) = 1∏
j kj !

[∫
D[ξ]e

−γξ[ξ0]−( δ
δξ
γξ[ξ]|ξ=ξ0 )ξ− 1

2 ξ
†Γξ[ξ]|ξ=ξ0ξ+O(ξ3)

]
×

×
[∫
D[ζ]e

−γζ [ζ0]−( δ
δζ
γζ [ζ]|ζ=ζ0 )ζ− 1

2 ζ
†Γζ [ζ]|ζ=ζ0ζ+O(ζ3)

]
≈

≈ 1∏
j kj !

∣∣∣∣ 1
2πΓξ[ξ]|ξ0

∣∣∣∣− 1
2
∣∣∣∣ 1
2πΓζ [ζ]|ζ0

∣∣∣∣− 1
2
e−γξ[ξ0]−γζ [ζ0] (3.73)

To specify the approximation we need to compute the derivatives of first and second order

Derivatives of γξ

We give the explicit computations in A.1, stating only the results here. We have the gradient:

∂βuγξ[β, τβ] = −ku + ρ(eβ(z))† +
(
β†F†ê−τβF

)
u

(3.74)

∂τβuγξ[β, τβ] = 1
2 −

1
2β
†F†ê−τβδuFβ +

(
1
σβ
τ †β∆†∆

)
u

(3.75)

The curvature, Γξ[β, τβ] has non-vanishing mixed derivatives,

Γξ[β, τβ] =

 δ2γξ
δβ†δβ

δ2γξ
δβ†δτβ

δ2γξ

δτ†
β
δβ

δ2γξ

δτ†
β
δτβ

 (3.76)

We have the terms

∂βu∂βvγξ[β, τβ] =
(
ρ̂eβ(z)

)
uv

+
(
F†ê−τβF

)
uv

(3.77)

∂τβu∂τβv γξ[β, τβ] = 1
2δuvβ

†F†ê−τβδzFβ +
(

1
σβ

∆†∆
)
uv

(3.78)

∂τβu∂βvγξ[β, τβ] = −
(
β†F†ê−τβδvF

)
u

= ∂βv∂τβuγξ[β, τβ] (3.79)

Exploiting that for some block matrix we have ([Sil00]):

det
(
A B
C D

)
= det(A) det(D − CA−1B) = det(D) det(A−BD−1C) (3.80)

under the condition that both, A and D, are invertible. we get:

det Γξ =

∣∣∣∣∣ δ2γ

δβ†δβ

∣∣∣∣∣
∣∣∣∣∣∣ δ2γ

δτ †βδτβ
− δ2γ

δτ †βδβ

(
δ2γ

δβ†δβ

)−1
δ2γ

δβ†δτβ

∣∣∣∣∣∣
 (3.81)
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Derivatives of γζ

Making the definitions

Λ : R→ CN×N

Λ(u)ij = (F†êτf δuF)xixj (3.82)

Again we refer to the explicit computation of the derivatives in A.2, only giving the results
here For the gradient we get:

∂ηuγζ [η, τf ] = 1
2tr

(
G ̂eη(x)δxu

)
− 1

2y
†G ̂eη(x)Gδxuy −

1
2(x) +

(
1
ση
η†∇†∇

)
u

(3.83)

∂τfuγζ [η, τf ] = 1
2tr (GΛu)− 1

2y
†GΛuGy +

(
1
σf
τ †f∆†∆

)
u

(3.84)

(3.85)

And for the curvature,

Γζ [η, τf ] =

 δ2γζ
δη†δη

δ2γζ
δη†δτf

δ2γζ

δτ†
f
δη

δ2γζ

δτ†
f
δτf


We have the terms

∂ηu∂ηvγζ [η, τf ] = 1
2tr

(
−G ̂eη(x)δxuG

̂eη(x)δxv + δuvG
̂eη(x)δxv

)
+ 1

2y
†
(

2G ̂eη(x)δxuG
̂eη(x)δxvG−G ̂eη(x)δxuδuvG

)
y +

(
1
ση
∇†∇

)
uv

(3.86)

∂τfu∂τfv γζ [η, τf ] = 1
2tr (−GΛuGΛv +GΛuδuv)

+ 1
2y
† (2GΛuGΛvG−GΛuδuvG)y +

(
1
σf

∆†∆
)
uv

(3.87)

∂ηu∂τfv γζ [η, τf ] = −1
2tr

(
G ̂eη(x)δxuGΛv

)
+ y†G ̂eη(x)δxuGΛvGy = ∂τfv∂ηuγζ [η, τf ] (3.88)

Using again 3.80, we get:

det Γζ =


∣∣∣∣∣∣ δ2γ

δτ †fδτf

∣∣∣∣∣∣
∣∣∣∣∣∣∣
δ2γ

δη†δη
− δ2γ

δη†δτf

 δ2γ

δτ †fδτf

−1
δ2γ

δτ †fδη

∣∣∣∣∣∣∣
 (3.89)

We do not refrain the explicit terms at this place and refer to A.2 where these are explicitly
given.
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3.4.6. Bayes Factor for the Deep Model Selection

Plugging in the approximations above we can state the information Hamiltonian for the
evidence in a deep model selection, i.e. the only fixed hyperparameters are strength parameters
for the smoothness enforcing priors σβ, σf , ση:

H(d|H1) ≈H0 + log
∏
j

kj ! + 1
2 log

∣∣∣∣ 1
2πΓξ[ξ]|ξ0

∣∣∣∣+
+ 1

2 log
∣∣∣∣ 1
2πΓζ [ζ]|ζ0

∣∣∣∣+ γξ[ξ0] + γζ [ζ0] (3.90)

The model evidence for the reverse direction is again obtained by switching x and y in all
terms. The Bayes factor is then given by:

OX→Y = exp[−H(d|H1) +H(d|H−1)] (3.91)

IfOX→Y > 1, the Bayesian Model Selection suggests the causal direction X → Y , ifOX→Y < 1,
the other direction, Y → X is suggested instead. In case of equality, OX→Y = 1, no direction
is preferred. If one admits independence of the variables, i.e. neither X → Y or Y → X, the
Bayes factor being equal to 1 or very close would an indicator for this latter case.
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4. Implementation and Benchmarks

4.1. Sampling Causal Data via a Forward Model

To estimate the performance of our algorithm and compare it with other existing approaches,
a benchmark dataset is of interest to us. Such benchmark data is usually either real world
data, or synthetically produced one. While we will use the TCEP benchmark set [Moo+16]
in 4.4.5, we also want to use our outlined formalism to generate artificial data representing
causal structures. Based on our derivation for cause and effect we implement a forward model
to generate data d as following:

Algorithm 1. Sampling of causal data via forward model
Input: Power spectra Pβ, Pf ,
noise variance ς2, number of bins nbins,
approximate ∗ desired number of samples Ñ
Output: N samples (di) = (xi, yi) generated from a causal relation of either X → Y or
Y → X

1. Draw a sample field β ∈ R[0,1] from the distribution N (β|0, B)

2. Set an equally spaced grid with nbins points in the interval [0, 1]: z = (z1, ..., znbins), zi =
i−0.5
nbins

3. Calculate the vector of Poisson means λ = (λ1, ...λnbins) with λi ∝ eβ(zi)

4. At each grid point i ∈ {1, ..., nbins}, draw a sample ki from a Poisson distribution
with mean λi: ki ∼ Pλi(ki)

5. Set N =
∑nbins
i=1 ki,

6. For each i ∈ {1, ..., nbins} add ki times the element zi to the set of measured xj .
Construct the vector x = (..., zi, zi, zi︸ ︷︷ ︸

ki times

, ...)

7. Draw a sample field f ∈ R[0,1] from the distribution N (f |0, F ). Rescale f s.th.
f ∈ [0, 1][0,1].

8. Draw a multivariate noise sample ε ∈ RN from a normal distribution with zero mean
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and variance ς2, ε ∼ N (ε|0, ς2)

9. Generate the effect data y by applying f to x and adding ε: y = f(x) + ε)

10. With probability 1
2 return d = (xT ,yT ), otherwise return d = (yT ,xT ),

∗ As we draw the number of samples from Poisson distribution in each bin, we cannot deterministically
control the total number of samples

Comparing the samples for different power spectra (see Fig. 4.1), we decide to sample data
with power spectra P (q) = 1000

q4+1 and P (q) = 1000
q6+1 , as these seem to resemble ”natural”

mechanisms.

4.2. Implementation of the Bayesian Causal Inference

4.2.1. Implementation of the Shallow Model

Based on our derivation in 3.2 we propose a specific algorithm to decide the causal direction
of a given dataset and therefore give detailed answer for problem 1. Basically the task comes
down to find the minimum β0 for the saddle point approximation and calculate the terms
given in Eq. 3.36:

Algorithm 2. 2-variable causal inference
Input: Finite sample data d ≡ (x,y) ∈ RN×2, Hyperparameters Pβ, Pf , ς2, r
Output: Predicted causal direction DX→Y ∈ {−1, 1} where −1 represents the prediction
”Y → X” and 1 represents X → Y

1. Rescale the data to the [0, 1] interval. I.e. min{x1, ..., xN} = min{y1, ..., yN} = 0
and max{x1, ..., xN} = max{y1, ..., yN} = 1

2. Define an equally spaced grid of (z1, ..., znbins) in the interval [0, 1]

3. Calculate matrices B,F representing the covariance operators B and F evaluated
at the positions of the grid, i.e. Bij = B(zi, zj)

4. Find the β0 ∈ R[0,1] s.th. γ in Eq. 3.15 becomes minimal

5. Calculate the d-dependent terms of the information Hamiltonian in Eq. 3.36 (i.e.
all besides H0)

6. Repeat steps 4 and 5 with y and x switched
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Figure 4.1.: Different sampled fields from N (·|0,F†PF) with the power spectrum P (q) ∝ 1
q2+1 (top),

P (q) ∝ 1
q4+1 (middle), P (q) ∝ 1

q6+1 (bottom). On the left, the field values themselves are
plotted, on the right an exponential function is applied as in our formulation for λj ∝ eβ(zj)
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Figure 4.3.: Synthetic Datasets sampled via alg. 1. Blue scatter plots indicate a true causal direction
of X → Y , red scatter plots the direction Y → X
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7. Calculate the Bayes factor OX→Y

8. If OX→Y > 1, return 1, else return −1

We provide an implementation of alg. 2 in Python 2. We approximate the operators B,F as
matrices ∈ Rnbins×nbins , which allows us to explicitly numerically compute the determinants
and the inverse. As the most critical part we consider the minimization of β, i.e. step 4 in 2.
As we are however able to analytically give the curvature Γβ and the gradient ∂βγβ, we can
use a Newton-scheme here. We derive satisfying results (see Fig. 4.4 ) using the Newton-CG
algorithm [NW06], provided by the SciPy-Library [J+01]. After testing our algorithm on
different benchmark data, we choose the default hyperparameters as

Pβ = Pf ∝
1

q4 + 1 , (4.1)

ς2 = 0.01, (4.2)
r = 512, (4.3)
ρ = 1. (4.4)

While fixing the power spectra might seem somewhat arbitrary, we remark that this corresponds
to fixing a kernel e.g. as a squared exponential kernel, which is done in many publications
(e.g. [MST18; Gou+17])

4.2.2. Issues with the Implementation of the Deeper Models

We tested the possibility to implement the deeper models. In the noise inference model, as
described in 3.3, we need to go through two separate minimization phases. While the first
minimization is the same one as 4 in 2, the second one, i.e. determining η0, involves the explicit
numerical inversion of matrices ∈ Rnbins×nbins which depend on η when calculating the curvature
Γη[η]. Using again a Newton-scheme which involves several computations of the curvature in
each minimization step, this minimization becomes therefore vastly computationally expensive
and such too slow to handle it efficiently.

Implementing the ”deep” model as outlined in 3.4 would now involve finding numerical
representations for β, τβ, η, τf . Besides the computational complexity which would behave even
worse than mentioned above, one now has the difficulty that the minima β0 and τβ depend on
each other, i.e. a change in τβ will lead to a different β0. The same holds for η and τf . We
therefore leave these models at a theoretical state here and consider their implementation as
an option for future work to be done.

2https://github.com/MKurthen/BayesianCausalInference
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4.3. Methods for Comparison

We compare our outlined model, in the following called BCM, short for Bayesian Causal
Model, to a number of state-of-the-art approaches. The selection of the considered methods is
influenced by the ones in recent publications, e.g. [MST18; Gou+17].

As it is one of the oldest algorithms in the field and has been used as comparison in a variety of
publications, we include the LiNGAM algorithm. We also use the ANM algorithm [Moo+16]
with HSIC and Gaussian Process Regression (ANM-HSIC)

The ANM-MML approach [Ste+10] uses a Bayesian Model Selection, from the perspective
of formulation it is the closest to the algorithm proposed within this thesis, at least to our
best knowledge. This makes it an interesting reference and motivates the choice to include it
here.

We further include the IGCI algorithm, as it differs fundamentally in its formulation from
the ANM algorithms and has shown strong results in recent publications [Moo+16; Gou+17;
MST18]. We employ the IGCI algorithm with entropy estimation for scoring and a Gaussian
distribution as reference distribution.

Finally, CGNN [Gou+17] represents the rather novel influence of deep learning methods.
As it proved to perform generally well in different scenarios [Gou+17; MST18], we include
it in our comparison. We use the implementation provided by the authors, with itself uses
Python with the Tensorflow[Aba+15] library. The most critical hyper-parameter here is, as
the authors themselves mention, the number of hidden neurons. We set this number to a
value of nh = 30, as this is the default in the given implementation and delivers generally
good results. We use 8 runs each, in our eyes this represents a adequate trade-off between
unnecessary high computation time and bad performance for reasons of being too restrictive.

A comparison with the KCDC algorithm would be interesting, unfortunately the authors did
not provide any computational implementation so far (September 2018).

4.4. Results

4.4.1. Default Synthetic Data

We arrive at the conclusion to choose spectra of the type P (q) = 1
q4+1 , for both spectra. We

further set nbins=512, Ñ=300 and ς2=0.05 as default settings for producing synthetic causal
data. The scatter plots for the resulting data are shown in 4.3.

The resulting accuracies are given below:
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Table 4.1.: Accuracy for the default synthetic data benchmark.

Model accuracy

BCM 0.98
LiNGAM 0.30
ANM-HSIC 1.00
ANM-MML 1.00
IGCI 0.65
CGNN 0.72

4.4.2. High Noise Data

As a first variation, we explore the influence of high and very high noise on the performance
of the inference models. Therefore we set the parameter ς2=0.2 for high noise and ς2=1 for
very high noise in 1, while keeping the other parameters set to the same values as in 4.4.1.
The scatter plots for the resulting datasets are given in figures C.1 and fig C.2.

While our BCM algorithm is able to still perform somewhat reliable with a accuracy of ≥ 90%,
especially the ANM algorithms do not remarkably suffer from the noise. This is likely due to
the fact that the distribution of the true cause P(X) is not influenced by the high noise and
this distribution is assessed in its own.

Table 4.2.: Accuracy for the high-noise synthetic data benchmark.

Model ς2=0.2 ς2=1

BCM 0.94 0.90
LiNGAM 0.31 0.40
ANM-HSIC 0.98 0.94
ANM-MML 0.99 0.99
IGCI 0.60 0.58
CGNN 0.75 0.77

4.4.3. Strongly Discretized Data

As our model uses a Poissonian approach, which explicitly considers discretization effects
of data measurement, it is of interest how the performance behaves when using a strongly
discretization. We emulate such a situation by employing our forward model 1 with a very
low number of bins. We keep all parameters as in 4.4.1 and set nbins=16 and nbins=8 for
synthetic data with high and very high discretization. The visualization of the datasets is
given in figures C.3 and C.4. Apparently, especially the ANM models do not suffer anyhow
from the strong discretization. CGNN and IGCI perform significantly worse here. In the case
of IGCI this can be explained by the entropy estimation, which simply removes non-unique
samples. Our BCM algorithm is able to achieve over 90% accuracy here.
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Table 4.3.: Accuracy for the strongly discretized synthetic benchmark data

Model nbins=16 nbins=8

BCM 0.93 0.97
LiNGAM 0.23 0.21
ANM-HSIC 0.99 1.00
ANM-MML 1.00 1.00
IGCI 0.24 0.09
CGNN 0.57 0.22

4.4.4. Very Sparse Data

We explore another challenge for inference algorithms where we strongly reduce the number of
samples. While we sampled about 300 observations with our other forward models so far, here
we reduce the number of observed samples to 30 and 10 samples. Again we refer to the scatter
plots in figures C.5 and C.6. In this case our model performs very well compared to the other
models, in fact it is able to outperform them in the case of just 10 samples being given.

We note that of course our model does have the advantage that it ”knows” the hyperparameters
of the underlying forward model. Yet we consider the results as encouraging.

Table 4.4.: Accuracy for very sparse data.

Model 30 samples 10 samples

BCM 0.92 0.75
LiNGAM 0.44 0.45
ANM-HSIC 0.91 0.71
ANM-MML 0.98 0.69
IGCI 0.48 0.40
CGNN 0.46 0.39

4.4.5. Real World Data

The most widely used benchmark set with real world data is the Tübingen Cause Effect Pairs
dataset (TCEP) [Moo+16]. The collection currently (August 2018) consists of 108 datasets.
However these include sets with multiple cause or effect variables. Excluding these reduced
the collection to 102 datasets. As proposed by the maintainers, we use a weighted evaluation
of accuracy here. As some of the datasets represent essentially the same mechanism and just
have been collected with different means (e.g. ”latitude” and ”life expectancy at birth for
different countries, female, 1995-2000” in pair0057 vs. ”latitude” and life expectancy at birth
for different countries, female, 1990-1995” in pair0058 ) they are assigned a reduced weight.
A full description of the TCEP benchmark set is given in D, accompanied by scatter plots of
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the datasets in Fig. D.1.

As some of the contained datasets include a high number of samples (up to 11000) we randomly
subsample large datasets to 500 samples each in order to keep computation time maintainable.
We did not include the LiNGAM algorithm here, as we experienced computational problems
with obtaining results here for certain datasets (namely pair0098). [Gou+17] report the
accuracy of LiNGAM on the TCEP dataset at around 40%. Our model shows to perform
generally comparable to established approaches as ANM and IGCI. CGNN performs best
here, the accuracy which we evaluate at about 70% is however lower than the one reported by
the authors [Gou+17] at around 80%. The reason for this is arguably to be found in the fact
that we set all hyperparameters to fixed values, while [Gou+17] used a leave-one-out-approach
to find the best setting for the hyperparameter nh.

Motivated by the generally strong performance of our approach in the case of sparse data,
we also explore a situation where real world data is only sparsely available. To that end, we
subsample the TCEP datasets s.th. each 20 randomly chosen samples are kept. We give visual
impression for this data in Fig. 4.5 The results are as well given in Table 4.5 The loss in
accuracy of our model is remarkably small. In fact, BCM is able to outperform the other
models considered here, even if not by a large margin.

Table 4.5.: Accuracy for TCEP Benchmark

Model TCEP TCEP with 20 samples

BCM 0.64 0.60
ANM-HSIC 0.63 0.41
ANM-MML 0.58 0.51
IGCI 0.66 0.59
CGNN 0.70 0.55
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Figure 4.5.: Real World Data TCEP benchmark set with 20 randomly chosen samples per dataset.
Blue scatter plots indicate a true causal direction of X → Y , red scatter plots the direction
Y → X

.

×107
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5. Discussion and Conclusion

In this thesis we introduced a model for the 2-variable causal inference task. Our model builds
on the formalism of information field theory which explicitly models the connection of finite
dimensional measurement data to underlying infinite dimensional structures. In this regard,
we employed the concept of Bayesian model selection and made the assumption of additive
noise, i.e. x = f(y) + ε. In contrast to other methods which do so, such as ANM-MML, we do
not model the cause distribution by a Gaussian mixture model but by a Poisson Lognormal
statistic.

We could show that our model is able to provide reliable classification accuracy in the present
causal inference task. Another difference from our model to existing ones is arguably to be
found in the choice of the covariance operators. While most other publications use squared
exponential kernels for Gaussian process regression, we choose a covariance which is governed
by a 1

q4+1 power spectrum. This leads arguably to a different importance of structure at small
scales which is emphasized more strongly by our covariance than in a squared exponential
kernel.

As a certain weak point within our model we consider the approximation of the uncomputable
path integrals via the Laplace approximation. A thorough investigation of error bounds,
e.g. via [Maj15] is yet to be carried out. As an alternative, one can think about sampling-
based approaches to approximate the integrals. A recent publication ([Cal+18]) introduced a
harmonic-mean based sampling approach to approximate high dimensional integrals. Such a
technique might be promising in the context of our formalism.

Another outlook is to be seen in the computational implementation of the deeper models
discussed in 3.3 and 3.4. However the feasibility of this is certainly questionable. Especially with
the outlined technique of the Laplace approximation the challenge persists in the computational
minimization which is numerically highly complex in this case.

Yet, the implementation of our model with fixed noise variance and power spectra was able
to deliver competitive results with regard to state-of-the-art methods in the benchmarks. In
particular, our method seems to be slightly superior in the low sample regime, probably due
to the more appropriate Poisson statistic used. We consider this as an encouraging result for
a first work in the context of information field theory-based causal inference.

42



Bibliography

[Aba+15] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. 2015. url: https://www.
tensorflow.org/.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006, pp. 225–231.
isbn: 0387310738.

[BS09] Jose M. Bernardo and A.F.M. Smith. Bayesian Theory. Wiley Series in Probability
and Statistics. Wiley, 2009, pp. 389–401. isbn: 9780470317716. url: https :
//books.google.de/books?id=11nSgIcd7xQC.

[Cal+18] Allen Caldwell et al. “Integration with an Adaptive Harmonic Mean Algorithm”.
In: ArXiv e-prints (Aug. 2018). arXiv: 1808.08051.

[Cha16] Christopher Chatfield. The Analysis of Time Series: An Introduction, Sixth
Edition. Chapman & Hall/CRC Texts in Statistical Science. CRC Press, 2016,
pp. 109–114. isbn: 9780203491683. url: https://books.google.de/books?id=
qKzyAbdaDFAC.

[Dan+10] P. Daniusis et al. “Inferring deterministic causal relations”. In: Proceedings of the
26th Conference on Uncertainty in Artificial Intelligence. Max-Planck-Gesellschaft.
Corvallis, OR, USA: AUAI Press, July 2010, pp. 143–150.

[EFK09] Torsten A. Enßlin, Mona Frommert, and Francisco S. Kitaura. “Information field
theory for cosmological perturbation reconstruction and nonlinear signal analysis”.
In: Phys. Rev. D 80 (10 Nov. 2009), p. 105005. doi: 10.1103/PhysRevD.80.
105005. url: https://link.aps.org/doi/10.1103/PhysRevD.80.105005.

[GBR13] W. Greiner, D.A. Bromley, and J. Reinhardt. Field Quantization. Springer Berlin
Heidelberg, 2013, p. 353. isbn: 9783642614859. url: https://books.google.de/
books?id=C-DVBAAAQBAJ.

[Gou+17] Olivier Goudet et al. Learning Functional Causal Models with Generative Neural
Networks. 2017. eprint: arXiv:1709.05321.

[Gre+05] Arthur Gretton et al. “Measuring Statistical Dependence with Hilbert-schmidt
Norms”. In: Proceedings of the 16th International Conference on Algorithmic
Learning Theory. ALT’05. Singapore: Springer-Verlag, 2005, pp. 63–77.

[Gre+07] Arthur Gretton et al. “A Kernel Method for the Two-Sample-Problem”. In:
Advances in Neural Information Processing Systems 19. Ed. by B. Schölkopf, J. C.
Platt, and T. Hoffman. MIT Press, 2007, pp. 513–520.
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A. Explicit Calculations

A.1. Derivatives of γξ

A.1.1. The Term log
∣∣∣2πêτβ ∣∣∣

∂τβq log
∣∣∣2πêτβ ∣∣∣ =

∣∣∣2πêτβ ∣∣∣−1
∂τβq

∣∣∣2πêτβ ∣∣∣
=
∣∣∣2πêτβ ∣∣∣−1 ∣∣∣2πêτβ ∣∣∣ tr (ê−τβ∂τβq êτβ)

= tr
(
ê−τβ êτβδq

)
= tr(δ̂q) = 1 (A.1)

The second order derivative w.r.t. τβ therefore vanishes,

∂τβr∂τβq log
∣∣∣2πêτβ ∣∣∣ = 0 (A.2)

As well as the second order mixed derivatives,

∂βu∂τβq log
∣∣∣2πêτβ ∣∣∣ = 0 = ∂τβq∂βu log

∣∣∣2πêτβ ∣∣∣ (A.3)

A.1.2. The Term β†F †ê−τβFβ

As first order derivatives we have

∂βuβ
†F†ê−τβFβ = (β†F†ê−τβF)u (A.4)

∂τβqβ
†F†ê−τβFβ = β†F†(∂τβq ê

−τβ )Fβ = −β†F†ê−τβδqFβ (A.5)

The above derivative w.r.t. to β is trivial, in the derivative w.r.t. τβ we used that the Fourier
transform is invariant under the derivative. The resulting expression ê−τβδq is to be understood
as the field analogue of a diagonal matrix where only a single entry (with the index q) is not
zero. Therefore the second order derivatives are:

∂βv∂βuβ
†F†ê−τβFβ = (F†ê−τβF)uv (A.6)

∂τβr∂τβqβ
†F†ê−τβFβ = δqrβ

†F†ê−τβδqFβ (A.7)

∂τβq∂βuβ
†F†ê−τβFβ = ∂τβq (β†F†ê−τβF)u = −(β†F†ê−τβδqF)u (A.8)
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A.2. Derivatives of γζ

A.2.1. The Term y†(F̃ [τf ] + êη(x))−1y

The derivatives of the τf -dependent matrix elements F̃ij are

∂τfq F̃ [τf ]ij = ∂τfq (F†êτfF)xixj = (F†êτf δqF)xixj ≡ (Λq)ij (A.9)

∂τfr∂τfq F̃ [τf ]ij = ∂τfr (F†êτf δqF)xixj = (Λq)ijδqr (A.10)

For the sake of brevity we introduced (Λq)ij ≡ (F†êτf δqF)xixj above, which we will use from
now on. We will further write G ≡ (F̃ + êη(x))−1

∂τfqy
†Gy = −y†GΛqGy (A.11)

∂τfr∂τfqy
†Gy = y† (2GΛqGΛrG−GΛqδqrG)y (A.12)

∂ηuy
†Gy = −y†G ̂eη(x)δxuGy (A.13)

(A.14)

∂ηv∂ηuy
†Gy = y†

(
2G ̂eη(x)δxuGêη(x)δxrG−G ̂eη(x)δxuδuvG

)
y (A.15)

∂ηu∂τfqy
†Gy = −2y†(∂ηuG)ΛqGy = 2y†G ̂eη(x)δxuGΛqGy (A.16)

= ∂τfq∂ηuy
†Gy (A.17)

A.2.2. The Term log
∣∣∣F̃ [τf ] + êη(x)

∣∣∣

∂τfq log
∣∣∣∣F̃ [τf ] + êη(x)

∣∣∣∣ = tr
(
G∂τfq (F̃ [τf ] + êη(x))

)
= tr (GΛz) (A.18)

∂τfr∂τfq log
∣∣∣∣F̃ [τf ] + êη(x)

∣∣∣∣ = tr
(
(∂τfrG)Λz′) +G(∂τfrΛq)

)
= tr (−GΛrGΛq +GΛrδqr)

(A.19)

∂ηu log
∣∣∣∣F̃ [τf ] + êη(x)

∣∣∣∣ = tr
(
G∂ηu(F̃ [τf ] + êη(x))

)
= tr

(
G ̂eη(x)δxu

)
(A.20)

∂ηv∂ηu log
∣∣∣∣F̃ [τf ] + êη(x)

∣∣∣∣ = tr
(

(∂ηvG) ̂eη(x)δxu +G(∂ηv ̂eη(x)δxu)
)

= tr
(
−G ̂eη(x)δxvG

̂eη(x)δxu + δvuG
̂eη(x)δxu

)
(A.21)

∂ηu∂τfq log
∣∣∣∣F̃ [τf ] + êη(x)

∣∣∣∣ = tr ((∂ηuG)Λq)) = tr
(
−G ̂eη(x)δxuGΛq

)
(A.22)

= ∂τfq∂ηu log
∣∣∣∣F̃ [τf ] + êη(x)

∣∣∣∣ (A.23)
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A.3. The Determinant |Γξ|

The determinant for the curvature of γξ is given by

|Γξ(β, τβ)| =
∣∣∣∣∣ δ2γ

δβ†δβ

∣∣∣∣∣
∣∣∣∣∣∣ δ2γ

δτ †βδτβ
− δ2γ

δτ †βδβ

(
δ2γ

δβ†δβ

)−1
δ2γ

δβ†δτβ

∣∣∣∣∣∣
= det

uv

[
ρ̂eβ(z)

uv +
(
F†ê−τβF

)
uv

]
det
uv

[
1
2δuvβ

†F†êτβδxFβ +
(

1
σβ

∆†∆
)
uv

−
(
β†F†êτβδuF

)
w

(
ρ̂eβ(z) +

(
F†ê−τβF

))−1

wz

(
β†F†êτβδvF

)
z

]
(A.24)

A.4. The Determinant |Γζ |

The full expression for the determinant of the curvature of γζ is:

|Γζ(η, τf |) =


∣∣∣∣∣∣ δ2γ

δτ †fδτf

∣∣∣∣∣∣
∣∣∣∣∣∣∣
δ2γ

δη†δη
− δ2γ

δη†δτf

 δ2γ

δτ †fδτf

−1
δ2γ

δτ †fδη

∣∣∣∣∣∣∣


= det
uv

[
1
2tr (−GΛxGΛy +GΛxδuv) + 1

2y
† (2GΛuGΛvG−GΛuδuvG)y +

(
1
σf

∆†∆
)
uv

]

× det
uv
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(
−G ̂eη(x)δxuG

̂eη(x)δxv + δuvG
̂eη(x)δxv

)
+1

2y
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2G ̂eη(x)δxuG
̂eη(x)δxvG−G ̂eη(x)δxuδuvG
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1
ση
∇†∇

)
uv

−
(
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2tr
(
G ̂eη(x)δxuGΛw

)
+ y†G ̂eη(x)δxuGΛwGy

)
×

×
(

1
2tr (−GΛwGΛz +GΛwδwz) + 1

2y
† (2GΛwGΛzG−GΛwδwz)y +
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1
σf
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2tr
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)]
(A.25)
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B. Details on the Computational
Implementation

The implementation of algorithm 2 was done in Python 1 Using the notation of 3, we modelled
x,y, as 1d-Numpy arrays with a length of nbins.

The operators B,F are represented as 2d-Numpy arrays with a shape of (nbins, nbins), i.e.
matrices in Rnbins×nbins . Using a Fourier transform (i.e. a Discrete Fourier transform) to
represent the B and F would lead to the question how to handle the resulting imaginary parts.
Instead we choose to use the Hartley transform ([Har42]) which is defined as

H[f ](q) = 1
2π

∫
dx(sin(xq) + cos(xq))f(x) (B.1)

Therefore, H[f ] = Re(F [f ])−Im(F [f ]), and furtherH−1 = H. We thus implement the Hartley
transform by calculating the discrete Hartley transform matrix, H = Re(F)− Im(F). Here, F
denotes the discrete Fourier transform (DFT) matrix, for which we use an implementation
provided by the SciPy Module. We can now give numerical representations for B and F via
HP̂βH and HP̂fH.

1provided at https://github.com/MKurthen/BayesianCausalInference
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C. Scatter Plots for the Benchmark Data

Figure C.1.: Synthetic Datasets sampled via alg. 1 with ς2 = 0.2. Blue scatter plots indicate a true
causal direction of X → Y , red scatter plots the direction Y → X.
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Figure C.2.: Synthetic Datasets sampled via alg. 1 with ς2 = 1.0. Blue scatter plots indicate a true
causal direction of X → Y , red scatter plots the direction Y → X.
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Figure C.3.: Synthetic Datasets sampled via alg. 1 with nbins = 16. Blue scatter plots indicate a true
causal direction of X → Y , red scatter plots the direction Y → X.
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Figure C.4.: Synthetic Datasets sampled via alg. 1 with nbins = 8. Blue scatter plots indicate a true
causal direction of X → Y , red scatter plots the direction Y → X.
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Figure C.5.: Synthetic Datasets sampled via alg. 1 with Ñ = 30. Blue scatter plots indicate a true
causal direction of X → Y , red scatter plots the direction Y → X.
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Figure C.6.: Synthetic Datasets sampled via alg. 1 with Ñ = 10. Blue scatter plots indicate a true
causal direction of X → Y , red scatter plots the direction Y → X.
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D. Description of the TCEP Benchmark Set

The following is a description for the TCEP benchmark set. We omit the 6 datasets which
contain more than 2 variables as they have not been used in the benchmark. Scatter plots are
shown in fig. D.1.

dataset name X Y source causal direction

pair0001 Altitude Temperature DWD X → Y
pair0002 Altitude Precipitation DWD X → Y
pair0003 Longitude Temperature DWD X → Y
pair0004 Altitude Sunshine hours DWD X → Y
pair0005 Age Length Abalone X → Y
pair0006 Age Shell weight Abalone X → Y
pair0007 Age Diameter Abalone X → Y
pair0008 Age Height Abalone X → Y
pair0009 Age Whole weight Abalone X → Y
pair0010 Age Shucked weight Abalone X → Y
pair0011 Age Viscera weight Abalone X → Y
pair0012 Age Wage per hour census income X → Y
pair0013 Displacement Fuel consump-

tion
auto-mpg X → Y

pair0014 Horse power Fuel consump-
tion

auto-mpg X → Y

pair0015 Weight Fuel consump-
tion

auto-mpg X → Y

pair0016 Horsepower Acceleration auto-mpg X → Y
pair0017 Age Dividends from

stocks
census income X → Y

pair0018 Age Concentration
GAG

GAGurine
(from R package
MASS)

X → Y

pair0019 Current dura-
tion

Next interval geyser X → Y

pair0020 Latitude Temperature DWD X → Y
pair0021 Longitude Precipitation DWD X → Y
pair0022 Age Height arrhythmia X → Y
pair0023 Age Weight arrhythmia X → Y
pair0024 Age Heart rate arrhythmia X → Y
pair0025 Cement Compressive

strength
concrete data X → Y
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pair0026 Blast furnace
slag

Compressive
strength

concrete data X → Y

pair0027 Fly ash Compressive
strength

concrete data X → Y

pair0028 Water Compressive
strength

concrete data X → Y

pair0029 Superplasticizer Compressive
strength

concrete data X → Y

pair0030 Coarse aggre-
gate

Compressive
strength

concrete data X → Y

pair0031 Fine aggregate Compressive
strength

concrete data X → Y

pair0032 Age Compressive
strength

concrete data X → Y

pair0033 Alcohol con-
sumption

Mean corpuscu-
lar volume

liver disorders X → Y

pair0034 Alcohol con-
sumption

Alkaline phos-
photase

liver disorders X → Y

pair0035 Alcohol con-
sumption

Alanine amino-
transferase

liver disorders X → Y

pair0036 Alcohol con-
sumption

Aspartate
aminotrans-
ferase

liver disorders X → Y

pair0037 Alcohol con-
sumption

Gamma-
glutamyl
transpeptdase

liver disorders X → Y

pair0038 Age Body mass in-
dex

pima indian dia-
betes

X → Y

pair0039 Age Serum insulin pima indian dia-
betes

X → Y

pair0040 Age Diastolic blood
pressure

pima indian dia-
betes

X → Y

pair0041 Age Plasma glucose
concentration

pima indian dia-
betes

X → Y

pair0042 Day of the year Temperature B.Janzing X → Y
pair0043 Temperature at

t
Temperature at
t+1

ncep-ncar X → Y

pair0044 Pressure at t Pressure at t+1 ncep-ncar X → Y
pair0045 Sea level pres-

sure at t
Sea level pres-
sure at t+1

ncep-ncar X → Y

pair0046 Relative humid-
ity at t

Relative humid-
ity at t+1

ncep-ncar X → Y

pair0047 Number of cars Type of day traffic Y → X
pair0048 Indoor tempera-

ture
Outdoor tem-
perature

Hipel & Mcleod Y → X

pair0049 Ozone concen-
tration

Temperature Bafu Y → X
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pair0050 Ozone concen-
tration

Temperature Bafu Y → X

pair0051 Ozone concen-
tration

Temperature Bafu Y → X

pair0056 Female life ex-
pectancy, 2000-
2005

Latitude UNdata Y → X

pair0057 Female life ex-
pectancy, 1995-
2000

Latitude UNdata Y → X

pair0058 Female life ex-
pectancy, 1990-
1995

Latitude UNdata Y → X

pair0059 Female life ex-
pectancy, 1985-
1990

Latitude UNdata Y → X

pair0060 Male life
expectancy,
2000-2005

Latitude UNdata Y → X

pair0061 Male life
expectancy,
1995-2000

Latitude UNdata Y → X

pair0062 Male life
expectancy,
1990-1995

Latitude UNdata Y → X

pair0063 Male life
expectancy,
1985-1990

Latitude UNdata Y → X

pair0064 Drinking water
access

Infant mortality UNdata X → Y

pair0065 Stock return of
Hang Seng Bank

Stock return of
HSBC Hldgs

Yahoo database X → Y

pair0066 Stock return of
Hutchison

Stock return of
Cheung kong

Yahoo database X → Y

pair0067 Stock return of
Cheung kong

Stock return of
Sun Hung Kai
Prop.

Yahoo database X → Y

pair0068 Bytes sent Open http con-
nections

P. Stark & Janz-
ing

Y → X

pair0069 Inside tempera-
ture

Outside temper-
ature

J.M. Mooij Y → X

pair0070 Parameter Answer Armann &
Buelthoff

X → Y

pair0072 Sunspots Global mean
temperature

sunspot data X → Y

pair0073 CO2 emissions Energy use UNdata Y → X
pair0074 GNI per capita Life expectancy UNdata X → Y
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pair0075 Under-5 mortal-
ity rate

GNI per capita UNdata Y → X

pair0076 Population
growth

Food consump-
tion growth

Food and Agri-
culture Organi-
zation of the
Unite...

X → Y

pair0077 Temperature Solar radiation B. Janzing Y → X
pair0078 PPFD Net Ecosystem

Productivity
Moffat A.M. X → Y

pair0079 Net Ecosystem
Productivity

Diffuse PPFD-
dif

Moffat A.M. Y → X

pair0080 Net Ecosystem
Productivity

Direct PPFDdir Moffat A.M. Y → X

pair0081 Temperature Local CO2 flux,
BE-Bra

Mahecha, M. X → Y

pair0082 Temperature Local CO2 flux,
DE-Har

Mahecha, M. X → Y

pair0083 Temperature Local CO2 flux,
US-PFa

Mahecha, M. X → Y

pair0084 Employment Population spatial-
econometrics.com

Y → X

pair0085 Time of mea-
surement

Protein content
of milk

maths.lancs.ac.uk X → Y

pair0086 Size of apart-
ment

Monthly rent J.M. Mooij X → Y

pair0087 Temperature Total snow Snowfall in
Whistler, from
www.mldata.org

X → Y

pair0088 Age Relative spinal
bone mineral
density

bone dataset
of R Elem-
StatLearn
package

X → Y

pair0089 root decomposi-
tion Oct (grassl)

root decomposi-
tion Oct (grassl)

Solly et al
(2014). Plant
and Soil, 382(1-
2), ...

Y → X

pair0090 root decomposi-
tion Oct (forest)

root decomposi-
tion Oct (forest)

Solly et al
(2014). Plant
and Soil, 382(1-
2), ...

Y → X

pair0091 clay cont. in soil
(forest)

soil moisture Solly et al
(2014). Plant
and Soil, 382(1-
2), ...

X → Y
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pair0092 organic carbon
in soil (forest)

clay cont. in soil
(forest)

Solly et al
(2014). Plant
and Soil, 382(1-
2), ...

Y → X

pair0093 precipitation runoff MOPEX X → Y
pair0094 hour of day temperature S. Armagan

Tarim
X → Y

pair0095 hour of day electricity load S. Armagan
Tarim

X → Y

pair0096 temperature electricity load S. Armagan
Tarim

X → Y

pair0097 speed at the be-
ginning

speed at the end D. Janzing X → Y

pair0098 speed at the be-
ginning

speed at the end D. Janzing X → Y

pair0099 language test
score

social-economic
status family

nlschools
dataset of R
MASS package

Y → X

pair0100 cycle time of
CPU

performance cpus dataset of
R MASS pack-
age

X → Y

pair0101 grey value of a
pixel

brightness of the
screen

D. Janzing X → Y

pair0102 position of a ball time for passing
a track segment

D. Janzing X → Y

pair0103 position of a ball time for passing
a track segment

D. Janzing X → Y

pair0104 time for passing
1. segment

time for passing
2. segment

D. Janzing X → Y

pair0106 time required
for one round

voltage D. Janzing Y → X

pair0107 strength of con-
trast

answer correct
or not

Schuett, edited
by D. Janzing

X → Y

pair0108 time for 1/6 ro-
tation

temperature D. Janzing Y → X
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Figure D.1.: TCEP benchmark dataset. Blue scatter plots indicate a true causal direction of X → Y ,
red scatter plots the direction Y → X.
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